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#define PI 3.1415926535897932384626434

int k, n;

High-Level Synthesis: From Programs to Circuits

for(k = 0; k < N; k++) {
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A completely new type of users for HLS!

Software application programmers

A completely new type of applications for HLS!

General-purpose code
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Standard HLS

* Create a datapath suitable to implement the required computation
* Create a fixed schedule at compile time to activate the datapath components

F7-&:] Direction Brig
o o o , 08:50 @ [ ——=©& 10:19
— L] L] * 5
for (i=0; i<n; i++) {
acc += x[1i] * c[n-1i];
} Lausanne, gare
5° % Walk (Show on the map)
08:50 Lausanne, Platform 3
EAFEED) 1811 Direction Brig
acc '
09:21 Aigle, Platform 1
v v o % Walk [Show on the ma),
LD x[i] |+ 1 LD c[n-i] B
| . 09:29 Aigle, gare
B B 428 Direction Le Sépey, gare
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Standard HLS

* Create a datapath suitable to implement the required computation
* Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) { Naive schedule:
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Standard HLS

* Create a datapath suitable to implement the required computation
* Create a fixed schedule at compile time to activate the datapath components
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Standard HLS

* Create a datapath suitable to implement the required computation
* Create a fixed schedule at compile time to activate the datapath components
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Standard HLS

* Create a datapath suitable to implement the required computation
* Create a fixed schedule at compile time to activate the datapath components
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Standard HLS

* Create a datapath suitable to implement the required computation
* Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) { Naive schedule:
daCC += X[l] * C[n-i]; Clock cycles
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The Limitations of Static Scheduling

for (i=0; i<N; i++) { 1: x[0]=5 » 1ld hist[5]; st hist[5];

hist[x[1]] = hist[x[i]] + weight[i]; 2: x[1]=4 » 1d hist[4]; st his%[4];

} 3: x[2]=4 » 1d hist[4];+St hist[4];
RAW dependency

Static scheduling (standard HLS tool)

— Inferior when memory accesses cannot be disambiguated at compile time

C1 Cc2 Cc3 Ca c5 Cé c7 Cc8 c9 C10 Cl1 C12 C13 Cil4

LD ST

1 | LD x[0] hist[x[0] hist[x[0]] + weight[0] hist[x[0]]

LD . . ST w
2 LD x[1] hist[x[1] hist[x[1]] + weight[1] hist[x[1]] \8_
: 021}

hist[x[2]]

A 4

Dynamic scheduling

— Maximum parallelism: Only serialize memory accesses on actual dependencies
C1 c2 C3 c4 C5 Cé6 c7 Cc8 co C10 Cl11 C12 C13 Ci4

LD . — ST
1 | LD x[0] hist[x[0] hist[x[0]] + weight[0] hist[x[0]]
; ) . . ST
3 LD x[2] hist[x[2]] hist[x[2]] + weight[2] hist[x[2]]
a LD x[3] histlig[ a0 hist[x[3]] + weight[3]




A Different Way to Do HLS

Static scheduling (standard HLS tool): decide Dynamic scheduling (our HLS approach): decide
at compile time when each operation executes at runtime when each operation executes
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A Different Way to Do HLS

Static scheduling (standard HLS tool): decide Dynamic scheduling (our HLS approach): decide
at compile time when each operation executes at runtime when each operation executes
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A Different Way to Do HLS

Static scheduling (standard HLS tool): decide
at compile time when each operation executes
Direction Brig
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5" % Walk (Show on the map)
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Dataflow Circuits

Asynchronous circuits: operators triggered when inputs are available
— Budiu et al. Dataflow: A complement to superscalar. ISPASS’05.

Dataflow, latency-insensitive, elastic: the synchronous version of it

— Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.

— Carloni et al. Theory of latency-insensitive design. TCAD’01.

— Jacobson et al. Synchronous interlocked pipelines. ASYNC’02.

— Vijayaraghavan and Arvind. Bounded dataflow networks and latency-insensitive circuits. MEMOCODE’09.

