NANDA: the Next Frontier

Wayne Luk
Imperial College London, United Kingdom

NANDA 2022

Acknowledgement: Jessica Vandebon, José G. F. Coutinho, Eriko Nurvitadhi, Stewart Denholm
EPSRC, SRC. AMD, Intel

Agenda

Context, Problem, Challenges

Approach: Meta-Programming Design-Flow Patterns
Design-Flow Pattern Catalogue For CPU and GPU Optimisation
Implementing Design-Flow Patterns as Meta-Programs

Evaluation: Automated Design-Flow Performance + Reusability

nmoo w2

Ongoing Work and Big Picture

A. Context, Problem, Challenges

Processor Architecture: Heterogeneous Trend

CPU
LPDDR5x

GPU
HBM

2JiN sdgo 0oz

900 GB/s

JIN sdg0 00z

HOPPER

JIN sdan 0oz
JIN sdao ooz

GPU

GPU CPU
HBM LPDDR5x

NVIDIA GRACE HOPPER

Optimized
3rd Gen EPYC
Processor

Intel New Flexible Tile
(source: Hotchips 2022)
3

AMD Instinct M1200

A. Context, Problem, Challenges

Cloud Architecture: Heterogeneous Trend

General Compute Storage and IO Memory GPU and FPGA
purpose optimized optimized optimized accelerated
| T 3 D2]
9' M4 “lcs|: ||@ ll% b 2017
2 i «n «ED m
ke HS 2016
M3 lea] '2 1 LLLI
D ||@ II% R4
= & & mn
@ 2013
e ! R3 l
@ mu 2011

AWS Compute Instance Types (source: AWS) 4

Design Automation

Algorithms

High-Level Languages

Compiler 0s

Architecture

Modular hardware blocks:
Gates, registers

VLSI Circuits

Semiconductor transistors

Classical: Monolithic

A. Context, Problem, Challenges

. Support for Heterogeneity

Algorithms

High-Level Languages

diverse tool-flow for high-level programs
— - compilation
- run-time management

sayoeosddy
d1j19ads-ddy
sayoeouddy
J1}199ds-ddy

implementations

Current + Future: Diverse (adapted from: Martonosi) 5

A. Context, Problem, Challenges

Design Automation: Support for Heterogeneity

e Compiling for heterogeneous systems and processors

o Mata-programming Design Flow Patterns

e Managing heterogeneous clouds

o Function-as-a-Service

e Managing heterogeneous FPGA resources

o Pool of functions

A. Context, Problem, Challenges

Design Automation: Support for Heterogeneity

e Compiling for heterogeneous systems and processors

o Mata-programming Design Flow Patterns - |EEE Trans. Computers, HEART 2022

e Managing heterogeneous clouds

o Function-as-a-Service - Journal of Signal Processing Systems

e Managing heterogeneous FPGA resources

o Pool of functions - FPL 2022

Heterogeneous Systems

A. Context, Problem, Challenges

compute landscape is rapidly evolving — increasingly parallel and heterogeneous

O

potential of specialised accelerators (GPUs, FPGAS) for demanding applications, e.g. Al, HPC

N

N

T[]

(i —

gap between software descriptions and optimised heterogeneous designs: getting larger

O

©)

device-specific compilers: achieve high performance from high-level source-code

but significant code restructuring is required

A. Context, Problem, Challenges

Problem

e heterogeneous application optimisation: typically done manually
o requires highly-skilled developers with in-depth target hardware understanding

e manual optimisation tasks:

identify systematic

: annotate : .
computationally diagnosis to
. . parallel .
intensive . tune runtime
- computations
hotspots partition and apply known parameters
map code datatype,
across throughput,
processing and memory
elements optimisations

= this process is tedious, error-prone, and must be repeated for each new application

A. Context, Problem, Challenges

Current Design-Flow: State Of The Practice (SOP)

