NANDA: the Next Frontier

Wayne Luk

Imperial College London, United Kingdom

NANDA 2022

Acknowledgement: Jessica Vandebon, José G. F. Coutinho, Eriko Nurvitadhi, Stewart Denholm EPSRC, SRC. AMD, Intel

Agenda

- A. Context, Problem, Challenges
- B. Approach: Meta-Programming Design-Flow Patterns
- C. Design-Flow Pattern Catalogue For CPU and GPU Optimisation
- D. Implementing Design-Flow Patterns as Meta-Programs
- E. Evaluation: Automated Design-Flow Performance + Reusability
- F. Ongoing Work and Big Picture

Processor Architecture: Heterogeneous Trend

NVIDIA GRACE HOPPER

AMD Instinct M1200 (source: Hotchips 2022)

Intel New Flexible Tile

Cloud Architecture: Heterogeneous Trend

Design Automation: Support for Heterogeneity

Current + Future: Diverse

(adapted from: Martonosi)

Design Automation: Support for Heterogeneity

- Compiling for heterogeneous systems and processors
 - Mata-programming Design Flow Patterns
- Managing heterogeneous clouds
 - Function-as-a-Service
- Managing heterogeneous FPGA resources
 - Pool of functions

Design Automation: Support for Heterogeneity

- Compiling for heterogeneous systems and processors
 - Mata-programming Design Flow Patterns IEEE Trans. Computers, HEART 2022
- Managing heterogeneous clouds
 - Function-as-a-Service Journal of Signal Processing Systems
- Managing heterogeneous FPGA resources
 - Pool of functions FPL 2022

A. Context, Problem, Challenges

Heterogeneous Systems

- compute landscape is rapidly evolving → increasingly parallel and heterogeneous
 - o potential of specialised accelerators (GPUs, FPGAs) for demanding applications, e.g. AI, HPC

- gap between software descriptions and optimised heterogeneous designs: getting larger
 - device-specific compilers: achieve high performance from high-level source-code
 - <u>but</u> significant code restructuring is required

Problem

- heterogeneous application optimisation: typically done manually
 - o requires highly-skilled developers with in-depth target hardware understanding
- manual optimisation tasks:

⇒ this process is *tedious*, *error-prone*, and *must be repeated* for each new application

Current Design-Flow: State Of The Practice (SOP)

- current SOP: human developers manually perform source-level design-flows
- design-flow: explicit orchestration of manual and/or automated tasks
 - map and optimise a high-level software description onto hardware

Design-Flow Automation Challenges

- C1. Abstraction: diverse components should be abstracted to hide implementation details
 - so they can be employed by non-experts
- C2. Efficiency: automatically optimised code should be as efficient as manually optimisation
 - currently requires expertise, experience, and effort
- C3. Customisability: automated design-flows should be flexible and extensible
 - support new techniques and technologies in the massive, evolving design space
- C4. Reusability: design-flows should employ existing, reusable components
 - reduce time and development effort
- C5. Application-Agnosticity: automated design-flows should operate on multiple applications
 - within a specific application domain

A. Context, Problem, Challenges

Contributions

- → design-flow patterns to capture common and recurring elements of design-flows
 - for optimising high-level descriptions onto diverse hardware targets
- → an initial catalogue of patterns
 - for accelerating CPU and GPU designs
- → codify modular patterns as Artisan meta-programs
 - combine target-independent and -dependent patterns into automated design-flows
 - map unmodified sequential C++ descriptions into optimised CPU and GPU designs
- → apply our design-flows to:
 - 3 case-study HPC applications in different domains (physics, graphics, mathematics)
 - evaluate performance of automatically generated OpenMP and HIP designs
- → results: up to 18 times speedup on a CPU platform with 32-threads
 - up to 1184 times speedup on an NVIDIA GeForce RTX 2080 Ti GPU compared to a sequential single-threaded reference implementation

CUDA to C++

Open Multi-Processing

A. Context, Problem, Challenges

Key Observation

- design-flows for diverse hardware targets often involve:
 - o common, recurring, application-agnostic elements
 - elements that can be target and tool-independent or tool-dependent
 - can we capture and codify these recurring building blocks, highlighting the branch points for introducing diverse designs?

