
Precise Event Sampling on x86
architectures and its uses in profiling tools:

Assoc. Prof. Didem Unat (dunat@ku.edu.tr)
in collaboration with Aditya Sasongko, Milind Chabbi, Paul Kelly

NANDA Workshop 5-6 Sept 2022

Precise Event Sampling

2

• Hardware feature in commodity CPUs

– Extends Performance Monitoring Units (PMUs)

– PMUs consist hardware counters + model-specific registers (MSRs)

• sampling hardware or software events periodically based on user-defined

sampling period

• attributing those samples accurately to the instructions that trigger them.

• Examples: Intel PEBS, AMD IBS, PowerPC MRK, ARM SPE

| 3

Profiling Tools based on Event Sampling

ReuseTracker

ComDetective
• “ComDetective: A Lightweight Communication Detection Tool for

Threads", IEEE/ACM Supercomputing Conference, Best Student
Paper and Best Paper finalist for SC19.

• “ReuseTracker: Fast Yet Accurate Multicore Reuse Distance
Analyzer”, ACM TACO and HiPEAC Conference, June 2022

• M. A. Sasongko, M. Chabbi, P. H. J. Kelly, D. Unat, under review at IEEE TPDSAMD vs Intel

| 4

Why detect inter-thread communication?

● Identify possible sources of performance bottlenecks
● Help explain why one threading library is better than another

○ e.g. Intel OpenMP vs GNU OpenMP
● Guide performance optimizations such as

○ thread binding
○ data structure modification
○ false sharing elimination

● Hardware design: on-chip network design, cache coherence protocol

Local cache Local cache Local cache Local cache

| 55

Problem with existing tools

Not accurate:
• Distortion of parallel schedule among threads by binary instrumentation

(Pericas, et al. ICS 2014)

Too slow to use in practice

• Unable to capture actual communication pattern in real applications

Expected

Observed
Numalize

ComDetective

Ground
Truth

| 6

ComDetective

Accurate

Validated against several
benchmarks and HPC
applications

Lightweight

Space overhead
(1.27x) and time
(1.3x) overhead

Sampling based

Uses ready-available
hardware events in
commodity CPUs

Differentiates kind of
communication

True sharing (necessary) vs.
false sharing (unnecessary)

Data objects

Attributes communication to
program data objects

Open source (supports Intel and AMD x86 archs)

https://github.com/ParCoreLab/ParCoreTools

| 7

True Sharing

CC

● This type of communication is called true sharing

X

X

X

Cache

Cache line

Cache

CPU 0 CPU 1

Cache line

Thread 0 Thread 1

Shared memory

| 8

False Sharing

C YC

Y

● Another possible type is false sharing
● Threads 0 and 1 access different memory regions in the same cache line

X

X

Cache

Cache line

Cache

CPU 0 CPU 1

Cache line

Thread 0 Thread 1

Shared memory

| 9

Communication Matrix

● In addition to all communication matrix, ComDetective also produces
true sharing and false sharing matrices

communication
matrix

true sharing
matrix

false sharing
matrix

MPI communication
matrix

| 10

Communication Detection

core 0 core 1

PMUs Debug registers PMUsDebug registers

perf_event signal_handler

Thread T0 Thread T1

perf_eventsignal_handler

key attributes

C0 M0, L0, timestamp, T0

Bulletin Board

1

1

2

2

3

| 11

Communication Detection

core 0 core 1

PMUs Debug registers PMUsDebug registers

perf_event signal_handler

Thread T0 Thread T1

perf_eventsignal_handler

key attributes

C0 M0, L0, timestamp, T0

Bulletin Board

1

1 2

23

12

Accurate

Validated against
several benchmarks

Easy to Use

Attributes profiling data to
source code lines

Inter-thread communication analyzer.
Published at Supercomputing’19.

Reuse distance analyzer for multithreaded code.
Published at ACM TACO in 2022.

Lightweight

Low runtime and
memory overhead

The first lightweight tool that
accurately detects inter-thread

communications.

