
intelligent Digital Systems Lab

Efficient Deployment of CNNs under Resource Constraints

Christos-Savvas Bouganis

christos-savvas.bouganis@imperial.ac.uk

mailto:Christos-savvas.bouganis@imperial.ac.uk

intelligent Digital Systems Lab

Our vision

To research and develop intelligent autonomous systems

“see”

+

“understand” “process”

+

Challenges: high performance, low power, limited resources

intelligent Digital Systems Lab

Many Machine Learning success stories

PREPRINT: Accepted for publication at the IEEE Consumer Electronics Magazine (CEM).PREPRINT: Accepted for publication at the IEEE Consumer Electronics Magazine (CEM).
1

Approximate LSTMs for Time-Constrained Inference:
Enabling Fast Reaction in Self-Driving Cars

Alexandros Kouris†, Stylianos I. Venieris‡, Michail Rizakis† and Christos-Savvas Bouganis†
†Electrical & Electronic Engineering Department, Imperial College London, UK

email: {a.kouris16,michail.rizakis14,christos-savvas.bouganis}@imperial.ac.uk
‡Samsung AI Center (SAIC), Cambridge, UK - email: s.venieris@samsung.com

Abstract—The need to recognise long-term dependencies
in sequential data such as video streams has made Long
Short-Term Memory (LSTM) networks a prominent Arti-
ficial Intelligence model for many emerging applications.
However, the high computational and memory demands
of LSTMs introduce challenges in their deployment on
latency-critical systems such as self-driving cars which are
equipped with limited computational resources on-board.
In this paper we introduce a progressive inference comput-
ing scheme that combines model pruning and computation
restructuring leading to the best possible approximation
of the result given the available latency budget of the
target application. The proposed methodology enables
mission-critical systems to make informed decisions even
in early stages of the computation, based on approximate
LSTM inference, meeting their specifications on safety and
robustness. Our experiments on a state-of-the-art driving
model for autonomous vehicle navigation demonstrate that
the proposed approach can yield outputs with similar
quality of result compared to a faithful LSTM baseline,
up to 415⇥ faster (198⇥ on average, 76⇥ geo. mean).

I. INTRODUCTION

Recurrent neural networks (RNNs) are a family of
machine learning models with the ability to recognise
patterns in sequential and temporal data. In the past
decade, long short-term memory (LSTM) networks [1]
have emerged as the dominant RNN by setting the state-
of-the-art record in various AI tasks, such as machine
translation and video understanding. Among the various
LSTM-enabled applications, time-constrained mission-
critical systems [2] are rapidly becoming an ubiquitous
scenario. In this setting, AI agents are equipped with
LSTM-based mechanisms of sensing, perceiving and,
eventually, acting [3]. In such scenarios, making the
most informed decision under a limited time budget is
of vital importance in order to ensure the robust, safe
and successful operation of the system within complex
and uncertain environments [4].

Fig. 1 depicts an example of such a latency-critical
system. In this case, a driverless car navigates au-
tonomously in an urban environment under the control of
an LSTM that predicts the desired throttle/brake position

br
ak

e
th

ro
ttl

e Steering angle

Fig. 1: Throttle/brake and steering angle prediction for
autonomous driving with an LSTM model (trained on
the dataset of [6]), relying on visual inputs.

Video & Webpage: www.imperial.ac.uk/intelligent-digital-systems/approx-lstms/

and steering angle based on the input video sequence.
With human driver reaction time ranging between 0.7
and 3 seconds (varying with situation and individual
person) [5], autonomous driving systems target a relevant
low-latency envelope to take action from the moment an
event occurs on the road, in order to preserve the ability
of achieving comparable reliability with humans. In this
respect, extracting the best possible approximation of the
desired action to be commanded within the real-time
latency constraints is preferred from a more accurate
decision later in time.

From a technical viewpoint, performing the most
informed action under a time budget reduces to the
problem of obtaining the highest quality output from an
LSTM given a constraint in computation time. Current
methods of deploying LSTMs follow the behaviour
depicted in Fig. 2. Conventional implementations [7],
[8] require the whole inference computation to finish
in order to obtain meaningful information from the
LSTM and thus prolong the sensing-to-action loop with
potentially catastrophic effects. Instead, the stringent
latency deadlines of real-life systems call for progressive
inference designs that can provide the best possible
estimate of their final output for a given time budget
and improve on it as more time budget becomes available
(Fig. 2). This property would enable the agent to exploit

ar
X

iv
:1

90
5.

