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Abstract

An upper limit has been extracted, at the 90% C.L, for the rare charmless hadronic

B meson decay B± → a0(980)±π0, where a0(980)± → ηπ± and η → γγ or η →
π+π−π0. The analysis was based on a sample of approximately 340.7 fb−1 of data

taken at the Υ (4S) resonance with the BABAR detector at the PEP-II e+e− collider

at SLAC from May 1999 to August 2006. The sample contains (379.9 ± 4.2) million

BB pairs.

The limit, extracted using an unbinned multivariate extended maximum likelihood

fit to the data, is

B(B± → a0(980)±π0) < 2.0 × 10−6 (90% C.L.).

The result does not exclude any of the current theories for the structure of scalar

mesons.
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Chapter 1

Theoretical Background

1.1 Preamble

The analysis to be presented in this thesis is intended to shed light on a curiosity of

our current physical laws. The so-called ‘Standard Model’ (SM) of particle physics,

one of the most rigorously tested theories in history, predicts a great number of

phenomena which have been observed throughout the years in laboratories the world

over. However, there are a significant number of phenomena which it permits yet

which have never been seen. The search for the signatures of these is as significant,

if not more so, than the search for phenomena which actually violate the Standard

Model.

Perhaps the most well known area of the Standard Model which has yet to be

verified experimentally is the Higgs mechanism [1], through which particles attain

the property we interpret as mass. A great deal of effort is currently under way to

establish the true physical nature of this mechanism, or indeed whether it exists at

all. Failure in this attempt will cast significant doubt over current formulations of

the Standard Model.

While not so Earth shattering, the phenomenon under consideration in this thesis

is a similarly curious anomaly in the otherwise impressive catalogue of experimental
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verifications of the Standard Model. We shall search for a potential departure from

the naive quark model of hadrons. This holds that the family of particles known

as mesons are made up of only two valence quarks (actually one quark and one

antiquark or some superposition of such pairs). According to the Standard Model,

departures from this structure are perfectly permissible, yet little evidence for such

states has ever been found. The a0 scalar meson, upon which this thesis is based,

is but one candidate in a list of particles which may display some kind of novel

structure. Verifying the true nature of these particles will provide an important test

of the predictive potential of our established physical laws.

This chapter will begin by briefly reviewing the Standard Model of particle physics

with specific reference to the phenomenon of CP violation, which is what the BABAR

experiment was built to find in the decays of the B meson. The bulk of the chapter

will concentrate on the mode under analysis in this thesis, B+ → a+
0 π

0 (the charge

conjugate mode is implicitly included throughout). This will begin with a review of

the scalar meson sector of the Standard Model. The presence of scalar mesons in

charmless decays of the B meson will be discussed, as well as how looking for these

processes can help improve our knowledge of scalar meson structure.

1.2 The Standard Model of Particle Physics

The Standard Model describes the properties and interactions of particles governed

by three of the four known forces of nature: the strong nuclear, weak nuclear and

electromagnetic forces. The fourth force, gravity, has yet to be successfully incor-

porated into the model, but is of negligible effect on the extremely small distance

scales under consideration in particle physics.

The Standard Model is based on relativistic quantum field theory in the Lagrangian

formalism. Its development was based on the search for symmetries in nature. The

importance of symmetry considerations in field theory arose originally from the

work of Nöther [2], who theorised that with every symmetry there is an associated
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conservation law. Therefore, by imposing the symmetry on a field, the underlying

law can be discovered.

Each force and the particles which feel it are represented by a component in the La-

grangian, as shown in equation 1.1. The strong force is regulated by Quantum Chro-

modynamics (QCD) [3], based on the SU(3) symmetry group. The electromagnetic

and weak forces are regulated by the Glashow-Weinberg-Salam (GWS) model [4] [5]

[6], an attempt to unify the forces based on the combined SU(2)L × U(1)Y symme-

try groups. The subscript L in the equation represents the fact that the weak force

couples to left handed fermions and Y denotes weak hypercharge. The strong force

couples to quark colour, denoted by the subscript C. In equation 1.1, the Lagrangian

for the Higgs field [7] is assumed to be incorporated into that for the GWS model.

The component representing the known fermions, Lfermions is composed of a sum of

independent Dirac field Lagrangians, as will be described in the next section.

LSM = Lfermions + LSU(3)C
+ LSU(2)L×U(1)Y

. (1.1)

1.2.1 Building the SM using Gauge Symmetry

The symmetry upon which the construction of the SM is based is that which occurs

in so-called ‘gauge’ transformations, which we shall discuss using the example U(1)

symmetry. For a field φ there are two such transformations. Firstly there is a ‘global’

transformation φ → eiαφ, applied simultaneously to all points in space-time for a

continuous real variable α. The second type of transformation is the ‘local’ case,

where α is dependent on the position in space-time, xµ. Thus the transformation is

described by φ→ eiα(xµ)φ.

In the case of the SM it is the symmetry requirement that the Lagrangian be invari-

ant under such local gauge transformations which yields significant results. Consider

the example of Quantum Electrodynamics (QED), which is based on a free spinor

(spin-1
2
) field ψ of mass m. The dynamics of this field are encoded in the Lagrangian

derived from the Dirac field equation,
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L = iψγµ∂µψ −mψψ. (1.2)

This Lagrangian is trivially invariant under a global gauge transformation. However,

under a local transformation it becomes

L = iψγµ∂µψ −mψψ − ψγµψ∂µα, (1.3)

where the extra term in ∂µα violates invariance. In order to restore the symmetry

the derivatives in the Lagrangian are replaced with a so-called ‘covariant’ derivative,

Dµ, chosen such that invariance is satisfied.

Dµ = ∂µ − iqAµ, (1.4)

where Aµ is a new vector ‘gauge’ field which is required to transform such that the

offending ∂µα term is cancelled:

Aµ → Aµ +
1

q
∂µα. (1.5)

The introduction of the covariant derivative introduces a term into the Lagrangian

which describes the interaction between the spinor and Aµ fields, the latter of which

we will interpret as the photon field. The modified Lagrangian is therefore

L = ψ(iγµ∂µ −m)ψ + qψγµAµψ. (1.6)

Finally, in order to interpret Aµ as the photon field an extra term must be introduced

to account for the freely propagating photon. We can achieve this by considering

the Lagrangian for a free vector (spin-1) field,
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L = −1

4
F µνFµν +

1

2
m2

AA
νAν, (1.7)

where Fµν = ∂µAν − ∂νAµ and mA is the mass of the gauge boson. The second

term in this Lagrangian is not invariant under a local gauge transformation, thus we

require the boson to be massless for this to work. This is physically consistent since

the gauge boson for the field we are considering, the photon, is indeed massless.

From this we can finally construct the complete Lagrangian for QED,

LQED = ψ(iγµ∂µ −m)ψ + qψγµAµψ − 1

4
F µνFµν . (1.8)

Thus it can be seen that by invoking local gauge invariance the critical interaction

term behind QED can be derived. Following this procedure for the relevant symme-

try groups is fundamental to the construction of the Standard Model Lagrangian.

1.2.2 GWS Theory and the Higgs Mechanism

As mentioned previously, the GWS model describes the interactions mediated by

the electromagnetic and weak nuclear forces. The model is constructed once again

from Lagrangians describing fermionic fields (quarks and leptons), but this time

invoking the symmetries of both the U(1)Y and SU(2)L groups. U(1)Y corresponds

to both right and left handed quark and lepton flavour states of weak hypercharge.

These exist for the three generations in the SM. This is supplemented with SU(2)L

to describe the associated left handed quark and lepton doublets of weak isospin

(see Table 1.1). Note that the neutrino is only included in the left handed doublet.

There are no right handed neutrinos in the SM.

These symmetry considerations result in two covariant derivatives, in which are

encoded the four gauge bosons of electroweak theory. For the doublets we have,

Dµ
dbl = ∂µ − i

g

2
σ ·Wµ − g′

2
Y Bµ (1.9)
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Table 1.1: The three fermion generations of the Standard Model and their associated
electroweak quantum numbers. Note that a ′ superscript denotes a weak eigenstate rather
than one of mass. IW represents weak isospin (which are the eigenvalues of the SU(2)
generators σ). Y represents weak hypercharge and Q the electric charge.

Fermion Generation Quantum Numbers

1 2 3 IW IW
3 Y Q

(

νe

e

)

L

(

νµ

µ

)

L

(

ντ

τ

)

L

+1/2
+1/2
−1/2

−1
0
−1

eR µR τR 0 0 −2 −1

(

u
d′

)

L

(

c
s′

)

L

(

t
b′

)

L

+1/2
+1/2
−1/2

∓1/3
+2/3
−1/3

uR cR tR 0 0 +4/3 +2/3

d′R s′R b′R 0 0 −2/3 −1/3

and for the singlets,

Dµ
sgl = ∂µ − g′

2
Y Bµ. (1.10)

The SU(2)L group provides the three W µ fields, two charged and one neutral. A

further neutral field, Bµ, is derived from the U(1) group. It is these fields from

which it will eventually be possible to derive the charged W bosons, the Z0 boson

and the photon. The fields couple to fermions with strengths g and g ′ and according

to quantum numbers derived from weak hypercharge Y and the eigenvalues IW of

the SU(2) generators σ, which correspond to weak isospin. The electric charge can

then be expressed as Q = IW
3 + Y/2.

So far so good; however, there is a problem. In order to maintain gauge symmetry

all four of the gauge bosons derived above must be massless, in the same way as

was required when looking at the Lagrangian for QED earlier. Now, the photon is

indeed massless, but the W± and Z0 bosons are not [8]. In order to circumvent this
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problem the SM uses a form of spontaneous symmetry breaking (SSB) via what is

known as the Higgs mechanism. SSB occurs when a system moves from a symmetric

but unstable vacuum state into one of a number of degenerate states which are stable

but, in doing so, breaks the symmetry. This is achieved in the Higgs mechanism by

introducing a complex scalar field doublet,

φ(x) =

(

φ+(x)
φ0(x)

)

. (1.11)

This doublet is assigned weak hypercharge Y = 1, thus requiring that the component

fields have charges +1 and 0 as denoted by their superscripts.

The complex field is then required to obey a potential V (φ) with a shape most

closely analogous to the bottom of a wine bottle.

V (φ) = µ2φ†(x)φ(x) + λ
[

φ†(x)φ(x)
]2
, (1.12)

where the desired shape is achieved by requiring that µ2 be negative and λ positive.

The Lagrangian component for this field is built around the same symmetry consid-

erations used for the left handed quark flavour doublets, coupling via the terms set

out in the associated covariant derivative,

LHiggs =

∣

∣

∣

∣

(∂µ − i
g

2
σ · Wµ − g′

2
Y Bµ)φ

∣

∣

∣

∣

2

− V (φ). (1.13)

The ‘wine bottle’ shape has an unstable minimum at φ = 0 and real valued de-

generate minima also exist at φ = ν/
√

2, for all values of the phase of φ, with

ν =
√

−µ2/λ. For our purposes we arbitrarily require these minima to correspond

to the vacuum expectation values for the two components of the field as follows:

〈0|φ+(x)|0〉 = 0, 〈0|φ0(x)|0〉 = ν/
√

2. (1.14)
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Now, due to the perturbative nature of quantum field theory, any field may be

considered as small fluctuations about the vacuum state. We enact this principle

here by describing our complex scalar field in terms of four field perturbations about

the vacuum.

φ+(x) = φ+
1 (x) + iφ+

2 (x),

φ0(x) = ν/
√

2 + φ0
1(x) + iφ0

2(x).

When one propagates this parameterisation of the field through the Higgs La-

grangian the components φ+
1 (x), φ+

2 (x) and φ0
2(x) are found to be represented by

Klein-Gordon type kinetic terms with no associated mass. These massless parti-

cles are known as Goldstone Bosons. The component φ0
1(x) performs differently,

yielding a Klein-Gordon term corresponding to a massive scalar field and a massive

boson (mH =
√

2λν2). These are the Higgs boson and associated field. Terms also

appear which finally allow us to describe the four electroweak gauge bosons. The

charged W µ fields can be used in a linear superposition to describe the charged W

bosons. The neutral W µ
3 component mixes with the neutral Bµ field to describe the

Z0 boson and the photon. The three weak bosons now have associated mass terms

corresponding to MW = gν
2

and MZ = ν
2

√

g2 + g′2. The photon remains massless as

required.

Finally, by adopting a suitable gauge the massless Goldstone bosons can be trans-

formed away, imbuing each of the three massive electroweak gauge bosons with a

longitudinal polarisation state. At the end of this process our scalar field can be

represented as

φ(x) =
1√
2

(

0
ν + h(x)

)

, (1.15)

where we now represent φ0
1 as the Higgs scalar h(x).
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1.2.3 The Higgs Model as the Progenitor of Quark Mass

and Weak Mixing

The Higgs mechanism can be used to impart mass to the quarks and leptons in

the Standard Model. Once again, the original theory denies these particles mass in

order to preserve local gauge invariance. The Higgs field is employed to this end

through the Lagrangian term known as the Yukawa coupling (shown here for quarks

only),

LY ukawa =

3
∑

i,j=1

(Γu
ijχiLφujR + Γd

ijχiLφdjR + h.c.), (1.16)

where the Γ matrices are arbitrary couplings, χL refer to the left handed quark

flavour doublets and uR and dR refer to the up-type and down-type right handed

quark flavour singlets respectively. The Hermitian conjugate, denoted by ‘h.c.’, is

implicitly included. By substituting in our scalar field, φ, we recover terms of the

form

Γu
ij

(

ν√
2
uiLdjR

)

= Mu
ijuiLdjR, (1.17)

where Mu
ij is the fermionic mass matrix. A similar procedure will yield M d

ij. These

can be diagonalised to yield real observables via the introduction of the unitary

matrices V u
L , V u

R , V d
L and V d

R . Thus we have

V u
LM

uV u
R = Mu

diag; V
d
LM

dV d
R = Md

diag, (1.18)

with the mass eigenstates of the quarks given by

um
L(R) = V m

L(R)uL(R); d
m
L(R) = V m

L(R)dL(R). (1.19)
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Now that the quarks have mass via symmetry breaking, it is possible to re-express

the flavour component of the SM Lagrangian in terms of the mass eigenstates. For

neutral currents this has no effect but for charged currents Lcc we have (for the

example of the positively charged case)

Lcc+ = − g√
2
um

i LV
u
ikLγ

µW+
µ V

d†
kjLd

m
jL, (1.20)

where the matrix product V u
ikLV

d†
kjL = VCKM , the Cabibbo-Kobayashi-Maskawa

quark mixing matrix [9] [10]. Thus we see that up-type quarks couple to a lin-

ear superposition of down-type quarks (or vice-versa)

LCC+ =
(

u c t
) −g√

2
γµW+

µ VCKM





d
s
b



 , (1.21)

where the CKM matrix VCKM can be written as

VCKM =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 . (1.22)

Since the CKM matrix is a 3×3 unitary matrix it has 18 real values with 9 con-

straints, it can therefore be expressed using 9 parameters. However, the 5 relative

phases of the 6 quark wavefunctions are unobservable, so there are only 4 physically

meaningful parameters. With 3 dimensions, one of these must be a phase. The CKM

matrix can be expressed in different ways but a commonly used parameterisation is

that developed by Wolfenstein [11]

VCKM =





1 − λ2/2 λ Aλ3(ρ− iη)
−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1



+ O(λ4). (1.23)
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In this formulation the real parameters A, ρ and η are of order unity and λ ∼ 0.22.

It is the complex component represented by η being non-zero which makes the phe-

nomenon of CP violation possible in the weak decays of some mesons [12]. This will

be discussed in more detail in the next section. The aim of the BABAR experiment is

to constrain the elements of this matrix and thus estimate the amount of CP viola-

tion present in the Standard Model. The experiment focuses on finding evidence of

CP violation in the decays and mixing of charged and neutral B mesons. Through

the work of BABAR and other experiments the elements of the CKM matrix are

being measured with increasing precision. The current world average values of the

magnitudes of the CKM matrix elements are shown below to their 90% confidence

level bounds [8].

VCKM =





0.9739 to 0.9751 0.221 to 0.227 0.0029 to 0.0045
0.221 to 0.227 0.9730 to 0.9744 0.039 to 0.044
0.0048 to 0.014 0.037 to 0.043 0.9990 to 0.9992



 . (1.24)

1.3 CP Violation

There exist three discrete symmetries which can be associated with any Lorentz

invariant local field theory in the Lagrangian formalism. The charge conjugation

operator ‘C’ converts a particle into its antiparticle. The parity operator ‘P ’ is

a space-time operation corresponding to P : ~x → −~x and P : t → t. Finally

the time reversal operator ‘T ’ corresponds to t → −t. The combined operation

CPT can be proven to be a symmetry of all such fields [13]. However, violations

of the individual C and P operations have been observed [14]. Violation of the

combined CP operation, first observed in the neutral kaon system in 1964 by Cronin

and Fitch [15], is one of the processes postulated to explain the observed matter-

antimatter asymmetry in the universe [16]. The other contributing processes are C

violation, baryon number violation and a departure from thermal equilibrium in the

early universe.
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CP violation can arise in three different ways [12]. ‘Direct’ CP violation occurs when

the amplitude for a given decay and for its CP conjugate are not equal. ‘Indirect’

CP violation occurs in the mixing of flavour eigenstates in some neutral particles.

The third kind of CP violation occurs in the quantum mechanical interference of

the first two processes. Direct CP violation is theoretically possible in the mode

under study in this analysis, although the statistical power available renders any

significant sensitivity to it extremely unlikely.

1.4 Measuring CP Violation B Meson Decays

The potential for experimental investigation of CP violation in the B meson system

arises from the unitarity of the CKM matrix. By requiring unitarity it is possible

to derive nine relations, six of which can be represented as triangles in the complex

plane. The relation of relevance to B mesons is given by

VudV
∗
ub = VcdV

∗
cb + VtdV

∗
tb = 0. (1.25)

This relation can be expressed as a triangle by defining the following three angles:

α =

[

− VtdV
∗
tb

VudV
∗
ub

]

, β =

[

−VcdV
∗
cb

VtdV
∗
tb

]

, γ =

[

−VudV
∗
ub

VcdV
∗
cb

]

. (1.26)

Due to the sizes of the CKM matrix elements involved the angles of the triangle are

expected to be close to unity and hence the B meson system is expected to exhibit

large amounts of CP violation. The triangle is shown pictorially in Figure 1.1.

The three angles can be measured independently and thus we can ‘over-constrain’

the unitarity properties of the triangle. The primary physics goal of the BABAR

experiment is to measure angle β. This can be done by measuring the quantity

sin2β through analysis of the decays of neutral B mesons to final states involving

charmonium (a cc bound state) and a neutral kaon. These modes provide a clean
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Figure 1.1: The unitarity triangle for the B meson system.

experimental signature with low theoretical uncertainties due to the small contribu-

tion from higher order ‘penguin’ processes, which will be discussed in more detail

later. These modes provide an example of the third kind of CP violation as described

above, i.e. that occurring in the interference between mixing and decay processes.

For these decays B0 and B0 mesons can mix and yet decay to the same final state.

Since the decay amplitudes provide no phase contribution the relative phase of e−2iβ,

caused by the presence of CKM element Vtd in the mixing process, is experimentally

measurable. In practice the quantity measured is

a(t) ' f sin 2β sin(∆m∆t), (1.27)

where the analysis seeks to quantify this as a function of the the lifetime difference

between the B0 and B0 mesons ∆t. In this equation ∆m, the frequency of the

oscillation, corresponds to the mass difference between the heavy and light mass

eigenstates of the B meson. The parameter f is the CP eigenstate of the final state

which is +1 for J/ψK0
L case and −1 for the J/ψK0

S case. At BABAR this quantity is

measured using a ‘time-dependent’ analysis, facilitated by the fact that theB0B0 pair

produced by the decay of the Υ (4S) is bound by angular momentum conservation to

be odd under interchange. Hence neither the B0 nor the B0 can oscillate until the

other meson in the pair has decayed. BABAR takes advantage of this by identifying
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it a B0 or B0 from the charge of certain decay products. By doing this it is then

possible to ‘tag’ the flavour of the second meson as being the opposite to whatever

the first is identified as being. The highest rate for this procedure comes from

the identification of high momentum charged leptons, although the cascade decay

b → c → s is also used. In this second case the charge of final state kaons is used

to identify the original meson. Finally, precise charged track information is used to

reconstruct the vertex (origin) of the tracks and hence the position of the B meson.

After the decay of the first B meson, the second in the pair may then oscillate

before decaying into the aforementioned J/ψK0
S/L final state, which is the same

irrespective of the meson flavour. This decay tree is fully reconstructed and precise

vertex information also extracted. With vertex information for both B mesons it

is then possible to measure the distance between the positions at which the two

decayed in the z axis, labelled ∆z. This is made easier by the Lorentz boost applied

to the system in the laborarory frame. From the value of ∆z it is then possible to

calculate the difference ∆t in the lifetimes of the two mesons, ∆t ' ∆z/βγc.

By comparing the value of ∆t obtained in the case where the second meson is tagged

as a B0 alongside the value in the B0 case it is possible to calculate and plot the

difference in the relative numbers of both mesons for a given ∆t value. This results in

a sinusoidal distribution corresponding to a(t) above, a fit to which yields the values

of ∆m and sin 2β. Analyses such as the one described here have been performed by

both BABAR and Belle collaborations and the current world average value for sin 2β

is 0.687 ± 0.032 [8].

1.5 Scalar Mesons and Analysis Motivation

This thesis deals with a B decay involving the a0(980) meson, hereafter referred to

as the a0 unless otherwise stated. The a0 forms part of a family of particles called

‘scalar’ mesons. Such particles have zero total angular momentum, J = L + S,

a vector combination of spin (S = 1) and orbital components (L = 1). They
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also have ‘even’ parity, given by P = −(−1)L = 1, therefore P |S〉 = +|S〉 for

a scalar meson state S. This is as opposed to a ‘pseudoscalar’ meson, such as a

pion, which has zero angular momentum but ‘odd’ parity, i.e. P |PS〉 = −|PS〉 for a

pseudoscalar state PS. The state also has even charge-conjugation properties, given

by C = −(−1)L+S = 1, therefore in terms of JPC the a0 is commonly represented

by 0++ [7].

Scalar mesons are interesting as there is evidence [17] that they could demonstrate

structure outside the traditional two-quark model for mesons. However, scalar

mesons are currently poorly understood with few experiments yielding significant

insight about their structure. Scalar mesons within the two-quark model are theo-

rised to form an isospin nonet as shown in Figure 1.2, this is due to the nine possible

qq combinations possible with the three quark flavours, q = u, d, s available in the

low mass regime. The nature, or in some cases mere existence, of some of these

particles, such as the κ or σ, is somewhat controversial [8]. Other members of the

nonet, such as the f0, have received more experimental coverage in recent times [18].

Figure 1.2: The proposed two-quark model scalar meson nonet.

There are a number of other potential structure models for scalar mesons. The

predominant non-standard structure theory for the a0 is that it may contain a large

four-quark component. There are a number of models for such a structure, as



1.6 Production of the a+
0 Scalar Through Decays of the B Meson 46

discussed in [18]. However, the analysis in this thesis is motivated by predictions

based on the model eventually adopted in that paper, where the original ud pair is

joined by an ss pair within the bound state [19]. In the two-quark case we have:

a+
0 = ud, a−0 = du, a0

0 =
1√
2
(uu− dd), (1.28)

whereas for the four-quark case this becomes:

a+
0 = usds, a−0 = dsus, a0

0 =
1√
2
(usus− dsds). (1.29)

Other theories for a0 structure [8] suggest a possible component of KK molecular

admixture, or that there could be a substantial ‘glueball’ component to the state -

i.e. one with no valence quarks. As yet there has been little experimental evidence

to allow any of the available structure theories to be rigorously scrutinised.

Recent theoretical developments [18] suggest that the mode B± → a±0 π
0 may be

a good candidate for investigation. This is because the predicted (albeit model

dependent) branching fractions for the two- and four-quark models differ by an order

of magnitude (as will be discussed later). A measurement of this branching fraction

would therefore provide an effective experimental test of this theory. Unfortunately

the statistics available at BABAR are as yet insufficient to probe down to the level

of such a rare decay. As such this analysis provides verification of the theory only

in the sense that it excludes branching fractions significantly above those which it

predicts.

1.6 Production of the a+
0 Scalar Through Decays

of the B Meson

When considering the decays of the B meson one must consider contributions not

only from the standard electroweak tree diagrams but also from gluonic and elec-

troweak penguin processes. The term ‘penguin’ is used to describe a number of
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second order loop processes facilitating flavour changing neutral currents. The po-

tential diagrams for B meson decays are shown for the example of B → Kπ in

Figure 1.3.

Figure 1.3: The gluonic and electroweak processes contributing to charmless B decays
(examples are for the mode B → Kπ) [20]. Diagram label T denotes the colour-allowed
tree while C indicates the colour-suppressed version. The electroweak annihilation diagram
is labelled A while the P is the gluonic penguin and EP is the gluonic penguin exchange.
The electroweak penguins are denoted by PEW for the colour-allowed case and P C

EW for
the colour-suppressed case with the exchange penguin labelled EP C

EW .

The final state required for the decay mode under study in this thesis requires a

transition from a b quark in the initial state to either a u quark via the colour-

allowed/suppressed tree diagrams (T and C in the diagram respectively) or to a

d quark in the final state through any of the penguin processes. The concept of

colour-suppression arises from the fact that a quark can have one of three possible

colour charges. However, any bound state must be colour neutral. In the colour-

allowed case this is not a problem since the a+
0 production vertex is not internal to

the original qq pair. However, in the colour-suppressed case the quarks produced

from the charged boson must have opposite colour charge to those already present
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in order to form the required colour neutral bound state. Due to this the rate for the

process is suppressed. The final diagram which potentially contributes significantly

to the decay amplitude is the electroweak annihilation diagram, denoted by A above.

The penguin processes for this mode are heavily CKM suppressed since the require-

ment of a b→ d transition means they are dominated by element Vtd in the outgoing

loop vertex. Of the penguin processes the QCD diagram P is expected to dominate

over the electroweak and exchange processes.

In addition to the penguin diagrams we have the potential electroweak tree and

annihilation diagrams. The annihilation process is suppressed due to helicity in the

same way that the muonic channel is favoured over the electron channel in the decay

of a charged pion. The weak force couples to left handed particles and right handed

antiparticles. This decay would produce such a pair. However, the B meson is a spin

zero particle, thus requiring the decay products of the W+ involved in the decay to

have ±1
2

spin components along the axis of their momentum. In the rest frame of

the B their momentum vectors are anti-parallel and thus they must have the same

helicity. This is in conflict with the requirements of the weak force and the diagram

is therefore heavily suppressed.

Due to the large suppression applied to the other contributing diagrams one would

naively expect the dominant contributions to come from the colour-suppressed and

colour-allowed tree diagrams. At the two-quark level the diagrams for these decays

are shown explicitly in Figures 1.4a and 1.4b.