High-Level L.
Software Manua 11 Othelsmilgsned
ipti Design-Flow
Description 9 (CPU/GPU/FPGA)
(unoptimised) A
A
manual optimisation effort for
each software description
e code analysis
e code partitioning and mapping
develop e code optimisation/tuning
e tool orchestration
application developer

e current SOP: human developers manually perform source-level design-flows

e design-flow: - explicit orchestration of manual and/or automated tasks

- map and optimise a high-level software description onto hardware 0

A. Context, Problem, Challenges

Design-Flow Automation Challenges

C1. Abstraction: diverse components should be abstracted to hide implementation details
- so they can be employed by non-experts
C2. Efficiency: automatically optimised code should be as efficient as manually optimisation
- currently requires expertise, experience, and effort
C3. Customisability: automated design-flows should be flexible and extensible
- support new techniques and technologies in the massive, evolving design space
C4. Reusability: design-flows should employ existing, reusable components
- reduce time and development effort
C5. Application-Agnosticity: automated design-flows should operate on multiple applications

- within a specific application domain
11

A. Context, Problem, Challenges

Contributions

= design-flow patterns to capture common and recurring elements of design-flows
- for optimising high-level descriptions onto diverse hardware targets

= an initial catalogue of patterns
- for accelerating CPU and GPU designs

= codify modular patterns as Artisan meta-programs
- combine target-independent and -dependent patterns into automated design-flows
- map unmodified sequential C++ descriptions into optimised CPU and GPU designs

= apply our design-flows to:
- 3 case-study HPC applications in different domains (physics, graphics, mathematics)

- evaluate performance of automatically generated OpenMP and HIP_designs

_ _ CUDA to C++
= results: - up to 18 times speedup on a CPU platform with 32-threads Open Multi-

- up to 1184 times speedup on an NVIDIA GeForce RTX 2080 Ti GPU Processing
compared to a sequential single-threaded reference implementation 12

A. Context, Problem, Challenges

Key Observation

1

Analyse

H

Initiation
Intervals

Maximise CPU+FPGA1
Design Area CPU+FPGA2

: FPGA | I
Hotspot || Parallelise
Detection Loops Generate HW/SW || Mixed Prec.
igh-Level Partitioned Code Datatypes

Software

Description GPU
(unoptimised) Dependence Optimise Calculate CPU+GPU1
Occupanc
P Shared Mem. pancy Params CPU+GPU2
branch p0|nt Annotate Apply Check CPU TuneThread |_CPu1 |
Parallel Loops OpenMP Utlllsatlon Count —»{ cpPu2 |
\
Y
Target- and Tool-Independent Target- and Tool-Dependent

® design-flows for diverse hardware targets often involve:

O

O

common, recurring, application-agnostic elements

elements that can be target and tool-independent or tool-dependent

can we capture and codify these recurring building blocks,

highlighting the branch points for introducing diverse designs?
13

B. Approach: Meta-Programming Design-Flow Patterns

Proposed Solution:
Meta-Programming Design-Flow Patterns

e Design-Flow Patterns:
o capture, catalogue, and codify common and recurring design-flow tasks
o for building customised, reusable, automated design-flows

e similar to design patterns:

o abstract recurring solutions
o provide reusable base of experience and a common vocabulary

e modular patterns implemented as meta-programs

o can be coordinated into automated end-to-end design flows

14

B. Approach: Meta-Programming Design-Flow Patterns

Two Design-Flow Roles

High-Level
Software
Descriptions

(unoptimised)
A

develop

application developer

(1) application developer: writes functionally correct high-level application description

15

B. Approach: Meta-Programming Design-Flow Patterns

Two Design-Flow Roles

! Design-Flow Patterns‘: use
\ (targetindependent, 1----- ()
. CPU, GPU, FPGA))

meta-
L program

design-flow developer
codify reusable tasks

¢ code analysis

o code partitioning and mapping
o code optimisation/tuning

o tool orchestration

application developer

High-Level Automated
Software Design-Flow
Descriptions :
(unoptimised)
A
develop

(1) application developer: - writes functionally correct high-level application description

(2) design-flow developer: - uses design-flow patterns and meta-programs
- to automate design-flows for mapping and optimisation

16

B. Approach: Meta-Programming Design-Flow Patterns

Two Design-Flow Roles

design-flow developer

codify reusable tasks
¢ code analysis
o code partitioning and mapping
o code optimisation/tuning
o tool orchestration

Design-FIow Patterns 1 ;5e
(targetindependent, 1----- °
CPU, GPU, FPGA))

Artisan meta-programs
treat programs as data, <

. .] program /
enabling programmatic e oh Level
. igh-Leve
analysis and source-code sgftware Automated
: ; R Design-Flow
manipulation Descriptions
(unoptimised)
A
develop

application developer

(1) application developer: - writes functionally correct high-level application description

(2) design-flow developer: - uses design-flow patterns and meta-programs

- to automate design-flows for mapping and optimisation .

