Towards Cross-Domain Domain-
Specific Compiler Architecture

Paul Kelly
Group Leader, Software Performance Optimisation
Department of Computing

Imperial College London

Joint work with David Ham (Imperial Maths), Gerard Gorman (Imperial ESE), Lawrence Mitchell (now with NVIDIA),
Sophia Vorderwuelbecke, George Bisbas, Edward Stow (Imperial), Fabio Luporini (Devito Codes Ltd), Florian Rathgeber
(now with Google), Doru Bercea (now with IBM Research), Michael Lange (now with ECMWF), Andrew McRae (now at
University of Oxford), Graham Markall (now at NVIDIA), Tianjiao Sun (now at Cerebras), Thomas Gibson (NCSA lllinois),
Kaushik Kulkarni (UIUC), Andreas Klockner (UIUC), Tobias Grosser, Michel Steuwer (University of Edinburgh), Larisa
Stolzfus, Amrey Krause, Nick Brown (EPCC), Navjot Kukreja (University of Liverpool)

1 And many others....

Imperial College

Who am | and what do | do? g

B I’'ve worked on a lot of things....

B GPUs, FPGASs, vector/matrix ISAs, cache coherency,
large-scale SIMD, precision optimisation...

B | have worked on general-purpose compilers
B Notably pointer analysis
B adopted into GCC, go compiler

B (actually the work of my PhD student David
Pearce)

B But the benefits were incremental

B Meanwhile | engaged with applications specialists

E Who know they have major performance
optimisation opportunities

B So | gotinterested in automating domain-specific
optimisations

https://commons.wikimedia.org/wiki/File:Victorinox_Swiss_Army_Knife_-_Climber_(15554551505).jpg

Imperial College

Power tools for performance programming

By capturing domain-specific representation....

E We can deliver domain-specific
optimisations

E We collect and automate all the
performance techniques that are known for
a family of problems

B If we getitright.... we get

B Productivity — by generating low-level
code from a high-level specification

B Performance — by automating
optimisations

B Performance portability — with multiple
back-ends

https://commons.wikimedia.org/wiki/File:Victorinox_Swiss_Army_Knife_-_Climber_(15554551505).jpg
https://commons.wikimedia.org/wiki/File:Makita_DJV181.jpg

Imperial College

The work of my research group

Vectorisation, parametric
polyhedral tiling

Finite-volume CFD

Tiling for unstructured-
mesh stencils

Finite-element

Lazy, data-driven
compute-communicate

Finite-difference

Runtime code generation

Real-time 3D scene
understanding

Multicore graph worklists

Adaptive-mesh CFD

Tensor contractions

Contour trees, Reeb
graphs

Generalised loop-invariant
code motion

Unsteady CFD -
higher-order flux-
reconstruction

Sparsity in Fourier
transforms

Functional Variational
Inference

Ab-initio computational
chemistry (ONETEP)

Search-based optimisation

Gaussian belief
propagation

Processor/accelerator
microarchitecture, co-
design

Uncertainty in DNNs

Near-camera
processing

MLIR
Technologies

Quantum computing

Contexts

Automating domain-specific performance
optimisations

Exploiting higher-level language to get
better performance than low level code

PyOP2/0P2

Unstructured-mesh
stencils

Firedrake
Finite-element

Aeroengine turbo-
machinery

Devito: finite difference

Weather and
climate

SLAMBench:
3D vision, dense SLAM

Glaciers

SuperEight: octree SLAM

PRAgMaTlIc: Unstructured
mesh adaptation

Domestic robotics,
augmented reality

Tidal turbine
placement

GiMMIiK: small matrix
multiply

TINTL: Fourier
interpolation

Formula-1, UAVS,
buildings

Hypermapper:
design optimisation

Solar energy, drug
design

RobotWeb: distributed
localisation

Projects

Medical imaging

Applications

ZiRVE NOKTASI 2.375 m.

