Proton Radiography: Studying Dynamic Properties of Shock-Loaded Materials

Cynthia L. Schwartz and the pRad Collaboration Physics Division Los Alamos National Laboratory

5×10⁶ Hz 800 MeV p 2 Hz 800 MeV p

Los Alamos
 NATIONAL LABORATORY

UNCLASSIFIED

U N C L A S S I F I E D

LANSCE Experimental Areas

UNCLASSIFIED

Lujan Center

- National security research
- Materials, bio-science, and nuclear physics
- National user facility
- WNR
 - National security research
 - Nuclear Physics
 Neutron Irradiation
- Proton Radiography
 - National security research
 - Dynamic Materials science,
 - Hydrodynamics
- Isotope Production Facility
 Medical radioisotopes

Proton Interactions

UNCLASSIFIED

The idea-focus the transmitted protons with magnetic lenses

Magnetic Imaging Lens

"Matching Miracle"

 x_o, x_o' - position and angle at object $x_{\rm fp}$

- position at midpoint of lens X_i
 - position and angle at image
 - $\Delta p/p$

δ

М

- Transport matrix for doublet
 - First order Transport matrix
 - Second order Transport tensor

 $x_{fp} = M_{11}x_{o} + M_{12}(wx_{o} + \phi)$ $w = \frac{-M_{11}}{M_{12}}$

 $x_{o}' = wx_{o} + \phi$

 $L = M^2 = -I$

Fourier Plane

 $x_{f_0} = M_{11}x_0 + M_{12}x_0'$

 $x_{fp} = M_{12}\phi$

Resolution

 $\Delta x_i = T_{126} \phi \delta$

$$x_{i} = L_{11}x_{o} + L_{12}x_{o}' + T_{116}x_{o}\delta + T_{126}x_{o}'\delta$$

$$x_{i} = -x_{o} + T_{116}x_{o}\delta + T_{126}(wx_{o} + \phi)\delta$$

$$w = \frac{-T_{116}}{T_{126}} = \frac{-M_{11}}{M_{12}} \star$$

$$w = \frac{-M_{11}}{M_{12}}$$

Dominates Blur

Same position-angle correlation which forms a Fourier plane at the center of the magnet also cancels second order chromatic terms.

Form identity lens from

Inject beam with position-

angle correlation to form

Fourier plane at center of

identical doublets

lens.

EST.1943* - C.T. Mottershead and J. D. Zumbro, "Magnetic Optics for Proton Radiography", Proceedings of the 1997 Particle Accelerator Conference Operated by the Los Alamos National Security, LLC for the DOE/NNSA

UNCLASS

Contrast from Multiple Coulomb Scattering

Areal Density Reconstruction

 $T_{nuclear} = e^{-x/\lambda}$

Nuclear removal processes

Multiple Coulomb Scattering with collimation:

- θ_{0} scattering angle (radians)
- *x* areal density
- x_{o} radiation length
- *p* momentum (MeV)
- β relativistic velocity

UNCLASSIFIED

pRad Facility at LANSCE

800 MeV Spatial Resolution

Identity Lens

- <u>Station 1: 178 μm</u>
- 120 mm field of view

- <u>Station 1: 65 μm</u>
 44 mm field of vis
- 44 mm field of view

UNCLASSIFIED

X7 Lens

<u>Station 1: 30 μm</u>
17 mm field of view

MS

Temporal Resolution

- **19** images at first station
- 22 images at second station
- Total **41** possible image times
- Typically **50 ns** exposure times

3 Frame Camera on a Chip (720x720)

UNCLASSIFIED

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

AL LABORATORY

EST. 1943

NATIC

First 720×726-Pixel Hybrid Chip

- Packaged prototype is a single 720 × 720px FPA
- 1440×1440 imager can use a 2-side buttable 720×726 FPA in a Tiled Assembly
- On and off-chip decoupling with multiple wirebonds to dampen large power transients

UNCLASSIFIED

Imager as Two-Component Hybrid Focal Plane Array (FPA)

Rockwell/ Teledyne pRAD Cameras

Prototype -- in Al housing

(Sizable volume taken-up by TEC cooler and fan)

Nikon

Stainless-Steel Dewar

UNCLASSIFIED

What is a principal Hugoniot?