These tree processes are an example of what is known as a ‘charmless’ B decay. This

is because they involve a b → u quark transition, as opposed to b → c. This means

that they are suppressed in the CKM matrix because they involve element Vub rather

than Vcb. The decays are therefore rather rare. The situation is further complicated

by the fact that the supposedly dominant colour-allowed diagram is actually doubly

suppressed by G-parity and vector current conservation concerns [21]. This being

the case, the colour-suppressed diagram dominates and the decay is expected to be



1.6 Production of the a+
0 Scalar Through Decays of the B Meson 49

u

d

b

u u

u

+W

+B 0π

0
+a

(a)

u

ub

u u

d

+W
+B

0
+a

0π

(b)

u
db

u u

u

+W
+B

0π

0
+a

(c)

u
db

u u

u

+W

+B

t,c,u

0π

0
+a

(d)

Figure 1.4: The Feynman diagrams contributing to the process B+ → a+
0 π0. (a) is the

external (colour-allowed) tree, (b) the internal (colour-suppressed) tree, (c) the annihila-
tion process and (d) the gluonic penguin process.

extremely rare, even for a charmless decay. Given the level of suppression, contri-

butions from the annihilation (Figure 1.4c) and dominant gluonic penguin process

(Figure 1.4d) may not be negligible [18]. In order to obtain a prediction for the

branching fraction, with all of these elements in mind, the method of QCD ‘factori-

sation’ is used.
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1.6.1 Signal Mode Predictions from QCD Factorisation

Using QCD factorisation [22] an incalculable matrix element can be expressed as

the product of two effective matrix elements as per equation 1.30. This can be

essentially considered as splitting the process in two with the initial state particle

decaying to one of its products and with the other generated from the vacuum.

〈u1u2|O|B〉 = 〈u1|F1|B〉〈u2|F2|0〉, (1.30)

where u1 and u2 correspond to the final state hadrons and F1,2 are computed from

known quantities such as form factors or branching ratios. For example, in the case

of Figure 1.4(a), u1 would be the π0 meson and u2 would be the a+
0 meson. Non-

perturbative effects are assumed to be negligible due to the large mass of the b quark

and small mass of the a+
0 .

Since there are a number of potential contributions to the decay amplitude it is actu-

ally computed as a combination of matrix element products with the corresponding

CKM matrix elements, masses and effective Wilson coefficients [23] included in the

calculation. The matrix products can themselves be expressed in terms of masses,

form factors (F ) and decay constants (f) [7]. In the two-quark model the contribut-

ing matrix products Xa

bc
for this mode are as follows,

X
a+
0

B+π0 = 〈a+
0 |(du)L|0〉〈π0|(ub)L|B+〉 ∼ fa(m

2
B −m2

π)FB+π0

0 (m2
a), (1.31)

X
π0

u

B+a+
0

= 〈π0|(uu)L|0〉〈a+
0 |(db)L|B+〉 ∼ fπ√

2
(m2

B −m2
a)F

B+π−

0 (m2
π), (1.32)

XB+

a+
0 π0 = 〈a+

0 π
0|(du)L|0〉〈0|(ub)L|B+〉 ∼ fB(m2

a −m2
π)F

a+
0 π0

0 (m2
B), (1.33)

X̃
a+
0

B+π0 = 〈a+
0 |du|0〉〈π0|ub|B+〉 ∼ maf̃a+

0

m2
B −m2

π

mb −md
FB+π0

0 (m2
a), (1.34)

where equation 1.31 corresponds to the colour-allowed tree, equation 1.32 to the

colour-suppressed tree, equation 1.33 to the electroweak annihilation diagram and
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equation 1.34 to the gluonic penguin diagram, as shown in Figure 1.4. The masses

of the participating particles are given by: mB for the B meson, mπ for the pion,

ma for the a+
0 meson, mb for the b quark and md for the d quark.

As can be seen, the amplitude is highly dependent on the various form factors. Ac-

cording to perturbative QCD [24] the form factor should be proportional to 1/q2(n−1)

for the number of valence quarks n in the relevant hadron and momentum transfer q.

This is particularly significant for the annihilation term, which is dependent on the

form factor F
a+
0 π0

0 . In the four quark model this form factor is heavily suppressed and

the annihilation contribution effectively disappears. Hence the four-quark branching

fraction is smaller than the two-quark alternative. The predicted branching fractions

for the two modes are [18]:

6.4 × 10−8 ≤ B(B+ → a+
0 π

0) ≤ 2.4 × 10−7 (1.35)

for the two-quark model and

2 × 10−9 ≤ B(B+ → a+
0 π

0) ≤ 10−8 (1.36)

for the four-quark case.

1.6.2 Scalar Mesons in ηπ±π0 Charmless 3-body Decays

In order to detect decays involving a0 mesons there are a number of final state

options available [8]. By far the dominant decay mode of the a0 itself is a0 → ηπ,

which occurs ' 85% of the time. The rest is largely made up of a0 → KK. Using

the dominant mode it is possible to consider the a0 as a resonance within the final

state of the three-body decay B+ → ηπ+π0. Two a0 resonances exist in this final

state, an a0
0 from the combination of ηπ0 and the a+

0 from the combination of ηπ+.

As mentioned before this analysis is centred around the latter of the two.
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A useful way to describe three-body decays is using a Dalitz phase space plot [25]

(DP). This exploits the fact that the partial width for a three-body decay with

transition amplitude A can be shown to be given by

dΓ =
|A|2

256π2M3
dm2

12dm
2
13, (1.37)

where the subscript indices 1,2,3 indicate the decay daughter in question, M is

the mass of the parent and m2
ab = (pa + pb)

2 for the daughter combinations. The

combinations form the axes of the plot, shown in figure 1.5. The critical point

here is that there is no dependence on phase space in this formulation and if there

were no dependence on the amplitude A, it would give a uniform distribution within

kinematic limits. Therefore any structure in the plot comes directly from the matrix

element.

Figure 1.5: Pictorial representation of a Dalitz plot in which the shaded area represents
the kinematically allowed region. This figure is taken from [8].

If the amplitude is not dependent on either m2
ab the plot is uniformly populated.

However, should a resonant amplitude occur this is normally visible as a highly
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populated linear region across the plot centred on the mass of the resonance. Hence

for a+
0 this would exist at ' 0.96 GeV/c2 in the m2

ηπ+ axis, while a0
0 would appear

at the same point on the m2
ηπ0 axis. Other resonances also exist in the ηπ±π0 DP.

These consist of the ρ(770)+ resonance in π+π0 and the higher mass resonances of

each lower mass state.

Resonances are most commonly described by a relativistic Breit-Wigner amplitude,

for which the probability density takes the form

|A(s)|2 =
m2

0Γ
2

(s−m2
0)

2 + (m0Γ)2
, (1.38)

where s is the square of the centre of mass energy, m0 is the resonance pole and the

characteristic width is given by Γ. For the a0 resonance this is modified slightly to

account for the contribution from a0 → KK, resulting in the Flatté amplitude [26].

The optimal analysis method for three-body decays is to perform a full Dalitz plot

fit to extract amplitudes and phases for all final state resonances, also accounting

for non-resonant contributions, i.e. B → ηπ+π0 with no intermediate resonant

amplitudes in the decay. However, low statistics and large backgrounds, as well as

other complications affecting resolutions and efficiencies across the DP, mean that

such an analysis is not feasible in this case.

As such, we adopt what is known as a ‘quasi two-body’ approach to the analysis.

This involves only selecting events from a narrow band around the resonance peak

and considering any other overlapping resonances as backgrounds. Such overlapping

resonances could potentially interfere quantum mechanically with the signal reso-

nance. However, since their amplitude will be shown to be small relative to that for

signal, the effect is considered to be negligible in this case. This thesis will document

the analysis using the quasi two-body approach including fits to regions in the DP

associated with potentially overlapping backgrounds to estimate their signal region

contribution.
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Chapter 2

The BABAR Detector and the
PEP-II B Factory

2.1 Introduction and Physics Goals

The BABAR experiment [27] [28], located at the Stanford Linear Accelerator Center

(SLAC), is one of two so-called ‘B Factories’ currently in operation, the other being

the BELLE experiment [29] at KEK in Japan. The primary aim of these machines

is to study the decays of B mesons in order to better understand and constrain the

parameters of the CKM matrix. B mesons are produced for BABAR using the PEP-

II storage rings [30] [31], which are filled from the main linear accelerator (linac). A

9.0 GeV electron beam and a 3.1 GeV positron beam are collided to give a centre of

mass energy of 10.58 GeV, the mass of the Υ (4S) resonance, from which BB pairs are

produced. Critical to the design is the asymmetric energy of the collisions, giving

the resulting Υ (4S) a Lorentz boost in the laboratory frame of βγ = 0.56. This

facilitates the time dependent analyses required to observe the CP violation present

in the mixing of neutral B mesons. These analyses are used to constrain the values

of CKM parameter sin2β, which is the primary physics goal of BABAR.

The high luminosity available at PEP-II (designed to run at 3 × 1033 cm−2s−1,

although higher values have actually been achieved) also makes it possible to perform
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precision measurements of the decays of bottom and charm mesons as well as in the

τ lepton sector. BABAR is also sensitive to new states created from combinations

of bottom and charm quarks, as well as to a large number of rare B meson decays

potentially involving new physics beyond the Standard Model. For a more detailed

description of the physics available at BABAR the reader is encouraged to look at

the BABAR physics book [12].

2.2 The PEP-II Storage Rings

2.2.1 Machine Overview

The PEP-II storage rings are located at the eastern end of the Stanford Linear Ac-

celerator, as shown in Figure 2.1. Electron bunches are created using an electron

gun and stored in a damping ring before being accelerated to 9 GeV along approx-

imately one third of the linac. These are then injected into the High Energy Ring

(HER). Positrons are created by colliding higher energy electrons (around 30 GeV)

into a stationary tungsten-rhenium target. The positrons are then recirculated into

a separate damping ring before being accelerated along the linac to 3.1 GeV and

injected into the Low Energy Ring (LER).

Figure 2.1: PEP-II and the Stanford Linear Accelerator.
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2.2.2 Interaction Region (IR)

The PEP-II interaction region (IR) is shown diagrammatically in Figure 2.2. The

LER and HER beams are collided head-on within the BABAR detector using the

dipole magnets designated as B1 in the diagram. The presence of these magnets

within the detector volume has an effect on detector acceptance and background

conditions. Before collision the LER beam is focused using quadrupole magnet QF2

while the HER is focused using quadrupoles QD4 and QD5. Final focusing for both

beams is provided by quadrupole QD1, also partially housed within the detector

volume.

Figure 2.2: A diagram of the PEP-II interaction region near BABAR.
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2.2.3 Performance and Luminosity Projections

Electrons and positrons are currently injected into PEP-II using ‘trickle’ injec-

tion [32], whereby bunches are continuously topped off. This replaced the previous,

less efficient, ‘fill and stop’ method in 2003. The old method allowed bunches to de-

cay over time, after which data taking would have to stopped for 15 minutes or so to

allow refilling. With trickle injection there are no interruptions to data taking, with

the only negative effect being a manageable increase in beam backgrounds. Trickle

injection has led to substantial increases in recorded luminosity and contributed

significantly to PEP-II dramatically outperforming its design specifications to reach

a peak luminosity of 1.2× 1034 cm−2s−1 in mid 2006. The performance gain can be

seen clearly in Figure 2.3.

In all, PEP-II has surpassed expectations by every measure [33]. The aim is to con-

tinue this performance improvement and reach a peak luminosity of 2×1034 cm−2s−1

within the lifetime of the experiment. BABAR is scheduled to continue data taking

until the end of 2008, at which point it is hoped that the total integrated luminosity

collected will reach almost 1 ab−1. Such a large dataset will facilitate extremely

precise measurements of CKM matrix parameters as well as a sensitivity to rare B

decays and new physics never before experimentally accessible.

2.3 Detector Layout and Overview

The BABAR detector is composed of five separate nested subsystems arranged radi-

ally outwards around the beam-pipe. Working outwards from the centre the Sili-

con Vertex Tracker (SVT), Drift Chamber (DCH), Detector of Internally Reflected

Čerenkov light (DIRC) and Electromagnetic Calorimeter (EMC) are subject to a 1.5

T uniform axial magnetic field to enable momentum measurement in the tracking

detectors. The outermost subsystem, the Instrumented Flux Return (IFR) provides

a return path for this field. In order to maximise detector acceptance in the presence
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Figure 2.3: BABAR integrated luminosity up to the end of the 5th run period in August
2006.

of the boost applied to the Υ (4S) system the detector is asymmetric and offset from

the Interaction Point (IP) by 0.37m in the forward direction.

Figures 2.4 and 2.5 show the detector in longitudinal and cross section. BABAR uses

a right-handed Cartesian coordinate system with its origin at the nominal IP. The x

axis points horizontally outward relative to the centre of the PEP-II ring. The y axis

points vertically upward and the z axis points along the beam-pipe in the direction

of the High Energy Ring (electrons). The spherical coordinates in the polar (θ) and
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azimuthal (φ) directions are defined relative to the Cartesian basis.
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2.4 Silicon Vertex Tracker (SVT)

2.4.1 Physics Goals

The SVT is designed to provide precise z vertex position measurements for the

decays of neutral B mesons. This information is vital in performing the time-
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dependent CP asymmetry analyses which are the core physics goal for BABAR. Due

to the Lorentz boost given to the Υ (4S) system, the mean B vertex separation is

expected to be ∼250 µm. In order to perform a time-dependent analysis a vertex

separation resolution of less than 50% of this value is desirable. In order to achieve

this a single vertex resolution of better than 80 µm is required. This is the SVT’s

primary design goal.

In order to reconstruct secondary decay vertices in important physics channels,

such as the decays of D mesons and τ leptons, a requirement is also placed on the

resolution in the x− y plane. An example would be the decay B0 → D+D−, where

the mean D vertex separation is ∼275 µm. Once again a vertex separation resolution

of 50% of this is desirable. In order to achieve this the x − y plane resolution is

required to be better than 100 µm.

A number of other performance requirements are placed on the SVT in order to

complement the work of other sub-systems. It is the primary source of tracking for

charged particles with transverse momentum pT < 120 MeV/c, which are not reliably

measured by the DCH. It is important that these tracks are well measured in order

to pick up the decay products of important physics processes such as D∗ → Dπ,

which produces a slow pion. The SVT is required to deliver a tracking efficiency

of better than 70% for such particles. SVT information is also important in max-

imising Čerenkov angle resolution in the DIRC for high pT tracks. The system

contributes further to particle identification (PID) by measuring the energy loss per

unit pathlength (dE/dx) for tracks with momenta < 700 MeV/c.

2.4.2 Design and Layout

The design of the SVT is constrained by a number of spatial and environmental

factors. Firstly the layout of the BABAR interaction region limits the possible accep-

tance of the system. Secondly, the amount of material through which tracks pass is

also limited in order to reduce multiple scattering and bremsstrahlung. Finally the
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detector needs to be radiation hard, up to an estimated total dose of 2 MRad over

the lifetime of the experiment, with an instantaneous maximum of 1 Rad/ms.

The SVT was therefore designed to be composed of five layers of double-sided silicon

strip sensors, divided into modules. Layers 1-3 contain six modules each, layer 4

contains 16 modules and layer 5 contains 18. The position of the layers is shown

in Figure 2.6. The modules in the inner three layers are rotated away from a sym-

metrical orientation in φ so that they overlap. In order to maintain full angular

coverage while minimising material, the outer modules in layers 4 and 5 are arched

towards the beam-pipe in the polar direction. Due to this the modules in these

layers cannot be rotated and uniform coverage is achieved by splitting the layers

into two sub-layers at slightly different radii. Figure 2.7 shows a longitudinal slice

of the SVT demonstrating the arching of modules in layers 4 and 5.

The SVT design provides 0.96m2 of active radiation-hard silicon (340 individual

detectors) with total solid angle coverage of 90% in the CM frame (20.1◦ to 150.2◦

in θ). In order to further minimise the amount of material in the acceptance region

all of the readout electronics are housed outside the active volume, with the layers

themselves being supported by Kevlar ribs and encased in a carbon fibre tube.

The readout system for the SVT consists of 150,000 channels and is based on using

the inner side of each silicon detector to measure z and the outer layer to measure φ.

Signals coming from charge deposits in the silicon are amplified and shaped and then

compared to a threshold established from beam related backgrounds during running.

The time-over-threshold (TOT) for each track is then read out for further processing.

The TOT is approximately logarithmically equivalent to the charge deposited but

has a much better signal to noise ratio (∼15), which allows a much larger dynamic

range to be covered. Groups of adjacent strips with consistent timing information

are then combined to form clusters, with those separated by one strip potentially

being merged if appropriate. The clusters are then passed to pattern recognition

software which interprets the information, forming hits expressed in terms of the

physical position of the silicon sensors.
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Figure 2.7: SVT longitudinal cross sectional view.

2.4.3 Performance

The SVT resolutions in the z and φ directions for each layer are shown in Figure 2.8.

A resolution of better than 40 µm is achieved in the first three layers at all angles.

This results in a B decay vertex resolution better than 70 µm. The SVT tracking

efficiency (measured using di-muon events) is 97%. The dE/dx resolution measured

for minimum ionising particles (MIPS) is 14%. This makes it possible to achieve

a 2 standard deviation (2σ) separation for kaons and pions up to a momentum of

500 MeV/c and kaons and protons up to 1 GeV/c.
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In total fewer than 5% of the total number of readout sections have either developed

defects or been damaged during installation. However, recent studies have shown

that the design assumption that the SVT would receive a total radiation dose of no

more than 2 MRad over the lifetime of the experiment was somewhat optimistic.

A value of 5-10 MRad is expected to be more accurate, given increasing beam

luminosities over the lifetime of the detector. Despite this it is expected that any

degradation in performance due to backgrounds will be manageable and therefore

not make repair imperative. Replacement of damaged sections is not envisaged

within the remaining lifetime of the detector since the work would take up to six

months to complete.

Figure 2.8: SVT resolutions versus incidence angle for z (left) and φ (right).

2.5 Drift Chamber (DCH)

2.5.1 Physics Goals

The DCH is the principal source of charged particle tracking at BABAR. Its primary

role is to provide precision measurements of particle momenta and track angles for

particles with momenta greater than 120 MeV/c and with pT above 100 MeV/c. It is
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the only source of tracking for some decays involved in the BABAR ‘Golden Modes’

for measuring time dependent CP asymmetries, such K0
s → π+π−, a product of the

decay B0 → J/ψK0
s . Here, due to its average lifetime, the neutral kaon usually

passes through the SVT undetected and decays inside the DCH volume. In order

to reconstruct this properly a longitudinal position resolution of better than 1 mm

is required. DCH information is also key in extrapolating the trajectories of such

tracks into the DIRC, EMC and IFR.

Further requirements are placed on DCH performance by the need to exclusively

reconstruct B and D meson decays, such as a spatial resolution σ(Rθ) better than

140 µm (averaged over all cells) and a transverse momentum resolution for particles

with pT < 1 GeV/c of σpT
/pT ' 0.3%.

The DCH also plays an important role in PID in the cases where the DIRC is

ineffective, such as for tracks with momentum < 700 MeV/c, or which are outside

the DIRC acceptance which is narrower in θ than that of the DCH. PID in the DCH

is based on dE/dx measurement, on which an error of better than 7% is required.

Finally, the DCH sends information directly into the Level 1 trigger at a required

interval of every 269 ns with a maximum time jitter of 0.5 µs.

All of these goals must be achieved within the standard design parameters requiring

maximal solid angle coverage and minimal extra material in the way of incoming

particles. The DCH must operate within a 1.5 T axial field and withstand the

beam related background conditions with minimal performance degradation over

the lifetime of the experiment.

2.5.2 Design and Layout

The DCH is a 2.8m long cylinder placed asymmetrically about the IP in order to

account for the boost in the forward direction. The chamber has an inner radius of

23.6 cm (inside which the SVT is contained) and an outer radius of 80.9 cm. These
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details are presented in schematic form in Figure 2.9. In order to minimise multiple

scattering, while maximising spatial and dE/dx resolution, a gas mixture of helium

and isobutane (ratio 4:1) was chosen. The isobutane absorbs photons thus reducing

secondary ionisation while the helium reduces multiple scattering. The mixture also

provides a short drift time, while its low mass means the radiation length (X0) is up

to 5 times longer than in traditional argon-based systems. Thus the total thickness

of the DCH (including inner and outer walls) is 0.0108X0. In order to prolong the

lifetime of the chamber a small amount of water vapour (0.3%) is included in the

mixture.
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Figure 2.9: DCH longitudinal view.

The chamber is composed of a collection of 7104 small hexagonal drift cells (approx-

imately 1.2 × 1.8 cm2). These are arranged into 40 circular layers spreading radially

outward from the inner radius. Each set of four layers is defined as a ‘superlayer’.

Some of the superlayers are tilted slightly with respect to the z axis in order to

allow 3D position measurements. The arrangement of non-tilted ‘axial’ superlayers

(A) and positively or negatively tilted ‘stereo’ superlayers (U and V respectively)

follows an AUVAUVAUVA pattern, as shown in Figure 2.10.

Each DCH cell consists of a central high voltage (1960 V) sense wire surrounded by

six ground wires. Therefore a field with almost circular symmetry is created over

the cell. Incoming particles ionise the gas mixture causing charge avalanches within

the cells which descend on the sense wire. The expected gain at the design voltage

is 5 × 104. Signals are digitised at the leading edge with a resolution of 1 ns to
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Figure 2.10: DCH superlayer arrangement for first four superlayers.

determine the drift time. The dE/dx is determined from the time integrated charge

deposited on each wire (this being proportional to the total energy loss).

Track information from the DCH is based on 5 parameters: d0 and z0, the distances

of closest approach to the origin in the radial and z directions; φ0, the azimuthal

angle; ω, the curvature calculated as 1/pT ; and tanλ, where λ is the dip angle relative

to the transverse plane. All of these quantities are evaluated at the point of closest

approach (POCA) to the z axis.

2.5.3 Performance

The momentum resolution of the DCH is determined from cosmic rays and is shown

on the left hand side in Figure 2.11. Using a linear fit to this distribution the

resolution can be parameterised as shown in equation 2.1, where pT is in units of

GeV/c,
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σpT

pT
= (0.13 ± 0.01)pT + (0.45 ± 0.03)%. (2.1)

This is in good agreement with Monte Carlo simulations and close to the design

resolution.

The position resolution (Rθ) for the DCH is studied using ‘Bhabha’ (e+e− scatter-

ing) and di-muon event samples and is shown as a function of the distance from

a sense wire on the right hand side of Figure 2.11. The DCH performs to design

specifications in this measure.
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Figure 2.11: DCH momentum resolution (left) and position resolution (right).

The DCH’s performance for dE/dx is shown in Figure 2.12 in comparison with the

Bethe-Bloch predictions for given particle masses. As can be seen the data values

are in excellent agreement with theory.

In summary, the DCH is performing within design requirements. Only a small

number of wires are known to malfunction as a result of an accident during commis-

sioning. Any degradation in performance due to beam related backgrounds is not

expected to be significant over the lifetime of the experiment.
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Figure 2.12: Measured dE/dx in the DCH compared with the Bethe-Bloch predictions
derived from control samples for the different particle species.

2.6 Detector of Internally Reflected Čerenkov Light

(DIRC)

2.6.1 Physics Goals

The DIRC is the main source of particle identification for high momentum charged

particles at BABAR. One of its main functions is to facilitate flavour tagging of the

B meson through the cascade decay b→ c→ s. This produces kaons with momenta

up to 2 GeV/c (although most go no higher than 1 GeV/c). This tagging is used

in time dependent CP asymmetry analyses as it allows additional tagging of the

second B meson in the event. Furthermore, good Kπ separation is key to the study

of rare hadronic B and D decays. It is from the study of rare B decays such as

B → Kπ and B → ππ that constraints can be placed on the value of CKM matrix

angles γ and α, respectively. Tracks from these events typically have momenta up

to 4.2 GeV/c and a Kπ separation of at least 4σ is required in order to perform the

analysis to the desired precision.

With these goals in mind, the DIRC was designed to provide particle ID in the
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momentum range 0.7 - 4.2 GeV/c. Below 0.7 GeV/c the DCH is responsible for this

task but cannot adequately separate kaons and pions at higher momentum. Finally,

the DIRC is required to complement the IFR in identifying muons of pT < 750 MeV/c,

a range in which the IFR is less efficient.

A number of physical constraints are also placed on the DIRC. It is required to be

of small and uniform size in terms of radiation length (X0), so as not to impair EMC

resolution. Furthermore it must be physically small, so as to minimise the size of

the EMC, which is the most costly part of the detector. Finally, due to the high

luminosity running conditions the DIRC must provide fast readout and be tolerant

of high backgrounds.

2.6.2 Design and Layout

The concept of Čerenkov radiation is well known. When a charged particle travels

through a given medium faster than light, it emits Čerenkov light at an angle θc

given by equation 2.2,

β =
1

n cos(θc)
, (2.2)

where β is the velocity of the particle and n is the refractive index of the medium.

The DIRC is a novel design for a ring imaging Čerenkov detector based on the

principle of total internal reflection. This allows all of the readout components to be

stored outside the active volume minimising the amount of material impeding the

progress of particles through the detector. The left hand side of Figure 2.13 shows

a conceptual overview of the design while the right hand side shows a schematic of

the final design.

The detection surface consists of a cylindrical arrangement of bars of synthetically

fused silica, ‘Spectrosil’ [34], chosen because of its large refractive index of 1.473,
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Figure 2.13: DIRC principle (left) and schematic (right).

resulting in a critical angle of 47.2◦. Spectrosil also provides excellent optical surface

quality combined with long attenuation and chromatic dispersion lengths. The

DIRC cylinder is composed of 12 groups of bars in a barrel formation. Each group

is contained in a hermetically sealed container and consists of 12 bars, giving a total

of 144 bars. Each bar is actually an assembly of four smaller 1.225m bars placed

end to end and glued together, giving a total length of 4.9m. The entire assembly

is only 8 cm thick, or 0.017 X0 for tracks with normal incidence.

Čerenkov light is totally internally reflected along the silica bars into a large 6000

litre container of pure de-ionised water, known as the stand-off box (SOB). Water

was chosen as its chromaticity and refractive index of 1.43 are close to that of the

silica thus minimising refraction at the interface. The outer surface of the SOB is

instrumented with 10,752 photomultiplier tubes (PMTs) of 29 mm diameter. The

light pattern projected onto these PMTs is a conic section with an opening angle of

θc, accounting for refraction. In total the DIRC has an angular acceptance of 94%

in the azimuth and 83% in the cosine of the CM frame polar angle.

The DIRC measures the space-time coordinates of incoming signals and attempts

to associate them with a track. SVT and DCH information are used to give track

position and angles. As shown in Figure 2.14, a timing cut is applied to reduce

contamination from background photons. An unbinned maximum likelihood fit is

performed incorporating all space and time information to test the different particle
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mass hypotheses for each track. Should enough photons be associated with a given

track a fit to θc and the number of observed signal photons is also performed.

Figure 2.14: DIRC Event with (on the left) all hits shown and (on the right) only those
within 8 ns of the expected photon arrival time.

