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Abstract

In some Supersymmetric extensions of the Standard Model, including the Min-
imal Supersymmetric Standard Model (MSSM), the coupling of Higgs bosons to
b-quarks is enhanced. This enhancement makes the associated production of the
Higgs with b-quarks an interesting search channel for the Higgs and Supersymmetry
at DØ. The identification of b-quarks, both online and offline, is essential to this
search effort.

This thesis describes the author’s involvement in the development of both types
of b-tagging and in the application of these techniques to the MSSM Higgs search.

Work was carried out on the Level-3 trigger b-tagging algorithms. The impact
parameter (IP) b-tagger was retuned and the effects of increased instantaneous lumi-
nosity on the tagger were studied. An extension of the IP-tagger to use the z-tracking
information was developed. A new b-tagger using secondary vertices was developed
and commissioned. A tool was developed to allow the use of large multi-run samples
for trigger studies involving b-quarks.

Offline, a neural network (NN) b-tagger was trained combining the existing offline
lifetime based b-tagging tools. The efficiency and fake rate of the NN b-tagger were
measured in data and MC. This b-tagger was internally reviewed and certified by
the Collaboration and now provides the official b-tagging for all analyses using the
Run IIa dataset at DØ.

A search was performed for neutral MSSM Higgs bosons decaying to a bb pair
and produced in association with one or more b-quarks. Limits are set on the cross-
section times the branching ratio for such a process. The limits were interpreted in
various MSSM scenarios. This analysis uses the NN b-tagger and was the first to
use this tool. The analysis also relies on triggers using the Level-3 IP b-tagging tool
described previously. A likelihood discriminant was used to improve the analysis
and a neural network was developed to cross-check this technique. The result of the
analysis has been submitted to PRL and is comparable to the result from CDF in
the same channel which uses approximately twice the integrated luminosity.
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Preface

This thesis describes the work performed by the author as a member of the DØ
Collaboration primarily between January 2004 and September 2007. The structure
of the thesis is as follows:

• Chapter 1 contains a brief review of the Standard Model (SM) and of the
Minimal Supersymmetric extension to the Standard Model (MSSM), with par-
ticular emphasis on the Higgs sector. A summary of the experimental status
for Higgs searches is also given.

• Chapter 2 describes the Tevatron accelerator complex and the DØ detector,
and introduces some common ‘physics objects’ used throughout the thesis.

• Chapter 3 describes development work carried out for the Level-3 trigger,
specifically relating to Level-3 b-tagging: the existing impact parameter based
b-tagger (IP-tagger) was re-tuned, an extension to the IP-tagger algorithm was
developed to include the stereo (z) tracking information (z-IP tagger), and a
new secondary vertex based b-tagger (SV-tagger) was commissioned.

• Chapter 4 covers the certification of the offline neural network (NN) b-tagging
tool. This is now the official b-tagging tool used at DØ.

• Chapter 5 describes two iterations of the search for associated production of
MSSM Higgs bosons with one or more b-quarks, where the Higgs decays to a
bb pair.

• Chapter 6 gives a summary of the thesis and the outlook for future work.

The key theme of the thesis is the use of b-quarks as a powerful handle on rare
events within large QCD backgrounds. Development work was performed on both
online and offline b-tagging algorithms and these were ultimately applied to the
MSSM Higgs search where the identification of b-quarks is essential for any hope of
finding a signal.
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Level-3 b-tagging: I was involved in the Level-3 algorithms group from the be-
ginning of my time at DØ. My work has primarily concerned the Level-3 b-tagging
algorithms and their dependencies on other tools. The re-tuned IP-tagger was ap-
proved by the Level-3 group and used online from summer 2004. Most of the events
used in the final analysis were collected using this version of the IP-tagger. An inves-
tigation of the effect of changes to the primary vertex and silicon tracker unpacking
tools on the IP-tagger performance was a necessary part of the Level-3 group’s dis-
cussion of these changes, which have subsequently been included in the trigger. The
development of the z-IP tagger and SV-tagger offers immediately improved rejection
and, in the future, the possibility of a multivariate b-tagger for Level-3 with even
better performance. During the development of these tools a mechanism to create
a large b-enriched data sample was developed which has subsequently been made
available to other members of the Level-3 group. This work is described in detail
in Chapter 3. I am responsible alone for all the work in this Chapter except for the
development of the SV-tagger which was performed in collaboration with another
PhD student.

Offline b-tagging: Before algorithms are offered for use by the Collaboration at
large they must be ‘certified’, for b-tagging tools this means measuring the tagger’s
efficiency on data and MC for signal and background and producing parametrisations
of these efficiencies with errors. The results presented in Chapter 4 refer to the final
version of the NN certification. This certified version of the NN provides the official
b-tagging for analysis of Run IIa data at DØ. Prior to producing this definitive
version of the certification it was necessary to repeat the procedure a number of
times due to problems with other offline reconstruction algorithms, corrections to the
jet energy scale and to fix problems with the implementation of the NN b-tagger and
certification procedure. Additional closure tests and cross-checks were also necessary
to confirm the correct implementation of the tool since this certification represents
the first collaboration-wide adoption of NN b-tagging. The certification work was
carried out with the help of another PhD student. I also produced documentation
for the certification code and helped introduce those working on the next generation
of certification to the framework.

The MSSM Higgs search: I was involved in two generations of the SUSY
Higgs analysis as documented in Chapter 5. The first analysis was presented as a
preliminary result at ICHEP 2006. I was primarily concerned with implementing
the NN b-tagging in this analysis. I parametrised the data/MC correction factors
for b-tagging and optimised the b-tagging working point. This was the first use of
NN b-tagging in an analysis at a hadron collider. For the second analysis, which has
been submitted for publication in PRL, a new analysis technique was developed by
the analysis group. My primary role was again the implementation of b-tagging, the
data/MC correction factors and the b-tagging working point optimisation including
an investigation into the possibility of using a multi-b-jet event tag. The final sub-
mitted result uses a likelihood method as a final event selection. To counter concern
that the likelihood might not behave as expected, I developed an alternative mul-
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tivariate selection technique using a neural network. I also re-optimised the event
selection for this NN branch of the analysis.
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Chapter 1

The Standard Model, Higgs
Mechanism and Supersymmetry

This Chapter briefly covers the theory required to motivate and justify the Higgs

search performed here. An introduction is given to the relevant parts of the Standard

Model (SM) and Supersymmetry (SUSY). More detail on the SM is given in [1, 2]

and more complete reviews of SUSY can be found in [3, 4, 5]. Section 1.1 gives an

overview of the SM while Section 1.2 gives a brief description of SUSY. The effect

of SUSY on the Higgs sector and the current status of SUSY-Higgs searches are

described in Section 1.3.

1.1 The Standard Model

The Standard Model is a relativistic quantum field theory for the fundamental par-

ticles and their interactions. It has been extremely successful at making predictions

in precise agreement with a wide range of experimental observations [6]. The model

consists of fermions, the quarks and leptons, and bosons, the force carriers. Within

the SM the known forces occur ‘naturally’ as the result of requiring a set of sym-

metries, called gauge invariance. However within the gauge invariant constraint it

becomes impossible to introduce the required mass terms for the observed particles.

An as yet unproven mechanism is needed to complete the Standard Model by giv-

ing masses to the fundamental particles. The Higgs mechanism and the associated

boson constitute the most widely accepted solution to this problem. Sections 1.1.1

and 1.1.2 will demonstrate how requiring gauge invariance can introduce new fields

and how mass terms are excluded. The electroweak combined symmetry group is

introduced in Section 1.1.3. A description of the Higgs mechanism is then given
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with an example of how a Higgs field can generate physically acceptable mass terms

for existing particles (Section 1.1.4). The behaviour of the Higgs in the Standard

Model and limits on its mass are discussed in Sections 1.1.5 and 1.1.6. Finally some

of the problems with this version of the Standard Model are mentioned.

1.1.1 Global Gauge Invariance

The Lagrangian formulation of mechanics has been found to produce the clearest

model for the development of relativistic quantum mechanics. The terms of the

Lagrangian can be read using the Feynman rules to give an idea of the physical

phenomena represented by the field theory. The Lagrangian for a free Dirac particle,

a massless four component spinor Ψ(x), is given by the Dirac equation:

LDirac = Ψ(iγµ∂µ − m)Ψ (1.1)

where γµ are the 4× 4 Dirac matrices and Ψ = Ψ†γ0. Strictly speaking, since Ψ is a

field, the quantity L given here is a Lagrangian density, which can be integrated over

a region of space. This Lagrangian density will be loosely referred to as simply the

Lagrangian. Since all real world observable quantities are eigen-values or functions of

ΨΨ the observables remain unchanged when an arbitrary constant phase is applied

to the field Ψ, i.e.:

Ψ → Ψ′ = eiθΨ (1.2)

Ψ → Ψ
′

= e−iθΨ (1.3)

The Lagrangian, which classically would describe the equations of motion, should

be no exception. The Lagrangian given in Equation 1.1 already satisfies this condi-

tion, it is invariant under any global phase given to Ψ. The set of transformations

described by all values of θ corresponds to all possible rotations in one dimension.

In group theory the set of such rotations corresponds to the group called U(1). A

choice of θ is called a gauge and invariance under a global transformation of this

kind is called global gauge invariance.

1.1.2 Local Gauge Invariance and Quantum Electrodynam-
ics

The global gauge transformation is a special case of a more general set of transfor-

mations where θ is allowed to vary ‘locally’, as a function of position in space-time.

The transformation of Ψ becomes:
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Ψ → Ψ′ = eiθ(x)Ψ (1.4)

The existing free Dirac Lagrangian is not invariant under this local gauge trans-

formation. An additional term appears from the partial differential of θ(x):

LDirac → L
′
Dirac = LDirac − Ψγµ∂µθ(x)Ψ (1.5)

If local gauge invariance is required the invariance of the Lagrangian can be

restored by replacing the partial differential, ∂µ, with a new operator, Dµ, called the

co-variant derivative. This operator is defined so as to transform in such a way as

to cancel out the additional term in the transformed Lagrangian above:

DµΨ → D′
µΨ′ = eiθ(x)DµΨ (1.6)

An operator which transforms in this way can be constructed by adding a new

real gauge field, Aµ(x), as shown:

Dµ ≡ ∂µ + ieAµ (1.7)

where Aµ is required to transform under local gauge transformations as follows:

Aµ → A′
µ = Aµ − 1

e
∂µθ(x) (1.8)

The new Lagrangian formulated with the co-variant derivative is now local gauge

invariant, and includes the coupling of the Dirac field to the new spin-1 field Aµ.

L
LGI
Dirac = Ψ(iγµDµ − m)Ψ (1.9)

= Ψ(iγµ∂µ − m)Ψ − eΨγµΨAµ (1.10)

where LGI indicates that the Lagrangian has been made locally gauge invariant.

To complete the combined Lagrangian for the Dirac and massless vector fields

kinetic and mass terms for the vector field must be added. The appropriate La-

grangian for a vector field is called the Proca Lagrangian. Using the antisymmetric

field tensor Fµν ,

Fµν ≡ ∂µAν − ∂νAµ, (1.11)

the following gauge invariant kinetic term can be added:
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L
KE
γ = −1

4
FµνF

µν. (1.12)

This kinetic term of the Proca Lagrangian can be considered as an alternative for-

mulation of Maxwell’s equations. The mass term for such a field is given by:

−1

2
m2

γAµAµ (1.13)

This mass term is not local gauge invariant, however if the field is required to

be massless the term goes to zero and local gauge invariance is restored for the

full Lagrangian. By requiring local gauge invariance a massless vector field which

interacts with the Dirac field has been introduced. From the form of the kinetic term

in the Proca Lagrangian it can be seen that this free massless field is the photon. The

interaction between Dirac particles (electrons, positrons etc.) and electromagnetism

(photons, E and B fields) has been introduced ‘for free’, i.e. without the need to

add anything except gauge invariance to the theory by hand. The full Lagrangian

for Quantum Electrodynamics is therefore given by:

LQED = Ψ(iγµDµ − m)Ψ − 1

4
FµνF

µν

=

Free Dirac Lagrangian
︷ ︸︸ ︷

Ψ(iγµ∂µ − m)Ψ − eΨγµΨAµ
︸ ︷︷ ︸

Interaction

Free Massless Scalar
︷ ︸︸ ︷

− 1

4
FµνF

µν .(1.14)

The U(1) symmetry group is the simplest unitary group. By applying local gauge

invariance under transformations corresponding to more complex groups, SU(2) and

SU(3), the interactions for the weak and strong forces are generated analogously.

The number of generators of each group corresponds to the number of bosons re-

quired.

1.1.3 Electroweak Unification

The electromagnetic and weak forces can be introduced simultaneously by requiring

gauge invariance under a combined symmetry group SU(2)L
⊗

U(1)Y , this is known

as electroweak unification [7, 8]. Three fields are generated by the SU(2)L transfor-

mations in weak isospin T. These fields, the W1
µ, W2

µ and W3
µ gauge bosons, have a

coupling strength g. The subscript, L, indicates that the fields only couple to the

left handed component of the fermion fields. The U(1)Y transformations in hyper-

charge, Y, produce a field Bµ with a coupling g′. The physical bosons are produced

by a mixture of these fields:
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W± ≡ (W 1
µ ∓ iW 2

µ)
√

2 (1.15)

Zµ ≡ cosθW W 3
µ − sinθW Bµ (1.16)

Aµ ≡ cosθW Bµ − sinθW W 3
µ (1.17)

where θW is the weak mixing angle. The EM charge, Q, is given by Q = T 3 + Y/2

where T 3 is the eigen-value of the third component of weak isospin and the couplings

are related by g′ = g tan θW . As with the simpler U(1) gauge invariance described

above mass terms for the new gauge boson fields cannot be made locally gauge

invariant. In order for the overall Lagrangian to be invariant the masses of the

electroweak bosons must be zero. This result is ideal for the photon which we know

to be massless (and similarly for the SU(3) group with its massless gluons) however

it is inconsistent with the short-range and characteristically ‘weak’ nature of the

weak interaction. Experimentally the W± and Z bosons have been observed to

have non-zero masses. A new mechanism is required to introduce appropriate gauge

invariant mass terms: one proposed method is the Higgs mechanism.

1.1.4 The Higgs Mechanism

The Higgs mechanism was developed to explain the non-zero masses of the W and Z

vector bosons whilst preserving gauge invariance [9, 10, 11]. The following example

demonstrates how the interaction of the Higgs and gauge fields can lead to a gauge

invariant mass term. For simplicity a U(1) invariant Lagrangian is considered here

and the example singlet Higgs field introduced will give mass to the photon. Intro-

ducing a complex Higgs doublet into the SU(2) invariant Lagrangian will generate

mass terms for the W± and Z in a similar way.

A complex scalar singlet field φ is defined:

φ =
1√
2
(φ1 + iφ2) (1.18)

φ∗ =
1√
2
(φ1 − iφ2). (1.19)

The U(1) gauge invariant Lagrangian can be written using this complex scalar singlet

field:

L = (∂µ + iqAµ)φ∗(∂µ − iqAµ)φ − 1

4
F µνFµν

︸ ︷︷ ︸

Kinetic Term

− V (φ)
︸ ︷︷ ︸

Potential Term

(1.20)
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The field φ is not free, instead it is under the influence of a potential, V (φ). The

Higgs mechanism relies on a feature of this potential, a non-zero minimum. For

illustrative purposes a simple function which satisfies this condition is chosen for

V (φ):

V (φ) = µ2φ∗φ + λ(φ∗φ)2. (1.21)

The potential V(φ) is shown in Figure 1.1 for both µ2 > 0 and µ2 < 0. If µ2 > 0 the

minimum of the potential is at φ = 0, a scalar field with mass
√

2µ is added to the

Lagrangian and the gauge fields remain massless. Alternatively if µ2 < 0 there is

an unstable maximum at φ = 0 and a minimum mapping out a circle in the (φ1,φ2)

plane:

φ2
1,min + φ2

2,min = v2 with v =

√

−µ2

λ
, (1.22)

µ2 > 0, λ > 0

φ

V(
φ)

µ2 < 0, λ > 0

φ

V(
φ)

−v +v

Figure 1.1: The example Higgs potential V (φ).

where v is the vacuum expectation value. The physical vacuum state can be chosen

freely from this set of minima. In choosing a particular value the symmetry is

“spontaneously broken”. For simplicity the physical vacuum state of the field φ is

taken to be:

φ1 = v (1.23)

φ2 = 0 (1.24)

Next consider the perturbative expansion of the Lagrangian around this mini-

mum, substituting two new fields defined as:
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η = v − φ1

ζ = φ2. (1.25)

Equation 1.20 can be rewritten in terms of these fields:

L =
1

2
(∂µη)2 − v2λη2

︸ ︷︷ ︸

Massive Scalar Particle

+
1

2
(∂µζ)2

︸ ︷︷ ︸

Massless ‘Goldstone’ Boson

− 1

4
F µνFµν

︸ ︷︷ ︸

K.E. Term

+
1

2
e2v2AµAµ

︸ ︷︷ ︸

Aµ Mass Term

− evAµ∂µζ
︸ ︷︷ ︸

Interaction Term

+ .... (1.26)

The previously massless gauge field Aµ has acquired a mass term, with the mass of

the A boson mA = eν. In addition the Lagrangian contains a massive scalar η, with

mη =
√

2λν, and a massless scalar ζ. The massless scalar is the ‘Goldstone’ boson

[12], a particle expected to be produced with the breaking of any continuous global

symmetry. The Goldstone boson is problematic since no massless scalar is observed

in nature. The interaction term between Aµ and ζ is also undesirable. However since

the physical observables are required to be gauge invariant a gauge transformation

can be applied as necessary to remove these problems. The choice of the unitary

gauge defined as:

θ = −tan−1(φ2/φ1), (1.27)

results in the disappearance of terms involving ζ and the full Lagrangian can now

be written with η → h, the physical Higgs boson:

L =
1

2
(∂µh)2 − 1

4
F µνFµν − v2λh2 +

1

2
e2v2AµA

µ

− λvh3 − 1

4
λh4 +

1

2
e2A2

µh2 + ve2A2
µh.

From the initially massless Aµ and complex scalar φ two real massive fields have

been produced. The A and Higgs fields acquire masses of mA = eν and mh =
√

2λν

respectively. The degree of freedom represented by the complex component of the

field φ has been absorbed by Aµ to allow it non-zero mass, leaving a real Higgs field

h.
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1.1.5 The Standard Model Higgs

In the Standard Model the Higgs does not couple to the U(1) gauge field, the

photon, as described above. Instead a complex doublet of fields, Φ, is introduced in

the same way and couples to the SU(2) fields, the W± and Z bosons. Of the four

degrees of freedom in the complex doublet of fields three are transferred to the weak

bosons giving them mass and one real Higgs field, h, remains. The process of giving

masses to the SU(2) fields within the unified electroweak system is called electroweak

symmetry breaking (EWSB). In the Standard Model there is no singlet or triplet of

Higgs fields and so no Higgs interactions with the U(1) and SU(3) bosons, no gauge

invariant mass terms can be formed and photons and gluons remain massless.

Although the Standard Model Higgs has been introduced as a mechanism for

giving the weak bosons mass, the doublet of Higgs fields will also interact with the

doublet fields of the fermions. This is called the Yukawa interaction and will be of

the form:

LY ukawa = −Gf (ΨLΦΨR + ΨRΦ†ΨL), (1.28)

where the Yukawa couplings Gf are free parameters of the theory and ΨL,R are the

left and right handed components of the fermion fields. By choosing the unitary

gauge and substituting in the Higgs field with its non-zero expectation value the

fermion mass term and a fermion-Higgs interaction term are produced. For example,

the Yukawa term for the electron is:

LY ukawa = −me(eLeR + eReL) − me

v
(eLeR + eReL)h. (1.29)

The mass is related to the Yukawa coupling by mf = Gfv/
√

2. Similar terms are

produced for the quarks. For all the fermions the strength of the coupling of the

fermion-Higgs interaction term is proportional to the fermion mass. For this reason

a Higgs below the W +W− threshold is expected to decay predominantly to b-quarks

with the second largest fraction decaying to τ leptons.

1.1.6 Constraints on the Mass of the Standard Model

Higgs Boson

The Higgs mass can be calculated from the v and λ parameters which describe the

Higgs field. However λ is a free parameter in the theory and so the Higgs mass is

unknown. There are however some theoretical limits as well as direct and indirect

experimental limits.
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For the Higgs mechanism to function λ must remain positive and finite up to the

energy scale where new physics begins. A study [13] has shown that λ can obey this

constraint and the Higgs mechanism can continue to function up to the Plank scale

if the Higgs mass is between 130 and 190 GeV. In addition unitarity constraints in

longitudinal WW scattering processes require that any Higgs in the SM and possible

extensions must have a mass below ∼ 1 TeV [14].

The Higgs will affect the other Standard Model processes via loop corrections

and so measurements such as the W, Z and top masses and widths provide indirect

constraints on the Higgs mass. An upper limit is set at mh < 190 at 95% CL using

combined measurements from LEP, SLC and the Tevatron [15]. Direct searches at

LEP place a lower bound of mh > 114.4 GeV [16].

1.1.7 Problems with the Standard Model

Despite the need for the the Higgs to be light, at least below ∼ 1 TeV, loop correc-

tions tend to push the Higgs mass to the highest energy scale at which the Standard

Model is valid, perhaps as high as the Plank scale. By fine tuning parameters it

is possible to arrive at an acceptable Higgs mass but there is no reason for such

a situation to arise naturally. The divergence of the electroweak and Plank scales

and the need to fine tune the Higgs mass in the existing theory are known as the

‘hierarchy’ and ‘fine tuning’ problems.

The coupling constants of the three fundamental gauge fields ‘run’ as the energy

scale of the interaction varies. As the energy scale increases the three numbers

initially appear to tend towards convergence. However the three parameters never

converge to a single value. In Grand Unified Theories (GUTs) which aim to unify

the three gauge fields, the parameters are required to converge at some high energy

‘GUT scale’. To ensure convergence of the gauge interactions at the GUT scale new

physics must be introduced between the SM and GUT scales.

1.2 Supersymmetry

Supersymmetry is a proposed symmetry between bosons and fermions. Each parti-

cle gains a supersymmetric partner, a ‘sparticle’, bosons have fermion super-parters

and vice-versa. The sparticles have identical quantum numbers to their correspond-

ing particles except for spin. In the observable universe Supersymmetry must be

broken since no such super-partners have been observed. This symmetry breaking

is assumed to have shifted the sparticles to higher masses.
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Supersymmetry solves the two problems with the Standard Model mentioned

in the previous section. Loop corrections from super-partners cancel the divergent

corrections from the Standard Model particles. The values of the running coupling

constants of the gauge fields are also effected by the presence of sparticles above the

SUSY scale and all three constants converge at an energy of ∼ 1016 GeV [3].

1.3 The Higgs in the Minimal Supersymmetric

Standard Model

In supersymmetric models additional Higgs doublets are required to maintain U(1)

invariance and cancel triangle anomalies [3]. The simplest extension to the Higgs

sector, the addition of a second Higgs doublet, is chosen for the Minimal Supersym-

metric Standard Model (MSSM). As in the SM each doublet has four degrees of

freedom, giving a total of eight. Three degrees of freedom are taken up in EWSB

giving masses to the W and Z bosons. The remaining five degrees of freedom pro-

duce five Higgs bosons; two neutral CP even, h and H; one neutral and CP odd, A;

two charged H+ and H−. In the limited parameter space of the MSSM the masses

of this set of bosons calculated at tree level can be written in terms of only two pa-

rameters, as discussed below. This simplicity is one reason the model is attractive

as a benchmark for analyses.

The pair of Higgs doublet fields can be separated into one which couples only

to up-type fermions and one which couples only to down-type fermions. The actual

Higgs bosons will be a superposition of these fields.

The ratio of the vacuum expectation values of these two fields is equal to tan β

where β is the mixing angle between the fields used to construct the charged Higgs

states:

tan β =
vu

vd
(1.30)

where vu,d are the vacuum expectation values of the two up and down-type Higgs

fields. The two free parameters needed to completely describe the Higgs masses at

tree level are chosen to be tan β and one of the masses, mA. The CP-even Higgs

boson masses are given in terms of the Z mass and the free parameters by equation

1.31.

m2
h,H =

1

2

(

m2
A + m2

Z ∓
√

(m2
A + m2

Z)2 − 4m2
Am2

Z cos2 2β
)

(1.31)

The CP-even masses have further constraints, again at tree level:
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mh ≤ mZ | cos(2β)| (1.32)

mH ≥
√

m2
A + m2

Z sin2 2β (1.33)

Radiative corrections increase mmax
h , the upper limit on mh, from the Z mass to

∼ 130 GeV. For large values of tan β, cos2 2β tends to 1 and Eqn. 1.31 gives one

of h and H with a mass ≈ mA. Three scenarios occur depending on the size of mA

with respect to the upper limit, mmax
h :

mA < mmax
h : mH ≈ mmax

h and mh ≈ mA

mA > mmax
h : mH ≈ mA and mh ≈ mmax

h

mA ≈ mmax
h : All three bosons have the same approximate mass.

For larger values of tan β the approximate equalities above tend to become more

exact.

Whilst at tree level the Higgs masses and couplings are determined solely by the

two parameters already introduced, mA and tanβ, higher order corrections depend

on further SUSY parameters. Two benchmark scenarios are commonly used to

reflect the possible effect of these secondary parameters [17].

mmax
h scenario- In this scenario the secondary SUSY parameters are chosen so as

to give the highest possible value to the lightest of the Higgs masses for a given

tan β. It is used to give conservative limits on tan β.

No Mixing scenario- This scenario assumes a larger scale for the SUSY masses

than the mmax
h scenario. It is so named because this choice of secondary

SUSY parameters suppresses mixing in the t-squark sector.

1.3.1 Production Processes

Figure 1.2 shows the production cross-sections for a SM Higgs [18]. The highest

production cross-section for neutral Higgs bosons at DØ is from gluon fusion. For

a Higgs produced in this way, decaying to a bb pair, the background of gg, qq → bb

is overwhelmingly large. Instead searches are performed in channels with associ-

ated production of additional heavy flavour jets or weak bosons. In the SM the

most common associated production processes are those involving Z or W bosons.

Chapter 5 will discuss searches for MSSM Higgs production in association with one
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Figure 1.2: The Standard Model cross-sections for Higgs production. Gluon fusion can be seen
to dominate over WH/ZH and associated production with b-quarks.

or two b-quarks. These processes are respectively a factor of two and an order of

magnitude smaller than the WH and ZH channels in the SM. In the MSSM the

coupling of the Higgs bosons to down-type quarks (d,s and b) is enhanced. At tree

level the MSSM cross-section for processes where the Higgs is radiated by a b-quark

is calculated by scaling the SM cross-section by tan2 β. If tan β is large, the produc-

tion of a Higgs in association with one or more b-quarks can become the dominant

production mechanism. Observations at the Tevatron will not allow the CP state of

an observed Higgs resonance to be determined. As a result the A, h and H will be

indistinguishable and are referred to generically as φ or h. The Feynman diagrams

for Higgs production in association with one or two b-quarks are shown in Figure

1.3. Following the inclusion of radiative corrections to the tree level diagrams these

processes become nearly indistinguishable where three or four jets are observed in

the final state. As at least two of the uncharged Higgs bosons are expected at

the same mass (within experimental resolution) an overall enhancement of 2 tan2 β

compared to the SM cross-section is expected, as shown in Figure 1.4 [19].

Although values for tanβ are unconstrained in theory, a high value is preferred

since it would naturally explain the very large mass of the top quark compared to

the b-quark [20]. A large value of tanβ is also more consistent with the observed

density of dark matter [21].



1.3 The Higgs in the Minimal Supersymmetric Standard Model 35

Figure 1.3: Tree level Feynman diagrams showing gg/qq → bbφ (top) and gb → bφ production
(bottom).
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Figure 1.4: Production cross-sections for the neutral MSSM Higgs bosons with a bb pair. The
calculation is at tree level with tan β = 30. The sum of the cross-sections for A (solid), h (dashed)

and H (dotted) is shown as the dash-dotted line, equal to twice the cross-section for A.
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Figure 1.5: Branching fractions of the A (left), h and H (right) in the mmax
h scenario of the MSSM

for tan β = 10.

1.3.2 Higgs Couplings and Decay

For large values of tan β in the MSSM the enhanced Higgs coupling to b-quarks is

enough to make φ → bb the dominant decay channel for all the neutral Higgs bosons

and for all values of mA. The branching fractions for A and h/H are shown in Figure

1.5 for tan β = 10 [22]. For all values of mA, ∼ 90% decay to bb and ∼ 10% to ττ .

1.3.3 Current Status of Analyses

Studies from LEP have excluded Higgs production in the MSSM to 95% CL for

mA,h < 93 GeV for all values of tan β [23]. Subsequent results from CDF and DØ

have further constrained the parameter space excluding the highest values of tan β.

