Proton Radiography: Studying Dynamic Properties of Shock-Loaded Materials

Cynthia L. Schwartz and the pRad Collaboration Physics Division *Los Alamos National Laboratory*

 5×10^6 Hz 800 MeV p

 2 Hz 800 MeV p

NATIO AL LARORATORY

U N C L A S S I F I E D

U N C L A S S I F I E D

LANSCE Experimental Areas

П Lujan Center

- *National security research*
- *Materials, bio-science, and nuclear physics*
- *National user facility*
- **U** WNR
	- *National security research*
	- *Nuclear Physics*
	- *Neutron Irradiation*
- **Proton Radiography**
	- *National security research*
	- *Dynamic Materials science,*
	- •*Hydrodynamics*
- **Exercise Broduction Facility** • *Medical radioisotopes*

Proton Interactions

NATIO AL LABORATORY **U N C L A S S I F I E D**

The idea-focus the transmitted protons with magnetic lenses

Magnetic Imaging Lens

 $L = M^2 = -I$

"Matching Miracle"

 $x_o x_o'$ – position and angle at object

- x_{fn} position at midpoint of lens *xi -* position and angle at image
	- *-* Δ*p/p*

δ

- *M -*Transport matrix for doublet
- *L -* First order Transport matrix
- *T -* Second order Transport tensor lamos

1 1 $x_{fp} = M_{12}\phi$ 12 $w = \frac{-M_{11}}{M}$ − =

 $x'_o = wx_o + \phi$

 $x_{fp} = M_{11}x_o + M_{12}x_o'$

Fourier Plane

Resolution

 $\Delta x_i = T_{126} \phi \delta$

 μ - $/M_{12}$

$$
x_{i} = L_{11}x_{o} + L_{12}x_{o}' + T_{116}x_{o}\delta + T_{126}x_{o}'\delta
$$

\n
$$
x_{i} = -x_{o} + T_{116}x_{o}\delta + T_{126}(wx_{o} + \phi)\delta
$$

\n
$$
w = \frac{-T_{116}}{T_{126}} = \frac{-M_{11}}{M_{12}} \star
$$

Dominates Blur

 $x_{fp} = M_{11}x_{o} + M_{12}(wx_{o} + \phi)$

Same position-angle correlation which forms a Fourier plane at the center of the magnet also cancels second * \rightarrow order chromatic terms.

Form identity lens from

Inject beam with positionangle correlation to form Fourier plane at center of

identical doublets

lens.

 * C.T. Mottershead and J. D. Zumbro, "Magnetic Optics for Proton Radiography", Proceedings of the 1997 Particle Accelerator Conference Operated by the Los Alamos National Security, LLC for the DOE/NNSA

UNCLASSIFI

w

Contrast from Multiple Coulomb Scattering

Areal Density Reconstruction

x $T_{_{nuclear}}=e$ λ =

Nuclear removal processes

Multiple Coulomb Scattering with collimation:

- θ_{o} scattering angle (radians)
- *x* areal density
- *xo* radiation length
- *p* momentum (MeV)
- *β* relativistic velocity

Total Transmission

- inverted to determine areal density, *^x*

U N C L A S S I F I E D

U N C L A S S I F I E D

pRad Facility at LANSCE

800 MeV Spatial Resolution

Identity Lens X3 Magnifier X7 Lens

- <u>Station 1: 178 μm</u>
- 120 mm field of view

 1.2 Identity Lens 1.0 $0.8\,$ $\begin{bmatrix}\n \text{Modulation} \\
\text{0.6} \\
\text{0.4}\n \end{bmatrix}$ 0.2 $0.0₁$

20

 $30₂$ Line Pairs per mm

• <u>Station 1:30 μm</u> • 17 mm field of view

 $\mathbf 0$

 10

U N C L A S S I F I E D

• <u>Station 1: 65 μm</u>

• 44 mm field of view

INNS®

40

50

Temporal Resolution

- **19** images at first station
- **22** images at second station
- Total **41** possible image times
- Typically **50 ns** exposure times

3 Frame Camera on a Chip (720x720)

U N C L A S S I F I E D

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

NATIONAL LABORATORY **EST.1943**

First 720×726-Pixel Hybrid Chip

- •Packaged prototype is a single 720 \times 720px FPA
- • 1440**×**1440 imager can use a 2-side buttable 720**×**726 FPA in a Tiled Assembly
- • On and off-chip decoupling with multiple wirebonds to dampen large power transients

U N C L A S S I F I E D

U N C L A S S I F I E D Imager as Two-Component Hybrid Focal Plane Array (FPA)

э.
Ра

Rockwell/ Teledyne pRAD Cameras

Prototype –in Al housing

(Sizable volume taken-up by TEC cooler and fan)

Nikon

Stainless-Steel Dewar

U N C L A S S I F I E D

What is a principal Hugoniot?