- x4

, SNOWPARK- "

Cd
DORUKKAYA n—
iSKI!& MOUNTAIN RESORT
1

ﬂ swiss Shape
=JKAYA PALAZZO

= e Loop nest ordering
KAY o
SKI.& MOUNTAINIRESORT t Commutativity - °L,
L L b ; Tiling /)/;5

7’71 .

o : , @ LIFTS / LIFTLER
g3 o Snow Tubing ™\, Yirdyey Polyhedra %, . . iei
" RAWTAZZ0 LUXURY CHALETS Parallelisation 4§ @ Easiest / Yeni Baslayanlar igin

S %\% Dependence : >/ @ More Difficult / Orta Seviye

3 “ W N Partitioning @ Most Diffucult / ileri Seviye
i R) ?5\ Points-to Mapping ili BARUFT/TBARLFT

T Call-graph

DOUBLEx2 CHAIRLIFT
/4 KISILIK SANDALYELI LIFT

Storage layout
© " SNOW MACHINE / KAR YAPMA MAKINESI

." =
< : Class hierarchy _ :
Instruction scheduling @ LIGHTS

Types & sNow TUBING
Register allocation

Syntax

Compilation is like skung

10

ZiRVE NOKTASI 2.375 m.

Axl

- x4

. SNOWPARK "

DORUKKAYA
SKLL& MOUNTAIN RESORT

o
PALAZZO - *

A
& MOUNTAIN RESORT L'_ N

? 3 4 \ \
. _ N LIFTS / LIFTLER
“_ L ¥ s Snow Tubing Virjy o S .

SN § FATAZZOLUXURY CHALETS N

wv

SK,
oA
.

@ Easiest / Yeni Baslayanlar igin

% y
N X @ More Difficult / Orta Seviye

S)
QN : L}
i , v @ Most Diffucult / ileri Seviye
%y A 5
1 CACTL
8% 5 WS ROUBLEX2 CHAIRLIFT
: w - iSILIK SANDALYELI LIFT
\st »
(-

F

Compilation is like skiing

‘ ZiRVE NOKTASI 2.375 m.
&

-
~%2.300m.
-

DORUKKAYA

- < /i
SKI;& MOUNTAIN RESORT -
ﬂ %L BABY 'LIFT 240m.” wm’“- &2
g i FNG

8 8

ﬂ SWiss

i Drop’Loupge
8%l AYA PALAZZO — Y
1.2 MOUNTAINJRESORT / 1+,

4 .‘-'i,;: '&m Yt o _ -' Carrylng your LIFTS / LIFTLER

PO G720 LUXURY CHALETS Aq, jest / Yeni Baslayanlar igin

n ?S\Q} Skl S up th e itficult / Orta Seviye
e, Y, mountain Is not

boad -

Y . the best bit

i

) B

2 Compilation IS like skiing

https://pxhere.com/en/photo/949553 (CCO public domain

https://pxhere.com/en/photo/949553

DORUKKAYA —
SKI;& MOUNTAIN RESORT

L BABY LIFT 240m." NAZLLIIFTIOSOM. &7

4 SwWiss s
e Drop’Loupge
~{KAYA PALAZZ0 ln\
: (& OUNTAIN RESORT -y
3)v !’ N\ “\

~ 4

N 4 RAUAZZ0 LUXURY CHALETS N

T N

@
FRRARE L
bl
»

»

8

E

oy - TE

~ Using DSL is like helicopr skiing

Imperial College

Plan
T e = e e e ——

B Compiling is like skiing
B Analysis is an uphill struggle

B “Turing Tax”

E The price you pay for running on a general-purpose
computer rather than a specialised one

B \What do we call..

B The price you pay for using a general-purpose
programming language rather than a DSL?

B This talk:
B DSLs really can deliver
B DSL compiler architecture: how do DSLs win?
B Why we have to make the DSL ecosystem work!

20 (For more on the Turing Tax see)

https://www.youtube.com/watch?v=TZipuaOIDr0

All of this Is
Turlng TaxI

AYA
1.&
N

-

BABY LIFT’

D n'Lg £) .
PALAZZO " . LOOp nr st orderlng

MOUNTAIN[RESORT L& Commutativit' Til %
»j‘ J@ e, ~ 72
A Snow Tbing , Polyhedra é@@
RAlZ20 I.UXUR Parallelisation

‘*1 —

- '...q,:_ ~ Call-graph
Class hierarchy

Types

Syntax

22

Compllatlon IS like skung

ZIRVE NOKTASI 2.375 m.

s

Dependence
S5y ” \A% > Partitioning
7‘;) K ?S\ Points-to

“ 3
.‘;

P = e

Storage layout <

Instruction scheduling

Register allocatio.

