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Abstract

Results from studies on the commissioning of the Global Calorimeter Trigger (GCT)

of the CMS experiment are presented. Event-by-event comparisons of the hardware

with a bit-level software emulation are used to achieve 100% agreement for all trigger

quantities. In addition, a missing energy trigger based on jets is motivated using a

simulation study, and consequently implemented and commissioned in the GCT.

Furthermore, a templated-fit method for measuring the polarisation of W bosons

at the LHC in the “Helicity Frame” is developed, and validated in simulation. An

analysis of the first 3.2 pb−1 of
√
s = 7 TeV LHC data in the muon channel yields

values of (fL − fR)+ = 0.347 ± 0.070, f+
0 = 0.240 ± 0.176, and (fL − fR)− =

0.097 ± 0.088, f−0 = 0.262 ± 0.196 for positive and negative charges respectively.

The errors quoted are statistical. A preliminary systematic study is also presented.
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Chapter 1

Introduction

1.1 The State of Play

The field of High Energy Physics deals with the search for the answer to two ques-

tions. At the most fundamental level,

1. What is everything made of?

2. How does it all interact with each other?

The quest for the answer to (1) is shown historically in Figure 1.1, where a pattern of

uncovering a more fundamental basis can be seen. Our current best understanding

of the questions posed above is encompassed in a theory called the Standard Model

(SM), which is discussed in Section 1.1.1.

1.1.1 The Standard Model

The SM describes two of the three known fundamental forces, namely the elec-

troweak (EWK) and strong interactions. It is a renormalisable quantum field the-

ory based on the SU(3)colour×SU(2)isospin×U(1)hypercharge gauge group, that utilises

the correspondence between local gauge symmetries of the Lagrangian, LSM, and
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Figure 1.1: A historical overview of our fundamental knowledge of the basic constituents of
matter.

conserved charges, to describe natural phenomena. The strong interaction (QCD)

part is described by the SU(3)colour gauge group, and the EWK part is described by

the SU(2)isospin × U(1)hypercharge gauge group.

One of the greatest successes of the SM has been the unification of the electromag-

netic (EM) and weak-nuclear forces into the current EWK theory, a contribution

which led to Salam, Glashow and Weinberg being awarded the Nobel Prize for

physics in 1979. Predictions of this theory include the existence of weak neutral

currents, discovered in 1973 via neutrino interactions detected with the Gargamelle

bubble chamber at CERN [8], and the existence and masses of the weak gauge

bosons, found at the Super Proton Synchrotron (SPS) collider in 1983, also at

CERN [9, 10].

Whilst the symmetry group describing the strong force is thought to be exact, the

EWK symmetry is said to be broken. This is to allow for the theory to describe

a massless EM gauge boson and massive weak gauge bosons, without violating

local gauge invariance. Such invariance is necessary to allow the introduction of

interactions into the theory and to ensure that it is renormalisable, and therefore has

predictive power. This is possible through the introduction of local gauge theories

with spontaneous symmetry breaking. The simplest mechanism for such symmetry
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Figure 1.2: The ∆χ2 = χ2 − χ2
min distribution for the Higgs Boson mass fit using all precision

EWK data as of July 2010. The mass ranges corresponding to the yellow shaded areas have been
excluded from experimental data to a 95% confidence limit.

breaking was developed by Higgs [11] and Guralnik, Hagen and Kibble [12] in 1964.

This mechanism however, predicts the existence of a massive scalar particle called

the Higgs boson, whose observation represents the final missing piece of the puzzle

for the SM as a theory. As of July 2010, the experimental limits on the mass of the

Higgs Boson from searches at both the LEP and Tevatron experiments, are shown

on the ∆χ2 = χ2 − χ2
min distribution of Figure 1.2 [13]. The distribution assumes

that the SM is the correct theory of nature, and combines all precision EWK data to

fit for the Higgs Boson mass, MH . The mass ranges shaded in yellow (MH < 114.4,

158 < MH < 175 [GeV]) have been experimentally excluded to a 95% confidence

limit.

There are other success stories of the SM. The Glashow-Iliopoulos-Maiani (GIM)

mechanism [14] was proposed to explain the suppression of particular kaon de-

cays (flavour/strangeness changing neutral currents), and this hypothesised a fourth
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quark called the charm quark, which was discovered via the J/Ψ bound state at both

SLAC and Brookhaven in 1974 [15, 16]. Kobayashi and Maskawa proposed that CP -

violation could be accommodated in the SM if it were extended to three generations

(six flavours) [17]. This was duly followed by the discovery of the tau-lepton at

SLAC [18] and the bottom and top quarks at Fermilab [19, 20]. The existence of

just three generations of matter was determined by the LEP experiments, from an

analysis of the decay width of the Z-boson in 1993 [21]. The SM does not predict

per se the number of generations, but does restrict the number of lepton genera-

tions to the number of quark generations, otherwise the Adler (or chiral) anomalies

do not cancel out. Over the past 30 years, precision EWK tests of the SM have

taken place on different experiments, most recently by the LEP, SLC and Tevatron

experiments [22] with a remarkable agreement to theoretical expectations down to

the 10−18m scale.

Given the nature of the studies carried out in this thesis, the EWK part of the SM

Lagrangian is now reviewed. It may be written as

LSU(2)×U(1) = Lscalar + Lgauge + Lfermion + LY ukawa. (1.1)

The scalar part of this Lagrangian is given by

Lscalar = (Dµφ) (Dµφ)† − V
(
φ, φ†

)
(1.2)

in which the complex, two-dimensional scalar Higgs field, φ, is a doublet under

SU(2) and has a U(1) hypercharge of 1. The covariant derivative, Dµ, which is

required to ensure gauge invariance under local gauge transformations, is defined as

Dµ = ∂µ + ig
σi

2
W i

µ + ig′
Y

2
Bµ (1.3)

where g and g′, W i
µ (i = 1, 2, 3) and Bµ are the SU(2) and U(1) gauge coupling

constants and gauge fields respectively, and σi are the Pauli matrices, which are

generators of the SU(2) symmetry group. The potential, V
(
φ, φ†

)
, is defined as

V
(
φ, φ†

)
= µ2

(
φφ†

)
+ λ

(
φφ†

)2
(1.4)
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where the form of the equation is dictated by the local SU(2) × U(1) gauge in-

variance. In order that the potential remains bound, λ > 0 is required, but with

µ2 < 0, spontaneous symmetry breaking occurs, leading to a non-zero vacuum

potential, and a vacuum expectation value given by |φ0| =
√

−µ2

2λ
. This sponta-

neous symmetry breaking has the result that the ground state does not share the

same symmetry as the Lagrangian, and the original symmetry group is broken,

SU(2)isospin × U(1)hypercharge → U(1)EM, whereby U(1)EM must remain a symme-

try of the vacuum to maintain electric charge conservation. The generator of the

U(1)EM group is QEM = I3 + Y
2
, where Y , the hypercharge, is the generator of the

U(1)hypercharge group, and I3, the third component of isospin, is one of the SU(2)

generators. The value of Y is tuned to give the correct EM charge.