Proposed Solution: Meta-Programming Design-Flow Patterns

Design-Flow Patterns:

- capture, catalogue, and codify common and recurring design-flow tasks
- for building customised, reusable, automated design-flows
- similar to design patterns:
 - abstract recurring solutions
 - provide reusable base of experience and a common vocabulary
- modular patterns implemented as meta-programs
 - can be coordinated into automated end-to-end design flows

Two Design-Flow Roles

(1) application developer: writes functionally correct high-level application description

Two Design-Flow Roles

- (1) application developer: writes functionally correct high-level application description
- (2) design-flow developer: uses design-flow patterns and meta-programs
 - to automate design-flows for mapping and optimisation

Two Design-Flow Roles

Artisan meta-programs treat programs as data, enabling programmatic analysis and source-code manipulation

- (1) application developer: writes functionally correct high-level application description
- (2) design-flow developer: uses design-flow patterns and meta-programs
 - to automate design-flows for mapping and optimisation

Two Design-Flow Roles

Artisan meta-programs treat programs as data, enabling programmatic analysis and source-code manipulation

- ⇒ manual design-flow tasks are codified and coordinated to produce:
 - end-to-end design-flows operating on high-level software descriptions
 - optimised designs with little intervention from application developers

Addressing Design-Flow Automation Challenges

- C1. Abstraction: high-level pattern descriptions
 - abstract implementation details for diverse targets
- **C2.** *Efficiency*: source-to-source meta-programs
 - automate manual optimisation with static and dynamic analysis
- C3. Customisability: pattern implementations as plug-and-play building blocks
 - can be parameterised, replaced, and extended
- C4. Reusability: modular design-flows facilitate patterns
 - implemented once and reused in multiple design-flows (e.g. common analysis)
- C5. Application-Agnosticity: optimisation is decoupled from application descriptions
 - so design-flows are application-agnostic

Design-Flow Pattern Catalogue: Overview

- current catalogue contains patterns for CPU and GPU parallel targets
- requirement: facilitate modular implementations and reasoning about coordination
- a uniform template* is used to describe design-flow patterns:
 - NAME: a succinct, descriptive name for the pattern
 - <u>INTENT</u>: what does the pattern do?
 - MOTIVATION: why is the pattern used?
 - APPLICABILITY: what conditions must be met to apply the pattern?
 - <u>RELATED PATTERNS</u> (OPTIONAL): are there related patterns?
 (e.g. components, often used together)
- text-based description should clearly capture intent and applicability
 - developers can unambiguously codify expected behaviour
 - ongoing work: formalise design-flow pattern specification

Design-Flow Pattern Classification

- 4 types of design-flow patterns:
 - I. Analysis patterns: perform static or dynamic app analysis
 - II. Code-generation patterns: inject or generate new source-code
 - **III.** *Transform patterns*: perform source-to-source transformation
 - IV. Optimisation patterns: employ analysis and transform patterns
 - optimise a target metric (typically involving Design Space Exploration)

Analysis Design-Flow Pattern Example

- NAME: HOTSPOT LOOP DETECTION
- <u>INTENT</u>: identify computationally intensive parallel loops to accelerate
- MOTIVATION: loops are often where most time is spent during execution
 suitable for acceleration (Amdahl's law)
- APPLICABILITY: applicable to any application source code
- <u>RELATED PATTERNS</u>: Loop Timing, Dependence Analysis

Code-Generation Design-Flow Pattern Example

- NAME: HIP GPU MANAGEMENT CODE GENERATION
- INTENT: insert code required to execute an identified kernel function on GPU
- MOTIVATION: device management code is required
 - to inform the runtime system what to run on the GPU vs CPU
 - to ensure data are where they need to be for application execution
- APPLICABILITY: applicable to application code with a specified kernel function