T

“Turing tax”:
the price we
pay for using
a general-
purpose tool
Instead of a
special-
purpose one

Q % ® @ ¢ P

EXa p I e D S L [] @ Tensor Decompositi... The Conversation: I... Paul Kelly (paulhjkel... @ MS mymake @ The power of listeni... Tubes Computing | The Br... » [l Other boockmarks

‘Firedrake

Documentation Download Team Citing Publications Events Funding Contact GitHub Jenkins

Firedrake is an automated system for the solution of partial differential equations using the Latest commits to the Firedrake master

finite element method (FEM). Firedrake uses sophisticated code generation to provide branch on Github

mathematicians, scientists, and engineers with a very high productivity way to create

sophisticated high performance simulations. Merge pull request #1520 from
firedrakeproject/wence/feature/assemble-
diagonal

Lawrence Mitchell authored at 22/10/2019,

FeOtU reS: 09:14:34

tests: Check that getting diagonal of matrix
+ Expressive specification of any PDE using the Unified Form Language from the FEnICS works ,
Pro Lawrence Mitchell authored at 21/10/2019,
roject. 13:04:04
» Sophisticated, programmable solvers through seamless coupling with PETSc.

_) matfree: Add getDiagonal method to
e Triangular, quadrilateral, and tetrahedral unstructured meshes.

implicit matrices

» Layered meshes of triangular wedges or hexahedra. Lawrence Mitchell authored at 18/10/2019,
« Vast range of finite element spaces. 10:19:48
« Sophisticated automatic optimisation, including sum factorisation for high order assemble: Add option to assemble

diagonal of 2-form into Dat

e'eme”ts_‘ and vectorisation. Lawrence Mitchell authored at 18/10/2019,
* Geometric multigrid. 10:08:37

» Customisable operator preconditioners. Merge pull request #1509 from

» Support for static condensation, hybridisation, and HDG methods. firedrakeproject/wence/patch-c-wrapper

B What is Firedrake?

25

s
1 -

<« C @& firedrakeproject.org Q ¥ @® ¢

:: Apps % Shareable Whitebo == Startpage Search E... Papers We Love @ Tensor Decompositi... The Conversation: | Active team members bookmarks

Paul Kelly -\)

.éi
.
Firedrake is an automated system for the solution of partial differential equa , Wikiés Homaiya
finite element method (FEM). Firedrake uses sophisticated code generation -

Thomas Gibson '

David Ham

Lawrence Mitchell

Documentation Download Team

Andrew McRae Colin Cotter

mathematicians, scientists, and engineers with a very high productivity way
sophisticated high performance simulations.

Koki Sagiyama

Features:

Rob Kirby

» Expressive specification of any PDE using the Unified Form Languag| Former team members
Project.

= Sophisticated, programmable solvers through seamless coupling with

e Triangular, quadrilateral, and tetrahedral unstructured meshes.

» Layered meshes of triangular wedges or hexahedra.

+ Vast range of finite element spaces. Fabio Luporini Alestair Gregory

« Sophisticated automatic optimisation, including sum factorisation for | stz il

elements, and vectorisation.
* Geometric multigrid.
» Customisable operator preconditioners.
» Support for static condensation, hybridisation, and HDG methods.

Florian Rathgeber Doru Bercea

Graham Markall

B What is Firedrake?

26

C @& thetisproject.org % © 3B ° bl

. :
Imperlal couege it Apps |®a Shareable Whitebo... == Startpage Search E... Papers We Love @ Tensor Decompositi... The Conversation: I... » l Other bookmarks

B Firedrake Is THETIS ‘ i
Used In: documentatior) eam P s Fun Contact GitHub Jenkins

B Thetis: ’ ‘

The Thetls pI‘Oject Current development status

unstructured

Thetis is an unstructured grid coastal ocean model built using the Firedrake finite element

g ri d CO aStal framework. Currently Thetis consists of 2D depth averaged and full 3D baroclinic models. Thetis source code is hosted on

Github and is being continually tested
Some example animations are shown below. More animations can be found in the Youtube g y

m O d e I | I n g channel. AUSingJenkins,
framework —

(3077). \dealized river plume simulation

—
377 Baroclinic eddies test case
RHEL

B

—

I,
THETIS

- B Whatis it used for? By whom?