High-level synthesis of
dataflow circuits




HLS of Dynamically Scheduled Circuits

Catching up with static HLS

Pipelining

Resource sharing
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HLS of Dynamically Scheduled Circuits

Catching up with static HLS

Pipelining

”Tready

FIFO

tstall

Resource sharing

Voo |
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Reaping the benefits of

dynamic scheduling

Out-of-order memory
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Dataflow Circuits

 We use the SELF (Synchronous ELastic Flow) protocol

— Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.
* Every component communicates via a pair of handshake signals

* Make scheduling decisions at runtime
— As soon as all conditions for execution are satisfied, an operation starts

4 ) 4 )
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A 4

ready

Component 1 Component 2

data
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Dataflow Circuits

 We use the SELF (Synchronous ELastic Flow) protocol

— Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.
* Every component communicates via a pair of handshake signals

* Make scheduling decisions at runtime
— As soon as all conditions for execution are satisfied, an operation starts
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Dataflow Components

|

Fork Join
Fork Join
Branch Merge

Branch Merge




Dataflow Components
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Dataflow Components
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Dataflow Components
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Dataflow Components

Fork Join
Fork Join
O-» BOh Merge

Branch Merge




Dataflow Components

Fork Join

Fork Join
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Branch “Qe
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From Program to Dataflow Circuit

Start: i=0
Merge
v
Reg
2
Fork
]
v
LD x[i]
! v
Fork LD weightl[i]
LD hist[x[i]]
+
4 stages
ST hist[x[i]]

comb.

Fork

Branch

Exit: i=N

for (i=0@; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];
}

Josipovié, Ghosal, and lenne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipovié, Brisk, and lenne. From C to Elastic Circuits. Asilomar 2017




From Program to Dataflow Circuit

Start: i=0
Merge
v
Reg
v
Fork
, 1
| LD x[i] I
comb.
Fork |LD weight[ill Fork
A 4 N
LD hist[x[i]]
4 stages Branch
| ST hist[x[i]] | l
Exit: i=N

for (i=0; i<N; i++) {

}

hist[x[i]] = hist[x[i]] + weight[i];

Josipovié, Ghosal, and lenne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipovié, Brisk, and lenne. From C to Elastic Circuits. Asilomar 2017




From Program to Dataflow Circuit

Start: i=0
Merge
Reg
2
Fork
v
LD x[i]
! v
Fork LD weightl[i]
LD hist[x[i]]
+
4 stages
ST hist[x[i]]

T | 1
+
comb.

A\ 4

Fork

for (i=0; i<N; i++) {

Branchl
Exit: i=N

RISTIX[I]] = hist[x[i]] + weight[i];
}
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Josipovié, Brisk, and lenne. From C to Elastic Circuits. Asilomar 2017




From Program to Dataflow Circuit

Start: i=0
Merge
Reg
Fork
]
v
LD x[i]
! v
Fork LD weight[i]
LD hist[x[i]]
+
4 stages
ST hist[x[i]]

1
for (i=0@; i<N; i++) {
comb. } hist[x[i]] = hist[x[i]] + weight[i];
Fork
Branch
Exit: i=N

Josipovié, Ghosal, and lenne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee

Josipovié, Brisk, and lenne. From C to Elastic Circuits. Asilomar 2017




From Program to Dataflow Circuit

Start: i=0
Merge
v
Reg
J for (i=0; i<N; i++) {
LD x[i] . . — hi . . —
comb. } hist[x[1i]] hist[x[i]] + weight[i];
| Fork | LD weight[i]
LD hist[x[i]]
+
4 stages Branch
ST hist[x[i]] l

Exit: i=N

Josipovié, Ghosal, and lenne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipovié, Brisk, and lenne. From C to Elastic Circuits. Asilomar 2017




From Program to Dataflow Circuit

StabEO
\ 4

! comb. Single token on cycle, in-order
Fork DB Felle tokens in noncyclic paths
] N
] LD hist[x[i]] ]
+ \ 4
4 stages Branch
ST hist[x[i]] l
Exit: i=N