00
68

9v
2

 [e
es

s.S
P]

 3
0

O
ct

 2
01

9

intelligent Digital Systems Lab

S. Bianco, R. Cadene, L. Celona and P. Napoletano, "Benchmark Analysis of Representative Deep Neural Network Architectures," in IEEE Access, vol. 6, pp. 64270-64277, 2018, doi: 10.1109/ACCESS.2018.2877890.

Evolution of ML classification models

Observation: A fast evolving Pareto front that requires tools

intelligent Digital Systems Lab

DNNs in the Embedded Space – Variability in Performance Requirements

High-Throughput Applications
Low-Latency Applications

Multiobjective Applications

?

surveillance

Smart homes/cities

Aerial Monitoring

Scene Understanding

Autonomous Driving

5

Performance

Power
Consumption

intelligent Digital Systems Lab

What do we need

FPGA

Objectives
- Throughput
- Latency
- Resources
- Power Challenging?

intelligent Digital Systems Lab

What do we need

FPGA

Objectives
- Throughput
- Latency
- Resources
- Power Challenging? It depends

intelligent Digital Systems Lab

Customisation leads to efficiency and performance

8

Customisation

FPGAs

Custom datapath

Custom memory subsystem

GPUs
Tegra K1, X1 and X2

Generic Application Specific

DSPs
Qualcomm Hexagon,
Apple Neural Engine,

ASICs
TPU

intelligent Digital Systems Lab

The Challenge of the Mapping Problem

Parameters Value

LC 2M

BRAMS (36kbits) 1,880

DSPs 3,360

Architecture
(P1,P2,…,PN)Specifications

- Latency
- Throughput
- Power consumption

Challenges:
- Diversity of operations in modern NN
- Diversity and resources of modern FPGAs
- Competition (or need for performance) =>

Highly customised architecture
- Large number of parameters in the target

architecture => DSE

intelligent Digital Systems Lab

Network Description FPGA Target Platform
Specifications

Automated Design
Space Exploration

Network Hardware
Mapping

Supplied by
Deep Learning Expert

Performance
Requirements

fpgaConvNet

fpgaConvNet: Mapping CNNs to FPGAs

Under the hood: Convolutional Neural Networks (ConvNets)

11

convolution
+ nonlinearity

pooling convolution
+ nonlinearity

pooling

• ConvNet Inference

– Tailored to images and data with spatial patterns

– Built as a sequence of layers (Convolutional, Nonlinearity and Pooling Layer)

– Feedforward operation

– Inherently streaming
Multiple dot

products
Nonlinear
Operator

Max or average
in a vector

fpgaConvNet – Streaming Architecture for CNNs

Src
Sliding

Window Fork

Conv Unit

Conv Unit

Conv Unit

Conv Unit

Nonlin
Unit

Nonlin
Unit

Nonlin
Unit

Nonlin
Unit

Sliding
Window

Sliding
Window

Sliding
Window

Sliding
Window

Pool Unit

Pool Unit

Pool Unit

Pool Unit

Memory
Interface

Convolutional Layer with 4 filters Nonlin
Layer

Pooling Layer

Sliding
Window

Sliding
Window

Sliding
Window

Sliding
Window

Fork

Fork

Fork

Fork

Convolutional Layer

fpgaConvNet – Streaming Architecture for CNNs

Src
Sliding

Window Fork

Conv
Unit

Conv
Unit

Conv
Unit

Conv
Unit

Nonlin
Unit

Nonlin
Unit

Nonlin
Unit

Nonlin
Unit

Sliding
Window

Sliding
Window

Sliding
Window

Sliding
Window

Pool Unit

Pool Unit

Pool Unit

Pool Unit

Sliding
Window

Sliding
Window

Sliding
Window

Sliding
Window

Fork

Fork

Fork

Fork

CNN Hardware SDF Graph

0
1
2
3
4
5
6

0 5 10

Th
ro

ug
hp

ut

Resources

Design Space

Current Design
PointFPGA 2

FPGA 1Complex Modelè Bottlenecks:
− Limited compute resources
− Limited on-chip memory capacity for model parameters
− Limited off-chip memory bandwidth

Define a set of graph transformations to traverse the
design space in fast and principled way