B. Approach: Meta-Programming Design-Flow Patterns

Two Design-Flow Roles

design-flow developer
codify reusable tasks
|~ (target independent o e code analysis
: 1 (fargetingependent, = ==== « code partitioning and mapping
Artisan meta-programs . CPU,GPU,FPGA) | « code optimisation/tuning

treat programs as data, « « tool orchestration

(. A
, Design-Flow Patterns ' use

enabling programmatic T .
. igh-Leve
analy3|s a_nd source-code Software DA“'SO“‘f;‘;d Optimised
manipulation Descriptions oo ooAgn ol oW Designs
(unoptimised) . (CPU/GPU/FPGA)
1 . execute
develop :

application developer

= manual design-flow tasks are codified and coordinated to produce:
- end-to-end design-flows operating on high-level software descriptions

- optimised designs with little intervention from application developers
18

B. Approach: Meta-Programming Design-Flow Patterns

Addressing Design-Flow Automation Challenges

C1. Abstraction: high-level pattern descriptions
- abstract implementation details for diverse targets

C2. Efficiency: source-to-source meta-programs
- automate manual optimisation with static and dynamic analysis

C3. Customisability: pattern implementations as plug-and-play building blocks
- can be parameterised, replaced, and extended

C4. Reusability: modular design-flows facilitate patterns
- implemented once and reused in multiple design-flows (e.g. common analysis)

C5. Application-Agnosticity: optimisation is decoupled from application descriptions

- so design-flows are application-agnostic Lo

C. Design-Flow Pattern Catalogue For CPU and GPU Optimisation

Design-Flow Pattern Catalogue: Overview

e current catalogue contains patterns for CPU and GPU parallel targets
e requirement: facilitate modular implementations and reasoning about coordination
e a uniform template* is used to describe design-flow patterns:

NAME: a succinct, descriptive name for the pattern

INTENT: what does the pattern do?

MOTIVATION: why is the pattern used?

APPLICABILITY: what conditions must be met to apply the pattern?
RELATED PATTERNS (OPTIONAL): are there related patterns?
(e.g. components, often used together)

o O O O O

e text-based description should clearly capture intent and applicability

o developers can unambiguously codify expected behaviour
o ongoing work: formalise design-flow pattern specification

*a subset of design patterns for OOP from Gamma et al.

20

C. Design-Flow Pattern Catalogue For CPU and GPU Optimisation

Design-Flow Pattern Classification

e 4 types of design-flow patterns:
|. Analysis patterns: perform static or dynamic app analysis
II. Code-generation patterns: inject or generate new source-code
lIl. Transform patterns: perform source-to-source transformation

I\VV. Optimisation patterns: employ analysis and transform patterns
- optimise a target metric (typically involving Design Space Exploration)

21

C. Design-Flow Pattern Catalogue For CPU and GPU Optimisation

Analysis Design-Flow Pattern Example

e NAME: HOTSPOT LOOP DETECTION
e INTENT: identify computationally intensive parallel loops to accelerate

e MOTIVATION: - loops are often where most time is spent during execution
- suitable for acceleration (Amdahl’s law)

e APPLICABILITY: applicable to any application source code

e RELATED PATTERNS: Loop Timing, Dependence Analysis

22

C. Design-Flow Pattern Catalogue For CPU and GPU Optimisation

Code-Generation Design-Flow Pattern Example

e NAME: HIP GPU MANAGEMENT CODE GENERATION

e INTENT: insert code required to execute an identified kernel function on GPU

e MOTIVATION: device management code is required
- to inform the runtime system what to run on the GPU vs CPU
- to ensure data are where they need to be for application execution

e APPLICABILITY: applicable to application code with a specified kernel function

23

C. Design-Flow Pattern Catalogue For CPU and GPU Optimisation

Transform Design-Flow Pattern Example

e NAME: SHARED MEMORY BUFFER

e INTENT: - copy the contents of a pointer argument
- into shared memory in a GPU kernel

e MOTIVATION: on-chip shared memory
- has limited size
- has higher bandwidth and lower latency than global memory

e APPLICABILITY: applicable to any pointer argument for a GPU kernel
- if pointer contents fit in shared memory