Josipovié, Ghosal, and lenne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipovié, Brisk, and lenne. From C to Elastic Circuits. Asilomar 2017




From Program to Dataflow Circuit

C1 C2 c3 ca c5 Cé c7 Cc8 (o) C10 C11 C12 C13 Ci4

m) - — ST
1 | LD x[0] hist[x[0] hlstIXI0]]+welght[9] hist[x[0]]
wx[ | ° hist[x[1]] + weight[1] >
2 XU histixg Istix welg hist[x[1]]
LD
3 LD x[2] | . ciixi2]

Backpressure from slow paths prevents pipelining




HLS of Dynamically Scheduled Circuits

Catching up with static HLS

Pipelining

”Tready

FIFO

tstaH

Reaping the benefits of
dynamic scheduling




Inserting Buffers

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

¥
Start: i=0
! 3
Merge
Reg
Fork
I 1
v .
0 x01] Buffers as registers to break
T } comb. combinational paths
Fork LD weight][i] Fork
‘ N
LD hist[x[i]]
+ ¥
4 stages Branch
ST hist[x[i]] l
Exit: i=N

Josipovi¢, Sheikhha, Guerrieri, lenne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, lenne, and Josipovi¢. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022




Inserting Buffers

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

¥
Start: i=0
V3
Merge
v
Reg
v
Fork
| 1
v
LD x[i] FIFO Buffers as FIFOs to regulate
T comb. throughput
Fork LD weight[i] Fork
‘ N
LD hist[x[i]]
_FIFO _ '
————— + \ 4
4 stages Branch
ST hist[x[i]] l
Exit: i=N

Josipovi¢, Sheikhha, Guerrieri, lenne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, lenne, and Josipovi¢. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022




Inserting Buffers

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[1i]] + weight[i]; . BEFORE
} (without buffers)
Start: i=0 Start: i=0
Merge Merge
v v
Reg O-
v v
Fork —, | Fork
] 1 I 1
v +
LD x[i]  FIFO _ ]
1 T comb. comb.
Fork LD weight[i] Fork Fork LD t[i] Fork
, N | N
LD hist[x[i]] I LD hist[x[i]]
_FIFO _ { '
_____ + ! + v
4 stages Branch 4 stages Branch
ST hist[x[i]] l ST hist[x[i]] l
Exit: i=N Exit: i=N

Josipovi¢, Sheikhha, Guerrieri, lenne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, lenne, and Josipovi¢. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022




Inserting Buffers

NOW BEFORE
(with buffers) (without buffers)
Start: i=0 Start: i=0
l \ 4 l \ 4
Merge Merge
o
v
| Fork 1
|
4
] ‘
comb.
Fork LD Ot[i] Fork Fork LD t[i] Fork
} N | N
LD [i1] ‘ LD hist[x[i]]
CFIRQ , ,
. _ + ! + v
4 stages Branch 4 stages Branch
ST hist[x[i]] l ST hist[x[i]] l
Exit: i=N Exit: i=N

Josipovi¢, Sheikhha, Guerrieri, lenne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, lenne, and Josipovi¢. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022




Inserting Buffers

NOW
(with buffers)

Start: i=0

|

Merge

-
Mixed integer linear programming (MILP) model

based on Petri net theory
Analyze token flow through the circuit
Determine buffer placement and sizing

Fork o i Fork c Maximize throughput for a target clock period)
A\ 4 N
(il
_FIFO _ '
— — + \ 4
4 stages Branch
ST hist[x[i]] l
Exit: i=N

Josipovi¢, Sheikhha, Guerrieri, lenne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, lenne, and Josipovi¢. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022




HLS of Dynamically Scheduled Circuits

Catching up with static HLS

Resource sharing

|

Mul 1

R

o
¥
Mul 2

2

¥ectm

Mul 1/2

Reaping the benefits of
dynamic scheduling




Saving Resources through Sharing

e Static HLS: share units between operations which execute in different clock cycles

* Dynamic HLS: share units based on their average utilization with tokens

Py 4
for (i = 0; 1 < N; i++) { I I
a[i] = a[i]*x; Lk .
b[i] = b[i]*y; - Lo

} v v
M1 M2

Josipovié¢, Marmet, Guerrieri, and lenne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee



Saving Resources through Sharing

e Static HLS: share units between operations which execute in different clock cycles

* Dynamic HLS: share units based on their average utilization with tokens

for (i =
a[i]
b[i]
}

0; 1 < N; i ) ).

