

Dynamic Material Properties Experiments Using Pulsed Magnetic Compression

"From Static to Dynamic" -1st Annual Meeting of the Institute for Shock Physics
The Royal Society of London February 22-23, 2010

Marcus D. Knudson

Sandia National Laboratories, Albuquerque, NM

(505) 845-7796 mdknuds@sandia.gov

Acknowledgements

- Mike Desjarlais
 - Quantum Molecular Dynamics (QMD) calculations
- Jean-Paul Davis, Dan Dolan, Seth Root
 - Experimental design, data analysis
- Jean-Paul Davis, Ray Lemke, Tom Haill, Dave Seidel, William Langston, Rebecca Coats
 - MHD unfolds, Quicksilver simulations, current analysis
- Jean-Paul Davis, Devon Dalton, Ken Struve, Mark Savage, Keith LeChien, Brian Stoltzfus, Dave Hinshelwood
 - Bertha model, pulse shaping
- Jason Podsednik, Charlie Meyer, Devon Dalton, Dustin Romero, Anthony Romero, entire Z crew...
 - Experiment support
- LANL: Rusty Gray, Dave Funk, Paulo Rigg, Carl Greeff
 - Ta samples and equation of state

- Pulsed Compression on the Z Accelerator
- High-Stress Isentropic compression measurements
 - Tantalum
- High-Pressure Hugoniot measurements
 - Quartz
- Melting of Diamond in the Multi-Mbar Regime

Magnetic compression on Z enables access to a large region of the equation of state surface

The Sandia Z Machine

~200-600 ns rise time

5

transmission lines

Magnetic compression on Z produces smooth ramp loading to ultra-high pressures

Fully self-consistent, 2-D MHD simulations required to accurately predict experimental load performance

10 mm wide stripline

t = 3050 ns

Success requires integration of theoretical, computational, and experimental capabilities

Two platforms have been developed for accurate equation of state studies – both major advances

Isentropic Compression Experiments (ICE)*

Magnetically driven Isentropic Compression Experiments (ICE) to provide measurement of continuous compression curves to ~4 Mbar - previously unavailable at Mbar pressures

* Developed with LLNL

Magnetically launched flyer plates

Magnetically driven flyer plates for shock
Hugoniot experiments at velocities to > 40 km/s
- exceeds gas gun velocities by > 5X and
pressures by > 10X with comparable accuracy

- Pulsed Compression on the Z Accelerator
- High-Stress Isentropic compression measurements
 - Tantalum
- High-Pressure Hugoniot measurements
 - Quartz
- Melting of Diamond in the Multi-Mbar Regime

Ramp compression provides a measure of the stress-density response of a material to peak stress

requires simple right-going waves

• compression is usually quasi-isentropic due to dissipative phenomena (plastic work, viscosity, thermal conduction, etc.)

conservation equations

$$d\sigma_{x} = \rho_{0}c_{L}du$$

$$\frac{d\rho}{\rho^{2}} = \frac{du}{\rho_{0}c_{L}}$$
(easity (g/cc)

High-stress ICE experiments place stringent demands on wave profile measurements

Very high Lagrangian sound speeds at high stress result in small transit times – this places stringent demands on timing accuracy.

~100 ps timing accuracy required to obtain ~1% accuracy in density

The rapid increase in sound speed requires pulse shaping to delay shock formation

This process was followed to design an ICE experiment on Ta to 400 GPa

Independently triggerable gas switches provide the variability necessary for pulse shaping

generator

gas switch

triggerable groups of 2 transmission lines

magnetically insulated transmission

lines

The Bertha circuit model enables fairly accurate prediction of machine performance

Data have been obtained which enable extraction of the Ta isentrope to nearly 400 GPa

The extracted isentrope discriminates between various tabular equations of state for Ta

VISAR

We are pursuing a single sample technique to take advantage of the relative large sample thickness

- Dakota optimization framework drives Alegra 1-D MHD simulations
- B(t) represented by constrained cubic spline (25-50 points) with time shift and stretch factors
- objective function is metric of isometry between simulated and experimental velocity history at electrode back surface

• high spatial resolution (2.5-μm cells)

