
What
interactive theorem proving

can do for
Verilog hardware

development
Andreas Lööw

Imperial College London

Summary

Claim 1:
Today you can do ITP-based development for software, this is useful

Claim 2:
If we had ITP-based development for hardware,
it would be equally useful for hardware

… this talk is about adapting a development methodology from ITP-
based software development for Verilog hardware development

Some ITPs/proof-assistants

Examples:
• Coq
• Isabelle/HOL
• HOL4
• Lean
• ACL2
• …

Question: Why do ITP-based development
instead of, e.g.:
pen-and-paper mathematics,
fully automated theorem proving,
or something else?

ITP-based development – why

Main point of ITP:

- Trustworthy proofs, checked by small program (“kernel”)

- Allows for combining human and machine reasoning – get the
strengths of both, avoid the weaknesses of both

- Allows you to check/prove that large developments “fit together”

Non-ITP formal methods

Verification tool Compiler/synthesis tool

Input: Specification Input: Program/circuit
description

Output: Claim that
program/circuit satisfies

specification

Output: Some low-level
representation, e.g.

machine code or netlists

Non-ITP formal methods

Verification tool Compiler/synthesis tool

Input: Specification Input: Program/circuit
description

Output: Claim that
program/circuit satisfies

specification

Output: Some low-level
representation, e.g.

machine code or netlists

What we prove
correct

Actual end-result,
what end-users get

Non-ITP formal methods

Verification tool Compiler/synthesis tool

Input: Specification Input: Program/circuit
description

Output: Claim that
program/circuit satisfies

specification

Output: Some low-level
representation, e.g.

machine code or netlists

Important: The two tools
must “interpret” the

implementation language
in the same way!

If only there were a way
to ensure that they
compose well… 🤔

ITP formal methods

Verification tool Compiler/synthesis tool

Input: Specification Input: Program/circuit
description

Output: Claim that
program/circuit satisfies

specification

Output: Some low-level
representation, e.g.

machine code or netlists

ITP formal methods

Verification tool Compiler/synthesis tool

Input: Specification Input: Program/circuit
description

Output: Claim that
program/circuit satisfies

specification

Output: Some low-level
representation, e.g.

machine code or netlists

Correctness theorem:
Program/circuit

behaviour follows spec

Compiler theorem:
Compiler is “semantics

preserving”, i.e., output has same
semantics/behaviour as input

Source-level correctness theorem
+

Compiler theorem
=

Target-level correctness theorem

ITP formal methods: Software

Verification tool Compiler/synthesis tool

Input: Specification Input: Program/circuit
description

Output: Claim that
program/circuit satisfies

specification

Output: Some low-level
representation, e.g.

machine code or netlists

E.g., C or SML

Functional programming, program logic (e.g., SL), …

E.g., CompCert or CakeML

ITP formal methods: Hardware

Verification tool Compiler/synthesis tool

Input: Specification Input: Program/circuit
description

Output: Claim that
program/circuit satisfies

specification

Output: Some low-level
representation, e.g.

machine code or netlists

E.g., C or SML

Functional programming, program logic (e.g., SL), …

E.g., CompCert or CakeML

Verilog or VHDL

C HLS (Vericert, previous talk),

Bluespec (Chlipala et al.), …Verilog synthesis tool: Lutsig

Problem: Our synthesis tool must
be semantics preserving…

Verilog

Simulation-and-synthesis mismatches

Verification tool Compiler/synthesis tool

Input: Specification Input: Program/circuit
description

Output: Claim that
program/circuit satisfies

specification

Output: Some low-level
representation, e.g.

machine code or netlists

Verilog or VHDL

Functional programming, program logic (e.g., SL), …

Verilog synthesis tool: Lutsig

Verilo
g’s ”s

imulation semantics” Verilog’s ”synthesis semantics”

Simulation-and-synthesis mismatches

Verification tool Compiler/synthesis tool

Input: Specification Input: Program/circuit
description

Output: Claim that
program/circuit satisfies

specification

Output: Some low-level
representation, e.g.

machine code or netlists

Verilog or VHDL

Functional programming, program logic (e.g., SL), …

Verilog synthesis tool: Lutsig

Verilo
g’s ”s

imulation semantics” Verilog’s ”synthesis semantics”

Combinational logic -- mismatch
example and handling it formally
in Lutsig

“Mis-ordered” assignments
B.5 Assignment statements mis-ordered

module andor1a(
output logic y,
input logic a, b, c);

logic tmp;

always_comb begin
y = tmp | c;
tmp = a & b; // write after read

end
endmodule

“Mis-ordered” assignments
B.5 Assignment statements mis-ordered

module andor1a(
output logic y,
input logic a, b, c);

logic tmp;

always_comb begin
y = tmp | c;
tmp = a & b; // write after read

end
endmodule

This block induces a
software-like thread that

will run each time
something the block

depends on change value

There is an (stratified)
event queue, handling of

events, etc.