The preliminary result from DØ in the bφ → bbb channel [24], which will be discussed

in Chapter 5, set a limit on tanβ of between 50 and 100 for 100 < mA < 170 GeV

using ∼ 0.9fb−1 and was shown in summer 2006. Subsequent results with > 1fb−1

from the φ → ττ channel at DØ [25] and CDF [26] have reduced the upper limits

to tanβ ∼ 40 for mA ≈ 140 and consider higher mA values (although these are

theoretically less likely). A revised version of the bφ → bbb analysis [27, 22], which

uses an increased dataset compared to the preliminary and an improved analysis

method, has been submitted to PRL and is discussed in Chapter 5.
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Chapter 2

The Tevatron and the DØ
Detector

2.1 The Tevatron Accelerator Complex

The Tevatron is a superconducting synchrotron located at Fermilab in the suburbs

of Chicago [28]. It collides protons with anti-protons at a centre of mass energy of

1.96TeV on a ring 6.2km in circumference. The collision energy is reached using

eight radio-frequency cavities, while 950 superconducting magnets are used to guide

and focus the beam. Whilst the Tevatron is the largest and most visible machine at

Fermilab it is only the final stage of the larger accelerator complex. It is more efficient

to employ a series of accelerators working over specific, limited, energy ranges to

reach the desired collision energy. Fig. 2.1 shows a schematic of the multiple stages

of the accelerator complex. A full description of the accelerator can be found in

[29]. The harmonics of the beams in the Tevatron are such that collisions may be

initiated at six equidistant points on the ring. Two of these points are used by

collider detectors, one of which is DØ.

2.1.1 Proton Production

Hydrogen gas is ionised with the addition of an electron to form H− ions. These

are accelerated using a Cockcroft-Walton accelerator to 750 keV and then by a

Linac to 400 MeV. The ions pass through a fine graphite sheet which strips both

electrons leaving the bare protons of the hydrogen nuclei. From here the Booster

accelerates the protons to 8 GeV and passes them to the Main Injector where they

are accelerated to 120 GeV for anti-proton production or 150 GeV for injection into

the Tevatron.
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Figure 2.1: Schematic of the Tevatron accelerator complex.

2.1.2 Anti-proton Production

Anti-protons are produced by colliding protons at 120 GeV with a nickel target and

sorting the products with a lithium lens and a magnetic field designed to act as a

charge-mass spectrometer. For every 107 protons hitting the target a single anti-

proton at ∼8 GeV is produced. Ultimately the number of anti-protons per bunch

is around an order of magnitude lower than the number of protons. The Debuncher

and Accumulator rings (known as the anti-proton source) are used to collect and

cool the anti-protons which are dispersed in energy.

The Recycler ring which occupies the same tunnel as the Main Injector is used for

further anti-proton cooling using a beam of electrons. Electron cooling has increased

peak luminosities by a factor of two [29]. Using the Recycler as an intermediary stage

gives an extra degree of freedom in choosing transfer windows from the anti-proton

source to the Tevatron. This allows anti-proton losses at injection to be minimised.

2.1.3 Collisions

The Tevatron simultaneously holds 36 bunches of protons and anti-protons. These

bunches are ∼ 50 cm long and grouped into three super-bunches separated by 2.6

µs. Within a super-bunch the bunches are separated by 396 ns. Collisions occur

at 1.7 MHz. Once a store of proton and anti-proton bunches has been set up it is

typically retained for 20 hours.
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Run I Run IIa Run IIb

Run period 1993-1995 2002-2006 2006-2009/10

Energy pp (GeV) 900 980 980

Proton/Anti-proton Bunches 6 36 36

Protons per bunch 2.3 × 1011 2.7 × 1011 2.7 × 1011

Anti-protons per bunch 5.5 × 1010 4.2 × 1010 1.0 × 1011

Bunch spacing (ns) 3500 396 396

Peak Luminosity (cm−2s−1) 0.16 × 1032 1 × 1032 ∼ 3 × 1032

Integrated Luminosity (pb−1/week) 3.2 20 45

Total Integrated Luminosity (fb−1) 0.12 1.3 6-8

Table 2.1: Operational parameters for the Tevatron during the three run periods.

Data taking at the Tevatron is divided into three operational periods known as

Run I, Run IIa and Run IIb. Run I operated at considerably lower luminosities but is

notable (among other things) for the discovery of the top quark [30, 31]. It ended in

1996 to allow for the installation of the upgraded accelerator and detector described

here. Run IIa began in April 2002 and ended in March 2006. The integrated

luminosity recorded was ∼1.3 fb−1. The analysis in this thesis was carried out using

the Run IIa dataset. The Tevatron will continue to run until at least autumn 2009

when results from the LHC will begin to become competitive. Currently there is ∼
4 fb−1 of data recorded, which gives good prospects for short term improvements to

the analysis presented here. By the end of Tevatron running, for Run IIa and IIb

combined, we expect to collect 7 - 9 fb−1. Table 2.1 gives the operating parameters

for the Tevatron during each of the three run periods.

2.2 The DØ Detector

The detector has a cylindrical structure common among collider based high energy

physics experiments. The symmetry of the detector reflects the symmetry of the

beam energies. The detector can roughly be divided into three main sub-detectors:

closest to the beam pipe are tracking detectors, surrounded by the calorimeter for

measuring the energy of electrons, photons and jets, and outermost is the muon

system. The original strengths of DØ were its calorimetry and excellent muon cov-

erage. In Run II the addition of a solenoid and silicon tracker has greatly improved

tracking resolution and particle identification. For Run IIb an additional tracking
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Figure 2.2: The DØ Run IIa detector, cross-section in the y-z plane.

layer has been implemented, along with improved trigger readout electronics. Fig-

ure 2.2 shows a cross-section of the detector showing the three sub-detectors. A full

description of the detector can be found in [32].

2.2.1 The Coordinate System

The conventional DØ coordinate system has its origin at the nominal interaction

point, the centre of the detector. The z-axis points along the direction of the proton

beam, the y-axis points up and the x-axis outwards along the radius of the Tevatron.

The polar coordinates follow from this with r confined to the x-y plane, perpendicular

to the beam axis, and φ the azimuthal angle from the x-axis in the x-y plane. The

polar angle, θ, from the proton beam direction is usually replaced with the pseudo-

rapidity, η. In the limit E � mc2 pseudo-rapidity is an approximation to the

rapidity which is a Lorentz invariant. Pseudo-rapidity is defined as:

η = − ln

(

tan

(

θ

2

))

(2.1)

The separation of objects in the η − φ plane is usually given in terms of a cone

size, ∆R, where:

∆R =
√

(∆φ)2 + (∆η)2 (2.2)
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Figure 2.3: cross-section of the tracking system.

2.2.2 The Tracking System

The tracking system is composed of a precision silicon microstrip tracker surrounded

by a fibre tracker both contained within a superconducting solenoid producing a 2T

field. The system provides tracking out to high pseudo-rapidity (|η| < 3), primary

vertex resolution of 35 µm and a momentum measurement on charged tracks with

a resolution of δpT /pT = 0.02 ± 0.0015 × pT % where pT is measured in GeV. For

tracks suitable for b-tagging (central η, pT > 10 GeV) the position resolution is 15

µm. The arrangement of the tracker components can be seen in Fig 2.3.

2.2.2.1 Silicon Microstrip Tracker

The Silicon Microstrip Tracker (SMT) is composed of three types of sub-detector.

The silicon wafers making up these sub-detectors are held within a Beryllium support

structure. The arrangement of wafers can be seen in Fig. 2.4.

Barrels In order to cover the large lateral spread of the interaction point ( σz ∼ 25

cm ) there are three 12 cm barrels either side of the coordinate origin along the z-axis.

Each barrel is composed of four double sided layers of rectangular silicon modules,
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Figure 2.4: The silicon microstrip tracker.

called ladders. The inner layer radius is 2.7 cm and the outer 10.5 cm. In all there

are 432 ladders, twelve on the two inner layers and 24 on the two outer layers of

each barrel.

F-disks These twelve disks are composed of twelve double sided trapezoidal wedge

shaped modules. One disk is attached to the end of each individual barrel. The

remaining disks are positioned in two groups of three a short distance from the ends

of the complete set of barrels.

H-disks At ∼1 m from the nominal interaction point these offer SMT tracking

up to |η| < 3.0. The H disks are made up of twelve wedges composed of two single

sided half-wedges.

The signal to noise ratios for SMT hits in the different detector types varies

between 12:1 and 18:1. At the end of Run IIa radiation damage to the SMT had

resulted in a loss of ∼ 10% of the detector channels [32].

Since the end of Run IIa the silicon detector has been upgraded with the addition

of an extra barrel layer ( layer-0 ) inside the existing inner layer. This layer will

compensate for the effect of ageing on the SMT and will in fact improve the b-tagging

resolution at low pT by a factor of two [33].

2.2.2.2 Central Fibre Tracker

The Central Fibre Tracker (CFT) extends out to |η| = 1.6, providing tracking

and allowing a momentum measurement. The tracker consists of eight concentric

cylindrical super-layers of scintillating fibres at radii between 20.04 cm < r < 52.15

cm. Each super-layer contains two doublet layers of fibres known as the axial and

stereo layers. Doublet layers are formed from two sets of 128 fibres overlapping by

half a fibre diameter. Axial layers are aligned with the z axis giving r−φ information.
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The stereo layers are alternately at an angle of ±2◦ to the z-axis and therefore can

be used to provide z information. The fibres themselves are polystyrene with a

thin double cladding (50 µm on fibres 835 µm in diameter). The core material is

doped with 1% p-terphenyl to increase the yield of scintillation light and 1500ppm

of 3-hydroxyflavone which shifts the light to a wavelength which is more efficiently

transmitted.

The scintillating fibres feed into undoped polystyrene waveguides which take the

light to visible light photon counters (VLPCs) located in a cryostat beneath the

detector. The VLPCs act as solid state photomultipliers converting the photons to

an electrical signal with a fast response and quantum efficiency greater than 75%.

For each photon converted the VLPCs output between 22000 and 65000 electrons.

At the present time of order 99% of the VLPCs remain functional [32]. Hits in the

axial layers provide a fast Level-1 track trigger.

2.2.2.3 Solenoid

The limited space between the calorimeter and tracking is occupied by a solenoid,

2.73 m in length with 1.42 m external diameter. Designed to optimise momentum

resolution the solenoidal field is uniform at 2T to within 0.5% within the tracking

volume. The material of the magnet and its cryostat are 1.1 radiation lengths (X0)

thick. To allow studies of the systematics the polarity of the solenoidal field is

periodically flipped.

2.2.2.4 Preshowers

The preshower detectors (PS) aide in matching calorimeter clusters to tracks and in

identifying electrons. A mosaic of triangular polystyrene scintillator tiles is attached

to the inner face of the end calorimeters and placed between the central calorime-

ter and solenoid. The central preshower (CPS) covers |η| < 1.3 and the forward

preshower (FPS) 1.5 < |η| < 2.5.

2.2.3 The Calorimeter

The DØ calorimeter is divided between three separate cryostats, called the central

(CC) and north/south end cap (EC) calorimeters. The detectors are further divided

into electromagnetic (EM), fine and coarse hadronic (FH/CH) regions, arranged as

seen in Fig. 2.5. These regions are composed of multiple layers which are in turn

made up of cells. The detector is a sampling calorimeter with each cell consisting

of a metal absorber which initiates showering, liquid argon ionising medium and
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copper charge collection pads. The secondary particles produced during showering

in the absorber ionise the liquid argon and under a potential the charge drifts to the

pads where it is read out.

The EM region is closest to the beam axis and is designed to contain most

of the showering from photons and electrons. The absorber is made of depleted

uranium, which acts as a compensator responding almost equally to electromagnetic

and hadronic showers. The detector is made up of four layers, the inner three having

cells 0.1×0.1 in η−φ and the fourth, where the maximum energy is deposited, having

0.05× 0.05 cells. The material of the EM layers presents 20 X0 in the CC and 21.4

X0 in the EC.

The FH absorbs most of the energy deposited by hadrons with the CH catching

any leakage such that nothing but minimum ionizing particles should in general

escape the calorimeter. In total the thickness of the electromagnetic and hadronic

regions is 8 - 10 interaction lengths. The hadronic cells have an area 0.1 × 0.1 in

η − φ except for η > 3.2 where they are ∼ 0.2 × 0.2

2.2.3.1 Performance and Status

Since the calorimeter is compensating the EM and hadronic response is almost

equal. The ratio (EM/hadronic) varies from 1.11 at 10 GeV to 1.04 at 150 GeV,

as measured on electrons and pions in the test beam. However the resolution does

depend on particle type and was measured from the test beam [34] as:

σE/E = 0.15/
√

E + 0.003 for electrons (2.3)

σE/E = 0.45/
√

E + 0.04 for pions (2.4)

where E is measured in GeV.

Damage to the calorimeter has been limited, indeed only the readout was re-

placed following Run I. We currently have 99.9% of channels operational.

2.2.3.2 The Inter-Cryostat Region

Scintillating tiles are attached to the inside face of the EC to help recover resolution

in the space between the cryostats. The sixteen tiles are divided into twelve readout

sectors each covering ∼ 0.1 × 0.1 in η − φ. Whilst the resolution in this region

(known as the ICR) is improved using this detector, it is unavoidably worse than in

the main calorimeter volumes.
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Figure 2.5: The calorimeter.

2.2.4 The Muon System

Outside the calorimeter, the final layer of the detector is the muon system. To detect

muons two types of drift tubes are used. Scintillator detectors are also used to veto

cosmic muons and to associate muon hits with the correct bunch crossings. The

scintillator is also necessary to allow triggering since the drift tube read-out is too

slow. The detector is split in two with the central muon system using proportional

drift tubes (PDTs) out to |η|< 1 and the forward muon system out to |η|∼ 2 using

mini drift tubes (MDTs). Each sub-detector consists of three layers of drift tubes,

layer A within a toroidal magnetic field, and B/C layers outside it. The magnetic

field bends trajectories in the r-z plane allowing a momentum measurement. Layer

A has four decks of drift tubes, while the B and C layers have three. The PDTs have

a granularity of 10.1 cm and a maximum drift time of 500 ns, while the MDTs are

much finer (1 cm cells) and faster (60ns max drift time). Three layers of scintillator

are present in the forward system and two are used in the central system.

For low pT muons the momentum measurement is dominated by the tracking

system. The momentum resolution of the muon system is ∆p/p = 40% for a mo-

mentum of 50GeV. Above 100GeV including the muon system begins to improve

the pT measurement. The position resolution of both types of drift tube is ∼ 1 mm.

Overall the muon system is over 99% operational, with < 1% more of the older

central PDTs being damaged.
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Figure 2.6: The trigger framework.

2.3 The Trigger and Data Taking System

The rate of collisions is far too high to make it feasible to write out and reconstruct

all events, furthermore the majority of events are of little interest. A tiered trigger

system allows us to perform increasingly complex reconstruction while avoiding pile-

up of uninteresting events. Elastic scattering is rejected using the luminosity monitor

(LM). The further trigger levels are known as Level-1, -2 and -3, in order of increasing

complexity and increasing time available per event (see table 2.2 and Fig. 2.6).

2.3.1 Luminosity Monitor

The LM detects inelastic pp collisions using two sets of plastic scintillators at z =

±140 cm in front of the end calorimeters and between the forward preshowers and

beam pipe. The LM covers the region 2.7 <|η|< 4.4. Since the cross-section for all

inelastic collisions is well known we can use the rate of LM triggers to calculate the

total luminosity (L) where:

L = fNLM/σpp (2.5)

where f is the frequency of bunch crossings, σpp is the cross-section and NLM is

the number of LM triggers scaled up to account for the acceptance and efficiency of

the detector.

2.3.2 Level-1

The Level-1 trigger decision is taken by hardware; field programmable gate arrays

(FPGAs) take partial read out from the PS, calorimeter, CFT and muon detectors.

Calorimeter information is processed in 0.2×0.2 η−φ windows called trigger towers.

Calorimeter Level-1 trigger terms require either a number of towers over a transverse

energy (ET ) threshold or sum all towers and make a cut on the total ET . The
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Rate Latency

Collisions 1.7 MHz n/a

Level-1 1.6 kHz 3.6 µs

Level-2 800 Hz ∼ 100 µs

Level-3 50 Hz ∼ 150 ms

Table 2.2: Output rates for the various levels of the trigger system and the processing time
available at each.

CFT triggers look at axial fibres in 4.5◦ sectors comparing the hits with predefined

candidate patterns. The tracking can distinguish between four pT thresholds and

match tracks to preshower hits. The muon triggers consider the candidates from the

track trigger and looks for consistent hits in the muon system.

If one of the 128 Level-1 trigger terms (‘bits’) is fired the event is passed to one

of 16 buffers to wait for a Level-2 decision.

2.3.3 Level-2

The Level-2 trigger is based on FPGAs like those at Level-1, combined with micro-

processors. At Level-2 the simple Level-1 bits are combined with the SMT informa-

tion to form physics objects (electrons, muons, tracks and jets). Each sub-detector

is handled separately and then a further processor, Level-2 global, combines the

physics objects to look at the complete picture.

There are one or more Level-2 trigger terms for every Level-1 bit. For each event

we run all the Level-2 algorithms corresponding to the Level-1 bits which have fired.

2.3.4 Level-3

The complete output of the detector is read out if Level-2 fires and is available for

the Level-3 trigger. Within the constraints of the output rate of Level-2 it performs

a partial reconstruction of the event. The algorithms used at Level-3 are similar to

the offline tools, but optimised for faster operation. Cuts are kept loose to retain

efficiency while keeping to the nominal 50Hz rate to tape. The software consists of

tools to process the data and filters to determine which events pass the trigger. For

each Level-2 trigger bit fired a filter script is called. The filter script is made up of one

or more Level-3 filters which define conditions for passing the event. The filters may

act on individual physics objects, on combinations of objects or on combinations

of other filter results. If the physics objects required by the filter have not been
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produced the relevant physics tools are run. Once run the tool’s results are cached

and made available to other filters. A set of unpacking tools process the raw data

readout into more manageable and usable data. The physics tools then make objects

or combine objects as requested by the filter scripts. A farm of ordinary Linux PCs

is used to run the reconstruction tools and filters. Each farm node processes a single

event at a time, independently of the rest. Events which pass the filters are passed

to the ‘Online Host’ to be written to tape.

2.4 Reconstruction Software

A full reconstruction of each triggered event is performed on an offline CPU farm at

Fermilab. In many cases the algorithms are similar to those available at Level-3, but

here we can afford to take longer where improvements can be made. The complete

reconstruction takes around 25s/GHz per event at typical luminosities (∼ 1 × 1032

cm−2s−1). Some of the basic object definitions are described in the following section.

2.4.1 Physics Objects

Primary Vertices Primary vertices are found using an adaptive iterative vertex

finding algorithm [35, 36].

Jets Calorimeter jets are formed using a 0.5 cone in ∆R [37]. The jet energy is

corrected using the jet energy scale (JES) [38] to recover energy deposited outside

the cone and energy not recorded in the calorimeter and to remove other energy

sources.

Jet Flavour In our Monte Carlo (MC) samples a jet is called a b-jet if it has a

b-quark within ∆R < 0.5. A c-jet is a jet with a c-quark but no b-quark within

∆R < 0.5. The remaining jets, without a c or b-quark within the ∆R cone, are

called ‘udsg’ or light jets.

Track Jets Track jets are formed from a seed track with pT > 1 GeV and at least

two SMT hits. Tracks within ∆R < 0.5 are attached to the seed if they have pT >

0.5 GeV and at least one SMT hit. Tracks in a track jet must have a small distance

of closest approach to the PV (DCA) to ensure they originate from the correct PV.

The DCA requirements are |DCAxy| < 0.2 cm and |DCAz| < 0.4 cm. A track jet

must be composed of at least two tracks [39].
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Good Jets We call jets ‘good’ if they are above 15 GeV and within |η| < 2.5.

This is a minimum requirement for jets we expect to be taggable.

Taggability Taggable jets are those good calorimeter jets which are attached to

a track jet within ∆R < 0.5. The taggability of a sample is the ratio of taggable

jets to good jets [40].

Muons The definition of muon objects used in this thesis requires at least two hits

in both drift tube layers, scintillator hits in both the A, and B or C layers, pT > 4

GeV and a track match with χ2 < 100 [41].

2.4.2 b-tagging Algorithms

A jet originating from the hadronisation of a b-quark can be identified using the

quark’s long lifetime, or for the ∼ 10% which decay semi-leptonically, by the presence

of a high pT lepton. The long lifetime appears as a displaced origin for tracks

attached to the jet, which is detected by one of two types of algorithm. The first

type attempts to explicitly reconstruct this secondary vertex (SV). The second type

of algorithm uses the impact parameter (IP) of tracks, specifically its significance

(IP/εIP ), to indicate the consistency of a set of tracks with the PV. To calculate

the impact parameter we take the tangent to a track at its point of closest approach

to the PV and propagate this back to find the closest perpendicular distance to

the PV. The algorithm also considers the point at which the back-propagated track

would cross the jet axis. A real track must originate either at the PV or from a SV

in the jet at some positive distance along the jet axis. For tracks which cross the jet

axis on the wrong side of the PV we give the IP a negative sign. These negatively

signed tracks cannot come from real SVs and so their spread gives a measure of the

vertex resolution. For each of the track based b-taggers a ‘negative tag’ can also be

formed using the tracks with negative signed IP, this is used in our estimation of

the fake tag rate. Figure 2.7 is a simple graphical representation of a jet containing

a b-quark and illustrates the characteristic features used by lifetime b-taggers.

Jet Lifetime Impact Parameter (JLIP) algorithm [42] The resolution of the

tracking is used to calculate the probability for each track to belong to the PV. The

probabilities are combined to give an overall probability that all tracks in the jet

are consistent with the PV. A jet is tagged if it has a JLIPprob less than a cut value

which can be optimised for the particular analysis scenario. Cuts range from ‘Very

Tight’ (< 0.002) to ‘Super Loose’ (< 0.04).
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Figure 2.7: Schematic representation of a b-jet, illustrating the impact parameter and secondary
vertex.

The probability is sensitive to single tracks with very high IP, potentially pro-

ducing fake tags from a single mismeasured track. Such tracks could be complete

fakes or real tracks mistakenly assigned to the jet. To protect against this a reduced

probability, calculated with the highest significance track removed, is also available.

Counting Signed Impact Parameter (CSIP) algorithm [43] This tagger

counts the tracks with large IP significance. If at least three tracks have a significance

greater than two or two have a significance greater than three, the jet is tagged.

Secondary Vertex Tagger (SVT) [44] Tracks which are displaced from the

primary are used to generate all possible secondary vertices (SV). A jet is tagged

if a SV is found within ∆R < 0.5 with a large enough decay length significance

(DLS). The minimum DLS required is varied to give a variety of operating points,

from tight (> 7) to loose (> 5).

Soft Lepton Tagger (SLT) [45] The jet is tagged if a muon is matched to a

track attached to the jet and has more than a minimum pTRel
. The pTRel

is the

component of the muon’s pT perpendicular to the jet axis, where the jet axis is

calculated including the muon track.
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Chapter 3

Level-3 b-tagging

3.1 Introduction

The identification of b-quarks is an important tool in the analysis of a wide range of

physics signals, from top physics to Higgs searches. Where a process of interest with

b-quarks is kinematically similar to a light-flavour QCD background the background

process is typically several orders of magnitude larger than the signal. Effective b-

tagging can help reduce such background to a manageable level. Efficient b-tagging

triggers should maximise the number of events with b-jets remaining in the samples

whilst reducing the dominant light-jet backgrounds. The online algorithms are sim-

pler versions of those used offline working at high efficiency operating points, albeit

with higher fake rates. When optimising trigger tools the maximum rate of events

which can be recorded and the limited processing time must be considered.

All b-taggers use either the b-quark’s long lifetime or its muonic decays. Muons

have a low enough rate to have high efficiency taggers of their own. However trigger-

ing on muons exclusively would only record a limited fraction of b-jets. Two lifetime

taggers have been developed for Level-3 and this chapter deals with studies and

commissioning of these tools. The ability to form a lifetime-tag for b-jets relies on

the relational properties of the associated tracks, jets and vertices. Since b-tagging

relies on the combination of information from multiple parts of the detector it re-

quires multiple physics tools to be run which in total takes considerable time. The

tracking algorithm consumes the most processing time.

3.1.1 Chapter Contents

The remainder of this introduction gives an overview of the Level-3 physics tools

required to run the b-tagging algorithms and a brief summary of the challenges of
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Figure 3.1: Schematic showing the tools required to run the Level-3 b-tagging filters.

developing Level-3 tools. Section 3.2 introduces the data, MC samples and offline

software tools used for the Level-3 studies. Section 3.3 covers improvements to the

IP based Level-3 b-tagger including a project to extend the track information used

to three dimensions. The commissioning of a new secondary vertex b-tagging tool

is described in Section 3.4. Section 3.3 is solely the authors work, while the final

section was completed in collaboration with another PhD student.

3.1.2 Level-3 b-tagging Walk Through

The b-tagging tools are high level trigger tools, processing physics objects returned

by other tools rather than handling raw data. Several of the following studies concern

the effect on the b-tagging of changes to the lower level tools. Each of these tools

is configurable via a set of parameters which may be tuned for specific analysis

requirements and as conditions of luminosity and detector performance change. To

clarify the roles and relationships of these tools the following section consists of an

overview of the relevant tools. Figure 3.1 is a schematic showing how the Level-

3 b-tagging tools depend on the jet, vertex and tracking tools, how these tools

are related and how they depend on the unpacking tools which deal with the raw

detector read-out.

3.1.2.1 An Overview of Level-3 Track Finding

The unpacking tools for the SMT [46, 47] and CFT [48] use the raw output of the

SMT and CFT sub-detectors to construct ‘clusters’. A cluster represents the point

where a charged particle has passed through a detector layer. Level-3 clusters are

constructed in the x-y (axial) and z (stereo) detector layers.
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The Global Tracker [49, 50] uses the clusters produced by the unpackers to

reconstruct tracks. The time available for tracking at Level-3 is ∼ 100 ms per event

[32]. The Level-3 tracking algorithm must therefore be considerably simpler than

the offline one, as a result it is less efficient and less pure although it is around one

hundred times faster [51].

Axial tracks are found first starting with all pairs of hits in the outer two layers

of the CFT and working inwards. As the track candidates are propagated inwards

hits are added as long as the inclusion of the hit does not increase the track fit χ2

by more than 10. Tracks are rejected if they are below a pT threshold or if they are

missing hits in more than one consecutive layer. Finally if any tracks share more

than two hits the lower quality track is discarded.

Stereo tracking is performed using a fast histogramming approach [52]. To de-

scribe any stereo track two parameters are needed; Z0, the z-coordinate at the closest

approach to the origin, and tan(λ), the pitch of the track helix given by dZ/dSxy

where Sxy is distance along the track arc in the x-y plain. Each stereo hit should be

consistent with a set of potential tracks described by a line in the Z0− tan(λ) plane.

The point where these lines intersect for a set of hits gives the track parameters

for the track made up of those hits. A 2D histogram is filled with these parame-

ters and the most populous bin is used as a first approximation to the stereo track

parameters. A linear fit is then used to find the optimal stereo track parameters.

3.1.2.2 An Overview of Level-3 Primary Vertex Finding

The z-vertex is determined by a histogramming method [53]. Tracks are binned

in 1cm intervals between ±100cm based on z0, the z-position of closest approach

of the track helix to the origin in the x-y plane. The position of the z-vertex is

calculated using the tracks within the two adjacent bins with the highest values for

a weighted combination of track multiplicity and track pT . The pT weighting helps

reject vertices from minimum bias events which will also be present.

Tracks which are consistent with the z-vertex are then used to find the x-y

vertex which is found using an impact parameter (IP) minimisation [54]. The impact

parameter is the closest perpendicular distance between the track arc and the vertex

hypothesis. Tracks are approximated by straight lines, tangents at the point of

closest approach to the beamspot in the x-y plane. The nominal beamspot is taken

to be the average position of primary vertices from the previous data taking run and

is parametrised as a function of z. The quantity to be minimised in determining the

best vertex is:
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χ2
vertex =

Ntracks∑

i

(di
0)

2

(σi
0)

2
+
∑

j=x,y

(bj − Vj)
2

(σj)2
(3.1)

where di
0 are the impact parameters and the error on the IP is σi

0. The second

summation constrains the vertex to be close to the beamspot position as it represents

the most likely interaction point. The proposed vertex coordinates are Vx,y and the

beamspot position is bx,y. The width, σx,y, is estimated from the spread of the

vertices and is assigned to be 30µm. For the more accurate offline primary vertex

finding tool this spread is measured to be 27µm.

3.1.2.3 An Overview of Level-3 Jet Finding

Jets found at Level-3 are similar to offline jets, although the algorithm is somewhat

simplified. There is no jet energy scale correction at Level-3 and so a Level-3 jet will

tend to have lower pT than its offline counterpart. The Level-3 calorimeter clustering

tool [55] passes clusters to the Level-3 jet tool [56] which forms ∆R ≤ 0.5 cone jets.

3.1.2.4 The b-tagging Tools

The b-tagging tools share a common system for matching tracks to each jet and to

the PV. A track is attached to the nearest jet if the angle between them is less than

45◦. This requirement is equivalent to a cone of ∆R < 0.7, larger than the standard

0.5 cone used for track-jet matching offline. Any isolated tracks are discarded since

both b-tagging algorithms make reference to the associated jet axis. Tracks are then

required to pass the following ‘good track’ selection:

• At least 5 hits in the axial tracking detectors.

• A χ2 for the axial track fit smaller than 5.

• At least 5 hits in the stereo tracking detectors.

• A χ2 for the stereo track fit smaller than 5.

• The error on the z0 track parameter must be smaller than 0.4 mm.

• The track-vertex distance in z must be smaller than 2 cm.

Jets which have two or more ‘good’ tracks attached are called ‘good’ jets. Once

the set of tracks for each jet has been created the algorithms for the two taggers

diverge. The older impact parameter based tagger (IP-tagger) will be described in

Section 3.3 and Section 3.4 will give details of the newly commissioned secondary

vertex tagger (SV-tagger).
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3.1.3 Challenges for Level-3

The Level-3 tools have undergone continuous development to maintain signal effi-

ciency with increased background rejection as the instantaneous luminosities have

increase during Run II. The rapidly increasing luminosity not only changes the de-

sired working points but also affects input distributions through increased track and

vertex multiplicities. Increases in track multiplicity in particular will have a signifi-

cant effect on tool timing. Timing profiles must be monitored and tools re-tuned to

account for the changing conditions.