The kinetic terms for the gauge fields are given by

Lgauge = −1

4
F i

µνF
iµν − 1

4
BµνB

µν (1.5)

in which the field strength tensors are defined as

Bµν = ∂µBν − ∂νBµ (1.6)

Fµν = ∂µW
i
ν − ∂νW

i
µ − gεijkW

j
µW

k
ν (1.7)

and εijk is the totally antisymmetric tensor.

The fermion term is given by Lfermion = Llepton + Lquark, with Llepton given by

Llepton =
3∑

p=1

((
l̄p

)
L
iγµDµ

L (lp)L + (ēp)R iγ
µDµ

R (ep)R

)
(1.8)

and Lquark given by

Lquark =
3∑

p=1

(
(q̄p)L iγ

µDµ
L (qp)L + (ūp)R iγ

µDµ
R (up)R +

(
d̄p

)
R
iγµDµ

R (dp)R

)
(1.9)

where the index p runs over the three generations, and L and R refer to the chi-

ral projections ψL(R) = 1
2
(1 ∓ γ5)ψ. It is observed that left-handed electrons and

neutrinos are mixed by the weak interaction, and therefore (lp)L =

(
(νp)L

(ep)L

)
trans-

forms as an SU(2) doublet, whilst (ep)R is a right-handed singlet, since there is no
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evidence for the existence of right-handed neutrinos. Similarly, (qp)L =

(
(up)L

(dp)L

)
transforms as an SU(2) doublet, whilst (up)R and (dp)R as singlets. The differing

transformations of these L and R fields leads to the origins of parity violation in the

EWK sector. Correspondingly, the covariant derivative for the right-handed singlets

is defined as

DR
µ = ∂µ + ig′

Y

2
Bµ (1.10)

The three generations are in fact not independent, but interact via the CKM (Cab-

bibo, Kobayashi, Maskawa) mechanism for the quarks, and the PMNS (Pontecorvo,

Maki, Nakagawa, Sakata) mechanism for the leptons.

The SM is a chiral gauge theory which means that left and right handed particles

are treated differently. The coupling of the fermions to the Higgs field is therefore

described by the Yukawa coupling terms, Γ. The Yukawa term for the leptons is

given by

LY ukawa = −Γp

[(
(l̄p)Lφ

)
(ep)R + (ēp)R

(
φ†(lp)L

)]
(1.11)

with a somewhat similar term for the quarks.

Before any spontaneous symmetry breaking occurs, there are four unbroken gener-

ators associated with the fields W i
µ and Bµ, and four corresponding massless gauge

bosons. However, it is known in reality that the photon is massless, but the three

weak gauge bosons are massive. The Higgs mechanism can provide mass to these

bosons via spontaneous breaking of a local symmetry, without violating the local

gauge invariance of the theory. Initially, there are 12 degrees of freedom; four from

the complex, two-dimensional scalar Higgs field, φ, and two from each of the four

massless gauge bosons. Following spontaneous breaking of the SU(2) × U(1) sym-

metry, there are three broken generators corresponding to three massless Goldstone

bosons [23]. A redefinition of the fields replaces these degrees of freedom by the

masses of the gauge bosons, which provides a total of nine degrees of freedom. The

field associated with the one remaining unbroken generator (of the U(1)EM symme-

try group) has two degrees of freedom and corresponds to the massless gauge boson,

the photon, which remains massless as the group U(1)EM should remain a symmetry

of the vacuum i.e. charge is conserved. This gives a total of 11 degrees of freedom
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and, since redefinition of the fields cannot change the total number of degrees of

freedom, there is one remaining, which corresponds to the Higgs boson, a real scalar

field that has not yet been observed experimentally.

1.1.2 Shortcomings of the Standard Model

Much has been made of the Higgs boson. Its discovery has been portrayed as the

be-all-and-end-all of particle physics, and yet despite the issue of its existence, there

are other, somewhat more serious shortcomings of the SM. For example,

• There is no description whatsoever of gravity in the SM, leading to the belief

that the SM is effective up to some energy scale, Λ, past which ‘new’ physics

appears. A natural choice for this scale might be the GUT scale uniting the

EWK and strong interactions, Λ ∼ 1016GeV, or the Planck scale where quan-

tum gravity effects become important, Λ ∼ 1018GeV. This leads to problems

when calculating the radiative corrections to the SM Higgs boson mass. For

example, the one-loop contribution to MH from a fermion, f , shown in Fig-

ure 1.3(a), leads to a positive, quadratically divergent correction to the vacuum

expectation value, v, such that v2−v2
0 ∝ Γ2Λ2, where v0 is the tree-level value.

Since v ∼ 250GeV and Γ ∼ 1, in order to preserve the scale of the vacuum ex-

pectation value after inclusion of these loop corrections, either the SM is only

effective up to Λ ∼ 1TeV, or huge cancellations are necessary, O(10−30), some-

thing that does not seem very natural. Other contributions to MH arise from

similar interactions with bosons, and self-interactions, such that the overall

effect on MH is given by

M2
H =

(
M2

H

)
bare

+O
(
λ, g2,Γ2

)
Λ2 (1.12)

where (M2
H)bare is the tree level Higgs boson mass, and g and Γ are the weak

and Yukawa coupling constants respectively. The corrections to MH are inde-

pendent of the value of MH . This issue is called the fine-tuning problem. A

related question is the hierarchy problem, which asks why Λ is so much larger

than the EWK scale.
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• The SM is based on a direct product of three simple groups which all have

different coupling constants and it is not a true unification of the strong and

EWK forces in this respect. Precision measurements from the LEP, SLC and

Tevatron experiments [22] show that the evolution of the coupling constants

with energy scale is such that they all fail to meet at a common point, as

shown in Figure 1.4 (left), the so-called unification problem.

• At the cosmological level, the notion of the presence of a non-baryonic, non-

luminous dark matter - to account for the visible material deficit from ex-

pectations by using Newtonian dynamics and General Relativity to describe

the observed motions of the galaxies and stars - has been around for some

time [24]. Results from e.g. the WMAP Collaboration [25] measure that over

90% of the mass accounting for the observed motions cannot be attributed

to such visible material. A particle that is stable, electrically neutral, fairly

massive and only very weakly interacting is required. There is no such Dark

Matter candidate in the SM.

• Results from the Super Kamiokande experiment [26] have confirmed that dif-

ferences between the theoretical and observed atmospheric muon neutrino flux

are caused by the neutrinos changing flavour, which requires that they have

mass, a fact that is not accommodated by the SM per se. These results have

since been verified by the MINOS experiment [27].

• There is no explanation for the mass spectrum of all observed fermions in the

SM. The entire mass range observed spans ∼ 14 orders of magnitude as shown

in Figure 1.5.