Transformations 1 & 2: Coarse- and fine-grained Folding

Src
Sliding

Window Fork

Conv Unit

Conv Unit

Nonlin
Unit

Nonlin
Unit

Sliding
Window

Sliding
Window

Pool Unit

Pool Unit

Sliding
Window

Sliding
Window

Fork

Fork

2 Convolutions/cycle

Compute Resources

Required Bandwidth
Transformation 2

Fine-grained Folding

Transformation 3: Graph Partitioning with Reconfiguration

7x7 Conv, 16

5x5 Conv, 64

3x3 Conv, 256

ReLU

ReLU

ReLU

2x2 Max Pool

2x2 Max Pool

Conv Layer 1
K: 7x7
S: 1
Nout: 16

Nonlin Layer 1
Type: ReLU
Nout: 16

Pool Layer 1
P: 2x2
S: 2
Nout: 16

Conv Layer 2
K: 5x5
S: 1
Nout: 64

Nonlin Layer 2
Type: ReLU
Nout: 64

Pool Layer 2
P: 2x2
S: 2
Nout: 64

Conv Layer 3
K: 3x3
S: 1
Nout: 245

Nonlin Layer 3
Type: ReLU
Nout: 256

1) Exceeding the available
compute resources

2) Not enough on-chip
memory capacity FPGA Reconfiguration

Transformation 4: Weights Reloading

Workload 1

Conv Layer 1
K: 7x7
S: 1
Nout: 16

Nonlin Layer 1
Type: ReLU
Nout: 16

Pool Layer 1
P: 2x2
S: 2
Nout: 16

Workload 2

Conv Layer 2
K: 5x5
S: 1
Nout: 64

Nonlin Layer 2
Type: ReLU
Nout: 64

Pool Layer 2
P: 2x2
S: 2
Nout: 64

Conv Layer 3
K: 3x3
S: 1
Nout: 245

Nonlin Layer 3
Type: ReLU
Nout: 256

Workload 3

Convolution
Bank
max K: 7x7

Nonlinear
Bank
Type: ReLU

Pooling
Bank
max P: 2x2

Generated Reference Architecture

Input
Data

7x7 Conv, 16

5x5 Conv, 64

3x3 Conv, 256

ReLU

ReLU

ReLU

2x2 Max Pool

2x2 Max Pool

Input Data

fpgaConvNet – Design Space Exploration and Optimisation

• Synchronous Dataflow Modelling

− Capture hardware mappings as matrices

− Transformations as algebraic operations

− Analytical performance model

− Cast design space exploration
as a mathematical optimisation problem

Design 1

Design 2

Hardware Stages Interconnections

duce the feature maps matrix, Fmap, and the data matrix,
P , and form the work matrix, W as shown below.

W = Fmap � P

To find the initiation interval of each block, it su�ces to
divide W by �, element by element.

II = W ↵ �
where II is the initiation interval matrix. Each element
of II gives the number of cycles required by each hardware
block along the pipeline to consume its workload. The block
with the longest initiation interval determines the initiation
interval of the whole SDFG and can be found as the maxi-
mum element of II, denoted by IImax. The execution time
for a batch of B inputs can be estimated by Eq. (4).

t(B,�) =
1

clock rate
· (D + IImax · (B � 1)) (4)

where D is the maximum between the size of the input, e.g.
the size of an image, and the pipeline depth of the SDFG.
In the case where graph partitioning with reconfiguration
is introduced and the SDFG is partitioned into subgraphs
that are executed sequentially after FPGA reconfiguration,
the overall execution time can be estimated by summing the
execution times of all the subgraphs. For this case, we ex-
tend the notation of Eq. (4) with ti to denote the execution
time of the ith partition. Between consecutive subgraphs,
the overhead for the ith reconfiguration, ti,reconfig., has to
be included. Eq. (5) gives the total execution time for NP

partitions.

ttotal(B,NP ,�) =
NPX

i=1

ti(B,�i) +
NP�1X

i=1

ti,reconfig. (5)

where �i is the topology matrix of the ith partition. By
assuming full reconfiguration of the FPGA, ti,reconfig. can
be considered constant for all i. In this case, Eq. (5) can be
simplified as:

ttotal(B,NP ,�) =
NPX

i=1

ti(B,�i) + (NP � 1) · treconfig. (6)

Eq. (6) shows that the reconfiguration overhead is indepen-
dent of the batch size, B. Therefore, by either increasing
the batch size or the size of the inputs, the first term dom-
inates the execution time and the cost of reconfiguration is
amortised. In practice, the upper bound of B is limited by
the capacity, Cmem, of the o↵-chip memory and we cap its
maximum value to this bound.

