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Processor Architecture: Heterogeneous Trend
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A. Context, Problem, Challenges

NVIDIA GRACE HOPPER                         AMD Instinct M1200                         Intel New Flexible Tile    
(source: Hotchips 2022)   
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Cloud Architecture: Heterogeneous Trend 

AWS Compute Instance Types    (source: AWS) 4



A. Context, Problem, Challenges

Design Automation: Support for Heterogeneity 

5Classical: Monolithic                               Current + Future: Diverse          (adapted from: Martonosi)

diverse tool-flow for high-level programs 

- compilation

- run-time management



A. Context, Problem, Challenges

Design Automation: Support for Heterogeneity 
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● Compiling for heterogeneous systems and processors

○ Mata-programming Design Flow Patterns

● Managing heterogeneous clouds 

○ Function-as-a-Service

● Managing heterogeneous FPGA resources 

○ Pool of functions



A. Context, Problem, Challenges

Design Automation: Support for Heterogeneity 
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● Compiling for heterogeneous systems and processors

○ Mata-programming Design Flow Patterns - IEEE Trans. Computers, HEART 2022

● Managing heterogeneous clouds 

○ Function-as-a-Service   - Journal of Signal Processing Systems

● Managing heterogeneous FPGA resources 

○ Pool of functions            - FPL 2022



CPU
CPU

Heterogeneous Systems

● compute landscape is rapidly evolving → increasingly parallel and heterogeneous

○ potential of specialised accelerators (GPUs, FPGAs) for demanding applications, e.g. AI, HPC

● gap between software descriptions and optimised heterogeneous designs: getting larger

○ device-specific compilers: achieve high performance from high-level source-code

○ but significant code restructuring is required
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Problem

● heterogeneous application optimisation: typically done manually 

○ requires highly-skilled developers with in-depth target hardware understanding

● manual optimisation tasks:

⇒ this process is tedious, error-prone, and must be repeated for each new application
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Current Design-Flow: State Of The Practice (SOP)

● current SOP: human developers manually perform source-level design-flows 

● design-flow:  - explicit orchestration of manual and/or automated tasks  

- map and optimise a high-level software description onto hardware

manual optimisation effort for 

each software description

● code analysis

● code partitioning and mapping

● code optimisation/tuning

● tool orchestration 

Manual
Design-Flow

develop

High-Level
Software

Description
(unoptimised)

Optimised 
Design

(CPU/GPU/FPGA)

application developer
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Design-Flow Automation Challenges

C1. Abstraction: diverse components should be abstracted to hide implementation details  

- so they can be employed by non-experts

C2. Efficiency: automatically optimised code should be as efficient as manually optimisation 

- currently requires expertise, experience, and effort

C3. Customisability: automated design-flows should be flexible and extensible 

- support new techniques and technologies in the massive, evolving design space

C4. Reusability: design-flows should employ existing, reusable components 

- reduce time and development effort

C5. Application-Agnosticity: automated design-flows should operate on multiple applications 

- within a specific application domain
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Contributions

➔ design-flow patterns to capture common and recurring elements of design-flows                  

- for optimising high-level descriptions onto diverse hardware targets

➔ an initial catalogue of patterns                                                                                             

- for accelerating CPU and GPU designs

➔ codify modular patterns as Artisan meta-programs

- combine target-independent and -dependent patterns into automated design-flows                                                  

- map unmodified sequential C++ descriptions into optimised CPU and GPU designs

➔ apply our design-flows to:                                                                                                     

- 3 case-study HPC applications in different domains (physics, graphics, mathematics)                                           

- evaluate performance of automatically generated OpenMP and HIP designs

➔ results: - up to 18 times speedup on a CPU platform with 32-threads                                     

- up to 1184 times speedup on an NVIDIA GeForce RTX 2080 Ti GPU 

compared to a sequential single-threaded reference implementation 12
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Key Observation

● design-flows for diverse hardware targets often involve:

○ common, recurring, application-agnostic elements 

○ elements that can be target and tool-independent or tool-dependent

⇒ can we capture and codify these recurring building blocks,                                                                  
highlighting the branch points for introducing diverse designs?
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Proposed Solution: 

Meta-Programming Design-Flow Patterns

● Design-Flow Patterns: 

o capture, catalogue, and codify common and recurring design-flow tasks

o for building customised, reusable, automated design-flows 

● similar to design patterns: 

o abstract recurring solutions 

o provide reusable base of experience and a common vocabulary

● modular patterns implemented as meta-programs 

o can be coordinated into automated end-to-end design flows
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Two Design-Flow Roles