=,a?i]*x; it % ?(é_ Sharing not possible without

= b[i]*y; & & damaging throughput
M1 M2

Units fully utilized
(high throughput)

Use MILP (performance optimization)
information to decide what to share

Josipovié¢, Marmet, Guerrieri, and lenne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee




Saving Resources through Sharing

e Static HLS: share units between operations which execute in different clock cycles

* Dynamic HLS: share units based on their average utilization with tokens

for (i =
a[i]
b[i]
}

0; 1 < N; i++ O
,a[i]*xf a |:> O Sharing possible without
b[i]*yf €] damaging throughput
3

M1 M2 M1/2

Units underutilized
(low throughput)

Use MILP (performance optimization)
information to decide what to share

Josipovié¢, Marmet, Guerrieri, and lenne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee




Saving Resources through Sharing

e Static HLS: share units between operations which execute in different clock cycles
* Dynamic HLS: share units based on their average utilization with tokens

Inputs of M1, M2

b ! e —
for (i = @; i < N; i++) { % /Token order: M1, MZ/
a[i] = a[i]l*x; ‘ '
b[i] = b[il*y; E> o E> = B
} -] [FIFO

M1 M2 M1/2 W
M1/2™~=7
Units underutilized Branch |«
(low throughput) ‘ ‘

Sharing mechanism for
deadlock-free execution

Josipovié¢, Marmet, Guerrieri, and lenne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee



Inserting Buffers

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[1i]] + weight[i];
}

C1 C2 c3 ca c5 Cé c7 Cc8 (o) C10 C11 C12 C13 Ci4

LD ST

1 | LD x[0] hist[x[0] hist[x[0]] + weight[q] hist[x[0]]
LD . . ST
2 LD x[1] hist[x[1] hist[x[1]] + weight[1] hist[x[1]]
LD
3 LD x[2] | irnr2)

Backpressure from slow paths prevents pipelining




Inserting Buffers

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[1i]] + weight[i];
}

Cl c2 c3 ca c5 C6 c7 cs8 c9 C10

L __
1 |wxio] |, > hist[x([0]] + weight[0] hﬁ:[o“
2 i [ M hist{x[1]] + weight[1] st
3 LD X(2] [, o hist{x[2]] + weight[2] pistp2]
a LD X(3] |, cirrs hist[x([3]] + weight[3] i3]

Buffers for high throughput




Inserting Buffers

for (i=0; i<N; i++) { 1: x[0]=5 » 1d hist[5]; st hist[5];

hist[x[i]] = hist[x[i]] + weight[i]; 2: x[1]=4 » 1d hist[4]; st hisk[4];

} 3: x[2]=4 » 1d hist[4];+St hist[4];
RAW dependency

Cl c2 c3 ca c5 C6 Cc7 cs8 c9 C10

L __
1 |wxio] |, > hist[x([0]] + weight[0] hﬁ:[o“
2 X[l [ hist{x[1]] + weight[1] stals
3 LD X(2] [, sl ek pist2]
4

D ST
LD x[3] !hist s I hist[x[3]] + weight|[3] hist[x[3]

RAW dépenélencyg
not honored!

[ What about memory? ]




HLS of Dynamically Scheduled Circuits

Catching up with static HLS

Reaping the benefits of

dynamic scheduling
Out-of-order memory
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We Need a Load-Store Queue (LSQ)!