For low-latency applications, weights reloading is utilised
in place of graph partitioning with reconfiguration. In this
case, we have a single �ref matrix representing the de-
rived reference design and di↵erent workloads for each of
the NP subgraphs which are scheduled sequentially. When-
ever the data have to enter the ith subgraph, the overhead,
ti,weights, of the transfer of the subgraph’s weights from the
o↵-chip memory has to be included and is calculated using
the amount of subgraph’s weights and the memory band-
width. Eq. (7) gives the overall execution time in the case
of a low-latency design with weights reloading.

ttotal(M,NP ,�ref) =
NPX

i=1

ti(M,�ref) +
NPX

i=1

ti,weights (7)

Finally, the throughput of an implementation of a particu-
lar ConvNet in GOp/s which requires WConvNet GOp/input
can be estimated as in Eq. (8) and its latency in s/input as
in Eq. (9).

Algorithm 1 Workload Alignment for Weights Reloading
Inputs:
1: Dimensions (M ⇥N) of the reference �ref

2: Index i of the subgraph to be aligned
3: Workload matrix W i 2 RK⇥L

4: Shift vector si 2 ZL with the alignment shifts for each column
5: Identity matrices Ir

N⇥N
and Il

M⇥M

6: Lower shift matrices Sr

N⇥N
and Sl

M⇥M

Steps:

1: W aligned =
h

W i

0(M�K)⇥L
,0M⇥(N�L)

i

2: for all col in the ith subgraph that need alignment do
3: - - - Align along the pipeline, (right shift) - - -
4: - Form right alignment matrix Ar 2 RN⇥N -

5: Ar =


Ir

1:col�1,S
r

col:col+si
col

, Ir

col+si
col

+1:N

�

6: - Update the overall right alignment matrix -
7: Ar

o = Ar ·Ar · ... ·Ar

| {z }
si
col

8: W aligned = W aligned ·Ar>
o

9: - - - Align the interconnections (down shift) - - -
10: - Form left alignment matrix Al 2 RM⇥M -

11: Al =


Il

1:col�2,S
l

col�1:col+si
col

�1
, Il

col+si
col

:M

�

12: - Update the overall left alignment matrix -
13: Al

o = Al ·Al · ... ·Al

| {z }
si
col

14: W aligned

col:col+si
col

= Al
o ·W aligned

col:col+si
col

15: end for

Note: The subscript start:end denotes a range of columns.

T (B,NP ,�) =
WConvNet

ttotal(B,NP ,�)/B
(8)

L(B = 1, NP ,�) = ttotal(1, NP ,�) (9)

5.5 Workload Alignment
In the weights reloading transformation, when a subgraph

is mapped to the reference architecture, the execution of
its layers is scheduled on the instantiated building blocks.
For a reference design and a subgraph with N and L build-
ing blocks respectively, we have a topology matrix �ref 2
RM⇥N and a workload matrix W i 2 RK⇥L for the ith
subgraph, where K  M and L  N . In order to calcu-
late the execution time ti(B,�ref) of the ith subgraph on
the reference architecture, the columns of W i have to be
aligned so that they map on the correct column of �ref .
To achieve this, a new matrix W aligned 2 RM⇥N is con-
structed which contains the rows and columns of W i with
the correct alignment. After W aligned has been created,
the ith initiation interval matrix can be computed correctly
as IIi = W aligned ↵ �ref and used for the calculation of
ti(B,�ref) as described in Section 5.4.
Our adoption of the SDF paradigm enables us to express

the workload alignment algebraically as described by algo-
rithm (1). In this way, the weights reloading transformation
can be applied analytically and is smoothly integrated with
the rest of the defined transformations over the SDFG.

5.6 Optimisation
The developed optimiser of our framework aims to deter-

mine a design point that optimises the performance metric
of interest for the target application given a ConvNet work-
load and the available resources. In this context, we pose
two combinatorial optimisation problems, aiming for high-

17

intelligent Digital Systems Lab

Meeting the performance requirements

intelligent Digital Systems Lab

Extensions

fpgaConvNet

F-CNNx SAMO

3D CNNs Power-aware
mapping

modules appear to have a consistent offset from the actual
power reading. This systematic error may be due to platform-
level components that were not taken into account. It is diffi-
cult to isolate whether errors are coming from the static power
model or dynamic power model, as the power measurement
technique cannot give these separately.