Transform Design-Flow Pattern Example

- NAME: SHARED MEMORY BUFFER
- INTENT: copy the contents of a pointer argument
 - into shared memory in a GPU kernel
- MOTIVATION: on-chip shared memory
 - has limited size
 - has higher bandwidth and lower latency than global memory
- APPLICABILITY: applicable to any pointer argument for a GPU kernel
 - if pointer contents fit in shared memory

Optimisation Design-Flow Pattern Example

- NAME: TUNE KERNEL LAUNCH PARAMETERS
- <u>INTENT</u>: determine the kernel launch parameters
 - to minimise execution time, and/or
 - to maximise occupancy (e.g. block size)
- MOTIVATION: launching kernels with different thread configurations
 - can affect execution time and GPU occupancy
- APPLICABILITY: applicable to an application source with a GPU kernel
- <u>RELATED PATTERNS</u>: Set Blocksize, Kernel Timing, Calculate GPU Occupancy

Table 1: Analysis (A1-A6), Code-Generation (G1-G3), Transform (T1-T9) and Optimisation (O1-O2) Design-Flow Patterns

ID	Name (Related)	INTENT	Motivation	APPLICABILITY
A1	Hotspot Loop Detection (A2,A3)	Identify computationally intensive loops to accelerate.	Loops are often regions where most time is spent during the program's execution.	Application code
A2	Loop Timing	Measure execution time for all loops in the application.	To identify application bottlenecks and regions worth optimising.	Application code
A3	Dep. Analysis	Identify dependencies in a program loop.	To parallelise and/or transform loops.	Loop
A4	Pointer Analysis (T1)	Determine if pointer arguments could alias within a function scope.	Certain compiler optimisations can only be ap- plied if it is indicated that pointers do not alias.	Function definition
A5	Kernel Timing	Time all GPU kernels in an exe- cuted application.	To understand the impact of code changes, identify bottlenecks, and compare performance.	Application code + GPU kernel
A6	Calculate GPU Occupancy	Determine the occupancy for a ker- nel on a target GPU.	Calculating occupancy helps to understand per- formance and to tune GPU launch parameters.	Application code + GPU kernel
G1	Loop-to-Function Extraction	Extract a program loop into an iso- lated function.	To enable isolated analysis and annotation to indicate it should be offloaded to an accelerator.	Loop
G2	Multi-Threaded Code Generation	Insert the framework-specific code required to multi-thread a loop.	Loop annotation, header file inclusion, and run- time parameter specification is needed for run- time system to use multiple parallel threads.	Application code + loop
G3	GPU Mgmt Code Generation	Insert the framework-specific code required to execute a kernel on a GPU.	Device management code is required to inform the runtime system what to run on the GPU vs CPU, and to ensure data is where it needs to be.	Application code + function
T1	Restrict Pointer Arguments (A4)	Indicate to the compiler that pointer arguments do not alias.	Device compilers that cannot determine if point- ers could alias conservatively assume that they might, limiting the scope for optimisation.	Non-aliasing function args + target with restrict keyword
T2	Shared Memory Buffer	Copy the contents of a pointer ar- gument into shared memory in a GPU kernel.	Limited on-chip shared memory has higher bandwidth and lower latency than global mem- ory.	if pointer contents fit in shared mem
Т3	Page-Locked Memory	Allocate memory as page-locked.	Limited page-locked memory has the highest bandwidth between host and device, but has heavier weight allocations than regular memory.	
T4	Single-Precision Math Functions	Use single-precision versions of math functions. (e.g. sqrtf).	Avoid implicit intermediate rounding to double- precision operations.	GPU kernel + library math function call
T5	Single-Precision FP Literals	Employ single-precision floating point literals.	Explicitly use single precision literals (e.g. 0.0f) so compiler does not assume double precision.	Expressions with single- precision types.
Т6	Specialised Math Operations	Use available specialised math op- erations.	Framework-provided specialised math functions are more optimised than general equivalents.	Consult tool documentation (e.g. pow(x,2) to exp2(x))
Т7	Remove Loop Dep (A3)	Remove dependent array accesses in loops by introducing intermedi- ate variables.	To ease loop dependency bottlenecks.	Loops with dependent array accesses
Т8	Set Blocksize	Specify the thread block size for GPU kernel execution.	Runtime GPU thread configurations must be set when launching a kernel.	GPU kernel
Т9	Set Num Threads	Set the number of parallel threads for loop execution.	To control the number of threads used for multi- threaded execution.	Loop + multi-threaded target
01	Tune Number of Threads (T9,A2)	Determine the number of threads that minimises loop execution time.	1	Loop(s) + multi-threaded target
O2	Tune Kernel Launch (T8,A5,A6)	Determine the kernel launch pa- rameters that minimises execution time and/or maximises occupancy.	Launching kernels with different thread configurations can affect execution time and GPU	Application code + GPU kernel(s)