' - = >

''''''' - —_-'- 'J‘-. . . > ". g
PR i L 3 B eSS CN
- Boundary of Severn Estuary
' ANTTERRR el AN

-_-.I',-:b",' /"l“. ’._-.)\3 "Eg:k

Estuary of the River Severn: huge tidal energy opportunity
| = Significant causes for concern over ecological impact

* Should we do it? How? Where? How much energy? How
L L much impact?

https://doi.org/10.1016/j.apenergy.2009.11.024

:) r

THETIS

U (m/s)
15

12 ;

09 =

Estuary of the River Severn: huge tidal energy opportunity
+ Significant causes for concern over ecological impact

g * Should we do it? How? Where? How much energy? How
T much impact?

https://doi.org/10.1016/j.apenergy.2009.11.024

Imperial College

< C @ firedrakeprojectorg G % ©@ @O €| P :

:i Apps ®a Shareable Whitebo... == Startpage Search E... Papers We Love ositi e Conversation: I... » [Other bookmarks

E Firedrake is
used In:
E Gusto:

atmospheric mmm = . _

modelling Getf| " 6. /Katy=>5km * Py /msaty=>5km”

framework e

being used

to prototype | APl}|z E .

the next Rastiis N

generatlon B

of weather

and climate % z / km 0% z / km 10

simulations Three-dimensional simulation of a thermal rising through

for the UK a saturated atmosphere. From A Compatible Finite

Met Office Element Discretisation for the Moist Compressible Euler
Equations (Bendall et al,
https://arxiv.org/pdf/1910.01857.pdf)

B Whatis it used for? By whom?

31

https://arxiv.org/pdf/1910.01857.pdf

< > C @ icepackgithub.io % ® B e | D

Imperial College

i2 Apps |®a Shareable Whitebo.. = Startpage Search E... I8 Papers We Love @ Tensor Decompositi... The Conversation: I... » || Other bookmarks

icepack .)
Docs » icepack View page source

B Firedrake is icepack

u Se d i n . Overview Welcome to the documentation for icepack, a python library for modeling the flow of

. o . . .)
Background ice sheets and glaciers! The main design goals for icepack are:

E lcepack:a ey
framework
for modeling .-
the flow of B
glaciers and - [—_G
Ice sheets, [
developed at .
the Polar N
Science
Center at the
University of

Washington

meters/year

Larsen ice shelf model, from the Icepack tutorial
by Daniel Shapero

(

B Whatis it used for? By whom?

32

https://icepack.github.io/icepack.demo.02-larsen-ice-shelf.html

imperial College Example: Burgers equation
e e aesaaa———

/ un+1 —un
J

- o+ (V)" v+ vV Vo dz = 0.

B From the weak form of the PDE, we derive an equation to
solve, that determines the state at each timestep in terms of
_ the previous timestep W,

E Transcribe into Python —uis u™*?t, u_is u™:

F = (inner((u - u_)/timestep, v)
+ inner(dot(u,nabla grad(u)), v) + nu*inner(grad(u), grad(v)))*dx

B Set up the equation and solve for the next timestep u:
solve(F == 0, u)

E At this point, Firedrake generates code to assemble a linear
system, runs it and calls a linear solver (we use PetSC)

from firedrake import *

n = 50

mesh = UnitSquareMesh(n, n)

‘mesh = UnitSquareMesh(n, n) I

We choose degree 2 continuous Lagrange polynomials.gesé

piecewise linear space for output purposes:: k — UECtUFFUﬂCtiUnSpaCE{I'I'IESh, "CG" , 2}

V = VectorFunctionSpace(mesh, "CG", 2)
V_out = VectorFunctionSpace(mesh, "CG", 1)

We also need solution functions for the current and

u_ = Function(V, name="Velocity")
u = Function(V, name="VelocityNext")

v = TestFunction(V)
We supply an initial condition::

x = SpatialCoordinate(mesh)
ic = project(as_vector([sin(pi*x[0]), 0]1), V)

Start with current value of u set to
initial condition as our starting gue

u_.assign(ic)
u.assign(ic)

B :math:*\nu" is set to a (fairly arbit

nu = 0.000
timestep =
Define t

F = (inner
+ inn

outfile =
outfile.wr
Finally,
t=20.0

end = 0.5
while (t <

solve(F
u_.assign(u)

_out = VectorFunctionSpace(mesh, "CG", 1)

|

u_ = Function(V, name="Velocity")
u = Function(V, name="VelocityNext")

¥ -

‘# set up initial conditions for u and u_ ‘

|

Define the residual of the equation::

F = (inner((u - u_)/timestep, v)
+ inner(dot(u,nabla _grad(u)), v) + nu*inner(grad(u), grad(v)))*dx

t =20.0

end = 0.5

while (t <= end):
solve(F == 0, u)
u_.assign(u)
t += timestep

=0, u)

t += timestep
outfile.write(project(u, V_out, name="Velocity"))

outfile.write(project(u, V out, name="Velocity"))
]

B What does its DSL actually look like?

