
NANDA: the Next Frontier

Wayne Luk

Imperial College London, United Kingdom

NANDA 2022

Acknowledgement: Jessica Vandebon, José G. F. Coutinho, Eriko Nurvitadhi, Stewart Denholm

EPSRC, SRC. AMD, Intel

Agenda

A. Context, Problem, Challenges

B. Approach: Meta-Programming Design-Flow Patterns

C. Design-Flow Pattern Catalogue For CPU and GPU Optimisation

D. Implementing Design-Flow Patterns as Meta-Programs

E. Evaluation: Automated Design-Flow Performance + Reusability

F. Ongoing Work and Big Picture

2

Processor Architecture: Heterogeneous Trend

3

A. Context, Problem, Challenges

NVIDIA GRACE HOPPER AMD Instinct M1200 Intel New Flexible Tile
(source: Hotchips 2022)

A. Context, Problem, Challenges

Cloud Architecture: Heterogeneous Trend

AWS Compute Instance Types (source: AWS) 4

A. Context, Problem, Challenges

Design Automation: Support for Heterogeneity

5Classical: Monolithic Current + Future: Diverse (adapted from: Martonosi)

diverse tool-flow for high-level programs

- compilation

- run-time management

A. Context, Problem, Challenges

Design Automation: Support for Heterogeneity

6

● Compiling for heterogeneous systems and processors

○ Mata-programming Design Flow Patterns

● Managing heterogeneous clouds

○ Function-as-a-Service

● Managing heterogeneous FPGA resources

○ Pool of functions

A. Context, Problem, Challenges

Design Automation: Support for Heterogeneity

7

● Compiling for heterogeneous systems and processors

○ Mata-programming Design Flow Patterns - IEEE Trans. Computers, HEART 2022

● Managing heterogeneous clouds

○ Function-as-a-Service - Journal of Signal Processing Systems

● Managing heterogeneous FPGA resources

○ Pool of functions - FPL 2022

CPU
CPU

Heterogeneous Systems

● compute landscape is rapidly evolving → increasingly parallel and heterogeneous

○ potential of specialised accelerators (GPUs, FPGAs) for demanding applications, e.g. AI, HPC

● gap between software descriptions and optimised heterogeneous designs: getting larger

○ device-specific compilers: achieve high performance from high-level source-code

○ but significant code restructuring is required

8

A. Context, Problem, Challenges

CPU
CPU CPU

CPU CPU CPU
CPU

GPU

ASIC

FPGA

Problem

● heterogeneous application optimisation: typically done manually

○ requires highly-skilled developers with in-depth target hardware understanding

● manual optimisation tasks:

⇒ this process is tedious, error-prone, and must be repeated for each new application
9

A. Context, Problem, Challenges

identify

computationally

intensive

hotspots partition and

map code

across

processing

elements

annotate

parallel

computations
apply known

datatype,

throughput,

and memory

optimisations

systematic

diagnosis to

tune runtime

parameters

Current Design-Flow: State Of The Practice (SOP)

● current SOP: human developers manually perform source-level design-flows

● design-flow: - explicit orchestration of manual and/or automated tasks

- map and optimise a high-level software description onto hardware

manual optimisation effort for

each software description

● code analysis

● code partitioning and mapping

● code optimisation/tuning

● tool orchestration

Manual
Design-Flow

develop

High-Level
Software

Description
(unoptimised)

Optimised
Design

(CPU/GPU/FPGA)

application developer

10

A. Context, Problem, Challenges

Design-Flow Automation Challenges

C1. Abstraction: diverse components should be abstracted to hide implementation details

- so they can be employed by non-experts

C2. Efficiency: automatically optimised code should be as efficient as manually optimisation

- currently requires expertise, experience, and effort

C3. Customisability: automated design-flows should be flexible and extensible

- support new techniques and technologies in the massive, evolving design space

C4. Reusability: design-flows should employ existing, reusable components

- reduce time and development effort

C5. Application-Agnosticity: automated design-flows should operate on multiple applications

- within a specific application domain
11

A. Context, Problem, Challenges

Contributions

➔ design-flow patterns to capture common and recurring elements of design-flows

- for optimising high-level descriptions onto diverse hardware targets

➔ an initial catalogue of patterns

- for accelerating CPU and GPU designs

➔ codify modular patterns as Artisan meta-programs

- combine target-independent and -dependent patterns into automated design-flows

- map unmodified sequential C++ descriptions into optimised CPU and GPU designs

➔ apply our design-flows to:

- 3 case-study HPC applications in different domains (physics, graphics, mathematics)

- evaluate performance of automatically generated OpenMP and HIP designs

➔ results: - up to 18 times speedup on a CPU platform with 32-threads

- up to 1184 times speedup on an NVIDIA GeForce RTX 2080 Ti GPU

compared to a sequential single-threaded reference implementation 12

A. Context, Problem, Challenges

CUDA to C++

Open Multi-

Processing

Key Observation

● design-flows for diverse hardware targets often involve:

○ common, recurring, application-agnostic elements

○ elements that can be target and tool-independent or tool-dependent

⇒ can we capture and codify these recurring building blocks,
highlighting the branch points for introducing diverse designs?