The statements run in the
given order

Essentially, a prose-specified
event-driven operational

semantics

Example from the “synthesis
standard”

“Mis-ordered” assignments
B.5 Assignment statements mis-ordered

module andor1a(
output logic y,
input logic a, b, c);

logic tmp;

always_comb begin
y = tmp | c;
tmp = a & b; // write after read

end
endmodule

“This standard defines a set of
modeling rules for writing

Verilog HDL descriptions for
synthesis.”

”Combinational logic shall be
modeled using […] or an

always statement.”

“Mis-ordered” assignments
B.5 Assignment statements mis-ordered

module andor1a(
output logic y,
input logic a, b, c);

logic tmp;

always_comb begin
y = tmp | c;
tmp = a & b; // write after read

end
endmodule

Gives us “modelling rules”
for how to model/describe

hardware

Describes an event-driven
language, could have

equally well been a (weird)
event-driven software

programming language

Totally fine from the
perspective of simulation,
just propagate events as

specified

Makes no sense as a hardware
model, sequential logic (stateful

logic) inside block for combinational
logic (stateless logic)

What happens when you give today’s
synthesis tools a problematic design?
Basically anything, today’s synthesis tools might:

• abort (good case)

• emit warnings (borderline case)

• silently synthesise nonsense (bad case)

Such synthesis tools are not semantics preserving, i.e., this is bad

Lutsig – a verified Verilog synthesis tool

• Developed and verified inside the HOL4 interactive theorem prover

• Designed to fit into ITP-based hardware development

• Specifically, semantics preserving

• (Can be used outside formal development as well, like any other
synthesis tool.)

Lutsig – a verified Verilog synthesis tool

• Handles a small synthesisable subset of Verilog for synchronous
designs

• Targets FPGAs:
• Verified synthesis algorithm, based on open source CSYN synthesis tool
• Translation-validation-based technology-mapping algorithm for FPGAs (LUTs)
• Remaining steps outside formal development (e.g., P&R, bitstream encoding)

Lutsig’s correctness theorems (simplified)

Correctness w.r.t. (Lutsig’s) Verilog simulation semantics:
Lutsig(D) = OK(N) ==> forall n, run_verilog(D, n) = run_netlist(N, n)
(except for X-related behavior, which is allowed to be removed)

Correctness w.r.t. synthesis idiom for always_comb:
Lutsig(D) = OK(N) ==>
forall Verilog variables v in D,
if v written to by always_comb block ==>
no register with name v in netlist N

Lutsig vs. today’s synthesis tools

• Design your Verilog module using the old familiar synthesis idioms

• If Lutsig successfully gives back a synthesised netlist:
• because of Lutsig’s correctness theorem, the synthesised netlist must have the same

behaviour as the input Verilog module
• i.e., simulation-and-synthesis mismatches are ruled out using mathematical proof

• If Lutsig errors out:
• revisit your design
• This happens e.g. when the simulation and synthesis semantics point in different

directions, because Lutsig abides by both semantics, Lutsig is forced to abort if this
happens

What does Lutsig actually do?

• Sequential blocks (always_ff) straightforward to handle, with check that
blocking vs. nonblocking assignments are not misused

• Combinational blocks:
• Sort blocks topologically w.r.t. read dependencies, e.g.:

always_comb b = a + 1;
always_comb a = inp;

• (Abort if cannot sort.)

• Examples of individual blocks to follow…

Combinational example 1: Scalars

For straight-line code, read as netlist:

always_comb begin
// Lutsig would die here since tmp
// read before written to
y = tmp | c;
tmp = a & b;
end

Cannot sort here since simulation
semantics says to execute
statements in order given!

Combinational example 2: Arrays

For straight-line code, read as netlist:

logic[1:0] foo;

always_comb begin
foo[0] = inp1;
foo[1] = inp2;
// ok reading foo here since whole array covered
foo = foo + 1;
end

Combinational example 3: If-statements

Generate mux for if-statements, fail if not assigned in all branches:

always_comb
if (c)
a = inp;

//else
// a = 'x;

Remember: Lutsig is formally verified

• Previous slides are pretty much the same checks a helpful synthesis
tool or a linter would do

• Lutsig, however, is formally verified

• So, we know that the checks done are sufficient to guarantee
semantics-preserving synthesis, i.e., input Verilog module and output
netlist behave the same

To do: Consider more sources of simulation-
and-synthesis mismatches
• Obviously, need to go through the same process for other sources of

simulation-and-synthesis mismatches

• SystemVerilog solves some things: e.g. incomplete sensitivity lists

• Some things should just be prohibited: e.g. delays

• Sometimes the simulation model is slightly off, e.g. dual-port block RAM

Conclusion

• Clearly, we want to do development inside ITPs

• Verilog is a… tricky language

• Lutsig is one attempt at doing formal hardware development using
Verilog nevertheless

• Verilog is the most popular HDL, so it’s doing something right

