
1

Towards Cross-Domain Domain-

Specific Compiler Architecture

Paul Kelly

Group Leader, Software Performance Optimisation

Department of Computing

Imperial College London
Joint work with David Ham (Imperial Maths), Gerard Gorman (Imperial ESE), Lawrence Mitchell (now with NVIDIA),

Sophia Vorderwuelbecke, George Bisbas, Edward Stow (Imperial), Fabio Luporini (Devito Codes Ltd), Florian Rathgeber

(now with Google), Doru Bercea (now with IBM Research), Michael Lange (now with ECMWF), Andrew McRae (now at

University of Oxford), Graham Markall (now at NVIDIA), Tianjiao Sun (now at Cerebras), Thomas Gibson (NCSA Illinois),

Kaushik Kulkarni (UIUC), Andreas Klockner (UIUC), Tobias Grosser, Michel Steuwer (University of Edinburgh), Larisa

Stolzfus, Amrey Krause, Nick Brown (EPCC), Navjot Kukreja (University of Liverpool)

And many others....

2

I’ve worked on a lot of things….
GPUs, FPGAs, vector/matrix ISAs, cache coherency,
large-scale SIMD, precision optimisation…

I have worked on general-purpose compilers
Notably pointer analysis
adopted into GCC, go compiler

(actually the work of my PhD student David
Pearce)

But the benefits were incremental

Meanwhile I engaged with applications specialists
Who know they have major performance
optimisation opportunities

So I got interested in automating domain-specific
optimisations

File:Victorinox Swiss Army Knife - Climber (15554551505).jpg - Wikimedia Commons

Who am I and what do I do?

https://commons.wikimedia.org/wiki/File:Victorinox_Swiss_Army_Knife_-_Climber_(15554551505).jpg

3

We can deliver domain-specific
optimisations

We collect and automate all the
performance techniques that are known for
a family of problems

If we get it right…. we get
Productivity – by generating low-level
code from a high-level specification
Performance – by automating
optimisations
Performance portability – with multiple
back-ends

https://commons.wikimedia.org/wiki/File:Victorinox_Swiss_Army_Knife_-_Climber_(15554551505).jpg

https://commons.wikimedia.org/wiki/File:Makita_DJV181.jpg

Power tools for performance programming

By capturing domain-specific representation….

https://commons.wikimedia.org/wiki/File:Victorinox_Swiss_Army_Knife_-_Climber_(15554551505).jpg
https://commons.wikimedia.org/wiki/File:Makita_DJV181.jpg

5

Automating domain-specific performance
optimisations

Exploiting higher-level language to get
better performance than low level code

PyOP2/OP2

Unstructured-mesh
stencils

GiMMiK: small matrix
multiply

Firedrake

Finite-element

SLAMBench:

3D vision, dense SLAM

PRAgMaTIc: Unstructured
mesh adaptation

TINTL: Fourier
interpolation

Formula-1, UAVs,
buildings

Aeroengine turbo-
machinery

Domestic robotics,
augmented reality

Tidal turbine
placement

Solar energy, drug
design

Weather and
climate

ProjectsContexts Applications

Tensor contractions

Vectorisation, parametric
polyhedral tiling

Lazy, data-driven
compute-communicate

Multicore graph worklists

Sparsity in Fourier
transforms

Tiling for unstructured-
mesh stencils

Technologies

Runtime code generation

Devito: finite difference
Glaciers

Hypermapper:

design optimisation

Medical imaging
RobotWeb: distributed
localisation

SuperEight: octree SLAMGeneralised loop-invariant
code motion

Functional Variational
Inference

Search-based optimisation

Unsteady CFD -
higher-order flux-
reconstruction

Finite-volume CFD

Real-time 3D scene
understanding

Adaptive-mesh CFD

Ab-initio computational
chemistry (ONETEP)