A final observation is the existence of power efficient
designs in the design space. It can be seen that with more
parallelism within the convolution modules, designs can be
achieved with greater throughput yet similar power con-
sumption to designs with less parallelism. This suggests that
fine-grain parallelism within modules is more power-efficient
than parallelism between modules, with regards to increasing
throughput. This shows that high throughput designs are
achievable in a power efficient manner. It can be seen that
the model is also able to highlight this trade-off, although in
a much more exaggerated fashion.

Overall, it can bee seen that the model is able to predict
power within 100 mW of error, across a range of valid designs
within the resource constraints of the board.

D. Design Space Exploration
Having demonstrated the accuracy of the power modelling

framework as well as the existence of power-efficient designs
within the design space, the optimiser is now evaluated on it’s
performance in identifying power efficient designs. Initially,
the throughput-power design space is explored in Fig. 4 by
exploring an unconstrained throughput objective. This design
exploration is done for the ZC706 platform.

Fig. 4. DSE with a throughput objective for AlexNet.

A clear pareto-optimal front can be seen, where average
power has a linear relationship with the throughput of the
design. What is also interesting is the occurrence of design
points on the same throughput plane, yet with larger aver-
age power consumption. This shows the existence of power-
efficient designs which achieve high throughput at a reduced
power consumption to other designs of the same throughput.

For example, the highest throughput can be achieved through
a range of designs, however the most power-efficient sees a
20.1% power reduction over the the most power-consuming
design.

Knowing the existence of power-efficient designs, the sim-
ulated annealing optimiser is now evaluated on it’s ability to
discover these designs, and results are shown in Fig. 5. In
this figure, each step of an unconstrained, throughput driven
design space for AlexNet on the ZC706 board is given. The
red vertical lines indicate the constraint on the point left of it.

Fig. 5. Power-constrained DSE with a throughput objective for AlexNet.

It can be seen that the optimiser is able to identify points
on the same pareto-optimal front as a purely throughput-driven
objective.

VI. CONCLUSION

This paper presents a method of modelling the power
consumption of an FPGA-based CNN accelerator system from
a high-level description. This power model is then integrated
within a DSE-based optimiser to expose power-efficient de-
signs within a CNN-to-FPGA mapping framework.

The outcomes of the power modelling and design explo-
ration work shows that power can be introduced into the design
space in an effective way. This is the greatest contribution
of this work and is what sets it apart from other high-level
power modelling techniques, as most design space exploration
methods for mapping CNNs to FPGAs, or FPGA design
spaces in general, struggle to include power consumption as
an objective. By including power consumption as an aspect
of the design from a high-level set of parameters, it means
that power consumption is not just of consequence from
other performance metrics, but a targetable objective for an
optimiser. In this way, power optimisations are not limited
to standard domain-agnostic techniques, and more fine-grain
optimisations can be realised.

Overall, this work brings power consumption to the fore-
front of the fgpaConvNet framework, and promotes methods

0 5 10 15 20

ZFNet

PilotNet

SceneLabelCNN

VGG-16

Performance-per-Watt: f-CNNx vs. TX1
at 5W

f-CNNx (ZC706) (GOp/s/W) GPU TX1 (GOp/s/W) (5W)

intelligent Digital Systems Lab

To approximate or not

FPGA

Objectives
- Throughput
- Latency
- Resources
- Power Faithful mapping

intelligent Digital Systems Lab

To approximate or not

FPGA

Objectives
- Throughput
- Latency
- Resources
- Power Faithful mapping

Introduce approximations: What can you gain?

intelligent Digital Systems Lab

Approximations in DNN

Under review as a conference paper at ICLR 2017

Table 2: Comparing SqueezeNet to model compression approaches. By model size, we mean the
number of bytes required to store all of the parameters in the trained model.

