
INTEGRATED DESIGN AND
VERIFICATION:
AN OUNCE OF PREVENTION IS
WORTH A POUND OF CURE

CARL SEGER

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CHALMERS UNIVERSITY OF TECHNOLOGY, GOTHENBURG,

SWEDEN

SECARL@CHALMERS.SE

SEPTEMBER 6, 2022

BAD NEWS

• To verify a HW design is:

• Hard (60-80% of ASIC design effort)

• Time consuming

• To debug a HW design:

• Is even worse!

• To debug combined SW/HW:

• Is cause of short life span…

• ..and lots of grey hair!

2

GOOD NEWS! It could be worse…

3

RESEARCH HYPOTHESES

• Hypothesis 1:

• There are way more SW engineer than HW design engineers.

• Therefore, specification language should be “similar” to traditional SW

languages.

• Hypothesis 2:

• Ad-hoc/post design verification is not feasible

• Therefore, design and verification must be tightly integrated

• Hypothesis 3:

• Design is a highly interactive activity

• Therefore, the design environment must be a highly interactive with fast

interactions, much visualization and with plenty of guidance as well as re-use of

earlier work.

THOR PROJECT: BIG PICTURE

Idea

Specification

DSL

Static Analysis

+

Visualization

Property driven tests +

Formal property verification

Layout

RTL

synthesis

R
e
fine

m
e
nt

CPT: Proven correctness preserving transformation

LFV: Local formal refinement verification

DTS: Previously verified transformation sequence from database

FEV: Formal equivalence verification

RTL

(CPT|LFV|DTS)*

PART 1:

Idea

Specification

DSL

Static Analysis

+

Visualization

Property driven tests +

Formal property verification

Layout

RTL

synthesis

R
e
fine

m
e
nt

CPT: Proven correctness preserving transformation

LFV: Local formal refinement verification

DTS: Previously verified transformation sequence from database

FEV: Formal equivalence verification

RTL

(CPT|LFV|DTS)*

Bifrost

HIGH-LEVEL SPEC. LANG. GOALS

• Separate “what” from “how”

• The goal is to succinctly specify what is needed.

• Allow algorithmic specifications (“software like”)

• Most natural specification for many problems.

• Replace timing with protocols

• Isolate the specifier from the subtleties of communication.

• Make validation as easy as possible

• Clean (simple) semantics, strong typing, visualization, …

BIFROST

• Aimed at iterative algorithms and interaction between multiple

modules

• Imperative language that is compiled into hardware

• Both control machine and data path control is created.

• Protocols between units are user selectable

• Can change protocol by changing 1-2 lines.

• Protocols include not only functional control but also

power/voltage control.

Source: https://en.wikipedia.org/wiki/SHA-2

English/pseudo code Bifrost

UNITS & PROTOCOL DECLARATIONS

Number of units available to the

scheduler

Protocol this unit talks

Protocols the subunits talk

DEMO OF BIFROST
CAPTURE OF SHA256

Slow SHA256 version

Slow SHA256 version

Fast SHA256 version

EXAMPLE OF RESULTS: SHA256

Name Reg.file

#rd-ports

Constant

memory

#rd-ports

adders Memory

protocol

Cycles

slow 1 1 1 Pulse 765

medium 1 1 7 Pulse 327

4phase 1 1 7 4-phase 342

fast 2 2 14 Pulse 230

NOTE: Only the number of units and protocols were changed*.

PART II:

Idea

Specification

DSL

Static Analysis

+

Visualization

Property driven tests +

Formal property verification

Layout

RTL

synthesis

R
e
fine

m
e
nt

CPT: Proven correctness preserving transformation

LFV: Local formal refinement verification

DTS: Previously verified transformation sequence from database

FEV: Formal equivalence verification

RTL

(CPT|LFV|DTS)*

IDV

SIMPLE NEURAL NETWORK
EVALUATOR FOR LOW-PWR IOT

RESULT OF BIFROST

If we dig into this (and clean up some),

we get…

CORE DATAPATH FROM BIFROST

DEMO OF IDV

…

Details of Stage 2

STATUS

• Thor is a less than one year old project, but many of the

ingredients have been in development for many years as

part of other projects.

• For Thor, we are currently proceeding on two fronts:

• Developing the system (coding, coding, testing, testing, …)

• Using it designing an IoT processor (eat your own dog food)

• Working on deciding our next domain to apply Thor to

SUMMARY

• To enable domain-specific hardware we need:

• A method for describing the circuit as “SW”

• A method to ensure the “SW” model is correct.

• A method for compiling the “SW” to “HW”

• A method for refining the “HW” to a realistic HW implementation.

• Thor provides a proof-of-concept for such a system

CORRECTLY

CORRECTLY

THANK YOU
QUESTIONS?

Idea

Specification

DSL

Static Analysis

+

Visualization

Property driven tests +

Formal property verification

Layout

RTL

synthesis

R
e
fine

m
e
nt

CPT: Proven correctness preserving transformation

LFV: Local formal refinement verification

DTS: Previously verified transformation

sequence from database

FEV: Formal equivalence verification

RTL

(CPT|LFV|DTS)*

VossII and IDV available at: https://github.com/TeamVoss/VossII