High-Level
Software

Description
(unoptimised)

Dependence
Analysis

Hotspot
Detection

Annotate
Parallel Loops

Apply
OpenMP

Maximise
Design Area

Mixed Prec.
Datatypes

Analyse
Initiation
Intervals

Calculate
Occupancy

Check CPU
Utilisation

Parallelise
Loops Generate HW/SW

Partitioned Code

GPU

CPU

FPGA

Optimise
Shared Mem.

Target- and Tool-Independent Target- and Tool-Dependent

Tune Launch
Params

Tune Thread
Count

CPU+FPGA1

CPU+FPGA2

CPU+GPU1

CPU+GPU2

CPU1

CPU2

13

A. Context, Problem, Challenges

branch point

Proposed Solution:

Meta-Programming Design-Flow Patterns

● Design-Flow Patterns:

o capture, catalogue, and codify common and recurring design-flow tasks

o for building customised, reusable, automated design-flows

● similar to design patterns:

o abstract recurring solutions

o provide reusable base of experience and a common vocabulary

● modular patterns implemented as meta-programs

o can be coordinated into automated end-to-end design flows

14

B. Approach: Meta-Programming Design-Flow Patterns

Two Design-Flow Roles

High-Level
Description

(non-optimised)

High-Level
Description

(non-optimised)

High-Level
Software

Descriptions
(unoptimised)

develop

application developer

(1) application developer: writes functionally correct high-level application description

15

B. Approach: Meta-Programming Design-Flow Patterns

use

Automated
Design-Flow

Design-Flow Patterns

(target independent,

CPU, GPU, FPGA)

High-Level
Description

(non-optimised)

High-Level
Description

(non-optimised)

High-Level
Software

Descriptions
(unoptimised)

meta-

program

develop

codify reusable tasks

● code analysis

● code partitioning and mapping

● code optimisation/tuning

● tool orchestration

application developer

design-flow developer

(1) application developer: - writes functionally correct high-level application description

(2) design-flow developer: - uses design-flow patterns and meta-programs

- to automate design-flows for mapping and optimisation
16

Two Design-Flow Roles

B. Approach: Meta-Programming Design-Flow Patterns

use

Automated
Design-Flow

Design-Flow Patterns

(target independent,

CPU, GPU, FPGA)

High-Level
Description

(non-optimised)

High-Level
Description

(non-optimised)

High-Level
Software

Descriptions
(unoptimised)

meta-

program

develop

codify reusable tasks

● code analysis

● code partitioning and mapping

● code optimisation/tuning

● tool orchestration

application developer

design-flow developer

Artisan meta-programs

treat programs as data,

enabling programmatic

analysis and source-code

manipulation

17

Two Design-Flow Roles

B. Approach: Meta-Programming Design-Flow Patterns

(1) application developer: - writes functionally correct high-level application description

(2) design-flow developer: - uses design-flow patterns and meta-programs

- to automate design-flows for mapping and optimisation

use

Automated
Design-Flow

Design-Flow Patterns

(target independent,

CPU, GPU, FPGA)

High-Level
Description

(non-optimised)

High-Level
Description

(non-optimised)

High-Level
Software

Descriptions
(unoptimised)

meta-

program

execute

Heterogeneous
Designs

(CPU/GPU/FPGA)

Heterogeneous
Designs

(CPU/GPU/FPGA)

Optimised
Designs

(CPU/GPU/FPGA)

develop

codify reusable tasks

● code analysis

● code partitioning and mapping

● code optimisation/tuning

● tool orchestration

application developer

design-flow developer

⇒ manual design-flow tasks are codified and coordinated to produce:
- end-to-end design-flows operating on high-level software descriptions
- optimised designs with little intervention from application developers

Artisan meta-programs

treat programs as data,

enabling programmatic

analysis and source-code

manipulation

18

Two Design-Flow Roles

B. Approach: Meta-Programming Design-Flow Patterns

Addressing Design-Flow Automation Challenges

C1. Abstraction: high-level pattern descriptions

- abstract implementation details for diverse targets

C2. Efficiency: source-to-source meta-programs

- automate manual optimisation with static and dynamic analysis

C3. Customisability: pattern implementations as plug-and-play building blocks

- can be parameterised, replaced, and extended

C4. Reusability: modular design-flows facilitate patterns

- implemented once and reused in multiple design-flows (e.g. common analysis)