High-Level
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(1) application developer: writes functionally correct high-level application description
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use
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Design-Flow
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meta-

program

develop

codify reusable tasks

● code analysis

● code partitioning and mapping

● code optimisation/tuning

● tool orchestration

application developer

design-flow developer

(1) application developer: - writes functionally correct high-level application description

(2) design-flow developer: - uses design-flow patterns and meta-programs                                            

- to automate design-flows for mapping and optimisation
16

Two Design-Flow Roles

B. Approach: Meta-Programming Design-Flow Patterns
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Two Design-Flow Roles

B. Approach: Meta-Programming Design-Flow Patterns

(1) application developer: - writes functionally correct high-level application description

(2) design-flow developer: - uses design-flow patterns and meta-programs                                            

- to automate design-flows for mapping and optimisation
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⇒ manual design-flow tasks are codified and coordinated to produce:                                                              
- end-to-end design-flows operating on high-level software descriptions         
- optimised designs with little intervention from application developers
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enabling programmatic 

analysis and source-code 
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Two Design-Flow Roles

B. Approach: Meta-Programming Design-Flow Patterns



Addressing Design-Flow Automation Challenges

C1. Abstraction: high-level pattern descriptions                                                                

- abstract implementation details for diverse targets

C2. Efficiency: source-to-source meta-programs                                                                    

- automate manual optimisation with static and dynamic analysis

C3. Customisability: pattern implementations as plug-and-play building blocks

- can be parameterised, replaced, and extended

C4. Reusability: modular design-flows facilitate patterns                                                        

- implemented once and reused in multiple design-flows (e.g. common analysis)

C5. Application-Agnosticity: optimisation is decoupled from application descriptions 

- so design-flows are application-agnostic
19
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Design-Flow Pattern Catalogue: Overview

● current catalogue contains patterns for CPU and GPU parallel targets

● requirement: facilitate modular implementations and reasoning about coordination

● a uniform template* is used to describe design-flow patterns:

○ NAME: a succinct, descriptive name for the pattern
○ INTENT: what does the pattern do?
○ MOTIVATION: why is the pattern used?
○ APPLICABILITY: what conditions must be met to apply the pattern?
○ RELATED PATTERNS (OPTIONAL): are there related patterns? 

(e.g. components, often used together)

● text-based description should clearly capture intent and applicability

○ developers can unambiguously codify expected behaviour
○ ongoing work: formalise design-flow pattern specification 

*a subset of design patterns for OOP from Gamma et al. 20

C. Design-Flow Pattern Catalogue For CPU and GPU Optimisation



Design-Flow Pattern Classification

● 4 types of design-flow patterns:

I. Analysis patterns: perform static or dynamic app analysis

II. Code-generation patterns: inject or generate new source-code

III. Transform patterns: perform source-to-source transformation

IV. Optimisation patterns: employ analysis and transform patterns 

- optimise a target metric (typically involving Design Space Exploration)

21
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Analysis Design-Flow Pattern Example

● NAME: HOTSPOT LOOP DETECTION

● INTENT: identify computationally intensive parallel loops to accelerate

● MOTIVATION: - loops are often where most time is spent during execution                

- suitable for acceleration (Amdahl’s law) 

● APPLICABILITY: applicable to any application source code

● RELATED PATTERNS: Loop Timing, Dependence Analysis

22
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Code-Generation Design-Flow Pattern Example

● NAME: HIP GPU MANAGEMENT CODE GENERATION

● INTENT: insert code required to execute an identified kernel function on GPU

● MOTIVATION: device management code is required                                            

- to inform the runtime system what to run on the GPU vs CPU                                  

- to ensure data are where they need to be for application execution

● APPLICABILITY: applicable to application code with a specified kernel function

23
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Transform Design-Flow Pattern Example

● NAME:             SHARED MEMORY BUFFER

● INTENT:           - copy the contents of a pointer argument                                                             

- into shared memory in a GPU kernel

● MOTIVATION:  on-chip shared memory                                                                             

- has limited size                                                                       

- has higher bandwidth and lower latency than global memory

● APPLICABILITY: applicable to any pointer argument for a GPU kernel                                      

- if pointer contents fit in shared memory
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Optimisation Design-Flow Pattern Example

● NAME: TUNE KERNEL LAUNCH PARAMETERS

● INTENT: determine the kernel launch parameters                                                           

- to minimise execution time, and/or                                                                         

- to maximise occupancy (e.g. block size)