1.1.3 Supersymmetry

A whole host of theories exist with possible solutions to the problems summarised in

Section 1.1.2, of which Supersymmetry (SUSY) is a popular example. At its heart

lies the introduction of a fermion⇔ boson symmetry which protects the Higgs boson

mass from divergent corrections, in an attempt to address the fine-tuning problem.
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Figure 1.3: Feynman diagrams for the radiative corrections of the Higgs boson mass due to
fermions (a) and scalars (b)

Figure 1.4: Running coupling constants for the EM, weak and strong forces; in the SM (left)
the coupling constants do not unify, whereas with the introduction of a SUSY model (right) they

do. [1]
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Figure 1.5: The experimentally determined masses of all the fermions in the SM, shown as a
function of fermion type. The entire mass range scale spans ∼ 14 orders of magnitude.

The diagrams of Figure 1.3(b) show the radiative corrections from introducing a

scalar particle, s. By introducing such scalar couplings to the Higgs boson, the

effect on MH is a cancellation of the quadratically divergent terms. The corrections

disappear altogether if mf = ms, however if SUSY were an exact theory, then such

SUSY particles should have already been discovered. The extent to which SUSY

is ‘broken’ may be estimated from the radiative correction to MH in this regime,

M2
H − (M2

H)bare ∝
(
m2

f −m2
s

)
log (Λ/ms). In order to keep the correction to the

same order as the tree-level value of MH , the SUSY particles should be seen at

around the TeV scale, otherwise the hierarchy and fine-tuning problem are reintro-

duced. It can be shown from the Coleman-Mandula theorem that the introduction

of such a fermion ⇔ boson symmetry is a unique extension of the Poincaré algebra,

whilst preserving its invariance. The above arguments can be extended to the Higgs

boson (self coupling) and vector bosons, via the introduction of fermionic partners.

Supersymmetry also provides a solution to the unification problem, the coupling

constants unifying at a single point, as seen in Figure 1.4(right).
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Given this symmetry between fermions and bosons, in order to enforce lepton and

baryon number conservation in a simple way, a discrete symmetry called R-parity

is imposed. It is defined as Rp = (−1)3B+L+2s, where B and L are the baryon and

lepton numbers respectively, and s is the particle spin [28]. This quantity is +1 for

SM particles, and −1 for their SUSY partners. If it is conserved, as it is in the

simplest supersymmetric extension to the SM, SUSY particles are always produced

in pairs, any decay of a SUSY particle will be into a SUSY particle and a SM particle,

and the lightest SUSY particle (LSP) is stable. This LSP is a prime dark matter

candidate [29]. Such decay cascades imply that a potential new physics signature

will be one with both a large transverse and missing transverse energy component.
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Chapter 2

W Bosons at the LHC

2.1 Introduction

The production of the W and Z Vector Bosons from collisions of hadrons probes

the nature of QCD and the electroweak interaction. The former predominantly de-

termines the momentum distribution of the boson, whilst the latter, the topological

properties of the decay products. A detailed understanding of the properties of W

and Z bosons is a prerequisite to numerous searches for physics beyond the Standard

Model, e.g. for Supersymmetry, as the experimental signatures of such processes are

very similar. This is all the more important since the production of W and Z bosons

in proton-proton collisions (i.e. at the LHC) displays new characteristics that are

not present in proton-antiproton collisions (i.e. at the SPS and Tevatron colliders).

Namely, there is expected to be

1. an asymmetry in the production rate of positive versus negative W bosons,

2. a large transverse polarisation exhibited at high W boson transverse momenta,

PT (W ).

The motivation for these effects is discussed in Sections 2.3 and 2.4 respectively.

Both of these characteristics can be utilised in distinguishing W and Z events from
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Figure 2.1: The Feynman diagram representing W boson production at tree-level (approximately
zero PT (W )), where p1 and p2 represent u-type and d-type sea/valence quarks.

other physics processes relevant to high-PT signatures, e.g. tt̄ and new physics.

Two examples of this are demonstrated in Chapter 6. It is therefore important to

establish these two effects and to measure them as accurately as possible, the latter

being studied from Chapter 7 onwards.

2.2 W boson production

The simplest case of W boson production is the one where it is produced with

no transverse momentum, apart from the primordial transverse momentum from

the incident partons that can otherwise be ignored i.e. PT (W ) � M(W ). This

quark-antiquark annihilation is a Drell-Yan process, and the dominant mechanism

by which W bosons are produced at both the LHC and Tevatron experiments. The

tree-level Feynman diagram is shown in Figure 2.1, where p1 and p2 represent u-

type and d-type sea and valence quarks. In this thesis, the leptonic decay channel

of the W boson is considered exclusively, i.e. p3 and p4 represent a charged lepton

and its corresponding neutrino. Given that partons are asymptotically free, the

cross-section of the Drell-Yan process may be written as the incoherent sum of the

partonic subprocesses:

σ =

1∫
0

dx1

1∫
0

dx2 f
P1
1 (x1, Q

2)fP2
2 (x2, Q

2)σ̂(ŝ) (2.1)

where σ̂ is the parton-level cross-section, x1 and x2 are the fractions of the proton

momenta that are carried by the interacting partons P1 and P2 respectively, and Q is
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Figure 2.2: The PDFs derived from the MSTW2008NLO set with Q2 = M2
Z .

the characteristic momentum scale of the hard scattering process, e.g. for the Drell-

Yan process σqq̄→`+`− , ŝ = x1x2s and Q = m`+`− . The parton-distribution-functions

(PDFs), f
Pj

i (x,Q2), express the number density of partons of type i that have a

momentum fraction between x and x+dx of the hadron. Such PDFs are calculated

from global fits to data from many experiments, and evolved to the appropriate

value of Q2 via the DGLAP equations [30]. The PDFs from the MSTW2008 set [31]

are shown in Figure 2.2 for Q2 = M2
Z . At this value of Q2, the number of u and d

valence quarks dominate over the ū and d̄ sea quarks over a large range of x, as do

the gluons, and the sea quark content is not flavour symmetric.

2.3 Charge Asymmetry

Given the dominant production mechanism for W bosons shown in Figure 2.1, the

flavour decomposition of the cross-section, as a function of centre-of-mass energy,
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(a) Parton decomposition of the W± total
cross sections in both pp̄ and pp collisions.
Individual contributions are shown as a per-
centage of the total cross section in each
case, and the decomposition is the same for
both W+ and W− bosons in pp̄ collisions.

(b) Prediction for the ratio of W− to W+

total cross sections in proton-proton colli-
sions, as a function of the collider energy,√

s. For pp̄ collisions the ratio is 1. Also
shown (dashed line) is the prediction ob-
tained by setting ū = d̄ in the quark sea.

Figure 2.3: The W± parton decomposition (a) and W+ vs. W− production ratio (b) at leading
order as a function of centre-of-mass energy.

is shown in Figure 2.3(a) [32] (at
√
s = 4 TeV, there is a transition from proton-

antiproton to proton-proton collisions). The two dashed lines from left to right rep-

resent the centre-of-mass energy of the Tevatron and LHC experiments respectively.

Due to the quark-antiquark symmetry of the pp̄ environment, there is no difference

between the W+ and W− fractional contributions. For pp collisions however, this is

not the case.