• locus of all final states characterized by (ρ, P, T)

• Conservation of mass, momentum, and energy result in pressure and density relations:

 $p - p_0 = \rho_0 u_s u_p$

 $\rho/\rho_{o} = u_{s} / (u_{s} - u_{p})$

U N C L A S S I F I E D

Investigation of Dynamic Phase Transitions in Metals using the 40mm Launcher in Area C - Continued

P. A. Rigg, C. L. Schwartz, F. J. Cherne, G. T. Gray III

U N C L A S S I F I E D

Powder Gun Coupled with pRad

- 1-2 mm/μs projectile
- Planar drive

NATIONAL LABORATORY

- Synchronized to proton pulses
- Supported shock wave

Motivation

- • Density measurements with 0.5% to 2% accuracy needed to develop accurate equations of state
- \bullet Direct density measurement techniques and data are lacking
	- Calculated values can have unacceptably large error
	- Quantitative Dynamic X-Ray Diffraction data currently limited to single crystals
	- X-Ray radiography limited to a few snapshots per experiment
- • Plate impact technique provides well-characterized 1-D shock loading to samples
- \bullet PRAD can provide both direct density measurements and resolution of mesoscale feature with many frames of data per experiment
- \bullet Can coupling provide quantitative, real-time measurements of meso-scale processes for the first time? Can accurate density measurements behind shock front be achieved?

U N C L A S S I F I E D

Density Measurements in Aluminum and Copper

- • Four symmetric impact experiments were completed
	- Two experiments on 6061-T6 Aluminum
	- Two experiment on OFHC Copper
	- All samples backed by LiF window to maintain stress at back

- •High confidence in EOS for Aluminum and Copper
- •Calculate density using Jump Conditions given $P(u_p)$ and measured projectile velocity, u_0

$$
u_P = \frac{1}{2}u_0 \qquad P = \rho_0 U_s u_P \qquad \rho = \frac{\rho_0 U_s}{U_s - u_P}
$$

Radiography Results – Aluminum Symmetric Impact

U N C L A S S I F I E D

Density Calculation – Jump Conditions

Calculate density from Jump Conditions

Density Calculation – Abel Corrected Radiograph

nos NATIONAL LABORATORY

Density: $\rho = 3.07 \pm 0.03$ g/cm³ (1.1%)

U N C L A S S I F I E D

U N C L A S S I F I E D

Radiography Results – Aluminum Symmetric Impact

U N C L A S S I F I E D

Density Calculation – Radiographs

Density: $\rho = 3.04 \pm 0.024$ g/cm3

Results from Copper Symmetric Impact Experiment

Flyer velocity

- \bullet Significant distortion present due to higher density of copper
- \bullet Distortions do not affect measurement

U N C L A S S I F I E D

Experiment Summary

• Agreement between measured and calculated values better than 0.5% for all experiments

U N C L A S S I F I E D

Measured Density Values Lie on Hugoniots

U N C L A S S I F I E D

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

NATION

LABORATORY

Phase Transition Studies: Iron

- α to ε transition observed in Fe at ~13 GPa
- Transition is relatively insensitive to purity
- Reverse transition clearly observed as evidence by rarefaction shock

U N C L A S S I F I E D

Two-wave structure observed in Iron

- •Aluminum impacting Iron backed by Sapphire @ 1.45 km/s -> 175 kbar in Fe
- •3X pRad Magnifier used to enhance contrast and sharpness

U N C L A S S I F I E D

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

AL LABORATORY

NATION

Measured and Calculated Densities - Iron

Conclusions

- • Successfully coupled proton radiography with plate impact experiments
- Direct density measurements obtained in shocked aluminum, copper and iron with $~1\%$ precision
- Agreement with calculated values better than 0.5%!
- • Large difference in initial density between Cu and Al shows wide applicability to other materials
- Future work: Cerium to examine solid-solid and solidliquid phase transitions…

U N C L A S S I F I E D

40mm Launcher Design Details

- • Completely enclosed system designed to couple plate impact experiments with Proton Radiography
- \bullet Uses gun powder and an SE-1 detonator to launch projectiles up to 2 km/s (600 kbar in copper using Ta flyer)
- \bullet Produces planar impact on samples up to 40mm in diameter
- \bullet Free floating barrel design and shock absorber system minimize recoil load transferred to Proton beam tubes