2.6.3 Performance

In order to test the resolutions and efficiencies of the DIRC, di-muon events, such as

that shown in Figure 2.14, are typically used. From the design of the detector a single

photon resolution of 10 mrad is expected and a value of 10.2 mrad is measured in

data, which is in good agreement. The time resolution is measured as 1.7 ns, which

is close to the intrinsic time spread of the PMTs (1.5 ns).

The DIRC’s measured Kπ separation performance is shown on the left hand side

of Figure 2.15. It is found to be in excess of 4σ for tracks with momenta below

3 GeV/c and is in good agreement with Monte Carlo based predictions. Finally, the

efficiencies for detecting kaons and rejecting pions are shown on the right hand side

of Figure 2.15. As can be seen these are in excellent agreement with performance

requirements across the whole momentum range.

In summary, the DIRC is performing to design expectations. Approximately 99.7%
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Figure 2.15: DIRC Kπ separation versus momentum (left) and kaon efficiency and
pion misidentification rates versus momentum (right).

of PMTs and readout electronics are currently fully operational and no major up-

grades or refits are envisaged over the remaining lifetime of the experiment.

2.7 Electromagnetic Calorimeter (EMC)

2.7.1 Physics Goals

The EMC is designed to measure the energy of electromagnetic (EM) showers over

a large energy range. In B decays 50% of photons from π0 and η decays (which

are involved in a large number of important BABAR physics channels, including the

ones described in this thesis) have energies less than 200 MeV. Therefore sensitivity

to the lower photon energy scale is essential. At the higher end of the scale it is

desirable to cover the range produced from the QED processes e+e− → e+e−(γ)

and e+e− → γγ, which are used in calibration and luminosity measurements. In

order to fulfil these criteria the EMC is designed to span the energy range from

20 MeV to 9 GeV. The lower bound is set from beam related background estimates

and a consideration of the amount of material present between the EMC and the

interaction point.

Due to the rare nature of the decay processes BABAR seeks to study and the inherent
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difficulty involved in the reconstruction of π0 and η mesons, the EMC is required

to deliver high detection efficiency and excellent energy and angular resolution over

the entire energy range. An example of the kind of rare high multiplicity B decay

observed at BABAR is B0 → π0π0, which has a measured branching fraction of

(1.31 ± 0.21) × 10−6 [35] and requires an energy resolution for π0 detection of 1-2%

below a photon energy of 2 GeV. Above this energy the angular resolution dominates

and is required to be of order a few milliradians.

The EMC also has an important role in electron PID, based on the energy/momentum

ratio for charged tracks, which is useful in the study of semileptonic B decays as well

as τ decays and the reconstruction of vector mesons such as J/ψ. Electron ID also

plays an important role in the flavour tagging of neutral B decays. Energy deposits

in the EMC are also used to complement IFR information in the detection of muons

and K0
L mesons.

2.7.2 Design and Layout

The EMC is designed as a hermetic, total absorption calorimeter, providing 90%

solid angle coverage in the CM frame and complete azimuthal angle coverage. The

detection medium consists of 6,580 thallium doped caesium iodide (CsI(Tl)) scintil-

lating crystals. These were chosen because of their high light yield, which is vital for

the required energy resolution to be achieved. Losses through leakage into adjacent

crystals are minimised by a reflective coating on the outer surfaces of each crystal.

CsI(Tl) also has a short radiation length (X0) and Molière radius (RM), the latter

being a measure of the transverse spread of an EM shower in a given medium. This

is important in achieving the small angular resolution needed. A more comprehen-

sive list of the properties of CsI(Tl) is laid out in Table 2.1. The front face of each

crystal is ∼5×5 cm2 in area. This is comparable with RM which means that show-

ers will take place across several crystals, which are then grouped together by the

feature extraction algorithm. This will be discussed in more detail later.

The EMC crystals are laid out in two segments, as shown in Figure 2.16. A cylin-

drical barrel, consisting of 48 rings of crystals in θ and 120 in φ, accounts for the
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Table 2.1: Properties of CsI(Tl).

Crystal Property Value

Radiation Length (cm) 1.85
Molière radius (cm) 3.8
Density (g/cm3) 4.53
Light Yield (γ/MeV) 50,000
Peak Emission λmax (nm) 565
Refractive Index (λmax) 1.80
Signal Decay Time (ns) 680(64%), 3340(36%)
Radiation Hardness (rad) 103 - 104

bulk of the detector area, a total of 5,760 crystals. The lengths of the crystals vary

from 29.6 cm (16 X0) in the backward direction to 32.4 cm (17.5 X0) in the forward

direction. This increase in length is to reduce shower leakage caused by the Lorentz

boost applied to the Υ (4S) system in the forward direction. The remaining 820 crys-

tals are housed in a forward endcap consisting of eight rings in θ which taper inward

towards the beam-pipe with the closest three to the barrel containing 120 crystals

in φ, the second three containing 100 and the innermost two containing 80. These

inner crystals are protected from beam related backgrounds by lead blocks placed

in a ring radially inward between the beam-pipe and final endcap ring. The endcap

crystals are all 32.4 cm in length with the exception of those in the innermost ring,

which are up to 1 X0 shorter due to space limitations.
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Figure 2.16: EMC longitudinal view.

The energy of scintillation light produced by EM showers is measured by two 1 cm2

silicon photodiodes [36] (quantum efficiency 85%) mounted using optical epoxy at
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the back of each crystal. The system was designed with two diodes to provide re-

dundancy and allow for noise reduction through averaging. The crystals are shielded

from electronics noise by an aluminium coating, connected electrically to the diode

assembly, forming a Faraday cage. A schematic of the crystal assembly is shown in

Figure 2.17.
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Figure 2.17: EMC crystal assembly layout.

2.7.3 EMC Readout System

Signals from the two silicon photodiodes are processed first through dual gain

range, low noise preamplifiers before being passed to a custom auto-range encoding

(CARE) [37] ASIC (Application-Specific Integrated Circuit). This two-step process

splits the signals into different amplification ranges depending on energy, as shown

in Figure 2.18. The final amplification ranges correspond to: 0-50 MeV (×256),

50-400 MeV (×32), 0.4-3.2 GeV (×4) and 3.2-13.0 GeV (×1). The output for the

selected range is then passed to an analogue-to-digital converter (ADC) after which

the digitised signal is sent for further processing and feature extraction. Information

is also sent to the Level 1 trigger.
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Figure 2.18: Signal processing paths in the EMC front end electronics (FEE).

2.7.4 EMC Reconstruction

Electromagnetic showers in the EMC typically occur across several crystals. The

feature extraction software looks for groups of adjacent crystals with a total energy

of greater than 20 MeV. Should these contain at least one crystal with an energy

deposit of greater than 10 MeV, and also satisfy other constraints placed on lower

energy neighbours, the group is labelled as a cluster. A pattern recognition algorithm

is then run to search for any local maxima, known as ‘bumps’, which may be present

within the cluster. This can occur when two particles shower close together forming

one large cluster. Corrections are then applied to account for energy loss through

leakage or particles showering before the calorimeter. Finally an algorithm is run

to ascertain if any EMC bumps can be associated with tracks in the event. This

is done by extrapolating the track impact point on to the calorimeter inner surface

and checking if it overlaps with the relevant bump centroid.

2.7.5 Performance

In order to measure the performance of the EMC a number of criteria can be tested.

First and foremost are the energy and angular resolutions, which can be described

empirically by equations 2.3 and 2.4 respectively:

σE

E
=

a

E( GeV)1/4
⊕ b, (2.3)
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σθ = σφ =
c

√

E( GeV)
⊕ d, (2.4)

where E and σE represent the photon energy and its r.m.s. error, measured in GeV,

and σθ and σφ are the polar and azimuthal angular errors. The constant parameters

a, b, c, and d are determined through fits to data, which constitute a test of detector

performance. The design expectations were a = 1% and b = 1.2% for the energy

resolution, and c = 2 mrad and d = 3 mrad for the angular resolution.

In practice the energy resolution below 2 GeV is measured using 6.13 MeV photons

from a radioactive source within the detector and yields σE/E = 5.0 ± 0.8%. Above

2 GeV the resolution is derived from Bhabha scattering processes giving σE/E =

1.90 ± 0.07%. The results of energy resolution studies, mainly from π0 decays,

using photons of similar energies, are shown in the left hand plot in Figure 2.19.

By fitting this curve below 2 GeV values for a and b can be extracted. The current

measurements give a = (2.32 ± 0.30)% and b = (1.85 ± 0.12)%. These are clearly

not as good as the design expectations, but have been shown to agree with Monte

Carlo (MC) studies with detailed modelling of the impact of electronics noise and

beam related backgrounds.

The angular resolution, which depends on transverse crystal size and distance from

the IP, is measured from decays of π0 and η mesons to two photons of approximately

the same energy. The result varies from 12 mrad at low energies to 3 mrad for high

energies. The measured values for the resolution for given photon energies are shown

in the right hand plot of Figure 2.19. Once again a fit to the data gives values for

the constant parameters in the resolution function. The current best fit gives c =

(3.87 ± 0.07) mrad and d = (0.00 ± 0.04) mrad.

The mass distributions for π0 and η mesons reconstructed from BB pairs are shown

in Figure 2.20. The mass resolutions in both cases are found to be within analysis

requirements.

Overall the EMC is performing within design specifications, with only two perma-

nently dead channels out of 6580 (due to damage during installation).
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Figure 2.19: EMC energy resolution versus photon energy for a number of interesting
physics processes (left). Angular resolution (theta) versus photon energy for pion decays
and Monte Carlo simulation (right). The solid curves indicate the fits used to extract the
resolution measurements. For the energy resolution the curves above and below the central
fit denote the ±1σ bound for the result.

Figure 2.20: η mass spectrum for η mesons with energy > 1GeV (left) and the π0 mass
spectrum for π0 mesons with energy > 300MeV formed from photons of energy > 30MeV
(right).

2.7.6 Non-linearities in EMC Electronics Response

As part of the author’s service work on the BABAR detector a study was undertaken

to add the effects of historically known distortions in the EMC electronics response

to the Monte Carlo simulation of the system. From this it was possible to ascertain

whether the distortions had any effect on some of the physics quantities needed by

BABAR analyses. This section includes a description of the study with results and

conclusions.
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Background to the investigation

Since the initial running of BABAR problems have been discovered with the EMC

electronics response, resulting in non-linear distortions to the crystal energy spectra

measured in data taking as shown on the left in Figure 2.21. These distortions were

found to coincide with the amplification range changes for different signal energies

described previously. The bulk causes of these distortions were isolated and corrected

in hardware and software by 2001 [38], but a smaller ∼2% effect remained as shown

on the right in Figure 2.21. It has been observed (although never explained) that

the distortions appear worse in the central barrel region of the EMC.
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Figure 2.21: Crystal energy (Edigi) spectra before hardware corrections in 2001 (left)
and after corrections (right). The distorted data are shown by the blue line with the green
line demonstrating the idealised extrapolation used to correct the effect in processing.

The physical cause of the problem is unknown but it manifests itself in a discrepancy

in the performance of the CARE chip in data taking and calibration states. For

calibration purposes each amplification range is tested independently with known

simulated signal energies (fixed mode operation), whereas in data taking the CARE

chip is required to decide which range is to be used to process a signal (auto-ranging

mode). A new calibration was developed to alleviate this problem and successfully

deployed in April 2002 [39].
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Motivation for the Study

Although now largely removed, the effects of the non-linearities on uncorrected

data may have a significant impact on reconstructed physics quantities. The EMC

quantity expected to be most affected by the distortions is the reconstructed π0

width. Any problem here would have a serious impact on a number of important

BABAR physics channels. As such, this study was centred on looking for shifts in

this quantity. Previous studies [40], based on correcting the data and looking for

shifts in the π0 width, have found there to be no such shifts.

In order to be fully satisfied that the problem was small it was decided to also test

the effect of the distortions on the Monte Carlo simulation for the EMC, which does

not model any non-linear behaviour as standard. The purpose of this study was

therefore to alter the Monte Carlo to model the distortions at a data-realistic level.

From this it would then be possible to ascertain whether the distortions were having

an effect on the π0 width.

It was decided to base the study solely around the distortion caused by the lowest

energy range change (at 50 MeV), since the effects in the other regions were small

and difficult to separate from background fluctuations, as well as containing poten-

tial interference from other known electronics problems. In case of any π0 energy

dependence, Monte Carlo samples were generated for single π0 decays in 100 MeV

intervals from 100-600 MeV and for 1 GeV. Generated π0 mesons were reconstructed

with very loose selections applied so as to maximise the fitting sample. The photons

combined form a π0 were required to have a laboratory frame energy greater than

0.03 GeV with lateral moment less than 0.8. The π0 candidates were then required

to have mass satisfying the range 0.09 < mγγ < 0.165 GeV/c2. The π0 candidates do

not have any corrections applied to account for deficiencies in the Monte Carlo simu-

lation of the detector, nor are calibrations applied to correct for detector conditions,

normally based on radioactive source tests and high energy ‘Bhabha’ events.
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Method for modifying Monte Carlo to include distortions

The Monte Carlo was modified by applying a correction to the generated crystal

energies, based on a sample of data containing the distortions. The data used

were collected between 1999 and 2002, the period during which the effects of the

distortions were expected to be most pronounced. The data are fully calibrated to

account for detector conditions. For the purposes of the study, the EMC was split

up into 8 ring segments, starting at the endcap, in order to model any variation

across the detector in polar angle while minimising processing time.

The correction itself was extracted using an inverse transform method [41]. This

is a method of mapping between two separate continuous distributions. Take the

distorted crystal energy to be parameterised by the variable Ed, with the distribution

modelled by the function f(Ed) = dN/dEd. Through an analogous representation

take the true, undistorted, energy to be parameterised by the variable Et and the

distribution modelled by g(Et) = dN/dEt. The undistorted and distorted energy

values can be related [41] using the cumulative probabilities for each distribution,

given by equations 2.5 and 2.6.

F (Ed) =

∫ Ed

Emin

f(E
′

d)dE
′

d (2.5)

G(Et) =

∫ Et

Emin

g(E
′

t)dE
′

t. (2.6)

This integrated distribution F (Ed) is shown for a sample of real data in Figure 2.22.

The depopulated region from −1.38 to −1.28 in the x axis is caused by crystals

shifted upward in energy by the distortion. The distortion disappears once the

integration has passed over these shifted crystals. Now, the idealised distribution

G(Et) is not known a priori, but can be approximated by extrapolating over the

distorted area in F (Ed) from the end points, which are assumed to be true to the

ideal spectrum. This extrapolation is shown in Figure 2.22 as the blue line.
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Figure 2.22: Integrated crystal energy spectrum from data (data points) with idealised
extrapolation (solid blue curve).

Since the purpose of this study is to apply the real data distortion to the MC, we

would like to be able to calculate the shifted energy for a given ideal value. This can

be achieved mathematically by requiring G(Et) = F (Ed), represented by the y-axis

values of both functions being equivalent. From this it can be seen that the distorted

energy Ed at any point can therefore be expressed as Ed = F−1(G(Et)). Thus we

have a way of extracting the distorted value from the true spectrum. In order to

express this shift as a continuous function in Et we use the fact that the value Ed

can be described in terms of some unknown function of Et, i.e. Ed = C(Et) + Et,

where C(Et) is the correction function.

Thus by solving for Ed we can parameterise the correction solely in terms of the

ideal data, as shown in equation 2.7.

C(Et) = F−1(G(Et)) − Et. (2.7)

Therefore, by scanning along the ideal integrated curve for a given sample we can

numerically construct the correction function in order to reproduce any distortion

which may be present in the energy spectrum.

Using this fact a simple linear interpolation was run across the bins of the ideal

spectrum to compare points on the curves and extract the shifts in energy. The
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shift at any point can then be plotted against the ideal Et value to give an additive

correction for crystals of a given energy. The resulting continuous functions in each θ

range were then modelled using simple polynomial functions which could be included

in the Monte Carlo model without much processing overhead. An example of such a

correction function for rings 25-32, in the centre of the EMC, is shown in Figure 2.23.
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Figure 2.23: A sample correction function extracted from data and the polynomial
function used to parameterise it (solid blue curve).

A comparison of the generated distortion for 500 MeV π0 mesons with the real data

is presented in Figure 2.24. As can be seen the size of the low energy distortion is

reasonably well modelled.
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Figure 2.24: A comparison of a distorted crystal energy spectrum in data (left) and
Monte Carlo (right). Note the different x-axis scales since the data spectrum includes
contributions from higher energy π0 mesons.
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Assessing shifts in the π0 mass

In order to compare the π0 masses for distorted and undistorted samples a fit was

performed to the separate mass distributions using the combination of a third order

polynomial function and a Novosibirsk function [42] (a Gaussian modified to include

a tail). A sample fit, taken on real experimental data with very loose selections

applied, is shown in Figure 2.25; as can be seen, a distinct peak with an associated

width can be extracted.
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Figure 2.25: A sample fit to the π0 mass in data (GeV/c2).

Using this method it was possible to compare the fitted mass and width of the

sample of undistorted Monte Carlo π0 mesons with a sample with the distortion

applied. Three separate subsets of π0 mesons from both undistorted (standard) and

distorted (non-linear) datasets were compared: those extracted from the entire data

sample, those extracted only from crystals with energy falling outside the predefined

non-linear region and those with at least one crystal falling into the non-linear region.

Figures 2.26 and 2.27 show a comparison of the fitted π0 mass peak and width values

for the different samples, subdivided by π0 energy. As can be seen, any shifts in the

mass and width are small. The measured mass does increase slightly in the presence

of non-linearities. The effect is largest for lower energy π0 mesons, which is to be

expected since higher energy π0 mesons would result in higher energy crystals in

the spectrum and thus a lower fraction in the area affected by the distortion being

modelled. In any case, the worst shift is < 1 MeV/c2, which is not seen as a problem
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for physics analysis. Indeed any systematic error incurred from the accuracy of the

mass fit model would probably be larger than this value. A brief investigation of the

potential systematic error, involving replacing the Novosibirsk function with other

Gaussian-type peaking functions suggests this lies in the region of ±1 MeV/c2.

The π0 width is largely unaffected by the non-linearities, apart from a slight down-

ward shift for lower energy π0 mesons of < 1 MeV. Once again, any systematic error

in the model would render this negligible. Studies have shown that this error lies in

the region of ±1.5 MeV/c2.

Analysis of both mass peak and width would appear to show a decreasing trend

as the π0 meson energy increases. This is believed to be an effect of the fit model

whereby at lower energies the larger fraction of misreconstruction results in a larger

background component which artificially increases the width of the peaking, as well

as pushing the measured peak value upward. Since the study is only interested

in the comparison of distorted and undistorted samples this trend was not seen as

affecting the result since the background levels are comparable for both distortion

scenarios at a given energy.

Conclusions

The aim of this study was to accurately simulate non-linear effects in the EMC

electronics response. The distortions were modelled by extracting a map of the

effect from a sample of experimental data. Fits to the resulting generated samples

suggest little significant effect on the measured properties of π0 mesons. As such, the

non-linearities have now been demonstrated, through analyses based independently

on data and MC, to have no significant effect on physics analysis at BABAR.
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Figure 2.26: Comparison of the fitted π0 mass peak (MeV/c2) vs. generated π0 energy
(MeV) for the different regions of the crystal energy spectrum with and without distortion.
The top left plot shows π0 mesons taken from the entire crystal range. The top right shows
π0 mesons including at least one crystal in the distortion region and the bottom left plot
shows π0 mesons including no crystals from the distortion region. The bottom right plot
is an overlay of the other three to aid comparison.

2.8 Instrumented Flux Return (IFR)

2.8.1 Physics Goals

The IFR provides muon and neutral hadron detection for BABAR as well as providing

a flux return for the 1.5 T solenoidal magnet. Good muon detection is important

since a number of important CP modes decay through J/ψ → µ+µ−. Furthermore,

muons are used to tag the flavour of B mesons in semileptonic decays, as well as

facilitating similar studies of the decays of D mesons and τ leptons. In order to
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Figure 2.27: Comparison of the fitted π0 mass width (MeV/c2) vs. generated π0 energy
(MeV) for the different regions of the crystal energy spectrum with and without distortion.
The top left plot shows π0 mesons taken from the entire crystal range. The top right shows
π0 mesons including at least one crystal in the distortion region and the bottom left plot
shows π0 mesons including no crystals from the distortion region. The bottom right plot
is an overlay of the other three to aid comparison.

achieve this the IFR must provide high purity, high efficiency muon detection with

high background rejection down to a momentum of 1 GeV/c.

Another important role for the IFR is the detection of neutral hadrons with high

efficiency, most significantly the K0
L. This is important in the reconstruction of the

decay B0 → J/ψK0
L, which is used to measure the CKM parameter sin2β. In order

to detect K0
L mesons the IFR must have good angular resolution. Finally, the IFR

contributes to neutrino reconstruction by improving missing energy measurements.

Physically the IFR is required to have the standard large solid angle coverage, while
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also housing the support structure for the detector and performing as a flux return.

2.8.2 Overall Design and Layout

The IFR consists of a hexagonal barrel with a forward and backward endcap. The

sections are composed of steel flux return layers interleaved with active detector

surfaces. The steel sections were optimised for muon filtering and hadron absorption

using Monte Carlo simulation. As such the layers begin with a 2 cm thickness at the

inner radius and expand up to 10 cm thickness at the outer radius. The detector

covers a solid angle extending to 300 mrad in the forward direction and 400 mrad

in the backward. The mechanical structure of the IFR is shown in Figure 2.28.
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Figure 2.28: IFR overview.

The original active detector component in the IFR was made up of Resistive Plate

Chambers (RPCs) [43]. However, due to a number of factors, including a flaw in

the construction process, the performance of the RPCs began to degrade alarmingly

(and unarrestably) by the end of the first year of BABAR running. As such they are

in the process of being replaced with Limited Streamer Tubes (LSTs). The upper

and lower barrel sextants were replaced in the 2004 shutdown and the remaining four
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were replaced in late 2006. An overview will be given of both detector technologies

and their performance to date.

2.8.3 Resistive Plate Chambers (RPCs): Design

RPCs were originally chosen due to their low cost and large signal coupled with

fast time response (1-2 ns). The RPC chambers consist of two 2 mm bakelite strips

separated by a 2 mm gap filled with a non-flammable gas mixture of argon (56.7%),

freon134a (38.8%) and isobutane (4.5%). The outer surfaces of the bakelite are

coated with graphite, one layer connected to an 8 kV potential and another to

ground. Particles passing through the chamber ionise the gas creating a conductive

path across which a discharge takes place. This is picked up through capacitative

coupling by aluminium strips located outside the graphite layers and behind an insu-

lator. The two layers are arranged orthogonally to extract 3D position information.

The design of an RPC is presented in Figure 2.29.
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Figure 2.29: RPC cross section.

IFR information is read out by combining signals from individual strips to form

clusters, which themselves are grouped to form tracks. These are then matched

with tracks projected from the SVT and DCH. Muon candidates are required to

satisfy the conditions for a minimum ionising particle in the EMC. Neutral hadrons,

such as the K0
L, are identified from clusters which do not match SVT or DCH tracks.

Hit information is also passed to the Level 1 trigger every 269 ns.
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In total the original IFR consisted of 806 RPCs, with a total active area of 2,000m2.

There were 19 RPC layers in the barrel and 18 in the endcaps. In addition there

were two cylindrical RPCs installed between the EMC and the magnet cryostat in

order to link tracks and EMC clusters to IFR clusters.

2.8.4 Resistive Plate Chambers (RPCs): Performance

Muon ID efficiency was measured during initial running by studying muons from

reconstructed µµee and µµγ final states and comparing them with pion samples

taken from K0
S → π+π− and three prong τ decays. The results of the studies are

presented in Figure 2.30 and show an efficiency of ∼ 90% over the momentum range

1.5 < p < 3.0 GeV/c with a pion fake rate of 6-8%.
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Figure 2.30: IFR muon detection efficiency (left hand scale) and pion mis-identification
rate (right hand scale) versus momentum (left) and polar angle (right).

The angular resolution for the K0
L was found to be in the region of 60 mrad (better

if coupled with EMC information). This was tested using the decay φ→ K0
SK

0
L.

Towards the end of the first year of BABAR running a large number of RPCs showed

rapid decreases in efficiency. This was traced to a number of environmental factors,

as well as an error in construction, which adversely affect the resistivity of the
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bakelite. As a result large sections of RPC have become effectively useless (muon

ID efficiency < 10%), hence the decision to move to LST technology.

2.8.5 Limited Streamer Tubes (LSTs): Design

The limited streamer tube is a simple, robust and well known detector technology.

The design is based on groups of gas filled tubes or ‘cells’ with a central anode wire,

held at ground, bounded by high voltage connectors. Particles passing through the

tube ionise the gas creating an electrical path to ground resulting in a discharge

(streamer). These are read out via capacitors on the HV connection.

At BABAR the LSTs are composed of 7 or 8 cells of 17 x 15 mm area and 380 mm

length. The gas is a mixture of CO2, argon and isobutane at a ratio of (89:3:8),

which is non-flammable and reduces secondary ionisation thanks to the isobutane

content. A cross sectional sketch of a BABAR LST is shown in Figure 2.31.

Figure 2.31: LST cross sectional view.

LST information is read out in the same format as for the RPCs using largely the

same criteria and electronics.

2.8.6 Limited Streamer Tubes (LSTs): Performance

The LSTs installed in 2004 have thus far outperformed the RPCs in their first year

of operation (2000), with higher pion rejection for a given muon efficiency. This

information is presented in Figure 2.32.
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Figure 2.32: LST muon detection efficiency (%) compared to RPC efficiency (%) in
the 2005 run period and RPC efficiency in previous years. LST performance in 2005 is
described by the dot-dashed curve, RPC performance in the same period by the lighter
solid curve. RPC performance in 2000 is described by the dotted curve and in 2004 by the
darker solid curve.

In total '99.7% of channels are operating normally, with the impact of any dead

channels expected to be negligible due to the high granularity of the system. The

analysis presented in this thesis contains approximately 200 fb−1 of data taken using

LST technology in the upper and lower sextants of the IFR.

2.9 Event Triggers and Data Acquisition System

(DAQ)

The BABAR trigger system is designed to reject background events while selecting

potentially interesting physics events with a high, stable and well understood effi-

ciency. The system consists of a hardware based component (Level 1) and a software

based component (Level 3).
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The physics performance goals for the trigger are extremely demanding. For BB

events an efficiency of greater than 99% is desirable. This is in order to minimise any

bias in the sample. Such an efficiency is achieved using multiple redundant trigger

sources. For continuum and τ+τ− events an efficiency of 95% is required and for

Bhabha events, which are used for luminosity studies, the efficiency must be known

to an accuracy of ±0.5%.

The trigger is required to work in the presence of high beam background rates

(up to 10 times the rate projected at design luminosity) with minimal performance

deterioration over time. It must also be robust enough to function in the presence

of dead or noisy channels in any detector subsystem. Finally the trigger is required

to contribute no more than 1% of the total detector dead-time at any point during

normal operation.

