
Precise Event Sampling on x86 
architectures and its uses in profiling tools: 

Assoc. Prof. Didem Unat (dunat@ku.edu.tr)
in collaboration with Aditya Sasongko, Milind Chabbi, Paul Kelly

NANDA Workshop 5-6 Sept 2022



Precise Event Sampling
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• Hardware feature in commodity CPUs 

– Extends Performance Monitoring Units (PMUs) 

– PMUs consist hardware counters + model-specific registers (MSRs) 

• sampling hardware or software events periodically based on user-defined 

sampling period 

• attributing those samples accurately to the instructions that trigger them. 

• Examples: Intel PEBS, AMD IBS, PowerPC MRK, ARM SPE
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Profiling Tools based on Event Sampling

ReuseTracker

ComDetective
• “ComDetective: A Lightweight Communication Detection Tool for 

Threads",  IEEE/ACM Supercomputing Conference, Best Student 
Paper and Best Paper finalist for SC19.

• “ReuseTracker: Fast Yet Accurate Multicore Reuse Distance 
Analyzer”, ACM TACO and HiPEAC Conference, June 2022

• M. A. Sasongko, M. Chabbi, P. H. J. Kelly, D. Unat,  under review at IEEE TPDSAMD vs Intel
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Why detect inter-thread communication?

● Identify possible sources of performance bottlenecks
● Help explain why one threading library is better than another

○ e.g. Intel OpenMP vs GNU OpenMP
● Guide performance optimizations such as

○ thread binding
○ data structure modification
○ false sharing elimination

● Hardware design: on-chip network design, cache coherence protocol 

Local cache Local cache Local cache Local cache
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Problem with existing tools

Not accurate:
• Distortion of parallel schedule among threads by binary instrumentation 

(Pericas, et al. ICS 2014) 

Too slow to use in practice

• Unable to capture actual communication pattern in real applications

Expected

Observed
Numalize

ComDetective

Ground 
Truth
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ComDetective

Accurate

Validated against several 
benchmarks and HPC 
applications

Lightweight

Space overhead 
(1.27x) and time 
(1.3x) overhead

Sampling based

Uses ready-available 
hardware events in 
commodity CPUs

Differentiates kind of 
communication 

True sharing (necessary) vs. 
false sharing (unnecessary)

Data objects 

Attributes communication to 
program data objects

Open source (supports Intel and AMD x86 archs)

https://github.com/ParCoreLab/ParCoreTools



| 7

True Sharing

CC

● This type of communication is called true sharing

X

X

X

Cache

Cache line

Cache

CPU 0 CPU 1

Cache line

Thread 0 Thread 1

Shared memory
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False Sharing

C YC

Y

● Another possible type is false sharing
● Threads 0 and 1 access different memory regions in the same cache line

X

X

Cache

Cache line

Cache

CPU 0 CPU 1

Cache line

Thread 0 Thread 1

Shared memory
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Communication Matrix

● In addition to all communication matrix, ComDetective also produces 
true sharing and false sharing matrices

communication 
matrix

true sharing 
matrix

false sharing 
matrix

MPI communication 
matrix
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Communication Detection

core 0 core 1

PMUs Debug registers PMUsDebug registers

perf_event signal_handler

Thread T0 Thread T1

perf_eventsignal_handler

key attributes

C0 M0, L0, timestamp, T0
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Communication Detection

core 0 core 1

PMUs Debug registers PMUsDebug registers

perf_event signal_handler

Thread T0 Thread T1

perf_eventsignal_handler

key attributes

C0 M0, L0, timestamp, T0

Bulletin Board
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Accurate

Validated against 
several benchmarks

Easy to Use

Attributes profiling data to 
source code lines

Inter-thread communication analyzer. 
Published at Supercomputing’19.

Reuse distance analyzer for multithreaded code. 
Published at ACM TACO in 2022.

Lightweight

Low runtime and 
memory overhead

The first lightweight tool that 
accurately detects inter-thread 

communications. 

