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• The method
• Polymorphic and phase transformations
• High-rate plastic deformation and fracture
• Approaching the ideal strength
• Failure waves
• Behavior of hard brittle materials



APPEARANCE OF MATERIAL PROPERTIES IN A 
FREE SURFACE VELOCITY HISTORY

Available loading conditions: 

•Peak stresses: 0.1 −
 

100 GPa
•Load durations: 10 ns −10 μs
•Time resolution of the measurements:

< 1 ns

Hugoniot elastic limit: HEL = ρ0 cl ufs
HEL/2

Yield stress: Y = HEL (1-2ν)/(1-ν)

Spall strength: σsp = ρ0 cb (Δufs + δ)/2

Phase transition pressure: 

pα→ε

 

= ρ0 D1 ufs1 /2
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DIAGNOSTICS: 
measurements of pressure, tests at elevated 

temperatures
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Extremely high transformation rate at shock-wave compression;
Sub-microsecond polymorphic transformations have been studied for iron and 
steels, titanium, tin, graphite, boron nitride, …
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POLYMORPHIC TRANSFORMATIONS



Highly Oriented Highly Oriented PyroliticPyrolitic GraphiteGraphite 
(HOPG)(HOPG)

•
 

The increase of mosaic spread decreases the transformation  pressure.
•

 
Transformation of HOPG occurs with acceleration whereas pressed graphite shows 
acceleration in initial stage and deceleration at the end. 

•
 

The maximum transformation rate is 2.5×107 s-1 for HOPG and 8 ×106 s-1 for pressed 
graphite. 
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GraphitesGraphites of various grain sizeof various grain size
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• Fine-grained graphites demonstrate higher lower average 
transformation rate but faster stress relaxation in the initial stage.

• This may be interpreted as faster nucleation in the material with 
large intergranular surface.

Expanded graphite



TRANSFORMATION GRAPHITE-DIAMOND 
UNDER SHOCK COMPRESSION
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Dependence of the transformation pressure 
and rate on the load direction confirms the 
martensitic nature of the transformation.
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Temperature dependences of the transition pressureTemperature dependences of the transition pressure
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The two kinds of graphite with different transformation pressures demonstrate 
the same slope of their ptr (T) dependences.
Extrapolated ptr (T) dependences intersect the graphite-diamond coexisting line 
at the lower temperature of formation of quenchable cubic diamond.



Shape memory materials
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DEFORMATION OF THE SHAPE MEMORY 
MATERIALS
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DYNAMIC STRENGTH



SPALL PHENOMENA UNDER SHOCK 
LOADING 

Spalling is the process of internal rupture of a body due to tensile stresses 
generated as a result of a compression pulse reflected from the free surface.
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MANIFESTATIONS OF STRUCTURAL 
FACTORS AT SPALLING

• The spall strength is by ~15% less in the 
case of loading in the lateral direction;

• Faster decay of the velocity oscillations 
correlates with a more highly developed 
fracture surface;
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• The “as received” alloy demonstrates 
high spall strength and relatively 
slow fracture process;

• Annealing resulted in decrease of the 
spall strength and fasten the fracture 
process;



Polycrystalline metals and metal single 
crystals

Highly homogeneous single crystals are free of potential 
fracture nucleation sites and demonstrate much higher 
spall strength than that of polycrystalline material.
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Intragranular and 
intergranular 
fracture of copper



SPALL FRACTURE OVER WIDE RANGE OF 
THE LOAD DURATION
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The load duration is varied from ~10 ns to ~10 μs
The resistance to spall fracture grows with 
increasing the strain rate

0 1 2 3 4
0

250

500

750

Aluminum AD1

Fr
ee

 S
ur

fa
ce

 V
el

oc
ity

, m
/s

Time, μs



T1<T2<T3<T4
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• The pressure of a gas cannot be negative.
• Unlike gases, liquids and solids have a finite density at zero pressure 

due to attractive intermolecular interactions.
• Stretching a liquid or a solid means applying a negative pressure to it.
• The stretched states are bounded by the spinodal.
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APPROACHING THE IDEAL STRENGTH

• As much as 30 % of ideal strength is reached at load duration of a 
nanosecond range.
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NUCLEATION OF FRACTURE. 
Molecular-dynamic simulations.