2.9.1 Level 1 Trigger

The Level 1 trigger (L1T) is a hardware based system which operates using in-

put from the drift chamber (DCT), electromagnetic calorimeter (EMT) and instru-

mented flux return (IFT), the latter being used solely for cosmic ray detection and

calibration. A flow diagram of the interface between the L1T and front end elec-

tronics (FEE) for each subsystem is shown in Figure 2.33. Each of these systems

generates trigger primitives, summaries of data in terms of position and either en-

ergy or momentum, which are passed to the global trigger (GLT). The GLT produces

triggers within a latency window of 11-12 µs after a bunch crossing.

The DCT forms primitives by grouping together hits in adjacent DCH cells using

a Track Segment Finder (TSF). These are then passed to a Binary Link Tracker

(BLT), which groups the segments into tracks. Momentum requirements are then

placed on the tracks depending on their penetration into the DCH.

EMT primitives are based on combinations of EMC ‘towers’, which are pre-defined

groups of EMC crystals. Simple feature extraction is run to extract the peak energy
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for a given group, which is then compared to thresholds for certain physics processes

of interest.

Finally, IFT primitives are based simply on single or back-to-back IFR clusters.

When the GLT receives trigger primitives, it combines them to search for any one

of 24 pre-defined physics signatures, known as trigger lines. Should one of these

signatures be found, the information is passed to the Fast Control and Timing

System (FCTS), which decides whether to accept, reject or prescale the trigger.

Prescaling means only accepting every nth event of a given type.

Event
Buffer

L1 Latency
Buffer

to L1 trigger

AMP Digitizer

L1 trigger accept

Figure 2.33: Path to the BABAR L1 trigger for DCH, EMC and IFR.

Trigger lines are prioritised so that, for example, high multiplicity multihadronic

events are always triggered whereas Bhabha events, which are used for luminosity

measurements, are prescaled and therefore read out at an arbitrarily reduced rate.

This is required to reduce the data bandwidth passed to Level 3. Prescaling can

be safely applied in this case since there is, by definition, no danger of biasing

the sample. Should the FCTS decide to accept an event, a Level 1 accept (L1A)

is produced which orders all subsystems to read out the contents of their latency

buffers for further selection and processing.

Overall the L1T is performing well with a measured BB efficiency for the DCT

and EMT combined of 99.9%. Individually both subsystem triggers operate at 99%

efficiency, thus ensuring the required redundancy.



2.9 Event Triggers and Data Acquisition System (DAQ) 96

2.9.2 Level 3 Trigger and OPR

The Level 3 trigger is designed to reduce the Level 1 rate (nominally 1kHz, although

4kHz has been achieved without incurring unacceptable deadtime) to around 100Hz

for further processing. This is run on a set of designated online event processing

(OEP) farms. At Level 3 the system has access to the full event information and

can thus run more sophisticated algorithms to select interesting events, resulting in

simple pass/fail flags. Patterns in algorithm results are looked for and combined into

Level 3 output lines, in a way analogous to Level 1. Once again, given event types

can be prescaled to reduce the number passed on to the next processing phase. All

in all, the Level 3 trigger is meeting its design criteria with a measured BB efficiency

of 99%.

Events passing Level 3 are stored in an intermediate event store before being picked

up by the Offline Prompt Reconstruction (OPR) system for the final stage of pro-

cessing before the data are made available to analysts. An overview of the whole

DAQ process is shown in Figure 2.34.
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L1 Trigger
Processor
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and Timing

Event Bldg
L3 Trigger
Monitoring

Intermediate
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data
event
digitalraw

signals
analog

signals

processed
digital

data
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trigger

24

L1 Accept, clocks
and trigger data

lines
trigger

Figure 2.34: Global flow diagram of the BABAR data acquisition system.
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Chapter 3

Analysis Fundamentals

3.1 Analysis Strategy

The goal of the analysis described in this thesis is to measure, or set a limit on,

the branching fraction for the B± → a±0 π
0 decay mode (charge conjugate assumed

throughout) with the maximum statistical power. To this end a Maximum Like-

lihood Fit technique is employed using variables based on particle kinematics and

event topology designed to separate background processes from the desired signal de-

cay mode. In order to avoid biasing the result the analysis is prepared ‘blind’, where

the experimental data are not used to tune event selection criteria or to model the

distributions for the given fit variables. Instead, large samples of simulated events

generated using Monte Carlo (MC) techniques are used. These are based upon a

model of the BABAR detector built using the Geant4 package [44].

This chapter will present the datasets used for the analysis as well as discussing

the methods used to reconstruct events from detector information in data and MC.

Finally the variables used to parameterise physics events are presented and discussed.
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3.2 Analysis Datasets

3.2.1 Experimental Datasets

This analysis makes use of the full dataset taken during the first five BABAR run

periods, from startup in 1999 to August 2006. The total data sample comes to

340.67 fb−1 taken at the Υ (4S) resonance and 36.18 fb−1 ‘off-resonance’ taken

40 MeV below Υ (4S). The on-resonance sample is estimated to contain (379.9±4.2) mil-

lionBB pairs. This estimate is produced using the method known as ‘B-counting’ [45].

3.2.2 Simulated Data

The simulated datasets used for the analysis are designed to at least match the real

experimental dataset in size. Simulated events are used to model both signal and

background processes. The sample sizes for signal and the bulk of the background

MC are presented in Table 3.1.

Backgrounds from continuum light quark production (e+e− → qq, q = u, d, s, c)

are modelled on QCD fragmentation [46], giving large centrally produced samples.

Similar samples exist for B decay backgrounds, which are generated using the latest

measured branching fractions. However, these samples are only used in the analysis

to model the bulk charm decay (b → c) component, which is the dominant B

background source. This type of background is not expected to peak in most of the

chosen analysis variables.

Contributions from charmless B decays may peak in the kinematics-based analysis

variables and are as such modelled separately using specific MC samples for each

mode, with all charmless decays therefore removed from the bulk sample used for

the charm model. (Note that in Tables 3.1 and 3.2 the numbers quoted include both

charm and charmless contributions.)

The current MC simulation techniques employed at BABAR have been shown in

many situations to not model the experimental data perfectly. In order to improve
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Table 3.1: Bulk Monte Carlo datasets used in the analysis.

Signal Mode Number of Events

B± → a±0 π0 (η → γγ) 531k
B± → a±0 π0 (η → π+π−π0) 531k

Background Mode

qq (q = u, d, s) 696M
cc 581M
B+B− 556M

B0B0 552M

the situation for neutral particles in the EMC, a smearing is applied during recon-

struction to MC particles. This helps improve modelling of the data and reduce

systematic errors from data/MC disagreement.

3.3 Event Reconstruction

3.3.1 Overview

Candidate events are reconstructed in BABAR from the core event store processed by

OPR, as discussed in Chapter 2. Composite objects are formed from lists of more

fundamental particle candidates found in the event, such as photons and charged

tracks. At each stage candidates are required to satisfy various quality control crite-

ria. Before more detailed reconstruction, samples undergo a pre-selection procedure

known as a ‘skim’ in order to reduce processing overheads by rejecting events which

are background-like at the cost of only a small fraction of signal.

For this analysis two reconstruction paths are required, the difference occurring

when considering decays of the η meson, to which the a0 is thought to decay ∼85%

of the time [8]. Explicitly, we have B± → a±0 π
0, where the π0 decays to a pair of

photons and a±0 → ηπ±. Thus both decay channels under study require at least one

charged track and two photons to be reconstructed. The η meson then decays either

to a pair of photons or to a π+π−π0 final state.
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3.3.2 Charged Track Selection Criteria

The charged tracks used in the analysis are taken from the GoodTracksLoose list.

This requires tracks to have momentum ≤ 10 GeV/c with transverse momentum

≥ 0.1 GeV/c. Tracks are also required to be composed from ≥ 12 DCH hits and with

a distance of closest approach to the interaction region < 1.5 cm in the transverse

xy direction and < 10 cm along the ‘z’ axis of the detector.

3.3.3 Photon Selection Criteria

The photons used in the analysis are mostly taken from the GoodPhotonsLoose

list. This requires photons to originate from single bump clusters in the EMC not

associated with a track (so called ‘CalorNeutral’ objects). The photons are then

required to have a raw energy greater than 30 MeV. The lateral moment (LAT) [12]

of the photons is required to be less than 0.8.

Photons from η meson decays can also originate from ‘CalorClusterNeutral’ objects,

where the EMC cluster contains more than one bump. These are accessed separately

from the GoodPhotonsLoose list.

In order to reduce mis-reconstructions, the algorithm does not allow two or more

composites in an event to contain the same photon.

3.3.4 Low Level Composite Candidate Reconstruction

π0 meson candidates

In order to form part of a π0 candidate further requirements are placed on photons

beyond the core list specified above. Their raw energy is required to be lower than

10 GeV. The photons are combined through four-vector addition with the mass of

the combined pair required to be between 0.115 and 0.150 GeV/c2. The π0 candidate

must also have a laboratory frame energy above 0.2 GeV.
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Should a photon pair satisfy these conditions the resulting candidate is refitted to

constrain its mass to the PDG value for the π0 mass [8]. This is acceptable since the

measured width of the particle is dominated by detector resolution and so refitting

will provide an improvement in the resolution of reconstructed π0 resonances while

not biasing the sample. The unconstrained mass of the π0 is stored for further

analysis but it is the refitted four-momentum which is passed to the kinematic

calculations for higher resonances. Candidates satisfying all of the requirements are

stored in the pi0DefaultMass list.

η meson candidates

As described above, η meson candidates are reconstructed via two different routes.

In the first case, η → γγ, GoodPhotonsLoose photons are further required to have

a laboratory frame energy of between 0.05 and 10.0 GeV, the lower limit being to

reduce combinatorial background. Pairs of photons are combined using four-vector

addition, with the resulting candidate being required to have a laboratory frame

momentum between 0.2 and 10.0 GeV/c and mass between 0.47 and 0.62 GeV/c2.

In the η → π+π−π0 case, charged tracks are taken from the GoodTracksLoose

list described above and the π0 from the pi0AllLoose list. This is similar to

pi0DefaultMass except the mass constraint from the two-photon pair is relaxed to

between 0.10 and 0.16 GeV/c2. Photons in this case can also come from multi-bump

CalorClusterNeutral objects. The tracks and π0 forming the η meson candidate are

then combined using four-vector addition with the constraint that daughters origi-

nate from the primary vertex. The resulting candidate is required to be within the

mass range 0.515 to 0.575 GeV/c2.

In both cases, once an η meson candidate is identified, it is refitted to have the PDG

mass of the η, using the same principles applied in the π0 case.



3.3 Event Reconstruction 102

3.3.5 Skim Selection Criteria

With the lowest level composites reconstructed, the skim used for this analysis is

applied, known as BToCXX. This requires events to contain at least one charged track

and two other particle candidates. Individual tag-bits are set for specific decay final

states such as ηπ+π0. A requirement is also made that the energy of the final

state not exceed 20.0 GeV. The reduced data sample contains lists of objects from

events satisfying the skim criteria. These are then made available for higher level

reconstruction. The efficiencies of the skim for data and MC are shown in Table 3.2.

Table 3.2: Skim efficiencies for data and Monte Carlo, defined for MC as the number
of events passing the skim selection as a fraction of the total generated. For data it is the
number of events passing the skim selection as a fraction of those passing OPR.

Data Skim Efficiency (%)

On-Resonance 7.4
Off-Resonance 6.5

Signal MC

B± → a±0 π0 (η → γγ) 58.7
B± → a±0 π0 (η → π+π−π0) 68.2

Background MC

qq (q = u, d, s) 29.3
cc 30.8
B+B− 11.8

B0B0 9.0

3.3.6 High Level Composite Candidate Reconstruction

a
±
0 Candidate Reconstruction

Reconstruction of a±0 candidates proceeds identically for both η decay modes. Tracks

from the GoodTracksLoose list are combined with the relevant η candidate and a

vertex-constrained fit is applied.
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B Candidate Reconstruction

The final step of the reconstruction is to create a candidate B meson for further

analysis. This is achieved by combining a±0 candidates with π0 candidates taken from

the pi0DefaultMass list. A vertex-constrained fit is also applied to the resulting

candidates.

Due to the nature of the reconstruction process, multiple candidate B mesons can

exist for each event. The reason behind this and treatment of the ensuing candidates

is discussed in the next chapter.

3.4 Analysis Variables

3.4.1 Strategy for Background Discrimination

When studying the decays of B mesons the particles and their decay products can

be characterised in a number of different ways. The key goal of any such variable is

that it should provide a significantly different distribution in signal and background,

thus making it possible to differentiate between the two. This analysis makes use of

variables based on particle kinematics, the shape of events and particle identification

(PID) assessments of charged tracks.

3.4.2 Kinematic Variables

The principal kinematic quantities used for the analysis are the two most widely

used for B physics analysis in BABAR [47]. They are the beam energy-substituted B

mass, mES, and the beam and B candidate energy difference, ∆E. Both make use of

the fact that we know the centre of mass (CM) energy of the Υ (4S) system to high

precision. Since we are sitting on the resonance we know there is too little energy

to create a BB pair plus a further particle. Therefore we expect the energy of B

candidates to be half the beam energy, which also fixes the momentum magnitude to
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be pB =
√

E2
B −m2

B, where EB and mB are the energy and mass of the B candidate.

Explicitly, mES and ∆E are defined as in Equations 3.1 and 3.2 below. Calculations

for mES are done in the laboratory frame whereas ∆E is in the centre of mass frame.

mES =

√

(1
2
s+ ~p0.~pB)2

E2
0

− |~pB|2, (3.1)

∆E = E∗
B − 1

2

√
s, (3.2)

where ~p0 and E0 are the momentum and energy of the initial (e+, e−) state and the

∗ indicates this quantity is expressed in the centre-of-mass system. s is the square

of the CM energy. Events which are not true B decays, or mis-reconstructed B

decays other than our desired signal mode, may have mES or ∆E values outside the

expected range and can therefore be classified as background.

For mES, true signal events should form an approximately Gaussian distribution

centred around the B mass, 5.28 GeV/c2. For ∆E the calculation is performed

assuming a pion hypothesis for charged tracks and in this case the Gaussian should

be centred around zero for a true B. For different particle types in the decay the

Gaussian will contain components with shifts to lower mean values.

In the case of continuum background events the distribution is spread over the

entire range for both variables. For mES this can be parameterised with an ARGUS

threshold function [48] and for ∆E with a basic low order polynomial. Signal and uds

continuum MC distributions for both of these variables are presented in Figure 3.1.

Decays of B mesons other than the desired signal mode will respond differently

depending on the final state of the decay. If the final state is different from that which

is sought, a greater degree of mis-reconstruction has occurred and the distribution

is more likely to be non-Gaussian. If the final state is the same as that which is

sought the decays are indistinguishable from the desired signal mode and are likely

to peak at 5.28 GeV/c2 and zero for mES and ∆E, respectively. It is in these cases
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Figure 3.1: Comparison of signal and uds MC distributions for mES (left) and ∆E
(right). In both cases the signal is denoted by the red solid line and the uds by the blue
dotted line. The distributions are arbitrarily normalised to aid comparison and are not
comparable across the two variables. The MC used to make these plots has all selections
described in Section 3.3 applied with the exception of those on the mass of the η, which is
instead required to satisfy 0.5 < mη <0.6GeV/c2.

that these variables have the least discriminating power. It should be noted that,

as can be seen on the right hand side of Figure 3.1, the peak for the ∆E variable

appears shifted downward by a small amount (up to 10 MeV) from zero. This effect

is seen in both η channels, although only to a smaller extent in η → π+π−π0. At

this point there explanation available for this shift beyond it being related to the

EMC calibration - a cause which could be consistent with the effect being worse in

the mode EMC dependent η → γγ channel. The final result will account for any

uncertainty in the shape of the distribution as a systematic error.

The other kinematic variables used in the analysis are the resonance masses of the a±0

and η mesons. Since the η meson mass is fixed to the PDG value when reconstructing

the a±0 , its true mass distribution is effectively uncorrelated with that of the a±0 and

thus the two can be used together without the risk of bias.

The resonance masses are useful in reducing contributions fromB background decays

above and beyond what is provided by mES and ∆E. In cases where there is no η

decay there should be no well defined peak in the distribution. The same is true for

the a±0 resonance mass. This is particularly useful in the case of a background with a

similar final state since a large fraction will not contain a±0 decays. Distributions for
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each of these variables for signal and uds continuum MC are presented in Figures 3.2

and 3.3.

)2 mass (GeV/c0a
0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

)2
Ev

en
ts/

(0
.0

04
 G

eV
/c

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Figure 3.2: Comparison of signal and uds MC distributions for the a0 resonance mass.
The signal is denoted by the red solid line and the uds as the blue dotted line. The
distributions shown are from η → γγ samples, but are not dependent on the η resolution
due to the mass constrained refitting discussed in the text. The distributions are arbitrarily
normalised to aid comparison. The MC used to make this plot has all selections described
in Section 3.3 applied with the exception of those on the mass of the η, which is instead
required to satisfy 0.5 < mη <0.6GeV/c2.

A complication to the signal model is the shape of the a0 mass distribution, which

is distorted due to the KK decay channel. The MC has been generated assuming a

relativistic Breit-Wigner shape. Statistical limitations of the available dataset mean

we would not be sensitive to any model improvement at this stage. The technically

correct model would be a Flatté lineshape [26], which is a modified Breit-Wigner

accounting for the KK partial width in the complex term.

3.4.3 Event Shape Variables

The next set of variables used in the analysis exploit the fact that signal and back-

ground events can have differing spatial distributions. For example, considering the

centre of mass frame, continuum events tend to have a jet like structure due to the

low mass of the decay products. B meson decays, on the other hand, tend to be

isotropically distributed about the interaction point. This fact is exploited in the

analysis using a quantity known as thrust [49], defined in Equation 3.3.
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Figure 3.3: Comparison of signal and uds MC distributions for the η mass in the γγ case
(left) and η mass in the π+π−π0 case (right). In both cases the signal is denoted by the red
solid line and the uds as the blue dotted line. The η mass peak is narrower in the π+π−π0

case due to the presence of charged tracks in the final state, which can be reconstructed
with greater accuracy than photons. The distributions are arbitrarily normalised to aid
comparison and are not comparable across the two channels. The MC used to make these
plots has all selections described in Section 3.3 applied with the exception of those on the
mass of the η, which is instead required to satisfy 0.5 < mη <0.6GeV/c2.

T =

∑

i |~Pi · n̂|
∑

i |~Pi|
, (3.3)

where ~Pi is the three momentum of the particle i and n̂ is the unit vector for which

T is a maximum. The sums are over all of the charged particles and photons in the

event.

Thrust is essentially a measure of the fraction of the momentum of the products

of an event or decay projected on to a given axis. By taking the cosine of the

angle between the thrust axis of a B candidate with that of the rest of the event

(θTB), it is possible to distinguish between a background-like event, where the two

axes will be highly correlated and thus lead to a distribution peaking at ±1, and

signal-like events, where the value of the cosine should be distributed evenly over

the range. All calculations are performed in the centre of mass frame. By placing

a selection requirement on this quantity it is possible to remove a large fraction of

mainly continuum events from the sample while removing a much smaller fraction

of signal.
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In practice this selection is applied to the absolute value of this variable, hereafter

referred to as |cos(θTB)|. The first exploitation of its large discriminating power

is performed when first reconstructing B candidates, where a selection is applied

requiring |cos(θTB)| < 0.9 to reduce file size. It is later used to aid event selection

when preparing samples for fitting. Signal and uds continuum MC distributions for

this variable are presented in Figure 3.4.
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Figure 3.4: Comparison of signal and uds MC distributions for |cos(θTB)|. The signal
is denoted by the red solid line and the uds by the blue dotted line. The distributions are
arbitrarily normalised to aid comparison. The MC used to make this plot has all selections
described in Section 3.3 applied with the exception of those on the mass of the η, which is
instead required to satisfy 0.5 < mη <0.6GeV/c2.

The second event shape variable used in the analysis is a Fisher discriminant [50].

This is a generic name for any linear function of the properties of a given sample

whose coefficients are selected to maximise the separation between given species [51].

The implementation of the discriminant used for the analysis is based upon four

different event shape quantities: the cosine of the angle between the direction of the

B candidate momentum and the beam axis; cos(θTB), as defined above; and the L0

and L2 Legendre polynomial projections [52] of the energy flow of the event with

respect to the B candidate thrust axis.

For the physics processes relevant to this analysis the Fisher is found to display Gaus-

sian distributions in differing parts of the variable range. Given the coefficient values

used at BABAR continuum background will tend to a more positive value with signal

tending to the negative side. Events containing B background decays will occupy the
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space in-between. In data the separation is not so great as to be able to distinguish

between the Gaussians and a combined Gaussian-like distribution is formed, with

background events tending to the positive side and signal to the negative. In order

to reduce sample size events are required to have a Fisher discriminant value within

the range −3 to 1, which eliminates mostly continuum events on the positive side.

On the negative side of the distribution only severely mis-reconstructed outliers are

removed. Distributions for signal, generic B+B− background and uds continuum

MC are presented in Figure 3.5.
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Figure 3.5: Comparison of signal, B+B− and uds MC distributions for the Fisher
discriminant. The signal is denoted by the red solid line, the B+B− by the green dashed
line and the uds by the blue dotted line. The distributions are arbitrarily normalised to
aid comparison. The MC used to make these plots has all selections described in Section
3.3 applied with the exception of those on the mass of the η, which is instead required to
satisfy 0.5 < mη <0.6GeV/c2.

It should be noted that, by definition, the Fisher discriminant and |cos(θTB)| will be

highly correlated. This is taken into account when constructing the fit model and

discussed further in the next chapter.

3.4.4 Particle Identification (PID)

The final source of information used to characterise events is PID information, which

applies to charged tracks. In BABAR this information is provided by the DIRC

and DCH detector subsystems. Maximum likelihood-based techniques [53] are used

to convert this information into a probability of a track satisfying a given PID
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hypothesis, i.e. whether it is a kaon, pion, electron or proton. It is then possible to

select tracks which are most likely to satisfy the desired particle hypothesis. In the

case of this analysis, we seek to minimise contamination of our pion track sample

from kaons. As such, a veto selection is placed on the likelihood of the track being a

kaon. The severity of this selection, which can be varied using selectors in different

likelihood ranges, is discussed further in the next chapter.
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Chapter 4

Maximum Likelihood Fit

4.1 Overview

This chapter will present the core analysis method used to extract a yield for B± →
a±0 π

0 from the experimental data. An unbinned multivariate extended maximum

likelihood fit is employed making use of Monte Carlo simulated data samples to

model the distributions for signal and background modes with respect to the chosen

fit variables. Contributions from charmless B decays are identified initially from a

selection-based exploratory analysis using MC samples. These selections are then

re-optimised with the full fit model in order to fully exploit the statistical power of

the maximum likelihood method. Fits are also run in other regions of the ηπ+π0

final state Dalitz plane in order to estimate charmless background contributions for

a number of poorly measured modes.

4.2 The Principle of Maximum Likelihood

In order to derive information from any sample of data, procedures called estimators

are used. Estimators, for example the arithmetic mean, are designed to parameterise

a particular property of the sample, or more accurately its parent distribution. A
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likelihood [54] is a statistical term used to describe the probability of a given value

of an estimator result producing a desired statistical distribution. For example a

sample may have a distribution in a certain variable which can be parameterised

as a 1st order polynomial function. An estimator would exist which would yield a

value for the x coefficient in the function. The polynomial can be considered as

a probability density function (PDF) for the sample with respect to that variable,

with the value of the estimator result defining the slope of the function. Varying

this result will change the slope and thus alter the probability that a given value of

the variable be represented in the distribution. This information can be computed

into a likelihood function,

L(x1, x2, . . . , xN ; a) = P(x1; a)P(x2; a) · · ·P(xN ; a)

=
∏

P(xi; a), (4.1)

for PDFs ‘P’ defined for values of the observable x and estimator result a. If the

PDF is based on a poor estimate of a the cumulative probability will be lower than

that for a sample with a more accurate value. So for example if a sloped distribution

is modelled as flat the probability assigned to the more populated end will be too

small and thus the cumulative value will be lower than it would be if the data

were modelled better, with higher probabilities for the more populous region. The

value of a yielding the ‘maximum likelihood’ will be that which best models the

distribution.

4.2.1 Implementation and Applications

In practice the PDF for a given event is modelled as the weighted sum of the PDFs

for all the possible event hypotheses, i.e. signal or any of the various backgrounds.

Therefore the overall likelihood for N events is defined as

L =
N
∏

i=1

[

m
∑

j=1

njPj(xi)

]

, (4.2)
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where nj are the yield weights assigned for each hypothesis present in each event.

This function can be modified to better model the case where the number of events

of any given species is actually unknown (such as is common in particle physics).

This is done by requiring that the total PDF integrates not to 1, but to the total

number of events for all hypotheses, which shall be referred to as
∑

nj here. This

is implemented by multiplying the likelihood by a term accounting for the Poisson

probability of obtaining N events from a mean value of
∑

nj,

L =
e−(

P

nj)

N !

N
∏

i=1

[

m
∑

j=1

njPj(xi)

]

, (4.3)

thus defining the so-called extended maximum likelihood [54]. By floating any nj

we can therefore obtain a yield estimate from the fit itself. Variations in nj will

alter the likelihood due to the exponential term. However, the associated change

in the normalisation of Pj will counteract this effect. The fitter balances the two

competing factors and thus the maximum L will yield the most probable number of

events,
∑

nj, for a given dataset.

It is simpler to compute the natural logarithm of the likelihood (since the numbers

involved would be minute for large distributions) and thus fitting programs actually

operate by minimising − lnL, which is equivalent to maximising L itself. This also

means that the calculation is a sum rather than a product, which is computationally

more convenient.

All likelihood fitting in the analysis was conducted using the RooFit toolkit for data

modelling [55], which is based on the Minuit [56] function minimisation core.

4.2.2 Ensemble ‘Toy’ Monte Carlo Generation

In order to test a particular fit model a method is used based on ensemble, or ‘toy’,

Monte Carlo studies. These are based on constructing a simulated dataset from
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MC which matches the yield profile expected for all signal and background modes

in the real data. This can be done either through generating events from the PDF

model, the ‘pure’ toy, or by selecting and using events from the MC based on the

full physics and detector simulation, the ‘embedded’ toy.

In a pure study ‘experiment’, a given PDF parameter is tested by generating events

from a known PDF model with a desired value of that particular parameter re-

quired. Events are generated randomly throughout the allowed parameter space of

the particular fit variables in use for that model, for example mES and ∆E. The

final dataset is generated to match the PDF distributions in each variable of the

initial model. Once complete, this dataset is re-fitted with the original PDF model

with the value of the parameter under test allowed to float. If the model is internally

consistent, i.e. all shapes are sufficiently distinct so as not to cause bias, the refitted

value of the parameter should be close to, if not the same as, the original value.