* Traditional processor LSQs allocate memory instructions in program order

loop: 1w $t2, o($t4) |  TTTTTTTTTTTTTTTTTT
1w $t3, 100($t4)
mul $t5, $t2, $t3 Instruction Processor
. Memory
addi $t5, $t5, $t1 = fetch & decode => datapath

sw $t5, 100($t4)
addi $t1, $t1, 4
bne $t6, $ti1, loop

(in order) (out of order)

e Dataflow circuits have no notion of program order

Dataflow (out of order)

How to supply program
order to the LSQ?

Memory




LSQ Allocation

* An LSQ for dataflow circuits whose only difference is in the allocation policy:
— Static knowledge of memory access program order inside each basic block
— Dynamic knowledge of the sequence of basic blocks from the dataflow circuit

l /\ BB1: LD, ST

\ 4

BB1
LD x \
LD weight
LD hist

\4 \4

Memory

SlT hist\/

v v

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];
}

Josipovié, Brisk, and lenne. An Out-of-Order Load-Store Queue for Spatial Computing. CASES 2017 Best Paper Award Nominee
Josipovié, Bhattacharrya, Guerrieri, and lenne. Shrink It or Shed It! Minimize the Use of LSQs in Dataflow Designs. FPT 2019
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LSQ Allocation

An LSQ for dataflow circuits whose only difference is in the allocation policy:
— Static knowledge of memory access program order inside each basic block
— Dynamic knowledge of the sequence of basic blocks from the dataflow circuit

1 ] ] BB1: LD, ST
BB1 is starting
BB1
LD x \ LD hist
LD weight ST hist

LD hist

SlT hist\/

Memory

v v

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];
}

Josipovié, Brisk, and lenne. An Out-of-Order Load-Store Queue for Spatial Computing. CASES 2017 Best Paper Award Nominee
Josipovié, Bhattacharrya, Guerrieri, and lenne. Shrink It or Shed It! Minimize the Use of LSQs in Dataflow Designs. FPT 2019




LSQ Allocation

An LSQ for dataflow circuits whose only difference is in the allocation policy:
— Static knowledge of memory access program order inside each basic block
— Dynamic knowledge of the sequence of basic blocks from the dataflow circuit

) . BB1: LD, ST
l /\BBl Is starting

BB1 ——
LD x LD hist
LD weight ST hist
LD hist LD hist

ST hist ST hist Memory

1

v v

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];
}

Josipovié, Brisk, and lenne. An Out-of-Order Load-Store Queue for Spatial Computing. CASES 2017 Best Paper Award Nominee
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Dataflow Circuit with the LSQ

for (i=0; i<N; i++) { 1: x[0]=5 » 1d hist[5]; st hist[5];

hist[x[i]] = hist[x[i]] + weight[i]; 2: x[1]=4 » 1d hist[4]; st hisk[4];

} 3: x[2]=4 » 1d hist[4];+St hist[4];
RAW dependency

C1 c2 C3 ca C5 Ccé c7 c8 co Ci0 (Cl1 C12 C13 C14

| L
1 | b x[o] histl[':m" hist[x[0]] + weight[0] histﬂ[o]]
2 LD x[1] | .. stL[Eu] hist[x[1]] + weight[1] istg[‘lh\
3 LD x[2] histl,?z]] hist[x[2]] + weight[2] histT:[E]]
4 LD x(3] N hist{x[3]] + weight[3]

High-throughput pipeline with
memory dependencies honored




HLS of Dynamically Scheduled Circuits

Catching up with static HLS

Reaping the benefits of
dynamic scheduling

Speculative execution




Nonspeculative Dataflow Circuit

Start, i=0
Merge
v
Buff
v
Fork
1 | -
A 4 JV \ 4
G_] Load a[i] Load bl[i]
| |
comb
g3
3 stages
d x
|
Branch |« comb.

1

End

float d=0.0; x=100.0; int 1i=0;

do {
d = a[i] + b[i];
i++;

}

while (d<x);
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Nonspeculative Dataflow Circuit

Sta%o

Merge

+ Load a[i] Load R[i]
omb. I 1 I
3 stages
Branch |«

1

End

float d=0.0; x=100.0; int 1i=0;

do {
d = a[i] + b[i];
i++;

}

while (d<x);




Nonspeculative vs. Speculative System

Nonspeculative schedule
Cc1 Cc2 Cc3 c4 C5 C6 c7 cs c9 Cc10 C11 Ci2 C13 Cl14 C15 Cl6

Id a[0] d1 = a[0] + b[0] d1<x?