In addition to the gradual drift of the beamspot during normal running, large

movements in the beamspot occur during the annual Tevatron maintenance shut-

downs. A large asymmetry in the position of the beamspot away from the coordinate

origin gives a directional bias to tracking quality, since the sub-detectors nearer the

PV have an effectively denser configuration of channels in r − φ than those oppo-

site. It has proved very difficult for the Tevatron to correct such movements and so

changes to the track clustering thresholds are preferred to recover efficiency. The

Level-3 tools must be adaptable or robust against such changes to the beamspot

position.

As the detector ages the increased number of dead channels will potentially have

an impact on the Level-3 tools, as will any changes in the detector geometry during

maintenance. There is also considerable effort required to ensure compatibility with

the online framework and with offline tools and data formats, this activity is not

described here but is left implicit.

3.2 Data, MC Samples and Tools

The following sections introduce the MC and data samples used in this chapter.

The following studies were carried out using an offline trigger simulation framework

called trigsim [57]. The standard data and MC samples used by physics analyses are

reduced to standard reconstructed physics objects, to keep file sizes manageable the

raw detector readout is removed. For studies of trigger tools the raw detector read-

out is necessary and so these standard samples cannot be used, alternative samples

are made containing only the raw read-out. For studies comparing the Level-3 and

offline results it was necessary to run separate algorithms over separate data file

types for the same events in parallel.
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Run Number Instantaneous Luminosity (cm−2s−1) Number of Events

Low 188676 0.1 × 1032 589495

Medium 206003 0.6 − 0.7 × 1032 309324

High 204905 1.0 − 1.1 × 1032 61684

Table 3.1: Data samples used.

3.2.1 MC Samples

Monte Carlo samples (MC) of Z0 → bb and QCD are used for studies of the Level-3 b-

tagging tools. These samples were produced using Pythia [58] version ‘v6 319’. A jet

pT cut of 12 GeV and a z vertex within ±35cm are required to mimic requirements

in the b-tagging filter. Due to the complicated environment of a hadron collider

significant data/MC differences occur. Data jets have a softer pT spectrum, are

fewer in number and contain fewer tracks. Track errors are also not accurately

reproduced. As a result b-tagging will always appear to be more efficient in MC

than in data. Thus significant data based tests are also required.

3.2.2 Data Samples

Studies using data avoid the above problems but are less straight-forward since the

true flavour of data jets is unknown. For the purposes of these studies it is sufficient

to make a b-enhanced and a standard data sample. Absolute efficiencies will not

be measured, but comparisons of performance curves between tool versions remain

valid.

To study the effects of changing luminosity, in Section 3.3.4, three samples were

used as detailed in Table 3.1. In each case the complete run is used as a standard

‘background’ sample and the subset of events with an offline secondary vertex tag is

used as a b-enhanced ‘signal’ sample. For the calibration of the IP-tagger ‘negative

tags’ are used to generate a data sample with very low signal content as described

in Section 3.3.2.

3.2.2.1 The b-enhanced Sample

The ‘signal’ samples produced from single data runs mentioned in the previous

section are extremely limited in size due to the low production cross-section of b-

jets. These samples are sufficient for studies mainly concerned with the fake rate.

Section 3.4.4 deals with such a study on the effect of changing trigger conditions
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Flavour Initial fraction % Tagging efficiency % Fraction after two tags %

b 2.5 50 93.1

c 4.5 10 6.7

udsg 93 0.4 0.2

Table 3.2: Typical sample composition, the offline tagging efficiency and the resulting expected
composition of the b-enhanced sample. The initial composition is that given by Pythia.

and luminosity on the fake rate of the IP-tagger. The errors resulting from the small

signal samples became the limiting factor in this comparison of the tool performance

for different scenarios. For the subsequent studies which concern the performance

of the SV- and z-IP-taggers a larger b-enhanced sample was necessary.

The mechanics of the process used to generate the large b-enhanced sample are

somewhat complicated due to the sparse population of such events across many runs,

and therefore across many data files. Offline code can only be run on reconstructed

events while online code must run on raw data, forcing the sample to be generated

in a two pass process. Event lists were generated by running the offline secondary

vertex tool over a large muonic data skim of eighty million events and requiring two

jets with displaced secondary vertex tags. Assuming a typical flavour composition

calculated from QCD MC allows us to calculate the composition after requiring

two secondary vertex tags at the given working point. Table 3.2 gives the flavour

composition from MC, the tagging efficiencies on the constituent samples and the

resulting composition after two tags demonstrating that the b-enhanced sample is

relatively pure heavy flavour. Only events with exactly two jets were used to avoid

contamination of the b-enhanced sample by additional light jets.

The files containing each individual event are then accessed from central storage

and the raw data for these events is concatenated. Due to the scarcity of such events

each event is typically recorded on a different data storage tape. Finally we need to

develop an infrastructure for running over events from disparate runs. During live

running parameters which change on a run by run basis, such as the beamspot and

solenoid polarity, are retrieved from the online database. In our standard trigger

simulation framework these are generally supplied by hand as studies generally con-

sider only a small number of runs. With the run number changing after every few

events an automatic update method is necessary. Such an addition to the frame-

work was developed to update the beamspot and extended to cover changes in the

polarity, allowing such a large b-enhanced sample to be used for the first time in

trigger studies at DØ. The code used to create this sample is still in use and has

been used to increase the sample size with new data.
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3.3 Studies with the Impact Parameter Tagger

3.3.1 Introduction

At the time of the work described in this chapter the IP-tagger was the only b-

tagging trigger tool running online. The tool was the only b-tagger available during

Run IIa and as such was an important component of the triggers used to collect the

majority of the data events used in the analysis described in Chapter 5.

3.3.2 The IP-tagger Algorithm

The matching of tracks to jets and to the PV is described in Section 3.1.2.4 and is

the same for all the Level-3 b-taggers. Once the sample of tracks associated with a

jet is found the IP is calculated for each track. Since tracking precedes PV finding,

as seen in Figure 3.1, the tracking tool parametrises tracks in terms of the absolute

fixed origin in the x-y plane, independent of the choice of PV. The IP calculation

is simplified if the PV is used as the coordinate origin, so all track parameters are

first recalculated in this frame of reference. The distance of closest approach (DCA)

for a Level-3 track is its closest distance to the coordinate origin. Here the DCA

is recalculated so that it gives the closest approach to the PV. The error on the

calculated DCA is given by the tracking tool, this error propagates into the errors

on all the distances we calculate starting from the DCA, such as the IP. At the scale

of the DCA the curvature of tracks is very slight (radius of curvature, R � DCA).

Since the distances under consideration are well within the beam pipe, scattering

and energy loss through interactions are very low. We can thus approximate the

track as an arc in the x-y plane with a constant velocity in z. The tracking resolution

is very different in the x-y plane (∼15 µm) compared to the z-direction (∼ 0.5 mm).

For this reason the existing implementation of the IP-tagger calculates IPs in the

x-y plane (Section 3.3.5 describes a study into the feasibility of including the z-

information in the IP calculation).

The IP is measured at the most likely origin of the track, i.e. its point of closest

approach to the jet axis. This point is either where the track crosses the jet axis

or where it is parallel to it. To find this point we step back along the track arc

in the direction which minimises the distance between the track and the jet axis.

Figure 3.2 shows some of the parameters of the iterative position finding, where R is

the radius of curvature, dS is the distance moved along the path, ~D is a tangent to

the current point and (Xc,Yc) is the centre of the track arc. In reality the curvature

is far less than that used for illustration in the figure. The IP will change little since
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Figure 3.2: Schematic to relate the Level-3 track parameters and the iterative IP finding algo-
rithm.

the tangential vector ~D changes little. The IP is the distance from the PV to the

final point, perpendicular to the track tangent ~D.

At this stage tracks are discarded if the calculated track parameters do not fulfill

the IP-tagger track selection:

• Impact parameter < 0.25 cm

• Decay length < 1 cm

• Track-jet distance < 0.007 cm

• Track-jet distance significance < 10

where the decay length is the distance along the jet axis to the point where the track

and jet are closest, and the track-jet distance is the separation of track and jet at

this same point.

Around 50% of tracks in a background sample will cross the jet axis on the

opposite side of the PV from the jet itself. Such a position is clearly inconsistent

with a physical origin in the jet; such an IP can only be explained by the finite

resolution of the PV and tracking. To represent this information each IP is given

a sign indicating which tracks cross the jet axis downstream (+) and upstream

(-) of the PV. The negatively signed track sample contains very few tracks from

long-lived particles and therefore is not used to find b-jets. These tracks are not

used directly by the online tool. However this lifetime-free track sample is ideally

suitable for calculating the resolution of the tracking system. The resulting function
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Figure 3.3: The signed IP significance for tracks in the medium luminosity data run (black) and
the b-enhanced data sample (red). The resolution function produced from a fit to the negative
signed IPs and reflected in the y-axis is also shown (black curve). An excess over the resolution

function can be seen for positive IPs in the b-enhanced sample.

is then used by the IP-tagger to separate signal lifetime from resolution effects in

the positive signed track sample as described below.

The IP significance for a track, IP track
sig , is given by the track’s IP divided by the

error on the IP. A resolution function is produced from a fit to the IP significance

distribution of the negative signed tracks. This fit function is reflected in the y-axis

to produce the resolution function for positive IP significances. Figure 3.3 shows

the distribution of signed IP significance in two data samples, the medium instan-

taneous luminosity background sample and the b-enhanced sample. The resolution

function is also shown, it is in good agreement with the negative signed IP signifi-

cance distribution and clearly shows the excess of positive signed IP significance for

the b-enhanced sample.

The resolution function is normalised to unity and integrated above each track’s

IP significance to give the probability for the track to have a larger absolute IP

significance, known as the ‘track probability’ Ptrack:

Ptrack =

∫∞
IP track

sig
fres

∫∞
−∞ fres

(3.2)

where fres is the resolution function. The smaller the track probability the more

unusual the track’s IP and the less likely the track really comes from the PV. Figure

3.4 shows the track probability distributions for the medium instantaneous lumi-

nosity background data sample and the b-enhanced sample. Tracks with negative
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signed IPs are shown in the top-left plot to give an idea of the distribution of proba-

bilities for tracks whose displacement is due to resolution effects. The top-right plot

in Figure 3.4 shows the track probabilities for the positively signed tracks. The bot-

tom plot shows the excess of positive signed tracks over negative signed tracks. The

total ‘event probability’ is found by taking the product of the track probabilities

for all positive signed tracks with a combinatoric normalisation factor which ac-

counts for the increased chance of finding some high IP tracks in events with higher

multiplicities. The complete equation to calculate the event probability is given in

Equation 3.3 where P i
track are the track probabilities and Ntrks is the number of

tracks. Since Π is a probability it is always between zero and one, therefore −ln(Π)

is always a positive number.

Pevent = Π ×
Ntrks−1
∑

j=0

(−ln(Π))j

j!
with Π =

Ntrks∏

i=1

P i
track(IPsig > 0) (3.3)

This probability Pevent is known as ‘the b-tag’ and is the primary output of the

tool. It is the probability that all tracks in the event are consistent with the primary

vertex. A b-tag of zero therefore strongly suggests the presence of one or more b-

jets. The distribution of b-tags for the medium instantaneous luminosity background

data sample and the b-enhanced sample are shown in Figure 3.5. A jet based tag is

calculated in the same way, but is not used in the existing trigger.

3.3.3 IP Resolution Function Refits

3.3.3.1 Introduction

The track probability is calculated using the resolution function determined from

a fit to the distribution of negative IP significances. This function will vary over

time due to changes to the characteristics of the detector and tracking algorithms,

increases in luminosity and detector occupancy, detector ageing, changing trigger

thresholds and trigger tool improvements. As these changes are continuously occur-

ring new resolution functions are produced after each major revision of the trigger

algorithms. The IP-tagger was first available in the trigger version known as v13

which was used online from June 2004. The studies in this section and the rest of

this chapter concern the v14 version which followed in June 2005 and ran online

until the end of Run IIa in March 2006. Figure 3.6 shows the difference between

the tracks’ IP and IP-significance for the same set of events for the two trigger ver-

sions, it is clear that a fit to the v13 IP significance will not accurately describe the

distribution in v14.
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Figure 3.4: The track probability in the medium luminosity data run (black) and the b-enhanced
data sample (red). Upper left: the track probabilities for tracks with negative signed IP, such
tracks are not used in the event probability calculation but give an indication of the fake rate due
to resolution. Upper right: the track probabilities for tracks with positive signed IP, these are used
to calculate the event probability. Lower: the excess of positive signed tracks formed by subtracting
the negative signed tracks’ probability distribution from the positive signed tracks’ distribution.
All three figures are normalised so that the number of tracks with negative probability are the

same in the b-enhanced and background samples.
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Figure 3.5: The event probability (b-tag) in the medium luminosity data run (black) and the
b-enhanced data sample (red). Good separation between signal and background is apparent. The
two samples are normalised to have the same number of events passing the b-tagger preselection.

Figure 3.6: The signed IP (left) and signed IP significance (right) distributions for the v13 (red)
and v14 (black) trigger versions for a low luminosity run. More tracks pass the b-tagging track
selection in v14, to allow the shapes to be compared the histograms in these figures are normalised

to equal area.
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Figure 3.7: The chosen best fit to the resolution function with three exponentials. The χ2

dof for
the fit is 1.54.

3.3.3.2 Resolution Function Refits and Tests

The pre-existing resolution function fit consisted of a Gaussian and two exponentials

to account for the long tails. This function was generated using a small single run

sample by the tool authors at the time the tool was first used online. The function

gives a reasonable approximation to the distribution seen in v13, but to exploit the

full potential of the tool the fit should accurately represent the data it will be used

upon. The availability of more data since the original fit should also allow a better

description of the tails.

Several functional forms were investigated, beginning with the form used for v13.

All possible fit functions using between zero and two Gaussians and between one

and three exponentials were tried, along with a fit to four exponentials. The quality

of the fits was judged by their χ2 per degree of freedom, χ2
dof . The IP resolution

function was derived from the low luminosity sample and tested on the medium

luminosity sample. At the time of the refit the low luminosity sample represented a

typical run and the medium luminosity sample was one of the highest instantaneous

luminosity samples available. The fit using three exponentials was found to best

represent the distribution and is shown in Figure 3.7.

3.3.3.3 Conclusion

Retuning of the IP-tagger resolution function is essential as the luminosity increases,

tracking algorithms change and the detector ages. The refit described here was a

better quality fit to a larger data sample than the original function and was necessary
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to maintain the performance of the tool. The fit function derived ran online until

the end of Run IIa and the tools developed have been used in subsequent refits. The

suitability of the derived resolution function for the medium and high luminosity

samples is discussed in the following section.

3.3.4 Stability of the IP-tagger with Luminosity and Tool

Changes

3.3.4.1 Introduction

Changes to the tracking and vertex finding tools will potentially affect the number

and quality of tracks available to the IP-tagger. As the luminosity rises the optimal

configuration for each of these tools will change. During the lifetime of the v14

resolution function discussed previously, a number of major changes to these tools

occurred, along with an order of magnitude increase in the peak instantaneous lu-

minosity. In this section two potential improvements are investigated. In the first

scenario the pT threshold for tracks used to reconstruct the PV is raised. In the sec-

ond scenario, along with this change, a retuned SMT unpacker is introduced. Both

these scenarios were tested on the low, medium and high instantaneous luminosity

samples. The purpose of the studies was not to motivate the changes, which were

suggested by other studies, but to confirm that they might be implemented without

damaging the efficiency of the IP-tagger.

Raising the PV track pT threshold reduces the CPU time spent on Level-3 track-

ing, which is correlated with the instantaneous luminosity. The time overhead of low

pT tracking becomes more significant as the increasing luminosity leads to increasing

numbers of simultaneous ‘minimum-bias’ interactions superimposed on top of the

hard scatter. The IP-tagger still requires tracking to be carried out down to low pT

(1 GeV). The PV is found for every event while b-tagging is only performed on a

small fraction of events. Overall it is more economical to run tracking to a higher

threshold (3 GeV) on all events and rerun it (down to 1 GeV) on the small subset

of events for which an IP-tagger trigger term is called and which pass the IP-tagger

preselection cuts. As instantaneous luminosity increases this change will be needed

to help keep the tracking algorithm within the timing constraint.

The improvements to the SMT unpacker included ‘hot’ chip removal1, pedestal

retuning and splitting/merging of clusters. The result was a ∼ 10% increase in

the number of SMT clusters in ‘good’ axial tracks and a ∼ 70% increase for stereo

tracks.
1The offline tracking group identified SMT read-out chips with abnormally high occupancy

(> 25%) as ‘hot’. Clusters from these chips account for a third of clusters in an event on average
and are mostly fake. Such clusters should be removed.
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3.3.4.2 Effect on Track DCA

Figure 3.8 shows the track DCA significance for tracks with negative signed IP.

Since almost all real tracks (all those not from the decay of long lived particles such

as b-quarks) physically originate in the PV the distribution of DCA’s is close to

a Gaussian around zero with a width reflecting the errors of the tracking system.

If the track errors are correctly assigned the distribution of track DCA over the

DCA error, the DCA significance, will have a width of 1. This width is referred

to as the DCA “pull”. The measured pull for the existing Level-3 configuration

and track errors is a little greater than one, suggesting a slight underestimate of the

track errors or of the beamspot width parameters, σx,y introduced in Section 3.1.2.2.

The purpose of this study is not to correct the DCA pull but to try to anticipate

potential future problems for Level-3 b-tagging due to changes in the Level-3 tools

and in the instantaneous luminosity. The pull is not significantly affected by the

trigger list changes, suggesting that the raised PV track pT threshold is not adversely

effecting the quality of the PV. The higher instantaneous luminosity runs show a

slight increase in the DCA pull. This is as expected since PV reconstruction is less

accurate in a high track multiplicity and high multiple interaction environment. To

correct the DCA pull it will become necessary to refit the DCA errors, but the size

of the effect is currently small.
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Figure 3.8: The track DCA significance for negatively signed tracks in the low (top left), medium
(top right) and high (bottom left) instantaneous luminosity data runs. Three track samples are
shown for each luminosity, produced using the standard tools (black), with a raised PV track
pT threshold (red) and with both the SMT unpacker improvements and raised PV pT threshold
(green). The lower right plot shows a direct comparison between the track distributions in the low,
medium and high luminosity runs for the scenario with the upgraded SMT unpacker and raised

PV pT threshold.
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3.3.4.3 Effect on the Number of Tracks

Figure 3.9, shows the number of tracks associated with each jet. The effect of the

trigger list changes is small, but there is significant degradation at increased lumi-

nosity. The higher luminosity samples have a higher average jet multiplicity but an

increasing fraction of these jets are not associated with tracks. This suggests either

that the method of assigning tracks to jets is failing, that there is an increase in

fake jets or that there is a reduction in tracking efficiency in the medium and high

instantaneous luminosity runs, and that the problem increases with instantaneous

luminosity. Any one of these effects has the potential to affect the tagger’s perfor-

mance. The most significant change with increasing luminosity seems to be a large

increase in the number of jets with no tracks associated, these are most probably

noise jets. As long as the overall number of jets with associated tracks does not

decrease the efficiency of the IP-tagger should be maintained.
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Figure 3.9: Number of tracks per jet for the low (top left), medium (top right) and high (bottom
left) instantaneous luminosity data runs. Three jet samples are shown for each luminosity, produced
using the standard tools (black), with a raised PV track pT threshold (red) and with both the SMT
unpacker improvements and raised PV pT threshold (green). The lower right plot shows a direct
comparison between the track distributions in the low, medium and high instantaneous luminosity

runs for the scenario with the upgraded SMT unpacker and raised PV pT threshold.



3.3 Studies with the Impact Parameter Tagger 69

3.3.4.4 Effect on the Number of Tracks Used in the PV

Figure 3.10 shows the number of tracks in the PV for the three different scenarios for

the low, medium and high instantaneous luminosity data runs. As expected raising

the pT threshold on tracks used to calculate the PV reduces the number of tracks

and the number of PVs found. This difference is much less significant for PVs with

a large number of associated tracks. Figure 3.11 shows the effect of the parameter

changes on the medium luminosity sample, for all events (as in Figure 3.10) and

for events which have at least two jets suitable for online b-tagging (jets with at

least two tracks passing the IP-tagger track selection). The second sample is more

like the sample of events for which the IP-tagger will be run in the trigger. After

applying this requirement the effect of raising the PV track pT threshold is much

less significant. The PVs which are affected by the raised threshold seem to mainly

be badly reconstructed PVs, unsuitable for b-tagging.

As the instantaneous luminosity increases the mean number of tracks in the av-

erage PV decreases, most significantly for the high instantaneous luminosity sample.

This reflects the expected increasing difficulty of vertexing and tracking at the higher

instantaneous luminosities.
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Figure 3.10: Number of tracks used to build the PV for the low (top left), medium (top right)
and high (bottom left) instantaneous luminosity data runs. Three event samples are shown for
each luminosity, produced using the standard tools (black), with a raised PV track pT threshold
(red) and with both the SMT unpacker improvements and raised PV pT threshold (green). The
lower right plot shows a direct comparison between the track distributions in the low, medium and
high instantaneous luminosity runs for the scenario with the upgraded SMT unpacker and raised

PV pT threshold.
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Figure 3.11: Number of tracks used to build the PV for the medium luminosity run, in all events
(left) and in events with at least two jets containing at least two ‘good’ tracks (right).
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3.3.4.5 Effect on the IP-tagger Track Probability

Figure 3.12 shows the track probability for negatively signed tracks. The resolution

function used in this version of IP-tagger was derived on the low instantaneous lu-

minosity sample as described in Section 3.4.3. This version of the IP-tagger was

required to function routinely at luminosities equivalent to the medium luminosity

sample and up to luminosities represented by the high luminosity sample, although

at the time the resolution function was derived no instantaneous luminosity compa-

rable to that of the high luminosity sample had been recorded.

A flat track probability for these tracks indicates that the resolution function

parametrisation accurately describes the track resolution of the sample. The tool

changes do not have a significant effect on the track probability, suggesting the res-

olution function fit remains an accurate reflection of the track resolutions for the

tested scenarios. The improved SMT unpacking parameters do not majorly improve

the track resolution. The departure from a flat track probability at small probabili-

ties indicates the difficulty in describing the tails of the IP significance distribution

in the resolution function. These low track probabilities correspond to large IP sig-

nificance tracks. The problem of underestimating the resolution function tails and

producing an excess of low probability tracks is seen at all three luminosities. In

the low luminosity sample the high probability region is quite flat and this flatness

degrades at the higher instantaneous luminosities.

The majority of real b-jets will have tracks with probabilities in the lowest bin,

these are the most powerful tracks in the event probability combination. The in-

crease in the number of tracks seen in the first bin due to resolution effects, in the

negatively signed sample seen here, will be mirrored in the positively signed sample

and will lead to an increase in the fake rate and a reduction in the power of the tool.

This degradation of the overall performance will require a new resolution function

fit as the luminosity increases further.
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Figure 3.12: The track probability distribution for negatively signed tracks in the low (top
left), medium (top right) and high (bottom left) instantaneous luminosity data runs. Three track
samples are shown for each luminosity, produced using the standard tools (black), with a raised
PV track pT threshold (red) and with both the SMT unpacker improvements and raised PV pT

threshold (green). The lower right plot shows a direct comparison between the track distributions
in the low, medium and high instantaneous luminosity runs for the scenario with the upgraded

SMT unpacker and raised PV pT threshold.
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3.3.4.6 Effect of Changes on the IP-tagger Performance

Performance curves were created for the three data runs with the three tool config-

urations. Signal events were identified by requiring a tight SVT tag offline. Events

containing b-jets are rare and so the total number of events in the signal sample for

a single run is small. The resulting statistical errors limit our ability to compare

performance on single runs.

Figure 3.13 shows performance curves for the three tool configurations for the

medium luminosity run. It is not possible to resolve a significant change in perfor-

mance between the scenarios, within errors they are equivalent. This is consistent

with the minimal effect seen on the track and PV parameters for the set of ‘good’

tracks and vertices used by the IP-tagger. The performance on the higher luminosity

sample is similarly not affected by the change in scenario, however the performance

for all three scenarios is reduced compared to the medium luminosity sample. The

signal statistics are poor for the high luminosity sample and so a comparison is

made at the ∼ 80% efficiency nominal performance benchmark of the IP-tagger.

At this working point the fake rate at medium luminosity of 32 ± 5% increases, as

expected, to 44 ± 8% for the high luminosity run. Here efficiency is defined with

respect to the total number of data events with ‘good’ Level-3 jets and an offline SV

tag. The fake rate was measured with respect to the total number of events with

‘good’ jets in each full data run at each luminosity. The decreased performance

at high luminosities gives increased motivation to the commissioning of a second

b-tagging tool described in Section 3.4 and for the retuning of the IP-tagger once

high instantaneous luminosity becomes common place.

To overcome the issue of limited signal statistics the large b-enhanced sample

described in Section 3.2.2.1 was created and was used for the remaining studies in

this chapter.

3.3.4.7 Conclusion

It was confirmed that the proposed changes to the trigger tools which feed informa-

tion to the IP-tagger cause only a limited reduction in the IP-tagger’s performance.

These changes are necessary to stay within processing constraints in the more de-

manding high instantaneous luminosity environment. The latest versions of the

trigger use these new trigger list parameters. The IP-tagger was tested on the high-

est instantaneous luminosity run available. The algorithm continued to be capable

of high efficiency but suffered a ∼ 40% relative increase in fake rate.



3.3 Studies with the Impact Parameter Tagger 74

Pass Fraction
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Si
gn

al
 E

ffi
ci

en
cy

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trigger list

Existing trigger list

Raised PV threshold

Raised PV and retuned SMT

Figure 3.13: Performance for three tool configuration scenarios for the medium luminosity data
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3.3.5 Z-dimension Impact Parameter Tagging

3.3.5.1 Introduction

In the existing tool the z-component of the IP is neglected, in fact the whole process

of finding the closest approach to the jet is performed in two dimensions only. One

of the significant effects of the improvements to the SMT unpacker mentioned in the

previous section was an improvement in the number of stereo hits per track. With

more stereo SMT hits per track there is more accurate information for tracking

in z and the z-resolution has consequently improved. This improvement makes it

possible to consider using the z-component of the IP. In this section the development

of an extension to the IP-tagger is described which would calculate the z-component

of the IP (the z-IP) and include this information in the final tool output.

3.3.5.2 Tracking Errors

Despite the improvement to the z-tracking and the reduction in the mean error,

the errors in z are still much larger than those in x-y. The resolution of the PV in

the z-direction has also improved, but it should be remembered that because of the

geometry of the silicon detector the z-resolution will always be larger than that in

x-y.

Recalculating the DCA in three dimensions and looking at the DCA pull in z

suggested that the z-errors provided by the tracker were underestimated as the pull

was greater than one. The z-errors from the tracker had not been updated since

their initial implementation and so new estimates were developed for use in the z-IP

study. These were produced by binning the tracks in the medium luminosity run

by number of SMT hits and coarsely by the quality of the PV as indicated by the

number of tracks used to build the PV. Figures 3.15, 3.16 and 3.14 show the fits for

tracks with varying numbers of SMT hits for PVs with five or fewer tracks, six to

ten tracks and more than ten tracks. A fit to the DCA distribution of the negative

signed tracks was made with a pair of Gaussians for each track and PV category.

The width of the dominant Gaussian was taken to be an improved estimate of the

error. The non Gaussian peak in the distributions for DCA values close to zero

reduces the quality of the fits and makes these Gaussian errors conservative.

3.3.5.3 Implementing the tool

The IP algorithm has four components where two dimensions are specifically used:

• Reduction of track to a track arc.
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Figure 3.14: The fits to z-DCA (in cm) for tracks from events with five or fewer tracks used to
reconstruct the PV. The tracks are divided into samples with 2 (top left), 3 (top right) and more
than 4 SMT hits (bottom). The resulting Gaussian widths give the new z-track errors for the z-IP

tool.

Figure 3.15: The fits to z-DCA (in cm) for tracks from events with between six and ten tracks
used to reconstruct the PV. The tracks are divided into samples with 2 (top left), 3 (top right)
and more than 4 SMT hits (bottom). The resulting Gaussian widths give the new z-track errors

for the z-IP tool.
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Figure 3.16: The fits to z-DCA (in cm) for tracks from events with more than ten tracks used to
reconstruct the PV. The tracks are divided into samples with 2 (top left), 3 (top right) and more
than 4 SMT hits (bottom). The resulting Gaussian widths give the new z-track errors for the z-IP

tool.

• Finding the closest approach of the track to the associated jet, the DCA.

• Giving the track a sign based on its origin upstream (-) or downstream (+) of

the PV.

• Calculating the IP.

The 2D track arc can be replaced with the required 3D equivalent, a track helix,

by including a constant velocity in the z-direction. The existing 2D algorithm uses

only the x and y components of the track position vector and so is not affected

by this change to the z-component. The track arc is replaced with the track helix

throughout the shared code base for the existing and z-IP extended taggers.

When searching on the track helix for the DCA to the jet, two points exist

which could be considered optimal. Firstly the point which simply gives the closest

approach in 3D. Secondly the point which gives the closest approach if the separation

in each dimension is weighted with its relative error. In the first approach the z-

component of the track-jet separation tends to dominate, the point with smallest

z-separation is usually chosen irrespective of the x-y coordinates. This result seems

unnatural since the x-y tracking is more accurate, as indicated by the smaller errors.