This similarity is described using a quantity known as the ‘pull’, which is a measure

of the difference between the initial and re-fitted values of the parameter in terms

of the statistical error on the re-fitted value. The pull P is defined as:

P =
Fitted Value − Generated Value

Fit Error
. (4.4)

The toy experiment is repeated a number of times, ensuring that the random distri-

butions generated each time are all distinct, to produce a distribution of pulls. If the

model is unbiased and the error calculated properly the pull distribution should be

Gaussian, centred on zero with a width of one. Any divergence from this indicates

a problem with the fit model.

Embedded toy studies are similar to pure studies except that, instead of generating

events from the PDFs, they use fully simulated MC to make up the event sample

for the part of the model under test. This provides an extra test of the model as

the PDF hypothesis may not correctly model correlations between variables present

in data and MC. Any biases resulting from such a study, indicated by an abnormal
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pull distribution, suggest the presence of a correlation which has either been poorly

modelled, or not modelled at all.

Toy studies will be used throughout the analysis to validate a number of aspects of

the model. These will be presented in the relevant sections of the text. Where an

event yield is generated it will be smeared according to Poisson statistics in keeping

with the extended maximum likelihood method. The validation section will present

a review of the most comprehensive, full model toy studies.

4.3 Configuration of Variables

The maximum likelihood fit implemented for the analysis was based on four vari-

ables. For some modes no correlations exist between these variables; in these cases

the PDFs for each decay hypothesis were constructed as products of the PDFs for

each of the four variables. Where a significant correlation is expected to occur be-

tween two variables the relevant distributions are modelled two-dimensionally with

the resulting PDF multiplied with those for the two uncorrelated variables.

The variables used for the fit were mES, ∆E, the a0 resonance mass ma0 and the

Fisher discriminant F . These variables were expected to give the maximum dis-

criminating power to the fit while minimising inter-variable correlations, which can

impair fit performance. The remaining variables; | cos(θTB)|, the η resonance mass

and the PID selectors, were thus used in event selection to reduce the size of the

fitting sample. The reasons for these choices are discussed below. The area of the

data allowed by the combined selection criteria will be referred to as the ‘signal box’

throughout the text.

4.3.1 | cos(θTB)| vs. F

Due to the large correlation between | cos(θTB)| and F , it was decided that both

could not be used in the fit. F was chosen due to its superior discriminating power
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for B background modes as well as being easier to parameterise effectively than

| cos(θTB)|.

4.3.2 a0 and η Resonance Masses

It was decided to leave the η resonance mass out of the fit due to two main fac-

tors. Firstly, a large number of background decays contain η mesons and so its

discriminating power as a fit variable will not be that large. This is in contrast to

the a0 resonance mass where only a few background modes were expected to give a

peak. Secondly, the stability of a fit tends to decrease with increasing numbers of

variables. Any increase in fit power from including the η mass was not considered

worth the resulting loss in stability. As with | cos(θTB)|, the η mass was therefore

used to select events so as to reduce the sample size.

4.3.3 The Role of PID

Particle Identification information was used by placing a selection on a particular

severity of a likelihood-based kaon veto in order to reduce the data sample. The

particular severity was chosen from an optimisation process for all selection variables

which will be described shortly. As far as the veto is concerned, the tighter the

selection, the more likely that the tracks removed from the sample will be kaons,

and not mis-identified pions. However the efficiency of the selection for kaons will

be lower than for a looser case, therefore a lower fraction of the overall number of

kaons would be removed.

4.3.4 Correlations Between Kinematic Variables

Small correlations between mES and ∆E were expected in most decay types since

they are calculated from the same fundamental kinematic properties of an event.

However, any effect is small compared to the correlation between | cos(θTB)| and
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F . As such this did not affect the decision to use both variables in the fit. Any

correlations were expected to be most evident in background charmless B decays and

a solution was implemented using non-parametric PDFs to model the distributions.

These will be explained in more detail when describing the charmless B background

model. For the signal mode mES and ∆E were taken as uncorrelated.

4.4 Signal Model

In the following section the procedure by which the signal model for the fit is con-

structed will be discussed. This model is based on a novel approach to identify

mis-reconstructed signal events using the discriminating power of the fit.

4.4.1 Multiple Reconstructed Candidates Per Event

In any given event there may be multiple reconstruction paths available to the

software. For example, two separate combinations of photons could provide separate

η candidates both of which satisfy the conditions prescribed before. Instead of

attempting to decide which η candidate to use the software splits the reconstruction

hypothesis into two, one based on the first η and the other on the second. This will

result in two separate a±0 candidates and eventually two separate B meson candidates

for a given event. This process can occur a number of times in the reconstruction

of an event leading to multiple B candidates.

Since there is only one real physics event associated with multiple B candidates, a

way must be found to avoid multiple counting. This can be done by selecting one B

candidate from each event, either randomly or based on various candidate quality

factors. It is often the case for signal events that one of the final B candidates is the

true decay and the others are mis-reconstructions, although it is possible that all of

the B candidates in an event are mis-reconstructions. Clearly, for non-signal events,

all candidates are mis-reconstructions. For signal, techniques exist which attempt

to distinguish between the true B candidate and the mis-reconstructed ones, which
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will be referred to hereafter as self-crossfeed (SxF) candidates for true signal events.

While useful these methods are never 100% efficient.

Another way of dealing with multiple candidates is to model all of the B candidates

in the final sample and find a way of extracting the true event number based on either

estimates of the multiplicity or the shape difference between true signal and SxF

distributions for given variables. This analysis uses the latter technique. Discussion

and validation of this method will now be presented, as well as a review of the

potential ways to select a ‘best’ B candidate from an event.

4.4.2 Methods of Separating Signal and SxF

As mentioned previously, SxF B candidates are defined as the result of a true signal

decay being mis-reconstructed to varying degrees. An example of this would be the

substitution of a photon from the other B decay for a true signal photon. Such

a mis-reconstruction has the effect of distorting the distribution for reconstructed

signal events in the variables used in the analysis.

Typically, each reconstructed event will contain the true reconstructed B meson

along with a number of SxF candidates , although it is possible that no SxF candidate

will exist. Events also exist where the true decay is not properly reconstructed at

all and therefore all candidates are SxF.

When constructing a fit model it is not always necessary to model the SxF explicitly.

This depends on whether it is distinct enough from the other backgrounds to bias

the fit if left unaccounted for, since the fitter has to associate all events present in

the sample with one of the available PDFs. In any case, it is always desirable to

remove SxF contamination from the signal shape in order to make it as distinct from

background as possible and therefore maximise the discriminating power of the fit.

In order to distinguish between signal and SxF, the method often used elsewhere

involves what is known as ‘Truth Matching’ (TM). This is a procedure which is only
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possible in Monte Carlo events and exploits the fact that the MC generator will

know the exact momenta, energies and decay trajectories of all generated particles.

By comparing the signatures (e.g. DCH hits) of reconstructed particles with the

generated ones, it is possible to identify their ‘truth partners’, i.e. those for which

the properties match within a certain error bound.

There are a number of ways to implement truth matching for a particle decay tree.

The one used for this analysis is to require a match to all the fundamental decay

daughters for the desired mode, i.e. the lowest level photons and tracks. By requiring

that these all satisfy the truth matching algorithm and that their truth partners are

all part of the correct signal decay tree it is possible to identify SxF candidates with

relatively good accuracy. The procedure is, however, imperfect. As such this analysis

used a method which, while using truth matching as a start point, is ultimately

independent of it.

4.4.3 Iterative Fit Parameterisation Method

Current truth matching methods are not perfect, there is an associated inefficiency

with the fundamental procedure. The inclusion of radiative corrections for charged

tracks in the MC has also been known to cause true signal events to be incorrectly

labelled as SxF, thus reducing the efficiency of the truth matching process. The

purity of the TM sample can be affected by errors which result in SxF candidates

leaking into it. These effects are undesirable since they firstly result in the signal

PDF containing what is effectively a background component, and thus being less

distinct from the other PDFs, reducing the discriminating power of the fit. Secondly,

true signal events can be lost into the SxF sample through inefficiency. In general,

the inefficiency is a larger effect than the impurity for truth matching. Should the

SxF component be included in the fit with the described effects in place, the PDF

may have a strong correlation with the signal, which will cause biases in the fit

results.

In order to circumvent problems with truth matching the analysis used a novel

approach based on modelling the shapes of signal and SxF separately and using the
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fit itself to decide what is signal and what is SxF. The procedure is based on the

assumption that true signal decays will adopt a distribution which can be described

by a particular shape in each variable, independent of whether it is truth matched

or not. SxF candidates are modelled following the assumption that they will adopt

a background-like distribution, again with a shape independent of truth matching.

The PDF functions used here are listed in Table 4.1 and are identical (albeit with

differing shape parameter values) for both η decay modes. For the true signal case

∆E is modelled using a Novosibirsk function [42], which is a Gaussian with a power

law tail. For mES two independent Gaussians are used, referred to in the table as a

‘Double Gaussian’. Here all five parameters: two means, two widths and the relative

fraction are allowed to float in the fit. The Fisher discriminant is parameterised as

a ‘Bifurcated Gaussian’, which is one with three free parameters: a mean and two

asymmetric width components (dependent of which side of the mean is being con-

sidered). The a0 resonance mass is modelled with a Breit-Wigner shape (for reasons

discussed in the previous chapter). In general, the SxF is modelled with shapes

similar to those expected for background distributions, i.e. with Chebychev poly-

nomials [52] and, in the mES case, an ARGUS threshold function [48]. Chebychev

polynomials are used where a smooth function is required throughout the analysis

for all decay modes since they are designed to minimise the correlations between

polynomial coefficients and thus increase fit stability. The SxF Fisher is modelled

with a Double Gaussian.

The shapes for each PDF were modelled based on signal MC. The generated samples

for both η decay modes were each comprised of 531,000 events. In order for the pro-

cedure to work, truth matching is used to separate the signal and SxF distributions

to the best possible accuracy before the fit procedure is applied. The assumption is

made (which the TM must be good enough to achieve) that the truth matched signal

component has high purity, with little SxF contamination. This is fair since errors

in truth matching are observed to be more likely to reject true signal events than

promote false ones. Therefore the TM sample is used to extract initial parameters

for the ideal PDFs. The functional form for the ideal PDF will be referred to as

S(pi) where pi are the parameters used in the fit to the four variables.
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Table 4.1: The PDFs used to model each variable used to fit signal and SxF in the MC.
The model is identical for both η subdecay modes.

Variable Signal Function SxF function

∆E Novosibirsk 3rd order Chebychev polynomial
mES Double Gaussian ARGUS
ma0 Breit-Wigner 2nd order Chebychev polynomial
F Bifurcated Gaussian Double Gaussian

As the truth matching algorithm is not 100% pure, the truth matched sample derived

from it will have a very small component of SxF with a different functional form from

the true signal component. The key to this procedure is that this SxF contribution

is not large enough to prevent an accurate parameterisation of the signal peak being

acquired. As shown in Figures 4.1 and 4.2, the SxF contamination is small and thus

does not cause a problem.

The rest of the sample of signal events, made up of those which do not satisfy the

truth matching algorithm, is a mixture consisting mainly of SxF with some true

signal events incorrectly interpreted as SxF by the algorithm. This sample is used

to parameterise the SxF shape using the function (1−fTM )S(pi)+fTMX(qj), where

X(qj) corresponds to the SxF PDF with shape parameters qj. The fit fraction fTM

corresponds to the fraction of SxF in the non-TM sample. In this case, the shape

parameters for the signal component, pi, are held fixed at the values obtained from

the fit to the pure TM sample. The SxF shape parameters however, are allowed to

float along with fTM . This has the effect of allowing the SxF shape to be accurately

modelled without the distortion caused by the true signal events which have leaked

into the sample. This can be thought of as ‘background subtracting’ the true signal

distortion from the desired SxF distribution.

Once this is complete the function (1 − fTM)S(pi) + fTMX(qj) is used to fit the

original TM sample, which includes the previously discussed small SxF distortion.

This time the SxF shape parameters qj are fixed and the signal shape parameters

pi and fit fraction fTM are floated. Here, fTM refers to the fraction of SxF in the

TM sample. Thus it is possible to improve the signal shape by removing some
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Figure 4.1: Fits to the separate signal (left column) and SxF (right column) samples
for the η → γγ subdecay mode. The total PDF is the blue solid line, the pure signal PDF
is the red dashed line and the SxF PDF is the black dot-dashed line.

of the distortion caused by the small number of incorrectly truth matched SxF

events. This results in a small change to S(pi). The process is then iterated, fitting

truth matched and non-truth matched samples alternately as described, until the

fit fractions and shape parameters stabilise. In practice this takes five iterations to

complete satisfactorily.

The procedure is initially run separately on each variable (for stability purposes) to

get good estimates for pi and qj. The PDFs are then combined into the full 4D model

and the iteration is re-run, once again with five steps. The shape parameters are

mostly stable after the 1D phase but the errors are reduced at 4D. As a cross check,

the stable model is fitted to the entire MC sample, containing all signal and SxF

components, (1 − f)S(pi) + fX(qj). Here all shape parameters are fixed and only
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Figure 4.2: Fits to the separate signal (left column) and SxF (right column) samples
for the η → π+π−π0 subdecay mode. The total PDF is the blue solid line, the pure signal
PDF is the red dashed line and the SxF PDF is the black dot-dashed line.

the fit fraction f is floated. This corresponds to the overall SxF fraction in the MC

sample. Thus the overall number of signal and SxF candidates can be estimated.

Plots of the resulting distributions are presented in Figures 4.3 and 4.4 for both η

decay modes. As will be seen the negative shift away from zero in the ∆E variable

for both η channels, as discussed in Section 3.4, is still present. This is thought to

be an EMC calibration issue since the effect appears reduced in the η → π+π−π0

channel.

The results of the 4D iterations are presented in Table 4.2 for both η subdecay modes.

A number of quantities can be extracted from the process in order to test both the

validity of the model and the quality of the truth matching algorithm. Firstly,

the purity of the truth matched sample can be estimated from the fraction of signal
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Figure 4.3: Fits to the whole signal MC sample for the η → γγ subdecay mode using the
parameterisations extracted from the iterative procedure. The total PDF is the blue solid
line, the pure signal PDF is the red dashed line and the SxF PDF is the black dot-dashed
line.

candidates identified in it by the iterative fit. For η → γγ this quantity was found to

be 94.4±0.1% and for η → π+π−π0 it was slightly lower at 92.2±0.2%. In addition

to this the fraction of signal events in the non-TM sample can be estimated by

similar means. Thus by combining these it is possible to estimate the total number

of true candidates in the entire sample (TM and non-TM). For the procedure to

be a fair estimate this combined number cannot be greater than the number of

events. This is a key test as there cannot be more than one true candidate per

event (as verified in Table 4.2). This being the case, the yield associated with the

true signal PDF will automatically represent the true number of signal events even

in the presence of multiple candidates. Finally the efficiency of the truth matching

can be estimated by calculating the number of true signal candidates fitted in the

TM sample as a fraction of those fitted in the overall sample. For η → γγ this

was found to be 87.9±0.8%, while for η → π+π−π0 it was worse, measured at
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Figure 4.4: Fits to the whole signal MC sample for the η → π+π−π0 subdecay mode
using the parameterisations extracted from the iterative procedure. The total PDF is the
blue solid line, the pure signal PDF is the red dashed line and the SxF PDF is the black
dot-dashed line.

74.1±0.3%. From the cross-check fits to the total sample the overall signal fraction

for η → γγ was calculated to be 62.4±0.2%. From this the efficiency for true signal

MC was estimated to be 15.44±0.06%, this efficiency will be used later to calculate

the branching fraction for the mode resulting from our fit results. The efficiency

is defined as the number of signal events fitted in the overall signal MC sample as

a fraction of the total number of events generated (531,000). It is noted that in

this case the combined number of signal candidates from both fits does not agree

within error with the number from the fit to the total sample. This may indicate

some systematic issues but since the agreement is still good to within 1% no further

investigation was carried out. For η → π+π−π0 the signal fraction comes out to be

62.5±0.2%, giving a true signal MC efficiency of 10.83±0.05%. The results of the

iteration method are clearly dependent on the selection optimisation procedure and

so the signal MC efficiencies are also presented in Table 4.12, Section 4.6.6.
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Table 4.2: The results, for both η decay modes, of the 4D iterative fit to determine
signal model shape parameters and separate out signal and SxF candidates. All quantities
are expressed in terms of numbers of candidates.

Fit Quantity η → γγ η → π+π−π0

Number of events in sample 96545 65443

Number of B candidates in TM sample 76393 46214
Fitted signal fraction in TM sample (purity) (%) 94.4±0.1 92.2±0.2
Number of fitted signal candidates in TM sample 72115±76 42609±92

Number of B candidates in non-TM sample 55011 45776
Fitted signal fraction in non-TM sample (%) 16.2±0.2 31.5±0.3
Number of fitted signal candidates in non-TM sample 8912±110 14419±137

Combined number of signal candidates from both fits 81027±134 57029±166

Total B candidates in sample 131404 91990
Overall fitted signal fraction in total sample (%) 62.4±0.2 62.5±0.2
Fitted number of signal candidates in total sample 81996±263 57494±184

Efficiency of TM algorithm (%) 87.9±0.8 74.1±0.3

4.4.4 Strategy for SxF Component in Final Fit and the
Treatment of Multiple Candidates

As a result of the iteration process we have achieved, as shown in Figures 4.1 and 4.2,

independent parameterisations for true signal and SxF and the signal model is there-

fore maximally distinct from background.

Candidates covered by the SxF model can be treated via one of three possible

options:

� Fit the combined signal/SxF model, (1− f)S(pi)+ fX(qj), with fixed param-

eters pi, qj and overall SxF fraction f as defined previously, to extract a yield

for all candidates Ntot and define the signal yield in terms of the signal fraction

based on the results from MC, i.e. Nsig = (1 − f)Ntot

� Fix the SxF yield to a given value, allowing only the signal yield to float. Since

a low yield is expected, the SxF would be fixed to zero, i.e. only using the

signal shape, S(pi), in the fit. It would be assumed that any SxF events will

be absorbed by other background PDFs, mainly continuum. The signal yield

would therefore be given directly by the fit.
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� Allow both signal and SxF yields to float independently of any common frac-

tion, NsigS(pi)+NSxFX(qj). The signal yieldNsig would once again be resolved

directly from the fit.

The first option was originally preferred as it made full use of the information ex-

tracted from the iteration procedure while modelling any SxF events that might be

present in the final sample. It was pointed out, however, that in a low background

limit such a procedure may violate Poisson statistics. This could occur in such a

situation since the error is estimated by scaling down the fitted error by the signal

fraction from the iterative fit. Thus in a signal dominated situation this scaled error

estimate could be lower than
√
N for signal yield N . Although in this analysis the

backgrounds were large, it was decided that the most correct procedure statistically

is number three, floating both signal and SxF yields independently. However the fit

was found to be too unstable for this to be viable. This was mainly due to large

correlations between the SxF component and the continuum model. The decision

was finally made, in the light of this, to proceed with option two, where the SxF

shape is fixed in the fit. Since we expect no signal (and hence no SxF) the SxF yield

was finally fixed to zero. Any SxF events which did occur would then be absorbed

by the continuum model. Thus the only signal model component used in the final

fit was the pure component, the yield from which would directly correspond to the

number of signal events, even in the presence of multiple candidates.

The lack of signal contamination from SxF for this model was verified using a pure

toy MC study whereby a known quantity of events were generated from the SxF

PDF. Should these leak into the signal shape a pull bias would be evident in the

result. The results of this study are presented in Table 4.3. No significant bias

as a result of SxF contamination was detected. As such the decision was taken to

proceed with this fitting strategy. The plots associated with this study are presented

in Appendix A.1.
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Table 4.3: The results of the toy studies to assess the potential bias arising from not
explicitly including an SxF component in the fit. The signal yield pull is represented by
Psig and the signal yield statistical error by σNsig

. The width of the pull distribution is
given by ΓPsig

. The fitted and expected signal yields are given by Nsig and Gsig respectively.
The generated SxF yield is given by Gsxf . Finally the number of toy experiments run is
given by Ntoy.

Toy type Gsig Gsxf Ntoy Nsig Psig ΓPsig
σNsig

(events) (events) (events) (events)
η → γγ 0 10 489 1.15±0.85 −0.01±0.04 1.00±0.03 18.81±0.09
η → π+π−π0 0 10 499 −0.31±0.58 −0.13±0.05 1.09±0.03 12.01±0.09

4.5 Continuum and Charmed B Decay Background

Models

In this analysis the continuum light quark background shape was modelled in two

steps. In the initial step, a parameterisation was based on a combination of large

fully simulated MC samples for e+e− → qq (q = u, d, s, c). This ensures that the

shapes are based solely on continuum-like events and allows us to model events

which lie kinematically underneath the signal peak in mES and ∆E. The MC is

not perfect but is sufficient to provide an initial estimate for the shape parameters,

providing the fit sensible starting values to ensure convergence for the next step of

the process. This second step of the parameterisation was to float the majority of

continuum shape parameters in the final fit to the on-resonance data. Therefore

the final parameterisation was based on the on-resonance data sidebands i.e. events

outside the expected signal region in the fit variables. Since all B background

shapes are held fixed in the final fit any correlations between continuum and B

backgrounds are therefore minimised since the continuum shape should adapt to

exclude contamination from these modes. The continuum model is tested using fits

to off-resonance data, which are expected to contain no B decays. The results of

this are presented in the validation section.

The backgrounds from charmed B decays, i.e. those involving a b→ c quark transi-

tion, are not expected to peak in the mES and ∆E or ma0 variables. This is because
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Table 4.4: The PDFs used to model each variable to fit the bulk background distributions
for both η subdecay modes. BW = Breit-Wigner, BG = Bifurcated Gaussian, SG = Single
Gaussian and Pn = nth Order Polynomial.

Decay channel ∆E mES a±0 mass Fisher

η → γγ subdecay mode

B+B− P3 Arg P2 BG

B0B0 P3 Arg P2 BG
Combined qq (q = u, d, s, c) P2 Arg BW + P2 SG + BG

η → π+π−π0 subdecay mode

B+B− P3 Arg P2 BG

B0B0 P3 Arg P2 BG
Combined qq (q = u, d, s, c) P2 Arg BW + P4 SG + BG

it is unlikely that a significant number of events of this type will produce a combina-

tion of decay products with the correct kinematics to emulate the signal mode. They

are therefore treated in much the same way as continuum. They are modelled using

centrally produced MC, stripping out all charmless decay contributions. Charged

and neutral B decays are modelled separately and all shape parameters are held

fixed in the final fit, unlike the continuum case.

The models for both background sources are almost identical for the two η subde-

cay modes and are presented in Table 4.4. Kinematic variables mES and ∆E are

modelled using an ARGUS threshold function and nth order Chebychev polynomial,

respectively.

The Fisher variable is modelled in the charmed B case using a Bifurcated Gaus-

sian. For the continuum this is modelled with a more complex function in order to

correctly model the low side tail often present in this variable in continuum events.

A central Gaussian is used in conjunction with a Bifurcated Gaussian to model the

tail. Both Gaussians are required to have the same central mean.

The a0 mass variable is modelled for charmed B decays using an nth order Chebychev

polynomial, since no peaking behaviour is observed in the MC. For continuum the

situation is complicated by the fact that there may be real a0 mesons produced

through processes other than the desired signal mode. In order to minimise any
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bias in this case a Breit-Wigner component is included, with shape parameters

taken from the signal MC (pure shape component), together with the standard

polynomial. The Breit-Wigner parameters are then fixed in the final fit, but the

fraction of the PDF taken up by this component is allowed to float since the amount

of a0 production is not known a priori. Plots showing MC distributions and PDFs

for continuum and charmed B backgrounds are presented in Appendix B.

In the final fit the yield for continuum events is floated. For toy MC purposes a

prediction is calculated as follows:

Nudsc = (LINT × σuds × εuds) + (LINT × σcc × εcc) , (4.5)

where the total contribution Nudsc is the sum of the separate contributions estimated

from uu, dd, ss and cc MC. LINT is the total integrated luminosity of the data

sample, σX is the production cross-section for each mode and εX is the efficiency for

each mode passing the selection criteria.

It should be noted that for the η → γγ case the predicted yield used for toy experi-

ments is scaled down by 20% to account for a previously observed problem modelling

low multiplicity events in the MC leading to an incorrectly large sample passing the

event selection criteria. This was discovered in an earlier iteration of the analysis

when the background contributions predicted from the MC were found to to be sig-

nificantly higher than the number of events present in the on-resonance dataset for

the same selection criteria.

The expected charmed B decay yield in the final fit and for toy studies is calculated

as follows:

Ncharm = NBB × 0.5 × εcharm , (4.6)

where Ncharm is the yield for either charged or neutral mode, NBB is the total number

of BB events in the data, calculated using a process known as B-counting [45] and
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εcharm is the efficiency of each mode for passing the selection cuts. The sample

is assumed to contain 50% B+B− and 50% B0B0, hence the factor of 0.5 above.

Breakdowns of the predicted contributions from these background components for

both η decay modes are presented in Tables 4.5 and 4.6.

Table 4.5: The efficiencies and predicted contributions from charmed B decay and
continuum backgrounds for the optimised selection criteria in the η → γγ case. The
errors on the B candidate multiplicities are calculated as RMS/

√
N .

Mode MC Events Efficiency cross Signal box B Candidate
sample passing (×10−5) section contribution Multiplicity

size Selection (nb) (events)

uds 696M 79693±282 11.45± 0.04 2.09 65238
�

1.184±0.002
cc̄ 581M 14400±120 2.48± 0.02 1.30 8773

�
1.172±0.004

B+B− 556M 1425±38 0.26± 0.01 0.535* 487 1.14±0.01

B0B
0

552M 832±29 0.15± 0.01 0.535* 286 1.20±0.02

*The cross-sections for B decays are included for informational purposes only, the number of B mesons used is

actually taken from B-counting. � The continuum contributions for this mode are scaled down by 20% to correct

for a previously observed MC problem.

Table 4.6: The efficiencies and predicted contributions from charmed B decay and
continuum backgrounds for the optimised selection criteria in the η → π+π−π0 case. The
errors on the B candidate multiplicities are calculated as RMS/

√
N .

Mode MC Events Efficiency cross Signal box B Candidate
sample passing (×10−5) section contribution Multiplicity

size Selection (nb) (events)

uds 696M 18423±136 2.65± 0.02 2.09 18852 1.245±0.005
cc̄ 581M 8484±92 1.46± 0.02 1.30 6461 1.23±0.01
B+B− 556M 1201±35 0.22± 0.01 0.535* 411 1.19±0.02

B0B
0

552M 856±29 0.16± 0.01 0.535* 294 1.20±0.02

*The cross-sections for B decays are included for informational purposes only, the number of B mesons used is

actually taken from B-counting.

4.6 Charmless B Decay Background Model

Charmless decays, i.e. those which do not involve a b → c quark transition, form

a potentially peaking background component in the analysis. As such they are the

hardest to distinguish from the desired signal decay. In some cases, where the final

state of the background mode is the same as for signal, the situation can be further
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complicated by quantum mechanical interference between overlapping signal and

background resonances.

