Formal methods
for FPGAs

John Wickerson

5th September 2022

Formal methods

7_,__—1

for’ PGAs)

John Wickerson

ember 2022

" 33?5%5%38 F Inume..

Theorem transf_c_program_correct:

forall p tp,

transf_c_program p = oK tp —>

backward_simulation (Csem.semantics p) (Asm.semantics tp).
P~

Proof.
apply transf_c_program_match; auto.

intros. apply c_semantic

_preservation.

John Wickerson Formal methods for FPGAs

Formal methods for...

specifying the semantics of CPU/FPGA devices

work led by Dan lorga, with Alastair Donaldson

e proven-correct high-level synthesis
work led by Yann Herklotz

e more efficient high-level synthesis
work led by Jianyi Cheng, with George Constantinides

e high-level synthesis of weak-memory concurrency
work led by Nadesh Ramanathan, with George Constantinides

John Wickerson

John Wickerson

Shared Memor
RO //FPGA: || //cpu:

AN X=1; print(y);
FPGA CPU y=1; print(x);

John Wickerson Formal methods for FPGAs

C P R intel] |

Shared Memory
x=0 y=1

x=1:
FPGA / \ CPU yv=1;

x=1
y=1

John Wickerson Formal methods for FPGAs

CPU/FPGA devices

__—"—""23 Shared Memory

/

Upstream

channels
Write
Write- Read- buffer
request request
pool pool

\,¢, / Downstream
channels

FPGA

CPU

John Wickerson

Write Request
UB, DB, SM)

(WP, RP, UB, DB, SM) wRea(eLo.m, (WP ++ (W,c,1,0,m), R,

Read Request

(WP, RP, UB, DB, SM) Ravea(e.Lm), (WP, RP ++ (R,c,L,m), UB, DB, SM)

Fence Request One Channel
Reqone(e.m), (WP ++ (F, c, L, L, m), RP, UB, DB, SM)

F
(WP, RP, UB, DB, SM) —___lFaA———-)

ence Request All Channels

v’
FnReqAll(m) (WP + (F’ i B e I m), RP, UB, DB, SM)

(WP, RP, UB,DB,SM) —mca

Flush Write Request to Upstream Buffer
WP = head + (W, ¢, L0, m) ++ tail (Fco_)¢ head

(WP, RP, UB, DB, SM) WeRsp(e.m), (heqd ++ tail, RP, UB[¢ := UB[c] ++ (W,1,0,m)], DB, SM)

(F,L__) ¢ head

Write to Memory
UB[c] = (W, L0, m) ++ tail

(WP, RP, UB[c := tail], DB, SM(1 := 0])

(WP, RP, UB, DB, SM) T

Fence Response One Channel

wP = (F,c, L, L,m) + tail UB[c] =0
) FnRspone(e.m), (4qil, RP, UB, DB, SM)

(WP, RP, UB, DB, SM

Fence Response All Channels
wp=(F 1,11, m) ++ tail Ve € Chan. UB[c] =0

(WP, RP, UB, DB, SM) FoRspALL0M), (1, RP, UB, DB, SM)

st to Upstream Buffer
RP = head + (R, ¢, 1, m) ++ tail

ail, UB[c := UB[c] + (R,1,m)], DB, SM)

Flush Read Reque

(WP, RP, UB, DB, SM) wcz (WP, head ++ t

Read from Memory

SM(l) =

UB[c] = (R,I,m) + tail
tail], DB[c = DB[c] ++ (1,v,m)], SM)

(WP, RP, UB, DB, SM) —=> (WP, RP, UB[c :=
Read Response
DB[c] = (I,0,m) ++ tail

(WP, RP, UB, DB, SM) Raksp(eL.o.m), (WP, RP, UB, DBe = taill SM)

Formal methods for FPGAs

CPU Write

(SM, WB) ceuwrite(tLo), (SM, WB[t := waB([t] + (Lv)])

CPU Fence
WB[t] = 0

iR
(SM, WB) Ceurence(t), (SM, WB)

CPU Flush Write Buffer to Memory
wBJ[t] = (I,0) + tail

(SM, WB) —sp (SM(1 := v}, Bt := tail])

CPU Read from Write Buffer
WB(t] = head ++ (I, v) + tail

(SM, WB) CPURead(1,1.0), o), (SM, WB)

CPU Read from Memory
(1,.) ¢ tail

sM(l) =v (1,_) ¢ WB[t]
ead(t,l,v
(SM, WB) cruRead(L.L.2), (SM, WB)

FPGA Step
(WP, RP, UB, DB, SM) ez’ (WP',RP’,UB’, DB', SM")

(WP, RP, UB, DB, SM, WB) 5 (WP', RP’, UB', DB’,SM’, WB)

CPU Step
(SM, WB) 3‘55) (SM’, WB')

(WP, RP, UB, DB, SM, WB) % (WP, RP, UB, DB,SM’, WB)

John Wickerson

Shared Memory

FPGA '/ \

CPU

/ /FPGA:

x=1
y=1

°
4

John Wickerson

Shared Memory

FPGA '/ \

CPU

//FPGA:
x=1;
wfence;
y=1;

John Wickerson Formal methods for FPGAs

CPU/FPGA devices

e We built a model of how shared memory works in Intel CPU/
FPGA devices

e Can be used as a foundation for reasoning about CPU/FPGA
programs

e Can be used to automatically generate conformance tests

John Wickerson Formal methods for FPGAs

Formal methods for...