C5. Application-Agnosticity: optimisation is decoupled from application descriptions

- so design-flows are application-agnostic
19

B. Approach: Meta-Programming Design-Flow Patterns

Design-Flow Pattern Catalogue: Overview

● current catalogue contains patterns for CPU and GPU parallel targets

● requirement: facilitate modular implementations and reasoning about coordination

● a uniform template* is used to describe design-flow patterns:

○ NAME: a succinct, descriptive name for the pattern
○ INTENT: what does the pattern do?
○ MOTIVATION: why is the pattern used?
○ APPLICABILITY: what conditions must be met to apply the pattern?
○ RELATED PATTERNS (OPTIONAL): are there related patterns?

(e.g. components, often used together)

● text-based description should clearly capture intent and applicability

○ developers can unambiguously codify expected behaviour
○ ongoing work: formalise design-flow pattern specification

*a subset of design patterns for OOP from Gamma et al. 20

C. Design-Flow Pattern Catalogue For CPU and GPU Optimisation

Design-Flow Pattern Classification

● 4 types of design-flow patterns:

I. Analysis patterns: perform static or dynamic app analysis

II. Code-generation patterns: inject or generate new source-code

III. Transform patterns: perform source-to-source transformation

IV. Optimisation patterns: employ analysis and transform patterns

- optimise a target metric (typically involving Design Space Exploration)

21

C. Design-Flow Pattern Catalogue For CPU and GPU Optimisation

Analysis Design-Flow Pattern Example

● NAME: HOTSPOT LOOP DETECTION

● INTENT: identify computationally intensive parallel loops to accelerate

● MOTIVATION: - loops are often where most time is spent during execution

- suitable for acceleration (Amdahl’s law)

● APPLICABILITY: applicable to any application source code

● RELATED PATTERNS: Loop Timing, Dependence Analysis

22

C. Design-Flow Pattern Catalogue For CPU and GPU Optimisation

Code-Generation Design-Flow Pattern Example

● NAME: HIP GPU MANAGEMENT CODE GENERATION

● INTENT: insert code required to execute an identified kernel function on GPU

● MOTIVATION: device management code is required

- to inform the runtime system what to run on the GPU vs CPU

- to ensure data are where they need to be for application execution

● APPLICABILITY: applicable to application code with a specified kernel function

23

C. Design-Flow Pattern Catalogue For CPU and GPU Optimisation

Transform Design-Flow Pattern Example

● NAME: SHARED MEMORY BUFFER

● INTENT: - copy the contents of a pointer argument

- into shared memory in a GPU kernel

● MOTIVATION: on-chip shared memory

- has limited size

- has higher bandwidth and lower latency than global memory

● APPLICABILITY: applicable to any pointer argument for a GPU kernel

- if pointer contents fit in shared memory

24

C. Design-Flow Pattern Catalogue For CPU and GPU Optimisation

Optimisation Design-Flow Pattern Example

● NAME: TUNE KERNEL LAUNCH PARAMETERS

● INTENT: determine the kernel launch parameters

- to minimise execution time, and/or

- to maximise occupancy (e.g. block size)

● MOTIVATION: launching kernels with different thread configurations

- can affect execution time and GPU occupancy

● APPLICABILITY: applicable to an application source with a GPU kernel

● RELATED PATTERNS: Set Blocksize, Kernel Timing, Calculate GPU Occupancy

25

C. Design-Flow Pattern Catalogue For CPU and GPU Optimisation

Design-Flow Pattern Catalogue

● refer to our HERRT’22 paper for the full catalogue

● a starting point to demonstrate scope and value:

recurring, application-agnostic design-flow

● not an exhaustive list of GPU/CPU patterns

26

C. Design-Flow Pattern Catalogue For CPU and GPU Optimisation

Design-Flow Patterns as Meta-Programs

● codify patterns using the Artisan meta-programming framework

○ based on libclang, supports C++ parsing and manipulation

○ unified Python environment for code analysis, instrumentation, and execution

○ true source-to-source: no progressive lowering

● key Artisan features

○ query and instrument

⇒ enables static source-code analysis and manipulation

○ application execution and runtime reporting

⇒ enables application self-reporting for dynamic analyses

27

D. Implementing Design-Flow Patterns as Meta-Programs

Design-Flow Patterns as Meta-Programs

● example meta-programs:

(1) GPU shared memory buffer (transform)

(2) parallel hotspot loop detection (dynamic analysis)