The second approach behaves as might be expected, finding very similar points for
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calculating the DCA in the 2 and 3D cases. Since the stereo errors are an order

of magnitude larger than the axial ones when using this approach the 2D point is

always a good approximation of the 3D point. The second approach is used since

it takes into account the relative reliability of tracking in different dimensions. To

maximise code reuse and minimise the overhead for running the z-IP tool the point

found using the 2D closest approach is used with the 3D track helix to produce the

3D DCA. In this scenario the sign given to the track for the 3D tool should be the

same as the sign in the 2D tool.

The IP is calculated by a vector method which could easily accommodate the

z-information. However because of the large differences between axial and stereo

tracking the resolution functions for the 2D and the z-IP significance are produced

separately. The probabilities can then be combined to form a 3D probability per

track. In order to maintain the independence of the 2D tagger it was decided instead

to calculate a separate x-y and z event probability to be combined with separate

cuts in the actual trigger.

3.3.5.4 Track Selection for the z-IP tool

As the stereo track parameters are subject to larger errors, the track selection was

loosened to:

• Z impact parameter < 2 cm.

• Z decay length < 5 cm.

• Z track-jet distance < 5 cm.

• Z track-jet distance significance < 30.

These parameters were optimised for peak z-IP tagger efficiency (considering

the efficiency of the z-IP only, not in combination with the IP-tagger). The best

performance was found using the track-jet distance significance as the main track

selector. The decay length and track-jet distance cuts are loosened to the point

where they reject very few tracks. The minimum ‘good track’ preselection defined

in Section 3.1.2.4 was also required.
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Figure 3.17: The fit to the z-IP resolution function using two Gaussians and two exponentials.

3.3.5.5 Measuring the Resolution Function

The optimal resolution function was determined in a similar way to the 2D function.

In this case, the best fit function was two Gaussians with two exponentials. As

before only the negatively signed tracks are used to measure the resolution function.

The sign given by the 2D tagger is more reliable than the sign from the z-IP tool.

Comparing the sign given to each track in the 2D and z-IP tools indicates that for

heavy flavour jets the signs are more correlated than for light jets. The 2D sign can

therefore be used to confirm the sign derived by the z-IP algorithm, whilst rejecting

mostly background. Using only tracks given the same sign by both z-IP and 2D

taggers was seen to give better performance than using either sign alone. Only

these tracks with like signs are used by the final z-IP tagger. The z-IP significance

is shown in Figure 3.17. A comparison of the z-resolution function in Figure 3.17

to the x-y function in Figure 3.7 shows that the z-track errors introduced above are

reasonable since the spread in IP significances are comparable.

Figure 3.18 shows the resolution function for the z-IP compared to the IP sig-

nificance distributions for both the b-enhanced and background data samples for

positively and negatively signed tracks. The fact that there is some excess over

the resolution function for positive IPs in the signal sample suggests that there is

some useful b-tagging information in the z-IP for at least some tracks. The excess

is considerably smaller than the corresponding one for the 2D tagger.

Figure 3.19 shows the track probability for the b-enhanced and background data

samples. The track probability for background tracks is relatively flat. This flatness
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Figure 3.18: The signed z-IP significance for tracks in the background sample (black) and b-
enhanced sample (red). The resolution function derived from a fit to the negative signed IPs is
also shown for comparison, a small excess over the resolution spread due to real long-lived particles

can be seen especially in the signal sample.

indicates the quality of the resolution function fit. An excess of signal tracks is

seen with positive track probabilities, this is required if the tool is to be able to

discriminate. Comparing the excess of positive signed tracks in Figure 3.19 with

that shown in Figure 3.4 for the 2D IP-tagger indicates how much less favourable

the lower resolution z-direction tracking is for IP b-tagging. With the 2D IP-tagger

the excess of positive signed tracks is concentrated at low track probability, this is

because the mean path of the b-quark is significantly larger than the width of the

resolution function. For the z-IP the resolution width and mean path are of the

same order. The b-quark mean path is still larger than the z-resolution, resulting

in the broadly distributed excess seen in Figure 3.19. In the final event probability

(Z b-tag), shown in Figure 3.20, a limited separation can be seen between signal (at

lower probabilities) and background (at higher probabilities).

3.3.5.6 Performance and Conclusion

Using the large b-enhanced and background data samples the performance of the

z-IP-tagger was measured. The signal efficiency was defined using the offline double

SVT tight tagged signal sample:

Signal Efficiency =
Number of Level-3 tagged events from the signal sample

Number of events in the signal sample
(3.4)
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Figure 3.19: The z-IP track probability in the medium luminosity data run (black) and the b-
enhanced data sample (red). In the top-left figure the track probabilities for tracks with negative
signed z-IP are shown, such tracks are not used in the event probability calculation but give an
indication of the fake rate due to resolution. The top-right figure shows the track probabilities
for tracks with positive signed z-IP, these are used to calculate the event probability. The bottom
figure shows the number of positive signed tracks with a given probability minus the number of
negative signed tracks with the same probability. All three figures are normalised so that the
number of tracks in the resolution sample, those with negative signed z-IP, are the same in the

b-enhanced and background samples.
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Figure 3.20: The event probability (Z-b-tag) for the z-IP tagger in data events for the medium
luminosity background sample (black) and the b-enhanced sample (red).
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A background sample consisting of the medium luminosity data run was used to

calculate the rate:

Rate =
Number of Level-3 tagged events from the background sample

Number of events in the background sample
(3.5)

The performance is shown in Figure 3.21. As expected z-IP tagger performs

less effectively than the IP-tagger. Whilst the z-IP tagger does give rejection of

∼ 40% for 80% efficiency this is considerably less than the ∼ 75% rejection of the

2D IP-tagger for the same efficiency.

In a real trigger filter the z-IP tool would be combined with the 2D IP-tagger.

Figure 3.22 shows the performance of a ‘z-IP AND IP-tagger’, a ‘z-IP OR IP-tagger’

and the unmodified IP-tagger without z information. To generate the curves for the

combined taggers the cut on the weaker tagger, the z-IP, was fixed and the IP-tagger

event probability cut varied. For the ‘OR’ a tight cut on the z-IP event probability

of < 0.1 was required. For the ‘AND’ a loose cut of z-IP event probability < 0.9 was

used. Whilst the z-IP tagger shows some ability to separate signal and background

when used on its own, directly combining the tagger’s results with those from the

existing 2D IP-tagger does not result in significantly improved performance. It

is possible that a more subtle combination of results from the two taggers could

improve efficiency. Future plans for Level-3 include a multivariate b-tagger which

could potentially combine the z-IP and IP-taggers with the secondary vertex tagger

introduced in the following section using a neural network.
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Figure 3.21: Performance curves for the z-IP and existing taggers run independently. Error bars
are included but are small.

Pass Fraction
0 0.2 0.4 0.6 0.8 1

Si
gn

al
 E

ffi
ci

en
cy

0

0.2

0.4

0.6

0.8

1

IP-tagger

ZIP-AND-IP tagger

ZIP-OR-IP tagger

Figure 3.22: The performance of the ‘z-IP AND IP’ tagger (blue), the ‘z-IP OR IP’ (yellow)
tagger and the existing 2D IP-tagger (black). Errors are shown but are small.



3.4 Studies with the Secondary Vertex Tagger 84

3.4 Studies with the Secondary Vertex Tagger

3.4.1 Introduction

The IP tagger considers whether the set of tracks associated with a jet are compat-

ible with the PV. The tool does not consider the relationship between the tracks

themselves as the probabilities for each individual track are simply combined. The

decay of a b-quark inside a jet produces tracks radiating from a single point, the sec-

ondary vertex. Finding this point provides an additional way to reject tracks with

erroneously high IP, which will have a different apparent origin. Such tracks may be

fake tracks or real tracks associated with the wrong jet. Because the IP-tagger does

not reconstruct the SV these tracks would not necessarily be rejected and constitute

a source of fake tags for that tool.

The reconstruction of a SV requires at least two tracks from the b-decay, more

than two such tracks may be required to build a useful SV if one track is mismea-

sured or if the SV is particularly close to the PV. As such the IP-tagger may be

more powerful for lower track multiplicities than a SV based approach. Considering

the complementary strengths and weaknesses of the two approaches has led to the

development of both algorithms, both for the Level-3 trigger and for offline recon-

struction. Combining the results from separately optimised lifetime taggers leads to

an improvement in both efficiency and rejection over the individual taggers.

The secondary vertex tagger [59] was developed to explicitly reconstruct sec-

ondary vertex candidates in the jet. As with the IP-tagger the workings of the tool

are confined to the x-y plane.

3.4.2 Tool Development

The secondary-vertex finding algorithm was developed from the IP minimisation

method used for finding the PV as described in Section 3.1.2.2. This algorithm is

considerably simpler than the offline secondary vertex finding algorithm described in

Section 2.4.2, due to the time constraints at Level-3. A finite number of secondary

vertex candidates are investigated at a set of ‘evaluation points’ (EP) along the

jet axis. The EPs can be considered as a starting point for each minimisation,

equivalent to the coordinate origin in the PV calculation. Candidate SVs are found

from EPs up to a distance 0.9 cm from the PV along the jet axis spaced by 30µm

(a total of 300 points). The tool considers tracks not used in the the PV and which

pass certain quality requirements (pT and χ2). These tracks are linearised at their

point of closest approach to the EP. The linearised tracks are used to calculate IP
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Figure 3.23: The distribution of secondary vertices found by the offline tool around the jet axis
(left), the width of Gaussians fit to the distribution at a given dj (points, right) and the linear

parametrisation of the width in terms of dj (line, right).

significances from the PV and the EP. Tracks are rejected if they have too small a

significance from the PV or too large a significance from the EP.

If there are two or more tracks remaining the vertex candidate is found by min-

imising the χ2 as in Equation 3.6.

χ2
SV =

Ntracks∑

t

(dt
0)

2

(σt
d0

)2
+
∑

i=x,y

(ji − Vi)
2

(σj
i (dj))2

(3.6)

where Ntracks is the number of tracks passing the selection cuts, V is the vertex

candidate position, d0 is the distance of closest approach from the track to the

vertex candidate, j is the jet axis and σj is the expected spread of secondary vertices

around the jet axis which is a function of the distance along the jet axis, dj. The

σj parameters were taken from Gaussian fits to the distribution of offline secondary

vertices around the jet axis as a linear function of distance along the jet. The

distribution of offline secondary vertices in ∆R and dj can be seen on the left of

Figure 3.23, where ∆R is the perpendicular distance of the SV from the jet axis. The

width parameters from Gaussian fits to this distribution at a set of fixed dj values

and the linear parametrisation of these widths are shown on the right of Figure 3.23.

The first term in Equation 3.6 is the contribution from the tracks and the second is

a constraint to the jet axis, acting like the beamspot constraint in Equation 3.1.

The vertex candidate is initially produced from all available tracks. Tracks are

then progressively removed and the χ2
dof is recalculated. This method is known as

‘strip down’ as opposed to ‘build up’ vertexing. The χ2
dof is calculated from the

minimised total χ2 above using the equation:
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χ2
dof =

χ2

2 × Ntracks − 2
. (3.7)

If the track contributing the largest increase in the χ2
dof adds more than a thresh-

old δχ2
max it is removed and the process is repeated. The vertex is stable once no

track can be removed to reduce the χ2
dof by more than the threshold or no more

than two tracks remain.

Once all the possible EPs have been investigated the tool scans through the

final χ2
dof s along the jet axis, the EPs with locally minimum χ2

dof are the vertex

candidates produced by the tool. Where two adjacent minima are separated by a

local maximum, the two SVs are not resolved unless the size of the peak-to-trough

difference is more than a threshold value χ2
split. If the minima are not separated in

this way the candidate with the lower χ2
dof is taken to be the correct vertex.

The output of the tool is the list of these minima for all jets, these are the

SVs found for the event. Each SV has a decay length, a decay length significance

(DLS), a number of tracks and a χ2
dof . The filter script can use all of these variables,

including the number of secondary vertices required in a jet or an event. For the

following studies the most powerful variable, the DLS, is used as the discriminant

to gauge the power of modifications to the tool.

3.4.3 Tool Commissioning

In the previous section there are a number of parameters which are not specified.

These parameters either cut on tracks passed to the SV algorithm or control parts

of the algorithm. A study to determine the optimum choice of these parameters

is described in this section. In the order that they arise in the description the

parameters are:

Track pT - Minimum pT for tracks to be included in the SV IP minimisation.

Track χ2
dof - Maximum χ2

dof of tracks.

Track PV significance - Minimum IP significance from the PV for tracks.

Track SV significance - Maximum IP significance from the current EP for tracks.

Maximum track χ2
dof contribution - Maximum increase in SV candidate χ2

dof

when including a track.

Vertex candidate χ2 separation - Minimum step up between two EPs with

local minimal χ2
dof .
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Running the tool with a given parameter set will result in a number of proposed

SVs in one or more jets. Filters using the tagger will require one or more SVs with

a decay length significance (DLS) greater than a given cut. An ‘operating point’ for

the SV-tagger consists of a parameter set and DLS cut. The set of operating points

is defined to allow maximum efficiency for a range of rejection factors which may

be needed for future trigger conditions. To study the optimal parameter set for the

tagger we vary each of the above parameters in turn and compare the efficiency and

rate for a number of benchmark DLS cuts.

The b-enhanced sample described in Section 3.2.2.1 is used to provide signal

events. The fact that the sample is generated using the offline equivalent of the

SV-tagger, the SVT defined in Section 2.4.2, means we will over estimate the effi-

ciency, since we will be considering signal events which are known to be suitable for

secondary vertex tagging. This bias is not a problem since the aim of the study is to

find the best operating parameters for tagging such events, not to make an accurate

measurement of the final efficiency for all b-jets. The signal sample efficiency is

defined as:

Signal efficiency =
Number of Level-3 SV tagged signal events

Number of signal events
. (3.8)

The low luminosity data sample introduced in Section 3.2.2 is used to calculate

the rate:

Pass Fraction =
Number of Level-3 SV tagged background events

Number of background events
. (3.9)

This rate is an estimate for the overall output rate of the tool running online

since it is calculated using a sample of events from a single run without removing

the small number of real heavy flavour events. This data run was recorded before

the introduction of the IP-tagger into Level-3 and so the proportion of real b-jets is

very small, and similar to the proportion for jets input to Level-3.

The optimal tool parameters are chosen so as to maximise efficiency, where two

scenarios can achieve equal efficiency the scenario with the lower fake rate is chosen.
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3.4.3.1 Track pT

Only tracks with pT above this cut are available for use in the SV. The pT cut cannot

go below 0.5 GeV since this is the minimum pT track which the tracker reconstructs.

Raising the pT threshold will improve the purity of the tracks (fewer fake or

misconstructed tracks) but will reduce the efficiency. Figure 3.24 shows the perfor-

mance of the SV-tagger for pT thresholds between 0.5 and 1.5 GeV. In line with

expectation the SV-tagger loses some power but becomes purer at higher pT cuts.

The highest peak efficiency is attained by using all tracks down to the minimum

available from the tracker, therefore the cut of 0.5 GeV is chosen.

Figure 3.24: The performance of the SV-tagger using tracks with a minimum pT of 0.5 GeV (red
circles), 1.0 GeV (green squares) and 1.5 GeV (blue triangles). Statistical errors are included.
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3.4.3.2 Track χ2
dof

The χ2
dof of a track is a significant indication of the track quality. A tight χ2

dof cut will

reduce the presence of fake and poorly reconstructed tracks, simultaneously losing

some real tracks from the sample. Decreasing the cut value is therefore expected to

have a similar effect to increasing the pT cut.

Figure 3.25 shows the performance of the SV-tagger with a selection of χ2
dof

thresholds between 1.0 and 5.0. The vertexing algorithm will reject fake tracks itself

and so is relatively robust when poorer quality tracks are allowed in. For the tightest

scenario considered we begin to cut into the tagging efficiency, whilst also reducing

the fake rate. While all but the tightest cut scenario are within errors equivalent the

loosest cut is chosen since a slightly higher maximum efficiency is possible. The fact

that the performance changes little between χ2
dof cuts of 2 and 5 suggests that tracks

with high χ2
dof are either rare or are mostly rejected, without the need for this hard

cut, within the iterative χ2
dof minimisation process. The tuning of this parameter is

therefore not expected to have a significant impact on the tool’s performance and

the loosest value, χ2
dof < 5, is chosen.

Figure 3.25: The performance of the SV-tagger using tracks with a maximum track fit χ2

dof of 1
(red circles), 2 (green squares), 2.5 (blue triangles) and 5 (purple diamonds).
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3.4.3.3 Track IP Significance From Primary Vertex

The IP significance with respect to the PV, IPPV
sig , is calculated including both the

track and PV errors. Tracks with a large IPPV
sig are more likely to come from a SV.

Conversely tracks with low IPPV
sig are likely to originate from the PV. A minimum

IPPV
sig cut can be used to prevent tracks consistent with the PV from being considered

for inclusion in the SV.

The performance of the SV-tagger with a set of different IPPV
sig cuts between

0 and 5 is shown in Figure 3.26. This parameter has a very strong effect on the

efficiency and purity of the tagger. As such the parameter is used to define a set of

operating points for the tagger which give maximum efficiency for a broad range of

rejection factors.

Figure 3.26: The performance of the SV-tagger using tracks with a minimum IP significance
from the PV of 0 (red circles), 1 (green squares), 2 (blue triangles), 3 (purple diamonds), 4 (cyan

crosses) and 5 (grey stars).
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3.4.3.4 Track IP Significance From Secondary Vertex Candidate

For each EP at which candidate SVs are constructed tracks which are not com-

patible with the EP can be excluded from the minimisation. Such tracks may be

mismeasured tracks from the SV or tracks not from the SV at all. Excluding these

reduces the information available to construct the secondary vertices and could lead

to a small number of signal events failing the minimum 2-jet condition. Including

these tracks could pull the minimum χ2 EP away from the true SV or result in more

fake SV candidates being reconstructed. To remove such tracks an IP significance

from the EP, IPSV
sig , less than a given cut is required.

Figure 3.27 shows the performance curves for a set of taggers with different

requirements for maximum IPSV
sig . In the section of the performance curves with

highest efficiencies the scenarios with no cut and with IPSV
sig less than 6 or 8 are all

within errors the same. A cut at 8 is chosen since it offers slightly higher maximum

efficiency than a cut at 6. Although the performance with the loosest cut and with

no cut are identical within errors, it is preferable to use a finite cut value since the

future tracking environment is not known. Future problems with tracking at high

instantaneous luminosity could increase the number of misconstructed tracks with

very high IP significance and so a finite cut is used to minimise the effect of such

potential problems on the SV-tagger.
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Figure 3.27: The performance of the SV-tagger using tracks with a maximum IP significance
from the EP of 4 (red circles), 6 (green squares) and 8 (blue triangles), and with no cut (purple

diamonds).
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3.4.3.5 Maximum χ2
dof Contribution

The secondary vertex candidates at each EP initially contain all tracks not attached

to the PV. Tracks are removed one by one if they contribute more than χ2
max to the

vertex candidate χ2
dof . This cut has the potential to remove mismeasured tracks but

if too low it can also remove ‘good’ tracks and degrade the vertex reconstruction.

Cut values of 0.1, 0.5 and 1.0 were considered and the resulting performance is

shown in Figure 3.28. The tool seems to be quite robust to variations in this cut,

there is no significant difference in the tool performance over this range. A cut of

0.5 was chosen for the final configuration since it appears to have marginally better

performance.

Figure 3.28: The performance of the SV-tagger as a function of the maximum χ2

dof contribution
of a track to the vertex candidate. Cut values of 0.1 (blue triangles), 0.5 (green squares) and
0.1 (red circles) are shown as well as the algorithm without this iterative track removal (purple

diamonds) with statistical errors.
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3.4.3.6 Vertex Candidate Separation

Vertices will be found at each EP which is a local minimum. Two local minima are

merged if the χ2
dof at each EP between the two minima is no more than χ2

split above

the χ2
dof of the minima. When merged the minimum with the lowest χ2 is taken

as the remaining vertex candidate. The larger this cut the more clearly resolved

adjacent vertex candidates are required to be. Shallow local minima will occur by

chance in jets without real secondary vertices, this cut allows us to reject these. As

we move along the jet axis the divergence of available tracks in the jet may mean

minima become less well resolved and too large a threshold here may lead to a bias

toward vertex candidates close to the PV and thus reduce efficiency.

Separation thresholds of 0, 0.5, 2 and 8 were considered, with the tool perfor-

mance shown in Figure 3.29. The optimal performance was found when considering

all local minima as vertex candidates, i.e. a separation threshold of 0.

Figure 3.29: The SV-tagger performance with a range of vertex candidates separation cuts.
Shown are thresholds of 0 (red circles), 0.5 (green squares), 2 (blue triangles) and 8 (purple dia-

monds) with statistical errors.
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parameter optimised value

track pT > 0.5 GeV

track χ2 < 5.0

track PV significance various working points

track SV significance < 8.0

track χ2 contribution < 0.5

vertex candidate χ2 separation > 0.0

Table 3.3: The optimised parameter set for the SV-tagger.

3.4.4 Conclusion

The optimised parameters for the SV-tagger are summarised in Table 3.3. The

significance of tracks from the PV, IPPV
sig , gives a powerful handle on performance

and is used to define several proposed operating points described in Table. 3.4. The

performance of the optimised tool at the various working points is shown in Figure

3.30. At the ∼ 80% efficiency performance benchmark the SV-tagger out-performs

the IP-tagger, giving a rejection of 85% compared to the IP-tagger’s ∼ 75%. The

greater efficiency of the SV-tagger means that in the short term it might simply

replace the IP-tagger. Ultimately combinations of the outputs of the taggers will be

used to make maximum use of each tools ability to reject different background events.

These combinations should also include the z-IP information and will probably make

use of a multivariate technique such as the NN which has been so successful for offline

b-tagging (as described in the following Chapter). The additional time required to

run a second b-tagger is negligible since by far the largest amount of CPU time

consumed for b-tagging is taken by running the tracking algorithm down to low pT

tracks and this need only be run once for both tools As the first step to including the

SV-tagger output in the trigger decision, the tool has been added as a ‘test trigger’

to ensure that it behaves as expected when run online.
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Name IP SV
sig cut Efficiency (%) Rate (%)

PV0 0 93 43

PV1 1 89 25

PV2 2 82 15

PV3 3 75 10

PV4 4 63 6

PV5 5 51 4

Table 3.4: The set of operating points with varying PV significance cuts with example efficiencies
and rates for each. For a given efficiency the rate is estimated from the performance curve with

an approximate error of ± 2 %.

Figure 3.30: The performance of the SV-tagger at the six proposed operating points.



3.5 Conclusion and Outlook 97

3.5 Conclusion and Outlook

The existing online b-tagger, the IP-tagger, has been retuned to take account of

improved tracking in the latest trigger versions. The effect of modifications to the

primary vertex finding and SMT unpacking tools on the IP-tagger has been studied,

along with the effect of increasing instantaneous luminosity. A method for producing

and processing a b-enhanced data sample for trigger studies has been developed and

has been made available to the Level-3 studies group for future work. The use

of the track z-information in the IP-tagger was investigated. An extension to the

existing algorithm was developed, the z-track errors measured and the power of the

tool investigated. Due to the larger stereo errors the improvement in efficiency for

combined IP and z-IP tagging was limited. A new SV-tagger has been commissioned

and is available for use in the next trigger version, this work is fully described in

[59]. The SV-tagger offers a 10% improvement in absolute rejection over the IP-

tagger, at 80% efficiency. The SV-tagger is running online as a ‘test trigger’. The

combination of the SV-tagger with the existing IP-tagger is under consideration and

will be explored in more detail in the future.
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Chapter 4

Neural Network B-tagging

4.1 Introduction

As has been discussed in the preceding Chapter b-quarks are an important signal for

several interesting rare processes, and highly effective b-tagging is therefore essential

at all levels of data processing. Measurements of the top-quark and many Higgs

searches rely on our ability to identify b-quarks.

The relatively long lifetime of the b-quark has been mentioned as providing an

important handle for b-quark identification. The online lifetime-based algorithms

described in the previous Chapter have offline analogues introduced in Chapter 2.

The offline tools have less stringent restrictions in time and CPU consumption. The

JLIP- and CSIP-taggers use the large impact parameter of tracks from the decay of

a long lived particle (equivalent to the L3 IP-tagger). The secondary vertex tagger

(SVT) tries to find the actual displaced decay vertices (like the Level-3 SV-tagger).

The neural network (NN) tagger was developed [60, 61] to combine the existing

lifetime taggers, using correlations between the individual tools to simultaneously

increase efficiency and rejection.

Since the first round of NN development a major new version (p17) of the offline

reconstruction algorithms has been released, the vertex finding tool was replaced

and improvements were made to MC generation and simulation. As with the IP-

tagger resolution refits, JLIP was retuned by its authors to take account of the

new tracking environment. Following these updates to the NN-tagger’s parent tools

the NN was retrained and the output of the tool was certified for use in physics

analyses. Certification is the process of measuring the performance of the tagger. A

tagger must be certified before it can be used in a public DØ result. The certifiction
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Figure 4.1: Schematic describing the correct application of b-tagging to data and MC.

must be documented and internally reviewed. The NN is trained using MC and the

efficiency and fake rate are measured on data.

The work described in this Chapter consists of the retraining and certification of

the latest version of the NN-tagger, which became the only certified b-tagging algo-

rithm for use in all physics analyses at DØ. The remainder of Section 4.1 describes

the certification procedure, some useful definitions and the data and MC samples

used. Section 4.2 introduces the neural network and input variables, and describes

the training of the algorithm. Section 4.3 describes the efficiency calculation using

data and the assignment of errors. The fake rate and errors are calculated in Sec-

tion 4.4. Sections 4.5 and 4.6 concern the overall performance and draw conclusions.

Fuller details can be found in [62].

4.1.1 Introduction to the Certification Procedure

Because of the difficulty of simulating the tracking environment at a hadron collider

the MC available at DØ does not perfectly reproduce the b-tagging performance in

data. Tracking efficiency and quality are over estimated in MC with the result that

the performance of the b-tagging algorithm on MC is unrealistically high. A system

has been implemented to correct for this performance difference at the tagging level.

Figure 4.1 shows how b-tagging is performed, directly on data and using tag rate

functions (TRFs) on MC. Four functions are derived to parametrise the complete

data and MC performance on all jet flavours. These are expanded in terms of

uncorrelated functions in pT and η. The four functions are:
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Scale Factor (SF) - The ratio of tag rates in data and MC. This can be used to

correct the direct tagging rate in MC to the expected data rate. The SF is

measured in the data and MC muonic b-jet samples only.

TRFb - The expected tag rate function (tagging efficiency) for inclusive b-jets in

data. Calculated from inclusive b-jet MC and the scale factor.

TRFc - The expected tag rate function (tagging efficiency) for inclusive c-jets in

data. Calculated from inclusive c-jet MC and the scale factor.

Fake Tag Rate (FTR) - The expected fake-jet tag rate (efficiency for light jets)

in data. Calculated from the negative tag rate on data and correction factors

from MC.

4.1.2 Physics Object Description

4.1.2.1 Taggability

Taggability is defined in Chapter 2. It is used to decouple detector performance from

tagger performance, once a jet is taggable it is expected to have the same chance of

being tagged as any other taggable jet with the same pT and η, irrespective of its

position in the detector.

4.1.2.2 Positive and Negative Tags

Positive tags are the standard outputs of the b-taggers used in analyses. Tracks

and vertices are assigned a positive sign to indicate that they are consistent with a

possible b-decay in the jet, a positive distance down the jet axis from the PV.

As with the Level-3 IP-tagger the individual offline b-taggers also produce neg-

ative tags which can be used to calculate the fake rate due to resolution effects.

The spread of track IPs due to resolution will be symmetrical around the PV. Any

tracks which cross the jet axis on the opposite side of the PV from the jet itself are

inconsistent with having come from the jet. We can identify this sample of tracks

and we call a tag assembled from such tracks a negative tag.

4.1.2.3 Away Tags

An away tag is a way of enhancing the b-content of a jet sample without making

any cuts on the jet itself and therefore not biasing the jet sample in terms of pT ,

η or probability to be tagged. Since b-quarks are pair produced tagging one jet

produces a sample of events with an enhanced probability that another jet in the

event contains a b-quark. For this Chapter an away tag is defined as a jet from a

two jet event where the other jet has a JLIP probability less than 0.005.
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Region η range

Central (CC) 0 < |η| < 1.2

Inter-Cryostat Region (ICR) 1.2 < |η| < 1.8

End Cap (EC) 1.8 < |η| < 2.4

Table 4.1: calorimeter η regions

Skim Skim criteria Number Number of jets

of events after preselection

BID One loose muon pT > 4 GeV 141M 15,277,180

attached to a 0.7 cone jet

EM One electron with pT > 4 GeV, 177M 48,055,113

missing ET < 10 GeV

QCD Jet triggers, not in EM skim 72M 106,417,629

COMB Combination of EM and QCD skims 249M 154,472,742

Table 4.2: The data skims with the selection criteria, number of events and number of usable
jets.

4.1.2.4 Calorimeter Regions

The calorimeter, described in Section 2.2.3, consists of three regions: the central

calorimeter (CC), the end cap (EC) and the inter-cryostat region (ICR). Differences

in calorimetry and tracking response can make it useful to break down studies into

these three regions. The regions will be used later in this Chapter and are defined

in terms of η in Table 4.1.