Given Figure 2.3(a), to a good approximation i.e. ignoring the charm and strange

quark contributions, the ratio of W− to W+ production is given by

R∓ ≈
dū

ud̄
=
d

u
· ū
d̄

(2.2)

where the asymmetry stems directly from the valence quark content in the LHC

environment. Based on such PDF arguments, approximately 40% more W+ than
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Figure 2.4: The helicity configurations for the initial state (a) and final state (b) of the process
ud̄ → W− → `−ν̄`. The block arrows represent the spin of the respective particles.

W− are expected at
√
s = 14 TeV. The evolution of this ratio as a function of

centre-of-mass energy is shown in Figure 2.3(b) [32]. This ratio also depends on the

PT (W ) range considered, and is discussed further in Chapter 6.

2.4 Polarisation

The spin-1 nature of the vector bosons lead to polarisation effects which predom-

inantly dictate the angular distribution of the decay leptons. For the tree-level

diagram in Figure 2.1, the W boson is produced at approximately zero PT (W ) and,

in the limit where the quark masses may be neglected such that chirality is equiv-

alent to helicity, is 100% polarised along the beam axis. This is because of the

V − A nature of the weak interaction (discussed in more detail in Section 2.4.2),

and the fact that the incident quarks are essentially collinear with the beam axis.

For valence quark production e.g. in the pp̄ environment of the SPS and Tevatron

colliders, the angular distribution of the W± decay leptons follow the Drell-Yan

distribution, (1∓ cos θ)2, where θ is the angle between the proton (antiproton) and

the positively charged (negatively charged) decay lepton in the boson rest-frame,

and was first measured by the UA1 experiment [33]. The helicity configurations

are shown in Figure 2.4. Since the W boson only couples to left-handed fermions

and right-handed anti-fermions, angular momentum conservation dictates that the

lepton (anti-lepton) is produced preferentially in the direction of the quark (anti-

quark). This leads to a dilution of the forward-backward asymmetry that arises
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Figure 2.5: The tree-level Feynman diagrams for W + 1 jet production, where a and b represent
u-type and d-type sea/valence quarks, and c represents an outgoing quark or gluon which produces

a jet: (a) quark-antiquark annihilation, (b) quark-gluon Compton diagram

from the PDF arguments in Section 2.2, namely that the W+ (W−) is produced

preferentially in the direction of the proton (anti-proton).

Whilst similar arguments hold at the LHC, other effects arise when PT (W ) > 0,

e.g. when the W boson is produced in association with a jet of hadrons. In this

case, the production mechanisms also involve quark-gluon interactions. These are

relatively suppressed with pp̄ collisions, but not with pp collisions, as seen from the

PDF arguments of Section 2.2. The Feynman tree-level W + 1 jet diagrams for

the quark-antiquark annihilation, and quark-gluon Compton processes are shown in

Figures 2.5(a) and 2.5(b) respectively.
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2.4.1 Theoretical expectations for high PT (W )

Each of the different production mechanisms yield different helicity amplitudes for

the W boson. To simplify the arguments that follow, representations of the three

initial state processes (quark-gluon, quark-antiquark and gluon-antiquark) in the

one jet case for the W+ boson are shown in Figure 2.6. The diagrams (a), (b) and

(c) differ from (d), (e) and (f) solely by the gluon helicity.

The dominant production mechanism at the LHC for W bosons with large PT (W ),

which is the phase-space that is most interesting for new physics searches, is the

quark-gluon initial state. This can be deduced from the following arguments:

• Production of bosons with a large PT involves valence quarks,

• There are no valence anti-quarks in the LHC environment,

• For values of xbjorken > 0.1, the probability of finding a gluon in the proton is

greater than that for an anti-quark (see Figure 2.2).

Given this production mechanism, the square of the amplitudes at tree level for

cases (a) and (d) are proportional to [34]:

(a) :
(d, ν)2

(u, g)(g, d)(ν, e+)

(d) :
(u, e+)2

(u, g)(g, d)(ν, e+)

where (d, ν) represents the dot product between the four-vectors of the d quark and

neutrino etc. For process (a), the d quark-neutrino direction defines the polarisation

axis, and (d, ν) is maximal when the d quark and neutrino are back-to-back. Given

that the W+ boson is produced in the opposite direction to the d quark, this leads

to an enhancement of the left-handed helicity, fL, of the W+ boson i.e. the (left-

handed) neutrino carries away most of the momentum from the W+ decay. Also,

since the d quark is generally in the transverse plane, this leads to polarisation effects

in the transverse plane.
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Figure 2.6: Representations of the different W+1 jet helicity amplitudes for the W+ boson
production mechanisms. The superscript on the gluon represents its helicity.
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Table 2.1: Z boson couplings to the different fermions.

cL cR

(
c2L
c2R

)
ν 1

2
0 -

`± ±1
2
∓ sin2 (θW ) ∓ sin2 (θW ) 1.36

q1(+
2
3
) 1

2
− 2

3
sin2 (θW ) −2

3
sin2 (θW ) 5.05

q2(−1
3
) −1

2
+ 1

3
sin2 (θW ) 1

3
sin2 (θW ) 30.2

A similar analysis of amplitude (d) leads to a left-handed helicity of the W+ bo-

son along the incoming u quark direction, which is generally aligned with the beam

z-axis. Since the boson flight direction and the beam axis are not aligned in gen-

eral, this production process does not lead to a fixed helicity for the W+ boson,

unless large rapidities are considered. Nevertheless, both these amplitudes lead to

non-trivial helicity effects in the transverse plane, which can be measured, and are

expected to show a predominant left-handed behaviour.

The equivalent diagrams for the W− boson require replacing the incoming left-

handed u quark by a d quark and vice versa. Whilst this flips the charge, the

helicity is unaffected and the arguments above remain valid. This is another key

difference with respect to proton-antiproton collisions.

Whilst the W boson couples with equal strength to all leptons, but always only

to left-handed fermions and right-handed anti-fermions, the Z boson couples to

both left and right-handed fermions with different relative strengths. However,

the arguments above generally also hold true for the Z boson, as the left-handed

fermion coupling, cL, is dominant over the right-handed fermion coupling, cR. In

fact, cR = −Q sin2 (θW ) and cL = I3 −Q sin2 (θW ), where Q is measured in units of

e, I3 is the third component of isospin, and θW is the weak mixing angle. Table 2.1

summarises the Z boson couplings to the different fermions.

2.4.2 Quantifying polarisation

Measurements of the polarisation of vector bosons are generally performed in the

boson rest frame, along a defined polarisation axis, by studying the distributions
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Figure 2.7: The helicity frame, where the polarisation axis is defined as the flight direction of
the boson. The angle between this axis and the charged decay lepton direction in the boson rest

frame is defined as θ∗.

of the decay leptons. There are two natural choices for such an axis, namely the

boson flight direction in the laboratory frame, and the beam line. The boson flight

direction is considered exclusively in this thesis, mainly as it aids in the desire to

utilise polarisation effects in the transverse plane in New Physics searches. In this

so called “helicity frame”, the polarisation axis (i.e. z-axis) is defined along the

direction of flight of the boson. The x-axis is chosen to lie in the plane spanned by

the two protons in the boson rest frame. The resulting two-fold ambiguity over the

x-axis direction is solved by asking that the angle between it and the closest proton

is minimised. By definition, the y-axis is perpendicular to this plane. This is shown

pictorially in Figure 2.7. The same plane spans the W boson in the laboratory

frame, as can be seen from the 3×3 determinant of the three-vectors of the W flight

direction, and the two protons in the W rest frame, which evaluates to zero.

