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Trend toward greater modularity and disaggregation in cloud applications

Cloud Applications: from Monoliths to Serverless

MicroservicesMonolithic app Serverless
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Datacenter application organized as a collection of stateless functions
- Functions invoked on-demand

§ via triggers (e.g., user click) or by another function

- Functions are stateless: facilitates on-demand scale-in/scale-out

- Developers: pay only per invocation (CPU+memory), not idle time
§ Key difference from monoliths & microservices!
§ Financial incentive to reduce function footprint

- Cloud providers: high density and utilization at the server level

Serverless 101

What are the implications of the serverless model?
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Bad: Poor performance & low efficiency
- Frequent scaling due to traffic changes à cold start delays, overprovisioning

- Functions are stateless à communication bottlenecks inherent

- Massive degree of function interleaving on a server à poor uarch efficiency 

- …

State of Serverless Clouds Today

Good: Programming & deployment simplicity; pay-per-use cost model
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Big challenges are big opportunities for research!

Ugly: Proprietary serverless stacks across cloud providers

How to study and innovate?



State-of-the-Art in Serverless Experimentation

Bleeding-edge but proprietary serverless stacks

Need for a full-stack open-source framework for serverless research 

Incomplete or non-representative

Industry Research/academia



Idea: Integrate Open-Source Components from across the Industry
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Host management, container runtime
(Cloud Native Computing Foundation)

Communication (Google)

Kubernetes Knative

Cluster scheduler & Function-as-a-Service API 
(Google, Cloud Native Computing Foundation)

MicroVM (Amazon, Google)



Holistic benchmarking
End-to-end & per-component analysis

The vHive eco-system

Representative of 
serverless clouds

Open-source using latest 
production-grade technologies

Firecracker

vHive: an open-source serverless stack
github.com/ease-lab/vhive

Representative of today’s clouds
• Knative FaaS API, Firecracker & gVisor

MicroVMs, Kubernetes
• First to support Firecracker snapshots

Robust methodology & performance analysis 
tools

vSwarm: a serverless benchmark suite 
github.com/ease-lab/vSwarm

Comprehensive real-world benchmarks
• ML training & inference, video analytics & 

encoding, MapReduce, distributed compilation
• Varied runtimes & function composition patterns
• Data transfers via different mediums (inline, S3)

Gem5-runnable container images
• Enables full-system microarchitectural simulation

Google Cloud 
Functions

https://github.com/ease-lab/vhive
https://github.com/ease-lab/vSwarm
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vHive in action:
Understanding & Accelerating Lukewarm Invocations

[ISCA’22]
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Unique characteristics:
- Short function execution times: a few ms or less is common
§ Contrast: Linux scheduling quantum: 10-20ms

- Small memory footprint: as low as 128MB per instance

- Relatively infrequent invocations (seconds or minutes) [Microsoft Azure @ATC20]

Implications:
- Thousands of functions resident on a server
- Huge degree of interleaving between two invocations of the same function

Serverless on a Server

What are the implications for microarchitecture?
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Longer inter-arrival times à Higher degree of interleaving à Higher CPI 

Drastic increase in CPI for typical inter-arrival times (IATs)
- Up to 170% CPI increase for IAT > 1s

Effect of Interleaving

What causes the increase?

Typical IAT
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Compare back-to-back to interleaved executions of a function
- Function-under-test runs isolated
- Interleaving modelled by a stressor

Use Top-Down Methodology for analysis
- Machine: Intel Broadwell CPU 

(10 cores, SMT disabled, 32KB L1-I/D, 256KB L2/core, 25MB LLC)

- Collect CPU performance counters

Serverless workloads: 20 functions
- Large variety in functionality and runtimes
- Compiled, JIT-ed and interpreted languages
- Publicly available https://github.com/ease-lab/vSwarm