Thermal effects



SHOCK-WAVE LOADING OF ALUMINUM SINGLE 
CRYSTALS AT ELEVATED TEMPERATURES

• High spall strength is maintained up to temperatures just by 10°

 

below the melting 
point;

• The Hugoniot elastic limit unexpectedly grows with increasing the temperature;
• The velocity pullback (spall strength) decreases whereas the HEL increases with 

heating;
• A strong rate sensitivity results in a strong decay of the elastic precursor wave.  
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SPALL STRENGTH OF SINGLE CRYSTALS AND 
POLYCRYSTALLINE METALS AT MELTING

• The strength of polycrystalline metals drops when the material begins to melt 
whereas single crystals maintain a high resistance to spall fracture when 
melting should start;

• In polycrystalline solids melting may start along grain boundaries at temperatures 
below the melting temperature of the crystal: pre-melting phenomenon;

• Superheated solid states were realized in the crystals under tension
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ANOMALOUS GROWTH 
OF THE DYNAMIC YIELD STRENGTH OF ALUMINUM SINGLE 

CRYSTALS WITH INCREASING THE TEMPERATURE 

• Dynamic yield strength increases linearly with increasing temperature;
• Yield strength near the melting temperature exceeds its value at room temperature by a 

factor of four and the ratio of the yield strength to the shear modulus increases by an order 
of magnitude (at low strain rates this ratio decreases to half of this value as the temperature 
is increased to 900K) 

• Under conditions of shock deformation of aluminum the dislocation drag is 
determined by thermal oscillations of atoms.
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Anomalous thermal hardening
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SHOCK WAVES IN TI-6-22-22S SAMPLES AT 
NORMAL AND ELEVATED TEMPERATURES
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BEHAVIOR OF BRITTLE MATERIALS



COMPRESSIVE FRACTURE OF BRITTLE 
MATERIALS

Open cracks may appear only under tensile stresses.
Even when applied stress is wholly compressive, the local stress may 
become tensile at certain points at pre-existing crack tip.
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cracks
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Griffith’s fracture criterion: the fracture occurs when the highest local tensile stress at 
the longest crack of the most dangerous orientation reaches a critical value.



SHOCK COMPRESSION AND SPALL FRACTURE OF 
ALUMINA CERAMIC

• Ceramic demonstrates remarkable spall strength when 
the spallation occurs after elastic compression or after 
compression at insignificant plastic deformation. 

• The waveforms do not indicate any signature of 
compressive fracture
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BRITTLE-DUCTILE TRANSITION AT HIGH 
PRESSURE

• Below 0.2 GPa of the confining 
pressure the ultimate compressive 
strength increases rapidly with pressure 
growth. 

• The brittle-ductile transition occurs 
within 0.2−0.3 GPa pressure range.

• Above 0.3 GPa the ultimate strength is 
growing much slower.

• Ceramic exhibits an increasing ductility 
when the confining pressure arises 
above the brittle-ductile transition.

• At a low confining pressure, the failure 
occurred by macroscopic shear on fault 
planes, while the rest material 
contained numerous axial microcracks. 

• At a confining pressure > 0.5 Gpa, the 
dominant deformation mechanism 
became intracrystalline slip by 
dislocation motion.
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EXPERIMENTS WITH SPECIMENS CONFINED BY 
SHRINK-FIT SLEEVE

The confining stress produced by the sleeve is controlled by the 
misfit δ

 
value and the yield stress of the sleeve material. 
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DUCTILE AND BRITTLE RESPONSE OF CERAMICS 
UNDER UNIAXIAL SHOCK COMPRESSION

Boron carbide exhibit brittle response whereas the behavior of 
alumina is ductile
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Compressive fracture of the B4 C ceramic 
Computer simulations
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FAILURE WAVES 
IN SHOCK-COMPRESSED GLASSES