● MOTIVATION: launching kernels with different thread configurations                          

- can affect execution time and GPU occupancy 

● APPLICABILITY: applicable to an application source with a GPU kernel

● RELATED PATTERNS: Set Blocksize, Kernel Timing, Calculate GPU Occupancy
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Design-Flow Pattern Catalogue 

● refer to our HERRT’22 paper for the full catalogue

● a starting point to demonstrate scope and value:                                       

recurring, application-agnostic design-flow

● not an exhaustive list of GPU/CPU patterns
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Design-Flow Patterns as Meta-Programs

● codify patterns using the Artisan meta-programming framework

○ based on libclang, supports C++ parsing and manipulation

○ unified Python environment for code analysis, instrumentation, and execution

○ true source-to-source: no progressive lowering

● key Artisan features

○ query and instrument

⇒ enables static source-code analysis and manipulation

○ application execution and runtime reporting 

⇒ enables application self-reporting for dynamic analyses

27
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Design-Flow Patterns as Meta-Programs

● example meta-programs:

(1) GPU shared memory buffer (transform)

(2) parallel hotspot loop detection (dynamic analysis)

● for more details on Artisan, refer to our paper in IEEE Transactions on 

Computers, vol. 70, no. 12, pp. 2043-2055, 1 Dec. 2021
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Hotspot Detection
D. Implementing Design-Flow Patterns as Meta-Programs



Automated End-To-End Design Flows

● implemented end-to-end HIP GPU and OpenMP CPU design-flows                                             

- comprised modular meta-programs codifying patterns from our catalogue

● applied to three HPC case-study applications: - N-Body Simulation (physics),                                    

- Bezier Surface Generation (graphics), 

- Rush Larsen ODE Solver (maths)
30
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Evaluating Design-Flow Pattern Reuse 

● 20 patterns implemented

○ 10 employed by OpenMP design-flow

○ 17 employed by HIP GPU design-flow

31
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Evaluating Design-Flow Pattern Reuse 

● 20 patterns implemented

○ 10 employed by OpenMP design-flow

○ 17 employed by HIP GPU design-flow

● 7/20 patterns shared by both design flows

32
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Evaluating Design-Flow Pattern Reuse 

● 20 patterns implemented

○ 10 employed by OpenMP design-flow

○ 17 employed by HIP GPU design-flow

● 7/20 patterns shared by both design flows

● 17/20 patterns applicable to all three case-study applications 
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Evaluating Design-Flow Pattern Reuse 

● 20 patterns implemented

○ 10 employed by OpenMP design-flow

○ 17 employed by HIP GPU design-flow

● 7/20 patterns shared by both design flows

● 17/20 patterns applicable to all three case-study applications 

● 20/20 patterns are application agnostic 34
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Evaluating Design-Flow Performance 

OpenMP CPU Experiments:

● experimental set-up:

○ 2 Intel Xeon Silver 4110 CPUS, 16 cores with SMT 
○ g++ -O2
○ consider 8, 16, 32 available threads

● performance results:

○ generally: increasing threads decreases execution 
time (nonlinear due to scheduling/mgmt overhead)

○ above 16 threads: speedup limited by SMT support

○ 12X-18X maximum speedup across case-studies
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Evaluating Design-Flow Performance 

HIP GPU Experiments:

● experimental set-up:

○ 2 NVIDIA GeForce GPUS:

■ NVIDIA GeForce GTX 1080 Ti

■ NVIDIA GeForce RTX 2080 Ti

○ hipcc -O2

● performance results:

○ generally: RTX 2080 faster than GTX 1080 (wider 

cores with advanced features)

○ 87X-1184X maximum speedup across case-studies
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Evaluating Design-Flow Performance 

➔ performance comes free                                                   

- little or no intervention from application developer

➔ generated code is human-readable                                           

- same level of abstraction as original code 

- can be further hand-tuned
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Ongoing and Future Work

➔ formalising the specification and description of design-flow patterns  

◆ using functional programming

➔ extending our design-flow pattern catalogue:

◆ FPGA OneAPI mapping and optimisation patterns

◆ patterns to support more advanced GPU optimisations

◆ application-domain specific patterns
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FCCM 2021: Flexible Instrumentation for Live On-Chip Debug of Machine Learning Training on FPGAs

JSA 2021:     In-Circuit Tuning of Deep Learning Designs 40
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Big Picture: Automating Design + Debug + Verify