#include
#include

void wrap_form@@_cell_integral_otherwise(int const start,

double
double
double
double
double
double
double
double
double
double
double
double
double
double
double

for (1

for
fo

for
fo

for
fo

form_
form_
form_

Torm

form_

form

form_

form

form_

form

form_

Torm

form_
form_
form_
form_

Torm
for

To
fo

{

)3

To
fo
fo
To
fo
To
To
fo
To
fo
fo
fo

)
fo

}

}
MatSetValuesBlockedLocal(mat®, 6, &(map®[6 * n]),

<math.h>
<petsc.h>

form_t0...tl6;
const form_t17[7]
const form_t18[7
const form_tl19[7
form_t2;

const form_t20[7

int const end,

=1

* 6] = B H
*el={... %
*el={... 4

form_t21...t37;

form_t38[6];

form_t39[6];

form_t4;

form_t40...t45

form_t5...t9

t0[6 * 2];

tl[3 * 21;

t2[6 * 2 * 6 * 2];
nt n = start; n <= -1 + end; ++n)
(int i4 = 0; i4 <= 5; ++id)
r (int i5 0; i5 ++15)
for (int i6 = 0; i6 5; ++i6)

for (int 17 = @0; i7 <= 1; ++i7)

t2[24 * i4 + 12 * i5 + 2 * i6 + i7] = 0.0;

(int i2 = 0; 12 <= 2; ++i2)
ro(int i3 = 0; 13 <= 1; ++i3)
t1[2 * i2 + i3] = datl[2 * mapl[3 * n + i2] + i3];
(int i0 = 0; 10 <= 5; ++10)
ro(int il = 0; il <= 1; ++il)

tO[2 * i0 + il] =

dat@[2 * map®[6 * n + i0] + il];

t0 = -1.0 * tl[l];

tl = form_t@ + t1[3];

t2 -1.0 * t1[0];

t3 = form_t2 + tl1[2];

t4 form_t@ + t1[5];

t5 = form_t2 + tl[4];

t6 = form_t3 * form_t4 + -1.0 * form_t5 * form_tl

t7 1.0 / form_t6;

t8 = form_t7 * -1.0 * form_tl

t9 = form_t4 * form_t7;

t1e = form_t3 * form_t7;

tll = form_t7 * -1.0 * form_t5;

t12 = 0.0001 * (form_t8 * form_t9 + form_t10 * form_t11);

tl3 = 0.0001 * (form_t8 * form_t8 + form_t1l0 * form_tl0);

t14 = 0.0001 * (form_t9 * form_t9 + form_tll * form_tll)

t15 = 0.0001 * (form_t9 * form_t8 + form_t11 * form_t18);

_tl6 = fabs(fTorm_t6);

(int form_ ip = ©; form_ip <= 6; ++form_ip)

rm_t26 = 0.0; form_t25 = 0.0; form_t24 = 0.0; form_t23 = 0.0; form_t22 = 0.0; form_t21 = 0.0
r {int form i = @; form_i <= 5; ++Torm_i)

form_t21 = form_t21 + form_t20[6 * form_ip + form_i] * t@[1 + 2 * form_i]
form_t22 = form_t22 + form_t19[6 + form_ip + form i] * tO[1 + 2 * form i];
form_t23 = form_t23 + form_t20[6 * form_ip + form_i] * t@[2 * form_i]
form_t24 = form_t24 + form_t19[6 * form_ip + form_i] * tO[2 * form il;
form_t25 = form_t25 + form_t18[6 * form_ip + form i] * tO[1 + 2 * form il;
form_t26 = form_t26 + form_t18[6 * form_ip + form_i] * tO[2 * form_i]
rm_t27 = form_t17[form_ip] * form_tl16;

rm_t28 = form_t27 * form_tl5;

rm_t29 = form_t27 * form_tl4;

rm_t30 = form_t27 * (form_t26 * form_t9 + form_t25 * form_tl1l);