4.6.1 Decays to the Same Final State as Signal

Some of the expected major charmless backgrounds for the analysis can be predicted

by looking at the Dalitz plane (DP) for the ηπ+π0 final state, shown in Figure 4.5.
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Figure 4.5: A sketch of the ηπ+π0 Dalitz plane showing all major interfering back-
grounds. The signal mode is shown in blue with the kinematic acceptance window in red.

Our signal mode is a resonance in the m2
ηπ+ variable, shown in blue in the plot. Two

other low-mass resonances exist along the ηπ0 and π+π0 axes. The first corresponds

to the neutral a0
0 in the decay B+ → a0(980)0π+ and the second to the charged

ρ+ meson in the decay B+ → ρ(770)+η. Resonances are also thought to exist

corresponding to higher mass states of each of the above; these are the a0(1450)+/0

and ρ(1450)+ respectively. The B decay processes involved are analogous to those

for the lower mass resonances in each case. There is also a contribution from the
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theorised non-resonant B+ → ηπ+π0 decay, events from which are evenly distributed

over the available phase space.

When DP resonances overlap the two decay paths are indistinguishable, rendering

it difficult to separate signal from background. The same goes for the non-resonant

background, events from which are present underneath all resonances. These back-

ground decays will peak in the same way as the signal decay in mES, ∆E and Fisher,

leaving the a0 mass variable as the principal basis for discrimination. In this analysis

these modes are tackled by modelling them in the four fit variables using exclusive

MC samples and including the PDFs in the final fit at a fixed yield, the yield be-

ing based on the latest measurements or theoretical predictions. Therefore peaking

events not accounted for by the background PDFs remain as candidate signal events,

assuming they match the parameters required by the signal PDF.

Fortunately for these modes the DP predicts that, with the exception of the non-

resonant decay, only one resonance will overlap our signal mode. The overlap regions

for the ρ(770)+, a0(980)0 and a0(1450)0 are excluded by the kinematic limits of phase

space, shown by the red line in the figure. Thus only the decay B+ → ρ(1450)+η

should provide an undistorted peaking background. As such the non-resonant and

ρ(1450)+ modes are individually modelled in the final fit. Due to the proximity of the

ρ(770)+ resonance to the kinematic boundary it is possible that mis-reconstructed

events from this decay mode will contaminate the signal region near the boundary.

As such this decay was also modelled explicitly in the fit. It is also theoretically

possible for the a0(1450)+ resonance to interfere quantum mechanically with our

signal resonance due to their overlapping tails. However, since the yields for both

modes will be shown to be consistent with zero, it was decided to neglect any

interference effects.

4.6.2 Decays to Other Final States

The other potential source of charmless background comes from mis-reconstructed

events with a different final state from the signal mode. In order to identify these

backgrounds, two methods were employed.
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Firstly, the decays were identified which could constitute the same final state as

signal with a simple degree of mis-reconstruction. The categories chosen were as

follows: decays containing an extra particle in the final state, decays with one less

particle in the final state, decays which are the same except for particle ID (i.e.

contain a charged kaon instead of a charged pion) and finally those which contain a

mis-reconstructed η.

The second method used to identify decays was aimed at detecting those not in the

above categories. This was done by applying tight selections in the seven analysis

variables (mES, ∆E, F , ma0 , mη, |cos(θTB)| and PID) to reduce the generic B MC

sample down to only the handful of events which are underneath the signal peak,

and therefore hardest to distinguish. The events actually generated by the MC

were then identified. A number of background modes were discovered. Different

backgrounds were discovered for the two η subdecay modes. Note that the selection

values yielded from this optimisation were only used for background identification,

the main selection optimisation is done with the fit itself for greater accuracy.

All background modes discovered from these two methods were tested by applying

the optimal fit selection values to exclusive MC samples and predicting their signal

box yield. If the yield was less than one event, the mode was assumed to be negligible

and not included in the fit.

4.6.3 Expected Charmless Background Yields

The expected charmless background modes and their associated predicted yields are

presented for both η subdecay modes in Tables 4.7 and 4.8. The yields are calculated

as follows:

Ncharmless = NBB × B × εcharmless , (4.7)

where Ncharmless is the yield for the mode in question, NBB is the total number of
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BB events in the data, B is the branching fraction for that particular mode and

εcharmless is its efficiency for passing the selection cuts.

Where a measurement or upper limit for the branching fractions of the different

modes existed, they were used as the basis for the estimated yield. In the upper

limit case a value of 50%±50% of the limit was taken as the central value.

Where no measurement or limit existed the branching fractions were estimated in

a number of ways. The first method of obtaining an estimate is by comparing

the mode in question with a similar mode with a known BF or limit, a reference

mode. This method is applied to, for example, B0 → a±0 ρ
∓ and B± → a0

0ρ
±. The

reference mode should have one particle different and B0 → a±0 π
∓ and B± → a0

0π
±,

respectively, are used. For all three of these modes BFs are not available and limits

have been set [35]. These limits are multiplied by the square of the ratio of the

form factors [59] [60] to scale the limit of the reference mode to give a preliminary

estimate of the limit for the mode in question. The calculations are:

� For B0 → a±0 ρ
∓, B0 → a±0 π

∓ is used as a reference mode. The current limit for

the reference mode has been set at 2.8 × 10−6 [35]. Therefore the preliminary

estimate of the limit on the BF is

(209/131)2 × 2.8 × 10−6 = 7.1 × 10−6. (4.8)

� For B± → a0
0ρ

±, B± → a0
0π

± is used as a reference mode. The limit for the

reference mode has been reported as 5.8× 10−6 [35]. Therefore the calculated

preliminary limit is

(209/131)2 × 5.8 × 10−6 = 1.5 × 10−5. (4.9)
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Table 4.7: The charmless B decay modes considered as potential backgrounds that survive the selection cuts and appear in the signal
region for the η → γγ decay mode. The size of the samples and the efficiency of the skim cuts along with efficiency of the selection cuts
are presented. The values for the assumed BF are obtained in several ways as explained in the text. For all of the modes where only an
upper limit is available a value of 50% of the limit ± 50% (as per text) is used to calculate the final contribution to the signal box. All
of the modes which include an η have had their BF multiplied by 0.4 when calculating their final contribution to take account of the BF
of η → γγ. The errors on the B-candidate multiplicities are calculated as RMS/

√
N . Branching Fraction Limits marked ‘DP’ have been

extracted from Dalitz Plot fits which will be discussed later. * Includes B(a0(1450)
+ → ηπ+).

Decay channel Number of Number of Efficiency of the BF/Limit Number of B Candidate
events in the events after selection cuts (%) events in Multiplicity

sample all cuts signal box

Same final state

B± → ρ±η 134000 4732±69 3.53±0.05 5.3+1.2
−1.1 × 10−6 [35] 28±6 1.44±0.01

B± → ηπ±π0 (non-res) 175000 1003±32 0.57±0.02 < 6.0 × 10−6 (DP) 3±3 1.31±0.02
B± → ρ±(1450)η 208000 9340±97 4.49±0.05 2.65 ± 2.65 × 10−6 18±18 1.51±0.01
B± → a±0 (1450)π0 134000 5054±71 3.77±0.05 < 4.3 × 10−6 (DP)* 12±12 1.34±0.01

Same final state +1

B0 → a±0 ρ∓ 134000 4221±65 3.15±0.05 < 7.13 × 10−6 17±17 1.21±0.01
B± → a0

0ρ
± 134000 990±31 0.74±0.02 < 14.8 × 10−6 8±8 1.29±0.02

Same final state −1

B0 → ηπ0 143000 12342±111 8.63±0.08 < 1.3 × 10−6 [35] 9±9 1.50±0.01

Mis-reconstructed η

B± → π±π0π0(non-res) 1541000 8849±94 0.57±0.01 < 4.6 × 10−5 50±50 1.29±0.01

B± → ρ±π0 2882000 63808±253 2.21±0.01 10.8+1.4
−1.5 × 10−6 [35] 91+12

−13 1.491±0.003
B± → a±1 π0 143000 1741±42 1.22±0.03 1.66±0.36 × 10−5 77±17 1.25±0.01
B0 → π0π0 2882000 117279±342 4.07±0.01 1.31±0.21 × 10−6 20±3 1.599±0.003

InclusiveB → Xsdγ 1331000 229±15 0.017±0.001 1.64+0.58
−0.45 × 10−4 [57] 11+4

−3 1.35±0.04

InclusiveB → Xsuγ 1463000 279±17 0.019±0.001 1.64+0.58
−0.45 × 10−4 [57] 12+4

−3 1.41±0.05
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Table 4.8: The charmless B decay modes considered as potential backgrounds that survive the selection cuts and appear in the signal
region for the η → π+π−π0 mode. The size of the samples and the efficiency of the skim cuts along with efficiency of the selection cuts
are presented. The values for the assumed BF are obtained in several ways as explained in the text. For all of the modes where only an
upper limit is available a value of 50% of the limit ± 50% (as per text) is used to calculate the final contribution to the signal box. All
of the modes which include an η have had their BF multiplied by 0.23 when calculating their final contribution to take account of the BF
of η → π+π−π0. The errors on the B-candidate multiplicities are calculated as RMS/

√
N . Branching Fraction Limits marked ‘DP’ have

been extracted from Dalitz Plot fits which will be discussed later. * Includes B(a0(1450)
+ → ηπ+).

Decay channel Number of Number of Efficiency of the BF/Limit Number of B Candidate
events in the events after selection cuts (%) events in Multiplicity

sample all cuts signal box

Same final state

B± → ρ±η 134000 3026±55 2.26±0.04 5.3+1.2
−1.1 × 10−6 [35] 10+2

−2 1.42±0.02
B± → ηπ±π0 (non-res) 175000 404±20 0.23±0.01 < 6.0 × 10−6 (DP) 1±1 1.51±0.01
B± → ρ±(1450)η 143000 4307±66 3.01±0.05 2.65 ± 2.65 × 10−6 7±7 1.35±0.04
B± → a±0 (1450)π0 143000 4102±64 2.87±0.04 < 4.3 × 10−6 (DP)* 5±5 1.38±0.01

Same final state +1

B0 → a±0 ρ∓ 143000 3062±55 2.14±0.04 < 7.13 × 10−6 7±7 1.26±0.01
B± → a0

0ρ
± 143000 662±26 0.46±0.02 < 14.8 × 10−6 3±3 1.30±0.03

Same final state −1

B0 → ηπ0 143000 8077±90 5.65±0.06 < 1.3 × 10−6 [35] 3±3 1.44±0.01

Mis-reconstructed η

B± → π±π0π0(non-res) 1541000 298±17 0.019±0.001 < 4.6 × 10−5 2±2 1.25±0.04

B± → ρ±π0 2882000 1615±40 0.056±0.001 10.8+1.4
−1.5 × 10−6 [35] 2±0 1.38±0.02

B± → ρ±ω 675000 578±24 0.086±0.003 10.6+2.6
−2.3 × 10−6 [58] 3±1 1.24±0.02

B± → b±1 π0 143000 572±24 0.40±0.02 1.1 ± 1.1 × 10−5 17±17 1.30±0.03

InclusiveB → Xsdγ 1331000 65±8 0.005±0.001 1.64+0.58
−0.45 × 10−4 [57] 3±1 1.32± 0.09

InclusiveB → Xsuγ 1463000 89±9 0.006±0.001 1.64+0.58
−0.45 × 10−4 [57] 4±1 1.42±0.10
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� For B± → a±1 π
0 the BF is expected to be 50% of the measured value for the

related mode B0 → a±1 π
∓ [35] from isospin symmetry. The error is naively

assumed to scale as
√

2. The calculated BF is,

0.5 × (33.2 ± 5.1) × 10−6 = (1.7 ± 0.4) × 10−5 (4.10)

� For B± → b±1 π
0 the BF is estimated by scaling the expected value for B± →

a±1 π
0 using the ratio of theoretical predictions for other a1 and b1 modes. The

resulting prediction is (11 ± 11) × 10−6.

� For non-resonant B± → π±π0π0 the BF is estimated by scaling the expected

value for B± → π±π∓π±. The upper limit for this mode is 4.6× 10−6 [8]. The

two modes can be related using isospin symmetry, however, there are multiple

isospin amplitudes associated with this procedure. As such, a conservative

estimate of the limit is taken to be 4.6 × 10−5.

The second method for estimating charmless background yields relates solely to the

modes B+ → a0(1450)+π0 and non-resonant B+ → ηπ+π0. These modes, with the

same final state as signal, can be analysed using specific regions of the Dalitz plane

where they are expected to dominate. Fits to these regions are expected to yield

a good estimate of their contribution in the signal a0(980)+ region. The method

employed for these fits is discussed in detail later. These modes are expected to

give a small contribution in the signal region and as such were excluded from the fit

optimisation.

4.6.4 PDFs used to Model Charmless Backgrounds

The PDFs used to model the specific charmless backgrounds involved in the analysis

are listed in Tables 4.9 and 4.10 for each η subdecay mode. All were based on

exclusive decay MC samples for each mode. Plots of the PDFs for each background

mode are presented in Appendix B.
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In most cases the PDFs for Fisher were constructed from asymmetric Gaussians and

those for the a0 mass from combinations of Chebychev polynomials and Gaussian

or Breit-Wigner peaking components where appropriate.

For the B± → a±0 (1450)π0 and non-resonant B± → ηπ±π0 cases ∆E was modelled

using combinations of Chebychev polynomials and Novosibirsk peaking components,

while mES was modelled using combinations of the ARGUS threshold function and

Gaussian peaking components. In all other cases the expected correlations between

the variables led to the employment of a different method to model the distributions

two-dimensionally and thus correctly account for the effect. To do this a non-

parametric ‘KEYS’ PDF was used [61]. This system uses the MC sample to model

a given distribution as the summation of n Gaussians for a desired granularity. The

method can be implemented in any number of dimensions.

4.6.5 Techniques for Best B Candidate Selection

As previously discussed, SxF is the cause of multiple B candidates in any given

signal event. A standard way by which SxF can be reduced is by selecting a ‘best’

B candidate from each event and discarding the rest. This is done by selecting

on any number of candidate quality factors, the assumption being that the true

candidate will be closest to the ideal quantity in each chosen variable.

While useful, this method does, by definition, lose a certain fraction of true signal

events as well as potentially causing biases due to artificial peaks arising in the

background. If, for example, you select on a quantity related to the a0 mass you

essentially exclude background events which are far from the peak, thus only allowing

through those which display the most similar structure to the signal. This can cause

a signal-like peak in the mass distribution.

In order to ascertain whether such a selection would be beneficial in this analysis,

toy MC studies were carried out for fit models constructed using a simple and robust

best candidate selection hypothesis. This was done independently for both η decay
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Table 4.9: The full fit model for the η → γγ subdecay mode. BW =Breit-Wigner, BG =
Bifurcated Gaussian, SG = Single Gaussian, DG = Double Gaussian, NS = Novosibirsk,
Arg = ARGUS, Pn = nth order Polynomial and Keys = non-parametric KEYS PDF.
The B+ → a+

0 π0 and continuum yields are floated in the fit as well as all continuum shape
parameters, with the exception of the mean and width of the BW modelling the peaking
component in the a±0 mass variable.

Decay channel ∆E mES a±0 mass Fisher Yield
(cands)

Signal Model

B+ → a+
0 π0 NS DG BW BG –

Bulk Background Model
B+B− P3 Arg P2 BG 557
B0B0 P3 Arg P2 BG 343

Combined qq (q = u, d, s, c) P2 Arg BW + P2 SG + BG –

Charmless B Decays
B± → ρ±η 2D Keys P2 BG 41
B± → ρ±(1450)η 2D Keys P2 BG 27
B± → a±

0 (1450)π0 P2 + DG Arg + SG + BG P3 BG 17
B± → ηπ±π0 (non-res) P2 + NS Arg + SG P3 BG 3
B0 → π0π0 2D Keys P3 BG 32
B± → a±

1 π0 2D Keys P3 BG 96
B0 → a±

0 ρ∓ 2D Keys BW + P2 BG 21
B± → a0

0ρ
± 2D Keys P2 BG 11

B0 → ηπ0 2D Keys P1 BG 13
B± → ρ±π0 2D Keys BW + P2 BG 135
B± → π±π0π0 (non-res) 2D Keys P3 BG 64
Inclusive B → Xsγ (comb) 2D Keys P2 BG 31
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Table 4.10: The full fit model for the η → π+π−π0 subdecay mode. BW =Breit-
Wigner, BG = Bifurcated Gaussian, SG = Single Gaussian, DG = Double Gaussian, NS
= Novosibirsk, Arg = ARGUS, Pn = nth order Polynomial and Keys = non-parametric
KEYS PDF. The B+ → a+

0 π0 and continuum yields are floated in the fit as well as
all continuum shape parameters, with the exception of the mean and width of the BW
modelling the peaking component in the a±0 mass variable.

Decay channel ∆E mES a±0 mass Fisher Est. Yield
(cands)

Signal Model

B+ → a+
0 π0 NS DG BW BG –

Bulk Background Model
B+B− P3 Arg P2 BG 490
B0B0 P3 Arg P2 BG 354

Combined qq (q = u, d, s, c) P2 Arg BW + P2 SG + BG –

Charmless B Decays
B± → ρ±η 2D Keys P1 BG 15
B± → ρ±(1450)η 2D Keys P2 BG 11
B± → a±

0 (1450)π0 P2 + DG Arg + BG P2 BG 8
B± → ηπ±π0 (non-res) P2 + NS Arg + SG P3 BG 1
B± → b±1 π0 2D Keys P3 BG 22
B± → ρ±ω 2D Keys P3+SG BG 4
B0 → a±

0 ρ∓ 2D Keys BW + P2 BG 8
B± → a0

0ρ
± 2D Keys P2 BG 4

B0 → ηπ0 2D Keys P1 BG 5
B± → ρ±π0 2D Keys BW + P2 BG 3
B± → π±π0π0 (non-res) 2D Keys P2 BG 2
Inclusive B → Xsγ (comb) 2D Keys P2 BG 9
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Table 4.11: The results of ensemble MC studies comparing a model based on a best
candidate selection with a model with no selection applied. The signal efficiency is repre-
sented by εsig and the fitted signal yield error by σNsig

. Note that this error dominated by
background statistics and hence is not dependent on any assumed signal branching fraction.

η → γγ η → π+π−π0

Analysis quantity No Selection χ2
ηπ0 Selection No Selection χ2

ηπ0 Selection

εsig (%) 15.44 12.45 10.83 8.24
σNsig

(events) 17.74 15.44 11.70 9.93

εsig/σNsig
(%/event) 0.87 0.81 0.93 0.83

modes for samples derived from the optimised selection cuts. For each case the

significance parameter was taken to be the signal efficiency over the fitted signal

yield error, since a zero signal yield is expected. The efficiency was estimated in

each case from fits to signal MC for events matching the pure signal shape, thus

excluding SxF candidates.

The best candidate selection was based on calculating the combined χ2 of the η and

B daughter π0 masses with respect to the PDG values of the two. In the case where

two or more B candidates are composed of the same η and π0, i.e. only the charged

pion is different, a random selection is made. The combined χ2 was calculated as

follows:

χ2 =

(

mη −mPDG
η

ση

)2

+

(

mπ0 −mPDG
π0

σπ0

)2

, (4.11)

where mX is the resonance mass in each case and the widths σX were estimated

from Gaussian fits to the relevant signal MC sample in all cases. The results for the

comparison studies are shown in Table 4.11.

As can be seen from the table, the reduced fit error resulting from a best candidate

selection is mitigated by a corresponding reduction in signal efficiency. This oc-

curs because the best candidate selection is rejecting a fraction of true signal events

and thus reducing overall sensitivity. Based on these results it was decided to pro-
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ceed without selecting a best candidate. The plots associated with this study are

presented in Appendix A.2.

4.6.6 Optimisation of Event Selection

The event selection variables used in the analysis were optimised using a large num-

ber of toy MC studies based on models derived from the differing selection hypothe-

ses. Four of the variables were not optimised and were left with a loose selection

for fit statistics purposes. These were ∆E, mES, the a0 resonance mass and the

Fisher discriminant F . The selection requirements placed on the remaining vari-

ables; | cos(θTB)|, η mass and the PID Selector, were optimised using a nested loop.

For each configuration of variable values, reduced MC samples were made and the

signal efficiency calculated, along with predicted yields for each background mode.

New values for the PDF parameters for signal and background modes were calcu-

lated in each case for the full fit model. The B+ → a0(1450)+π0 and non-resonant

B+ → ηπ+π0 modes were left out of the optimisation since their contribution was

expected to be small and thus not worth the significant processing overhead incurred

in including them.

For each selection hypothesis approximately 270 toy experiments were then run and

an optimisation parameter (signal efficiency)/(mean fitted signal yield error) was

calculated from the results. The efficiency is used instead of the signal yield since

we are working under the assumption of zero signal and thus wish to select the point

with the best sensitivity in the limit of small signal where background dominates.

The mean fitted signal yield error was taken from a Gaussian fit of the distribution

of errors derived from the multiple toy experiments. In analysing the results of

the optimisation only those with non-significant mean pulls were considered to be

valid. A mean pull was defined as significant if the fitted mean pull of a set of toy

experiments was larger than three times the statistical error in the fitted value. For

η → π+π−π0 this excluded 29 out of 625 possible selection hypotheses. For η → γγ

21 out of 500 were excluded in the same way.
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The values taken for these variables are listed in Table 4.12. For the PID selector

increasing number refers to a looser kaon veto. The looser the veto the more effi-

cient the removal of kaons, but the higher the probability of mistakenly rejecting a

pion. Scans of the differing optimal values for the four fit variables are presented

in Figures 4.6 and 4.7 for the two η decay modes. Each point corresponds to the

optimal value with the given selection on the variable under consideration in place

calculated over all possible values of the other three variables. This is included for

illustrative purposes and the optimal value taken forward for the rest of the analysis

is actually calculated over all four variables, shown in the scans as the highest point

for each particular variable.
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Figure 4.6: η → γγ mode optimisation scans for each relevant analysis variable: (a)
| cos(θTB)|, (b) η mass (lower bound), (c) η mass (upper bound) and (d) Particle ID. Each
point corresponds to the optimal value with that particular selection in place calculated over
all possible values of the other three variables.

For both modes the optimisation removes the tails of the η mass distribution. Since
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Figure 4.7: η → π+π−π0 mode optimisation scans for each relevant analysis variable:
(a) | cos(θTB)|, (b) η mass (lower bound), (c) η mass (upper bound) and (d) Particle
ID. Each point corresponds to the optimal value with that particular selection in place
calculated over all possible values of the other three variables.

the η → π+π−π0 resolution is significantly better then the η → γγ case the selection

is predictably tighter. Both optimisations select the tightest possible kaon veto which

is to be expected since this removes the most obvious kaons while not affecting the

efficiency too severely. It is noted that a dip in the optimal value occurs in both

optimisations for the intermediate kaon veto. A satisfactory explanation for this

does not exist although it is not thought to be due to a technical problem with the

procedure. Finally, the optimisations reach the same selection for the | cos(θTB)|
variable with only events satisfying |cos(θTB)| < 0.7 passing. This will remove the

vast majority of continuum events while reducing the signal efficiency by a relatively

small 30%.

As will be obvious from the plots for the η → γγ optimisation, the | cos(θTB)| < 0.9
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Table 4.12: Final selection and fit variable values after optimisation.

Analysis Variable Selection Value

Fixed η → γγ η → π+π−π0

mES (GeV/c2) 5.2 – 5.3 5.2 – 5.3
∆E (GeV) < |0.35| < |0.35|
F −3 – 1 −3 – 1
a0 mass (GeV/c2) 0.8 – 1.2 0.8 – 1.2

Optimised η → γγ η → π+π−π0

| cos(θTB)| < 0.7 < 0.7
η mass (GeV/c2) 0.52 – 0.57 0.540 – 0.555
PID Selector 1 (veto trkisKLHVT) 1 (veto trkisKLHVT)

MC Efficiency (%) 15.44±0.06 10.83±0.05

selection hypothesis was omitted from the results. This is because a high propor-

tion of the toys were failing and those which passed reported unexpectedly high

efficiency/error scores. This led to suspicions that the results were therefore biased,

with the most stable fits being the ones which have the lowest errors. The problem

is most likely to be down to it becoming increasingly difficult for the fitter to handle

the number of floated continuum shape parameters with such a large sample. The

fact that the η → π+π−π0 optimisation toys are successful for all cuts adds credence

to this since on average 2.5× fewer continuum events were generated for this mode.

4.7 Background Estimation from Dalitz Plane Fits

in Data

4.7.1 Preamble

As previously discussed, there exist a number of background modes for which no

reliable limit or branching fraction measurement exists. In many cases this prob-

lem is circumvented by estimating the contribution using measurements for other

analogous modes. In some cases, however, we have the opportunity to obtain a

better estimate for the mode from the fit itself. This is achieved by applying the

fit based on the same selection criteria as for our signal region but moving the a0



4.7 Background Estimation from Dalitz Plane Fits in Data 147

mass window to a desired alternative region in the ηπ+π0 Dalitz plane. In this anal-

ysis such a method is used to estimate background contamination from two modes:

B± → a0(1450)±π0 and the non-resonant decay B± → ηπ±π0. By using these fits

to estimate upper limits for the branching fractions of the modes in question it was

possible to predict how many events of each type contribute a background to the

analysis of the a0(980) signal region.

It should be noted that any mode with the same final state as signal can, in principle,

quantum mechanically interfere with the signal resonance. However, at the small

yields considered here this is expected to be a negligible effect. As such, no steps are

taken to estimate it. In all cases the signal mode is assumed to provide negligible

contamination to any of the background fits.

4.7.2 a0(1450)
+ Resonance Region Model

This mode, the higher mass a0 resonance in ηπ+, is modelled by shifting the a0

mass fit window to 1.2 – 2.0 GeV/c2. This excludes the majority of the a+
0 (980)

resonance while also minimising any contribution from the centre of the Dalitz plane,

which is mainly populated by non-resonant events. PDFs are constructed for all

background modes contributing one or more candidates within this region. There

is, in principle, a background contribution from non-resonant B± → ηπ±π0, which is

the other background mode under study in this section. Any potential contamination

is estimated using an iterative fit procedure which will be discussed shortly. The

PDF models employed for this fit are presented in Tables 4.13 and 4.14 for η → γγ

and η → π+π−π0 decay modes respectively. The fit model is applied to the full on-

resonance dataset processed in an identical way to that used for the main a0(980)

fit.

4.7.3 Non-Resonant Region: ηπ+π0 Model

The central region of the DP, away from resonances, is used to estimate the back-

ground contribution from the non-resonant decay of the B meson to the signal mode
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Table 4.13: The B± → a±0 (1450)π0 fit model for the η → γγ subdecay mode. BW
=Breit-Wigner, BG = Bifurcated Gaussian, SG = Single Gaussian, DG = Double Gaus-
sian, NS = Novosibirsk, Arg = ARGUS, Pn = nth order Polynomial and Keys = non-
parametric KEYS PDF. The B± → a±0 (1450)π0 and continuum yields are floated in the
fit as well as all continuum shape parameters.