24

C. Design-Flow Pattern Catalogue For CPU and GPU Optimisation

Optimisation Design-Flow Pattern Example

e NAME: TUNE KERNEL LAUNCH PARAMETERS

e INTENT: determine the kernel launch parameters
- to minimise execution time, and/or
- to maximise occupancy (e.g. block size)

e MOTIVATION: launching kernels with different thread configurations
- can affect execution time and GPU occupancy

e APPLICABILITY: applicable to an application source with a GPU kernel

e RELATED PATTERNS: Set Blocksize, Kernel Timing, Calculate GPU Occupancy

25

C. Design-Flow Pattern Catalogue For CPU and GPU Optimisation

Table 1: Analysis (A1-A6), Code-Gi tion (G1-G3), Transform (T1-T9) and Optimisation (01-02) Design-Flow Patterns
jisg Name INTENT MoTivarion APPLICABILITY
(RELATED)
Hotspot Loop | Identify computationally intensive | Loops are often regions where most time is spent _—
ALy (A2,43) | loops to accel during the program's execution. Application eode
— Measure execution time for all|To identify application bottlenecks and regions —
A%| Leop Timing loops in the application. waorth optimising, Agpplication code
A3| Dep. Analysis :2’:‘& dependencies in & program To parallelise and/or transform loops. Loop
Pointer Analysis | Determine if pointer arguments |Certain compiler optimisations can only be ap- . -
A (T1) could alias within a function scope. | plied if it is indicated that pointers do not alias. Femction defintion
A5| Kernel Timi Time all GPU kernels in an exe-| To understand the impact of code changes. iden-| Application code +
ernel HmINE | cnted application. tify bottlenecks, and compare performance. GPU kernel
A6 Calculate GPU | Determine the occupancy for a ker-| Calculating occupancy helps to understand per-| Application code +
Occupancy nel on a target GPU. formance and to tune GPU launch parameters. | GPU kernel
&1 Loop-to-Function | Extract a program loop into an iso-| To enable isolated analysis and annotation to Lo
Extraction lated function. indicate it should be offloaded to an aceelerator. | P
...| Multi-Threaded |Insert the framework-specific code I'TDDP annotatioz, hﬂ.‘a_dr:r ﬁlc n_-'ldusmn' and rum- Application code +
Gz Code Generation | required to multi-thread a | time parameter specification is needed for run- o
& 0P time system to use multiple parallel threads. op
| GPU Mgmt Code Inscltt the framework-specific code | Device management code is required to 1\nfnrm Application code +
G3 G tio required to execute a kernel on a | the runtime system what to run on the GPU vs fancti
cneration GPU. CPU, and to ensure data is where it needs to be. nehion
Restrict Pointer |Indicate to the compiler that Device cnml-:ulcrs that carfnut determine if point- Non-aliasing function args +
R Arguments (A4) inter arguments do not alias ers could alias conservatively assume that they target with restrict keyword
po &) might, limiting the scope for optimisation. B¢ Y
. Copy the contents of a pointer ar-| Limited on-chip shared memory has higher|Pointer + GPU kernel,
Shared Memory . . N . . N
T2 gument into shared memory in a | bandwidth and lower latency than global mem-|if pointer contents fit in
Buffer
GPU kernel. ory. shared mem
Page-Locked Limited page-locked memory has the highest| App code + GPU kernel
T3 nﬁ.;—m:c © Allocate memory as page-locked. | bandwidth between host and device, but has |+ target with page-locked
i heavier weight allocations than regular memory. | memor
T4 Single-Precision |Use single-precision versions of | Avoid implicit intermediate rounding to double-| GPU kernel + library math

Math Functions

math functions. {e.g. sqrtf).

precision operations.

function call

Single-Precision

Employ single-precision floating

Explicitly use single precision literals (e.g. & 8f)

Expressions with single-

= FP Literals point literals. so compiler does not assume double p T types.
Ts Specialised Math |Use available specialised math op-| Framework-provided specialised math functions | Consult tool documentation
Op ions crations. are more optimised than general equivalents. | {e.g. pow(x, 2) to exp2(x))

R Remove dependent array accesses - "

7 b © Loop in loops by introducing intermedi-| To ease loop dependency bottlenecks. Loops with de ent areay
ep (A3) ate variables. fccesses
. Specify the thread block size for | Runtime GPU thread configurations must be set
Set Blocksize | (o) kernel executi when launching a kernel GPUkermel
. Set the mumber of parallel threads | To control the number of threads used for multi-| Loop +