rm_t31 = form_t27 * form_t13;

rm_t32 form_t27 * form_tl12;

rm_t33 = form_t27 * (form_t26 * form_t8 + form_t25 * form_t10);

rm_t34 = form_t27 * (form_t11 * form_t24 + form_t18 * form_t23);

rm_t35 = form_t27 * (form_t9 * form_t22 + form_t8 * form_t21);

rm_t36 = form_t27 * (50.0 + form_t9 * form_t24 + form_t8 * form_t23);
rm_t37 = form_t27 * (50.0 + form_t11 * form_t22 + form_t10 * form_t21);

r (int form_kO = @; form_k@ <= 5; ++form_kO

form_t38[form_ko]
form_t39[form_ko]

r (int form_joO

form_t4o
form_t4l
form_t42
form_t43

form_t44 = form_]
form_t45 = form
t2[24 + form]0

t2[13 + 24 * form_j@O + 2 * furm ko_0] =
t2[1 + 24 * form_jO + 2 * form k8 B]
t2[12 + 24 * form_j@O + 2 * form ko_0] =

H

= 0; form_j@ <=

form_t18[6
form_t18[6
form_t20[6
= form_t20[6
for (int form_ ke _© =
{

form_t18[6
form_t18[6

* form_ip + form_kO] * form_t37;
* form_ip + form_kO] * form_t36;

5; ++form_jo)

form_ip
form_ip

* + form_j0]
* +
* form_ip +
* +
0

Torm_jo1]
form_jO]
form_jol *
<= 5; ++form_ko_0)

*+ form_t35;
* form_t34;
*

form_ip
0; form_ko_(

43 *
t42 *
+20*

form_t19[6
form_t20[6
form_ke_0] =

form_ip + form_kO_0]

N
* form_ip + form_k0_0];

6, &(mapO[6 * n]), &(t2[0]1), ADD_VALUES);

Mat const mat®@, double const *__

restrict__

datl, double const *__|

restrict__ dat@, int const *__restrict__ map@, int const *__

Generated code
to assemble the
resulting linear
system matrix

Executed at each
triangle in the
mesh

Accesses
degrees of
freedom shared
with neighbour
triangles through
iIndirection map

form_t31 + form_t18[6 * form_ip + form_jO] * form_t33 + form t19[6 * form_ip + form_jO] * form_t32;
form_t28 + form_t18[6 * form_ip + form_jO1 * form_t30 + form_t19[6 * form_ip + form_jOl * form_t29;

t2[24 * form_jO + 2 i form_ke_0] + form_t45 + form_t18[6 * form_ip + form_jO] * form_t39[form_k0 0] + form_td4;

t2[13 + 24 * form_jo + 2 * form_| KO _0] + Torm_t45 + form_t18[6 * form_ip + form_jO] * form_t38[form_ KO _0] + Torm_t44;
t2[1 + 24 * form]B + 2 * form_k@. B] + form t18[6 *# form_ip + form_k0_0] * form_t4l;
t2[12 + 24 * form_j@ + 2 # form ko_0] + form_t18[6 * form_ip + form ke_o] # form t40

restrict__

mapl)

Firedrake: single-node AVX512 performance

B Does it generate good code?
Skylake cross-element vectorization
2000
- 1heo peak
1000 - «==ui|ntel LINPACK
500 -
- GFLOPs
® achieved for
o 2007 residual
O
= 100+ ass_embly for
O] various
50 - element types,
with polynomial
20 - degree ranging
from 1-6
10 T T L L AL L L | T T L AL LR L | T T L | T T L L L L |
100 101 107 103
Arithmetic intensity
® mass-tri B helmholtz - tri * |aplacian - tri A elasticity - tri V¥ hyperelasticity - tri
® mass-quad B helmholtz - quad * laplacian - quad A elasticity - quad ¥ hyperelasticity - quad
mass - tet helmholtz - tet laplacian - tet elasticity - tet hyperelasticity - tet
® mass-hex B helmholtz - hex * laplacian - hex A elasticity - hex ¥ hyperelasticity - hex

[Skylake Xeon Gold 6130 (on all 16 cores, 2.1GHz, turboboost off, Stream: 36.6GB/s, GCC7.3 —march=native)]

A study of vectorization for matrix-free finite element methods, Tianjiao Sun et al

IJHPCA 2020

https://arxiv.org/abs/1903.08243

Imperial College Firedrake: compiler architecture.