specifying the semantics of CPU/FPGA devices

work led by Dan lorga, with Alastair Donaldson

e proven-correct high-level synthesis
work led by Yann Herklotz

e more efficient high-level synthesis
work led by Jianyi Cheng, with George Constantinides

e high-level synthesis of weak-memory concurrency
work led by Nadesh Ramanathan, with George Constantinides

John Wickerson Formal methods for FPGAs

Proven-correct HLS

v2018.3 v2019.1

! ! ! 31

hods for FPGAs
John Wickerson Formal methods

Proven-correct HLS

rrect:
Theorem transf_c_program_co

forall p tp, .
transf_c_program p = oK tp -
backward_simulation (Csem.s

C

tch; auto.
Proof.

intros.

e — —

Theorem transf_c_program_correct:
forall p tp,

transf_hls p = 0K tp —

f_c_program_ma
ion. apply transt_C_
tic_preservatlo
apply c_semantlic_

backward_simulation (Csem.semantics p) (Verilo

g.semantics tp).
Proof.

intros.
Qed.

apply c_semantic_preservation, apply transf_hls_match: auto.

John Wickerson Formal methods for FPGAs

Proven-correct HLS

Verilog:

module main(reset, clk, finish, return_val);
input [0:0] reset, clk;

output reg [0:0] finish = 0;
L4 output reg [31:0] return_val = 0;
] reg [31:0] reg_3 = 0, addr = 0, d_in = 0, reg_5 = 0, wr_en = 0

reg [0:0] en = 0, u_en = 0;
reg [31:0] state = 0, reg_2 = 0, reg_4 = 0, d_out = 0, reg_1 = 0;
reg [31:0] stack [1:0];
// RAM interface
always @(negedge clk)
if ({u_en != en}) begin
if (wr_en) stack[addr] <= d_in;
else d_out <= stack[addrl;
en <= u_en;
end
// Data-path
always @(posedge clk)
case (state)
32'd11: reg_2 <= d_out;
32'd8: reg_5 <= 32'd3;
32'd7: begin u_en <= (~ u_en); wr_en <= 32'd1;
d_in <= reg_5; addr <= 32'd0; end
32'd6: reg_4 <= 32'd6;
32'd5: begin u_en <= (~ u_en); wr_en <= 32'd1;
d_in <= reg_4; addr <= 32'd1; end
— 32'd4: reg_1 <= 32'd1;
32'd3: reg_3 <= 32'do;
32'd2: begin u_en <= (~ u_en); wr_en <= 32'd0;
addr <= {{{reg_3 + 32'do} + {reg_1 * 32'd4}} / 32'd4}; end
32'd1: begin finish = 32'd1; return_val = reg_2; end
default: ;
endcase
// Control logic
always @(posedge clk)
if ({reset == 32'd1}) state <= 32'd8;
else case (state)

int main() {
int x[2] = {3, 6};
int 1 = 1;
return x[i];

32'd11: state <= 32'd1; 32'd4: state <= 32'd3;
32'd8: state <= 32'd7; 32'd3: state <= 32'd2;
32'd7: state <= 32'd6; 32'd2: state <= 32'd11;
32'd6: state <= 32'd5; 32'd1: ;

32'd5: state <= 32'd4; default: ;
endcase

endmodule

| —

sequential semantics parallel semantics
byte-addressed memory word-addressed memory

infinite memory finite memory

wn
<
O
Q.
L
S
L
wn
-
o
=
-+
B
S
©
&
|-
o
L

John Wickerson

Proven-correct HLS

o0 A a — Ie}
(e}

dn 3897 03 9ATIR[I ST} UOTINIIXY

<

(e

dn8a7 03 sanje[aI BATY

ueIpowx
I
AJOSII}
Y1hs

YgI1hs
wWwAs
PeIepies
Aourssnu
JAW
dwopn

|
pe-1qooel
pI-1qooef
pe-1edy
Awrnsag
IDAWRS
wwag
[reysrem-pAoyy
PZ-PiP}
urqrmp
uagjrop
90UBLIBAOD
Aysatoyd
3o1q

seje

pe

wrug

wrug

wn
<
O
Q.
L
S
L
wn
-
o
=
-+
B
S
©
&
|-
o
L

John Wickerson

Proven-correct HLS

o0 A a — Ie}
(e}

dn397 03 2ATIR[I ST} UOTINIIXY

<

(e

dn8a7 03 sanje[aI BATY

ueIpawr
L
AJOSII)
Y1hs

YgI1hs
wwAs
PC-[op1os
Aourssnu
JAW
dwopn]

|
pe-1qooel
pI-1qooef
pe-1edy
Awrnsag
I2AWRS
wwag
[reysrem-pAoyy
PZ-PiP}
urqmp
uagjrop
9OUBLIBAOD
Aysatoyd
3o1q

seje

e

wug

wrug

John Wickerson Formal methods for FPGAs

Proven-correct HLS

| |

40379 pass 114849 compile-time errors

39 run-time errors

Verified components

flow graph common
construction subexpression
elimination,
constant

Verilo ti
bitstream FPG.A g code. propagation,
synthesis, etc generation etc.

input C—> L ST

John Wickerson Formal methods for FPGAs

Proven-correct HLS

e We built a proven-correct HLS tool called Vericert