Design-Flow Pattern Catalogue

- refer to our HERRT'22 paper for the full catalogue
- a starting point to demonstrate scope and value: recurring, application-agnostic design-flow
- not an exhaustive list of GPU/CPU patterns

D. Implementing Design-Flow Patterns as Meta-Programs

Design-Flow Patterns as Meta-Programs

- codify patterns using the Artisan meta-programming framework
 - based on libclang, supports C++ parsing and manipulation
 - unified Python environment for code analysis, instrumentation, and execution
 - true source-to-source: no progressive lowering
- key Artisan features
 - query and instrument
 - ⇒ enables static source-code analysis and manipulation
 - application execution and runtime reporting
 - ⇒ enables application self-reporting for dynamic analyses

Design-Flow Patterns as Meta-Programs

- example meta-programs:
 - (1) GPU shared memory buffer (transform)
 - (2) parallel hotspot loop detection (dynamic analysis)
- for more details on Artisan, refer to our paper in IEEE Transactions on Computers, vol. 70, no. 12, pp. 2043-2055, 1 Dec. 2021

Enhancing High-Level Synthesis using a Meta-Programming Approach

Jessica Vandebon*, Jose G. F. Coutinho*, Wayne Luk*, Eriko Nurvitadhi†

*Imperial College London, United Kingdom

Email: {jessica.vandebon17, gabriel.figueiredo, w.luk}@imperial.ac.uk

†Intel Corporation, San Jose, USA

Email: eriko.nurvitadhi@intel.com

Hotspot Detection

D. Implementing Design-Flow Patterns as Meta-Programs

instrumented app (C++)

```
Artisan meta-program
                                                                            + #include <artisan>
1 def identify_hotspots (ast, threshold ):
                                                          (Pvthon)
   # clone ast for instrumentation & execution
                                                                             + using namespace artisan:
                                                                               int main(int argc, char *argv[]){
  ast_clone = ast.clone()
                                                                                 Report::start();
   # query for parallel for-loops to time
                                                                                 int ret:
  par_loops = ast_clone.query("loop{ForStmt}",
                                                                                 { Timer timer_main([](double t){
                                   where=lambda loop: is_par(loop))
                                                                                      Report::write("'main':%f",t);});
   # instrument loops and main function with timers
                                                                                   ret = [](auto argc, auto argv){
   instrument_app_timer(ast_clone, par_loops)
   # execute instrumented code and receive report
                                                                          10 +
                                                                                     { Timer timer_ltag([](double t){
5 Hreport = ast_clone.exec(reports=True)
                                                                                        Report::write("'loop0312',%f",t);});
                                                                          11 +
   # discard clone
                                                                                        for (int i = 0; i < N; i++) {
                                                                          12
  ast_clone.discard()
                                                                                           z[i] = x[i] * y[i];
                                                                          13
   # extract main timing from report (e.g. main_t = 404.9)
                                                                          14
                                                                                                                     instrumented
   main_t = report['main']; del report['main']
                                                                          15 +
                                                                                                                       parallel
                                                                                                                        loop
   # filter and return loop list that satisfies given threshold
                                                                                     for (int j=0; j<T; j++) {
                                                                          16
   hotspots = [loop for loop in report if report[loop] > main_t * threshold]
                                                                                        z[j] = x[j] * z[j-1];
                                                                          17
   # in our example, returns ['loop0312']
                                                                          18
  return hotspots
                                                                          19
                                                                                                                 This loop is not
                                                                                                                  parallel, and
                                                                          20
                                                                                      return 0:
                                                                                                                  therefore is
                                                                          21+
                                                                                    }(argc, argv);
                                                                                                                not instrumented
                                                                          22+
                                                                                  Report::emit();
                                                        report sent via
                                                                          23+
                            report
                                                        network socket
                                                                          23+
                                                                                  return ret:
            -o { 'main':404.9, 'loop0312':306.7}
                                                                          25 }
                                                        to metaprogram
```