MEASUREMENTS OF DYNAMIC TENSILE 
STRENGTH OF A GLASS

The reverberation time trev of an elastic compression pulse is less than the expected one.
The surface layer obviously has been damaged by cracks.
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FAILURE WAVE IN SHOCK-COMPRESSED GLASS

• The failure wave is a network of cracks that are nucleated on the surface 
and propagate with subsonic speed into the stressed body;

• Investigation of failure wave in shock-compressed glasses may provide 
information about the mechanisms and general rules of nucleation, 
growth and interactions of multiple cracks and lead to a better 
understanding of experiments on brittle ceramics and rocks.
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TRANSFORMATION 
OF SHOCK COMPRESSION PULSES IN A PILE OF 

SODA-LIME GLASS PLATES

• Superposition of failure waves forms the compaction wave: 
elastic wave transforms into an elastic-plastic wave;

• Magnitude of the precursor wave is the failure threshold;
• The pile may be considered as a model of polycrystalline brittle 

material.
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COMPUTER SIMULATION OF THE FAILURE WAVE: 
COMBUSTION-LIKE MODEL

Copper impactor Glass plate

Propagation of fracture:

When the material becomes failed the stress deviator relaxes to σc

(Y. Partom. Int. J. Impact Engng. 21(9), 791, 1998)



0.0 0.5 1.0 1.5 2.0 2.5
0

2

4

6

ufs

Stress at impactor/sample 
interface

S
tre

ss
, G

P
a

Time, μs

0.0

0.2

0.4

0.6

0.8

1.0

 F
re

e 
Su

rfa
ce

 V
el

oc
ity

, k
m

/s

Each surface is a fracture nucleation site.
The model reproduces the decrease of magnitude of leading elastic wave at each interface, 
the free surface velocity history, and the stress oscillations on input glass surface.

COMPUTER SIMULATION OF THE FAILURE WAVE: 
COMBUSTION-LIKE MODEL

Copper impactor Glass pile



Computer simulations 
with accounting for 

anomalous growth of the 
Poisson’s ratio
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PRE-STRESS EFFECT ON THE FAILURE 
WAVE
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Failure wave is stopped by unloading when the stress decreases down to the failure 
threshold
The measurements clearly demonstrate the influence of pre-stressing on the 
distance of the failure propagation which appears in increased reverberation time. 
The effect is larger in the case of K14 glass which is characterized higher failure 
threshold. 



Influence of a lateral pre-stressing on the 
compressive failure threshold
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For K8 crown glass at 215 MPa radial confinement stress Δσf = 140 MPa,              = 0.65

For K14 crown glass at 160 MPa radial confinement stress Δσf = 400 MPa,              = 2.5

Obviously, there are some physical phenomena which we did not account for our 
analysis.
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NUCLEATION OF CRACKS UNDER 
COMPRESSION

Tension

Tension

Compression

Compression

Tensile
cracks

Wing crack

In the “wing crack” model,  generation of local areas of tension 
is accompanied with appearance of local areas of excess 
compression.
As a result, conditions for the irreversible densification are 
created.



GLASS AFTER SHOCK COMPRESSION

PMMA
Glass



Sapphire



The strong irregular oscillations and low reproducibility of 
the waveforms are a consequence of intrinsic heterogeneity 
of its inelastic deformation. 
The precursor waveforms with spikes are associated with 
accelerating stress relaxation behind the precursor front.
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• Comparison of the measured and simulated waveforms indicates 
negligible tensile strength after deformation in the plastic wave. 

• At shock compression below the HEL, sapphire demonstrates the highest 
values of spall strength, which grow with shortening of the load duration.  

• There is also a trend for the spall strength to decrease with increasing 
peak stress.
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• Irregular oscillations in the waveforms are of higher frequencies and lower 
amplitudes than those recorded for other orientations. 

• The data are very reproducible and much less noisy than the waveforms of 
most other orientations. 

• The rise time of the plastic wave at the intermediate peak stress is about 5 ns.
• The stress at the front of the elastic precursor at intermediate impact velocity 

is less than for a lower impact velocity.

s-cut and m-cut sapphire
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Thank you for your attention!
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