Characterization Methodology
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https://github.com/ease-lab/vSwarm
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- Interleaving increases the mean CPI by 70%
- Reason: Lukewarm execution
§ Function in memory, but no µ-arch state on-chip

Understanding the Impact of Interleaving

Python Node JS Golang
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- Front-end stalls is the largest source of stalls 

- 56% of additional stall cycles in interleaved execution come from fetch latency

Top-Down CPI Analysis

Instruction delivery a critical performance bottleneck for warm invocations

Back-to-back 
execution

Interleaved 
execution
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Instruction Fetch Pain Points

L3 instruction misses hurt performance under interleaving

L2 Cache (256KB/core)

- Serverless workloads frequently miss in L2 cache
§ (50+ MPKI, on average)

- Dominated by instruction misses
- Similar for both back-to-back and interleaved

L3 Cache (25MB)

- Almost no L3 instruction misses for back-to-back 
execution

- Frequent L3 misses for instructions under 
interleaving (18 MPKI)
§ Instructions fetched from main memory à high stall cycles

Interleaved 
execution

Interleaved 
execution



Studied instruction traces from 25 consecutive invocations of each function. 

Compared instruction footprint & commonality at cache-block granularity across invocations

Two key insights:
1. High commonality across invocations

§ > 85% of cache blocks are the same in all invocations

2. Large instruction footprint: 300KB-800KB
§ Deep software stacks result in large amount of code

Identified a common problem for serverless functions:

à Large instruction footprints cannot be maintained on-chip under heavy interleaving
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Understanding Instruction Misses
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Basic Idea:

- Exploit high commonality of function invocations 
§ Prefetch common instruction state

• Record instruction working set of one invocation

• Restore the instruction working with the next invocation

Addressing Cold On-chip Instruction State

Execution time
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Memory

Jukebox: record-and-replay instruction prefetcher for lukewarm 
serverless function invocations
- Record: L2 misses using a spatio-temporal encoding
§ Stores records in main memory

- Replay: prefetch the recorded addresses into the L2
- Fully decoupled from the core
§ Triggered by function invocation

- Operates on virtual addresses
§ Not affected by page reallocation
§ Prefetching prepopulates TLB
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Jukebox: I-Prefetcher for Serverless

Jukebox records and replays L2 instruction working sets

LLC
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Core
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Use gem5 simulator for evaluating Jukebox

- Detailed model of the server node
§ Dual core Skylake-like CPU model
§ 32KB L1-I/D, 1MB L2/core, 8MB L3

- Secondary node for driving invocations.

- Functions run in isolation

- Cycle accurate simulation of the full system
§ Exact same software stack as on real hardware 
(Ubuntu 20.04, kernel: 5.4, same container images)

§ First support for containers in gem5
• Publicly available:
https://github.com/ease-lab/vSwarm-u

Evaluation Infrastructure

Representative infrastructure for detailed evaluation
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https://github.com/ease-lab/vSwarm-u
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Jukebox’s recording and replaying of instruction working sets:
- Improves performance by 18%, on average
§ Consistent improvement across benchmarks

- Covers >85% of off-chip instruction misses

- Requires only 32KB of metadata per function instance

Jukebox: Performance Improvements

Jukebox is simple & effective
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Serverless functions present new challenges for modern CPUs

à Need a representative infrastructure to study serverless stacks: vHive
à Lukewarm execution: function in memory, but no µ-arch state on-chip

Characterisation reveals a severe front-end bottleneck in lukewarm executions

àLarge instruction footprints cannot be maintained on-chip under heavy function interleaving

àFrequent off-chip misses for instructions expose the CPU to long-latency stalls

Jukebox: Record-and-replay instruction prefetcher for lukewarm serverless functions 

à Simple and effective solution for cold on-chip instruction state

à Improves performance by 18% with 16KB of in-memory metadata per instance

Summary
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Thank you!

Questions?

Join our Serverless Research Community
https://github.com/ease-lab

https://github.com/ease-lab