4.1.3 Data and MC Samples

The data sample used for the certification was collected between July 2002 and

February 2006. Any runs or parts of runs with problems in the readout of any

detector components were excluded. Three data ‘skims’ were used, where a skim

is a data set defined by some simple criteria. The ‘BID’ skim had an enhanced

b-content and was used for the efficiency measurement. The ‘EM’ and ‘QCD’ skims,

and the combination of the two, were used for the fake rate studies. The number of

events and skimming criteria are described in Table 4.2.

Table 4.3 outlines the MC samples used. The QCD and Z0 samples were pro-

duced using Pythia [58] version ‘v6.319’. The common tt samples produced using
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Sample No. Events

inclusive tt 571,750

Z0 → bb 105,250

Z0 → bb with µ 105,750

Z0 → cc 107,250

Z0 → cc with µ 107,750

Z0 → qq (q = u,d,s) 103,750

Z0 → qq with µ (q = u,d,s) 107,000

QCD qq 972,500

QCD bb 265,000

QCD cc 239,287

Table 4.3: MC samples used for certification studies.

Pythia were combined with samples produced by the top physics working group us-

ing Alpgen [63]. MC jets are called b-jets if they have a b-hadron within ∆R < 0.5.

MC c-jets are defined similarly and the remainder are ‘light’ (uds and gluon) jets.

Jets are identified as ‘muonic’ if a muon, as defined in Section 2.4.1, is attached to

a track within ∆R < 0.5 of the jet axis. QCD MC samples generated with different

pT s are merged into a continuous sample weighted to produce a smoothly falling jet

pT spectrum, similar to that seen in data. The combined samples are formed by

simply combining all available jets irrespective of the MC process used to produce

them into the largest possible generic sample of each type of jet. Table 4.4 shows the

number of jets passing the jet preselection in the individual, combined and merged

flavour samples.

4.1.4 Operating Points

In the following sections the NN performance, the fake-rate, b/c tag-rate, MC SF and

associated systematic and statistical errors are evaluated at each of twelve operating

points. Table 4.5 gives the NN output cut value for each operating point. The values

are chosen to cover a broad range of efficiency and purity, broader than previously

available with any other tagger. The plots in the following sections refer to the

‘Tight’ operating point, those for the other eleven points were also produced but

are not shown. The results of these studies for all operating points are included in

the tables and in the performance curves. The full set of plots for the remaining

operating points can be found in [62].
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Flavour Sample Number of jets

b Z → bb 130,220

tt → b 1,662,929

QCD bb (Merged) 90,252

b (Combined) 2,349,755

b → µ Z → bb → µ 42,726

tt → b → µ 175,579

b → µ (Combined) 273,281

c Z → cc 137,740

tt → c 404,753

QCD cc (Merged) 90,441

c (Combined) 1,076,054

c → µ Z → cc → µ 47,986

tt → c → µ 17,715

c → µ (Combined) 91,824

uds Z → qq 152,590

QCD Fake (Merged) 239,118

All QCD All 2,086,603

Table 4.4: Number of jets of each flavour in each MC sample after processing and jet selection.
The merged samples are produced by a weighted combination of samples generated at different
pT s in order to have a smoothly falling distribution. The combined samples are simply the total

sample of all jets of each flavour, equally weighted regardless of origin.

L6 L5 L4 L3 L2 Loose

0.1 0.15 0.20 0.25 0.325 0.45

oldLoose Medium Tight VeryTight ExtraTight MegaTight

0.5 0.65 0.775 0.85 0.9 0.925

Table 4.5: The twelve NN operating point names and the minimum NN output required to pass
the tagger at each operating point.
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4.2 Building the Network

4.2.1 Introduction to Neural Networks

A neural network is a mathematical construction to produce a discriminating vari-

able from a multi-variable input [64]. A multi-layer perceptron is a type of feed-

forward NN consisting of processing nodes in layers which relay data in one direction

only: from inputs to output. A ROOT package, TMultilayerPerceptron [65], was

used to train and test the neural network. Subsequently a hard-coded C++ version

of the network was produced for use in the reconstruction code. The multilayer

perceptron is composed of an input layer, one or more hidden layers and an out-

put layer. For the binary discrimination required here only a single output node is

required [66]. The original neural networks were developed in analogy to organic

neural networks, like the brain, as such the nodes are known as neurons and the links

as synapses. Each neuron is attached to all nodes in adjacent layers by synapses

with weights wij, where i and j specify the neurons being linked. An additional bias,

w0j , is associated with each neuron j. The neuron j combines the outputs from the

nodes in the preceding layer, yi, in a linear sum to give xj:

xj = w0j +
∑

i

wijyi (4.1)

The neuron then outputs either this linear sum or a function of the sum. The

choice of function varies, here a sigmoid is used. The output, zj, of the neuron j is

then:

zj = xj (for output neurons) (4.2)

or

zj = 1
1+exj (for other neurons) (4.3)

Neural networks are also distinguished by their ability to be progressively trained

to discriminate between samples. Training can reveal correlations between variables

which are not immediately visible and can help to gain the most discrimination

from a set of variables. Initially the weights for each synapse and neuron are set

randomly between -0.5 and 0.5. The training sample consisting of equal numbers of

signal and background events, or unequal numbers weighted to be equal, is processed

and the outcomes compared to the desired outcomes. The error is proportional to

the number of incorrect responses. The total training error, E, is given by:
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E =
∑

p

1

2
wp(op − tp)

2 (4.4)

where op is the actual output, tp is the desired output and wp is the weight attached

to the event p. When training the first derivative of this error with respect to the

synapse and neuron weights is calculated and the weights are adjusted with the aim

of minimising the number of incorrect outcomes. Various methods of reaching the

minimum are possible, and each should eventually produce equivalent results. Each

time the error is calculated and the weights are adjusted a training ‘epoch’ is said to

have passed. The Broyden, Fletcher, Goldfarb, Shanno (BFGS) [67] algorithm was

seen to require the lowest number of epochs to reach the best configuration during

the original NN-tagger development [61]. The BFGS method relies on the theory

of unconstrained minimisation [68]. In a multidimensional ‘space’ defined by the

weights, ~w, a direction, ~s, is found from the derivative of E with respect to each

weight, ∇E. Rather than taking the steepest gradient the BFGS method chooses a

direction by a multidimensional version of the Newton-Raphson method [69]. The

weights for the t + 1 epoch are given by:

~wt+1 = ~wt + α~st (4.5)

where α is chosen such that E( ~wt + α~st) is minimised. This process is repeated

for each training epoch. A second set of events is used to determine a second error

calculated identically to the training error, this quantity is called the test error. The

test error is independent of the training error used to improve the weights and is

used to gauge the point at which the training is sufficient, to prevent over training.

4.2.2 The NN-tagger Input Variables

The variables to be used in the NN were selected for their discrimination power

during the first round of NN certification [61]. This design for the NN structure was

retained along with the optimised number of hidden layers; twice as many as input

variables.

The variables input to the NN are:

SVT DLS - The decay length significance of the secondary vertex with the largest

decay length significance with respect to the PV (known as the ‘most signifi-

cant’ SV).
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CSIP comb - A weighted combination of the number of tracks in the various CSIP

categories. Since neural networks prefer continuous variables it was necessary

to construct CSIP comb from the small discreet values of the CSIP variables,

as stated in Equation 4.6.

CSIPcomb = 6 × 3s + 4 × 2s + 3 × 3w + 2 × 2w (4.6)

where:

3s - The number of tracks with a positive impact parameter significance

greater than 3.

2s - The number of tracks with a positive impact parameter significance

greater than 2.

3w - The number of tracks with a negative impact parameter significance

greater than 3 within a 1.15 radian cone around the jet axis.

2w - The number of tracks with a negative impact parameter significance

greater than 2 within a 1.15 radian cone around the jet axis.

JLIP prob - The probability that the jet originated from the PV, based on the

IP significance of tracks in the jet. Notably this variable is one for background

and zero for signal, the opposite of the NN output.

SVT χ2
dof - The χ2 per degree of freedom of the most significant secondary vertex

fit.

SVT Ntracks - The number of tracks used in the most significant secondary vertex.

SVT Mass - An estimated mass of the most significant secondary vertex. The

mass is calculated from the combined 4-momenta of all the tracks assuming

that all particles are pions.

SVT Num - The number of secondary vertices reconstructed in the jet.

If any of the tools do not return a tag for an event the input variable is set to

zero or, in the case of the χ2
dof , to 75. Figure 4.2 shows the distributions of the

variables in the QCD data skim and in QCD light-jet and direct bb MC.
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Figure 4.2: The NN input variables for MC b-jets, MC QCD light jets and for the QCD data
skim. Each distribution is normalised to unit area for comparison.
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4.2.3 Negative Tag Input Variables

The lifetime taggers all produce a negative tag (NT) value, using tracks and vertices

which are not compatible with the evolution of a real b-jet. The negative tags are

defined differently for each algorithm:

CSIP NT - Similar to CSIP comb, but with the sign of the IP conditions reversed.

JLIP NT - Identical to JLIP probability except that negative signed IP tracks are

used instead of positive ones.

SVT NT - The SV variables are produced as with the positive tag but from vertices

with a negative decay length within ∆R < 0.5 of the jet axis.

4.2.4 Tagger Preselection

Only jets which pass a relatively loose logical-OR of the individual taggers are

considered by the NN tagger. A jet is required to have either a SVT decay length

significance (DLS) > 2.5, a JLIP probability < 0.02 or CSIP comb > 8. Jets

which fail the preselection fail the NN tagger and are assigned a NN output of

-1. The preselection must be loose since any efficiency lost at this stage cannot

be recovered. However to reserve the power of the NN to reject the most b-like

fakes, the preselection is as tight as it can be without significantly damaging the

efficiency. With such a preselection the NN is being trained to reject those fakes

which otherwise appear to be a real tag to at least one of the individual taggers.

The preselection was optimised when the original NN was developed [61] and was

not re-optimised for this round of certification.

4.2.5 Neural Network Training

The network was trained using QCD light jet and bb MC samples weighted to equal

numbers after the preselection. The signal MC contained 270,000 jets with 220,000

passing the preselection and the background contained 470,000 with 40,000 passing

the preselection. The signal and background samples were divided into two halves

to give independent samples for training and testing the network. The number of

training epochs was varied between 50 and 2000; 400 epochs was seen to be sufficient.

The network weighting with the fewest false results on the test samples was taken to

be the final best network. The number of incorrect results as a function of training

epoch for the two independent samples is shown in Figure 4.3.
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Figure 4.3: The fraction of incorrect results for the training and test samples as a function of
training epoch. Four hundred epochs is seen to be sufficient to reach the minimum error on the

test sample.

4.2.6 MC Performance

The output of the trained NN tagging algorithm when run on MC bb and QCD light

jets is shown in Figure 4.4. Only those events which pass the preselection appear

in this plot, that is those events which look like a plausible b-jet to at least one

of the existing taggers. The separation between signal and background should be

interpreted in this light.

4.3 Data Certification for b-Efficiency

The complete method to derive inclusive b and c-jet TRFs is shown in Figure 4.5.

The data/MC scale factor (SF) is calculated from muonic b-jets in data and MC.

The SF is then used to correct the inclusive b- and c-jet efficiencies measured in MC

to give the inclusive data tag rate functions (TRFs). The first stage, the derivation

of a TRF for muonic b-jets in data, requires the use of the system-8 method [70].

4.3.1 The System-8 Method

The system-8 method (S8) can be used to measure the b-efficiency of a data sample.

The method employs two taggers and two data samples to form a set of eight simul-

taneous equations. The solution to the equations gives the b-content of the samples

and the efficiencies of the taggers. Since the equations are symmetrical they can

only be solved if the taggers and samples are sufficiently different from each other.

The taggers should be uncorrelated with different b-efficiencies and the samples must

have different b-content.
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Figure 4.4: Output of the NN on direct bb and QCD MC.

Figure 4.5: Schematic describing the process of measuring the efficiency, the TRFs, for inclusive
b- and c-jets.
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The two taggers used are the NN and soft lepton tagger (SLT). The SLT oper-

ating point is chosen such that the SLT efficiency is different from the NN efficiency

at all operating points for all pT and η bins. A jet is tagged by the SLT if it has

an associated muon with pTRel
greater than 0.5 GeV. The efficiency of the SLT with

this cut was measured to be ∼ 80% on the muonic bb MC sample.

The first data sample is the BID skim (see Table 4.2). This skim requires 4 GeV

muons which must be matched to a jet above 15 GeV. The second sample consists

of jets with an away tag.

To account for remaining correlations between the taggers and differences be-

tween the samples, four correlation coefficients are introduced each of which we

expect to be close to unity. The values of these quantities are measured on MC and

the errors on these measurements contribute to the overall systematic uncertainty

on the S8 method.

The eight simultaneous equations are:

n = nb + nudsc (4.7)

p = pb + pudsc (4.8)

nSLT = εSLT
b nb + εSLT

udscnudsc (4.9)

pSLT = εSLT
b pb + εSLT

udscpudsc (4.10)

nNN = εNN
b nb + εNN

udscnudsc (4.11)

pNN = βεNN
b pb + αεNN

udscpudsc (4.12)

nSLT,NN = κbε
SLT
b εNN

b nb + κudscε
SLT
udscε

NN
udscnudsc (4.13)

pSLT,NN = κbβεSLT
b εNN

b pb + κudscαεSLT
udscε

NN
udscpudsc (4.14)

where n and p are the numbers of jets in the muonic and b-enhanced samples

respectively. The ε are the tagging efficiencies. The superscripts refer to the taggers

each sample has passed and the subscripts to the flavours, b or light.

The remaining coefficients describe the correlations:

• α - The ratio of the NN udsc-tagging efficiency for the two samples

• β - The ratio of the NN b-tagging efficiencies for the two samples

• κb - To account for the correlation between the NN tagger and SLT efficiencies

on b-jets.

• κudsc - To account for the correlation between the NN tagger and SLT efficien-

cies on light jets.
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Figure 4.6: The ratio of tag rates in the all-udsg and away tagged udsg samples and the fit to
the ratio which gives the parameter α. The errors on the fit are shown as dotted lines. The actual
tag rates for the two samples are very small and are not shown. The large errors reflect the limited

size of the tagged udsg-jet sample.

Since it is necessary to accurately know the jet flavours in order to calculate these

correlation coefficients, they must be estimated from MC. In addition the effect of

changing the pTRel
cut in the SLT definition is studied. This factor is not included

in the equations given above but the variation is used in the error calculation.

4.3.2 Measuring the Correlation Coefficients

4.3.2.1 α

The ratio of the tagging efficiencies for light, uds and gluon, jets in the two samples

is parametrised in the S8 equations by α. The efficiencies are expected to be similar,

in a given pT and η bin, and therefore α should be close to one. The NN tag rates

for light jets are calculated using the QCD light flavour MC for the entire sample

and for the subsample of jets with an away tag. The ratio α is shown in Figure 4.6

along with the light-jet efficiencies in pT and η bins. The statistical error on the α

calculation takes into account the overlap between the two samples. The systematic

error due to α on the b-efficiency from S8 was estimated by varying α within its

statistical error.

4.3.2.2 β

The parameter β is the ratio of the b-efficiencies in the muonic b-jet sample and

the away tagged muonic b-jet sample. The ratio β calculated using the combined

b → µ MC sample is shown in Figure 4.7, the two individual efficiencies, in the

inclusive and away tagged sub-samples, are also shown. As with α the statistical

error accounts for the correlation between events shared by the two samples. The
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Figure 4.7: The NN Tight tag rates in the inclusive and away tagged muonic b-jet samples and
the ratio β.

sample dependence of the b-efficiencies and hence β provides an additional source

of error. The efficiency ratio β was recalculated with the Z0 → bb and tt MC

samples. The sample dependence error was taken to be half the deviation from

unity of the ratio of these β values parametrised in pT and η. The statistical and

sample dependence errors were added in quadrature to give the combined error.

The systematic on the b-efficiency due to uncertainty in β was then calculated by

resolving the S8 equations while varying β within this combined error.

4.3.2.3 κb,udsgc

The correlations between the two taggers for the light and b-efficiencies are parametrised

as κudsgc and κb. The κ factors are calculated by comparing the efficiency to tag

an event with both taggers to the product of the individual tagging efficiencies, as

shown in Equation. 4.15:

κb,udsgc =
εNN+SLT
b,udsgc

εNN
b,udsgc × εSLT

b,udsgc

(4.15)

Figure 4.8(top) shows κb as measured in the combined muonic b-jet MC sample

for pT and η. A linear fit is performed for the pT parametrisation and the fit error

is determined from the covariance matrix. The resulting value for κb is constant in

η and has a small pT dependence. As a result the fit error and subsequently the

systematic due to κb are each a function of pT .

The error from sample dependency of κb is calculated by comparison of κb derived

from the Z → bb and tt samples. The uncertainty is taken to be half the average

deviation from unity of the ratio of κb values derived from these two samples in

the pT and η projections. Due to the different pT composition of the samples and
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Figure 4.8: The tag rates of the muon, NN Tight and combined tags for the muonic b sample and
the ratio κb are shown (top). The systematic error on κb derived from the ratio of κb calculated

with b-jets with muons and tt with muons.

the pT dependence of κb, the pT range of the η projection is limited to between 15

and 37.5 GeV. Figure 4.8(bottom) shows the ratio of κb values used for the sample

dependence error. The total error due to κb is the combination in quadrature of the

sample dependence and statistical errors.

κudsgc is measured with a similar method using the combined muonic c-jet sam-

ples. Again a sample dependence error is calculated using the individual muonic Z

and tt samples containing c-quarks. The sample dependence ratio can be seen in

Figure 4.9. The sample dependence error was estimated as half the average devia-

tion of the ratio from unity and was added in quadrature to the statistical error to

give the total error due to κudsgc.

4.3.2.4 Variation with SLT Operating Point

The S8 equations refer to a single operating point for both taggers. Since the choice

of SLT operating point is somewhat arbitrary (provided it is efficient enough) it is

necessary to quantify the effect of this choice. The NN tagger efficiency was recalcu-

lated with a range of SLT operating points, varying the minimum pTRel
requirement
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Figure 4.9: The systematic error on κudsgc derived from the ratio of κudsgc calculated with Z → cc
with muons and tt with c-quarks and muons.

between 0.3 and 0.7 GeV. The κ correlations were recalculated for each SLT oper-

ating point and the overall effect on the efficiency was taken as a further systematic

error.

4.3.2.5 Correlation Coefficient Values

The values and errors from the pT and η parametrisations of the coefficients are

given in Tables 4.6 and 4.7 for the twelve NN operating points. Since κb is pT

dependent the values quoted here are taken at the average sample pT . When the S8

equations are solved to give efficiency parametrisations in pT and η bins the average

pT for the given bin is used to calculate the correlations. Systematic errors on the

b-efficiency resulting from varying these coefficients within their errors are calculated

in the following section.
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Coefficients L6 L5 L4 L3

α 0.967 ± 0.096 0.937 ± 0.102 0.957 ± 0.116 0.918 ± 0.124

β 1.010 ± 0.001 1.010 ± 0.001 1.010 ± 0.001 1.010 ± 0.002

κb 0.999 ± 0.002 0.999 ± 0.001 1.000 ± 0.001 1.000 ± 0.001

κudsgc 1.000 ± 0.018 0.998 ± 0.022 0.999 ± 0.026 1.000 ± 0.025

Coefficients L2 Loose oldLoose Medium

α 0.766 ± 0.127 0.819 ± 0.152 0.840 ± 0.160 0.791 ± 0.183

β 1.010 ± 0.001 1.010 ± 0.001 1.010 ± 0.002 1.010 ± 0.002

κb 1.000 ± 0.002 1.000 ± 0.002 1.000 ± 0.003 1.000 ± 0.003

κudsgc 1.000 ± 0.022 1.000 ± 0.021 0.999 ± 0.025 0.995 ± 0.027

Coefficients Tight VeryTight UltraTight MegaTight

α 0.816 ± 0.213 0.904 ± 0.245 1.070 ± 0.326 0.951 ± 0.338

β 1.010 ± 0.005 1.010 ± 0.006 1.010 ± 0.007 1.010 ± 0.008

κb 1.000 ± 0.003 1.000 ± 0.002 1.000 ± 0.002 1.000 ± 0.001

κudsgc 0.987 ± 0.033 0.979 ± 0.025 0.958 ± 0.026 0.942 ± 0.029

Table 4.6: The S8 correlation coefficients with associated errors as derived in the MC samples
from the η parametrisation.

Coefficients L6 L5 L4 L3

α 1.060 ± 0.079 1.010 ± 0.086 0.921 ± 0.091 0.897 ± 0.098

β 1.000 ± 0.001 1.000 ± 0.001 1.010 ± 0.001 1.000 ± 0.002

κb 1.000 ± 0.002 1.000 ± 0.001 1.000 ± 0.001 1.000 ± 0.001

κudsgc 1.000 ± 0.018 1.000 ± 0.022 1.000 ± 0.027 1.010 ± 0.025

Coefficients L2 Loose oldLoose Medium

α 0.786 ± 0.104 0.864 ± 0.126 0.789 ± 0.125 0.829 ± 0.156

β 1.010 ± 0.002 1.000 ± 0.002 1.000 ± 0.002 1.000 ± 0.002

κb 1.000 ± 0.002 1.000 ± 0.002 1.000 ± 0.003 1.000 ± 0.003

κudsgc 1.010 ± 0.022 1.010 ± 0.021 1.000 ± 0.025 0.998 ± 0.027

Coefficients Tight VeryTight UltraTight MegaTight

α 0.796 ± 0.174 0.940 ± 0.205 0.877 ± 0.224 0.904 ± 0.249

β 1.000 ± 0.005 1.000 ± 0.006 1.010 ± 0.007 1.010 ± 0.008

κb 1.000 ± 0.003 0.999 ± 0.002 0.999 ± 0.002 0.999 ± 0.001

κudsgc 0.989 ± 0.033 0.981 ± 0.025 0.960 ± 0.026 0.943 ± 0.030

Table 4.7: The S8 correlation coefficients with associated errors as derived in the MC samples
from the pT parametrisation.
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4.3.3 The S8 b-efficiency

The S8 equations were solved numerically, using TMinuit [71], for the whole sample

and in bins of pT and η to generate two one dimensional profiles of tagging efficiency.

The systematic errors due to uncertainty in the S8 correlation coefficients were

estimated by varying the coefficients within their errors. The error estimation was

performed on both the complete sample and on each of the pT and η bins. Figure

4.10 shows the systematic error due to each of the correlation coefficients for each

pT and η bin for the Tight NN operating point. The total systematic error from the

correlation coefficients is also given. A constant fit is made to the total error over pT

and η and the fit values are used to generate the ±1σ curves used to calculate the

statistical error in Section 4.3.4.3. The systematics have little η dependence and (at

low pT s) tend to reduce slightly with increasing pT . Using the systematic calculated

on the whole sample neglects this pT correlation and would underestimate the total

systematic error.

Table 4.8 shows the overall efficiencies (integrated over pT and η) and the sys-

tematic errors contributed by the correlation coefficients over the whole sample for

each of the NN operating points. The sum in quadrature of these errors gives the

full sample total systematic error which ranges between ∼ 1 and 2% for b-efficiencies

of 37 to 77%.

4.3.3.1 Efficiency Parametrisation

The efficiencies were parametrised in pT and η using the functions given in equations

4.16 and 4.17.

ε (pT ) =
c

1 + ae−bpT
(4.16)

ε (η) = d + eη + fη2 + gη3 + hη4 (4.17)

where a,b,c...h are parameters to be determined by the fitting proceedure. It is

assumed in the standard DØ certification procedure that the pT and η dependencies

can be factored out, i.e. any correlation is minimal. Previous studies with JLIP [42]

and an earlier version of the NN [72] have shown this to be a good assumption. A

2-D parametrisation was thus formed by the product of the efficiencies:

ε (pT , η) =
1

εall
×
(

c

1 + ae−bpT

)

×
(

d + eη + fη2 + gη3 + hη4
)

(4.18)

where εall, the overall efficiency, is used to give the correct normalisation.
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Error L6 L5 L4 L3 L2 Loose

Efficiency 77.0% 74.9% 72.2% 69.6% 65.9% 60.8%

Total syst. 1.7 % 1.6 % 1.5 % 1.3 % 1.3 % 1.4 %

α 0.04% 0.02% 0.02% 0.03% 0.02% 0.03%

β 0.14% 0.14% 0.17% 0.21% 0.18% 0.18%

κb 0.66% 0.51% 0.56% 0.48% 0.73% 0.98%

κcl 0.66% 0.66% 0.59% 0.46% 0.29% 0.25%

pTRel
1.38% 1.33% 1.21% 1.11% 1.01% 0.91%

Error oldLoose Medium Tight VeryTight UltraTight MegaTight

Efficiency 59.3% 53.7% 47.6% 43.3% 39.5% 37.1%

Total syst. 1.5 % 1.3 % 1.5 % 1.5 % 1.3 % 1.4 %

α 0.02% 0.00% 0.02% 0.04% 0.07% 0.11%

β 0.20% 0.26% 0.55% 0.78% 0.80% 0.96%

κb 1.23% 1.21% 1.21% 0.96% 0.70% 0.60%

κcl 0.25% 0.23% 0.22% 0.18% 0.16% 0.16%

pTRel
0.69% 0.46% 0.70% 0.85% 0.78% 0.86%

Table 4.8: Relative systematic uncertainties on the NN tag efficiency determined with the S8
method. The total systematic uncertainty was determined by adding the individual uncertainties

in quadrature.
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Figure 4.10: The total systematic error from the S8 correlation factors parametrised in pT and η
and the fits taken as the overall systematic errors. The constituent errors for each of the correlation

factors are also shown.
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Figure 4.11: Tagging efficiency for muonic b-jets for data (green points) and MC (red points) with
fits (green/red curves) and the scale factor (blue curve) derived from their ratio. The parametri-
sation in pT is shown on the left and that in η on the right. The dotted black curves represent the
error bars on the fits. The errors on the data efficiency derived from S8 include the errors due to
the S8 coefficients. The scale factor errors are the sum in quadrature of the two efficiency errors

and the systematic errors derived later in this Chapter.

4.3.3.2 Data/MC Scale Factor and Tag Rate Functions

The data/MC scale factor (SF) reflects differences in tracking between data and

MC. The scale factor is the curve resulting from the division of the fit to the data

muonic b-efficiency by the fit to the MC muonic b-efficiency, i.e. the ratio of the

two TRFs. The b-efficiency derived from data along with the MC b-jet efficiency for

muonic events and the SF for converting between the two are shown for the Tight

NN operating point in Figure 4.11.

The SF is expected to be valid for all samples such that it can be used to correct

the b-efficiency measured on any MC sample to the true data efficiency.

The SF is thus used to convert the inclusive b-jet MC efficiency to give the

inclusive b-jet data efficiency such that we have a valid tag rate function for all data

samples, not only muonic ones. The inclusive MC b-efficiency and the inclusive b-jet

data TRF are shown in Figure 4.12 for the Tight NN operating point. Similarly the

tag rate on an inclusive MC c-jet sample is combined with the SF to give a c-jet

TRF for data. Figure 4.13 shows the inclusive c-jet data TRF and the inclusive MC

c-jet efficiency.
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 (GeV)
T

p
20 30 40 50 60 70 80 90 100

Ef
fic

ie
nc

y

0.06

0.08

0.1

0.12

0.14

0.16

MC c-jets
cTRFη All 

|η|
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Ef
fic

ie
nc

y

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
MC c-jets

cTRF > 15 GeV
T

 p

Figure 4.13: The inclusive MC c-efficiency measured (red points) and fit (red line) and the c-
quark TRF (green curve) for the Tight operating point. The dotted lines give the error on the fit

and the full errors on TRFc.



4.3 Data Certification for b-Efficiency 122

4.3.4 Uncertainties

Two main sources of systematic errors need to be considered; the parametrisation

error and the sample dependencies. The parametrisation of the efficiency into one-

dimensional η and pT functions inherently neglects correlations between pT and η.

In addition imperfections exist in the fits themselves, together these give the first

source of systematics. Secondly it is acknowledged that different tagging efficiencies

can be expected on different jet samples. Within the combined sets of b, b → µ and

c-jets the variation in efficiency between constituent samples is the second source of

systematic error.

4.3.4.1 Closure Tests

The two sources of systematic error mentioned above can be considered together by

performing closure tests on the constituent and combined MC samples. The number

of tags predicted with the TRF derived on the combined MC samples is compared

to the number of actual tags in an individual sample. More precisely the percentage

difference is calculated, weighted by the fraction of events in the particular pT -η bin.

The root mean square (RMS) of the resulting distribution is the systematic error

due to the individual sample.

Example closure test plots are shown in Figure 4.14 for the direct bb and tt

samples compared to the inclusive b TRF. Closure tests are also performed on the

combined samples used to derive the TRFs, giving a measure of the error due to

the assumptions inherent in the parametrisation. Tables 4.9, 4.10 and 4.11 give the

RMS errors for the closure tests on the inclusive b, muonic b and c-jet sub-samples.

The RMS error from the sub-sample with the largest deviation from closure was

conservatively taken as the overall systematic error and carried forward to table

4.12. The closure tests gave a larger total uncertainty than the parametrisation and

sample dependence errors when measured separately [72].

4.3.4.2 Systematic Uncertainties

Table 4.12 gives the final systematic error values for each jet type and the error

assigned to the SF and TRFs. The systematic uncertainties are assigned as follows:

SF error - The RMS closure test error for the muonic b-jet samples (Table 4.10).

TRFb error - The systematic on the SF added in quadrature to the RMS error for

the inclusive b-jet samples (Table 4.9).