Non-FE loops Unified Form
over the mesh Language

UFL specifies the (weak form of
UFL “Two- the) partie_al _diﬂerentigl equ_ation
stage” Form and how it is to be discretised

compiler Compiler generates PyOP2
kernels and access descriptors

GEM: abstract representation

GEM: tensor . :
contractions supports efficient flop-reduction
optimisations
LB EEeRE o PyOP2: stencil DSL for

unstructured-mesh

Explicit access descriptors
characterise access footprint of
kernels

Loo.py: vectorization etc

e P Sequence of intermediate
representations
Multicore | Manycore | Future/ 100% Python, runtime code

IGPU other

Rathgeber, Ham, Mitchell et al, ACM TOMS 2016, Tianjiao Sun et al hitps://arxiv.org/pdf/1903.0

generation, code-caching

In In Some prototyping
44 production development

https://arxiv.org/pdf/1903.08243.pdf

Aother

Devito: Symbolic Finite Difference Computation

Devito is a domain-specific Language (DSL) and code generation framework for the design of highly optimised finite
difference kernels for use in inversion methods. Devito utilises SymPy to allow the definition of operators from high-
level symbolic equations and generates optimised and automatically tuned code specific to a given target

architecture.

Symbolic computation is a powerful tool that allows users to:

¢ Build complex solvers from only a few lines of high-level code
¢ Use automated performance optimisation for generated code
¢ Adjust stencil discretisation at runtime as required

¢ (Re-)development of solver code in hours rather than months

A

Gerard Gorman Fabio Luporini
And manv manv more!

Imperial College Why I dO What I dO, and What I,Ve Iearned
e e

B Engaging with applications to exploit domain-specific
optimisations can be incredibly fruitful
B Compiling general purpose languages is worthy but usually incremental

B Compiler architecture is all about designing intermediate
representations — that make hard things look easy

B Tools to deliver domain-specific optimisations often have domain-specific
representations

B Premature lowering is the constant enemy (appropriate lowering is great)

B Along the way, we learn something about building better
general-purpose compilers and programming
abstractions
B Dirill vertically, expand horizontally

How can we change the world?

d D . t . . t .
t I l I . t . .
Firedrake is an automated system for the sol ifferer the atest commits to the Firedrake master
- - - finite element method (FEM). Firedrake uses sophisticated code generation to provide branch on Github
mathematicians, scientists, and engineers with a very high productivity way to create
sophisticated high performance simulations Merge pull request #1520 from

r Proj
diagonal

Lawrence Mitchell authored at 22/10/2019,
Features: 05:14:34

tests: Check that getting diagonal of matrix
works

« Expressive specification of any PDE using the Unified Form Language from the FEniCS
Lawrence Mitchell authored at 21/10/2019,

Project

B We enable them to navi gale | s
rapidly through alternative
solutions to their problem

E In the future, we will have
automated pathways from S
maths to code for many |
classes of problem, and | O
many alternative solution s o seaingschwactre ing e Fix Facones

The framework is designed to solve a range of governing syster

t e C h n i q u eS unstructured grids containing various element types. It is also de

range of hardware platforms via use of an in-built domain specif

PyFR

The actual message of this talk....

B Domain-specific code generation tools really work

B But we can’t afford to continue like this!

Imperial College

= e
E Users have really good reasons not
to adopt DSLs:

E Longevity: will the tool support outlive
my project?

B Walled garden: if later | discover | need
something the DSL can’'t do, I'min
trouble

F Interoperability: how do | plug DSL stuff
together with other parts of my code?

B Devito shares no code with Firedrake
above the C compiler

B For example: dozens of stencil DSLs
E Almost all are dead academic projects
E None share any code

DSLs are a dysfunctional ecosystem

Stencil DSLs:

Halide
Gridtools/Stella
Open Earth Compiler
Psyclone
YASK

OPS

Artemis
StencilGen

Lift

SDSLc
ExaStencils
Patus

Physis

Mint

Pochoir
ShiftCalculus
HPF

MSF

Imperial College

We have to work together...
e e

E What do you need to do to get leading-edge
performance with stencils?
B Spatial tiling (hierarchical)

Temporal tiling (wavefront, diamond....)