The first lightweight tool that
accurately measures reuse distance

in multicore.

true sharing
matrix

false sharing
matrix

communication
matrix

ComDetective ReuseTracker

a b c b b c a
1

2
1 0

https://github.com/ParCoreLab/ParCoreTools

Why analyze precise-event sampling?
• To understand the behavior of precise event sampling-based profiling tools

• To gain insights useful for:
– developers of new precise event sampling features, e.g. for RISC-V architecture

– major vendors such as Intel, AMD, and ARM

• Questions unanswered by previous research:
– Sampling bias, memory overhead, accuracy of instruction attribution
– Stability of accuracy, accuracy in multiple events monitoring

– Almost no study on AMD precise event sampling
– The coverage of studies on Intel PEBS has been very limited.

13

Contributions
• In-depth analysis on precise event sampling features of Intel and AMD x86

architectures
• Quantitative and Qualitative comparison

• Benchmark suites that evaluate various aspects of precise event sampling
facilities
– Experiment 1: accuracy
– Experiment 2: sensitivity to sampling interval and stability

– Experiment 3: sampling bias and instruction attribution
– Experiment 4: time overhead
– Experiment 5: memory overhead

– Experiment 6: multiple event monitoring
– Experiment 7: kernel mode vs user mode detection

14

Intel PEBS

15

Event Select 0 Interrupt
Handler7

PEBS
Buffer

PEBS
Record 0

General
Purpose
Registers

+
R/EFLAGS

+
R/EIP

6

PMC 0

Event Select 1

PMC 1

IA32_PERF_
GLOBAL_CTRL

IA32_PEBS_
ENABLE

retired
load
3

4 -N

5

retired
store
3

4 -N

1

2

AMD IBS

16

IBS Op Instruction
Address Register

IBS Op Data
Register

IBS Op Data 2
Register

IBS Op Data 3
Register

IBS Data Linear
Address Register

IBS Data Physical
Address Register

IBS Branch Target
Address Register

MSRs of Sampled Data

IBS Execution
Control Register

Op Counter

Interrupt
Handler

1

4

1

4

3

2

ARM SPE
• The facility in ARM, i.e. Statistical Profiling Extension (SPE),

has the same sampling approach as IBS.
– Its counter counts dispatched micro-operations, and therefore,

facilitates sampling from this event.

• Our preliminary study on a high-end state-of-the art ARM
processor
– showed that its precise event sampling support is immature and

cannot be directly comparable against PEBS or IBS.

17

Qualitative Differences

18

Aspect Intel PEBS AMD IBS

Observation 1 Hardware counter Shares the same counters with
other non-precise events, might

lead to event multiplexing

Has its own counters

Observation 2 Hardware counter Counter is not randomized after
each sample

If micro-op is monitored, counter
is randomized after each sample

Observation 3 Sampled event Has many different events to
select from

Can only monitor 2 events:
instruction fetch and micro-op

Observation 4 Sampled data Might have to monitor multiple
events to reach the same level of

info as IBS

Offers richer set of data in each
sample

Observation 5 Execution mode Can count event in user mode, in
kernel mode, or in any mode

Can only count event without
discriminating execution mode

Quantitative Experiments
• Experiment 1: accuracy

• Experiment 2: sensitivity to sampling interval and stability

• Experiment 3: sampling bias and instruction attribution

• Experiment 4: time overhead

• Experiment 5: memory overhead

• Experiment 6: multiple event monitoring

• Experiment 7: kernel mode vs user mode detection

19

Accuracy Evaluation
Underlying observations:
• Observation 2: The counter of IBS op is randomized after interrupt handling.
• Observation 3: Intel PEBS can target more specific hardware events, while

AMD IBS can do only fetch or op sampling.

20

Hypothesis:
• Based on Observations 2 and 3, we expect PEBS to have better accuracy than

both sampling flavors of IBS in capturing samples from any hardware event.

Accuracy Evaluation

21

Methodology of verification:
• Using a microbenchmark, called Accuracy-Bench benchmark, that has known

L1 data cache miss count and configurable count of other instructions
– Ground truth of instruction sampling: #instruction samples = #instruction

count/sampling interval
– Ground truth of data cache miss sampling: #L1 data cache miss samples =

#L1 data cache miss count/sampling interval
• Programming PEBS and IBS to monitor retired instructions, instruction fetches,

micro-operations, and retired load that misses in L1 data cache of the
microbenchmark

Accuracy Results

22

Findings:
• PEBS shows high accuracy in sampling any event.
• IBS shows high accuracy only in sampling its most general events, i.e. instruction

fetch and executed micro-operation.