9 | Set Num Threads for loop execution. threaded execution. multi-threaded target

o Tune Number of |Determine the number of threads | The number of threads can affect performance | Loop(s) +
Threads {T9,A2) | that minimises loop 1time. | depending on le cores and workload size. | multi-threaded target
Tune Kernel | Determine the kernel launch pa-| Launching kernels with different thread con- Application code +
o0z Launch rameters that minimises execution | figurations can affect execution time and GPU GPE[’J kernels)
(T8.A5,46) time and/or maximises occupancy. | occup

Design-Flow Pattern Catalogue

refer to our HERRT’22 paper for the full catalogue

a starting point to demonstrate scope and value:
recurring, application-agnostic design-flow

not an exhaustive list of GPU/CPU patterns

26

D. Implementing Design-Flow Patterns as Meta-Programs

Design-Flow Patterns as Meta-Programs

e codify patterns using the Artisan meta-programming framework
o based on libclang, supports C++ parsing and manipulation
o unified Python environment for code analysis, instrumentation, and execution
o true source-to-source: no progressive lowering
e Kkey Artisan features
o query and instrument
= enables static source-code analysis and manipulation
o application execution and runtime reporting
= enables application self-reporting for dynamic analyses

27

D. Implementing Design-Flow Patterns as Meta-Programs

Design-Flow Patterns as Meta-Programs

e example meta-programs:

(1) GPU shared memory buffer (transform)

(2) parallel hotspot loop detection (dynamic analysis)

e for more details on Artisan, refer to our paper in IEEE Transactions on
Computers, vol. 70, no. 12, pp. 2043-2055, 1 Dec. 2021

Enhancing High-Level Synthesis using a
Meta-Programming Approach

Jessica Vandebon®, Jose G. F. Coutinho*, Wayne Luk*, Eriko Nurvitadhi'
*Imperial College London, United Kingdom
Email: {jessica.vandebon17, gabriel figueiredo, w.luk}@imperial.ac.uk
fIntel Corporation, San Jose, USA
Email: eriko.nurvitadhi@intel.com

Abstract—In today's increasingly heterogeneous compute landscape, there is high demand for design tools that offer seemingly
contradictory features: portable programming abstractions that hide underlying architectural detail, and the capability to optimise and
exploit architectural features. Our meta-programming approach, Artisan, decouples application functionality from optimisation concerns to
address the complexity of mapping high-level application descriptions onto heterogeneous platforms from which they are abstracted. With

28

Hotspot Detection

D. Implementing Design-Flow Patterns as Meta-Programs

1 def identify_hotspots (ast, threshold):

Artisan meta-program

2

(Python)

clone ast for instrumentation & execution

ast_clone = ast.clone()

query for parallel for-loops to time
par_loops = ast_clone.query(“loop{ForStmt}",

where=lambda loop: is_par(loop))
instrument loops and main function with timers
instrument_app_timer(ast_clone, par_loops)
execute instrumented code and receive report

N

-Ee port = ast_clone.exec(reports=True)

discard clone

ast_clone.discard()

extract main timing from report (e.g. main_t = 404.9)
main_t = report['main’]; del report[‘main’]

filter and return loop list that satisfies given threshold

8| hotspots = [loop for loop in report if report[loop] > main_t * threshold]
in our example, returns ['loop0312’]
9| return hotspots
report report sent via
p V. ; - network socket
o {'main’:404.9, 'loop0312°':306.7} <« - —- to metaprogram

1 + #include <artisan>
2 + using namespace artisan;
3 int main(int argc, char *argv[]){
4 + Report::start();
5 + int ret;
6 + { Timer timer_main([](double t){
7 + Report::write(" 'main’':%f",t);});
+ ret = [](auto argc, auto argv)({
9 ce
10 + { Timer timer_ltag([](double t){
11 + Report::write(" "loope312’,%f",t);});
12 for (int 1 = ©; 1 < N; i++) {
13 z[i] = x[1] * y[i];
14 } instrumented
15 + } parallel
loop
16 for (int j=0@; j<T; j++) {
17 z[3] = x[3] * z[3-1];
18 }
19 e This loop is not
28 return 0; parallel, and
. therefore is
21+ }arge, argv); not instrumented
22+ }
23+ Report::emit(); o-,
23+ return ret; 1
Rt i matl bbb

