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•  No oil, water or vacuum insulation. 
•  More accessible to experimenters; economical to operate. 

Fringe degradation likely due to light refracting erratically through non-uniform 
elastic-plastic wave structure of ramp loading  
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•  Pulse shaping. 
•  Coaxial and strip-line configurations. 
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Isentropic loading 
Shock experiment yields only a single final P-V point on Hugoniot, an isentropic 
experiment yields a continuum of points along the isentropic loading path. 
•  For simple waves, the flow in an inviscid fluid is isentropic (S=S0=constant) and the 
conservation equations are given as, 

where CL= dh/dt is the Lagrangian wave velocity which is approximately related to the 
US- up relation as,  

•  The propagation of wave characteristics within a sample, and particle 
velocities at various Lagrangian positions demonstrate resulting ramp 
wave, and eventual shock wave formation at “critical” location xC. 

Stress-strain loading paths can be determined continuously to peak pressure for 
most materials. 
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Strength of materials Spatially resolved yielding of windows 
Measurement of spatially resolved velocity histories with line-imaging ORVIS 
•  7.3 × magnification,  ~ 90 µm/fringe, 750 mm focal length collection lens •  Use measured velocity profiles to obtain Lagrangian wave velocities and stress-strain of samples during ramp loading and unloading. 

•  Knowledge of hydrostat P(ε) unnecessary.  

 Material strength determined from the difference between loading and unloading curves. 
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Al LiF 

elastic plastic ambient 
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Equation-of-state 

26 MA, 100-700 ns, 20-400 GPa, flyer plate > 40 km/s. 2.5 MA, 440-530 ns, 5-17 GPa. 
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•  Scattered imaging through an elastic-plastic window 
•  LiF [100]: HEL = 0.1-0.2 GPa, IEL = 0.15 GPa, σM = 10.5 GPa 

Comparison of  
VISAR velocity with 

ORVIS average velocity 

“scattering” starts at 
up ≈ 70 m/s, σ ≈ 1.0 GPa 
∆t ≈ 140 ns, ∆x ≈ 0.85 mm 

•  Clean imaging through an elastic window 
•  Sapphire, C-cut: HEL = 20 GPa, IEL > 30 GPa, σM = 16 GPa  
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Ramp loading : range of compressed states 

Shock loading: single compressed state 
•  Window shocked above HEL does NOT affect imaging quality 
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Aluminum alloys 
•  Strength of Al increased mainly due to pressure hardening; change in strength insensitive to initial yield values. 
•  Under shock loading, softening of strength observed below melt states (40-115 GPa) & rapidly decreases over stresses of 120-160 GPa. 
•  During isentropic loading, strength increases over stress range to 260 GPa with no apparent softening. 
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•  Heterogeneous yielding above IEL with spatial wavelength ~ 100 µm 
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Isentropic Compression Experiments (ICE) 
•  Continuous compression of Ta (400 GPa) and Be (250 GPa) allow discrimination of tabular EOS 
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•  Magnetic ramp compression on Z enables 
access to a large region of the equation of state 
surface 
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•  Extremely accurate measurement of diamond Hugoniot allow for quantitative comparison with QMD predictions 
& evidence of the triple point 

Top Pair 
Middle Pair 
Bottom Pair 

Inferred state 
of aluminum 

from Ω-fit 

Inferred state 
of aluminum 

from Z-fit 

aluminum 
Hugoniot 

ρ0Usup for D2 

aluminum 
release 

adiabats 

Inferred particle 
velocities for D2 

Error in D2 
density 

Error in D2 
particle velocity 

•  Difference in quartz standard from Z and Omega (Ω) experiments results in significant 
error for inferred properties of D2 

Quartz Hugoniot 

•  D2 data becomes significantly stiffer upon 
reanalysis 
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Tantalum 
•  Wave profiles obtained on Ta show significant effects of initial processing: annealed Ta elastic precursor disperses and amplitude 
decreases with distance while cold-rolled Ta elastic precursor maintains constant amplitude. 
•  Mechanical Threshold Stress (MTS) model compares well with Ta strength data while the Steinberg model over-predicts strength. 
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LiF windows 

•  Need to account for window’s inherent strength for more accurate material strength values; else systematic error of δY/Y ~ 10%. 
•  Strength of LiF under isentropic loading (5-114 GPa) increases and compare well with Steinberg and Huang-Asay strength models. 
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