Quantitative Experiments
• Experiment 1: accuracy

• Experiment 2: sensitivity to sampling interval and stability

• Experiment 3: sampling bias and instruction attribution

• Experiment 4: time overhead

• Experiment 5: memory overhead

• Experiment 6: multiple event monitoring

• Experiment 7: kernel mode vs user mode detection

23

Sensitivity to Sampling Interval and Stability
Underlying observations:
• Observation 2: The counter of IBS op is randomized after interrupt handling.
• Observation 3: Intel PEBS can target more specific hardware events, while

AMD IBS can do only fetch or op sampling.

24

Hypothesis:
• Based on Observations 2 and 3, we expect PEBS to have higher accuracy than

IBS under any sampling interval.

25

Methodology of verification:
• Running the Accuracy-Bench benchmark under different sampling intervals
• Using the standard deviation of sample counts detected across multiple runs of

Accuracy-Bench to measure stability

Sensitivity to Sampling Interval and Stability

26

Findings:
• PEBS shows high accuracy under any sampling interval, while IBS displays high accuracy only

under large sampling intervals.
• PEBS shows high stability in sampling all tested events across multiple runs, while IBS

displays lower stability in sampling subset events, e.g. L1 load miss.

Sensitivity to Sampling Interval and Stability

Quantitative Experiments
• Experiment 1: accuracy

• Experiment 2: sensitivity to sampling interval and stability

• Experiment 3: sampling bias and instruction attribution

• Experiment 4: time overhead

• Experiment 5: memory overhead

• Experiment 6: multiple event monitoring

• Experiment 7: kernel mode vs user mode detection

27

Sampling Bias and Instruction Attribution

28

Hypothesis:
• We expect PEBS and IBS to have no bias in sampling from multiple different

instructions that perform the same monitored event.
• We also expect PEBS and IBS to attribute the sampled events to the actual

instructions that trigger those events.

29

Methodology of verification:
• Using a microbenchmark, called Bias-Bench benchmark, that has 4 load

instructions in each loop iteration
– Ground truth of sampling bias: 25% of load samples are attributed to

each load instruction
– Ground truth of instruction attribution: none of the load samples is

attributed to non-load instructions

Sampling Bias and Instruction Attribution

Bias-Bench Microbenchmark
• Bias-Bench with 4 load instructions in each loop iteration:

30

movq $10000000000, %rcx
movl $1, %ebx
loop0:
movl (%rax), %ebx // load 1
movl (%rax), %ebx // load 2
movl (%rax), %ebx // load 3
movl (%rax), %ebx // load 4
subq $1, %rcx // subq
cmpq $0, %rcx // cmpq
jne loop0 // jne

• Distribution of samples:

31

Sampling Bias and Instruction Attribution

Instruction Expected Intel PEBS load AMD IBS op

load 1 25% 58.6% 0%

load 2 25% 9.04% 3.58%

load 3 25% 18.34% 62.14%

load 4 25% 14.02% 4.64%

subq 0% 0% 29.62%

Findings:
• Both PEBS and IBS are equally biased in sampling from multiple instructions.
• PEBS records the addresses of the instructions that trigger the sampled events, while IBS

op records the addresses of the instructions that execute after the triggering instructions.

Quantitative Experiments
• Experiment 1: accuracy

• Experiment 2: sensitivity to sampling interval and stability

• Experiment 3: sampling bias and instruction attribution

• Experiment 4: time overhead

• Experiment 5: memory overhead

• Experiment 6: multiple event monitoring

• Experiment 7: kernel mode vs user mode detection

32

Time Overhead
Underlying observations:
• Observation 3: Intel PEBS can target more specific hardware events, while

AMD IBS can do only fetch or op sampling.

33

Hypothesis:
• Based on Observation 3, we expect PEBS that monitors a specific hardware

event, e.g., L1 data cache load miss, to incur lower overhead than IBS as it
will most likely encounter fewer sampling interrupts than IBS.