CNN architecture Compression Approach Data
Type

Original !
Compressed Model

Size

Reduction in
Model Size
vs. AlexNet

Top-1
ImageNet
Accuracy

Top-5
ImageNet
Accuracy

AlexNet None (baseline) 32 bit 240MB 1x 57.2% 80.3%
AlexNet SVD (Denton et al.,

2014)
32 bit 240MB ! 48MB 5x 56.0% 79.4%

AlexNet Network Pruning (Han
et al., 2015b)

32 bit 240MB ! 27MB 9x 57.2% 80.3%

AlexNet Deep
Compression (Han

et al., 2015a)

5-8 bit 240MB ! 6.9MB 35x 57.2% 80.3%

SqueezeNet (ours) None 32 bit 4.8MB 50x 57.5% 80.3%
SqueezeNet (ours) Deep Compression 8 bit 4.8MB ! 0.66MB 363x 57.5% 80.3%
SqueezeNet (ours) Deep Compression 6 bit 4.8MB ! 0.47MB 510x 57.5% 80.3%

to SqueezeNet, using 33% sparsity6 and 8-bit quantization. This yields a 0.66 MB model (363⇥
smaller than 32-bit AlexNet) with equivalent accuracy to AlexNet. Further, applying Deep Compres-
sion with 6-bit quantization and 33% sparsity on SqueezeNet, we produce a 0.47MB model (510⇥
smaller than 32-bit AlexNet) with equivalent accuracy. Our small model is indeed amenable to
compression.
In addition, these results demonstrate that Deep Compression (Han et al., 2015a) not only works
well on CNN architectures with many parameters (e.g. AlexNet and VGG), but it is also able to
compress the already compact, fully convolutional SqueezeNet architecture. Deep Compression
compressed SqueezeNet by 10⇥ while preserving the baseline accuracy. In summary: by combin-
ing CNN architectural innovation (SqueezeNet) with state-of-the-art compression techniques (Deep
Compression), we achieved a 510⇥ reduction in model size with no decrease in accuracy compared
to the baseline.

Finally, note that Deep Compression (Han et al., 2015b) uses a codebook as part of its scheme for
quantizing CNN parameters to 6- or 8-bits of precision. Therefore, on most commodity processors,
it is not trivial to achieve a speedup of 32

8 = 4x with 8-bit quantization or 32
6 = 5.3x with 6-bit

quantization using the scheme developed in Deep Compression. However, Han et al. developed
custom hardware – Efficient Inference Engine (EIE) – that can compute codebook-quantized CNNs
more efficiently (Han et al., 2016a). In addition, in the months since we released SqueezeNet,
P. Gysel developed a strategy called Ristretto for linearly quantizing SqueezeNet to 8 bits (Gysel,
2016). Specifically, Ristretto does computation in 8 bits, and it stores parameters and activations in
8-bit data types. Using the Ristretto strategy for 8-bit computation in SqueezeNet inference, Gysel
observed less than 1 percentage-point of drop in accuracy when using 8-bit instead of 32-bit data
types.

5 CNN MICROARCHITECTURE DESIGN SPACE EXPLORATION

So far, we have proposed architectural design strategies for small models, followed these principles
to create SqueezeNet, and discovered that SqueezeNet is 50x smaller than AlexNet with equivalent
accuracy. However, SqueezeNet and other models reside in a broad and largely unexplored design
space of CNN architectures. Now, in Sections 5 and 6, we explore several aspects of the design
space. We divide this architectural exploration into two main topics: microarchitectural exploration
(per-module layer dimensions and configurations) and macroarchitectural exploration (high-level
end-to-end organization of modules and other layers).

In this section, we design and execute experiments with the goal of providing intuition about the
shape of the microarchitectural design space with respect to the design strategies that we proposed
in Section 3.1. Note that our goal here is not to maximize accuracy in every experiment, but rather
to understand the impact of CNN architectural choices on model size and accuracy.

6Note that, due to the storage overhead of storing sparse matrix indices, 33% sparsity leads to somewhat
less than a 3⇥ decrease in model size.

7

“SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size”,
Iandola, Forrest N; Han, Song; Moskewicz, Matthew W; Ashraf, Khalid; Dally, William J; Keutzer, Kurt (2016).