● for more details on Artisan, refer to our paper in IEEE Transactions on

Computers, vol. 70, no. 12, pp. 2043-2055, 1 Dec. 2021

28

D. Implementing Design-Flow Patterns as Meta-Programs

29

Hotspot Detection
D. Implementing Design-Flow Patterns as Meta-Programs

Automated End-To-End Design Flows

● implemented end-to-end HIP GPU and OpenMP CPU design-flows

- comprised modular meta-programs codifying patterns from our catalogue

● applied to three HPC case-study applications: - N-Body Simulation (physics),

- Bezier Surface Generation (graphics),

- Rush Larsen ODE Solver (maths)
30

E. Evaluation: Automated Design-Flow Performance + Reusability

branch point

branch points

Evaluating Design-Flow Pattern Reuse

● 20 patterns implemented

○ 10 employed by OpenMP design-flow

○ 17 employed by HIP GPU design-flow

31

E. Evaluation: Automated Design-Flow Performance + Reusability

Evaluating Design-Flow Pattern Reuse

● 20 patterns implemented

○ 10 employed by OpenMP design-flow

○ 17 employed by HIP GPU design-flow

● 7/20 patterns shared by both design flows

32

E. Evaluation: Automated Design-Flow Performance + Reusability

Evaluating Design-Flow Pattern Reuse

● 20 patterns implemented

○ 10 employed by OpenMP design-flow

○ 17 employed by HIP GPU design-flow

● 7/20 patterns shared by both design flows

● 17/20 patterns applicable to all three case-study applications

33

E. Evaluation: Automated Design-Flow Performance + Reusability

Evaluating Design-Flow Pattern Reuse

● 20 patterns implemented

○ 10 employed by OpenMP design-flow

○ 17 employed by HIP GPU design-flow

● 7/20 patterns shared by both design flows

● 17/20 patterns applicable to all three case-study applications

● 20/20 patterns are application agnostic 34

E. Evaluation: Automated Design-Flow Performance + Reusability

Evaluating Design-Flow Performance

OpenMP CPU Experiments:

● experimental set-up:

○ 2 Intel Xeon Silver 4110 CPUS, 16 cores with SMT
○ g++ -O2
○ consider 8, 16, 32 available threads

● performance results:

○ generally: increasing threads decreases execution
time (nonlinear due to scheduling/mgmt overhead)

○ above 16 threads: speedup limited by SMT support

○ 12X-18X maximum speedup across case-studies

35

E. Evaluation: Automated Design-Flow Performance + Reusability

Evaluating Design-Flow Performance

HIP GPU Experiments:

● experimental set-up:

○ 2 NVIDIA GeForce GPUS:

■ NVIDIA GeForce GTX 1080 Ti

■ NVIDIA GeForce RTX 2080 Ti

○ hipcc -O2

● performance results:

○ generally: RTX 2080 faster than GTX 1080 (wider

cores with advanced features)

○ 87X-1184X maximum speedup across case-studies

36

E. Evaluation: Automated Design-Flow Performance + Reusability

Evaluating Design-Flow Performance

➔ performance comes free

- little or no intervention from application developer

➔ generated code is human-readable

- same level of abstraction as original code

- can be further hand-tuned

37

E. Evaluation: Automated Design-Flow Performance + Reusability

Ongoing and Future Work

➔ formalising the specification and description of design-flow patterns

◆ using functional programming

➔ extending our design-flow pattern catalogue:

◆ FPGA OneAPI mapping and optimisation patterns

◆ patterns to support more advanced GPU optimisations

◆ application-domain specific patterns

38

F. Ongoing Work and Big Picture

C/Matlab/Premiere

Compiler

Machine

code

Run-time

interface

Configuration

information

Fixed processor Custom processor

Custom computing system

Application description
design space exploration,

goals and constraints

partition, compile

system-specific adaptation:

clouds to edge devices

system-specific

programming interface

optimisation/synthesis

Meta-

program

39

F. Ongoing Work and Big Picture

Big Picture: Automating Design

C/Matlab/Premiere

Compiler

Machine

code

Run-time

interface

Configuration

information

Fixed processor Custom processor

Custom computing system

Application description
design space exploration,

goals and constraints

partition, compile,

analysis, verify

system-specific adaptation:

clouds to edge devices

system-specific

programming interface

optimisation/synthesis analysis/verify

Meta-

program

FCCM 2021: Flexible Instrumentation for Live On-Chip Debug of Machine Learning Training on FPGAs

JSA 2021: In-Circuit Tuning of Deep Learning Designs 40

F. Ongoing Work and Big Picture

Big Picture: Automating Design + Debug + Verify

