inferactive theorenm proving

Verilog hardwars
development

Andreas LOOwW
Imperial College London

Summary

Claim 1:
Today you can do ITP-based development for software, this is useful

Claim 2:
If we had ITP-based development for hardware,
it would be equally useful for hardware

... this talk is about adapting a development methodology from ITP-
based software development for Verilog hardware development

Some ITPs/proof-assistants

Examples:

o
* |sabelle/HOL

* HOL4
* Lean
e ACL2

Question: Why do [TP-baszd development
instead of, e.g.:

nen-and-paper mathematics,

fully automated theorem proving,

or something else?

a@"

ITP-based development — why
Main point of ITP:

- Trustworthy proofs, checked by small program (“kernel”)

- Allows for combining human and machine reasoning — get the
strengths of both, avoid the weaknesses of both

- Allows you to check/prove that large developments “fit together”

Non-ITP formal methods

Output: Claim that Output: Some low-level
program/circuit satisfies representation, e.g.
specification machine code or netlists

Verification tool Compiler/synthesis tool

Input: Specification Input: Program/circuit
description

Actual end-result,
what end-users get

Non-ITP formal methods

Output: Claim that Output: Some low-level
program/circuit satisfies representation, e.g.
specification machine code or netlists

T —

Verification tool Compiler/synthesis tool

What we prove
correct

A

Input: Specification Input: Progrann e
description

Non-ITP formal methods

Output: Claim that = 't: Some low-level
program/circuit satisfies ” . \Xfa oot sentation, e.g.
aaecification e ~ode or netlists

If only there were a way
to ensure that they
compose well... &

Important: The two tools
must “interpret” the
implementation language

in the same way!
Input: Specification Input: Program/circuit
description

ITP formal methods

Output: Claim that Output: Some low-level
program/circuit satisfies representation, e.g.
specification machine code or netlists

Verification tool ' Compiler/synthesis tr .

- Sy,

Input: Specification Input: Program/circuit
description ‘
T— e

\\

Source-level correctness theorem
+

Compiler theorem

Correctness theorem:
Program/circuit
behaviour follows spec

TP formal

Target-level correctness theorem

Output: Claim tiat Output: Some low-level
program/circuit satisfies representation, e.g.
specification machine code or netlists

Verification tool Compiler/synthesis tool

Compiler theorem:
Compiler is “semantics

preserving”, i.e., output has same
Input: Specification Input: Program/circuit semantics/behaviour as input
description

ITP formal methods: Software

Output: Claim that Output: Some low-level
program/circuit satisfies representation, e.g.
specification machine code or netlists

Input: Specification

ITP formal methods: Hardware

Output: Claim that
program/circuit satisfies
specification

Output: Some low-level
representation, e.g.

machine code or netlists

/

i
~

Problem: Our synthesis tool must
be semantics preserving...
Input: Specification /

Verilog

-
Gisselquist
Technology, LLC

Main/Blog

About Us Reason
FPGA Hell

Tutorial SimUIaﬁ

Formal training

8 Aug 4, 2018
Quizzes
Projects
Site Index When | first learned di
e — the hardware and debi
v @zipcpu
Reddit I've since become con
l® Support synthesizing a design. |

Vivado fully starts up an
still faster. Of course, ultil
might manage to get an

The second reason why |
within the design. For this
to simulation and try to do
allows me to be able to tur

Or ... not so quickly. On on
have the design fail when re:
with simulation-but then ha
drive.

But what happens when you
simulation, but fails on the hal

I'll admit this happened to me

Therefore, to help keep you froi 5
simulation not to match reality. When | asked:

Simulation-and-synthesis mj

Output: Claim that Output: Some low-level
program/circuit satisfie - S representation, e.g.

Simulation-and-synthesis mj

 —

|EEE STANDARDS ASSOCIATION 4HIEEE

|EEE Standard for SystemVerilog— 6
\O

Unified Hardware Design, \
N\
3

Speciﬁcation, and Verification
Language

|EEE Computer Society

and the
|EEE Standards Association Corporate Advisory Group

sponsored by the
Design Automation Standards Committee

(|EEE

“e E park Avenue \EEE Std 1800™-2017
New York, NY 10016-5997 (Revision of
\EEE Std 1800-2012)

USA

£ Xplore. Restrictions appy.

Authorized licensed use limited

Combinational logic -- mismatch
example and handling it formally
In Lutsig

“Mis-ordered” assignments

B.5 Assignment statements mis-ordered

module andorla(

|EEE Standard for SystemVerilog—

Unified Hardware Design, .
ls_;;é%::ga;ion, and Verification ou t p u t 1 og ic y ’
an

input logic a, b, c);
logic tmp;

always_comb begin

y = tmp | c;
tmp = a & b;
end

endmodule

Example from the “synthesis

“Mis-ordered” assignmen standard”

Essentially, a prose-specified
event-driven operational
semantics

ment statements mis-ordered

module andg
output
input
logic t

|EEE Standg_< yst(_emVerilog—
Unified Hardware Design, |
specification, and Verification

Language

This block induces a
software-like thread that
will run each time
something the block
depends on change value

There is an (stratified)

. always_comb
event queue, handling of

pegin

events, etc. y = tmp | C
tmp = a & b;
end

The statements run in the
endmodule given order

“This standard defines a set of
modeling rules for writing
Verilog HDL descriptions for
synthesis.”