Automated End-To-End Design Flows

- implemented end-to-end HIP GPU and OpenMP CPU design-flows
 - comprised modular meta-programs codifying patterns from our catalogue
- applied to three HPC case-study applications: N-Body Simulation (physics),
 - Bezier Surface Generation (graphics),
 - Rush Larsen ODE Solver (maths)

- 20 patterns implemented
 - 10 employed by OpenMP design-flow
 - 17 employed by HIP GPU design-flow

- 20 patterns implemented
 - 10 employed by OpenMP design-flow
 - 17 employed by HIP GPU design-flow
- 7/20 patterns shared by both design flows

- 20 patterns implemented
 - 10 employed by OpenMP design-flow
 - 17 employed by HIP GPU design-flow
- 7/20 patterns shared by both design flows
- 17/20 patterns applicable to all three case-study applications

- 20 patterns implemented
 - 10 employed by OpenMP design-flow
 - 17 employed by HIP GPU design-flow
- 7/20 patterns shared by both design flows
- 17/20 patterns applicable to all three case-study applications
- 20/20 patterns are application agnostic

Evaluating Design-Flow Performance

Figure 6: Performance of multi-threaded CPU and HIP GPU designs generated by automated Artisan design-flows compared to the input unoptimised sequential implementation (single-threaded).

OpenMP CPU Experiments:

- experimental set-up:
 - 2 Intel Xeon Silver 4110 CPUS, 16 cores with SMT
 - o q++ -O2
 - consider 8, 16, 32 available threads
- performance results:
 - generally: increasing threads decreases execution time (nonlinear due to scheduling/mgmt overhead)
 - above 16 threads: speedup limited by SMT support
 - 12X-18X maximum speedup across case-studies

Evaluating Design-Flow Performance

Figure 6: Performance of multi-threaded CPU and HIP GPU designs generated by automated Artisan design-flows compared to the input unoptimised sequential implementation (single-threaded).

HIP GPU Experiments:

- experimental set-up:
 - 2 NVIDIA GeForce GPUS:
 - NVIDIA GeForce GTX 1080 Ti
 - NVIDIA GeForce RTX 2080 Ti
 - o hipcc -O2
- performance results:
 - generally: RTX 2080 faster than GTX 1080 (wider cores with advanced features)
 - 87X-1184X maximum speedup across case-studies

Evaluating Design-Flow Performance

Figure 6: Performance of multi-threaded CPU and HIP GPU designs generated by automated Artisan design-flows compared to the input unoptimised sequential implementation (single-threaded).

- → performance comes free
 - little or no intervention from application developer
- → generated code is human-readable
 - same level of abstraction as original code
 - can be further hand-tuned

F. Ongoing Work and Big Picture

Ongoing and Future Work

- formalising the specification and description of design-flow patterns
 - using functional programming

- → extending our design-flow pattern catalogue:
 - FPGA OneAPI mapping and optimisation patterns
 - patterns to support more advanced GPU optimisations
 - application-domain specific patterns

F. Ongoing Work and Big Picture

Big Picture: Automating Design

F. Ongoing Work and Big Picture

Big Picture: Automating Design + Debug + Verify

FCCM 2021: Flexible Instrumentation for Live On-Chip Debug of Machine Learning Training on FPGAs JSA 2021: In-Circuit Tuning of Deep Learning Designs