B W N =

Id b[0] :
: Id a[1]
| Id b[1]

d2 = a[1] + b[1] d2<x?

a2 |
Id b[2]

d3 =a[2] + b[2] d3<x? exit

Long control flow decision
prevents pipelining




Nonspeculative vs. Speculative System

Nonspeculative schedule
Cc1 Cc2 Cc3 c4 C5 C6 c7 cs c9 Cc10 C11 Ci2 C13 Cl14 C15 Cl6

1 :: z{g} d1 = a[0] + b[0] d1<x? E :
2 ; ; ' :: ;{H d2 = a[1] + b[1] d2<x? :
: : ; : : 1d al2] B ' )
3 Id b[2] d3 =a[2] + b[2] d3<x? exit
4 ' :
Speculative schedule
c1 c2 c3 ca c5 6 c7 cs c9 cl0 c11 c12 €13 (€14 (€15 €16
1d a[0] - ' '
1 1d b{o] d1 = a[0] + b[0] di<x?
2 :: ;{H d2 = a[1] + b[1] d2<x?
i Id a[2] _
3 1d b[2] d3 =a[2] + b[2] d3<x?h
: Ida[3 -
4 i 2{3]] d4 = a[3] + b[3] \ exit
: Id a[4] ~ v
5 1 bla] | 95 =al41+b[4] | exit




Speculation in Dataflow Circuits

* Contain speculation in a region of the circuit delimited by special components
— Issue speculative tokens (pieces of data which might or might not be correct)
— Squash and replay in case of misspeculation

| 2 / \ 2 /

Merge

Load

data + handshake
Exit | =000 emessseas speculative tag

Josipovié, Guerrieri, and lenne. Speculative Dataflow Circuits. FPGA 2019



Speculation in Dataflow Circuits

* Contain speculation in a region of the circuit delimited by special components
— Issue speculative tokens (pieces of data which might or might not be correct)
— Squash and replay in case of misspeculation

Load

\ 2 |

Merge

\ 2 /

Store

l Commit ;

Store

Josipovié, Guerrieri, and lenne. Speculative Dataflow Circuits. FPGA 2019

data + handshake
.......... speculative tag




Speculation in Dataflow Circuits

* Contain speculation in a region of the circuit delimited by special components
— Issue speculative tokens (pieces of data which might or might not be correct)
— Squash and replay in case of misspeculation

| 2 / \ 2 /

Store

Josipovié, Guerrieri, and lenne. Speculative Dataflow Circuits. FPGA 2019

data + handshake
.......... speculative tag




Speculation in Dataflow Circuits

* Contain speculation in a region of the circuit delimited by special components
— Issue speculative tokens (pieces of data which might or might not be correct)
— Squash and replay in case of misspeculation

| 2 / \ 2 /

data + handshake
Exit | =000 emessseas speculative tag

Store

Josipovié, Guerrieri, and lenne. Speculative Dataflow Circuits. FPGA 2019



Speculation in Dataflow Circuits

* Contain speculation in a region of the circuit delimited by special components
— Issue speculative tokens (pieces of data which might or might not be correct)
— Squash and replay in case of misspeculation

data + handshake
.......... speculative tag

Josipovié, Guerrieri, and lenne. Speculative Dataflow Circuits. FPGA 2019



Speculative Dataflow Circuit

Start, i=0
|
Merge
v
Buff
v
1 . Fork
! ]
l b \ 4 Iﬁ'
+ Loatli ali] Loacll b[i]
LAY
+
d X
} 4
<
Branch |¢ ]
— 1
End

