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Herrmann’s EOS
EOS for porous solids goes back to Herrmann [1].

He assumed that:
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Herrmann’s assumption Pm

 

=αP needs to be checked on the mesoscale, but we 
adopt it anyway.

To complete the EOS one needs a relation α(P). In his well known Pα
 

model 
Herrmann assumes a P(α) polynomial, to be calibrated from tests. Part of what 
follows is about choosing or calculating an α(P) (or φ(P), φ=1-1/α) relation.
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Instantaneous Pore Collapse
This is a popular model and has many names.

It assumes that for P=0+: φ(=porosity)=0, or α=1, and: Vm

 

=V, Pm

 

=P, Em

 

=E.

For the matrix we often use a Mie-Gruneisen EOS referred to the principal 
Hugoniot curve. We have:
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The Hugoniot curve of the porous material, obtained by eliminating E from the 
EOS and the energy equation:                               is:( )VVPE 02
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It is well known that for high porosities (>40%) the Hugoniot curves extend to 
the right of V=Vm0

 

. Using the above equation in this case means, that we rely on 
extrapolating the Hugoniot curve into the tension regime.

Instead we use the axis P=0 as the reference curve. We get:
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Implementing this instantaneous pore collapse model into a hydro-code we 
find that by using the axis as the reference curve for V>Vm0

 

we get much less 
noise at the shock level.
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Gradual Pore Collapse
Hugoniot curve

Many times details of the pore collapse process are of interest.
 

We then use 
gradual pore collapse models.

When φ(P) is known or assumed, we can use Herrmann’s EOS directly.

Two examples:

1. Exponential pore collapse curve PPC

 

(φ):

where Pc

 

is the pore closure pressure.

2. Spherical shell plastic pore collapse (see later):

We introduce δ
 

to avoid P going to infinity when φ
 

goes to zero. 
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The pore collapse curve is also the elastic limit in compression.

For an initial porosity φ0

 

, pressure increases elastically without change of 
porosity until the pore collapse curve is reached.

The elastic limit is given by:
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The Hugoniot curve centered at the elastic limit is then given by:
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In Figs. 1 and 2 we compare two calculated Hugoniot curves for porous SS 
with 20% initial porosity. 1. Gradual pore collapse. 2. Instantaneous pore 
collapse.

Fig. 1
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Fig. 2

Hydro-code implementation

The EOS is generally given by:
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Using:
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We get two first order ODEs to integrate for each computational cell at the 
EOS/energy stage of each time step: dP/dV=   and dφ/dV=  . Vi

 

and Vf

 

are 
given, and we assume that V varies linearly between them.

Fig. 3 is a history plot of a planar impact calculation where a 20 GPa shock 
enters a 20% porous SS sample. We show P(V) and compare it to the Hugoniot 
curve in Fig. 1.
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Quasi-static spherical shell model
Semi analytical solution

Another way of assessing pore collapse mechanics is through a model 
on the mesoscale. Carroll & Holt (C&H) [2] used a spherical shell 
model. It is named after them, although they were not the first to use it. 
They developed a quasi-static solution and a dynamic solution, but 
assumed an incompressible matrix.

We develop similar solutions, and we take density changes into 
account. Our equations don’t look identical to those of C&H.

There are 3 stages as function of the boundary pressure Pb

 

: 1. Elastic, 
2. Elastic-plastic and 3. fully plastic.

The elastic stage ends when:

a=inner boundary

b=outer boundary
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At the elastic-plastic stage there are 4 unknowns: a, b, Pb

 

and the elastic-plastic 
boundary radius c. If one of them is specified, the others can be determined. It is 
easiest to specify a. Doing that we get 3 equations with 3 unknowns. The 
equations express: 1. Equation for b from the elastic field solution. 2. Continuity 
of σr

 

across the elastic-plastic boundary. 3. mass conservation. Density changes 
are included in the third equation by assuming:

The 3 equations are:

To solve these equations we differentiate them with respect to a
 

and integrate 
numerically the system of 3 first order ODEs.
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If and when c reaches the outer boundary (c=b) we enter the fully plastic stage. 
We have 2 equations: Pb

 

=σr

 

(b) and mass conservation:

These can be solved directly by first eliminating               .

In Figs. 4 we show results of an example for porous SS with 5 initial porosities 
φ0

 

=20%, 10%, 1%, 0.1%, 0.01%. In all the calculations b0

 

=1mm and a0

 

has 
values according to these porosities.

In Figs. 5 we show the Pb

 

(φ) curves during the pore collapse.

In Fig. 6 we show the Pb

 

(φ) curve when a becomes less then 0.0001 mm.

We see from the figures that:

•
 

When φ0

 

>1%, the elastic-plastic boundary reaches the outer boundary, and 
most of the collapse is fully plastic.

•
 

When φ0

 

<1%,
 

the elastic plastic boundary approaches the outer boundary, but
 then turns around and goes back.
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•
 

When φ0

 

is very small, the elastic-plastic boundary stays close to the inner 
boundary, and the pore closure pressure is finite and tends to 2/3Y, as seen from 
Fig. 6.
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Numerical solution

It provides a check to the semi-analytical solution.

