
When Serverless Meets Servers

Boris Grot
Edinburgh Architecture & Systems Lab (EASE)

University of Edinburgh

Sep 5, 2022 – NANDA workshop

3

Trend toward greater modularity and disaggregation in cloud applications

Cloud Applications: from Monoliths to Serverless

MicroservicesMonolithic app Serverless

<f2>

<f4>
Account

Front-end

Customer

Catalogue

Recom.

<f7>

<f5>
<f6>

<f9>

<f1>

<f3>

<f8>

Online Shop

Account

Data Access Layer

UI

Catalogue

Recom.Customer

5

Datacenter application organized as a collection of stateless functions
- Functions invoked on-demand

§ via triggers (e.g., user click) or by another function

- Functions are stateless: facilitates on-demand scale-in/scale-out

- Developers: pay only per invocation (CPU+memory), not idle time
§ Key difference from monoliths & microservices!
§ Financial incentive to reduce function footprint

- Cloud providers: high density and utilization at the server level

Serverless 101

What are the implications of the serverless model?

<f2>

<f4>

<f7>

<f5>
<f6>

<f9>

<f1>

<f3>

<f8>

<f4><f4>

<f7>

<f5>

Bad: Poor performance & low efficiency
- Frequent scaling due to traffic changes à cold start delays, overprovisioning

- Functions are stateless à communication bottlenecks inherent

- Massive degree of function interleaving on a server à poor uarch efficiency

- …

State of Serverless Clouds Today

Good: Programming & deployment simplicity; pay-per-use cost model

6

Big challenges are big opportunities for research!

Ugly: Proprietary serverless stacks across cloud providers

How to study and innovate?

State-of-the-Art in Serverless Experimentation

Bleeding-edge but proprietary serverless stacks

Need for a full-stack open-source framework for serverless research

Incomplete or non-representative

Industry Research/academia

Idea: Integrate Open-Source Components from across the Industry

8

Host management, container runtime
(Cloud Native Computing Foundation)

Communication (Google)

Kubernetes Knative

Cluster scheduler & Function-as-a-Service API
(Google, Cloud Native Computing Foundation)

MicroVM (Amazon, Google)

Holistic benchmarking
End-to-end & per-component analysis

The vHive eco-system

Representative of
serverless clouds

Open-source using latest
production-grade technologies

Firecracker

vHive: an open-source serverless stack
github.com/ease-lab/vhive

Representative of today’s clouds
• Knative FaaS API, Firecracker & gVisor

MicroVMs, Kubernetes
• First to support Firecracker snapshots

Robust methodology & performance analysis
tools

vSwarm: a serverless benchmark suite
github.com/ease-lab/vSwarm

Comprehensive real-world benchmarks
• ML training & inference, video analytics &

encoding, MapReduce, distributed compilation
• Varied runtimes & function composition patterns
• Data transfers via different mediums (inline, S3)

Gem5-runnable container images
• Enables full-system microarchitectural simulation

Google Cloud
Functions

https://github.com/ease-lab/vhive
https://github.com/ease-lab/vSwarm

10

vHive in action:
Understanding & Accelerating Lukewarm Invocations

[ISCA’22]

11

Unique characteristics:
- Short function execution times: a few ms or less is common
§ Contrast: Linux scheduling quantum: 10-20ms

- Small memory footprint: as low as 128MB per instance

- Relatively infrequent invocations (seconds or minutes) [Microsoft Azure @ATC20]

Implications:
- Thousands of functions resident on a server
- Huge degree of interleaving between two invocations of the same function

Serverless on a Server

What are the implications for microarchitecture?

f

Execution time

fffff fffff fffff ffff fffff ffff fffffffff

Inter-arrival time

12

Longer inter-arrival times à Higher degree of interleaving à Higher CPI

Drastic increase in CPI for typical inter-arrival times (IATs)
- Up to 170% CPI increase for IAT > 1s

Effect of Interleaving

What causes the increase?

Typical IAT

Sl
ow

do
w

n

13

Compare back-to-back to interleaved executions of a function
- Function-under-test runs isolated
- Interleaving modelled by a stressor

Use Top-Down Methodology for analysis
- Machine: Intel Broadwell CPU

(10 cores, SMT disabled, 32KB L1-I/D, 256KB L2/core, 25MB LLC)

- Collect CPU performance counters

Serverless workloads: 20 functions
- Large variety in functionality and runtimes
- Compiled, JIT-ed and interpreted languages
- Publicly available https://github.com/ease-lab/vSwarm

Characterization Methodology

f

invocations

Execution time

f f f f

Back-to-Back Execution

…

f

Interleaved Execution

…x

Execution time

f x f x

Thrashing
invocations

f

https://github.com/ease-lab/vSwarm

14

- Interleaving increases the mean CPI by 70%
- Reason: Lukewarm execution
§ Function in memory, but no µ-arch state on-chip

