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1
Phenomenology
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1 Phenomenology

Polymers are visco-elastic materials whose stiffnesses depend upon sampling 
time.

Investigated using relaxation tests and small-strain cyclic tests
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1 Phenomenology

Mechanical tests: low rate vs high rate for a rubber

Six-fold increase in modulus over six decades of rate
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1 Phenomenology

Cyclic loading emphasises viscous behaviour:

• link between time-dependent stiffness and energy 
absorption

• DMA test (modulus vs frequency)

• Storage modulus G’

• Loss modulus G’’

• Tan δ phase angle lag between 
input and measured cycles

• Measure of energy dissipated 
in each cycle
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1 Phenomenology

Testing at different temperatures (single frequency) in DMA shows time-
temperature superposition

More experimentally practical to generate the necessary wide range of time-
dependent data using temperature as proxy
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1 Phenomenology

What does tan δ space look like for a standard polymer?

temperature
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development of degrees of freedom 
in mer structure

Alpha, or glass, 
transitions
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1 Phenomenology

How does tan δ vs T change with 
rate?

Transition peaks shift, reduce in 
height and broaden

• Integral underneath spectrum is 
constant

• Need to specify rate at which the 
glass transition temperature is 
measured
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2
Prediction
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2 Prediction

Group Interaction Modelling (GIM) uses chemistry of polymer to predict 
mechanical and physical properties
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2 Group Interaction Modelling

Parameters used:

• M molecular weight of a group

• Vw (cc/mol) van der Waal’s volume of a group

• Ecoh (J/mol) cohesive energy of intermolecular forces

• θ (K) 1-D Debye reference temperature related to polymer chain stiffness

• N thermal degrees of freedom per group

All of these can be measured, calculated or taken from literature
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2 Time-dependence in GIM

Loss peaks derive from development of degrees of freedom with 
time/temperature

For β peaks, Nβ develop with Arrhenius activated kinetics

Activation energy from quantum mechanics calculation
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2 Time dependence in GIM

Amenable to direct prediction using physical quantities

Use Vogel-Fulcher method for glass transition

• Relaxation time, f, is a temperature-activated function

• Experimentally observed that glass transition at equilibrium rates (infinitely long time) is 
50 K below that at 1 Hz. Tgr = Tg - 50

• At infinitely short times predict Tgr = Tg + 70

• β transitions can “catch up” with glass transition
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3
Mechanical properties
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3 Stress-Strain

Transform DMA modulus to stress vs strain
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3 Stress-Strain

We have predictions of expansion and modulus with 
temperature

Use temperature as a dummy variable

Strain  ≡ thermal expansion

Stress ≡ thermal expansion  x  modulus
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3 Stress-Strain
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3 Stress-Strain: Yield: Rate validation
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4
Equation of State
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4 Equation of state
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Potential function method

• GIM parameters give E(V) 
at arbitrary temperature via 
thermodynamics

• Stress and bulk modulus 
from derivatives of E(V)

• Correct for strain in chain 
axis

• Put P vs V into Rankine-
Hugoniot equations
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4 EOS Validation
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4 Applicability of method

Potential function method 
is applicable to a wide 
range of materials with 
different bonding types
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5
Integration
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5 Is shock a high rate event?

Increased rate shifts transition 
temperatures for both β and glass 
transitions

• may reduce degrees of freedom at the 
temperature of the test

• β transitions are inherent to the molecule

• Glass transitions are cooperative between 
molecules

At room temperature polycarbonate is 
below glass transition but HTPB is 
above.

Look at model predictions
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5 Is shock a high rate event?

Model predictions suggest that polymers under shock lose degrees of freedom 
associated with cooperative motion

• But not those β degrees of freedom that are thermally activated

Need more experiments to determine exactly what happens

• Shock measurements at different temperatures around the glass transition

• Measurements on polymers with different transition temperatures

• Implications for thermodynamics

• Need to take into account effects of pressure

− Pressure affects transition temperatures via Debye temperature

• Need a better understanding of what a shock actually is
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5 Polymers under shock

Why this matters: heat capacity

Polymer heat capacity is a function of number of degrees of freedom

• Sum of skeletal modes and atomic group modes

• At glass transition polymer gains an extra 0.5N from cooperative modes
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5 Heat Capacity

Example: HTPB

N = 22, M = 159, θ1 = 520K

NE = 3n – N

θE = 4000K, 1500K

Gains an extra 0.5N at glass transition 

• Not under shock

Model predicts Cv = 1.84 J g-1K-1

Experimental: Cp = 1.95 J g-1K-1 at 
300K 

Menikoff: Cp and Cv differ by only 5% 
for these materials
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5 Heat Capacity – pressure dependence

Pressure changes the vibrational
modes and therefore changes the 
Debye θ temperatures.

This reduces heat capacity

Use QM to calculate new vibrational
modes for different pressures and 
thus the new θ temperatures

Allows heat capacity to be a function 
of pressure as well as temperature 
and rate.

Debye temperatures can be included into model to suggest heat capacities under shock.

At 5 GPa and 300K, HTPB Cv = 1.0 J g-1 K-1, RDX Cv = 0.79 J g-1 K-1

Can use Dreger & Gupta measurements to give RDX Cv = 0.81 J g-1 K-1

ZA Dreger, YM Gupta, J. Phys Chem B 111 (2007) pp 3893 - 3903
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5 HTPB temperature under shock

Pressure- and rate-dependence of 
heat capacity allows prediction of 
shock temperature

Has implications for safety of 
explosives

For example predictions of ignition

• Take RDX melt (478K) as ignition of 
surface burning

• Pressure required to ignite drops from 
2.8 GPa to 2 GPa when compared to 
standard heat capacity

− Larger drop if higher temperature is 
used
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6 Summary

Polymers are time-dependent in thermomechanical properties

We can predict their behaviour

Modelling gives insight into behaviour outside the range of experiments

Allows design of new materials and compositions for specific purposes

It is very relevant to safety analysis to get it right
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