Weight
quantisation Pruning Topology

search Retraining Hardware
aware

intelligent Digital Systems Lab

Problem setting - Assumptions

Training Data

Few Many

Architecture
(P1,P2,…,PN)

No training data is available
Validation data is available

Assumption 1:

Assumption 2:

Assumption 3:

generic specific

intelligent Digital Systems Lab

SteamSVD: System Overview

Idea
Explore redundancy across
kernels of the same layer

intelligent Digital Systems Lab

SVD Low-rank Approximation Algorithm

For a convolutional layer with 𝐶 input channels, 𝐹 output channels, 𝐾×𝐾 kernel size

𝑊!×# Approximation

SVD

Weights 𝑀$×%×&×&

('𝑊')!×(('𝑊))(×#

𝑊!×# = 𝑈Σ𝑉* = (𝑈Σ
)
')(Σ

)
'𝑉*) = 𝑊'𝑊)

𝐶 channels 𝐹 channels
Conv

𝐶 channels 𝐹 channels(Low-rank)
Conv

(Low-rank)
Conv

Reduce the rank to R

Quantisation

'𝑊'′ '𝑊)′

Unfold

intelligent Digital Systems Lab

Optimisation

Design space:
• Select decomposition scheme per layer
• Select rank R per layer: controls approximation
• Each layer is tuned to the most appropriate scheme
• Relative importance of each layer is derived from the Taylor pruning criterion

intelligent Digital Systems Lab

Hardware aware and per layer optimisations

VGG-11 BN ResNet-18

intelligent Digital Systems Lab

Results

Our method is competitive with other compression methods

intelligent Digital Systems Lab

Summary

• Customisation is key, but also a challenge in the design of
DNN systems under resource constraints

• Large opportunities in the ML space for approximations
• Availability of data (and time)?

• Exposing the hardware capabilities to the algorithm can
lead to performance gains

- Challenging task
- Rethink current approaches to fully utilise the

underlying hardware

customisation

intelligent Digital Systems Lab

Some of our work

Autonomous Navigation

Traffic Detection

Hunan Pose Estimation

Localisation and Mapping

intelligent Digital Systems Lab

Questions

intelligent Digital Systems Lab

SVD-NAS

intelligent Digital Systems Lab

What we are looking into…

Under review as a conference paper at ICLR 2020

FP32 training performed by them. The reported results demonstrate that their methods achieve
similar accuracy results to our method by lying close to the respective FP32 training accuracy. As
Wang et al. (2018) do not provide any results in terms of gains in wall-clock times and since they
use custom FP8 hardware, their work could not be directly compared to our method.

FP32
(Baseline)

Mixed Prec
(Micikevicius et al., 2018)

MuPPET
(Current Impl.)

MuPPET
(Ideal)

AlexNet 30:13 (1⇥) 29.20 (1.03⇥) 23:52 (1.27⇥) 20:25 (1.48⇥)
ResNet18 132:46 (1⇥) 97:25 (1.36⇥) 100:19 (1.32⇥) 92:43 (1.43⇥)
GoogLeNet 152:28 (1⇥) 122:51 (1.24⇥) 122:13 (1.25⇥) 82:38 (1.84⇥)

Table 2: Wall-clock time (GPU hours:mins) & relative acceleration for networks targeting ImageNet

4.4 PRECISION SWITCHING

Figure 3: Accuracy vs time trade-off for ResNet20
MuPPET runs on CIFAR-100.

To evaluate the ability of MuPPET to
effectively choose an epoch to switch
precision at, AlexNet and ResNet20
were first trained using MuPPET on
the CIFAR-100 dataset. The hyper-
parameters for MuPPET were kept
the same across all runs. From the
results it was noted that training at
reduced precision and not switch-
ing at all causes a drop in vali-
dation accuracy of 1.4% and 1.3%
for AlexNet and ResNet20 respec-
tively, hence demonstrating the need
to switch precisions when training at
bit-widths as low as 8-bit fixed-point.

To demonstrate the benefits of a pre-
cision switching methodology, two further sets of experiments were conducted on ResNet20 using
CIFAR100 as depicted in Fig. 3. First, 34 training runs were performed (34 red dots in Fig. 3),
where for each training four epochs along the standard training duration were randomly selected
and used as the switching points. Second, the switching strategy MuPPET generated for AlexNet
and GoogLeNet was applied to ResNet20 (2 blue dots in Fig. 3). Fig. 3 shows the best test accuracy
achieved by each of the runs and the training time as estimated by our performance model described
in Sec. 4.3. It shows that for a given time-budget, MuPPET runs (6 green dots) outperform on
average all other experiment sets, demonstrating the need for a precision switching policy that is
real-time and agnostic to network and dataset in order to achieve a good accuracy-to-training-time
trade-off.