Decay channel ∆E mES a±0 mass Fisher Est. Yield
(cands)

Signal Model

B± → a±
0 (1450)π0 P3 + DG Arg + SG + BG P3 + BW BG –

Bulk Background Model
B+B− P3 Arg P3 BG 5836
B0B0 P3 Arg + SG P2 + SG BG 2767

Combined qq (q = u, d, s, c) P2 Arg P3 BG
–

Charmless B Decays
B± → ρ±η 2D Keys P3 BG 132
B± → ρ±(1450)η 2D Keys P3 BG 71
B± → ηπ±π0 (non-res) P2 + NS Arg + SG P2 BG 14
B± → π0π0 2D Keys P3 BG 56
B± → a±

1 π0 2D Keys P3 BG 191
B0 → a±

0 ρ∓ 2D Keys BW BG 15
B± → a0

0ρ
± 2D Keys P2 BG 36

B0 → ηπ0 2D Keys P3 BG 24
B± → ρ±π0 2D Keys BW BG 316
B± → π±π0π0 (non-res) 2D Keys P3 BG 361
Inclusive B → Xsγ (comb) 2D Keys P2 BG 108
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Table 4.14: The B± → a±0 (1450)π0 fit model for the η → π+π−π0 subdecay mode.
BW =Breit-Wigner, BG = Bifurcated Gaussian, SG = Single Gaussian, DG = Double
Gaussian, NS = Novosibirsk, Arg = ARGUS, Pn = nth order Polynomial and Keys =
non-parametric KEYS PDF. The B± → a±0 (1450)π0 and continuum yields are floated in
the fit as well as all continuum shape parameters.

Decay channel ∆E mES a±0 mass Fisher Est. Yield
(cands)

Signal Model

B± → a±
0 (1450)π0 P2 + NS Arg + SG + BG P2 + BW BG –

Bulk Background Model
B+B− P3 Arg P3 BG 3192
B0B0 P3 Arg + SG P2 BG 1813

Combined qq (q = u, d, s, c) P2 Arg P3 BG
–

Charmless B Decays
B± → ρ±η 2D Keys P3 BG 51
B± → ρ±(1450)η 2D Keys P3 BG 27
B± → ηπ±π0 (non-res) P2 + NS Arg + SG P2 BG 3
B± → b±1 π0 2D Keys P3 BG 12
B± → ρ±ω 2D Keys P3 BG 2
B0 → a±

0 ρ∓ 2D Keys BW BG 6
B± → a0

0ρ
± 2D Keys P2 BG 12

B0 → ηπ0 2D Keys P3 BG 8
B± → ρ±π0 2D Keys BW BG 18
B± → π±π0π0 (non-res) 2D Keys P3 BG 23
Inclusive B → Xsγ (comb) 2D Keys P2 BG 18
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Table 4.15: The B± → ηπ±π0 fit model for the η → γγ subdecay mode. BW =Breit-
Wigner, BG = Bifurcated Gaussian, SG = Single Gaussian, DG = Double Gaussian, NS
= Novosibirsk, Arg = ARGUS, Pn = nth order Polynomial and Keys = non-parametric
KEYS PDF. The B± → ηπ±π0 and continuum yields are floated in the fit as well as all
continuum shape parameters.

Decay channel ∆E mES a±0 mass Fisher Est. Yield
(cands)

Signal Model
B± → ηπ±π0 (non-res) P3 + NS Arg + DG P4 BG –
Bulk Background Model
B+B− P3 Arg P3 BG 938
B0B0 P3 Arg P3 BG 397

Combined qq (q = u, d, s, c) P3 Arg SG + P3 BG
–

Charmless B Decays
B± → ρ±(1450)η P1 + SG Arg + SG P3 BG 1
B± → a±

1 π0 2D Keys P2 BG 2
B± → ρ±π0 2D Keys BW BG 1
B± → π±π0π0 (non-res) 2D Keys P2 BG 207
Inclusive B → Xsγ (comb) 2D Keys P3 BG 13

final state, ηπ+π0.

The fit to this mode is prepared in a way analogous to that for the a0(1450)+

resonance, the exception being that in this case, a selection is not solely made on

the reconstructed a+
0 mass, but also on the invariant mass combinations Mηπ0 and

Mπ+π0 , which form the other ‘axes’ of the DP. The selection required that the a+
0

mass be greater than 2.25 GeV/c2, with Mπ+π0 and Mηπ0 both required to be greater

than
√

5( GeV/c2). Thus the resonant regions of the plot are stripped away leaving

only the central region. Due to this selection, the vast majority of charmless B

decays do not contribute significant backgrounds and are therefore excluded from

the fit. The models used for the η → γγ and η → π+π−π0 subdecay modes are

presented in Tables 4.15 and 4.16 respectively.

The yield for the non-resonant contribution is extracted using an iterative fit method,

to be discussed shortly, from the full on-resonance dataset. This fit also accounts

for potential contamination from the tail of the a0(1450)+ resonance.
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Table 4.16: The B± → ηπ±π0 fit model for the η → π+π−π0 subdecay mode. BW
=Breit-Wigner, BG = Bifurcated Gaussian, SG = Single Gaussian, DG = Double Gaus-
sian, NS = Novosibirsk, Arg = ARGUS, Pn = nth order Polynomial and Keys = non-
parametric KEYS PDF. The B± → ηπ±π0 and continuum yields are floated in the fit as
well as all continuum shape parameters.

Decay channel ∆E mES a±0 mass Fisher Est. Yield
(cands)

Signal Model
B± → ηπ±π0 (non-res) P2 + NS Arg + DG P2 BG –
Bulk Background Model
B+B− P3 Arg P3 BG 913
B0B0 P3 Arg P3 BG 411

Combined qq (q = u, d, s, c) P2 Arg P4 BG
–

Charmless B Decays
B± → π±π0π0 (non-res) SG + P3 Arg + SG 1D Keys BG 5

4.7.4 Iteration of Background DP Fit and Final Background
Estimates

The yields for the two background modes extracted from fits to the DP are, in

principle, backgrounds to each other. Therefore, in order to obtain a fair estimate

for each mode, an iterative fit approach is used. The procedure begins with the

non-resonant fit: The a+
0 (1450) contribution is fixed to zero and the fit is run to

extract a yield for ηπ+π0. Fits are run for both η subdecay modes and a ‘likelihood

scan’ is carried out in each case. This is done by fixing the ηπ+π0 yields to a range

of values about the minimum. Thus a negative log likelihood curve can be plotted.

The likelihood curves for both η decay modes are then combined and integrated

numerically in order to extract an estimate of the upper limit. Note that in all cases

the integration begins at zero so even though we, in this case, have a negative yield we

do not bias the resulting upper limit to a lower value than is statistically permissible.

The strongly negative yield in the η → γγ case, shown in Table 4.17, is thought to

be due to insufficient sensitivity in the fit model, which is not entirely unexpected

since the selection criteria were not optimised for this mode. The combined upper

limit was found to be < 6.0 × 10−6 at 90% C.L.
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Once an upper limit for ηπ+π0 was established, it was used to estimate the con-

tribution for this mode in the a+
0 (1450) resonance region. The limit was treated in

the same way as all others in the analysis, with the contribution calculated using

50% of the limit as a central value. For the η → γγ case a contribution of 14 can-

didates was predicted with only 3 candidates in the η → π+π−π0 case. With the

background estimates in place the a+
0 (1450)π0 fit was run and likelihood scans for

both η subdecay modes performed as for the ηπ+π0 fit. From this a combined 90%

C.L. upper limit for B(a0(1450)+π0)×B(a0(1450)+ → ηπ+) was set at < 4.3×10−6.

Using this upper limit for a+
0 (1450)π0 it was now possible to look once again at the

ηπ+π0 to see whether there is any background contribution in the non-resonant re-

gion from the tail of the a+
0 (1450) resonance. In the case of a non-zero contribution

the ηπ+π0 would be re-run with the new background information and the entire pro-

cedure described above repeated iteratively until the yields stabilised across the two

modes. However, the background contribution from a+
0 (1450)π0 in the non-resonant

region is predicted to be consistent with zero using the upper limit determined above.

As such no further iteration was required and the two limits could be taken for use in

the main fit to the a+
0 (980) resonance region. The results of the iterative procedure

are presented in Tables 4.17 and 4.18. It should be noted that the limit extracted

for B± → a0(1450)±π0 is taken as < 4.3 ×10−6 for the purposes of the analysis.

This is because we are only interested in the case where a0(1450)+ → ηπ+, which

we estimate occurs ∼45% of the time [8], although the exact value is not relevant

here as only this decay mode is used. Plots of the fits to data and likelihood scans

for both modes are presented in Appendix C.

4.8 Fit Validation

4.8.1 ‘Toy’ MC Ensemble Studies Results

As previously described, fits were run on ‘toy’ MC datasets derived from the full fit

model in order to detect any biases which may exist. Two types of toy study were
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Table 4.17: Results of fits to the non-resonant B± → ηπ±π0 DP Region. The yield in
candidates is scaled down by the multiplicity in order to calculate the limit.

Required quantity/result η → γγ η → π+π−π0

Candidates to fit 30689 10667
Background from a0(1450)

±π0 0 0
Signal Yield (cands) −188±36 −21±22
Signal Multiplicity 1.19 1.26
Continuum Yield (cands) 29319.8±179.6 9326.4±105.8

Accepted eff. and BFs

Uncorr ε (%) 1.74 0.78
Neutrals Eff Corr 0.968 0.938
Corr ε (%) 1.68 0.73
B(η → X) (%) 39.43 22.60

Combined Mode Results

Upper Limit 90% C.L. (×10−6) < 6.04 (statistical error only)

Table 4.18: Results of fits to the B± → a0(1450)
±π0 DP Region. The yield in candidates

is scaled down by the multiplicity in order to calculate the limit.

Required quantity/result η → γγ η → π+π−π0

Candidates to fit 166457 84612
Background from ηπ±π0 14 3
Signal Yield (cands) 32±95 −1±75
Signal Multiplicity 1.58 1.64
Continuum Yield (cands) 156619±419 79367 ± 300

Accepted eff. and BFs

Uncorr ε (%) 16.19 11.60
Neutrals Eff Corr 0.968 0.938
Corr ε (%) 15.67 10.88
B(η → X) (%) 39.43 22.60

Combined Mode Results

Upper Limit 90% C.L. (×10−6) < 4.34 (statistical error only)

made: firstly, the ‘pure’ toy, where all events are generated from the fit model, and

secondly, the ‘embedded’ toy, where events used to describe charmed and charmless

B background contributions were selected from a fully simulated MC sample. This

second test was used to uncover any biases present from poorly modelled correlations

in the fit variables, which are known to exist in B decays. In both studies we assume

zero signal and therefore generate/embed no signal events. The results of the toy
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Table 4.19: The results of the toy studies to assess the stability/bias of the fit. The
signal yield pull is represented by Psig and the signal yield statistical error by σNsig

. The
width of the pull distribution is given by ΓPsig

The fitted and expected signal yields are
given by Nsig and Gsig respectively. Finally the number of toy experiments run is given by
Ntoy.

Toy type (Full fit) Gsig Ntoy Nsig Psig ΓPsig
σNsig

(events) (events)

η → γγ
Pure toy 0 487 2.17±0.79 0.05±0.04 0.94±0.03 18.92±0.09
BB embedded 0 242 4.50±1.30 0.16±0.07 1.07±0.05 19.06±0.14

η → π+π−π0

Pure toy 0 499 −0.43±0.57 −0.14±0.05 1.09±0.04 11.95±0.08
BB embedded 0 247 −2.64±0.71 −0.32±0.06 0.98±0.04 11.71±0.12

studies are presented in Table 4.19. A total of ∼500 experiments were run in the pure

case and ∼250 experiments in the embedded case so as to minimise any oversampling

of the MC. The pull means were deemed to be acceptable in all cases. The only

significant value, for the η → π+π−π0 embedded study, is not expected to generate

a large bias. Plots of the generated distributions are presented in Appendix A.3.

4.8.2 Fits to Off-Resonance Data

In order to test the distinctness of the signal and continuum background models,

fits were run on a sample of off-resonance data. The model used contained only

the signal and continuum PDFs from the main fit model. Since no BB production

should occur at this centre-of-mass energy the expected signal yield should be zero

and no B backgrounds were included in the fit. The effective luminosity ratio of

on/off-resonance data for the samples used in the analysis comes to 340.67/36.18 =

9.42. In this calculation the correction due to the small variation in cross-section

with centre of mass energy is neglected By scaling the resulting continuum yield

from the fit by this quantity it is possible to predict the amount of continuum

background that will be yielded by the on-resonance data. This will be used later as

a cross check of the final fitted continuum yield. The results of this study, for both η

decay modes, are presented in Table 4.20. Data distributions with overlaid PDFs are
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Table 4.20: The results of fits to the off-resonance data sample with only the signal and
continuum background models.

Fit Quantity η → γγ η → π+π−π0

Signal Yield (events) −11.77 ± 4.08 −6.30 ± 5.74
Continuum Yield (cands) 8906 ± 95 3302 ± 58
Pred. udsc Yield at Υ (4S) (cands) 83856 ± 890 31094 ± 544

presented in Figures 4.8 and 4.9. It is interesting to compare the results of the fits

with the continuum yield values predicted from the MC. For η → γγ the prediction

is 87535 candidates and for η → π+π−π0 it is 31451 candidates. The prediction for

η → π+π−π0 is consistent with the data value, whereas the prediction for η → γγ

is slightly high. However this prediction had already been scaled down by 20% to

correct a previously observed MC generation problem, as described in Section 4.5.

The true discrepancy is therefore large, but is not an issue for the analysis since the

yield is floated in the final fit, thus these results are only significant as a quality

check on the MC. To conclude, the presence of the MC problem for the η → γγ case

is confirmed and, as expected, the problem is not seen in the η → π+π−π0 case.

4.8.3 Blind Fits

A further tool available when performing a maximum likelihood fit is the so-called

‘blind’ fit. This is where the true value of a given parameter is known internally to

the fitting program but reported to the user after being shifted by a replicable offset

(the value of which is unknown to the user). Blind fits make it possible to verify the

stability of a fitting model on the real data without prematurely knowing the true

fit result. Another key aspect to using blind fits is that the reported yield responds

to changes in the model in quantitatively the same way as the true value. Thus it

is possible to test aspects of the model and estimate systematic error contributions

from fit-related sources.

A blind fit was run on the full on-resonance dataset using the full model for both

η subdecay modes. Since only the central value of the signal yield is required to be
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Figure 4.8: Fits to the off-resonance data for the η → γγ subdecay mode. The total
PDF is the blue solid line, the signal PDF is the red dashed line and the continuum PDF
is the black dot-dashed line. The Fisher variable is plotted on a logarithmic scale to render
the negative side tail visible.

blind one can make use of other quantities, such as the signal yield error and the

continuum yield, in their unblind forms. The results for the blind fits to the data

are presented in Table 4.21. As can be seen, the predicted continuum yield from the

fit to off-resonance data is consistent with that which is measured on-resonance.

Test floating charmed B background PDFs

A study was carried out using a blind fit in order to ascertain whether it would

be desirable to float the total charmed B yield in the final fit. As a first step the

combined charmed B yield was floated with the charged to neutral B ratio fixed at

50%. This was then compared to two other cases. In the first instance, the charged

and neutral charmed B yields are fixed but the contributions are scaled up by 10%



4.8 Fit Validation 157

E (GeV)∆
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Ev
en

ts 
/ (

 0
.0

14
 G

eV
 )

0

20

40

60

80

100

120

E (GeV)∆
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Ev
en

ts 
/ (

 0
.0

14
 G

eV
 )

0

20

40

60

80

100

120

)2 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )2
Ev

en
ts 

/ (
 0

.0
01

8 
G

eV
/c

0

20

40

60

80

100

)2 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )2
Ev

en
ts 

/ (
 0

.0
01

8 
G

eV
/c

0

20

40

60

80

100

Fisher discriminant
-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

Ev
en

ts 
/ (

 0
.0

8 
)

1

10

210

Fisher discriminant
-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

Ev
en

ts 
/ (

 0
.0

8 
)

1

10

210

)2 mass (GeV/c0a
0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

 )2
Ev

en
ts 

/ (
 0

.0
08

 G
eV

/c
0

20

40

60

80

100

)2 mass (GeV/c0a
0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

 )2
Ev

en
ts 

/ (
 0

.0
08

 G
eV

/c
0

20

40

60

80

100

Figure 4.9: Fits to the off-resonance data for the η → π+π−π0 subdecay mode. The
total PDF is the blue solid line, the signal PDF is the red dashed line and the continuum
PDF is the black dot-dashed line. The Fisher variable is plotted on a logarithmic scale to
render the negative side tail visible.

from the original MC predictions. In the second instance the two yields are both

scaled down by 10% from the MC predictions. These ±10% shifts are larger than

the known uncertainty on the B+B− branching fraction but include the uncertainty

in the efficiency as well as the rate of the b → c decay modes. The results of this

study are presented in Table 4.22.

As can be seen, floating the charmed B yield in the blind fit gives no improvement

over holding it fixed. As such the main fit strategy will be unchanged and the ±10%

shifted yield values will be taken as systematics.



4.8 Fit Validation 158

Table 4.21: The results of blind fits to the on-resonance data sample with the full fit
model.

Fit Quantity η → γγ η → π+π−π0

Signal Yield Error (events) ±18.36 ±13.22
Continuum Yield (cands) 85649±296 30380±177
Pred. udsc Yield from Off-res fit (cands) 83856±890 31094±544

Table 4.22: The results of fixing and floating the charmed B yield in a blind fit to
on-resonance data. The shift in the blind signal yield is given by ∆Nsig, the signal yield
statistical error by σNsig

, the charmed B yield is given by Nb→c and the continuum yield
by Nudsc.

Fit type ∆Nsig σNsig
Nb→c Nudsc

(events) (events)

η → γγ

Float charmed B yield −4.56 18.27 −121.2±327.0 86663.3±440.5
Fix charmed B yield −10% −2.22 18.35 810 85737.5±295.5
Fix charmed B yield +10% −1.78 18.37 990 85560.3±295.5

η → π+π−π0

Float charmed B yield −0.36 13.26 693.5±202.7 30528±267.0
Fix charmed B yield −10% −0.20 13.22 760 30462.4±177.3
Fix charmed B yield +10% +0.19 13.26 929 30297.3±177.3
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Chapter 5

Results

5.1 Overview

This chapter will present the final results of the maximum likelihood fit analysis for

the mode B+ → a+
0 π

0.

The branching fraction was calculated using the following formula

B =
Y − YB

εNBB ΠiBi

(5.1)

where Y is the signal event yield from the fit, YB is the fit bias, ε is the efficiency for

the B decaying via the studied mode, NBB is the number of produced BB mesons

and ΠiBi is the product of the daughter branching fractions. The decay rates for

Υ (4S) → B+B− and Υ (4S) → B0B0 are assumed to be equal.

The fit bias was estimated using a toy MC study embedding signal and B back-

ground MC according to the yields extracted/fixed from the main fit. The contin-

uum contribution was generated according to the fitted yield and using the shape

parameters taken from on-resonance data. Plots for the relevant toy study quantities

are presented in Appendix A.4.

The results for the two η decay channels are combined by a multiplying together

their associated likelihood functions. The are produced by inverting the negative
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log likelihood curves which are computed for both fits by calculating the minimum

negative log likelihood for a given range of fixed signal yields. The 90% confidence

level (C.L.) upper limit is then calculated by integrating this combined function for

increasing yield, starting at zero. The upper limit is then defined as the yield which

bounds 90% of the area under the combined likelihood curve when one starts from

zero.

Before considering the final fit results, the sources of systematic uncertainty in the

analysis are discussed and estimates for the resulting error in each η decay mode are

presented. Systematic errors which are uncorrelated between the two η channels are

accounted for by convolving the likelihood curves for each channel with a Gaussian

function representing the error. Once the likelihood curves have been combined,

as per the procedure described above, the systematics are included. These errors

are are correlated between the η channels and are accounted for by convolving the

combined likelihood curve with a representative Gaussian. The final limit will be

quoted with and without the systematic contributions in order to quantify their

effect on the result.

5.2 Estimating Systematic Uncertainty

The systematic error contributions which are about to be discussed are presented

in Table 5.1. In this section the source and treatment of each error is discussed and

the largest contributions to the total identified.

5.2.1 Uncertainties in the Fitted Yield

The uncertainties which are considered in this section are those which arise from

the fit and directly affect the signal yield in an additive sense. The combined error

from each of these sources will therefore be treated as an additive systematic error

on the final result.
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PDF Parameter Uncertainty

An uncertainty exists due to the statistical errors in the fitted parameters of the

PDFs which make up the fit model and which are held fixed in the final analysis.

This is fundamentally due to the limited MC available upon which to base the

parameterisations for signal and background.

In order to estimate the error derived from this uncertainty the fit was re-run testing

any fixed parameters in the signal, charmed B and continuum shapes. Any contribu-

tion due to parameter uncertainty in the charm and charmless models was expected

to be small and therefore neglected. The test was conducted by varying each PDF

parameter individually within its statistical error bounds. The only exception to

this was for the signal a0 mass Breit-Wigner width. In the MC the a0 is assumed

to have a nominal width of 80 MeV/c2 but, due to the poorly known lineshape for

the resonance, it was decided that limits of 50-100 MeV/c2 would be required to ad-

equately model the uncertainty. This is by far the dominant systematic error of this

type, contributing roughly +4
−3 events for η → γγ and +0.5

−2 events for η → π+π−π0.

The changes in the fitted signal yield for each parameter test were then added in

quadrature to form a total systematic error estimate.

Charmless B Decay Uncertainty

The branching fractions used to estimate the contributions from charmless B decay

processes each have an associated error. These form a source of systematic uncer-

tainty in the final result. To estimate the size of the resultant error the fit was re-run

varying each charmless mode normalisation in turn according to the error limits of

its branching fraction. In the cases where only an upper limit exists the central

value (calculated using 50% of the limit) was varied by ±100% of its central value,

i.e. to zero and the upper limit. The largest systematic shifts in the η → γγ channel

were produced by the ρ(1450)+η and π+π0π0 modes, both contributing of order ±2

events. In the η → π+π−π0 channel the largest contribution comes from ρ(1450)+η
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with ±1 event. The second largest contribution here comes from b+1 π
0, giving ±0.5

events.

Once again, the changes in the fitted signal yield for each test were combined in

quadrature to provide a total systematic error estimate.

Charmed B Decay Yield Uncertainty

The uncertainty in the yields for backgrounds from charmed B decays was domi-

nated by reconstruction efficiency and B decay branching fractions rather than the

production cross-section. As such a conservative estimate of ±10% was taken and

the fit re-run with the yields varied individually by this fraction. The changes in the

fitted signal yields were combined in quadrature with the overall additive systematic

error estimate.

Fit Bias Uncertainties

A systematic error must be assigned to account for the uncertainty in estimating the

bias in the fit result. The bias was calculated by running an embedded toy MC study

where all floating shape parameters are generated according to their values from the

final fit. The systematic error was then taken to be the error on the measured

bias. The resulting error was then combined in quadrature with the overall additive

systematic error estimate. The bias was measured to be 3.5±1.3 for η → γγ and

−1.1±0.8 for η → π+π−π0.

5.2.2 Uncertainties in the Efficiency

There are a number of sources of uncertainty which affect the signal efficiency and

are applied as a multiplicative correction to the final result. The errors from each

source are combined in quadrature to give a final multiplicative systematic error

estimate.
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Tracking and Neutrals Efficiency

There exists an uncertainty in the tracking efficiency of charged particles. This

was estimated to account for an error of ±0.45% per track based on the results of

dedicated studies by the BABAR tracking group [62].

An uncertainty also exists in the reconstruction efficiency of neutral particles [63].

The BABAR neutrals group estimates this to be ±3% each for every π0 and photon

composite η in the final state, i.e. for η → π+π−π0 the error comes not from the η

but from its π0 daughter.

For both of these sources of uncertainty the resulting errors are correlated and

hence added directly, rather than in quadrature. Thus the combined errors in the

η → π+π−π0 case are 1.4% for tracks and 6% for neutral particles.

Data/MC Agreement in the | cos(θTB)| and η mass variables

Due to the imperfect agreement between data and MC samples, the selections placed

on | cos(θTB)| and the η mass variables require the assignment of a systematic er-

ror. Figure 5.1 shows continuum MC compared with on-resonance data for the two

variables. As can be seen the discrepancy is most marked at the higher end of the

| cos(θTB)| distribution with our optimised selection at 0.7 excluding most of the

problem region. Control sample studies [64] have shown that a tighter selection in

this variable incurs a larger error. As such a conservative estimate of ±3% is taken

for this analysis. Since any discrepancy in the η mass variable was deemed negligible

a systematic error was not assigned to account for it.

Statistical Error

Finally, the error due to limited MC statistics in the efficiency had to be accounted

for. This was calculated from the error in the fitted number of true signal events

from the iterative signal/SxF reduction procedure.
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Figure 5.1: Data MC comparisons where continuum MC (red line) is overlaid with
on-resonance data (black points). The top row of plots are for the η → γγ case and the
bottom row for η → π+π−π0. The left hand column shows | cos(θTB)| while the right hand
column shows the η mass. The locations of selections applied for the analysis are indicated
by solid blue arrows.

5.2.3 Uncertainties in the Branching Fraction Calculation

These systematic contributions, affecting the conversion of the fit yield to a BF using

Equation 5.1, are also multiplicative errors.

Total Number of BB Events

The total number of BB events in the dataset was estimated to be

(379.9 ± 4.2) × 106 [45]. The error was taken as a systematic uncertainty.
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Uncertainties in the Daughter Decay BFs

The errors in B(a+
0 → ηπ+), B(η → γγ) and B(η → π+π−π0) were taken from the

Particle Data Group [8]. The error in B(a+
0 → ηπ+) was calculated by taking the

ratio of the partial widths of the two dominant a+
0 decay modes; a+

0 → ηπ+ and a+
0 →

KK. The measured ratio is 0.183 ± 0.024 which, assuming all other decay modes

are negligible, gives B(a+
0 → ηπ+) = 0.85 ± 0.02. The value taken for B(η → γγ)

was 0.3943 ± 0.0026 and for B(η → π+π−π0) we take 0.226 ± 0.004.

5.2.4 Summary of Systematic Errors

The results of all of the studies to estimate systematic errors are presented in Ta-

ble 5.1.

Table 5.1: Estimated systematic errors in the final fit result. Correlated and Uncorre-
lated error sources are denoted by [C] and [U] respectively.