- locus of all final states characterized by (ρ, P, T)
- Conservation of mass, momentum, and energy result in pressure and density relations:

 $p - p_0 = \rho_o u_s u_p$

$$\rho/\rho_{o} = u_{s} / (u_{s} - u_{p})$$

Investigation of Dynamic Phase Transitions in Metals using the 40mm Launcher in Area C - Continued

P. A. Rigg, C. L. Schwartz, F. J. Cherne, G. T. Gray III

UNCLASSIFIED

Powder Gun Coupled with pRad

- 1-2 mm/µs projectile
- Planar drive

NATIONAL LABORATORY

- Synchronized to proton pulses
- Supported shock wave

Motivation

- Density measurements with 0.5% to 2% accuracy needed to develop accurate equations of state
- Direct density measurement techniques and data are lacking
 - Calculated values can have unacceptably large error
 - Quantitative Dynamic X-Ray Diffraction data currently limited to single crystals
 - X-Ray radiography limited to a few snapshots per experiment
- Plate impact technique provides well-characterized 1-D shock loading to samples
- PRAD can provide both direct density measurements and resolution of mesoscale feature with many frames of data per experiment
- Can coupling provide quantitative, real-time measurements of meso-scale processes for the first time? Can accurate density measurements behind shock front be achieved?

UNCLASSIFIED

Density Measurements in Aluminum and Copper

- Four symmetric impact experiments were completed
 - Two experiments on 6061-T6 Aluminum
 - Two experiment on OFHC Copper
 - All samples backed by LiF window to maintain stress at back

- High confidence in EOS for Aluminum and Copper
- Calculate density using Jump Conditions given P(u_P) and measured projectile velocity, u₀

$$u_P = \frac{1}{2}u_0 \qquad P = \rho_0 U_S u_P \qquad \rho = \frac{\rho_0 U_S}{U_S - u_P}$$

Radiography Results – Aluminum Symmetric Impact

UNCLASSIFIED

Density Calculation – Jump Conditions

Calculate density from Jump Conditions

Density Calculation – Abel Corrected Radiograph

LOS Alamos EST. 1943

Density: $\rho = 3.07 \pm 0.03 \text{ g/cm}^3 (1.1\%)$

UNCLASSIFIED

Radiography Results – Aluminum Symmetric Impact

UNCLASSIFIED

Density Calculation – Radiographs

Density: ρ = 3.04 ± 0.024 g/cm3

Results from Copper Symmetric Impact Experiment

Flyer velocity -

- Significant distortion present due to higher density of copper
- Distortions do not affect measurement

UNCLASSIFIED

Experiment Summary

Experiment	Impactor/ Sample	Impactor Velocity (km/s)	Peak Stress (GPa)	Initial Density (g/cm³)	Calculated Density (g/cm ³)	Measured Density (g/cm ³)	Agreement
1	AI 6061-T6	1.452 (0.012)	12.27 (0.11)	2.710 (0.003)	3.067 (0.005)	3.07 (0.03)	0.1%
2	AI 6061-T6	1.422 (0.002)	11.98 (0.03)	2.710 (0.003)	3.060 (0.004)	3.056 (0.03)	0.1%
3	OFHC Cu	1.30 (0.04)	28.59 (0.91)	8.928 (0.003)	10.30 (0.05)	10.28 (0.10)	0.2%
4	OFHC Cu	1.249 (0.002)	27.16 (0.06)	8.928 (0.003)	10.241 (0.006)	10.28 (0.10)	0.4%

 Agreement between measured and calculated values better than 0.5% for all experiments

UNCLASSIFIED

Measured Density Values Lie on Hugoniots

NATIONAL LABORATORY

UNCLASSIFIED

Phase Transition Studies: Iron

- α to ϵ transition observed in Fe at ~13 GPa
- Transition is relatively insensitive to purity
- Reverse transition clearly observed as evidence by rarefaction shock

UNCLASSIFIED

Two-wave structure observed in Iron

- Aluminum impacting Iron backed by Sapphire @ 1.45 km/s -> 175 kbar in Fe
- 3X pRad Magnifier used to enhance contrast and sharpness

UNCLASSIFIED

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

BORATORY

NATIO

Measured and Calculated Densities - Iron

Conclusions

- Successfully coupled proton radiography with plate impact experiments
- Direct density measurements obtained in shocked aluminum, copper and iron with ~1% precision
- Agreement with calculated values better than 0.5%!
- Large difference in initial density between Cu and Al shows wide applicability to other materials
- Future work: Cerium to examine solid-solid and solidliquid phase transitions...