The differential cross-section can therefore be written as a function of both the polar

(θ∗) and azimuthal (φ∗) angles of the boson decay leptons in this coordinate system,

where the ∗ signifies a measurement in the helicity frame. Physically, a measurement

of 0 < |φ∗| < π
2

means that the lepton will have a larger rapidity than the boson

in the laboratory frame (i.e. a smaller PT ), whilst a measurement of π
2
< |φ∗| < π

means that the lepton will have a smaller rapidity than the boson in the laboratory

frame (i.e. a larger PT ). The shapes of the transverse momentum and rapidity
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Figure 2.8: The vertex of an incoming fermion u, with a W boson, and an outgoing fermion v.
The block arrows represent the spin of the respective particles.

distributions of the decay leptons are governed by the V − A nature of the weak

interaction and rotational covariance. By integrating over φ∗, the parameterisation

of the differential cross section may be written as a function of just θ∗. This is

derived in the following discussion, making no assumption about the production

mechanism, but instead studying the W boson decay vertex.

In the massless i.e. relativistic limit, chirality is equivalent to helicity. The vertex

of an incoming fermion u with a vector particle and an outgoing fermion v, may be

written as ūγµv, where ū = u†γ0 (see Figure 2.8). Writing:

u = uL + uR = 1
2
(1− γ5)u+ 1

2
(1 + γ5)u (2.3)

and

ū = ūL + ūR = 1
2
ū(1 + γ5) + 1

2
ū(1− γ5) (2.4)

where γ5 is the Hermitian chirality operator, this may be re-expressed as ūLγ
µvL +

ūLγ
µvR+ūRγ

µvL+ūRγ
µvR. Using the anti-commutation relation {γ5, γµ} = 0 along

with the fact that (γ5)2 = 1, the terms ūLγ
µvR and ūRγ

µvL evaluate to zero, and

hence helicity is conserved at such a vertex i.e. it cannot “flip”. This holds equally

true at the axial-vector vertex ūγ5γµv, and thus overall for the W boson. This

means that writing the angular momentum states in the form | J,M〉:

| 1
2
,±1

2
〉⊕ | 1

2
,±1

2
〉 =| 1, 1〉 or | 1,−1〉 but not | 1, 0〉 or | 0, 0〉 (2.5)
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For the W boson, the V − A nature of the weak interaction means that there is a

one-to-one correspondence between charge and observed helicity state i.e. | 1,+1〉 is

associated with the W+, whilst | 1,−1〉 is associated with the W−. Expressed more

formally, the W boson only couples to left-handed fermions (i.e. the right-handed

fermion coupling, cR(f) = 0), and right-handed anti-fermions.

Rotating these states by θ∗ expresses the observed angular distribution of the charged

decay lepton (in the W rest-frame) in terms of helicity states for the boson (see

Figure 2.4(b), where the dashed line represents the W boson flight direction in this

case). The general form for such rotations is given by:

| J,M〉 =
+J∑

M ′=−J

dJ
M,M ′ | J,M ′〉 (2.6)

where dJ
M,M ′ are the components of the Wigner d-matrices, and dJ

M,M ′ = (−1)M ′−MdJ
M ′,M .

Note that M ′ = −1, 0,+1 represent left-handed, longitudinal and right-handed po-

larised boson states respectively. Squaring the amplitudes leads to the following

parameterisation of the W boson cross-section:

σ(θ∗`+) ∼ fL

(1− cos(θ∗`+))2

4
+ f0

sin2(θ∗`+)

2
+ fR

(1 + cos(θ∗`+))2

4
(2.7)

σ(θ∗`−) ∼ fL

(1 + cos(θ∗`−))2

4
+ f0

sin2(θ∗`−)

2
+ fR

(1− cos(θ∗`−))2

4
(2.8)

where the three parameters fL, f0, fR determine the corresponding amount of left-

handed, longitudinal, and right-handed helicity respectively, and fi > 0, (fL +

f0 + fR) = 1 by definition. The fi coefficients are in general a function of both

the boson PT and rapidity (see Chapter 6 for more information). Expectations

from theoretical calculations for the evolution of these fi parameters in the helicity

frame as a function of PT (W±) at
√
s = 14 TeV are shown in Figure 2.9 [2]. The

calculations are performed for the W + 2 jets case, where it is still clear that the

W bosons are predominantly left-handed, and this left-handedness increases with

PT (W ), supporting the statements made in Section 2.4.1.

The most general form of the differential cross-section derived above (to leading

order in QCD) is given by [35]:
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Figure 2.9: The Leading-Order and Next-to-Leading-Order expectations for fL, f0 and fR as a
function of PT (W+) (left), and PT (W−) (right), for the W + 2 jets case at

√
s = 14 TeV. [2]

dN

dΩ
∼ (1 + cos2 θ) + 1

2
A0(1− 3 cos2 θ) + A1 sin 2θ cosφ

+1
2
A2 sin2 θ cos 2φ+ A3 sin θ cosφ+ A4 cos θ

(2.9)

where the Ai are the ratios of the helicity cross-sections of the W boson to its total

unpolarised cross-section. These coefficients also depend on the W boson charge,

transverse momentum, PT (W ), and rapidity, |Y (W )|. Integrating Equation (2.9)

over the azimuthal angle yields:

dN

d cos θ
∼ (1 + cos2 θ) + 1

2
A0(1− 3 cos2 θ) + A4 cos θ. (2.10)

Comparing to Equations (2.7) and (2.8), by grouping together terms in cos θ and

cos2 θ, shows the equivalence of A0 to (fL + fR) ≡ f0 and A4 to ±(fL − fR). These

Ai coefficients make-up the elements of the helicity density matrix, of which the

fi coefficients are the diagonal elements. By virtue of defining both a polar and

azimuthal angle, the off-diagonal elements of this matrix are probed via the φ∗

distribution.

Whilst the A0 and A4 coefficients allow a study of the W helicity parameters, the

other coefficients are useful for studying QCD effects on the production of theW [36],

e.g. the A2 coefficient is not equal to A0 only if the effects of gluon loops are taken

into account. Also, A3 is only affected by the quark-gluon interaction, and hence

can be used to constrain the gluon PDFs. At next-to-leading-order, the coefficients
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A5, A6 and A7 appear, which are P -odd and T -odd and may play an important role

in direct CP -violation effects in W production and decay [37].

For the Z boson, given that the right-handed coupling to leptons is non-zero, the

fi coefficients above can no longer be interpreted as boson helicity components.

Rather, the general relationship between boson handedness Vi, and the fi is given

by: VL

VR

V0

 =
c2L + c2R
c4L − c4R

 c2L −c2R 0
−c2R c2L 0

0 0
c4L−c4R
c2L+c2R


fL

fR

f0

 (2.11)

No new information is obtained by studying both charged leptons in the Z case.