The first lightweight tool that 
accurately measures reuse distance 

in multicore. 

true sharing 
matrix

false sharing 
matrix

communication 
matrix

ComDetective ReuseTracker

a b c b b c a
1

2
1 0

https://github.com/ParCoreLab/ParCoreTools



Why analyze precise-event sampling?
• To understand the behavior of precise event sampling-based profiling tools

• To gain insights useful for: 
– developers of new precise event sampling features, e.g. for RISC-V architecture

– major vendors such as Intel, AMD, and ARM 

• Questions unanswered by previous research: 
– Sampling bias, memory overhead, accuracy of instruction attribution
– Stability of accuracy, accuracy in multiple events monitoring 

– Almost no study on AMD precise event sampling
– The coverage of studies on Intel PEBS has been very limited. 

13



Contributions
• In-depth analysis on precise event sampling features of Intel and AMD x86 

architectures
• Quantitative and Qualitative comparison

• Benchmark suites that evaluate various aspects of precise event sampling 
facilities
– Experiment 1: accuracy
– Experiment 2: sensitivity to sampling interval and stability

– Experiment 3: sampling bias and instruction attribution
– Experiment 4: time overhead
– Experiment 5: memory overhead

– Experiment 6: multiple event monitoring
– Experiment 7: kernel mode vs user mode detection

14



Intel PEBS
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AMD IBS
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IBS Op Instruction 
Address Register 

IBS Op Data 
Register 

IBS Op Data 2 
Register 

IBS Op Data 3 
Register 

IBS Data Linear 
Address Register 

IBS Data Physical 
Address Register 

IBS Branch Target 
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ARM SPE
• The facility in ARM, i.e. Statistical Profiling Extension (SPE), 

has the same sampling approach as IBS. 
– Its counter counts dispatched micro-operations, and therefore, 

facilitates sampling from this event.

• Our preliminary study on a high-end state-of-the art ARM 
processor 
– showed that its precise event sampling support is immature and 

cannot be directly comparable against PEBS or IBS.

17



Qualitative Differences
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Aspect Intel PEBS AMD IBS

Observation 1 Hardware counter Shares the same counters with 
other non-precise events, might 

lead to event multiplexing

Has its own counters

Observation 2 Hardware counter Counter is not randomized after 
each sample

If micro-op is monitored, counter 
is randomized after each sample

Observation 3 Sampled event Has many different events to 
select from

Can only monitor 2 events: 
instruction fetch and micro-op

Observation 4 Sampled data Might have to monitor multiple 
events to reach the same level of 

info as IBS

Offers richer set of data in each 
sample

Observation 5 Execution mode Can count event in user mode, in 
kernel mode, or in any mode 

Can only count event without 
discriminating execution mode



Quantitative Experiments
• Experiment 1: accuracy

• Experiment 2: sensitivity to sampling interval and stability

• Experiment 3: sampling bias and instruction attribution

• Experiment 4: time overhead

• Experiment 5: memory overhead

• Experiment 6: multiple event monitoring

• Experiment 7: kernel mode vs user mode detection

19



Accuracy Evaluation
Underlying observations:
• Observation 2: The counter of IBS op is randomized after interrupt handling.
• Observation 3: Intel PEBS can target more specific hardware events, while 

AMD  IBS can do only fetch or op sampling. 
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Hypothesis: 
• Based on Observations 2 and 3, we expect PEBS to have better accuracy than 

both sampling flavors of IBS in capturing samples from any hardware event.



Accuracy Evaluation
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Methodology of verification:
• Using a microbenchmark, called Accuracy-Bench benchmark, that has known 

L1 data cache miss count and configurable count of other instructions
– Ground truth of instruction sampling:  #instruction samples = #instruction 

count/sampling interval
– Ground truth of data cache miss sampling: #L1 data cache miss samples = 

#L1 data cache miss count/sampling interval
• Programming PEBS and IBS to monitor retired instructions, instruction fetches, 

micro-operations, and retired load that misses in L1 data cache of the 
microbenchmark



Accuracy Results

22

Findings:
• PEBS shows high accuracy in sampling any event.
• IBS shows high accuracy only in sampling its most general events, i.e. instruction 

fetch and executed micro-operation. 