Josipovié, Guerrieri, and lenne. Speculative Dataflow Circuits. FPGA 2019



Speculative Dataflow Circuit

Start, i=0
|
Merge
¥
Buff
v
1 . Fork
! ]
l b \ 4 ﬁr
Load a[i] Load bl[i]
+ : : f N
2K} Speculator instead of
. regular Branch
+ \_ Y,
d X
I_l !
<

End

Josipovié, Guerrieri, and lenne. Speculative Dataflow Circuits. FPGA 2019



Speculative Dataflow Circuit

Start, i=0
Merge
v
Buff
v

. Fork
I ] |

1

Load a[i Load bJ[i
+ oala[l] oaI [i] - ~N

r 3 Input boundary:
] Save units

-—

|
4-|_Q.
- X

End

Josipovié, Guerrieri, and lenne. Speculative Dataflow Circuits. FPGA 2019



Speculative Dataflow Circuit

Start, i=0

-—

|

Merge

v

Buff

v

Fork

-

—

\ 4

Load a[i]

Load bJ[i]

| (

Output boundary:
Commit units

- X

Josipovié, Guerrieri, and lenne. Speculative Dataflow Circuits. FPGA 2019




Speculative Dataflow Circuit

Start, i=0
| |
Merge Merge
v v
Buff Buff
/' v v
. Fork ] Fork
1 I 1 1 I ] l 1
+_] LoCIB[i] Lo; | il + LoCI)[i] Lo lil
Continue computing } |
before condition J_L
known NE— I

latency condition J

} <

I BQh

L \ 4
!'n — |
__ .
M/ BEFORE (without speculation)
End

\rj Save ; d Xx Wait for long- d x
1

A




Speculative Dataflow Circuit

nn B W N =

c6C € ¢ 4 ¢ € €7 €8 € Cl0 C11 Cc12 €13 Cc14 C15 C16
oo | di=alor+bio] | diee
ae | d2=amebin | d2ec
| wiy | @smanebil | asee
| S aazamrenm et
: :: ZE} d5=a[4] +b[4] [ exit

[ High-throughput speculative pipeline ]

Josipovié, Guerrieri, and lenne. Speculative Dataflow Circuits. FPGA 2019




HLS of Dynamically Scheduled Circuits

Reaping the benefits of
dynamic scheduling

Pipelining Out-of-order memory

|_Fork_|
Load 1 ready

FG

Catching up with static HLS

Aowaiy

=

- - tstall

Resource sharing

Vi ioi
s I s N 3
O (@) O
v v v
Mul1  Mul2 Mul 1/2

Static HLS vs. dynamic HLS?




Dynamatic: An Open-Source HLS Compiler

* From C/C++ to synthesizable dataflow circuit description

Dynamatic

Synthesize

Input

C/C++ C/C++ C/C++ .
ll >  Analyze Elaborate > compile

Qutput

Optimize Write HDL

dot2vhdl VHDL
comp. lib.

buffers &
sharing

Josipovi¢, Guerrieri, and lenne. Dynamatic: From C/C++ to Dynamically Scheduled Circuits. FPGA 2020



Experimental Results

* Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS

A Dynamic, control dependences
® Dynamic, memory dependences
# Dynamic, speculative

X Dynamic, no dependences

M Static (all points)

Josipovi¢, Guerrieri, and lenne. Synthesizing General-Purpose Code into Dynamically Scheduled Circuits. CASM 2021
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* Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS
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Josipovi¢, Guerrieri, and lenne. Synthesizing General-Purpose Code into Dynamically Scheduled Circuits. CASM 2021
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* Resource utilization and execution time of the dataflow designs, normalized to the
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Static vs. Dynamic Scheduling

e ~ Statically Scheduled Dynamically Scheduled
—%ﬂ; - “Compiler does the job” - “Hardware does the job” gt

Out-of-Order

Computer VLIW

. Superscalar

Architecture Processors
Processors
High-Level Traditional HLS Dataflow circuits
Synthesis
DSP-oriented applications General-purpose code

(new applications and users)




Thanks! ©

Research group: Dynamatic HLS tool:

https://dynamo.ethz.ch/ https://dynamatic.epfl.ch/