The parameterisation of Equation 2.9 is the same for Z bosons, although the values

of the coefficients will be different in general.
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Chapter 3

The Large Hadron Collider

3.1 Introduction

Straddling the Franco-Swiss border, between 45 and 170 metres underground, the

Large Hadron Collider [38] (LHC) is a two-ring circular synchrotron with a circum-

ference of 26.7 km, housed in the existing tunnel constructed for the Large Electron

Positron (LEP) experiment. It has been designed to collide beams of protons at

a centre of mass energy
√
s = 14 TeV, and up to a luminosity of 1034 particles

cm−2s−2. In a separate mode, the LHC can also accelerate lead and gold ions to

2.7 TeV per nucleon in a bid to study quark-gluon plasmas.

As motivated from Sections 1.1.2 and 1.1.3, the LHC is a discovery machine whose

primary objectives are to discover the Higgs boson and look for physics beyond the

SM, such as evidence of the particles predicted by supersymmetric theories. The

LHC will also enhance our understanding of known particles, and known effects such

as CP -violation. This motivates the extremely large collision energy and luminosity,

in an attempt to probe the extremely small cross-sections for such ‘new’ processes

when compared to known processes. An illustration of the production cross-section

(in the proton-proton environment) of different physics processes as a function of

centre of mass energy is shown in Figure 3.1. The Higgs production cross-section

is between nine and eleven orders of magnitude smaller than the total inelastic

proton-proton cross-section, depending on the Higgs boson mass.
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Figure 3.1: The production cross-sections of various physics processes in a proton-proton envi-
ronment, as a function of centre of mass energy.

The two counter-rotating proton beams are arranged in bunches, which are approx-

imately cylindrical and orbit at a rate of 40 MHz in the LHC. To illustrate the steps

required to achieve this, the CERN accelerator complex is shown in Figure 3.2.

The beam begins as hydrogen gas that is ionised and fed into the linear accelerator

LINAC2. There, it is accelerated to 50 MeV per proton before being injected into

the Proton Synchrotron Booster (PSB), which takes this energy up to 1.4 GeV. The

Proton Synchrotron (PS) and Super Proton Synchrotron (SPS) accelerators take

this energy up to 25 GeV and 450 GeV respectively, before the beam is injected into

the LHC via the transfer lines TI2 and TI8, at which point it is accelerated up to

the design energy of 7 TeV. The focusing and bending of the beams in the LHC is

performed using an array of superconducting dipole and quadrupole magnets, along

with a large number of beam correcting magnets (triplets, multipoles etc).

The bunch structure used to fill the LHC ring is shown in Figure 3.3. The PS

produces a batch of 72 bunches, and three/four of these batches are then injected

into the SPS, before arriving at the LHC. This procedure is repeated 12 times. In
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Figure 3.2: The CERN accelerator complex.
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Figure 3.3: The bunch structure used to fill the LHC ring.

total, each orbit contains 3564 of these bunch slots, of which 2808 are filled with

O(1011) protons per bunch. At the maximum luminosity of L = 1034 cm−2s−1, there

are on average 22 events per bunch crossing.

There are four main experiments at the LHC; LHCb (Large Hadron Collider Beauty

experiment) and ALICE (A Large Ion Collider Experiment) are studying b-physics

and heavy ion physics respectively, whereas ATLAS (A Toroidal LHC Apparatus)

and the CMS (Compact Muon Solenoid) are general purpose detectors aiming to

discover new physics at the TeV energy scale.

In September 2008, the LHC was on track for first collisions at a centre of mass en-

ergy of 14 TeV. However, a faulty interconnection between two LHC dipole magnets

failed during a magnet quench and the resulting release of stored energy resulted in

a catastrophic helium leak, O(5tonnes). This caused major damage to the machine,

and it was not until November 2009, following an extensive period of recuperation,

that beams were circulating in the LHC once again. The decision was taken however

to operate at half the design centre of mass energy, i.e.
√
s = 7 TeV, and the first

collisions at this energy took place in March 2010.
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3.2 The Compact Muon Solenoid Detector

The CMS detector, illustrated in Figure 3.5, is composed of (moving radially out-

wards) a pixel tracker, a silicon strip tracker, an active lead tungstate electromag-

netic calorimeter (ECAL), a sampling brass-plastic hadronic calorimeter (HCAL),

a four Tesla superconducting solenoid magnet, an outer HCAL (to detect punch-

through events), and four muon chambers interleaved with the iron return yokes.

Its design is based around very high quality lepton and photon reconstruction, mo-

tivated in part by the SUSY decay cascades, but mainly by the decay modes of the

SM Higgs boson, as shown in Figure 3.4 e.g. H → γγ which has a very clean signa-

ture. This requires a high performance ECAL, in order to distinguish such photons

from background modes such as π0 → γγ.

The 4T magnetic field is required to induce sufficient bending of the charged par-

ticles’ trajectories in the transverse plane, so that both their charge and momenta

can be measured, up to the highest energy particles expected at the LHC. The high

precision tracking is also of great benefit in reconstructing vertices which is essential

in the presence of both in-time pileup (on average 22 events per crossing) and out-of-

time pileup (particles of lower momenta spiralling close to the centre of the detector

in the magnetic field), as well as reconstructing displaced vertices from e.g. c and

b-quark decays. Besides the outer HCAL, the calorimeters are positioned inside the

magnetic coil to eliminate energy losses due to interactions with the magnet system,

and this places restrictions on the overall size of the calorimeters.

The coordinate system used is defined such that the z-axis points along the direction

of the beam pipe, the y-axis points vertically upwards, and the x-axis points radially

towards the centre of the LHC ring, with the origin defined at the interaction point

of the two proton beams. The azimuthal angle φ is measured from the x-axis in the

x−y plane, and the polar angle θ is measured from the z-axis, and expressed in terms

of the Lorentz invariant quantity pseudo-rapidity η = − log[tan(θ/2)]. The CMS is

designed to be as hermetic as possible, with a total coverage of |η| < 5 (|η| < 3 at

full detector resolution), in order to account for as many of the particles produced in

an event, and hence provide a more accurate determination of the missing transverse

energy per event, an important signature of potential physics beyond the SM.
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Figure 3.4: The Higgs boson decay modes for 100 < MH < 200 GeV

Figure 3.5: An illustration of the CMS detector. [3]
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Figure 3.6: The layout of the CMS tracker (a quarter slice in z is shown).