Quantitative Experiments
• Experiment 1: accuracy

• Experiment 2: sensitivity to sampling interval and stability

• Experiment 3: sampling bias and instruction attribution

• Experiment 4: time overhead

• Experiment 5: memory overhead

• Experiment 6: multiple event monitoring

• Experiment 7: kernel mode vs user mode detection
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Sensitivity to Sampling Interval and Stability
Underlying observations:
• Observation 2: The counter of IBS op is randomized after interrupt handling.
• Observation 3: Intel PEBS can target more specific hardware events, while 

AMD  IBS can do only fetch or op sampling. 

24

Hypothesis: 
• Based on Observations 2 and 3, we expect PEBS to have higher accuracy than 

IBS under any sampling interval.
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Methodology of verification:
• Running the Accuracy-Bench benchmark under different sampling intervals
• Using the standard deviation of sample counts detected across multiple runs of  

Accuracy-Bench to measure stability

Sensitivity to Sampling Interval and Stability
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Findings:
• PEBS shows high accuracy under any sampling interval, while IBS displays high accuracy only 

under large sampling intervals.
• PEBS shows high stability in sampling all tested events across multiple runs, while IBS 

displays lower stability in sampling subset events, e.g. L1 load miss. 

Sensitivity to Sampling Interval and Stability



Quantitative Experiments
• Experiment 1: accuracy

• Experiment 2: sensitivity to sampling interval and stability

• Experiment 3: sampling bias and instruction attribution

• Experiment 4: time overhead

• Experiment 5: memory overhead

• Experiment 6: multiple event monitoring

• Experiment 7: kernel mode vs user mode detection
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Sampling Bias and Instruction Attribution
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Hypothesis: 
• We expect PEBS and IBS to have no bias in sampling from multiple different 

instructions that perform the same monitored event.
• We also expect PEBS and IBS to attribute the sampled events to the actual 

instructions that trigger those events.
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Methodology of verification:
• Using a microbenchmark, called Bias-Bench benchmark, that has 4 load 

instructions in each loop iteration
– Ground truth of sampling bias:  25% of load samples are attributed to 

each load instruction
– Ground truth of instruction attribution: none of the load samples is 

attributed to non-load instructions

Sampling Bias and Instruction Attribution



Bias-Bench Microbenchmark
• Bias-Bench with 4 load instructions in each loop iteration:

30

movq $10000000000, %rcx
movl $1, %ebx
loop0:
movl (%rax), %ebx // load 1
movl (%rax), %ebx // load 2
movl (%rax), %ebx // load 3
movl (%rax), %ebx // load 4
subq $1, %rcx // subq
cmpq $0, %rcx // cmpq
jne loop0 // jne



• Distribution of samples:
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Sampling Bias and Instruction Attribution

Instruction Expected Intel PEBS load AMD IBS op

load 1 25% 58.6% 0%

load 2 25% 9.04% 3.58%

load 3 25% 18.34% 62.14%

load 4 25% 14.02% 4.64%

subq 0% 0% 29.62%

Findings:
• Both PEBS and IBS are equally biased in sampling from multiple instructions.
• PEBS records the addresses of the instructions that trigger the sampled events, while IBS 

op records the addresses of the instructions that execute after the triggering instructions.



Quantitative Experiments
• Experiment 1: accuracy

• Experiment 2: sensitivity to sampling interval and stability

• Experiment 3: sampling bias and instruction attribution

• Experiment 4: time overhead

• Experiment 5: memory overhead

• Experiment 6: multiple event monitoring

• Experiment 7: kernel mode vs user mode detection

32



Time Overhead
Underlying observations:
• Observation 3: Intel PEBS can target more specific hardware events, while 

AMD  IBS can do only fetch or op sampling. 

33

Hypothesis: 
• Based on Observation 3, we expect PEBS that monitors a specific hardware 

event, e.g., L1 data cache load miss, to incur lower overhead than IBS as it 
will most likely encounter fewer sampling interrupts than IBS.