Mis-ordered”

|EEE STANDARDS ASSOCIATION B m

module
outpu
input
logic tmp;

|EEE Standard for SystemVerilog—
Unified Hardware Design,
Speciﬁcation, and Verification
Language

‘Combinational logic shall be
modeled using [...] or an
always statement.”

\EEE Computer Society

and the
|EEE Standards Association Corporate Advisory Group

oooooo he

 Standards Committee

always_comb begin
y = tmp | C;
tmp = a & b;

end

endmodule

|EEE Std 1 800™-2017
Revision of

rk Avenue
York, NY 10016-5997

lew
USA |EEE Std 1800-2012)

Describes an event-driven
language, could have
equally well been a (weird)
event-driven software
programming language

Gives us “modelling rules”
for how to model/describe
hardware

|EEE STANDARDS ASSOLS

.{/" U 4. 1 ™ EEE Sta 13644 2002
ﬂ

E st
U a
. dule andorla(T Trangrndard or v,
IEEE Standard for o . (v I Leve) Synt log Regist,
lS'l[r:::giaficat?on, and Verifica OUt pUt loglc y) .D hes' .
Language

) ° ° . (\ IEEE Com uter g,
Totally fine from the nput logic a, b, c); ' P Sociey
perspective of simulation, i

c tmp;

just propagate events as

Makes no sense as a hardware
specified

model, sequential logic (stateful

always comb begin logic) inside block for combinational
_ +m . logic (stateless logic)
. tmp = a & b;

e n d Ao Shososs
endmodule

What happens when you give today’s
synthesis tools a problematic design?

Basically anything, today’s synthesis tools might:

e abort (good case)
e emit warnings (borderline case)

* silently synthesise nonsense (bad case)

Such synthesis tools are not semantics preserving, i.e., this is bad

Lutsig — a verified Verilog synthesis tool

* Developed and verified inside the HOL4 interactive theorem prover
* Designed to fit into ITP-based hardware development
* Specifically, semantics preserving

* (Can be used outside formal development as well, like any other
synthesis tool.)

Lutsig — a verified Verilog synthesis tool

* Handles a small synthesisable subset of Verilog for synchronous
designs

* Targets FPGAs:
 Verified synthesis algorithm, based on open source CSYN synthesis tool
* Translation-validation-based technology-mapping algorithm for FPGAs (LUTSs)
 Remaining steps outside formal development (e.g., P&R, bitstream encoding)

Lutsig’s correctness theorems (simplified)

Correctness w.r.t. (Lutsig’s) Verilog simulation semantics:

Lutsig(D) = OK(N forall n, run_verilog(D, n) = run_netlist(N, n)

(except for X-related behavior, which is allowed to be removed)

Correctness w.r.t. synthesis idiom for always _comb:

torall Verilog variables v in D,
if v written to by always_comb block ==>
no register with name v in netlist N

Lutsig vs. today’s synthesis tools

* Design your Verilog module using the old familiar synthesis idioms

e |f Lutsig successfully gives back a synthesised netlist:

* because of Lutsig’s correctness theorem, the synthesised netlist must have the same
behaviour as the input Verilog module

* i.e., simulation-and-synthesis mismatches are ruled out using mathematical proof

e |f Lutsig errors out:
* revisit your design

* This happens e.g. when the simulation and synthesis semantics point in different
directions, because Lutsig abides by both semantics, Lutsig is forced to abort if this
happens

What does Lutsig actually do?

e Sequential blocks (always_ff) straightforward to handle, with check that
blocking vs. nonblocking assignments are not misused

 Combinational blocks:
* Sort blocks topologically w.r.t. read dependencies, e.g.:

always comb b
always comb a

+ 1;
np,

a
i
* (Abort if cannot sort.)

* Examples of individual blocks to follow...

Combinational example 1: Scalars

For straight-line code, read as netlist:

always comb begin

y = tmp | c;

t _ & b: Cannot sort here since simulation
mp = a) semantics says to execute

statements in order given!
end :

Combinational example 2: Arrays

For straight-line code, read as netlist:
logic[1:0] foo;
always comb begin

foo[0] inpl;
foo[1] inp2;

foo = foo + 1;
end

Combinational example 3: If-statements

Generate mux for if-statements, fail if not assigned in all branches:

always comb
if (c)
a = 1inp;

Remember: Lutsig is formally verified

* Previous slides are pretty much the same checks a helpful synthesis
tool or a linter would do

* Lutsig, however, is formally verified

* So, we know that the checks done are sufficient to guarantee
semantics-preserving synthesis, i.e., input Verilog module and output
netlist behave the same

To do: Consider more sources of simulation-
and-synthesis mismatches

* Obviously, need to go through the same process for other sources of
simulation-and-synthesis mismatches

* SystemVerilog solves some things: e.g. incomplete sensitivity lists

* Some things should just be prohibited: e.g. delays

* Sometimes the simulation model is slightly off, e.g. dual-port block RAM

Conclusion

* Clearly, we want to do development inside ITPs
 Verilog is a... tricky language

e Lutsig is one attempt at doing formal hardware development using
Verilog nevertheless

* Verilog is the most popular HDL, so it’s doing something right