U N C L A S S I F I E D

Synchronization

Det fired system: Beamline initiates gun

U N C L A S S I F I E D

Tomographic reconstruction and subtraction of overburden

Trimmed density reconstruction

Technique that subtracts overburden and release effects from areal density radiographs

U N C L A S S I F I E D

Taylor Wave-Driven Tin

- •Explosive-driven "Taylor Wave" shock
- •Multiple pressures, decaying over time
- •Stainless steel membrane

Dynamic / Static transmission radiographs

U N C L A S S I F I E D

U N C L A S S I F I E D

Position and Density Measurements

Single experiment, Multiple Measurements

•Single experiment measures many Hugoniot points

•Agreement with LASL $7 \text{ (cm} \cdot 3/\text{g})$ Hugoniot data

•Hugoniot points measured from peak shock velocity down to nearly sound velocity

U N C L A S S I F I E D

PBX 9502 First Corner Turner Experiment

Campbell -Cox experiment on corner turning in Insensitive HE

Detonation Wave

Prad0043

U N C L A S S I F I E D

U N C L A S S I F I E D

PBX9502 corner turning experiment

Proton Radiograph Captures Fragmentation over Time

- \bullet Hemisphere of U6 is explosively expanded.
- \bullet Proton radiograph captures fragmentation over time
- \bullet Percent open/closed area is calculated from 100 random locations
- \bullet Support vector machine is used to categorize entire data set

U N C L A S S I F I E D

U N C L A S S I F I E D

Shear Band Failure in U6Nb

U N C L A S S I F I E D

Fragments Can be Recovered through "Soft Catch"

Shear Localization and Breakup

U N C L A S S I F I E D

U N C L A S S I F I E D

Shear Band Failure in U6Nb

 $-$ EST. 1943

U N C L A S S I F I E D

U N C L A S S I F I E D

Shear Band Failure in U6Nb

We Estimate Percent Open Area from 100 Random Locations

This Procedure is Repeated over Four pRad Time Steps by 15 Individuals

Shear Band Failure in U6Nb

- Assume no HE products to give max DU density.
- Assume flat measured HE products to calculate min DU density.
- Results bracket density in cracks.

pRad has allowed the mechanism for high explosive cookoff to be better understood

Cookoff Experiments

- \bullet Thermal ignition experiment studying properties of PBX-9501 for the surety program
- \bullet Study pre-ignition material density changes
- Study post-ignition reaction propagation
- Material drive mechanisms
- \bullet Previous measurements have been performed with optical diagnostics
- Proton radiography provides information on:
	- Pre-ignition density variations of HE
	- •Ignition propagation
	- Encasing material drive

U N C L A S S I F I E D

Laser Synchronization

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Cookoff Shot Setup

Fiber optic cable attached for laser ignition

Thermocouples embedded for temperature reading

U N C L A S S I F I E D

U N C L A S S I F I E D

Successful Synchronization

Pre-ignition Density Variation

EST.1943 Operated by the Los Alamos National Security, LLC for the DOE/NNSA

LO

 \bullet

lai

NATIONAL LABORATORY

nos

U N C L A S S I F I E D

pRad has allowed the mechanism for high explosive cookoff to be elucidated

- \bullet Thermal ignition experiment studying properties of PBX-9501 for the surety program
- Proton radiography provides information on:
	- Pre-ignition density variations of HE
	- \bullet Ignition propagation
	- •Encasing material drive

Ignition Propagation

Transmission Images

1.2

Results Central ignition Radial propagation "star" ignition pattern

Detailed comparisons with models ongoing within C division and P division

U N C L A S S I F I E D

.8

Combining data from two experiment shows features of the ignition mechanisms

- •Hot spot develops
- •Ignition propagates along cracks
- •Reaction burns remaining material

A recent (Aug 7-8th) proton radiography movie shows features of the ignition mechanism

U N C L A S S I F I E D

pRad Core Team

P-25

Eduardo Campos, Camilo Espinoza, Gary Hogan, Brian Hollander, Julian Lopez, Fesseha Mariam, Frank Merrill, Christopher Morris, Matthew Murray, Alexander Saunders, Cynthia Schwartz, T. Neil Thompson, Dale Tupa

DE-3

Joe Bainbridge, Robert Lopez, Mark Marr-Lyon, Paul Rightley

HX-4

Wendy McNeil

P-23

Gary Grim, Nicholas King, Kris Kwiatkowski, Paul Nedrow

LANSCE-NS

Leo Bitteker

NSTech

Douglas Lewis, Josh Tybo

U N C L A S S I F I E D