UNCLASSIFIED

40mm Launcher Design Details

- Completely enclosed system designed to couple plate impact experiments with Proton Radiography
- Uses gun powder and an SE-1 detonator to launch projectiles up to 2 km/s (600 kbar in copper using Ta flyer)
- Produces planar impact on samples up to 40mm in diameter
- Free floating barrel design and shock absorber system minimize recoil load transferred to Proton beam tubes

UNCLASSIFIED

Synchronization

Det fired system: Beamline initiates gun

UNCLASSIFIED

Tomographic reconstruction and subtraction of overburden

Trimmed density reconstruction

Technique that subtracts overburden and release effects from areal density radiographs

UNCLASSIFIED

Taylor Wave-Driven Tin

- •Explosive-driven "Taylor Wave" shock
- •Multiple pressures, decaying over time
- •Stainless steel membrane

Dynamic / Static transmission radiographs

UNCLASSIFIED

Position and Density Measurements

1.8µsec

1.0

0.5

Single experiment, Multiple Measurements

•Single experiment measures many Hugoniot points

•Agreement with LASL 🕅 Hugoniot data

•Hugoniot points measured from peak shock velocity down to nearly sound velocity

UNCLASSIFIED

PBX 9502 First Corner Turner Experiment

Campbell -Cox experiment on corner turning in Insensitive HE

Detonation Wave

UNCLASSIFIED

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Prad0043

MS

PBX9502 corner turning experiment

Proton Radiograph Captures Fragmentation over Time

- Hemisphere of U6 is explosively expanded.
- Proton radiograph captures fragmentation over time
- Percent open/closed area is calculated from 100 random locations
- Support vector machine is used to categorize entire data set

UNCLASSIFIED

Shear Band Failure in U6Nb

UNCLASSIFIED

Fragments Can be Recovered through "Soft Catch"

Shear Localization and Breakup

0 μs	pre-Shot Static
3.7 μs	hint of localization
5.9 μs	clear localized
	thinning
7.0 μs	continued thinning
8.0 μs	localization points
	begin to connect
11.4 μs	continued
	fragmentation
14.6 μs	fragments formed
16.8 μs	ballistic motion
	0 μs 3.7 μs 5.9 μs 7.0 μs 8.0 μs 11.4 μs 14.6 μs 16.8 μs

UNCLASSIFIED

Shear Band Failure in U6Nb

EST.1943

Shear Band Failure in U6Nb

We Estimate Percent Open Area from 100 Random Locations

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

NATIC

This Procedure is Repeated over Four pRad Time Steps by 15 Individuals

Shear Band Failure in U6Nb

- Assume no HE products to give max DU density.
- Assume flat measured HE products to calculate min DU density.
- Results bracket density in cracks.

pRad has allowed the mechanism for high explosive cookoff to be better understood

Cookoff Experiments

- Thermal ignition experiment studying properties of PBX-9501 for the surety program
- Study pre-ignition material density changes
- Study post-ignition reaction propagation
- Material drive mechanisms
- Previous measurements have been performed with optical diagnostics
- Proton radiography provides information on:
 - Pre-ignition density variations of HE
 - Ignition propagation
 - Encasing material drive

UNCLASSIFIED

Laser Synchronization

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Cookoff Shot Setup

Fiber optic cable attached for laser ignition

Thermocouples embedded for temperature reading

UNCLASSIFIED

Successful Synchronization

Pre-ignition Density Variation

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

LOS

4 Ian

EST. 1943

nos

pRad has allowed the mechanism for high explosive cookoff to be elucidated

- Thermal ignition experiment studying properties of PBX-9501 for the surety program
- Proton radiography provides information on:
 - Pre-ignition density variations of HE
 - Ignition propagation
 - Encasing material drive

Ignition Propagation

Transmission Images

1.2

<u>Results</u> Central ignition Radial propagation "star" ignition pattern

Detailed comparisons with models ongoing within C division and P division

UNCLASSIFIED

.8

Combining data from two experiment shows features of the ignition mechanisms

- •Hot spot develops
- •Ignition propagates along cracks
- •Reaction burns remaining material

A recent (Aug 7-8th) proton radiography movie shows features of the ignition mechanism

UNCLASSIFIED

pRad Core Team

P-25

Eduardo Campos, Camilo Espinoza, Gary Hogan, Brian Hollander, Julian Lopez, Fesseha Mariam, Frank Merrill, Christopher Morris, Matthew Murray, Alexander Saunders, Cynthia Schwartz, T. Neil Thompson, Dale Tupa

DE-3

Joe Bainbridge, Robert Lopez, Mark Marr-Lyon, Paul Rightley

HX-4

Wendy McNeil

P-23

Gary Grim, Nicholas King, Kris Kwiatkowski, Paul Nedrow

LANSCE-NS

Leo Bitteker

NSTech

Douglas Lewis, Josh Tybo

UNCLASSIFIED