TRFc error - The systematic on the SF added in quadrature to the RMS error for

the c-jet samples (Table 4.11).
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RMS L6 L5 L4 L3 L2 Loose

Combined b 1.14% 1.28% 1.43% 1.58% 1.79% 2.11%

QCD bb 1.19% 1.22% 1.22% 1.20% 1.32% 1.68%

tt 0.95% 1.03% 1.19% 1.33% 1.51% 1.79%

Z0 → bb 1.16% 1.19% 1.24% 1.33% 1.44% 1.54%

Max 1.19% 1.28% 1.43% 1.58% 1.79% 2.11%

RMS oldLoose Medium Tight VeryTight UltraTight MegaTight

Combined b 2.20% 2.54% 2.84% 3.17% 3.45% 3.45%

QCD bb 1.63% 1.64% 1.76% 2.09% 2.36% 2.45%

tt 1.84% 2.19% 2.43% 2.74% 2.98% 3.14%

Z0 → bb 1.59% 1.95% 2.01% 2.07% 2.4% 2.36%

Max 2.20% 2.54% 2.84% 3.17% 3.45% 3.45%

Table 4.9: The RMS errors from the b-quark closure tests, for the individual and combined
samples. The largest is taken as the error on the TRF.

RMS L6 L5 L4 L3 L2 Loose

Combined b → µ 1.20% 1.44% 1.63% 1.82% 1.96% 2.33%

QCD bb → µ 0.30% 0.22% 0.17% 0.32% 0.47% 0.84%

tt → b → µ 1.29% 1.45% 1.59% 1.70% 1.83% 2.13%

Z0 → bb → µ 1.44% 1.77% 1.98% 2.12% 2.39% 2.92%

Max 1.44% 1.77% 1.98% 2.12% 2.39% 2.92%

RMS oldLoose Medium Tight VeryTight UltraTight MegaTight

Combined b → µ 2.38% 2.64% 2.81% 2.86% 3.15% 3.35%

QCD bb → µ 1.03% 1.50% 1.94% 2.39% 2.67% 2.55%

tt → b → µ 2.27% 2.35% 2.61% 2.66% 2.92% 3.05%

Z0 → bb → µ 3.08% 3.51% 3.47% 3.58% 3.36% 3.09%

Max 3.08% 3.51% 3.47% 3.58% 3.36% 3.35%

Table 4.10: The RMS errors from the muonic b-jet closure tests, for the individual and combined
samples. The largest is taken as the error on the TRF.
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RMS L6 L5 L4 L3 L2 Loose

Combined c 2.00% 2.10% 2.35% 2.56% 2.92% 3.25%

QCD cc 2.39% 1.80% 1.95% 2.04% 2.17% 2.97%

tt → c → µ 2.01% 2.09% 2.36% 2.52% 2.71% 2.95%

Z0 → cc 1.99% 2.04% 2.27% 2.67% 2.86% 2.99%

Max 2.39% 2.10% 2.36% 2.67% 2.92% 3.25%

RMS oldLoose Medium Tight VeryTight UltraTight MegaTight

Combined c 3.48% 3.81% 3.78% 3.31% 3.56% 3.55%

QCD cc 2.90% 3.16% 2.50% 3.73% 2.97% 3.96%

tt → c → µ 3.25% 3.27% 3.73% 4.17% 3.81% 3.80%

Z0 → cc 2.95% 3.18% 3.88% 3.88% 3.87% 4.03%

Max 3.48% 3.81% 3.88% 4.17% 3.87% 4.03%

Table 4.11: The RMS errors from the c-quark closure tests, for the individual and combined
samples. The largest is taken as the error on the TRF.

Error L6 L5 L4 L3 L2 Loose

MC b → µ 1.44% 1.77% 1.98% 2.12% 2.39% 2.92%

MC b 1.19% 1.28% 1.43% 1.58% 1.79% 2.11%

MC c 2.39% 2.10% 2.36% 2.67% 2.92% 3.25%

SF 1.44% 1.77% 1.98% 2.12% 2.39% 2.92%

TRFb 1.87% 2.18% 2.44% 2.64% 2.98% 3.60%

TRFc 2.79% 2.74% 3.08% 3.41% 3.77% 4.37%

Error oldLoose Medium Tight VeryTight UltraTight MegaTight

MC b → µ 3.08% 3.51% 3.47% 3.58% 3.36% 3.35%

MC b 2.20% 2.54% 2.84% 3.17% 3.45% 3.45%

MC c 3.48% 3.81% 3.88% 4.17% 3.87% 4.03%

SF 3.08% 3.51% 3.47% 3.58% 3.36% 3.35%

TRFb 3.79% 4.34% 4.48% 4.78% 4.81% 4.81%

TRFc 4.65% 5.18% 5.20% 5.50% 5.13% 5.24%

Table 4.12: Total systematic errors on the SF and the TRFs from the MC sample parametrisa-
tions.
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4.3.4.3 Statistical Error

The statistical error is given by:

σstat =
f±σ(pT ) × f±σ(η)

f±σ
total

− f(pT ) × f(η)

ftotal
(4.19)

Where f are the TRF or SF parametrisations and ftotal is the overall mean

required for normalisation. The TRF and SF parametrisations are varied within the

fit errors, ±σ, and the overall efficiency is recalculated. The statistical error, σstat, is

taken as the maximum difference between this new efficiency (the first term in Eqn.

4.19) and the efficiency calculated with the central value fits (the second term).

4.3.4.4 Total Error

The systematic and statistical errors are combined in quadrature to give the total

error for each pT or η bin and each operating point. Figure 4.15 shows the total

error for the SF, TRFb and TRFc. At low pT and high η statistical errors become

dominant and the error curves depart from the constant total systematics.
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Figure 4.15: Total errors on the SF (top), TRFb (middle) and TRFc (bottom) for the twelve
operating points parametrised in pT (left) and η (right).
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Figure 4.16: Schematic describing the process of calculating the fake tag rate.

4.4 Data Certification for Fake Rate

Figure 4.16 gives an overview of the procedure used to measure the fake rate from

data using the negative tag rate and correction factors from MC.

4.4.1 Negative Tag Rate

The negative tag rate (NTR) was calculated using the EM and QCD skims combined

(COMB skim), as a first estimate of the data fake rate1. For fake jets a different

pT spectrum was seen in the different calorimeter η regions and so the factorisation

of the tag rate used for the b-efficiency was not possible. The sample of jets was

thus divided into the three η regions described in Section 4.1.2.4. Given the more

limited statistics it was only possible to parametrise with respect to pT within each

η region.

The negative tag rates for the COMB skim are shown integrated over pT for

all operating points for the three η regions in Table 4.13. The negative tag rate

measured in pT bins in the three η regions is shown in Figure 4.17 for the COMB

skim as well as for the constituent EM and QCD skims. The negative tag rate

functions are second order polynomials fit to these distributions.

1Jets close to EM clusters were removed - see Section 4.4.3.
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CAL Region L6 L5 L4 L3 L2 Loose

CC 12.40% 9.30% 7.02% 5.49% 3.97% 2.51%

ICR 11.20% 8.30% 6.16% 4.74% 3.35% 2.05%

EC 10.40% 7.60% 5.44% 4.03% 2.73% 1.55%

CAL Region oldLoose Medium Tight VeryTight UltraTight MegaTight

CC 2.11% 1.23% 0.72% 0.47% 0.32% 0.25%

ICR 1.70% 0.96% 0.53% 0.34% 0.23% 0.17%

EC 1.25% 0.63% 0.30% 0.17% 0.10% 0.07%

Table 4.13: Negative tag rates for the COMB skim.
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Figure 4.17: The negative tag rate measured on the EM skim (top left), QCD skim (top right)
and the COMB skim (bottom) shown against pT for the three η regions. The negative tag rate

functions are the second order polynomial fits and are also shown.
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Region L6 L5 L4 L3 L2 Loose

CC 11.10% 8.16% 6.06% 4.66% 3.28% 2.02%

ICR 10.80% 7.93% 5.86% 4.48% 3.12% 1.84%

EC 10.90% 8.08% 5.92% 4.35% 2.98% 1.69%

Region oldLoose Medium Tight VeryTight UltraTight MegaTight

CC 1.68% 0.96% 0.55% 0.34% 0.23% 0.17%

ICR 1.50% 0.80% 0.41% 0.24% 0.17% 0.13%

EC 1.35% 0.66% 0.30% 0.17% 0.09% 0.05%

Table 4.14: The FTR calculated from the NTR on the COMB data skim corrected for heavy
flavour and the positive-negative tag asymmetry.

4.4.2 Converting Negative Tag to Fake Rate

Resolution is not the only effect which contributes to the fake rate, in addition

the negative tag rate is not quite as immune to signal contamination as has been

suggested so far. To correct the negative tag rate to find the actual data fake rate

we need to account for these factors.

Since the b- and c-quark mean lifetimes are of a similar order of magnitude to the

resolution width it is possible that some heavy flavour quark decays may produce

tracks which appear in the negative tags. This will manifest itself as an increased

fake tag rate which we remove using the heavy flavour scale factor, SFhf . Some

light flavour composite states such as K0
S, K0

L, Λ and γ conversions are also long

lived and will increase the positive tag rate (PTR) over the negative tag rate. This

boost to the PTR is accounted for by SFlf the light jet PTR/NTR ratio. In all the

fake rate is calculated using:

FTR = SFhf × SFlf × NTR (4.20)

A QCD MC sample with a wide pT range was used to estimate the two scale

factors as shown in Figure 4.18. The product of the two factors as a function of

pT was calculated and fit with a constant. The fit errors were scaled up by the
√

χ2/NDF to account for the uncertainty in the parametrisations. Figure 4.18 also

shows the total correction factor fit for MC.

The fake rate on the COMB skim for the Tight NN operating point can be seen

in Figure 4.19. The pT integrated rate for all operating points for the three η regions

is given in Table 4.14.
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Figure 4.18: The positive-negative tag asymmetry correction (SFlf ), heavy flavour correction
(SFhf ) and the fit to the overall correction factor (the product of the two).
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Figure 4.19: The FTR parametrised with respect to pT for the three η regions. The dotted lines
give the total errors on the FTR (Section 4.4.3).
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Region L6 L5 L4 L3 L2 Loose

CC 0.13% 0.15% 0.17% 0.19% 0.24% 0.30%

ICR 0.04% 0.04% 0.05% 0.06% 0.07% 0.09%

EC 0.05% 0.06% 0.08% 0.11% 0.15% 0.21%

Region oldLoose Medium Tight VeryTight UltraTight MegaTight

CC 0.32% 0.38% 0.47% 0.52% 0.57% 0.60%

ICR 0.09% 0.12% 0.17% 0.21% 0.25% 0.29%

EC 0.23% 0.37% 0.51% 0.54% 0.60% 0.72%

Table 4.15: Error assigned due to the EM and QCD skim NTR difference.

4.4.3 Systematic Uncertainties

4.4.3.1 Negative Tag Sample Dependence Systematic

Different negative tag rates are found when considering the EM and QCD samples

separately. The EM sample has an enhanced fake rate from electrons and photons.

If jets close to EM clusters are removed the two samples become similar enough

that they can be combined to form the COMB skim and a NTR consistent with

both subsamples can be calculated. The remaining difference between the NTRs

on the QCD and EM samples is used to give a systematic error due to the sample

composition. The EM/QCD NTR ratio is fit with a constant and half the difference

from unity is used as the systematic. For some operating points the fit is consistent

with unity within its error, in this case the fit error scaled by
√

χ2/NDF is used as

the systematic. The errors for the various operating points are summarised in Table

4.15.

Some analysis groups were uncomfortable with the removal of jets near EM

clusters since this was expected to impact their signal efficiency. Assuming the

analysis triggers do not select EM objects these jets will be rare and the effect

of allowing jets near EM clusters will be small. The ratio of the negative tag rates

measured on the QCD skim with and without jets near EM clusters was constructed

and systematic errors calculated as with the EM-QCD difference above. The ratios

in the three η regions and resulting errors can be seen in Figure 4.20 and Table 4.16.

The effect is small and pT independent, ranging from 0.2% to 1%. The inclusion of

this error allows analysers the choice of using the fake rate either in a low EM sample

without EM removal or in any sample with EM removal. The effect of applying this

EM cluster jet removal to the BID skim used for the b-efficiency calculation was also

examined and found to be negligible.
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Region L6 L5 L4 L3 L2 Loose

CC 0.19% 0.24% 0.28% 0.33% 0.37% 0.46%

ICR 0.17% 0.19% 0.25% 0.28% 0.29% 0.39%

EC 0.11% 0.16% 0.21% 0.26% 0.30% 0.39%

Region oldLoose Medium Tight VeryTight UltraTight MegaTight

CC 0.49% 0.62% 0.72% 0.78% 0.87% 0.95%

ICR 0.45% 0.55% 0.67% 0.76% 0.82% 0.86%

EC 0.39% 0.49% 0.63% 0.58% 0.67% 0.74%

Table 4.16: Error arising from the difference between NTRs derived on the QCD skim with and
without the removal of jets close to EM clusters, measured at the Tight NN operating point.
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Figure 4.20: The fractional difference between NTRs derived on the QCD skim with and without
the removal of jets close to EM clusters, measured at the Tight NN operating point.
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Figure 4.21: The closure test on the COMB skim for the Tight NN operating point in the three
η regions, top left. The fractional difference between predicted and actual tags is also shown for

each of the three regions.

4.4.3.2 Parametrisation Error

Closure tests like those for the b-efficiency were also performed. The NTR parametri-

sation was used to predict the number of negative tags in each η region as a function

of pT and this was compared to the actual number of negative tags. Figure 4.21

shows the actual and predicted tags for the COMB skim for each of the η regions

and the ratios of actual to predicted tags by region. The systematic error due to

the parametrisation of the NTR as a polynomial was taken to be the deviation from

unity of a constant fit to these ratios. Where the fit was consistent with unity within

the fit error scaled by
√

χ2/NDF , the scaled error was used instead. The resulting

errors for each operating point are given in Table 4.17.

4.4.3.3 Correction Factor Error

The heavy flavour scale factor depends on the b- and c-quark content of the sample.

Since the heavy flavour content in the EM and QCD samples is not well known it is

unclear what level to use in the MC sample used to simulate SFhf . The number of

b- and c-quarks present was varied by ±20% and the fake rate was recalculated. The
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Region L6 L5 L4 L3 L2 Loose

CC 0.06% 0.06% 0.07% 0.07% 0.08% 0.09%

ICR 0.07% 0.08% 0.09% 0.09% 0.11% 0.13%

EC 0.06% 0.07% 0.09% 0.10% 0.12% 0.16%

Region oldLoose Medium Tight VeryTight UltraTight MegaTight

CC 0.10% 0.11% 0.15% 0.19% 0.22% 0.25%

ICR 0.13% 0.15% 0.20% 0.25% 0.30% 0.35%

EC 0.17% 0.25% 0.35% 0.47% 0.61% 0.72%

Table 4.17: The systematic uncertainty arising from the parametrisation of the NTR on the
COMB skim.

largest change in fake rate was taken as the systematic error due to the uncertain b-

or c-quark content. The errors due to b-quark content are given in Table 4.18 and

for c-quarks in 4.19.

Region L6 L5 L4 L3 L2 Loose

CC 1.96% 2.24% 2.57% 2.88% 3.25% 3.84%

ICR 1.56% 1.78% 2.14% 2.45% 2.80% 3.22%

EC 0.68% 0.76% 0.86% 0.93% 1.08% 1.34%

Region oldLoose Medium Tight VeryTight UltraTight MegaTight

CC 4.05% 4.94% 5.64% 6.08% 6.45% 6.67%

ICR 3.38% 4.10% 5.09% 5.65% 6.73% 7.07%

EC 1.38% 1.43% 1.55% 2.60% 3.68% 3.41%

Table 4.18: The systematic due to uncertainty in the required b-quark content of the MC.

4.4.3.4 Total Systematic Error

The systematic errors from the b- and c-content are likely to be correlated and

are therefore added directly. The remaining errors, from the parametrisation and

sample content, are added in quadrature. Table 4.20 gives the combined systematic

uncertainties. These values include both the EM/QCD comparison error and the

error from considering the QCD sample with and without jets near EM clusters.

4.4.3.5 Combined Systematic and Statistical Error

The total error was calculated by adding in quadrature the total systematic errors

with the statistical errors, where the statistical errors were given by ±1σ curves on
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Region L6 L5 L4 L3 L2 Loose

CC 1.74% 1.89% 2.06% 2.22% 2.35% 2.48%

ICR 1.46% 1.60% 1.77% 1.88% 2.01% 2.15%

EC 0.87% 0.93% 1.04% 1.02% 1.03% 1.07%

Region oldLoose Medium Tight VeryTight UltraTight MegaTight

CC 2.48% 2.63% 2.66% 2.56% 2.48% 2.39%

ICR 2.22% 2.46% 2.40% 2.44% 2.28% 2.40%

EC 1.04% 1.14% 0.87% 1.37% 0.96% 0.94%

Table 4.19: The systematic due to uncertainty in the required c-quark content of the MC.

Region L6 L5 L4 L3 L2 Loose

CC 3.71% 4.15% 4.65% 5.13% 5.64% 6.36%

ICR 3.04% 3.42% 3.98% 4.40% 4.85% 5.44%

EC 1.99% 2.17% 2.44% 2.50% 2.72% 3.01%

Region oldLoose Medium Tight VeryTight UltraTight MegaTight

CC 6.59% 7.68% 8.41% 8.73% 9.05% 9.23%

ICR 5.66% 6.60% 7.54% 8.14% 9.07% 9.53%

EC 3.07% 3.39% 3.10% 4.76% 5.71% 5.60%

Table 4.20: Total FTR systematic errors. These include the QCD/EM sample uncertainty and
the QCD skim EM cluster removal uncertainty.
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the FTR parametrisation fit. The systematic errors are generally dominant with

statistical errors having an increasing contribution for the tighter operating points.

In Figure 4.19, which shows the parametrised fake tag rates, the total errors are

given as dotted lines.

4.5 NN Tagger Performance

The performance of the NN tagger measured on data with full systematic and statis-

tical errors is shown in Figure 4.22. The performance of the individual JLIP tagger,

which was previously the most widely used tagger, is shown for comparison. The NN

consistently shows a greater efficiency for a given fake rate across the full range of

operating points. The performance on MC is also shown for Z → bb/qq and for QCD

b/uds jets in Figure 4.23. This is the uncorrected MC performance, calculated by

tagging MC directly. It is clear that for JLIP the performance in MC and data are

quite different, this is the difference that makes the complex certification procedure

and the calculation of data/MC SFs necessary. For the NN this difference is smaller

as is expected since the NN SF is a largely flat function and close to unity. It can

be concluded that the NN is less sensitive to data/MC differences.

4.6 Conclusions

The latest version of the NN b-tagger has been certified for use at DØ. This work

of training, testing and parametrising the tool has been reviewed and approved by

the Collaboration. For the first time the NN tagger has become the default tagger

for all b-tagging at the experiment and so is very widely used. The number of NN

operating points made available to analysers was increased from six to twelve. The

measurements and parametrisations described above for the NN Tight operating

point were repeated for each operating point. The S8 correlation coefficient α and

error were measured on MC for the first time. Previously a constant was assigned

to α and a large error was required, measuring α allowed a significant reduction

in the overall b-efficiency error. The NN certification code was also modified to

produce a more generic certification tool, which was officially made available to the

Collaboration. This code was subsequently used to produce the Run IIb certification.

Documentation for the certification tools was also developed.
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Figure 4.22: B-tagging performance for the NN- and JLIP-taggers on data. Upper plot for all
taggable jets. Lower plot for higher pT central jets (pT > 30 GeV and |η| < 0.8).
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Figure 4.23: B-tagging performance for the NN- and JLIP-taggers on MC using the data/MC
corrections. Upper plot shows the performance for tt and Z → qq. Lower plot shows direct bb with

QCD light jets.
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Chapter 5

The SUSY Higgs analysis

5.1 Introduction

The SUSY Higgs analyses are important search channels for the Tevatron experi-

ments. These analyses offer the possibility of answering two of the most pressing

questions in particle physics, namely to discover the Higgs boson and to find indi-

cations of new physics beyond the SM. One of the major channels is the bh → bbb

topology as discussed in Section 1.3. The following Chapter discusses the prelim-

inary result shown at ICHEP 2006 using ∼ 1fb−1 of data and, in greater detail,

the improved version submitted for publication. This analysis relies very heavily

on b-tagging, both online and offline, and thus makes extensive use of the work

discussed in Chapters 3 and 4. It was the first analysis to use NN b-tagging at

a hadron collider. As well as the generic b-tagging developed, necessary for this

analysis, the author produced the taggability parametrisations and optimised the

b-tagger working point for both analysis iterations. The submitted analysis uses a

likelihood discriminant to improve the sensitivity. As an independent cross-check

the author developed a neural network to be used as an alternative discriminant.

Full descriptions of the preliminary and submitted results can be found in [24] and

[27, 22] respectively. Section 5.2 gives an outline of the two analysis versions. The

rest of this Chapter focusses on the submitted result. Sections 5.3 and 5.4 describe

the data and MC samples used. Sections 5.5 and 5.6 discuss the background estima-

tion and analysis optimisation. The development of the neural network discriminant

is described in Section 5.7. Sections 5.8 and 5.9 cover the systematic errors and the

limits set in the submitted result.
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5.2 Analysis Overview

The basic event selection for the analysis requires three b-tagged jets with relatively

high pT , typically the jets from the Higgs candidate should have pT > 30 GeV. The

dominant backgrounds before and after b-tagging are due to multi-jet QCD events.

Before b-tagging QCD processes involving three light-jets dominate. After b-tagging

the background is dominated by the processes with two or three real b-jets. The

cross-sections for these QCD processes are poorly known, thus a major difficulty for

the analysis is to determine the level and composition of the background. The signal

would be an excess of events over the background expectation peaked in the di-jet

invariant mass distribution around the Higgs mass, mh, in the sample with three

b-tags. The more powerful online and offline b-tagging discussed in Chapters 3 and 4

has had a significant impact on the analysis, changing the background composition

considerably since the previous published result [19]. The key difference between

the two analysis iterations described here is the background estimation.

5.2.1 ICHEP 2006 Preliminary Result

The estimation of the background followed the procedure used in the previous pub-

lished result [19]. The sample with three b-tags is known as the ‘3-tag sample’ and

that with two b-tags as the ‘2-tag sample’. The invariant mass of the two highest pT

jets is referred to as m01. For the preliminary result the 3-tag background invariant

mass distribution is produced from the 2-tag data distribution by weighting each

2-tag event with a 2 → 3-tag probability. This 2 → 3-tag probability is derived from

data and is parametrised in terms of the pT of the third jet to be b-tagged. To avoid

any possible signal contamination it is derived outside the signal mass window and

re-derived for each tested signal mass. This 3-tag background distribution, derived

exclusively from data, is used as the background hypothesis in the limit setting.

A MC background distribution is also produced to be used as a cross-check. The

relative cross-sections of the MC background components are taken from the LO

ALPGEN simulation. The total 2- and 3-tag MC distributions are then normalised

to the data, again outside the signal region. Although the background components

have similar m01 distributions the fact that the normalisation factors needed in the

2- or 3-tag MC samples are similar, though the sample composition changes, sug-

gests that the relative levels of the most significant background components are

reasonable. Figure 5.1 shows the agreement between the data and background-only

hypothesis, along with the signal distribution and signal-plus-background hypothesis

for a Higgs signal with mA = 170 at the observed 95% confidence limit (tanβ = 121).
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Figure 5.1: The 3-tag m01 distribution in the preliminary result [24] for data (circles), the
background hypothesis derived from 2-tag data (solid black line), the signal MC (green line) for a
Higgs with mA = 170 and tanβ = 121 and the signal-plus-background hypothesis (dashed black

line).

5.2.2 Final Publication

The NN b-tagger has considerably better performance than the SVT b-tagging used

in the previous published result, thus after requiring three b-tags the background

composition is very different in the two versions. As a result the three real b-jet

component, which was previously small, is expected to make up a significant portion

of the 3-tag background. This background component cannot be reduced relative to

the signal by tighter b-tagging. With the background reduced relative to the signal

due to the improved light-jet rejection the tails of the signal peak now become non-

negligible across most of the mass spectrum. A signal-free or low-signal region with

sufficient statistics to set the background level cannot be found. Thus an improved,

more robust, method was developed. Instead the background composition is set

using multiple correlated fits to the data HT distribution with various numbers of

b-tags, as described in Section 5.5. HT is the scalar sum of jet pT s in the event. The

expected background shape is produced from the 2-tag data which is background

dominated and a 2 → 3-tag probability derived from a fit to the ratio of invariant

mass distributions in 3-tag and 2-tag inclusive events in background-only MC. The

overall normalisation of this predicted background shape is not determined and is

allowed to float in the modified limit setting procedure. The result of not knowing

the absolute background level is a weakening of the expected limits from the analysis.

In order to recover sensitivity the jet pT cuts are re-optimised and a multivariate

discriminant is used. Since in data we do not know which jets originate from the

Higgs the acceptance of the analysis can be maximised by considering multiple

candidate di-jet pairs for each event.
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5.2.3 Basic Event Selection

The basic event selection for the two versions of the analysis is the same; three high

pT b-jets with up to two additional jets from initial (ISR) and final state radiation

(FSR). The following sections give a simple outline of the cuts used in the two

versions.

5.2.3.1 Event Selection for the ICHEP Preliminary Result

To select signal events the following set of cuts was applied:

• The event must fire the h0bb trigger.

• Between 3 and 5 jets passing the ‘good jet’ criteria: pT > 15 GeV, |η| < 2.5,

taggable and passing the jet-ID selection.

• At least one jet above 45 GeV and one other jet above 25 GeV.

• At least 2 and 3 b-tagged jets in the 2-tag and 3-tag samples.

• The Higgs candidate is formed from the leading pair of jets.

5.2.3.2 Event Selection for the Publication

The improved event selection for the final publication requires:

• The event must fire the h0bb trigger.

• Between 3 and 5 jets passing the ‘good jet’ criteria: pT > 15 GeV, |η| < 2.5,

taggable and passing the jet-ID selection.

• All jets must have pT > 20 GeV and at least two jets with pT > 25 GeV.

• At least 2 and 3 b-tagged jets in the 2-tag and 3-tag samples.

• Multiple candidate di-jet pairs considered per event.

• The 3-, 4- and 5-jet events are considered as separate channels and optimised

individually.

• A final selection using a multivariate discriminant.
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5.3 Data

5.3.1 Triggers

Due to the limited bandwidth available for writing events to tape events are collected

using a set of trigger requirements. For the search for Higgs bosons produced in

association with b-quarks the h0bb trigger has been developed. The data used in

this analysis were collected with trigger versions v8 to v14, for these trigger versions

the requirements of the h0bb trigger are given in Table 5.1.

Over all its iterations the trigger’s core requirement is for three jets with signifi-

cant pT . Since v11 the PV has been required to be within the silicon tracker barrel,

increasing the likely taggability of jets. An IP-tagger term was introduced in v13

and requires that the probability of the event having no b-jets be less than 0.05. The

majority of events (∼ 70% of the integrated luminosity) were recorded using v13

and v14 which include this IP-tagger term; the IP-tagger is discussed in Chapter 3.

5.3.2 Skimming Cuts

The subset of data events to be considered by the analysis is called the skim. To be

included in the skim events are required to pass the h0bb trigger and have at least

one jet with pT > 20 GeV1 and two others with pT > 15 GeV. The jets must be

within |η| ≤ 2.5.

5.3.3 Data Quality

Blocks of luminosity marked as ‘bad’ by the DØ data quality group and runs with

problems in the muon, calorimeter, SMT or CFT sub-systems were excluded from

the data sample, as were events recorded during periods, within runs, with known

calorimeter issues. After applying these requirements 1.0fb−1 of data remains.

5.4 MC Samples

The MC samples were produced using Pythia [58] for the signal samples, tt and Zbb.

ALPGEN [63] was used for the multi-jet backgrounds containing heavy-flavour jets.

Pythia is then used to model the showering of the ALPGEN partons into jets. The

parton distribution functions (PDFs) used were those from CTEQ6L1 [73].

The events were then passed through the DØ detector simulation chain and over-

laid with background elastic scattering events recorded with the ‘zero bias’ trigger,

1As measured before the jet energy scale (JES) correction is applied.
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v8 v9 v10

L1 CJT(3,7) CJT(4,5,|η| < 3.2) CJT(3,5,|η| < 3.2)

L2 - JT(3,8,|η| < 3)HT(50,5) same as v9

L3 JT(3,15,|η| < 3) same as v8 same as v9

Name 3JT15 same as v8 same as v9

(a) v8, v9 and v10

v11 v12

L1 CJT(3,5,|η| < 3.2) same as v11

L2 JT(3,8,|η| < 3)HT(50,5) same as v11

L3 JT(3,15,|η| < 3) × JT(3,15,|η| < 3) ×
JT(2,25,|η| < 3) × JT(2,25,|η| < 3) ×
|zPV| < 35 cm |zPV| < 35 cm

Name 3JT15 PV 2J25 3J15 PVZ

(b) v11 and v12

v13 v14.0-7 v14.8-

L1 same than v11 et v12 CJT(3,4,|η| < 2.6) × v14.0-7 ×
CJT(3,5,|η| < 3.2) CJT(1,7,|η| < 1.8)

L2 JT(3,6,|η| < 3)HT(70,8) same as v13 same as v13

L3 v12 ∗ Probb(0.05) same as v13 same as v13

Name JT2 3JT15 IP VX same as v13 same as v13

(c) v13 and v14

Table 5.1: The triggering conditions for each version of the h0bb trigger. The CJT(x,y,|η| <
z) term corresponds to x calorimeter trigger towers above y GeV and within |η| < z. The
JT(x,y,|η| < z) term corresponds to x jets reconstructed at Level-2 or Level-3 with pT > y
GeV and |η| < z. The HT(x,y) term is used only at Level-2 and requires that the sum
of the transverse momenta of L2 jets with pT > y GeV is above x GeV. The Probb(0.05)
term cuts on the output of the Level-3 IP-tagger, described in Chapter 3, requiring the

probability for the event to have no b-jet to be less than 0.05.
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background sample number of events

bbj exclusive 900008

bbjj 948322

bbbb 2210329

ccj exclusive 182745

ccjj 179893

bbcc 453239

tt 120107

Zbb 89930

Table 5.2: The number of events simulated for each background process.

to account for multiple interactions. The number of events simulated for each of the

background and signal samples is summarized in Tables 5.2 and 5.3.