Understanding the Impact of Interleaving

Python Node JS Golang

15

- Front-end stalls is the largest source of stalls

- 56% of additional stall cycles in interleaved execution come from fetch latency

Top-Down CPI Analysis

Instruction delivery a critical performance bottleneck for warm invocations

Back-to-back
execution

Interleaved
execution

17

Instruction Fetch Pain Points

L3 instruction misses hurt performance under interleaving

L2 Cache (256KB/core)

- Serverless workloads frequently miss in L2 cache
§ (50+ MPKI, on average)

- Dominated by instruction misses
- Similar for both back-to-back and interleaved

L3 Cache (25MB)

- Almost no L3 instruction misses for back-to-back
execution

- Frequent L3 misses for instructions under
interleaving (18 MPKI)
§ Instructions fetched from main memory à high stall cycles

Interleaved
execution

Interleaved
execution

Studied instruction traces from 25 consecutive invocations of each function.

Compared instruction footprint & commonality at cache-block granularity across invocations

Two key insights:
1. High commonality across invocations

§ > 85% of cache blocks are the same in all invocations

2. Large instruction footprint: 300KB-800KB
§ Deep software stacks result in large amount of code

Identified a common problem for serverless functions:

à Large instruction footprints cannot be maintained on-chip under heavy interleaving

18

Understanding Instruction Misses

22

Basic Idea:

- Exploit high commonality of function invocations
§ Prefetch common instruction state

• Record instruction working set of one invocation

• Restore the instruction working with the next invocation

Addressing Cold On-chip Instruction State

Execution time

f ff f f

Memory
Subsystem

Core

…f

Inst

ffffff

Memory

Jukebox: record-and-replay instruction prefetcher for lukewarm
serverless function invocations
- Record: L2 misses using a spatio-temporal encoding
§ Stores records in main memory

- Replay: prefetch the recorded addresses into the L2
- Fully decoupled from the core
§ Triggered by function invocation

- Operates on virtual addresses
§ Not affected by page reallocation
§ Prefetching prepopulates TLB

23

Jukebox: I-Prefetcher for Serverless

Jukebox records and replays L2 instruction working sets

LLC

L2-$

D-$I-$

Core

InstJukebox

Detailed nodeDriving
node

Core
Core Core

26

Use gem5 simulator for evaluating Jukebox

- Detailed model of the server node
§ Dual core Skylake-like CPU model
§ 32KB L1-I/D, 1MB L2/core, 8MB L3

- Secondary node for driving invocations.

- Functions run in isolation

- Cycle accurate simulation of the full system
§ Exact same software stack as on real hardware
(Ubuntu 20.04, kernel: 5.4, same container images)

§ First support for containers in gem5
• Publicly available:
https://github.com/ease-lab/vSwarm-u

Evaluation Infrastructure

Representative infrastructure for detailed evaluation

NIC

NIC

Ethernet

JB L2-$

D-$I-$

L2-$

D-$I-$
client

linux

Memory
Subsystem

Memory

L3-$

https://github.com/ease-lab/vSwarm-u

28

Jukebox’s recording and replaying of instruction working sets:
- Improves performance by 18%, on average
§ Consistent improvement across benchmarks

- Covers >85% of off-chip instruction misses

- Requires only 32KB of metadata per function instance

Jukebox: Performance Improvements

Jukebox is simple & effective

29

Serverless functions present new challenges for modern CPUs

à Need a representative infrastructure to study serverless stacks: vHive
à Lukewarm execution: function in memory, but no µ-arch state on-chip

Characterisation reveals a severe front-end bottleneck in lukewarm executions

àLarge instruction footprints cannot be maintained on-chip under heavy function interleaving

àFrequent off-chip misses for instructions expose the CPU to long-latency stalls

Jukebox: Record-and-replay instruction prefetcher for lukewarm serverless functions

à Simple and effective solution for cold on-chip instruction state

à Improves performance by 18% with 16KB of in-memory metadata per instance

Summary

30

Acknowledgements

Students & interns
Dmitrii Ustiugov (now @ETH)

David Schall
Artemiy Margaritov

Shyam Jesalpura
Theodor Amariucai

Harshit Garg
Plamen Petrov
Michal Baczun
Yuchen Niu

Amory Hoste
Bora M. Alper

External collaborators
Rustem Feyzhanov (Instrumental)

Francisco Romero (Stanford)
Marios Kogias (Imperial)
Edouard Bugnion (EPFL)

Ana Klimovic (ETH)

Industry supporters

31

Thank you!

Questions?

Join our Serverless Research Community
https://github.com/ease-lab

https://github.com/ease-lab