Single sample yields isentrope by iterating inverse analysis with simulated "zero-thickness" velocity

thick sample

electrode

A-K gap B(t)

electrode

- 1. measure velocity at back faces of sample and opposite electrode
- 2. use optimization to determine B(t) from electrode measurement
- 3. use B(t) and first-guess sample EOS (Sesame table + strength) to simulate electrode/sample interface "zero-thickness" velocity
- 4. perform inverse Lagrangian analysis on simulated "zero-thickness" velocity and measured back-face velocity of sample
- 5. convert resulting $\sigma_{x}(\rho)$ curve to full tabular EOS by assuming constant c_V and Γ/V , equating stress to pressure (strength folded into EOS)
- 6. use B(t) and new tabular EOS to simulate electrode/sample interface
- 7. repeat steps 4-6 until material response converges

Outer loop of single-sample approach converges

result changes < 0.015% from 6th to 7th iteration

Single-sample measurement of tantalum to 320 GPa decreases uncertainty over two-sample measurement

- Pulsed Compression on the Z Accelerator
- High-Stress Isentropic compression measurements
 - Tantalum
- High-Pressure Hugoniot measurements
 - Quartz
- Melting of Diamond in the Multi-Mbar Regime

Quartz has been used as a transparent window enabling multiple flyer velocity measurements

Typical configuration

VISAR provides highly accurate in line flyer plate and quartz shock velocity measurements

U_s - u_p Hugoniot for α -Quartz

Pressure – density Hugoniot for α -Quartz

U_s residuals with respect to the Z-fit indicate dissociative effects extend to much higher pressure

QMD calculations provide unique insight into the dynamics of the fluid at multi-Mbar pressures

Differences in Z- and Ω -fits will have a significant impact on quantities inferred from quartz U_s

Recently published deuterium data becomes significantly stiffer upon reanalysis

Errors in density compression, η , are given by the error in quartz u_p multiplied by the factor $(\eta - 1)$

- Pulsed Compression on the Z Accelerator
- High-Stress Isentropic compression measurements
 - Tantalum
- High-Pressure Hugoniot measurements
 - Quartz
- Melting of Diamond in the Multi-Mbar Regime

Existing models for diamond exhibit a broad range of predicted melt behavior – melt poorly understood

Several chemical picture models for diamond

Reflectivity study on Omega suggests complete melt near 1100 GPa

Quantum Molecular Dynamics calculations provided estimates for melt and predicted a triple point (TP)

Sandia National Laboratories

The proposed TP is manifest on the Hugoniot by significant changes in compressibility

Relatively large flyer plates enabled multiple, redundant measurements increasing accuracy

Diamond experimental configuration

Pressure (GPa)

The Z platform provided extremely accurate measurements of the diamond Hugoniot

- Multiple samples and diagnostics allowed for redundant measurements for increased accuracy
- Transparency of the diamond samples allowed for in-line measurement of impact velocity and shock transit time
- Impact velocity and shock speed measurement provides tight constraint on the inferred particle velocity and density

This accuracy allowed for quantitative comparison with QMD predictions and evidence of the TP

Four piece linear fit leads to consistency with the reflectivity measurements of Bradley, et al.

- Both the three and four piece fits indicate significant changes in slope at ~9.1 and ~10.85 km/s
- Both suggest the onset of melt just below ~700 GPa
- The three piece linear fit would suggest completion of melt below 900 GPa
 - ~200 GPa below the saturation in reflectivity
- The four piece fit is consistent with Bradley, et al. and suggest a TP at ~860 GPa

Location of breakpoints and slopes are in excellent agreement with the QMD predictions

- The breakpoints of the four segment fit are in excellent agreement with those predicted by QMD
- The slope of each segment is also in excellent agreement with the slopes predicted by QMD
- This level of agreement provides validation
 - Strongly suggests the presence of a higher pressure solid phase of carbon above ~860 GPa

ENGIAL PRINCIPLE OF THE PRINCIPLE OF THE

Conclusion

- Magnetic ramp compression is enabling new regions of a material's phase diagram to be explored under dynamic compression
- Obtaining unprecedented accuracy in the multi-Mbar pressure regime both on and off-Hugoniot
- Future direction will be to couple advanced capabilities to ramp compression facilities
 - Pre-heat capability
 - Sample recovery
 - Advanced diagnostics
 - » pyrometry
 - » x-ray diffraction