5.4.1 Corrections Applied to MC

The MC samples were corrected using the standard DØ algorithms [38, 74] to ac-

count for the differences in efficiency, resolution and b-tagging between data and

MC. The standard DØ algorithms for reproducing the jet energy resolution and jet

finding efficiency were applied to the MC. Trigger turn-ons were derived on data

for the jet and b-tagging triggers and applied to MC. Taggable jets in MC were

reweighted to reproduce the pT and η distribution measured in data, as described

in Section 5.4.1.1. For full details see [22].

The TRFs derived for the NN b-tagger described in the previous Chapter are

used to tag MC with the correct efficiency. A comparison was made between this

method and direct tagging with the scale factor and the two approaches were found

to be comparable. The TRF method is preferred since it preserves the full statistics

of the MC samples.

5.4.1.1 Taggability

Before trying to b-tag a jet, the jet is required to be taggable. The taggability

criteria demand that the calorimeter jet be matched to a track-jet (∆R < 0.5).

The track-jets are built with ‘good tracks’: they must have pT > 0.5 GeV (one of

them pT > 1 GeV), hits in the SMT detector and their impact parameters along

the beam axis, z, and in the x-y plane are required to be smaller than 0.2 cm and

0.4 cm, respectively. The taggability in MC must be corrected to match that in
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mh (GeV/c2) number of events

90 244059

100 267678

110 246503

115 265917

120 266919

130 268473

140 254434

150 258255

160 267789

170 265205

180 279389

190 267014

200 295527

210 266620

220 319234

260 269987

Table 5.3: The number of events simulated for each tested signal mass.
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data; approximately 85% of jets are taggable in data and around 90% in MC. The

taggability is measured in data in bins of jet pT and η . The measured taggability

distributions are shown, with the overall mean efficiency factorised out, in Figure

5.2. The taggability factor obtained from the ratio of data and MC taggabilities is

used to randomly decide if a given taggable MC jet is to be considered taggable in

the analysis, according to its pT and η.
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Figure 5.2: The data/MC taggability correction factors parametrised as a function of jet
pT (left) and jet η (right).

The overall taggability correction factor, F, is given by:

F = F (pT ) × F (η) × 85%

90%
(5.1)

Where F (pT ) and F (η) are the normalised correction factors parametrised in pT

and η as shown in Figure 5.2, and the final term is the overall correction factor.

5.4.2 Signal Simulation

As MSSM and SM Higgs boson production processes are similar, the Pythia SM

process gb → hb is used. The Pythia simulation also includes a good simulation

of ISR and FSR. After including ISR and FSR the two processes, gb → hb and

gbb → hbb, are indistinguishable and so the former is used to produce events which

are normalised to the NLO cross-section including both processes calculated from

MCFM [75]. The kinematic distributions for the Pythia events are also reweighted,

in η and pT , to reproduce those from MCFM.

Though the width of the Higgs is larger in the MSSM than the SM for most

of the parameter space it is less than the experimental resolution and so will have

limited effect. At large tan β the width becomes non-negligible and so this effect is

included in the submitted result.
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5.5 Background Modelling

An accurate description of the background is essential to any search. The following

sections describe the background composition, overall background normalisation and

the background shape for the submitted analysis.

5.5.1 Background Composition

To establish the background composition the MC background HT distribution is fit

to the data in the three-jet channel. The HT of an event is simply the scalar sum

of the constituent jet pT s. The fit is performed for samples with between one and

three b-tags, for multiple b-tagger operating points.

The background components involving c-quarks are closely related to those with

b-quarks and differences due to the differing quark mass become negligible for HT >

50 GeV. As a result the unknown fractions of cjj and ccj2 can be fixed relative to the

bjj and bbj fractions respectively and the bcc and bbc can be fixed relative to the

bbb sample. The ccc sample will be present at the same level as the bbb, which is

only significant in the 3-tag sample. Each c-quark will be a factor ∼3-10 less likely

to be tagged than a b-quark and so the 3-tagged ccc will be no larger than 3% of

the 3-tagged bbb sample. Since 3% is within the errors of the fit process the ccc

component is neglected. With these assumptions three variables remain: xbjj , xbbj

and xbbb, where xbkg is the fraction of the multi-jet background made up of the given

component. The background fractions must sum to unity:

∑

bkg

xbkg = 1 (5.2)

Measuring the number of events in data for zero to three b-tags allows the con-

struction of three further simultaneous equations for each b-tag operating point of

the form:

∑

bkg

xbkg × εbtagOP
nTags [bkg] = N btagOP

nTags /Ntot (5.3)

where εbtagOP
nTags [bkg] is the efficiency to tag the given background with nTags at the

btagOP operating point. As we use nine operating points the system appears to

be highly over-constrained having three unknowns and 1 + 3 × 9 = 28 constraints.

In fact the different b-tagging operating points are clearly correlated and it is also

2Here cjj indicates the background component containing one c-jet and two light jets, u, d, s or
gluons, in any pT order. ccj, bjj etc. are to be interpreted similarly.
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only possible to constrain the level of bbb in the 3-tag sample. The fractions are

determined by a chi-squared minimisation method using the full covariance matrix to

account for these correlations. Figure 5.3 shows the result of the sample composition

fit for between zero and three b-tags for the Tight NN operating point.
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Figure 5.3: The result of the background composition fit for the Tight NN operating point. The
component plots refer to events with no tag requirement (top left), at least one (top right), two

(bottom left) and three (bottom right) b-tags.

The result of the study is used to scale the different background components

relative to each other.

5.5.2 Background Level

In the previous iterations of the analysis the background level in MC was determined

by fitting the MC to the data in a signal-free region. With the increased power of

the NN b-tagger the composition of the 3-tag sample has changed and no signal-free
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region with enough statistics to allow such a fit remains. As a signal-free region with

sufficient statistics can no longer be determined the absolute level of the background

remains unfixed and only the shape is used to set the limit.

5.5.3 Background Shape

The ratio of the 3-tag and 2-tag mass distributions is referred to as the 3/2-tag ratio.

The 3/2-tag ratio derived from background MC can be used in the same way as the

2 → 3-tag probability in the preliminary result, to transform the data 2-tag mass

shape into an expected 3-tag shape:

Shapeexp
3−tag(mh, D) =

ShapeMC
3−tag(mh, D)

ShapeMC
2−tag(mh, D)

× Shapedata
2−tag(mh, D) (5.4)

where the Shape functions, are parametrised in terms of Higgs mass mh and the

multivariate discriminant D, to be discussed later. Integrating over the discriminant

variable gives the 3/2-ratio for MC in the ‘high-discriminant’ region:

ratioMC
3/2−tag(mh) =

∫D=1
D=Dcut

ShapeMC
3−tag(mh, D)

∫D=1
D=Dcut

ShapeMC
2−tag(mh, D)

(5.5)

The value Dcut is the lower bound of the high-discriminant region and is opti-

mised depending on the discriminant used (likelihood or NN). In the absence of a

signal the ratio is expected to have a linear gradient. To reduce the effect of statis-

tical fluctuations the ratio is fit with a polynomial and this fit function is used as

the 2 → 3-tag probability. This ratio is independent of the unknown normalisation

of the background. In addition some sources of systematic error will be removed

as their effects cancel out in the ratio. A small excess in the 3-tag distribution will

appear as an enlarged deviation from the expected linear gradient in the ratio.

Finally the shape of the expected 3-tag invariant mass distribution in the high-

discriminant region, Shapeexp
3−tag(mh), is given by:

Shapeexp
3−tag(mh) = ratioMCfit

3/2−tag(mh) × Shapedata
2−tag(mh) (5.6)

This expected shape is used as the background-only hypothesis in the limit setting.

5.6 Event Selection Optimisation

The following sections describe how the jet selection, b-tagging operating point and

number of candidate Higgs pairings per event were optimised. The likelihood dis-

criminant, the multivariate technique used in the submitted result, is also intro-

duced.
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5.6.1 Jet Selection

The initial skim criteria pT > 15 GeV originates from the minimum requirement for

b-tagging. Since the Higgs is a relatively heavy object at least two jets from signal

events are expected to have a harder pT spectrum than background jets. Increasing

the pT cut for all jets above the minimum 15 GeV, and increasing it further for the

lead jet pair, reduces the QCD background. Several jet cut scenarios were considered

for the submitted result, the final selection for the likelihood branch of the analysis

requires all jets to have pT > 20 GeV and the lead pair to have pT > 25 GeV. The

same set of scenarios was considered during the optimisation of the NN analysis

branch and the selection used is discussed in Section 5.7.2.5.

5.6.2 b-tagging Operating Point

5.6.2.1 Introduction

The NN b-tagger has a series of operating points with different efficiency and fake

rate (see preceding Chapter). In order to find the optimal operating point for this

analysis studies were performed for both ICHEP 06 and the final publication. Ini-

tially a simple study was performed which preceded the background composition

study described above. For this first study the background was estimated from

data. Subsequently a second set of studies was carried out using the background

model derived in Section 5.5.1. For both studies the significance of the mass peak

due to a fixed size injected MC signal is used to find the preferred working point.

As the simulation of the b-tag trigger term depends on whether the jet satisfies the

offline b-tagging criteria this trigger parametrisation was rederived for each offline

working point tested.

For the purpose of these studies, which were performed before the final analysis

technique was determined, significance was defined simply as S/(
√

B ⊕ εB), where

S and B are are the number of signal and background events in the 3-tag sample

in a ±1.5σ mass window around the signal, with the mean mass and width derived

from a fit to the signal MC mass spectrum. The systematic error, ε, used was a

fixed value of 3% which was the best estimate at the time. For the initial study

the highest pT jet pair (the ‘lead’ pair) was used. All available Higgs candidate

pairs from each signal and background event were used for the full MC study. The

MC study gives a fast and early indication of the expected best working point and

allows more complicated b-tagging criteria to be investigated. The study using a

background estimate from data is interesting for comparison since it is not affected

by data/MC differences
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Figure 5.4: The significance seen with an injected MC signal for the ICHEP 06 analysis as a
function of the NN operating points. Here the background used in the significance calculation is

taken directly from data.

5.6.2.2 Optimised b-tagger Operating Point Using Background from Data

Before the introduction of a multivariate discriminant the signal fraction in the final

3-tag sample is expected to be small. At this stage the data distribution is the best

estimate of background and can be used with a large MC signal to form a S/
√

B

significance, as described above. Since tanβ can be factorised out of the significance

we can choose a large value of tan β and inject a MC signal large enough to make

any real signal present in data negligible. The shape of the significance curve is in

any case independent of the absolute scale. This simple method gives a preferred b-

tagger operating point which is independent of the uncertainties on the background

composition and can be derived before the final analysis technique is determined.

Figure 5.4 shows the example significance produced for a given MC signal injection

against the cut applied to the NN b-tagger output. The example shown is for a

140GeV Higgs and tan β = 70. Several masses (between 90 and 160 GeV) were

investigated and the choice of operating point was found to be independent of the

signal mass. The study indicates that, as expected, tighter operating points are

preferred. The tightest available operating point is not recommended, the next

three tightest are within errors equivalent and give the best significance.

5.6.2.3 Optimised b-tagger Operating Point Using the Full MC Back-
ground Composition

The second phase of the operating point optimisation attempts to achieve two things,

firstly to reduce the errors in order to be able to differentiate between the results

from the three tight working points suggested above and secondly to investigate the

possibility of improvements from more complicated tagging procedures such as a



5.6 Event Selection Optimisation 154

combined event tag. This part of the study was conducted after the optimisation of

the jet pT cuts for the final analysis. With these cuts the signal is predominantly

in the 3-jet channel and therefore the study was confined to that channel. Taking

the background distribution from MC increases the statistics considerably. Several

combinations of tags were also considered to investigate if combining the tag in-

formation from several jets could enhance the background rejection. The following

alternative scenarios where tried, where Tn is the NN b-tagger output for the nth jet:

• Scenario A cut on T1, T2 and T3 with the same operating point (as in the

previous section)

• Scenario B cut on T1, T2 and T3 with different operating points

• Scenario C cut on log(T1 + T2)/log2 and T3

• Scenario D cut on log(T1 + T2 + T3)/log3

The jet order must also be specified, ordering with jet pT or with NN b-tagger output

would give different results for the second and third scenarios above; both options

were investigated. Figure 5.5 shows the significance as a function of the b-tag cut

applied for scenarios A and D, the two best performing scenarios. None of the

combinatorial event tags tried gave a better significance. A very tight cut on the

sum of the NN output values for the three jets can, within errors, equal the best

significance from tagging the three jets independently, but the second differential at

the optimum point is larger for the combined tag meaning the optimum point is less

stable and so discriminating with this variable is less reliable. The composition of the

background is fixed from the study in Section 5.5. However the overall background

is not normalised to data since no signal free region is available, as a result the

background level is low by a constant factor which results in the higher significances

in Figure 5.5 compared to Figure 5.4.

Since there are significant backgrounds for all levels of b-content it is understand-

able that it proves impossible to gain by loosening any of the tags. Any of the cuts

on a linear combination of tag values result in a limited loosening of the criteria

since one particularly tight tag can allow an event with a loosely tagged jet to pass.

Light jets are an order of magnitude more common in the QCD backgrounds than

b-jets and so high rejection operating points, ‘tight’ b-tags, are needed to remove the

overwhelming jjj and bjj backgrounds. Once the bbj background component ceases

to be dominant, i.e. once three ‘tight’ b-tags have been required, the bbb component

dominates. It is clearly impossible to reduce the bbb background with respect to



5.6 Event Selection Optimisation 155

Figure 5.5: The significance seen with an injected MC signal and background from the background
composition study. Significance is shown after three b-tags at one operating point (red) and after

a cut on the sum of the b-tagger output for the three jets (black).

the signal by tightening the b-tagging since signal and background have identical

b-content. At this point further tightening of the working point simply reduces the

statistics for both signal and background.

5.6.2.4 Conclusion of b-tagger Operating Point Studies

The optimal working point for the NN b-tagger for this analysis was found to be

Tight, applied to all three b-tagged jets. Alternative event tags using the combined

information from multiple jets were also investigated but due to the large QCD

backgrounds at all levels of b-content these were not preferred to requiring tags with

a uniform operating point on each individual jet. The study was repeated with

the final full analysis using a reduced number of operating points and the same

conclusion was drawn [22].

5.6.3 Number of Higgs Candidate Pairs

For a signal event in data the jet pair coming from the Higgs decay is not known.

MC suggests that in a significant fraction of events (∼ 30%) the Higgs pair is not the

leading pT pair. In order to recover these signal events additional Higgs candidates

formed from other jet pairs can be included. Three scenarios were considered:

One pair - use the lead pT pair.

Two pairs - use the lead pair and the pair made from the highest and third highest

pT jets.
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Three pairs - use both pairs given above and the pair made from the second and

third highest pT jets.

Since the lead pair accounts for the majority of true Higgs pairs in signal MC only

combinations including the lead pair need be seriously considered. Higgs candidates

for signal and background MC constructed using each of the three sets of pairs above

were run through the full analysis chain including the likelihood discriminant and

used to set limits. The best expected limits were determined using two candidate

pairs per event [22].

5.6.4 The Likelihood Discriminant

The main branch of the final analysis uses a likelihood discriminant as the multivari-

ate technique in the final event selection. The alternative NN branch is discussed

in Section 5.7. The likelihood ratio, RLH , is computed using Equation 5.7 with

probability density functions (PDFs) generated by fits to the variable distributions

in MC:

RLH(x1, x2...xn) =
i=1∏

n

P sig
i (xi)

P bkg
i (xi)

(5.7)

where xi are the n input variables and Pi are the PDFs for signal and background.

The ratio is converted to a discriminant variable, YLH
3, designed to peak at one for

signal and zero for background:

YLH =
RLH

1 + RLH
(5.8)

The likelihood uses six kinematic variables, as listed below:

∆ηb1b2 - the separation in η of the Higgs candidate jets.

∆φb1b2 - the separation in φ of the Higgs candidate jets.

| arccos(~b1 · ~h)| - the angle between the leading Higgs jet and the Higgs candidate.

|pb1−pb2 |/|pb1+pb2 | - the momentum balance of the jets forming the Higgs candidate.

Y - the rapidity of the Higgs candidate.

3This replaces the generic dicriminant, D, in Equations 5.4 and 5.5
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Sphericity - the sphericity of the event.

All were well reproduced in MC. Comparisons of the variables in data and MC

are shown in Section 5.7.1. A full description of the likelihood discriminant can be

found in [22].

5.7 Developing the Neural Network Event Selec-

tion

The NN selection was developed in parallel with the likelihood selection. Having

two multivariate methods available to produce a final selection helps to confirm

that the result we see is not an artifact of the implementation of one of the tech-

niques. Neural networks consist of multiple nodes processing linear combinations of

input variables simultaneously. In theory a NN method is more likely to respond to

subtle correlations between input variables than the likelihood discriminant which

considers each variable independently. It may therefore be possible to increase the

background rejection by moving to a NN discriminant. The more intuitive likeli-

hood would then become the cross-check method. With the aim of interchangeable

discriminants in mind the preselection scenarios (pT cuts, Higgs pairings per event)

under consideration for the submitted analysis were investigated for the NN, allow-

ing the NN to slot into the main analysis. In addition the optimal jet selection

and number of Higgs candidate pairs for the NN analysis was also found in parallel

with the NN configuration optimisation. As in the preceding Chapter the NN was

constructed and optimised using the TMultiLayerPerceptron package provided in

ROOT [65].

5.7.1 Description of Variables

The following kinematic variables were considered for inclusion in the NN. The jets

b1 and b2 are those used to reconstruct the Higgs candidate, in pT order. b3 is

the remaining jet not used to form the Higgs candidate. The variables used in the

likelihood are marked with an asterisk.

∆ηb1b2 - the separation in η of the Higgs candidate jets. ?

∆φb1b2 - the separation in φ of the Higgs candidate jets. ?

arccos(~b1 ·~h) - the angle between the leading Higgs jet and the Higgs candidate. ?



5.7 Developing the Neural Network Event Selection 158

|pb1 − pb2|/|pb1 + pb2 | - the momentum balance of the jets in the Higgs candidate. ?

Y - the rapidity of the Higgs candidate. ?

~b3 · ~h - cosine of the angle between the third jet and the Higgs candidate.

2nd Fox Wolfram Moment, H2 - a quantity relating to the spherical symmetry of

the jets in the event, defined in Equation 5.9:

H2 =
∑

ij

|pi||pj|
E2

vis

1̇

2

(

3 cos2 θij − 1
)

(5.9)

where Evis is the total visible energy in the event, θij is the angle between the

jet directions and the sum over (i, j) includes all jet pairs.

Sphericity - the sphericity of the event. ?

Figure 5.6 shows the variable distributions for data compared to signal and

background MC samples, where three b-tags have been required. The signal MC

is for a 190 GeV Higgs. For the signal MC only the correct pairing of Higgs jets

is shown, for data and background MC all pairs are shown. The area under each

histogram is normalised to unity. The same distributions are shown in Figure 5.7

for candidate pairs within a ±1.5σ mass window around the mean of a Gaussian fit

to the MC signal pair mass distribution. Good agreement can be seen between data

and background MC for all variables in both regions. It is also clear that individually

each variable can offer only limited discrimination. Some disagreement is seen in

the comparison of ∆ηb1b2 but the data look less signal-like than the background MC

and so the discriminating power measured in MC will be conservative.

5.7.2 NN Optimisation

The configuration of the NN and the preselection of candidate pairs to be considered

were optimised simultaneously. The following sections give snapshots comparing

NNs produced whilst varying individual components of the configuration, these are

not the complete set of NNs produced but give an idea of all the comparisons which

were made. In the following sections the plots refer to the 3-jet channel unless

otherwise noted, using a NN in the 4/5-jet channel was also investigated but the

signal is considerably smaller.
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Figure 5.6: Input variable distributions for all jets for data (black points), background MC (black
histogram) and correct pairs only in signal MC (red histogram).
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Figure 5.7: Input variable distributions for jets within the signal mass window for data (black
points), background MC (black histogram) and correct pairs only in signal MC (red histogram).



5.7 Developing the Neural Network Event Selection 161

Figure 5.8: Example plots of the training sample and test sample errors against training epoch
are shown for a NN trained in the 3-jet (left) and 4/5-jet channels (right). The errors are the

fraction of incorrect NN outputs at the current epoch given an NN cut of 0.5.

5.7.2.1 Training Method and Number of Epochs

The BFGS training method [67] was again used since it is considered to be the

most efficient training algorithm (see preceding Chapter). A neural network was

independently trained for each preselection configuration, for each variable selection

and for the 3-jet and 4/5 jet channels. The networks were trained using a MC

sample consisting of the signal at a given mass and a background composed of the

three most significant MC samples (bbj, bbjj and bbb) with relative weights as

determined in Section 5.5. The total number of background candidate pairs was

weighted to be equal to the number of signal pairs at the specific training mass.

Only the correct Higgs pairing was used for signal events in the training sample.

Half of the MC available was kept in reserve and used to test the NN, this MC is

referred to as the test sample. The NN was considered trained when the fraction of

incorrect outcomes (for a cut at 0.5) on the test sample no longer decreased with

further training. Figure 5.8 shows the error, the fraction of incorrect NN outputs,

for the test and training samples for one representative Higgs mass. The error for

the training sample continues to decrease as the network becomes over trained but

the error on the test sample reaches a minimum. The network training is recorded

for each epoch and the network with the minimum test sample error is taken as the

final network. Four hundred training epochs was found to be sufficient to always

find a minimum in the test sample error.

5.7.2.2 Optimisation Benchmark

Curves of signal efficiency against background pass-rate were produced for each

NN set-up and the likelihood method by considering cuts on the discriminant vari-

able over the complete range. The signal and background samples are MC, where
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the background composition is specified by the study in Section 5.5. For a given

background rate a higher signal efficiency will produce a greater final significance

and so curves toward the top-left in the following performance plots are preferred.

For the final optimisation the point which produces the highest significance on

each curve is taken and compared. The chosen cut separates the candidate Higgs

pairings into a low- and a high-discriminant region. To calculate the significance

the low-discriminant region, which is signal free, is used to produce a 2 → 3-tag

background-only tag rate function (TRF). This tag rate function is applied to the

high-discriminant 2-tag distribution to produce a prediction for the background-

only high-discriminant 3-tag distribution. This prediction can be subtracted from

the actual high-discriminant 3-tag distribution to get the observed signal. A simple

signal significance is calculated as in Section 5.6.2:

S + B = Nhigh
3 (5.10)

predicted B = Nhigh
2 × N low

3

N low
2

(5.11)

significance =
S√

B ⊕ 3% · B
(5.12)

=
Nhigh

3 −
(

Nhigh
2 × Nlow

3

Nlow

2

)

√

Nhigh
2 × Nlow

3

Nlow

2

+
(

ε × Nhigh
2 × Nlow

3

Nlow

2

)2
(5.13)

Where N
high/low
2/3 is the number of invariant mass pairs counted in the high- or low-

discriminant, 2- or 3-tag distribution. The systematic error on the background, ε

was estimated at the time to be ∼ 3%. The number of pairings are counted in

a ±1.5σ window generated from a Gaussian fit to the mass distribution for the

correct Higgs pairing in the signal MC. The signal cross-section is normalised using

tan β = 160. This value is larger than the existing limit but is used as a ‘best case’

to show what the 3/2-ratio distributions would look like in the case of a large signal.

As mentioned previously the tan2 β signal enhancement in the S/
√

B significance

can be factorised out and so the choice of tan β does not effect the optimisation of

the discriminant.

5.7.2.3 NN Optimum Working Point

The working point which produces the highest significance was found by calculating

the significance described above while stepping through cut values on the NN output
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between -0.1 and 1.1 in steps of 0.05. The resulting curve of significance against NN

output cut can be seen, along with the actual NN output distributions for signal

and background, for the final optimised NN set-up (as an example) in Figure 5.9.

In this case the optimum cut would be ∼ 0.55.
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Figure 5.9: The significance calculated with a given MC signal for the full range of cut values
(left) and the actual output of the NN (right) where the signal-plus-background (red) is normalised
to the same level as the background-only (blue) shape. The signal-only shape is shown (green) for

the given signal size. This example shows the distributions for the final optimised NN set-up.
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5.7.2.4 NN Structure

The number of hidden nodes should be greater than the number of input nodes,

increasing the number of hidden nodes increases the CPU time required to train

and to run the NN. The number of hidden nodes was varied between 7 and 28.

This optimisation was performed with the standard preselection (two jets above

20GeV, one above 25GeV, the leading two jet pairings) in the 3-jet channel. The

performance curves for each tested neural net structure are shown in Figure 5.10. It

is apparent from the figure that the network structure has little effect on the final

power of the network. The network with 21 hidden nodes had the lowest, or joint

lowest, background pass rate for any given signal efficiency between 40 and 85% and

so this network structure was chosen.
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Figure 5.10: Performance curves for a set of NNs produced with different numbers of hidden
nodes. The dependence is small and 21 nodes is chosen for the final set-up. Statistical errors are

shown but are smaller than the marker size.
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5.7.2.5 NN Input Preselection: Jets

Three different jet selection scenarios were considered during the lifetime of the main

analysis as given below:

• Scenario i. All jets above 15 GeV, the basic requirement for taggability.

• Scenario ii. Two b-jets above 25 GeV, all jets above 15 GeV, since the Higgs

is a heavy object which should decay to high pT jets.

• Scenario iii. Two b-jets above 25 GeV, all jets above 20 GeV, since the jet

from the associated production is also expected to be high pT .

A NN was specifically trained for each preselection. The 3/2 ratios for MC

in the low- and high-NN regions are shown in Figure 5.11 for each set of jet cuts

with the corresponding network. The 3/2-ratio for signal-plus-background is calcu-

lated including all candidate Higgs pairings for both signal and background since in

data we cannot distinguish the correct pair. In the low-NN region the background

and signal-plus-background distributions are similar in shape and numerically close.

Since the b-content of the background is not very well known we cannot predict the

absolute level of the 3/2 ratio and so we would not expect to be able to detect the

effect of the signal in this region in data. The different absolute level of the 3/2

ratio for the low-NN region is due to some of the additional combinatorial back-

ground from the incorrect pairings from signal events. Whilst coming from signal

events this combinatorial background is made up of pairs which do not originate in

a Higgs, it is not peaked and has a shape close to background. The low-NN region

is as close to a signal free region as we can produce and will be used to confirm that

the background in data is behaving as expected. The low-NN region background

and signal-plus-background are fit with straight lines. The high-NN region signal-

plus-background is fit with a Gaussian plus a straight line with gradient fixed from

the background-only fit in the low-NN region. The width of the Gaussian is fixed

to be the di-jet energy resolution, which is 28GeV for 90GeV jets.

Table 5.4 shows the values for significance derived from the high-NN region using

the low-NN region as a TRF as described in Section 5.7.2.2. Each significance is

calculated at the optimum working point for the relevant NN, i.e. it is the best

significance calculated for the given jet selection. The third, tightest, jet selection

was seen to produce the most significant excess with the given MC signal. This set of

jet cuts was chosen for the final analysis and is used for the following optimisations.
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jet selection signal ‘significance’

3 jets above 15 GeV 5.75

2 b-jets above 25, 1 jet above 15 GeV 5.76

2 b-jets above 25, 1 jet above 20 GeV 5.95

best result with likelihood 7.09

Table 5.4: Significances calculated for three jet selections with a fixed MC signal using the low-
NN region to predict the background 2 → 3-tag rate. The error on the significance, mostly due to

signal MC statistics, is ∼ 3% = 0.2.
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Figure 5.11: The MC 3/2 ratios for the three jet selections (Scenarios i. top, ii. middle, iii.
bottom) for events with NN-output < 0.5 (left) and greater than the optimised cut (right). The
blue points and fit are for background-only, the red points and fit are for signal-plus-background.

The cyan points and fit correspond to signal-plus-background minus background-only.
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5.7.2.6 NN Input Preselection: Number of Higgs Pairs

In a 3-jet event there are three possible pairs of jets which could be used to form a

Higgs candidate as discussed in Section 5.6.3. To improve the acceptance for correct

signal pairings all possible candidate pairs are considered, the final choice of which

pairs to keep is optimised using the full analysis chain with an individually retrained

NN selection.

Figure 5.12 shows the 3/2-ratios for the low-NN region (output less than 0.5 for

the given NN) and for the high-NN region where the cut value is re-optimised for each

NN. Again, in calculating the 3/2-ratio, the signal and background MC are treated

identically since in data we cannot identify the jets from the real Higgs. The ratios

and fits are as explained in the preceding section. The results of the significance

calculated by the 2 → 3-tag TRF approach explained above are summarised in

Table 5.5. Using only the lead and second pairings is seen to produce the highest

significance and is adopted for the remaining studies.

jet selection signal ‘significance’

Lead pair only 5.52

Lead and second pair 6.19

All pairs 5.95

best result with likelihood 7.09

Table 5.5: Significances calculated for different choices of Higgs pairings with a fixed MC signal
using the low-NN region to predict the background 2 → 3-tag rate. The error on the significance,

mostly due to signal MC statistics, is ∼ 3% = 0.2.
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Figure 5.12: The 3/2 ratios for the three choices of Higgs pairings (Lead pair only: top; Lead and
second pair: middle; All pairs: bottom) for events with NN-output < 0.5 (left) and > the optimised
cut (right). The blue points and fit are for background-only, the red points and fit are for signal-
plus-background. The cyan points and fit are for signal-plus-background minus background-only.