Time Overhead
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Findings:
• PEBS incurs slightly lower time overhead on Rodinia benchmarks without OS signal 

delivery. -> PEBS hardware and microcode work more efficiently in recording data
• Both PEBS and IBS have significantly higher time overhead when OS signal delivery is 

enabled.
• Time overhead of PEBS is much higher when OS signal is enabled.



Quantitative Experiments
• Experiment 1: accuracy

• Experiment 2: sensitivity to sampling interval and stability

• Experiment 3: sampling bias and instruction attribution

• Experiment 4: time overhead

• Experiment 5: memory overhead

• Experiment 6: multiple event monitoring

• Experiment 7: kernel mode vs user mode detection
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Memory Overhead
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Hypothesis: 
• We expect both PEBS and IBS to have low memory overheads as we do not 

process sampled data in any signal handler.

Methodology of verification:
• Measuring memory overhead in terms of maximum resident set size in main 

memory with and without OS signal delivery enabled 
• Collecting the memory consumption data together with the runtime data from 

Accuracy-Bench and Rodinia benchmarks

Findings:
• The measured memory overheads are all less than 0.3%.



Quantitative Experiments
• Experiment 1: accuracy

• Experiment 2: sensitivity to sampling interval and stability

• Experiment 3: sampling bias and instruction attribution

• Experiment 4: time overhead

• Experiment 5: memory overhead

• Experiment 6: multiple event monitoring

• Experiment 7: kernel mode vs user mode detection
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Multiple Event Monitoring
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Underlying observations:
• Observation 1: PEBS shares the same counters with other non-precise PMU 

events, while IBS has its own counters.
• Observation 2: The counter of IBS op is randomized after interrupt handling.
• Observation 3: Intel PEBS can target more specific hardware events, while AMD 

IBS can do only fetch or op sampling. 

Motivation:
• Observation 4: PEBS might have to monitor multiple events simultaneously to 

produce the same level of info as IBS.



Multiple Event Monitoring

39

Hypothesis: 
• Based on Observations 1, 2, and 3, we expect PEBS to be more accurate than IBS 

as long as the number of monitored events is less than or equal to the number of 
general-purpose counters.

• If #events > #counters, each event will lose a fraction of samples due to event 
multiplexing

Methodology of verification:
• Developing a microbenchmark that has known numbers of load, store, branch, 

taken branch, return, and locked load instructions.
• Monitoring one, four, five and six of these events in separate runs using PEBS
• Monitoring micro-operation using IBS,which already captures all these events



Multiple Event Monitoring
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Findings:
• If the number of events that are simultaneously monitored is higher than the 

general purpose counters in PEBS, accuracy of PEBS drops.
• (Not shown) Time overhead is affected by the number of sampling interrupts 

rather than the number of events monitored because of event multiplexing.



Quantitative Experiments
• Experiment 1: accuracy

• Experiment 2: sensitivity to sampling interval and stability

• Experiment 3: sampling bias and instruction attribution

• Experiment 4: time overhead

• Experiment 5: memory overhead

• Experiment 6: multiple event monitoring

• Experiment 7: kernel mode vs user mode detection
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Methodology of verification:
• Using a microbenchmark, called Exec-Mode benchmark, that executes 1 billion 

locked load operations in kernel space and has no such operation in user 
space.
– Ground truth of sampling bias: no locked load sample detected in user 

space

Kernel Mode vs User Mode Detection

Findings:
• From 5 runs of the benchmark, PEBS always shows no detection of locked load 

sample in user mode, while IBS shows detects 41 locked load samples on 
average out of 10K expected samples in user space.



Summary 
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Submitted to TPDS and is under review
Publicly available code and benchmark repository: https://github.com/ParCoreLab/ParCoreTools

larger set of specific events

more accurate 

less time overhead

more stable

more accurate in detecting 
execution mode

richer info per sample

dedicated counter per 
event
no accuracy loss due to 
multiplexing

bias

low 
memory 
overhead

high signal 
overhead

https://github.com/ParCoreLab/ParCoreTools
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