Finite-element

Finite-difference

Gaussian belief
propagation

Contour trees, Reeb
graphs

Uncertainty in DNNs

Near-camera
processing

Processor/accelerator
microarchitecture, co-
design

MLIR Quantum computing

The work of my research group

10
Compilation is like skiing

Syntax

Types

Class hierarchy

Call-graph

Points-to

Dependence

Polyhedra

Shape

Commutativity

Register allocation

Instruction scheduling

Storage layout

Mapping

Partitioning

Parallelisation

Tiling

Loop nest ordering

11
Compilation is like skiing

12
Compilation is like skiing

Carrying your
skis up the
mountain is not
the best bit

https://pxhere.com/en/photo/949553 (CC0 public domain)

https://pxhere.com/en/photo/949553

14
Using a DSL is like helicopter skiing

20

Plan

Compiling is like skiing
Analysis is an uphill struggle

“Turing Tax”
The price you pay for running on a general-purpose
computer rather than a specialised one

What do we call…
The price you pay for using a general-purpose
programming language rather than a DSL?

This talk:
DSLs really can deliver
DSL compiler architecture: how do DSLs win?
Why we have to make the DSL ecosystem work!

(For more on the Turing Tax see The von Neumann Bottleneck and the Turing Tax - YouTube)

https://www.youtube.com/watch?v=TZipuaOIDr0

22
Compilation is like skiing

Syntax

Types

Class hierarchy

Call-graph

Points-to

Dependence

Polyhedra

Shape

Commutativity

Register allocation

Instruction scheduling

Storage layout

Mapping

Partitioning

Parallelisation

Tiling

Loop nest ordering

All of this is
Turing Tax!

“Turing tax”:
the price we
pay for using
a general-
purpose tool
instead of a
special-
purpose one

25
What is Firedrake?

Example DSL:

26
What is Firedrake?

28

Firedrake is
used in:

Thetis:
unstructured
grid coastal
modelling
framework

What is it used for? By whom?

• Estuary of the River Severn: huge tidal energy opportunity

• Significant causes for concern over ecological impact

• Should we do it? How? Where? How much energy? How
much impact?

https://doi.org/10.1016/j.apenergy.2009.11.024

https://doi.org/10.1016/j.apenergy.2009.11.024

• Estuary of the River Severn: huge tidal energy opportunity

• Significant causes for concern over ecological impact

• Should we do it? How? Where? How much energy? How
much impact?

https://doi.org/10.1016/j.apenergy.2009.11.024

https://doi.org/10.1016/j.apenergy.2009.11.024

31

Firedrake is
used in:

Gusto:
atmospheric
modelling
framework
being used
to prototype
the next
generation
of weather
and climate
simulations
for the UK
Met Office

Three-dimensional simulation of a thermal rising through
a saturated atmosphere. From A Compatible Finite
Element Discretisation for the Moist Compressible Euler
Equations (Bendall et al,
https://arxiv.org/pdf/1910.01857.pdf)

What is it used for? By whom?

https://arxiv.org/pdf/1910.01857.pdf

32

Firedrake is
used in:

Icepack: a
framework
for modeling
the flow of
glaciers and
ice sheets,
developed at
the Polar
Science
Center at the
University of
Washington

Larsen ice shelf model, from the Icepack tutorial
by Daniel Shapero
(https://icepack.github.io/icepack.demo.02-
larsen-ice-shelf.html)

What is it used for? By whom?

https://icepack.github.io/icepack.demo.02-larsen-ice-shelf.html

38

Example: Burgers equation

From the weak form of the PDE, we derive an equation to
solve, that determines the state at each timestep in terms of
the previous timestep

Transcribe into Python – u is 𝑢𝑛+1, u_ is 𝑢𝑛 :

Set up the equation and solve for the next timestep u:

At this point, Firedrake generates code to assemble a linear
system, runs it and calls a linear solver (we use PetSC)

40

Burgers equation

UFL is also the DSL of the
FEniCS project

Firedrake implements the
Unified Form Language
(UFL)

Embedded in Python

What does its DSL actually look like?

set up initial conditions for u and u_

Generated code
to assemble the
resulting linear
system matrix

Executed at each
triangle in the
mesh

Accesses
degrees of
freedom shared
with neighbour
triangles through
indirection map