The jet preselection is as optimised in the previous section.
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5.7.2.7 Training Within a Mass Window

The impact of using a mass window during training was also investigated. NNs

were trained with and without a mass window on the pairings used in the training.

All pairings (including those outside the window) were processed by the resulting

networks to produce the complete low- and high-discriminant mass spectra. The

window is ±1.5σ where σ comes from a fit to the MC signal mass distribution.

The shape of the background-only distribution is unchanged if a mass window is

applied. This suggests that the application of a mass window in the NN training

will not generate a false peak in data. Figure 5.13 shows the signal efficiency and

background pass fraction for the two network training methods. Training using only

candidate pairs within a mass window is seen to be significantly more efficient for

a given background rate. The 3/2-tag ratios for the low- and re-optimised high-NN

regions are shown in Figure 5.14. In addition to increasing the significance with

which the example signal is observed, training with the mass window improves the

behaviour of the mass distribution for low masses in the high-discriminant region,

improving the quality of the linear fit to the background-only distribution. The toy

significance values calculated with the fixed MC signal as described previously are

recorded in Table 5.6. As expected the network trained with the mass window gives

a better significance.

signal ‘significance’

No mass window on training 6.19

Mass window for training 7.38

best result with likelihood 7.09

Table 5.6: Significances for NNs produced with and without a mass window on the pairs used
for training, calculated with a fixed MC signal using the low-NN region to predict the background
2 → 3-tag rate. The error on the significance, mostly due to signal MC statistics, is ∼ 3% = 0.2.
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Figure 5.13: Performance curves for NNs produced with and without a mass window on the jet
pairs used for training.
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Figure 5.14: The 3/2 ratios with and without a mass window on the Higgs candidate pairs used
for training (Without window: top; With window: bottom) for events with NN-output < 0.5
(left) and greater than the optimised cut (right). The blue points and fit are for background-only,
the red points and fit are for signal-plus-background. The cyan points and fit are for signal-plus-
background minus background-only. The jet and Higgs pair preselection is as optimised in the

preceding sections.
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5.7.2.8 Variable Selection

The power of variables used in the network is automatically estimated by the

TMultiLayerPerceptron ROOT package by making small variations to the input

distributions and observing the change in the number of incorrect NN outputs [65].

Having used this method to roughly order the variables, the NN is rebuilt and re-

trained with successive variables removed, weakest first. The performance curves for

each network were generated and compared to see which input variables could be

dropped from the final network. Such a ‘pull down’ method is preferred to a ‘build

up’ method when deciding on NN variables since correlations between the variables

are a significant source of power for a NN over simpler techniques such as the likeli-

hood. Starting with all available variables ensures that all correlations are included

in the initial NN and the reduction in power when a variable is removed includes

the loss from correlations. Table 5.7 gives the variables in order, most powerful first,

for NNs trained with the final preselection both with and without the mass window

on pairs used for training. The application of the mass window changes the order

of most powerful variables, however the weakest three remain the same.

Rank NN with mass window NN without mass window

1 Higgs Rapidity dφ1,2

2 cos(θ3,H) Sphericity

3 dφ1,2 Higgs Rapidity

4 dη1,2 cos(θ3,H)

5 Sphericity dη1,2

6 Momentum balance 2nd Fox Wolfram moment

7 2nd Fox Wolfram moment dθ1,H

8 dθ1,H Momentum balance

Table 5.7: The ranking of variables in NNs trained with and without mass windows on training
pairs. Increasing rank corresponds to weaker variables.

Figure 5.15 shows the performance curves for NNs trained with the full set of

variables and with several reduced sets. Removing the weakest three variables causes

only a small reduction in performance. However since the reduction is as large or

larger than the error on the performance measurement it was decided to retain all

variables for the final network.
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Figure 5.15: Performance curves for NNs trained with the weakest variables progressively re-
moved. Errors are shown but are small. The effect of removing the weakest variable is small, on
the same order as the errors. For the final network configuration all eight variables are retained.

The selection of pairs used is as optimised in the previous sections.
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5.7.3 Data-MC Agreement for the Optimised NN

The NN output for the final best NN configuration is shown in Figure 5.16. Since the

absolute level of the background is not well known the distributions for background-

only MC and background-plus-signal MC are normalised to the number of events in

the data sample. For the background-plus-signal sample the signal is the 190GeV

Higgs used to train the network and is normalised with respect to the background

component to the correct ratio of NLO cross-sections. The NLO cross-section for

the signal component requires a tan β hypothesis and the same value is chosen as

is used to calculate the toy significance, tan β = 160. This tanβ value is above

the existing limit up to the highest mA values investigated and as such the signal-

plus-background shape gives an indication of the maximum effect in the NN out-

put distribution due to the presence of a signal. From this plot the distribution

of NN output values for data is seen to agree well with both a background-only

and background-plus-signal hypothesis. The normalised distribution of signal-only,

correct-pair, NN outputs is also shown to indicate the separation power of the net-

work. The distributions are shown for all mass values and for pairs with invariant

mass within the ±1.5σ mass window to show that the agreement is good for both

the training sample and the complete analysis sample.

5.7.4 Comparison to the Likelihood

The performance of the NN and likelihood discriminant are compared in Figure

5.17. A small improvement is seen from using the NN which is reflected in the

small (∼ 4%) increase in significance seen in Table 5.8. The 3-over-2-tag ratio

distributions are shown in Figure 5.18 and the slight increase in the signal can be

seen in the high-discriminant region.

signal ‘significance’

NN 7.38

Likelihood 7.09

Table 5.8: Significances for the optimum NN compared to that from the best likelihood, calculated
with a fixed MC signal using the low-NN region to predict the background 2 → 3-tag rate. The

error on the significance, mostly due to signal MC statistics, is ∼ 3% = 0.2.
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Figure 5.16: The distribution of NN outputs in data (black) compared to the background-only
(blue) and signal-plus-background (green) hypotheses. Both hypotheses are normalised to the
total number of data events. The signal is a 190 GeV Higgs with tan β = 160. The NN output
distribution for the correct Higgs di-jet pair in signal events is also shown, normalised to the total
size of the data sample, for comparison (red). All candidate pairs regardless of mass are shown in
the left-hand plot, while right-hand plot shows only those pairs within the ±1.5σ mass window used
for training. The data is consistent with background-only MC, and with a small injected signal,
in both cases. The difference between background-only and signal-plus-background is increased by

applying the signal window (lower plot).
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Figure 5.17: Performance curves for the two types of multivariate discriminant. The NN trained
with the optimum configuration and preselection is shown in purple compared to the optimum

likelihood in cyan.
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Figure 5.18: The 3/2-tag ratios in the low-discriminant (left) and high-discriminant (right) re-
gions using the optimised NN (top) and likelihood discriminant (bottom) for MC background-only

and background-plus-signal hypotheses.
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5.8 Systematic Errors

The main sources of systematic uncertainty are listed here, for full details see [22].

5.8.1 Systematics on the Signal

5.8.1.1 From the CTEQ PDFs

Systematic errors due to the choice of CTEQ PDFs were estimated by repeating

the signal simulation using each of the 40 eigenvector sets available from the CTEQ

collaboration. The variations in the production cross-section for a 100 GeV Higgs

were summed quadratically to give a systematic error of ±11.7%.

5.8.1.2 From the Choice of Parameters in MCFM

The choice of renormalisation and factorisation scales used in the MCFM simulation

have an impact on the Higgs production cross-section. Both quantities were varied

between 0.5 and 2 times the preferred value (the central value was taken from

[76, 77]) and the resulting differences in cross-section are taken as the systematic.

The systematic errors range from 1.3% for a 90 GeV Higgs to 11.5% at 220 GeV and

are combined in quadrature with the those from the CTEQ PDFs described above.

5.8.2 Systematics on the Background

Since the expected background shape is produced from the 2-tag data and the 3/2-

tag ratio from MC many of the systematics affecting the 3-tag and 2-tag MC dis-

tributions equally cancel out in the ratio and do not affect the final result. The

systematics that remain are those that affect samples with different b-content differ-

ently. They are uncertainties on the background composition, b-tagging TRFs and

the Level-3 IP-tagger component of the trigger.

5.8.2.1 From the Background Composition, bbj vs. bbb (Systematic 1)

To account for the uncertainty in the background composition derived from the

study described previously, the size of the bbj component was varied by 25% for

each light jet available to fake the required third b-jet (i.e. 25% in the 3-jet channel,

50% in the 4-jet channel and 75% in the 5-jet channel).
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5.8.2.2 From Uncertainties in the bbj Sample (Systematic 2)

The fake rate is derived from the negative tag rate as described in the preceding

Chapter. This conversion can be approximated by a constant close to unity (∼ 0.8).

Taking the 2-tag data sample and requiring a third jet to be negatively tagged (and

including the correction factor) produces an alternative estimate for the bbj com-

ponent in the 3-tag distribution. This data sample can then be substituted for the

3-tag bbj MC sample in the constructed background. The background distributions

using bbj MC and this data substitute are found to agree within 2% for the 3-jet

and 10% for the 4 and 5-jet channels.

5.8.2.3 From the Level-3 IP-tagger b-efficiency (Systematic 3)

A systematic from the Level-3 IP-tagger will only arise if the kinematics of the 2 and

3-tag samples are affected differently by the IP-term in the trigger. To study this an

unbiased data sample was collected using a similar trigger to the one used for the

analysis. The alternative trigger matches at Level-1 and Level-2 and has a multi-jet

requirement at Level-3, but no IP-tagger term. The analysis cuts are applied to the

sample and mass pairs are formed as per the final selection. Finally the events from

the sample with two and three NN Tight b-tags are passed through the IP-tagger

trigger simulation and the ratio of pass rates is formed, parametrised in terms of the

di-jet mass. The ratio is then fit with a straight line. The ratio of trigger turn-ons

for 2 and 3 offline b-tags is seen to be consistent, within statistical fluctuations,

with a constant. The slope from the fit, enhanced by its statistical uncertainty, is

then used to calculate the potential deformation of the background shape due to the

effect of the IP-tagger trigger term. Since the Level-3 IP-tagger is an event tag, one

suitable b-jet is sufficient to fire it. This tagger construction is chosen to ensure high

efficiency. Because of this design the difference in performance between two samples

which both have at least one high pT b-jet (in this case a ‘mostly-bbj’ sample and a

‘mostly-bbb’ sample) is expected to be small, as is observed.

5.8.2.4 From the Background MC Component Kinematics (Systematic
4)

To investigate the effect of differences in modelling the most significant background

component samples, i.e. bbj and bbb, the 3/2-tag MC ratio is recalculated with

the 2-tag MC distribution, which is largely bbj, replaced with the 2-tag data. This

3-tag (MC) over 2-tag (data) ratio gives an alternative shape correction. The data

2-tag is used to effectively replace the bbj generator. However the bbj generator
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is not replaced in the 3-tag distribution and since some of the differences in mod-

elling would cancel, the effect is overestimated. Thus half the effect on the ratio is

propagated as a systematic on the final 3-tag shape.

5.8.2.5 From the b-tagging b-efficiency (Systematic 5)

When propagating the systematic errors on the NN b-tagger TRFs two approaches

are considered. Firstly the TRFs were shifted up and down uniformly by ±1σ.

Secondly the TRFs are skewed by altering the shape by ±1σ → ∓1σ. The second

procedure produces the larger effect and is used to provide the estimate of the

systematic error for the limit setting.

5.8.2.6 From the b-jet Energy Scale (Systematic 6)

The b-jet energy resolution is expected to be less well understood than the light

jet resolution. To investigate the effect of this an additional 7% smearing (∼ 1
2

the

experimental resolution) is added to MC b-jets. The effect of this extra smearing is

propagated through the variation in the 3/2-tag ratio to a systematic on the final

3-tag shape.

5.8.2.7 Effect of Background Shape Systematics

Section 5.9 details the technique used to set limits in the mA − tan β parameter

space. The limit setting was first carried out with no systematic errors and then

with each systematic progressively added in. The resulting effect of the various sys-

tematics detailed above can be seen in Figure 5.19. The error from the background

composition (systematic 1) is clearly dominant.
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Figure 5.19: The effect on the final tanβ limit, calculated at tree level, of progressively adding
the systematic errors on the background.
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5.9 Final Limits

5.9.1 The Limit Setting Procedure

Limits on σ × BR are intially set at 95% confidence level (CL). These are then

converted into limits in tan β − mA plane, either at tree level (the 2 × tan β ×
0.9 enhancement) or in the standard SUSY scenarios quoted in Section 1.3 using

FeynHiggs [78]. A version of TLimit [79] which had been modified to take into

account the unknown level of background (i.e. to use only the background shape)

was used to set the limits. The modified version of TLimit is described fully in

[80]. TLimit is itself an implementation of MCLimit [81]. Each histogram bin in the

3-tag mass distribution is considered as an independent ‘search channel’ and then

combined to give the final limit for each trial Higgs mass. The modified frequentist

confidence level (CLs) is used where:

CLs =
CLs+b

CLb

(5.14)

where CLs+b is the confidence level for excluding the signal-plus-background

hypothesis and CLb is the confidence level that a background-only fluctuation would

give equal to or less than the number of candidates observed. The quantity 1−CLb

is a measure of the compatibility of the data with the background-only hypothesis.

The number of signal and background pairings are varied around their central

values using Gaussians with widths equal to the relevant systematic errors. The

resulting signal and background levels from a large number of such variants are

used to statistically determine the required confidence levels for the signal-plus-

background and background-only hypotheses. The signal cross-section is increased

until CLs ≤ 5%, giving the 95% exclusion limit for signal.

5.9.2 Low-discriminant Region

As can be seen from the MC 3/2-ratios in Figure 5.18 the effect of a signal in

the low-discriminant region is very small. This region can therefore be used as a

control region to check that the technique used to estimate the 3-tag background

shape is working correctly. The 3/2-tag ratios for data and background-only MC

are given in Figure 5.20 and show good agreement. Confidence levels are calculated

for the background-only hypothesis and can be seen in Figure 5.21. No excess is

observed and so data from the low-discriminant region are said to be consistent with

the background-only hypothesis, as expected. The small deviations from the 50%

expected value for 1−CLb in the 5-jet channel are due to statistical fluctuations since
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there are no correlations between neighbouring mass points and the signal statistics

for this channel are very low. A cross-check using an injected signal in the 5-jet

channel produced a very different 1 − CLb distribution. Since the low-discriminant

region behaves as expected the analysis proceeds to the all- and high-discriminant

regions.

Figure 5.20: The 3/2-tag ratios for the low-discriminant regions, for the NN branch 3-jet channel
and likelihood with 3,4 and 5-jets. The blue points are calculatedin each mass bin using MC and
the black points are from data. The blue and black lines are polynomial fits to the points in
MC and data. The filled purple histogram shows the size of the bbb component in MC (for the

likelihood case only).
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Figure 5.21: The confidence level for the background-only hypothesis in the low-likelihood region
for the 3-jet inclusive (top left), 3, 4 and 5-jet exclusive channels (top right, bottom left and bottom

right respectively).
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5.9.3 No Discriminant Applied

Figure 5.22 shows the limits set and confidence level for the 3-jet inclusive analysis

with no multivariate discriminant applied. No significant excess of events is observed

and the observed limit agrees well with the expectation.
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Figure 5.22: Limits on tan β set without using a multivariate discriminant and assuming tree level
enhancement (left), observed limits are in red and expected limits dotted black with ±1 and 2σ
variations on the expectation given as coloured bands. The confidence level in the background-only

hypothesis for the 3-jet inclusive channel is also shown (right).
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5.9.4 High-discriminant Region

The 3/2-tag ratios for the high-discriminant region are shown in Figure 5.23. For

the region under 150GeV agreement between data and background MC is good, a

slight excess in data may be seen above this point. The confidence levels for the

background-only hypothesis calculated using the high-likelihood regions of the 3,

4 and 5-jet exclusive and 3-jet inclusive channels are shown in Figure 5.24. As

expected from the slight excess observed in the 3/2 tag ratio, the confidence limit

at high masses deviates from the 50% expectation.

Figure 5.23: The 3/2-tag ratios for the high-discriminant regions, for the NN branch 3-jet channel
and likelihood with 3,4 and 5-jets. The blue points are calculatedin each mass bin using MC and
the black points are from data. The blue and black lines are polynomial fits to the points in
MC and data. The filled purple histogram shows the size of the bbb component in MC (for the

likelihood case only).
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Figure 5.24: The confidence level for the background-only hypothesis in the high-likelihood region
for the 3-jet inclusive (top left), 3, 4 and 5-jet exclusive channels (top right, bottom left and bottom

right respectively).



5.10 Conclusions 188

5.9.4.1 Limits on the Signal Cross-section and Tree Level tan β

Table 5.9 gives the expected and observed limits on the cross-section andtan β as well

as the confidence level for the background-only hypothesis and the significance of

any deviation from this hypothesis. The 95% confidence limits for the cross-section

and tanβ are also shown in Figure 5.25.

Again a small excess of events is seen for the higher masses and as a result

the observed limit is not as strict as expected. The excess of events is consistent

with mA ∼ 180 GeV and so the value of 1 − CLb is low for this mass point. The

statistical significance of this excess should be reduced by a “look elsewhere” factor

since looking for an excess in multiple bins gives an enhanced probability of seeing

a significant fluctuation in at least one bin. This factor can be approximated by

considering the number of statistically independent mass bins given by the range

over twice the typical mass resolution, (220−90)/2×20 ≈ 3 [82]. Scaling up 1−CLb

by this number allows the excess significance to be recalculated taking into account

the probability of finding a fluctuation in at least one independent bin. The rescaled

significance for the most significant excess is 1.7σ, as given in Table 5.9.

5.9.4.2 Limits on tanβ in the Standard SUSY Scenarios

Figure 5.26 shows the limits on tan β set in the standard SUSY scenarios. The value

of µ has a relatively large effect on the limit compared to the other parameters and

so two limits for two possible values of µ are shown for the no mixing scenario, with

µ = ±200. The mh max scenario with µ > 0 is the most unfavourable possibility

and does not produce limits less than tanβ = 200. Thus for the mh max scenario

only the limit for µ < 0 is shown. Figure 5.27 compares these limits with the limits

from LEP for the equivalent scenarios.

5.10 Conclusions

This Chapter has presented two generations of analysis in the SUSY Higgs hb chan-

nel. The preliminary result was the first time the high efficiency NN b-tagging

described in Chapter 4 had been used in an analysis. The result, presented at

ICHEP 06, gave the world’s best limit on this process.

Difficulties with the background model following the preliminary result, due in

part to changes in the background composition resulting from the NN b-tagger’s

improved performance, led to the introduction of a new analysis method. The final

result has been approved by the DØ collaboration and submitted for publication[27].
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Higgs boson σ × BR (pb) σ × BR (pb) tan β tanβ 1 − CLb signif.

Mass Exp. Obs. Exp. Obs.

90 GeV/c2 170+72
−52 184 76+14

−12 79 39 % 0.3σ

100 GeV/c2 117+48
−35 128 78+14

−12 81 38 % 0.3σ

110 GeV/c2 71+29
−20 69 74+13

−11 73 52 % -0.1σ

120 GeV/c2 41+18
−9 34 68+13

−8 62 73 % -0.6σ

130 GeV/c2 28+12
−7 24 66+13

−9 62 70 % -0.5σ

140 GeV/c2 25+11
−6 22 74+14

−10 71 60 % -0.3σ

150 GeV/c2 21+9
−6 26 80+16

−12 89 28 % 0.6σ

160 GeV/c2 17+8
−4 26 84+18

−13 104 12 % 1.1σ

170 GeV/c2 14+6
−3 24 90+19

−13 118 6.4 % 1.5σ

180 GeV/c2 13+5
−4 23 99+19

−17 133 4.4 % 1.7σ

190 GeV/c2 11+4
−3 19 105+20

−19 138 6.1 % 1.5σ

200 GeV/c2 9+4
−3 17 112+24

−21 149 7 % 1.5σ

210 GeV/c2 8+3
−2 13 120+25

−20 152 10 % 1.2σ

220 GeV/c2 7+3
−2 12 127+27

−21 162 12 % 1.2σ

Table 5.9: Table summarising results, giving the expected and observed limits on tan β assuming
tree level enhancement, the expected and observed limits on cross-section times branching ratio,
the confidence level for the background-only hypothesis and the significance of any observed excess.

The result is comparable, if not slightly better than, the CDF result in the same

channel, despite the CDF result using twice as much integrated luminosity.
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Figure 5.25: The 95% confidence level exclusion limit for: the (mA, tanβ) plane assuming tree
level cross-section enhancement (top) and the cross-section for the hb(b) → bbb(b) process (bottom).
The dotted lines are the expected limits given the background-only hypothesis with ±1 and 2σ

bands around the expectation. The observed limits are given by the red curves.
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Figure 5.26: The 95% confidence level exclusion limit for: the mh max scenario with µ < 0 (top),
the no mixing scenario with µ < 0 (middle) and the no mixing scenario with µ > 0 (bottom). The
dotted lines are the expected limits given the background-only hypothesis with ±1 and 2σ bands

around the expectation. The observed limits are given by the red curves.
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Figure 5.27: The 95% CL exclusion limits for the SUSY scenarios from the present analysis and
the equivalent limits from LEP [23]. Below ∼ 92 GeV, and in some scenarios in a limited region
around 115 GeV, all values of tanβ are excluded by LEP. At other values of mA LEP can only

exclude low values of tanβ. The results presented here exclude high values of tan β.
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Chapter 6

Conclusions and Outlook

6.1 Conclusions

Both the DØ detector and the Tevatron are performing well. Data taking efficiency

at DØ is nearly 90% close to the maximum workable efficiency for a detector at a

hadron collider. The Tevatron has achieved record breaking instantaneous luminosi-

ties and is performing in line with its revised design specifications. By the end of

Run II DØ is on course to have collected ∼ 8fb−1 of data.

A proven explanation of the origin of mass is the most significant remaining un-

known in the Standard Model. The Higgs mechanism is the most popular theory to

provide this explanation. The discovery of the Higgs boson, and thus the confirma-

tion of the existence of the Higgs mechanism within the Standard Model, is one of

the most important current goals of the global particle physics community.

Several problems with a universe governed only by the Standard Model may be

solved by the introduction of new physics. One effective extension to the Standard

Model is Supersymmetry. Supersymmetry allows the ‘hierarchy’ and ‘fine tuning’

problems to be solved, and the force couplings to converge at a single grand unifi-

cation scale. The simplest model of Supersymmetry introduces an additional Higgs

doublet resulting in five physical Higgs bosons. Three of these bosons are neutral

and have an enhanced coupling to the down-type fermions. In this Minimal Su-

persymmetric Model the production of a Higgs in association with a b-quark can

become the dominant production mode and a decay to two b-quarks the dominant

decay mode for all masses. Searches for an excess of events with three or more b-jets

can therefore constrain the parameter space of this type of Supersymmetric model,

if not make an actual discovery. The efficient identification of b-quarks is essential to

distinguish this signal from the large light-jet QCD background, both in the trigger
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and offline. High quality b-tagging is also important for a large number of other

analyses, in particular the low mass SM Higgs search and top analyses.

Given the high rate of unremarkable inelastic collisions triggering is essential at

a hadron collider. The Level-3 trigger is the highest level of trigger performing the

final, strictest selection of events to be recorded. Level-3 is software based forming

a reconstruction of physics objects; tracking and b-tagging are particularly power-

ful. As the instantaneous luminosity increases Level-3 tools must be continually

improved to match the changing detector conditions and retain efficiency/rejection.

In parallel new complementary tools are developed to help this process.

Essential maintenance of the Level-3 impact parameter (IP) based b-tagging

tool was carried out. The resolution function was corrected to account for improved

tracking and increased instantaneous luminosity. As instantaneous luminosities in-

creased physics tools which provide inputs to the IP b-tagger were modified to remain

consistent with the constraints of the trigger system. The effect of these changes

on the IP b-tagger performance and the effect of increased instantaneous luminosity

was investigated. The infrastructure was developed to allow the production of a

large b-enhanced data sample for use in trigger studies. The new resolution function

and changes to the input tools allowed the efficiency of the IP-tagger to be main-

tained within the Level-3 time constraint over an order of magnitude increase in

instantaneous luminosity.

An extension to the existing IP b-tagging tool to utilise stereo track information

was developed. The stereo track errors were re-parametrised, the stereo IP resolution

function was measured and the track preselection for the tool was optimised. The

power of this tool is fundamentally limited by the resolution of the stereo tracking,

but the study none-the-less showed for the first time that stereo information can be

used to find b-quarks. It may be possible to make use of the z-IP-tagger output in

a future multivariate Level-3 b-tagger.

A secondary vertex based b-tagging tool was co-developed and commissioned for

the Level-3 trigger. The parameters used in the algorithm, to select tracks and

vertices, were optimised to maximise peak efficiency. A set of operating points

was defined for the tool and offered for use in the trigger for the first time. The

optimised tool achieved a ∼ 90% efficiency on an offline double-tagged data sample

with a ∼ 30% fake rate. This is somewhat better than the IP-tagger which has a

fake rate of ∼ 45% for the same efficiency.

Offline b-tagging can again offer powerful background rejection. The offline NN b-

tagger was retrained to account for changes to the tracking system and component

algorithms. The NN performance was measured on data and cross-checked with
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closure tests. Appropriate data/MC correction factors were derived. This procedure,

known as certification, was reviewed and approved by the DØ collaboration.

For this certification twice as many NN operating points were made available

as previously. As well as offering more choice to analysers, this extension of the

certification will help suggest if a move to a ‘continuous operating point’ is of value.

The parameter α, in the system eight equations, was measured for the first time.

Replacing the previous assigned value of α with a measured value allowed a reduction

in the errors on the tag rates. The certification technique was improved to remove

the effect of trigger biases in the data samples. An additional error was included in

the fake rate to account for different analysis groups’ definitions of ‘good’ jets. This

work produced the first version of the NN which was widely adopted throughout DØ.

Compared to the individual b-tagging tools previously in use across the Collaboration

the NN offers an increase in efficiency of ∼ 30% for fixed fake rate, or a reduction

in fake rate to a third at fixed efficiency. The high performance of the NN was

instrumental in the single top discovery. The NN-tagger version developed and

certified in this thesis has been, and will be, used for all Run IIa DØ results.

Two iterations of the MSSM Higgs search in the bφ → bbb channel have been

described, each using ∼ 1.0fb−1 of data. A critical component of this analysis is the

b-tagging at both the trigger level and offline. The earlier version was presented as

a preliminary result at ICHEP 2006, giving the then world’s best limits on tan β.

This was also the first use of NN b-tagging in an analysis at a hadron collider.

The final result, which has been submitted for publication [27], benefits from an

improved description of the background composition, improved signal simulation,

a multivariate discriminant, multiple candidate jet pairs and a more robust limit

setting technique.

6.2 Outlook

The results from the IP, z-IP and SV based Level-3 b-tagging tools can be combined

either directly requiring events to pass multiple cuts or by defining a pass volume in

the 3-dimensional space described by the tool outputs. The maximum performance

would be achieved by training a NN or using an equivalent multivariate technique.

Layer zero, the additional layer of silicon added to the SMT after Run IIa, has

been installed and integrated into the Level-3 tracking algorithm. A new resolu-

tion function has been derived using the tools developed in this thesis to allow the

IP-based tagger to best exploit this upgrade. With the increased instantaneous lu-

minosity of Run IIb the b-tagging trigger tools are even more important in keeping



6.2 Outlook 196

the Higgs, single top and tt trigger rates within the constraints of the data recording

system.

The certification of the NN tagger for Run IIb is in progress using the existing

certification framework. Parametrising the TRFs with respect to the number of

PVs, which is correlated with the instantaneous luminosity, has been suggested as

a potential improvement. Expansion of the TRFs in additional parameters should

improve the closure tests and therefore reduce the TRF errors. Due to the problem

of data/MC differences in the hadron environment extending the NN tagger certi-

fication to allow a continuous choice of operating point is non-trivial, however such

a development could offer improved background rejection. With a b-tagger certified

at a continuous range of operating points combined event tags can be used and

should prove more powerful than individual jet tags. Since the performance of the

constituent tools vary with jet pT the possibility of including the jet pT in the NN is

also under investigation. A second NN-tagger to separate b- and c-jets is currently

under development, using the same inputs as the existing NN. Another NN b-tagger

is under development for muonic jets to combine the information from the lifetime

and semi leptonic b-taggers.

The current analysis method has been approved by the Collaboration and will be

rapidly applied to a dataset of ∼ 3fb−1, this result is expected by the end of Summer

2008. Continued improvements to the background model and consequently reduced

systematic errors, and the replacement of the likelihood with the NN developed

here will further improve the sensitivity. Including events collected with alternative

triggers should improve the signal efficiency. The strictest limits on the MSSM

parameter space will be set using the combination of the analysis described here

with the bφ → bττ and φ → ττ channels which have comparable sensitivities to

the bφ → bbb channel. Ultimately a further factor of two will be gained by the

combination of the DØ and CDF results to give the overall Tevatron limits. By the

end of Run IIb both experiments are expected to have recorded ∼ 8fb−1 of data and

we expect to be able to exclude tanβ values down to ∼ 20, if not make a discovery.
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