‘ instrumented app (C++)

E. Evaluation: Automated Design-Flow Performance + Reusability

Automated End-To-End Design Flows

(T6. N ™ Z iz

i o ' 02. Tune GPU Launch Optimised HIP

((T3.) |Specialised ; Params (DSE) NVIDIA GeForce
S G3. HIP i| Page- Math ' GTX 1680 Ti

Hotspot Generate Design -»: Locked Functions) ! T8. Set AS. '
Unoptimised Loop T7. Remove HIP Code (GPU) i\Memory, T5. :-) Blocksize éf’:?:g Optimised HIP
Loop Access ! Si NVIDIA GeForce

High-Level Detection 2.) ingle-Prec. |i

i] RTX 2686 Ti
Dass EIntatn > (A2, Loop Deps Eharad FP Literals J: A6. Calculate
o P) Timing | stenay T4 ' L QOccupancy)
++ . ' ! * ' Optimised OpenMP
A3.Dep.|| (T1. Restrict branch point i\ Buffer)| Single-Prec. |: .
R Point i Math ! Ol. Tune Num 8-Threads
nalysis ointer ! : : . ;
Args Ger?ezr.ate OpenMP |\ L BUDCHOnS Y THbaas AEE] S JOptimised OpenMP
OpenMP Design > T9. Set A2, 16-Threads
ot A4, (CPU) 5 Loop 1
Loop-to-) Code n_threads|| .- S0
A Pointer Timing ptimised OpenMP
Function Analysis 32-Threads
Extraction
“ = I\ = l‘ J
Target- and Tool-Independent Target- and Tool-Dependent

branch points
e implemented end-to-end HIP GPU and OpenMP CPU design-flows
- comprised modular meta-programs codifying patterns from our catalogue

e applied to three HPC case-study applications: - N-Body Simulation (physics),
- Bezier Surface Generation (graphics),
- Rush Larsen ODE Solver (maths)

E. Evaluation: Automated Design-Flow Performance + Reusability

Evaluating Design-Flow Pattern Reuse

! 162 02. Tune GPU Launch h Optimised HIP
i T3 Specialised Params (DSE) NVIDIA GeForce
Al G3. HIP i| Page- Math T GTX 1688 Ti
Hotspot Generate Design (>| Locked Functions T8. Set p 5 |
. L T7. Rermnove HIP Code (GPU) ‘\Memory s Blocksize S Optimised HIP
Unoptimised 0P ' ; . Timing
High-Level Detection || Loop Access ' Single-Prec. NVIDIA GeForce
Description [AZ. Loop] Deps | Shar'ed FP Literals A6. Calculate RTX 2686 Ti
imi | Occupancy
(C++) il ! M;Tfory . ~/ _|optimised OpenMP
A3. Dep. T1. Restrict | uffer Single-Prec. 8-Threads
Analysis Pointer ' - Math O1. Tune Num.
Args Ger?e%ate OpenMP | '\ = . Thieacs (B5E) 1|, |Optimised OpenMP
al. OpenMP D%splug" 7| To.ser || A2 16-Threads
Loop-to- e Code () n_threads Ti oD o
EuRctioh Pointer iming Optimised OpenMP
Extraction) \Analysis 32-Threads
\ 7\ J

.
Target- and Tool-Independent

e 20 patterns implemented
o 10 employed by OpenMP design-flow
o 17 employed by HIP GPU design-flow

o
Target- and Tool-Dependent

31

E. Evaluation: Automated Design-Flow Performance + Reusability

G3. HIP

Al

Hotspot Generate

I T6. |
i T3. Specialised
| Page- Math
Design —>i Locked Functions
HIP Code (GPU) ‘\Memory, Ts.