3.2.1 The Tracker

The tracker is designed to record the paths taken by particles passing through it,

to allow the momenta of charged particles to be determined from their curvature in

the 4T magnetic field, as well as record the positions of any vertices. The tracker

is composed of an inner pixel detector, and an outer strip tracker. It is made

entirely from silicon, which scintillates as particles pass through it, allowing high

resolution measurements to be performed. The tracker covers a pseudorapidity range

of |η| < 2.5. The pixel detector is the closest detector to the beam pipe, at a radius

between 4.3 and 10.2cm, and as such experiences the highest particle fluences of

any CMS subdetector. There are ∼ 45× 106 readout channels, which seed the track

reconstruction, and measure to a position resolution of about 10 microns in rφ and

15-20 microns in z. The silicon strip tracker is made up of several parts, as shown in

Figure 3.6: The Tracker Inner Barrel (TIB), Tracker Outer Barrel (TOB), Tracker

EndCap (TEC) and the Tracker Inner Discs (TID). In all, there are approximately

a further ten million readout channels, the information for which is used for track

reconstruction. The TIB has a 230 micron resolution in z, and a 23-34 micron

resolution in rφ, whereas the TOB which is further out, has a 530 micron resolution

in z, and a 35-52 micron resolution in rφ.
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3.2.2 Electromagnetic Calorimeter

The ECAL is designed to measure the energies of electrons and photons, which lose

their energy by radiation. It covers a total pseudorapidity range of |η| < 3, but

|η| < 2.5 for precise measurements. The ECAL is composed of over 75,000 lead

tungstate crystals, which scintillate as the particles deposit their energy. The light

emitted is then collected and amplified by photodetectors. There are two types

of photodetector used in the CMS; silicon avalanche photodiodes in the barrel, and

vacuum phototriodes in the endcaps, which have a lower gain but are more radiation

tolerant. Lead tungstate is used because of its short radiation length (X0 ∼ 0.9

cm), small Molierè radius (∼ 2.1 cm) and radiation hardness, as well as its rapid

scintillation time, which is important in avoiding pile-up. The crystal dimensions

are 22× 22× 230 mm (∼ 26X0), and so on average all the energy of an electron or

photon can be absorbed, and over 90% of the shower from a photon can be contained

within a single crystal.

Using a 100 GeV test beam, the energy resolution of the ECAL was found to be

σ(E)

E
=

2.8%√
E
⊕ 124MeV

E
⊕ 0.26% (3.1)

which is better than the design value of σ(E)
E

< 0.6% at 100 GeV. The ECAL

also contains two identical preshower detectors in the endcap region, where the

particle fluences are expected to be higher. They are composed of two layers of

lead each and their purpose is to initiate showering from electrons, photons and

π0 mesons. This improves the discrimination of hadrons, as well as improving the

position measurement of the electrons and photons.

3.2.3 Hadronic Calorimeter

The HCAL is a sampling calorimeter composed of brass absorbers and plastic scin-

tillator tiles, except in the hadron forward region in which steel absorbers and quartz

fibre scintillators are used because of their increased radiation tolerance. It is de-

signed to measure the energies of strongly interacting particles, and its primary
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requirements are to provide good jet energy resolution and containment of show-

ers to allow accurate estimates of the missing transverse energy and to protect the

muon system against punch-through. The HCAL is 11 interaction lengths in depth,

and consists of several regions, with the barrel, outer barrel and endcap providing

pseudo-rapidity coverage of |η| < 3, and the hadron forward calorimeter providing

coverage over the range 3 < |η| < 5. The measured energy resolution of the Hadronic

Barrel calorimeter using test beam was found to be

σ(E)

E
=

94.3%√
E

⊕ 8.4% (3.2)

compared to the design value of σ(E)
E

= 100%√
E
⊕ 4.5%.

3.2.4 Muon Chambers

Muons do not feel the strong force, and are too massive to radiate energy away via

Bremsstrahlung (a particle of mass m radiates at a rate proportional to m−4). In-

stead, they lose their energy by ionisation, and outside the superconducting solenoid

are four muon detection layers interleaved with the iron return yokes. Three types

of gaseous chamber are used. Measurements from the Drift Tube (DT) chambers

in the barrel (|η| < 2.1), the Cathode Strip Chambers (CSC) in the end-cap disks

(0.8 < |η| < 2.4) and the Resistive Plate Chambers (RPC) in both the barrel and

endcap (|η| < 1.6) are used in a complementary fashion for triggering and recon-

struction. The best reconstruction performance is obtained when the muon chamber

information is combined with the inner tracking information, as shown in Figure 3.7.
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Figure 3.7: The momentum resolution (∆p/p) of reconstructed muons as a function of muon
momentum in both the (a) barrel, and (b) endcap regions of the CMS detector. [4]
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Chapter 4

Commissioning the CMS Global
Calorimeter Trigger

4.1 The Need for a Trigger

As described in Section 3.1, bunches of protons at the LHC cross at a rate of 40 MHz,

and there are 22 events per bunch crossing on average. This corresponds to approxi-

mately 1 MB of data per such crossing, which is equivalent to a data rate of O(1012)

bytes per second. When it comes to saving these data, there are two limits to con-

sider. The first is how quickly data can be saved to tape (this is of the order of a

few 100 Hz), whilst the second is a bandwidth limit on the electronics of the Data

Acquisition (DAQ) system (this is around 100 kHz). This means that in order to

overcome the discrepancy between the production and storage rates, there must be

a certain amount of online selection, i.e. before any events are stored.

At the CMS, this is achieved in the form of a two-level trigger system, the Level-1

(L1) trigger and the High-Level Trigger (HLT), an overview of which is shown in

Figure 4.1. The trigger system reconstructs physics objects using raw detector data

of a coarser granularity (for reasons of latency) and selects the data to be recorded

based on the properties of these reconstructed objects, e.g. the transverse energy

of a reconstructed jet. The choice of what exactly to trigger on is motivated from
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Figure 4.1: An overview of the two-level trigger system used at the CMS. The pipeline length on
the front-end electronics is 4.0 µs, by which time the Level-1 Trigger must have made a decision

on whether or not to pass the event onto the High-Level Trigger. [5]
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the event signatures discussed in Section 3.2, namely jets, electrons, photons, muons

and total and missing transverse energy quantities.

The CMS L1 trigger is designed to reduce the event rate from 40 MHz to 100 kHz us-

ing data from the calorimeters and muon chambers, but not the tracker. The system

is also designed to be free of dead time, i.e. data from each and every bunch crossing

is analysed without any interference from other bunch crossings. This forbids the

use of iterative algorithms, and in turn dictates the use of a pipelined processing

architecture. The system is therefore a high-bandwidth, fixed-latency ‘image proces-

sor’, where all data may be stored for up to 4.0µs (160 bunch crossings) in pipeline

memories on the respective subdetector front-end electronics. During this time, the

L1 trigger algorithms must make decisions every 25 ns on whether or not to pass

the event on to the HLT for further consideration. The trigger algorithms are imple-

mented on a custom hardware platform composed of FPGAs (Field Programmable

Gate Arrays) and ASICs (Application Specific Integrated Circuits), and are highly

parallel in their approach in order to meet the overall latency constraints. FPGAs

can also be reprogrammed to accommodate new ideas (as discussed in Chapter 5).

An overview of the CMS L1 trigger is shown in Figure 4.2, which shows the di-

vide between the calorimeter and muon triggers. The Global Trigger (GT) uses

information from both these systems to make a decision called the ‘Level-1 Accept’

(L1A). For example, the muon system (via the global muon trigger) supplies the

top-four muon candidates ranked in momentum to the GT. This L1A decision is

then propagated to all detector subsystems so that the raw information may be

read out for analysis at the HLT. The calorimeter trigger is discussed in more detail

in Section 4.2.