Firedrake: single-node AVX512 performance

[Skylake Xeon Gold 6130 (on all 16 cores, 2.1GHz, turboboost off, Stream: 36.6GB/s, GCC7.3 –march=native)]

Theo peak

Intel LINPACK

GFLOPs
achieved for
residual
assembly for
various
element types,
with polynomial
degree ranging
from 1-6

A study of vectorization for matrix-free finite element methods, Tianjiao Sun et al

IJHPCA 2020 https://arxiv.org/abs/1903.08243

Does it generate good code?

https://arxiv.org/abs/1903.08243

44

Firedrake: compiler architecture

PyOP2: stencil DSL for
unstructured-mesh

Explicit access descriptors
characterise access footprint of
kernels

UFL specifies the (weak form of
the) partial differential equation
and how it is to be discretised

Compiler generates PyOP2
kernels and access descriptors

PyOP2

Non-FE loops
over the mesh

UFL “Two-
stage” Form

Compiler

Unified Form
Language

Multicore
Manycore

/GPU

Future/

other

R
a

th
g

e
b

e
r,

 H
a

m
,

M
it
c
h

e
ll

e
t
a

l,
 A

C
M

 T
O

M
S

 2
0

1
6

,
T

ia
n

jia
o

 S
u

n
 e

t
a

l
h

tt
p

s
:/
/a

rx
iv

.o
rg

/p
d

f/
1

9
0

3
.0

8
2

4
3

.p
d

f

In
production

In
development

Some prototyping

Loo.py loop transformations

GEM: tensor
contractions

GEM: abstract representation
supports efficient flop-reduction
optimisations

Loo.py: vectorization etc

Distributed MPI-parallel PyOP2
implementation

Loo.py representation

Sequence of intermediate
representations

100% Python, runtime code
generation, code-caching

https://arxiv.org/pdf/1903.08243.pdf

47

Gerard Gorman Fabio Luporini

And many many more!

Another example DSL:

Why I do what I do, and what I’ve learned

Engaging with applications to exploit domain-specific
optimisations can be incredibly fruitful

Compiling general purpose languages is worthy but usually incremental

Compiler architecture is all about designing intermediate
representations – that make hard things look easy

Tools to deliver domain-specific optimisations often have domain-specific
representations

Premature lowering is the constant enemy (appropriate lowering is great)

Along the way, we learn something about building better
general-purpose compilers and programming
abstractions

Drill vertically, expand horizontally

The real value of Firedrake
and Devito is in supporting
the applications users in
exploring their design space

We enable them to navigate
rapidly through alternative
solutions to their problem

In the future, we will have
automated pathways from
maths to code for many
classes of problem, and
many alternative solution
techniques

How can we change the world?How can we change the world?

Domain-specific code generation tools really work

But we can’t afford to continue like this!

How can we change the world?The actual message of this talk….

DSLs are a dysfunctional ecosystem

Users have really good reasons not
to adopt DSLs:

Longevity: will the tool support outlive
my project?

Walled garden: if later I discover I need
something the DSL can’t do, I’m in
trouble

Interoperability: how do I plug DSL stuff
together with other parts of my code?

Devito shares no code with Firedrake
above the C compiler

For example: dozens of stencil DSLs

Almost all are dead academic projects

None share any code

Stencil DSLs:

Halide

Gridtools/Stella

Open Earth Compiler

Psyclone

YASK

OPS

Artemis

StencilGen

Lift

SDSLc

ExaStencils

Patus

Physis

Mint

Pochoir

ShiftCalculus

HPF

MSF

….

We have to work together…

What do you need to do to get leading-edge
performance with stencils?

Spatial tiling (hierarchical)

Temporal tiling (wavefront, diamond….)

Data layout transformations (“dimension lifting”)

Arrow scheduling (use associativity to control register
pressure)

Cross-iteration redundancy elimination (CIRE)

Shuffling (“Software Systolic Array”)

Matrix ISA optimisations, tensor cores

Loop fusion/fission/distribution

Compute-communicate overlap

Wavefield compression

Precision management

And many many more!!!