5 CONCLUSION

This paper proposes MuPPET, a novel low-precision CNN training scheme that combines the use
of fixed-point and floating-point representations to produce a network trained for FP32 inference.
By introducing a precision-switching mechanism that decides at run time an appropriate transi-
tion point between different precision regimes, the proposed framework achieves Top-1 validation
accuracies comparable to that achieved by state-of-the-art FP32 training regimes while delivering
significant speedup in terms of training time. Quantitative evaluation demonstrates that MuPPET’s
training strategy generalises across CNN architectures and datasets by adapting the training process
to the target CNN-dataset pair during run time. Overall, MuPPET enables the utilisation of the low-
precision hardware units available on modern specialised processors, such as next-generation GPUs,
FPGAs and TPUs, to yield improvements in training time and energy efficiency without impacting
the resulting accuracy. Future work will focus on applying the proposed framework to the training
of LSTMs, where the training process is more sensitive to gradient quantisation, as well as on the
extension of MuPPET to include batch size and learning rate as part of its hyperparameters. Fur-
thermore, we will explore improved quantisation techniques that could enable training convergence
for bitwidths even lower than 8-bit fixed-point.

8

modules appear to have a consistent offset from the actual
power reading. This systematic error may be due to platform-
level components that were not taken into account. It is diffi-
cult to isolate whether errors are coming from the static power
model or dynamic power model, as the power measurement
technique cannot give these separately.

A final observation is the existence of power efficient
designs in the design space. It can be seen that with more
parallelism within the convolution modules, designs can be
achieved with greater throughput yet similar power con-
sumption to designs with less parallelism. This suggests that
fine-grain parallelism within modules is more power-efficient
than parallelism between modules, with regards to increasing
throughput. This shows that high throughput designs are
achievable in a power efficient manner. It can be seen that
the model is also able to highlight this trade-off, although in
a much more exaggerated fashion.

Overall, it can bee seen that the model is able to predict
power within 100 mW of error, across a range of valid designs
within the resource constraints of the board.

D. Design Space Exploration
Having demonstrated the accuracy of the power modelling

framework as well as the existence of power-efficient designs
within the design space, the optimiser is now evaluated on it’s
performance in identifying power efficient designs. Initially,
the throughput-power design space is explored in Fig. 4 by
exploring an unconstrained throughput objective. This design
exploration is done for the ZC706 platform.

Fig. 4. DSE with a throughput objective for AlexNet.

A clear pareto-optimal front can be seen, where average
power has a linear relationship with the throughput of the
design. What is also interesting is the occurrence of design
points on the same throughput plane, yet with larger aver-
age power consumption. This shows the existence of power-
efficient designs which achieve high throughput at a reduced
power consumption to other designs of the same throughput.

For example, the highest throughput can be achieved through
a range of designs, however the most power-efficient sees a
20.1% power reduction over the the most power-consuming
design.

Knowing the existence of power-efficient designs, the sim-
ulated annealing optimiser is now evaluated on it’s ability to
discover these designs, and results are shown in Fig. 5. In
this figure, each step of an unconstrained, throughput driven
design space for AlexNet on the ZC706 board is given. The
red vertical lines indicate the constraint on the point left of it.

Fig. 5. Power-constrained DSE with a throughput objective for AlexNet.

It can be seen that the optimiser is able to identify points
on the same pareto-optimal front as a purely throughput-driven
objective.

VI. CONCLUSION

This paper presents a method of modelling the power
consumption of an FPGA-based CNN accelerator system from
a high-level description. This power model is then integrated
within a DSE-based optimiser to expose power-efficient de-
signs within a CNN-to-FPGA mapping framework.

The outcomes of the power modelling and design explo-
ration work shows that power can be introduced into the design
space in an effective way. This is the greatest contribution
of this work and is what sets it apart from other high-level
power modelling techniques, as most design space exploration
methods for mapping CNNs to FPGAs, or FPGA design
spaces in general, struggle to include power consumption as
an objective. By including power consumption as an aspect
of the design from a high-level set of parameters, it means
that power consumption is not just of consequence from
other performance metrics, but a targetable objective for an
optimiser. In this way, power optimisations are not limited
to standard domain-agnostic techniques, and more fine-grain
optimisations can be realised.

Overall, this work brings power consumption to the fore-
front of the fgpaConvNet framework, and promotes methods

DNN Training
MuPPET

DNN Training
MOCHA

Object
Detection to

FPGA
mapping

Homomorphic
Encryption ML

loads

On-device
adaptation