It makes it possible to include more general elasto-plastic, visco-plastic and 
failure behavior.

The solution details are:

• Divide the shell thickness into Lagrange cells Δr.

• For each integration step specify the displacement of the inner
 

boundary Δa.

• Unknowns for each integration step are the cell boundary displacements ui

 

.

•
 

Unknowns are determined from equilibrium equations for the staggered cells, 
which are:

• Using finite differences we get the system of equations:

•
 

Solve the system iteratively with the Newton-Raphson
 

scheme. For any 
approximation:
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• Corrections to the unknowns are obtained by solving the linear system: 

•The partial derivatives are determined by numerical differentiation. The system 
is tri-diagonal, but because u0

 

is given, it can be solved recursively in one 
sweep.

In Fig. 7 we compare with the semi-analytical solution for an initial porosity of 
20%. In the numerical solution we let the material fail (lose its strength) linearly 
between effective plastic strain of 0.3 and 1.0.
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Dynamic spherical shell model
Semi analytical solution
Without density changes

Mass conservation equation is:

where v is the radial velocity.

Integrating with respect to r we get:

The momentum equation is:
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For       we get:

Also, we approximate the stress deviator by its average as:

and check that:

Finally, substituting into the momentum equation and integrating
 

from a to b 
we get:

If Pb

 

is given we get from this two simultaneous first order ODEs: 

which can be integrated numerically. 
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In Fig. 8 we show an example of results using these equations. Again, it is a SS 
shell with 20% porosity and Pb

 

=20GPa.
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We see from Fig. 8 that towards closure, the inner boundary velocity 
becomes extremely fast, and will probably get unstable.

We computed closure time as function of Pb

 

. We show the results in Fig. 9.
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Fig. 9

We see from Fig. 9 that for Pb

 

<1GPa the cavity does not close completely. 
This is different from the quasi-static solution. Also, we don’t get an elastic-

 plastic stage, as we consider only averages of the shear stress components.

Including density changes

Using a similar approach, we’re able to consider average density changes. 
The mass conservation equation is then:
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The momentum equation is: ( ) 0
r
2

r
v sr

r =σ−σ+
∂
σ∂

+ρ &

and the over whole mass conservation is:

For a constant Pb

 

the mass conservation equation is the same as before, and 
we may proceed as before (ignoring the small influence of the changing of s 
in the elastic region).

In Fig. 9 we show the porosity history for the same problem as before, and 
compare it to the result from the constant density run.
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We see from Fig. 9 that the influence of density change is small, and that it 
slows the compaction process.

If Pb

 

=Pb

 

(t), the system of equations gets extremely complicated. We therefore 
chose not to work with these equations. Instead we approximate Pb

 

(t) by a 
staircase curve so that for each time step we have a constant Pb

 

. The error 
introduced can be checked by changing the integration time step.
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Implementing in a hydro-code

Similar to the implementation of the quasi-static model we have:
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Entering the material-energy stage, Vnew

 

for each computational cell at each 
time step is known, so that:

t
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Using this with the previous shell model equations, and identifying the matrix 
pressure and density with the average shell model pressure and density, we 
have:
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In Figs. 10 and 11 we compare results of a planar shock run with
 

the dynamic 
shell model to that with the quasi-static shell model.
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We see that there is much difference between the quasi-static and the dynamic 
models:

•
 

For the quasi-static model the pores close at a relatively low pressure, while
 

for 
the dynamic model they close along the whole pressure range.

• For the dynamic model there is no elastic precursor.

•
 

For the quasi-static model the shock is sharp, while for the dynamic model the
 shock is smeared, like for a visco-plastic material.

Dynamic overstress model

For dynamic problems that have an equilibrium or quasi-static solution, the 
system usually tends towards this solution at a certain rate.

Let the quasi-static solution be: 

( )Pqs ϕ=ϕ
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then, at any stage during the pore closure process we have by the overstress 
approach:

and the simplest form of this relation is:

where the coefficient A may be calibrated from tests. Combining this with the 
equation that we had before:

we get a system of two first order ODEs to integrate for each cell at each time 
step as before.

In Figs. 12 and 13 we show examples of such simulations with different values 
of A: 0.01 and 0.02 (GPa μs)-1.
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We see from Figs. 12 and 13 that the rate coefficient determines
 

the precursor 
level and the rise time. The P(V) curve is similar to that of the dynamic shell 
model, except for the precursor. 
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Summary
Modeling compaction of porous materials started with the pioneering works of 
Herrmann and Carroll & Holt in the sixties and seventies. Interest in the subject 
increased when explosive compaction became a viable technology. Never the 
less, the material models haven’t changed much.

We present a survey of these models. They are based mainly on Herrmann’s 
EOS and on Carroll & Holts spherical shell model. The examples we show are 
our own contribution, and the detailed equations are sometimes different from 
those in the original papers.

The subject is still open to more research because:

• A spherical shell does not represent all possible geometries.

• The models are mainly for ductile materials.

• Collapse under pressure + shear could give different results.

• The size distribution of pores could have an effect. 
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