’

02. Tune GPU Launch
Params (DSE)

Unoptimised Loop T7. Remove

High-Level Detection || Loop Access

Description|[” [[A2. Loop Deps
(C++) Timing

T1. Restrict

A3. Dep.
Analysis

T8. Set AS.
Blocksize || Kernel
Timing

~

J

i Single-Prec.

i Memory Occupancy
i_Buffer J| Single-Prec.

| Math O1. Tune Num.
X Functions Threads (DSE)

Pointer
e Ger?:l:ate penils
a. A4 Speat D(ecsplug)r|
£O00-t07 Poin';er Code
Functt_on Analysis
Extraction

Optimised HIP
NVIDIA GeForce
GTX 1680 Ti

Optimised HIP
NVIDIA GeForce
RTX 2686 Ti

Optimised OpenMP
8-Threads

Optimised OpenMP
16-Threads

Optimised OpenMP
32-Threads

J

-5}
Target- and Tool-Independent

20 patterns implemented
o 10 employed by OpenMP design-flow
o 17 employed by HIP GPU design-flow

o
Target- and Tool-Dependent

7/20 patterns shared by both design flows

32

E. Evaluation: Automated Design-Flow Performance + Reusability

Evaluating Design-Flow Pattern Reuse

Optimised HIP
NVIDIA GeForce
GTX 1680 Ti

Optimised HIP
NVIDIA GeForce

RTX 2686 Ti

Optimised OpenMP
8-Threads

T,s'_ ' 02. Tune GPU Launch R
! Specialised | | Params (DSE)
Al G3. HIP i| Page- Math :
Hots;'aot Generate Design —>i Locked Functions) 1 KAS. |
s mi HIP Code ‘(Memor . Blocksi ernel
Unoptimised 5 Loop :Z&gi?:evses e (6PV) | i Y . ;"5-p ; OCK1Z€)| Timing
fah- etection i ingle-Prec. i
High ‘Lev'el A2, L Deps (e FP Literals)i A6. Calculate
Description 2. Loop i| Shared i Occupanc
(C++) Uil || Memory ' Y)
- llDep. ﬂ‘.)Restrict E o Slﬂ%‘l;ifec- : Ol Tune Num g
Analysis ointer ' : ' 8 -
Args = G2. : OpenMP [\ L 'ft’f‘_c_t_‘?f‘_s_:' Threads (DSE) |
Opente "ept) A’ o
i Timing)] | |Optimised OpenMP
32-Threads

Optimised OpenMP
16-Threads

Gl
Eooies Pcfi\:'ger Code
Function Arafosia
Extraction Y
\ JN\.
o
Target- and Tool-Dependent

-5}
Target- and Tool-Independent

20 patterns implemented

(]
o 10 employed by OpenMP design-flow
o 17 employed by HIP GPU design-flow
e 7/20 patterns shared by both design flows

17/20 patterns applicable to all three case-study applications

33

E. Evaluation: Automated Design-Flow Performance + Reusability

Optimised HIP

Params (DSE)
GTX 1080 Ti

Evaluating Design-Flow Pattern Reuse

T6. !
Specialised | |

02. Tune GPU Launch
i NVIDIA GeForce
Al G3. HIP i| Page- Math i
Hots;'aot Generate Design >i| Locked Functions / : T8. Set AS.
Unoptimised Loop |[(T7.Remove|| (HIP Code] | (GPu) | iMemory P> Blocksize || " i"n; Optimised HIP
High-Level Detection || Loop Access | T2 Single-Prec. E NVIDIA GeFor'ce
ipti Deps i 3 FP Literals)i A6. Calculate RTX 2686 Ti
Description A2. Loop i| Shared i
Timing ' Memory T4 ! Occupancy) —
! : ” | Optimised OpenMP
1\ Buffer Single-Prec. ' > 8-Threads
i Math ' O1. Tune Num.
Functions /! Threads (DSE) Optimised OpenMP
Z Ho|
16-Threads

(C++)
A3. Dep. T1. Restrict
Pointer
Args

Gl
Loop-to-
Function
Extraction

Germate || OpenMP [AT
OpenMP Design ”|“7erset || A%
(CPU) n_threads FO?D S
= Timing _>0pt1mlsed OpenMP
32-Threads

Code

A4,
Pointer
Analysis

I\
o
Target- and Tool-Dependent

-5}
Target- and Tool-Independent

20 patterns implemented

(]
o 10 employed by OpenMP design-flow
o 17 employed by HIP GPU design-flow
e 7/20 patterns shared by both design flows
e 17/20 patterns applicable to all three case-study applications

20/20 patterns are application agnostic

E. Evaluation: Automated Design-Flow Performance + Reusability

Evaluating Design-Flow Performance

Speedups Achieved by Artisan Design-Flow Generated

OpenMP CPU and HIP GPU Designs
1184

1000 616
500
156
100 83-87 102
50
- — - — - —
l 1s | i | 2
* 'zl |
R — L (e

N-Body Simulation Bezier Surface Rush Larsen

B OMP 8 Threads W OMP 16 Threads OMP 32 Threads
B GeForce GTX 1080 Ti M GeForce RTX 2080 Ti

Speedup vs Single Thread

Figure 6: Performance of multi-threaded CPU and HIP GPU
designs generated by automated Artisan design-flows com-

pared to the input unoptimised sequential implementation
(single-threaded).