Data layout transformations (“dimension lifting”)

Arrow scheduling (use associativity to control register
pressure)

Cross-iteration redundancy elimination (CIRE)
Shuffling (“Software Systolic Array”)

Matrix ISA optimisations, tensor cores

Loop fusion/fission/distribution
Compute-communicate overlap

Wavefield compression

Precision management

And manvy many morel!ll

Imperial College

We have to work together...

S~ e o eg———
E What do you need to do to get leading-edge
performance with stencils?

Spatial tiling (hierarchical)
Temporal tiling (wavefront, diamond....)
Data layout transformations (“dimension lifting”)

Arrow scheduling (use associativity to control register
pressure)

Cross-iteration redundancy eliminatio
Shuffling ("Software Systolic Array”) SNfoWelal=R (=F: 100 o210

'C"a”"; ISA ‘jﬁtimisi‘gf’?zt?s"r ad expect to integrate
OO0p rusion/tission/aistrioution a” the known

Compute-communicate overlap
Wavefield compression

tehnigues into a
Precision management Smgle silo of code

And manvy many morel!ll

ohdon - W& have to build code that works together...
= =

E What does it mean to compose DSLs?

B Target-specific DSLs
B Eg: CUDA, HLS, Graphcore’s Poplar, Maxeler's MaxJ
B Composition: eg MPI+CUDA, MPI+X, multi-target OpenMP

B Data-structure-specific DSLs

E Eg OP2/PyOP2, OPS, Psyclone, SAMR DSLs like Chombo, BVH DSLs like
Optix, Octtree DSLs like SuperEight, Tensorflow

B Composition: Particle-in-cell, Particle mesh Ewald, Multiphysics frameworks
like Uintah, visualisation tools like VTK

B DSLs that automate numerical methods
B Eg: FeNICS, Firedrake, Devito, PyFR, OpenSBLI, SPIRAL, GPFlow

B Composition:

Coupled problems: fluid-structure, PME, Model Coupling Toolkit

Outer-loop: PDE-constrained optimisation (FWI), assimilation (4DVAR),
uncertainty quantification (MLMC), parameterisation with deep learning

At this level we have access to the maths!

Tpera College Vision for the future

Partial differential | Deep learning: Tensor decompositions Graoh analvtics Gaussian belief Multi-level
equations DNNs, GNNs in ML P y propagation Monte-Carlo

Map maths to
computation
via numerical
method

Tensor contractions Algebraic factorisations, transposes, storage layout

Decoupled access- Indirections, graph traversals, gathers, scatters, inspector-executor
executors

Polyhedral loop model Loop ordering, tiling, for locality and parallelisation

Loop nests C-slowing for reductions, scheduling for memory contention

Architecture template and data representation selection,

Design transformation
partitioning, mapping, quantisation

CPUs/GPUs/ Deep learning Near-camera Streaming Custom instruction Retiming, scheduling
clusters accelerators processors static dataflow datapath

Resource allocation,
clocking

RTL — Verilog, VHDL

68

Imperial College

London Acknowledgements

= e e e ———
Thank you to our many many collaborators!

Partly funded/supported by

69

SysGenX: Composable software generation for system-level simulation at Exascale (EP/W026066/1)
XDSL.: Efficient Cross-Domain DSL Development for Exascale (EP/W007789/1)

NERC Doctoral Training Grant (NE/G523512/1)

EPSRC “MAPDES” project (EP/I00677X/1)

EPSRC “PSL” project (EP/I006761/1)

Rolls Royce and the TSB through the SILOET programme

EPSRC “PAMELA” Programme Grant (EP/K008730/1)

EPSRC “PRISM” Platform Grants (EP/1006761/1 and EP/R029423/1)

EPSRC “Custom Computing” Platform Grant (EP/1012036/1)

EPSRC “Application Customisation” Platform Grant (EP/P010040/1)

EPSRC “A new simulation and optimisation platform for marine technology” (EP/M011054/1)
Basque Centre for Applied Mathematics (BCAM)

Schloss Dagstuhl

Code:
B http://www.firedrakeproject.orqg/ , https://www.devitoproject.org/
B http://op2.qithub.io/PyOP2/ , https://github.com/OP-DSL/OP2-Common
B https://qgithub.com/xdslproject/xdsl

http://www.firedrakeproject.org/
https://www.devitoproject.org/
http://op2.github.io/PyOP2/
https://github.com/OP-DSL/OP2-Common
https://github.com/xdslproject/xdsl