Source of Uncertainty η → γγ η → π+π−π0

Additive (Events)

Fit Parameters [U] +4.3
−3.4

+0.6
−2.1

Charmless Yields [U] +3.3
−3.2

+1.3
−1.3

Charm Yields [U] +0.0
−2.8

+0.2
−0.2

Fit Bias [U] ±1.3 ±0.8

Total Additive (Events) +5.6
−5.6

+1.7
−2.6

Multiplicative (%)

Neutral efficiency [C] ±6.0 ±6.0
Tracking efficiency [C] ±0.5 ±1.4
| cos(θTB)| Selection [C] ±3.0 ±3.0
MC Statistics [U] ±0.4 ±0.4

Number of BB Events [C] ±1.1 ±1.1
Daughter a0 Decay BF [C] ±2.0 ±2.0
Daughter η Decay BF [U] ±0.7 ±1.8

Total Multiplicative (%) ±7.2 ±7.5
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5.3 Fit Results

The complete analysis results are presented in Table 5.2. We fit small positive signal

yields in both modes, both of which are consistent with zero within their statistical

errors. Likelihood scans for separate and combined η decay modes are presented in

Figure 5.2. From these we are able, using the procedure outlined in Section 5.1, to

set an upper limit on the branching fraction of < 2.0 ×10−6 when we include both

statistical and systematic error. As such the limit is clearly statistics dominated

with the η → γγ mode providing the most significant contribution to the limit. The

significance of the result is calculated as the square root of the difference in the value

of -2lnL between the negative log likelihood curve minimum and the value at zero

yield.

Table 5.2: The results of the fit to the full data set and other values required for calculat-
ing the branching fraction. All B background yields were held fixed to the values described
in Sections 4.5 and 4.6. The upper limit is shown first with only the statistical error and
then with the total error.

Required quantity/result η → γγ η → π+π−π0

Candidates to fit 87022 31326
Signal Yield (events) 4.3 ± 18.4 14.2±13.3
Continuum Yield (candidates) 85649±296 30381±177
ML Fit bias (events) 3.5±1.3 −1.1±0.8

Accepted eff. and BFs

Uncorr ε (%) 15.44 10.83
Neutrals Eff Corr 0.968 0.938
Corr ε (%) 14.95 10.15
B(η → X) (%) 39.43 22.60
B(a+

0 → ηπ+) (%) 84.5 84.5

Branching Fraction (×10−6) 0.1+1.0
−0.9(stat)+0.3

−0.3(syst) 2.1+1.9
−1.8(stat)+0.3

−0.4(syst)

Combined Mode Results

Branching Fraction (×10−6) 0.6+0.9
−0.8(stat)+0.2

−0.2(syst)
Significance 0.7σ (stat + syst)
Upper Limit 90% C.L. (×10−6) < 1.95 (statistical error only)
Upper Limit 90% C.L. (×10−6) < 2.01 (total error)

Projection plots for each of the four fit variables are presented in Figures 5.3 and 5.4.

The dataset for these plots has been background-reduced by requiring that the



5.3 Fit Results 167

)-6) (100π +
0 a→ +BR(B

-1 -0.5 0 0.5 1 1.5 2 2.5 3

) 0
-2

 ln
 (L

/L

0

1

2

3

4

5

6

7

8

)-6) (100π +
0 a→ +BR(B

-1 -0.5 0 0.5 1 1.5 2 2.5 3

) 0
-2

 ln
 (L

/L

0

1

2

3

4

5

6

7

8

Figure 5.2: Likelihood scan for a range of branching fractions for both η decay modes.
The red dashed curve represents the η → γγ contribution with the η → π+π−π0 represented
by the pink dot-dashed curve. The green solid curve represents the combined likelihood for
the two modes and the blue solid curve represents the combined likelihood with systematic
errors convolved in. The upper limit on the branching fraction is set using the blue curve.
The position of the limit is indicated by the red solid arrow.

likelihood ratio Lsig/[Lsig + ΣLbkg] for any event be > 0.6. As can be seen there is

no significant signal peak for either mode.

The curves are made by generating toy MC from the final fit PDFs with all param-

eters at their values corresponding to the real data. The likelihood ratio selection is

then applied to this generated dataset and it is overlaid on the background-reduced

experimental data. The reason this is done in this manner is that creating true

projections has been found to be extremely difficult in practice due to the large

processing demands required for this fit model. The source of this inefficiency is

thought to be the KEYS PDFs used to model the charmless backgrounds.
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Figure 5.3: Likelihood ratio enhanced projection plots for the η → γγ case. These
plots have been made by requiring that Lsig/[Lsig + ΣLbkg] for any event be > 0.6. (top
left) shows the mES variable, (top right) ∆E, (bottom left) Fisher and (bottom right) a0

mass. The experimental data are represented by the black points while the overall PDF is
represented by the blue curve. The combined background component is represented by the
black dash-dotted curve and the signal component by the red dashed curve. The average
efficiency of the likelihood ratio selection is 4% for background and 88% for signal.
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Figure 5.4: Likelihood ratio enhanced projection plots for the η → π+π−π0 case. These
plots have been made by requiring that Lsig/[Lsig + ΣLbkg] for any event be > 0.6. (top
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mass. The experimental data are represented by the black points while the overall PDF is
represented by the blue curve. The combined background component is represented by the
black dash-dotted curve and the signal component by the red dashed curve. The average
efficiency of the likelihood ratio selection is 4% for background and 79% for signal.
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Chapter 6

Conclusions

An upper limit has been extracted, at the 90% C.L, for the decay B± → a0(980)±π0,

where a0(980)± → ηπ± and η → γγ or η → π+π−π0. The result was obtained

using an unbinned multivariate extended maximum likelihood fit. The dominant

background source came from continuum light quark production although a non-

negligible contribution from charmed and charmless B meson decays was also present.

The number of continuum events was floated in the final fit with the B background

contributions estimated from Monte Carlo simulation and held fixed. The branch-

ing fraction extracted for the combined η modes has a significance of 0.7σ and was

found to be

B(B± → a0(980)±π0) = 0.6+0.9
−0.8(stat)

+0.2
−0.2(syst).

The statistical component is by far the largest contribution to the error. The domi-

nant systematic errors come from background modelling and the uncertainty in the

a0 lineshape. The upper limit for this mode is set as

B(B± → a0(980)±π0) < 2.0 × 10−6 (90% C.L.).
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In light of these results, one can look back to the theoretical predictions made in

Chapter 1. Here different structure models for the scalar a0 were shown to pro-

vide significantly different branching fraction predictions. Specifically this analysis

sought to test two different structure models for which predictions could be made

using QCD factorisation as described by Delepine et al. [18]. They predicted a

branching fraction of

6.4 × 10−8 ≤ B(B+ → a+
0 π

0) ≤ 2.4 × 10−7

for the case where this a0 is a simple quark-antiquark state and

2 × 10−9 ≤ B(B+ → a+
0 π

0) ≤ 10−8

for the more complicated case where the a0 is in fact a four quark state where the

original quarks are joined by an ss pair. It is clear from the results that the analysis

is not sensitive enough, given the currently available statistics, to show which (if

either) of these models is correct. However the result is consistent with current

theories since no evidence of a signal at a significantly higher branching fraction has

been found.

The short term prospects for measurements of this mode depend entirely on the

amount of data which the two B Factories will record during the remainder of their

operational lives. Current predictions state that the combined data sample for both

BABAR and BELLE will approach 2 ab−1 by late 2008/early 2009 (at which point

BABAR is expected to cease running). If achieved this data sample will be over 4×
that available for the analysis which has been presented in this thesis. Since the

upper limit on a given mode can be expected to decrease approximately linearly

with increasing luminosity, the combined world average for both B Factories would

lie in the region of ∼ 5 × 10−7 by the end of 2008. Given the current theoretical

predictions analysis techniques would therefore have to improve such that up to a
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five-fold increase in sensitivity were achieved if we are to be able to begin to include

interesting parameter space, which seems highly unlikely.

Longer term, progress with this mode will be dependent on two future experiments:

the LHCb detector [65], currently under construction at CERN, and the proposed

“Super B Factory” [66].

At LHCb the interaction environment will provide an extremely challenging bar-

rier to the effective reconstruction of this mode, which relies on high efficiency for

detection of neutral particles. That said, the number of bb pairs expected to be

produced per year at design luminosity is ∼1012. Of these 40% will hadronise to

form charged B mesons. With such a large production rate it is not impossible that

some improvement to the limit for this mode could be made over the lifetime of the

LHCb experiment. Needless to say this mode is not an analysis priority for LHCb

and no studies have yet been undertaken on the feasibility of such work.

At a Super B Factory, with its clean environment and extremely high luminosity

(dataset estimates range from ∼10−30 ab−1), it should be possible to make an

observation for this mode within the projected lifetime of the machine. Simply

scaling our limit would give a value of order 7×10−8 at 10 ab−1 and 2×10−8 at

30 ab−1 assuming a detector of similar sensitivity to BABAR or BELLE and that

no evidence for a signal is found. These values are within the predicted two-quark

range. However this experiment is still at the design and approval phase with the

most optimistic start date for data taking at ∼2012. Taking all of these factors

into consideration the conclusion must be that the best (although remote) chance

of seeing interesting physics results for this mode within the next few years remains

at the current B Factories.
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Appendix A

Toy MC Results Plots

In this appendix plots will be presented of the results of all major toy studies un-

dertaken for the analysis.



Toy MC Results Plots 182

A.1 SxF Contamination Test Toys

The results of pure toy MC studies to estimate SxF contamination as described in

Section 4.4.4.

A.1.1 η → γγ Case
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Figure A.1: Toy MC result distributions for the pure toy study to assess potential
contamination from SxF events in the η → γγ case. The left hand plot shows the pull and
the right hand plot the signal yield error. Both are fitted with a Gaussian PDF, overlaid
as the blue solid line.

A.1.2 η → π+π−π0 Case
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Figure A.2: Toy MC result distributions for the pure toy study to assess potential
contamination from SxF events in the η → π+π−π0 case. The left hand plot shows the
pull and the right hand plot the signal yield error. Both are fitted with a Gaussian PDF,
overlaid as the blue solid line.
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A.2 Best Candidate Selection Test Toys

The results of pure toy MC studies to test the need for a best B candidate selection

as described in Section 4.6.5.

A.2.1 η → γγ Case
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Figure A.3: Toy MC result distributions for the pure toy study for samples with no best
candidate selection applied in the η → γγ case. The left hand plot shows the pull and the
right hand plot the signal yield error. Both are fitted with a Gaussian PDF, overlaid as
the blue solid line.
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Figure A.4: Toy MC result distributions for the pure toy study for samples with the
best candidate selection applied in the η → γγ case. The left hand plot shows the pull and
the right hand plot the signal yield error. Both are fitted with a Gaussian PDF, overlaid
as the blue solid line.
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A.2.2 η → π+π−π0 Case

No Selection Case
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Figure A.5: Toy MC result distributions for the pure toy study for samples with no best
candidate selection applied in the η → π+π−π0 case. The left hand plot shows the pull and
the right hand plot the signal yield error. Both are fitted with a Gaussian PDF, overlaid
as the blue solid line.
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Figure A.6: Toy MC result distributions for the pure toy study for samples with the
best candidate selection applied in the η → π+π−π0 case. The left hand plot shows the
pull and the right hand plot the signal yield error. Both are fitted with a Gaussian PDF,
overlaid as the blue solid line.
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A.3 Full Toys

The results of full pure and embedded toy MC studies with the complete fit model

as described in Section 4.8.1.

A.3.1 η → γγ Case
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Figure A.7: Toy MC result distributions for the full pure toy study in the η → γγ case.
The left hand plot shows the pull and the right hand plot the signal yield error. Both are
fitted with a Gaussian PDF, overlaid as the blue solid line.
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Figure A.8: Toy MC result distributions for the full embedded toy study in the η → γγ
case. The left hand plot shows the pull and the right hand plot the signal yield error. Both
are fitted with a Gaussian PDF, overlaid as the blue solid line.
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A.3.2 η → π+π−π0 Case

Pure Toy

Signal Yield Pull
-4 -3 -2 -1 0 1 2 3 4

Ev
en

ts 
/ (

 0
.0

8 
)

0

5

10

15

20

25  0.049± = -0.1433 µ

 0.035± =  1.093 σ

Signal Yield Pull
-4 -3 -2 -1 0 1 2 3 4

Ev
en

ts 
/ (

 0
.0

8 
)

0

5

10

15

20

25

Signal Yield Error
0 5 10 15 20 25

Ev
en

ts 
/ (

 0
.2

5 
)

0

5

10

15

20

25

30

35  0.082± =  11.951 µ

 0.058± =  1.839 σ

Signal Yield Error
0 5 10 15 20 25

Ev
en

ts 
/ (

 0
.2

5 
)

0

5

10

15

20

25

30

35

Figure A.9: Toy MC result distributions for the full pure toy study in the η → π+π−π0

case. The left hand plot shows the pull and the right hand plot the signal yield error. Both
are fitted with a Gaussian PDF, overlaid as the blue solid line.
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Figure A.10: Toy MC result distributions for the full embedded toy study in the η →
π+π−π0 case. The left hand plot shows the pull and the right hand plot the signal yield
error. Both are fitted with a Gaussian PDF, overlaid as the blue solid line.
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A.4 Final Fit Bias Measurement Toys

The results of embedded toy MC studies to estimate the bias in the final fit result

as described in Section 5.1.

A.4.1 η → γγ Case
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Figure A.11: Toy MC result distributions for the embedded toy study to estimate the fit
bias in the η → γγ case. The top left hand plot shows the pull and the top right hand plot
the signal yield error. The bottom plot shows the signal yield itself. All distributions are
fitted with a Gaussian PDF, overlaid as the blue solid line. Finally, the bottom right plot
shows the distribution of minimised negative log likelihood results from the toys. Where
appropriate the value from the main fit to data is indicated by the red solid arrow.
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A.4.2 η → π+π−π0 Case
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Figure A.12: Toy MC result distributions for the embedded toy study to estimate the fit
bias in the η → π+π−π0 case. The top left hand plot shows the pull and the top right hand
plot the signal yield error. The bottom plot shows the signal yield itself. All distributions
are fitted with a Gaussian PDF, overlaid as the blue solid line. Finally, the bottom right
plot shows the distribution of minimised negative log likelihood results from the toys. Where
appropriate the value from the main fit to data is indicated by the red solid arrow.
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Appendix B

Background PDFs

This appendix contains plots showing the MC distributions and PDFs used to model

all of the backgrounds accounted for in the analysis.
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B.1 η → γγ Case

The following plots show the background MC distributions and PDFs for continuum,

charmed B and finally charmless B components for the η → γγ case. The functional

forms used are described in Sections 4.5 and 4.6.
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Figure B.1: Continuum background MC distributions and PDFs for the η → γγ case.
The top left plot shows ∆E, top right mES, bottom left Fisher and bottom right the a0 mass.
The MC data are represented by the black points while the overall PDF is represented by
the blue curve.
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Figure B.2: Charmed B background MC distributions and PDFs for the η → γγ case.
The left hand column contains the distributions for the charged B case and the right hand
column those for the neutral B case. Both columns contain, in descending order: ∆E,
mES, Fisher and finally the a0 mass. The MC data are represented by the black points
while the overall PDF is represented by the blue curve.
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Figure B.3: Charmless B background MC distributions and PDFs for the η → γγ case.
Starting from the left the first column contains the distributions for the ∆E variable, the
second mES, the third Fisher and the fourth the a0 mass. Row-wise, starting from the top,
the modes shown are: B± → ρ±η, B± → ρ(1450)±η, B0 → a±0 ρ∓ and finally B± → a0

0ρ
±.
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Figure B.4: Charmless B background MC distributions and PDFs for the η → γγ case.
Starting from the left the first column contains the distributions for the ∆E variable, the
second mES, the third Fisher and the fourth the a0 mass. Row-wise, starting from the top,
the modes shown are: non-resonant B± → π±π0π0, B± → ρ±π0, B0 → ηπ0 and finally
B± → a±1 π0.
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Figure B.5: Charmless B background MC distributions and PDFs for the η → γγ case.
Starting from the left the first column contains the distributions for the ∆E variable, the
second mES, the third Fisher and the fourth the a0 mass. Row-wise, starting from the top,
the modes shown are: B0 → π0π0, combined B → Xsγ, B± → a0(1450)

±π0 and finally
non-resonant B± → ηπ±π0.
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B.2 η → π+π−π0 Case

The following plots show the background MC distributions and PDFs for continuum,

charmed B and finally charmless B components for the η → π+π−π0 case. The

functional forms used are described in Sections 4.5 and 4.6.
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Figure B.6: Continuum background MC distributions and PDFs for the η → π+π−π0

case. The top left plot shows ∆E, top right mES, bottom left Fisher and bottom right
the a0 mass. The MC data are represented by the black points while the overall PDF is
represented by the blue curve.
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Figure B.7: Charmed B background MC distributions and PDFs for the η → π+π−π0

case. The left hand column contains the distributions for the charged B case and the right
hand column those for the neutral B case. Both columns contain, in descending order:
∆E, mES, Fisher and finally the a0 mass. The MC data are represented by the black
points while the overall PDF is represented by the blue curve.
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Figure B.8: Charmless B background MC distributions and PDFs for the η → π+π−π0

case. Starting from the left the first column contains the distributions for the ∆E variable,
the second mES, the third Fisher and the fourth the a0 mass. Row-wise, starting from
the top, the modes shown are: B± → ρ±η, B± → ρ(1450)±η, B0 → a±0 ρ∓ and finally
B± → a0

0ρ
±.
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Figure B.9: Charmless B background MC distributions and PDFs for the η → π+π−π0

case. Starting from the left the first column contains the distributions for the ∆E variable,
the second mES, the third Fisher and the fourth the a0 mass. Row-wise, starting from the
top, the modes shown are: non-resonant B± → π±π0π0, B± → ρ±π0, B0 → ηπ0 and
finally B± → ρ±ω (longitudinal polarisation).



Background PDFs 199

E (GeV)∆
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Ev
en

ts 
/ (

 0
.0

28
 G

eV
 )

0

10

20

30

40

50

60

70

E (GeV)∆
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Ev
en

ts 
/ (

 0
.0

28
 G

eV
 )

0

10

20

30

40

50

60

70

)2 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )
Ev

en
ts 

/ (
 0

.0
03

6 
G

eV
/c

0

10

20

30

40

50

60

70

80

)2 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )
Ev

en
ts 

/ (
 0

.0
03

6 
G

eV
/c

0

10

20

30

40

50

60

70

80

Fisher discriminant
-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

Ev
en

ts 
/ (

 0
.1

6 
)

0

20

40

60

80

100

120

Fisher discriminant
-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

Ev
en

ts 
/ (

 0
.1

6 
)

0

20

40

60

80

100

120

)2 mass (GeV/c0a
0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

 )
Ev

en
ts 

/ (
 0

.0
16

 G
eV

/c

0

10

20

30

40

50

)2 mass (GeV/c0a
0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

 )
Ev

en
ts 

/ (
 0

.0
16

 G
eV

/c

0

10

20

30

40

50

E (GeV)∆
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Ev
en

ts 
/ (

 0
.0

35
 G

eV
 )

0
2
4

6

8
10
12

14

16
18

20

E (GeV)∆
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Ev
en

ts 
/ (

 0
.0

35
 G

eV
 )

0
2
4

6

8
10
12

14

16
18

20

)2 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )
Ev

en
ts 

/ (
 0

.0
04

5 
G

eV
/c

0
2
4
6
8

10
12
14
16
18
20
22
24

)2 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )
Ev

en
ts 

/ (
 0

.0
04

5 
G

eV
/c

0
2
4
6
8

10
12
14
16
18
20
22
24

Fisher discriminant
-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

Ev
en

ts 
/ (

 0
.2

 )

0

5

10

15

20

25

Fisher discriminant
-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

Ev
en

ts 
/ (

 0
.2

 )

0

5

10

15

20

25

)2 mass (GeV/c0a
0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

 )
Ev

en
ts 

/ (
 0

.0
2 

G
eV

/c

0
2
4

6

8
10
12

14

16
18

20

)2 mass (GeV/c0a
0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

 )
Ev

en
ts 

/ (
 0

.0
2 

G
eV

/c

0
2
4

6

8
10
12

14

16
18

20

E (GeV)∆
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Ev
en

ts 
/ (

 0
.0

28
 G

eV
 )

0

50

100

150

200

250

300

350

400

450

E (GeV)∆
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Ev
en

ts 
/ (

 0
.0

28
 G

eV
 )

0

50

100

150

200

250

300

350

400

450

)2 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )
Ev

en
ts 

/ (
 0

.0
03

6 
G

eV
/c

0

100

200

300

400

500

600

700

800

)2 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )
Ev

en
ts 

/ (
 0

.0
03

6 
G

eV
/c

0

100

200

300

400

500

600

700

800

Fisher discriminant
-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

Ev
en

ts 
/ (

 0
.1

6 
)

0

100

200

300

400

500

600

700

800

Fisher discriminant
-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

Ev
en

ts 
/ (

 0
.1

6 
)

0

100

200

300

400

500

600

700

800

)2 mass (GeV/c0a
0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

 )
Ev

en
ts 

/ (
 0

.0
16

 G
eV

/c

0

50

100

150

200

250

300

350

)2 mass (GeV/c0a
0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

 )
Ev

en
ts 

/ (
 0

.0
16

 G
eV

/c

0

50

100

150

200

250

300

350

E (GeV)∆
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Ev
en

ts 
/ (

 0
.0

35
 G

eV
 )

0

10

20

30

40

50

60

70

E (GeV)∆
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Ev
en

ts 
/ (

 0
.0

35
 G

eV
 )

0

10

20

30

40

50

60

70

)2 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )
Ev

en
ts 

/ (
 0

.0
04

5 
G

eV
/c

0

20

40

60

80

100

120

)2 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )
Ev

en
ts 

/ (
 0

.0
04

5 
G

eV
/c

0

20

40

60

80

100

120

Fisher discriminant
-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

Ev
en

ts 
/ (

 0
.2

 )

0

20

40

60

80

100

Fisher discriminant
-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

Ev
en

ts 
/ (

 0
.2

 )

0

20

40

60

80

100

)2 mass (GeV/c0a
0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

 )
Ev

en
ts 

/ (
 0

.0
2 

G
eV

/c

0

10

20

30

40

50

)2 mass (GeV/c0a
0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

 )
Ev

en
ts 

/ (
 0

.0
2 

G
eV

/c

0

10

20

30

40

50

Figure B.10: Charmless B background MC distributions and PDFs for the η → π+π−π0

case. Starting from the left the first column contains the distributions for the ∆E variable,
the second mES, the third Fisher and the fourth the a0 mass. Row-wise, starting from the
top, the modes shown are: B± → b±1 π0, combined B → Xsγ, B± → a0(1450)

±π0 and
finally non-resonant B± → ηπ±π0.
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Appendix C

DP Fit Result Plots

This appendix contains plots pertaining to the fits to data in regions of the Dalitz

plot for the B± → a0(1450)±π0 and non-resonant B± → ηπ±π0 modes. For each

mode experimental data distributions will be presented with the continuum, com-

bined B background and ‘signal’ PDFs overlaid. The likelihood scan plot, used to

calculate the upper limit for each mode, will also be presented.
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C.1 B± → a0(1450)±π0 Fit

Fit result plots for the B± → a0(1450)±π0 fit showing the η → γγ and η → π+π−π0

cases. Finally the likelihood scan for the separate and combined modes is presented.

C.1.1 η → γγ Case

E (GeV)∆
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Ev
en

ts 
/ (

 0
.0

07
 G

eV
 )

0

500

1000

1500

2000

2500

3000

E (GeV)∆
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Ev
en

ts 
/ (

 0
.0

07
 G

eV
 )

0

500

1000

1500

2000

2500

3000

)2 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )2
Ev

en
ts 

/ (
 0

.0
00

9 
G

eV
/c

0
200
400
600
800

1000
1200
1400
1600
1800
2000

)2 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )2
Ev

en
ts 

/ (
 0

.0
00

9 
G

eV
/c

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Fisher discriminant
-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

Ev
en

ts 
/ (

 0
.0

4 
)

0

1000

2000

3000

4000

5000

6000

Fisher discriminant
-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

Ev
en

ts 
/ (

 0
.0

4 
)

0

1000

2000

3000

4000

5000

6000

)2 mass (GeV/c0a
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

 )2
Ev

en
ts 

/ (
 0

.0
08

 G
eV

/c

0
200
400
600
800

1000
1200
1400
1600
1800
2000

)2 mass (GeV/c0a
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

 )2
Ev

en
ts 

/ (
 0

.0
08

 G
eV

/c

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Figure C.1: Experimental data distribution and PDFs for the B± → a0(1450)
±π0 DP

fit in the η → γγ case. The top left plot shows the ∆E variable, top right mES, bottom left
Fisher and bottom right the a0 mass. The data are represented by the black points while the
overall PDF is represented by the blue curve. The continuum background is represented by
the black dot-dashed curve while the combined B background is represented by the Green
dot-dashed curve. The signal is represented by the red dashed curve.
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C.1.2 η → π+π−π0 Case
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Figure C.2: Experimental data distribution and PDFs for the B± → a0(1450)
±π0 DP

fit in the η → π+π−π0 case. The top left plot shows the ∆E variable, top right mES,
bottom left Fisher and bottom right the a0 mass. The data are represented by the black
points while the overall PDF is represented by the blue curve. The continuum background is
represented by the black dot-dashed curve while the combined B background is represented
by the Green dot-dashed curve. The signal is represented by the red dashed curve.
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C.1.3 Combined Likelihoods
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Figure C.3: Likelihood scan for a range of B± → a0(1450)
±π0 (a0(1450)

± → ηπ±)
branching fractions for both η decay modes. The red dashed curve represents the η → γγ
contribution with the η → π+π−π0 represented by the pink dot-dashed curve. The blue
solid curve represents the combined likelihood for the two modes. The upper limit on the
branching fraction is set using the blue curve.
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C.2 B± → ηπ±π0 (Non-resonant) Fit

Fit result plots for the B± → ηπ±π0 (non-resonant) fit showing the η → γγ and

η → π+π−π0 cases. Finally the likelihood scan for the separate and combined modes

is presented.

C.2.1 η → γγ Case
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Figure C.4: Experimental data distribution and PDFs for the B± → ηπ±π0 (non-
resonant) DP fit in the η → γγ case. The top left plot shows the ∆E variable, top
right mES, bottom left Fisher and bottom right the a0 mass. The data are represented by
the black points while the overall PDF is represented by the blue curve. The continuum
background is represented by the black dot-dashed curve while the combined B background
is represented by the Green dot-dashed curve. The signal is represented by the red dashed
curve.
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C.2.2 η → π+π−π0 Case
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Figure C.5: Experimental data distribution and PDFs for the B± → ηπ±π0 (non-
resonant) DP fit in the η → π+π−π0 case. The top left plot shows the ∆E variable, top
right mES, bottom left Fisher and bottom right the a0 mass. The data are represented by
the black points while the overall PDF is represented by the blue curve. The continuum
background is represented by the black dot-dashed curve while the combined B background
is represented by the Green dot-dashed curve. The signal is represented by the red dashed
curve.
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C.2.3 Combined Likelihoods
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Figure C.6: Likelihood scan for a range of B± → ηπ±π0 (non-resonant) branching
fractions for both η decay modes. The red dashed curve represents the η → γγ contribution
with the η → π+π−π0 represented by the pink dot-dashed curve. The blue solid curve
represents the combined likelihood for the two modes. The upper limit on the branching
fraction is set using the blue curve.