OpenMP CPU Experiments:

experimental set-up:

(@)
O
O

2 Intel Xeon Silver 4110 CPUS, 16 cores with SMT
g++-02
consider 8, 16, 32 available threads

performance results:

(@)

generally: increasing threads decreases execution
time (nonlinear due to scheduling/mgmt overhead)

above 16 threads: speedup limited by SMT support

12X-18X maximum speedup across case-studies

35

E. Evaluation: Automated Design-Flow Performance + Reusability

Evaluating Design-Flow Performance

Speedups Achieved by Artisan Design-Flow Generated

OpanIMP1 ?Eil;and HIP GPU Designs H I P G PU EX p erl m en tS
1000
l646

E 500 | : . - = e experimental set-up:
P | 156
2 100 N | 3?| ho | o 2 NVIDIA GeForce GPUS:
¢ 5 l : ' . = NVIDIA GeForce GTX 1080 Ti
5 S : | | I = NVIDIA GeForce RTX 2080 Ti
'g' 10 all | 12 I B 1 o hipcc -0O2

5 [] || 3 1 II |

N-Body Simulation Bez:er Surface Rush Larsen [pe rfo rmance resu ItS
B OMP 8 Threads M OMP 16 Threads OMP 32 Threads
B GeForce GTX 1080 Ti M GeForce RTX 2080 Ti

o generally: RTX 2080 faster than GTX 1080 (wider

Figure 6: Performance of multi-threaded CPU and HIP GPU cores with advanced features)

designs generated by automated Artisan design-flows com-))

(single-threaded).

36

E. Evaluation: Automated Design-Flow Performance + Reusability

Evaluating Design-Flow Performance

Speedups Achieved by Artisan Design-Flow Generated

OpenMP CPU and HIP GPU Designs
1184

1000 o4t

B s00

£

_g’ 156

102
87

£ 100 83

2 50

o,

% 15

§_ 12 12

R | 4 A |
O a o

w0

N-Body Simulation Bezier Surface Rush Larsen

B OMP 8 Threads W OMP 16 Threads OMP 32 Threads
B GeForce GTX 1080 Ti M GeForce RTX 2080 Ti

Figure 6: Performance of multi-threaded CPU and HIP GPU
designs generated by automated Artisan design-flows com-

pared to the input unoptimised sequential implementation
(single-threaded).

performance comes free
- little or no intervention from application developer

generated code is human-readable
- same level of abstraction as original code
- can be further hand-tuned

37

F. Ongoing Work and Big Picture

Ongoing and Future Work

= formalising the specification and description of design-flow patterns

4 using functional programming

- extending our design-flow pattern catalogue:
¢ FPGA OneAPI mapping and optimisation patterns
4 patterns to support more advanced GPU optimisations

¢ application-domain specific patterns

38

F. Ongoing Work and Big Picture

Big Picture: Automating Design

design space exploration,
goals and constraints

partition, compile

system-specific
programming interface

system-specific adaptation:
clouds to edge devices

Application description

optimisation/synthesis 1

Compiler

Meta-
program

—

Machine
code

Run-time Configuration
interface information

l

— |

Fixed processor 0 Custom processor

Custom computing system

39

F. Ongoing Work and Big Picture

Big Picture: Automating Design + Debug + Verify

design space exploration, . . -
goals and constraints Appllcatlon deSC“pUOn

optimisation/synthesis 1 analysis/verify

partition, compile, Meta- Compiler
analysis, verify program I

system-specific

Machine Run-time Configuration
programming interface code interface information
system-specific adaptation: i
clouds to edge devices Fixed processor 0 Custom processor
Custom computing system

FCCM 2021: Flexible Instrumentation for Live On-Chip Debug of Machine Learning Training on FPGAs
JSA 2021: In-Circuit Tuning of Deep Learning Designs 40