Time Overhead

34

Findings:
• PEBS incurs slightly lower time overhead on Rodinia benchmarks without OS signal

delivery. -> PEBS hardware and microcode work more efficiently in recording data
• Both PEBS and IBS have significantly higher time overhead when OS signal delivery is

enabled.
• Time overhead of PEBS is much higher when OS signal is enabled.

Quantitative Experiments
• Experiment 1: accuracy

• Experiment 2: sensitivity to sampling interval and stability

• Experiment 3: sampling bias and instruction attribution

• Experiment 4: time overhead

• Experiment 5: memory overhead

• Experiment 6: multiple event monitoring

• Experiment 7: kernel mode vs user mode detection

35

Memory Overhead

36

Hypothesis:
• We expect both PEBS and IBS to have low memory overheads as we do not

process sampled data in any signal handler.

Methodology of verification:
• Measuring memory overhead in terms of maximum resident set size in main

memory with and without OS signal delivery enabled
• Collecting the memory consumption data together with the runtime data from

Accuracy-Bench and Rodinia benchmarks

Findings:
• The measured memory overheads are all less than 0.3%.

Quantitative Experiments
• Experiment 1: accuracy

• Experiment 2: sensitivity to sampling interval and stability

• Experiment 3: sampling bias and instruction attribution

• Experiment 4: time overhead

• Experiment 5: memory overhead

• Experiment 6: multiple event monitoring

• Experiment 7: kernel mode vs user mode detection

37

Multiple Event Monitoring

38

Underlying observations:
• Observation 1: PEBS shares the same counters with other non-precise PMU

events, while IBS has its own counters.
• Observation 2: The counter of IBS op is randomized after interrupt handling.
• Observation 3: Intel PEBS can target more specific hardware events, while AMD

IBS can do only fetch or op sampling.

Motivation:
• Observation 4: PEBS might have to monitor multiple events simultaneously to

produce the same level of info as IBS.

Multiple Event Monitoring

39

Hypothesis:
• Based on Observations 1, 2, and 3, we expect PEBS to be more accurate than IBS

as long as the number of monitored events is less than or equal to the number of
general-purpose counters.

• If #events > #counters, each event will lose a fraction of samples due to event
multiplexing

Methodology of verification:
• Developing a microbenchmark that has known numbers of load, store, branch,

taken branch, return, and locked load instructions.
• Monitoring one, four, five and six of these events in separate runs using PEBS
• Monitoring micro-operation using IBS,which already captures all these events

Multiple Event Monitoring

40

Findings:
• If the number of events that are simultaneously monitored is higher than the

general purpose counters in PEBS, accuracy of PEBS drops.
• (Not shown) Time overhead is affected by the number of sampling interrupts

rather than the number of events monitored because of event multiplexing.

Quantitative Experiments
• Experiment 1: accuracy

• Experiment 2: sensitivity to sampling interval and stability

• Experiment 3: sampling bias and instruction attribution

• Experiment 4: time overhead

• Experiment 5: memory overhead

• Experiment 6: multiple event monitoring

• Experiment 7: kernel mode vs user mode detection

41

42

Methodology of verification:
• Using a microbenchmark, called Exec-Mode benchmark, that executes 1 billion

locked load operations in kernel space and has no such operation in user
space.
– Ground truth of sampling bias: no locked load sample detected in user

space

Kernel Mode vs User Mode Detection

Findings:
• From 5 runs of the benchmark, PEBS always shows no detection of locked load

sample in user mode, while IBS shows detects 41 locked load samples on
average out of 10K expected samples in user space.

Summary

43

Submitted to TPDS and is under review
Publicly available code and benchmark repository: https://github.com/ParCoreLab/ParCoreTools

larger set of specific events

more accurate

less time overhead

more stable

more accurate in detecting
execution mode

richer info per sample

dedicated counter per
event
no accuracy loss due to
multiplexing

bias

low
memory
overhead

high signal
overhead

https://github.com/ParCoreLab/ParCoreTools

Acknowledgement

44

• The work is supported by the Scientific and Technological Research Council of Turkey
(TUBITAK), Grant no. 120E492.

• Dr. Didem Unat is supported by the Royal Society-Newton Advanced Fellowship.

• This project has received funding from the European High-Performance Computing Joint
Undertaking under grant agreement No. 956213

.

45