We have to work together…

What do you need to do to get leading-edge
performance with stencils?

Spatial tiling (hierarchical)

Temporal tiling (wavefront, diamond….)

Data layout transformations (“dimension lifting”)

Arrow scheduling (use associativity to control register
pressure)

Cross-iteration redundancy elimination (CIRE)

Shuffling (“Software Systolic Array”)

Matrix ISA optimisations, tensor cores

Loop fusion/fission/distribution

Compute-communicate overlap

Wavefield compression

Precision management

And many many more!!!

No one team can
expect to integrate
all the known
tehniques into a
single silo of code

We have to build code that works together…

What does it mean to compose DSLs?

Target-specific DSLs

Eg: CUDA, HLS, Graphcore’s Poplar, Maxeler’s MaxJ

Composition: eg MPI+CUDA, MPI+X, multi-target OpenMP

Data-structure-specific DSLs

Eg OP2/PyOP2, OPS, Psyclone, SAMR DSLs like Chombo, BVH DSLs like
Optix, Octtree DSLs like SuperEight, Tensorflow

Composition: Particle-in-cell, Particle mesh Ewald, Multiphysics frameworks
like Uintah, visualisation tools like VTK

DSLs that automate numerical methods

Eg: FeNICS, Firedrake, Devito, PyFR, OpenSBLI, SPIRAL, GPFlow

Composition:

Coupled problems: fluid-structure, PME, Model Coupling Toolkit

Outer-loop: PDE-constrained optimisation (FWI), assimilation (4DVAR),
uncertainty quantification (MLMC), parameterisation with deep learning

At this level we have access to the maths!

68

Vision for the future

Partial differential
equations

Tensor contractions

Polyhedral loop model

Decoupled access-
executors

Loop nests

Streaming
static dataflow

RTL – Verilog, VHDL

Deep learning:
DNNs, GNNs

Tensor decompositions
in ML

Algebraic factorisations, transposes, storage layout

Indirections, graph traversals, gathers, scatters, inspector-executor

Loop ordering, tiling, for locality and parallelisation

C-slowing for reductions, scheduling for memory contention

Retiming, scheduling

Resource allocation,
clocking

Graph analytics

Design transformation

Custom instruction
datapath

LLHD

Architecture template and data representation selection,
partitioning, mapping, quantisation

CPUs/GPUs/
clusters

Gaussian belief
propagation

Multi-level
Monte-Carlo

Map maths to
computation
via numerical
method

Deep learning
accelerators

Near-camera
processors

69

Acknowledgements

Thank you to our many many collaborators!

Partly funded/supported by

SysGenX: Composable software generation for system-level simulation at Exascale (EP/W026066/1)

XDSL: Efficient Cross-Domain DSL Development for Exascale (EP/W007789/1)

NERC Doctoral Training Grant (NE/G523512/1)

EPSRC “MAPDES” project (EP/I00677X/1)

EPSRC “PSL” project (EP/I006761/1)

Rolls Royce and the TSB through the SILOET programme

EPSRC “PAMELA” Programme Grant (EP/K008730/1)

EPSRC “PRISM” Platform Grants (EP/I006761/1 and EP/R029423/1)

EPSRC “Custom Computing” Platform Grant (EP/I012036/1)

EPSRC “Application Customisation” Platform Grant (EP/P010040/1)

EPSRC “A new simulation and optimisation platform for marine technology” (EP/M011054/1)

Basque Centre for Applied Mathematics (BCAM)

Schloss Dagstuhl

Code:

http://www.firedrakeproject.org/ , https://www.devitoproject.org/

http://op2.github.io/PyOP2/ , https://github.com/OP-DSL/OP2-Common

https://github.com/xdslproject/xdsl

http://www.firedrakeproject.org/
https://www.devitoproject.org/
http://op2.github.io/PyOP2/
https://github.com/OP-DSL/OP2-Common
https://github.com/xdslproject/xdsl