The HLT is designed to reduce the event rate from the L1 trigger from 100 kHz to

100 Hz. Seeded by the L1 information, it uses the complete detector information,

both at the full resolution and including the tracker, to improve on the reconstruction

of the objects. The HLT is implemented on a high speed PC farm, containing

approximately 3000 computers. The selected events are then written to tape and

analysed offline.
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Figure 4.2: An overview of the CMS L1 trigger system, showing the global calorimeter and muon
triggers, and the global trigger. [5]

4.2 The Level 1 Calorimeter Trigger

The objects passed from the calorimeter trigger to the GT include electron/photon

and jet candidates. The corresponding algorithms which find such objects span

different physical sizes in the detector, which determines how coarse-grained the

input information must be. The CMS detector can be unwrapped and represented as

a two-dimensional array of 396 calorimeter regions, with 18 divisions in φ (−180 ◦ <

φ ≤ 180 ◦) and 22 in η (−5 < η < 5). Each division in φ corresponds to 20 ◦,

whilst the η divisions correspond to ∆η ∼ 0.348 in the barrel, and ∆η = 0.5 in the

forward calorimeters. A calorimeter region is defined to be a group of 4×4 trigger

towers. In the barrel, a trigger tower corresponds to 5×5 ECAL crystals, with the

corresponding HCAL region behind them. The jet-finding algorithm works on a

sliding window of 3×3 calorimeter regions across the entire (η, φ) space, whilst the

electron/photon finder works on a sliding window of 3×3 trigger towers for |η| < 3.

Given that electron/photon candidates span a much smaller physical space in the

detector than jets, the respective calorimeter trigger algorithms are implemented in
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the hardware of the Regional Calorimeter Trigger (RCT) and the Global Calorimeter

Trigger (GCT). The candidates are then sorted in terms of a quantity called rank by

the GCT, before being passed to the GT. The rank is equivalent to the transverse

energy, although it could in principle also contain information on the location of the

candidates.

For every event, the GCT performs the following tasks:

• Electron/photon candidates - up to 72 non-isolated and 72 isolated electron/photon

candidates found by the RCT are sorted, with the four highest-rank objects of

each type passed to the GT. This is equivalent to a data rate of 29 Gbs−1 per

electron type. A description of the electron/photon-finding algorithm is given

in Section 4.2.1,

• Jet candidates - transverse energy sums supplied by the RCT as calorimeter

regions (equivalent to an input data rate of 172.8 Gbs−1) are used to perform

jet-cluster finding, and the energies of the resulting jets are converted into

ranks. The jets are then classified as either central, tau (τ), or forward, and

the four highest-rank jets of each type are passed on to the GT. A description

of the jet-finding algorithm is given in Section 4.2.2,

• Energy sums

– The total transverse energy, ET , is the scalar sum of all regional transverse

energies.

– The total jet transverse energy, HT , is the scalar sum of all identified

clustered jets with energy above a programmable threshold.

– The missing transverse energy, Emiss
T , is the negative vector sum of all

regional transverse energies. This is calculated by projecting regional

transverse energies onto the x and y axes, rotating the resulting x and

y components by 180 ◦, and combining them as a vector sum. More

information is given in Chapter 5
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Two major extensions to the baseline system described above have also been iden-

tified and commissioned. The first of these relates to a Hmiss
T trigger, the jet ana-

logue of Emiss
T , which is discussed in Chapter 5. The second involves the innermost

two rings of the hadronic forward (HF) calorimeter, in both positive and negative

pseudo-rapidity. The total transverse energy in each of the four rings, known as

the “HF Ring Sums”, are calculated, as are the number of regions in each ring

for which the energy deposition exceeds a programmable threshold, the “HF Bit

Counts”. A coincidence measurement of these quantities in both positive and nega-

tive pseudo-rapidity provides a method for triggering on minimum-bias events. An

improvement to the identification method of τ -jets, discussed in Section 4.2.2, has

also been implemented and commissioned.

In addition to these tasks, the GCT acts as a readout device for both itself and the

RCT by storing information until receipt of a L1A, and subsequently sending these

data to the DAQ system for both diagnostics and seeding at the HLT.

4.2.1 The Electron/Photon-Finding Algorithm

Given that tracking information is not included at L1, no attempt is made to dis-

tinguish between electron and photon candidates at this stage. Since electrons are

‘narrow’ objects, their detection algorithm occurs at the RCT stage, and works over

a sliding window of 3× 3 trigger towers. As shown in Figure 4.3, the energy deposi-

tion in the central trigger tower is first calculated, and added to the largest energy

deposition of its four nearest neighbours, to ensure candidates split over two trigger

towers are properly handled. If the resulting value is above a certain programmable

threshold, the ratio of HCAL to ECAL energy deposition in the central tower is

calculated. To ensure that the particle considered is not a hadron, this ratio is set

to be below 5%. The Fine Grain (FG) algorithm is then performed, which examines

the central tower only and ensures that there is a fractional energy deposition of

over 90% in any contiguous 2×5 crystal strip along φ, in the whole 5×5 tower. If a

candidate satisfies all such criteria, it is at least a non-isolated electron/photon can-

didate. To check whether or not it is isolated, both the FG algorithm and HCAL
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Figure 4.3: The electron/photon-finding algorithm at L1. Each cell represents a trigger tower,
which is composed of 5 × 5 ECAL crystals in the barrel. The thresholds shown are all pro-

grammable. [5]

to ECAL energy deposition ratio are calculated for each of the central tower’s 8

neighbouring cells. The algorithm then ensures that there is at least one ‘quiet’

corner. A ‘quiet’ corner is defined as one in which the ECAL deposition in each of

the trigger towers in at least one of the four five-trigger-tower corners is below some

programmable threshold (1 GeV). Upon passing these additional criteria, the object

is identified as an isolated electron/photon candidate, and the RCT then sends this

candidate data to the GCT, which sorts and selects the four highest-rank candidates

to pass onto the GT.

4.2.2 The Jet-Finding Algorithm

A jet candidate is identified if the sum of the ECAL and HCAL energies of the

central calorimeter region of the 3×3 window (see Figure 4.4) has an energy depo-

sition greater than all its neighbours. The jet is then centred at this region, with

the transverse energies of the 3×3 area summed into it. The transverse energy con-

tributions from both the ECAL and HCAL for each calorimeter region are summed
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and supplied by the RCT. The RCT also calculates whether or not to set a τ -veto

bit for each calorimeter region, depending on whether or not energy depositions in

up to 4 contiguous trigger towers are below a programmable fraction of the regional

ET (see Figure 4.4(right)).

A jet found in the range 3 < |η| < 5 is classified as a forward jet. A jet found in the

range |η| < 3 can either be classified as a central or τ -jet, depending on the result

of the τ -identification algorithm used. There are two such algorithms available in

the GCT firmware:

• v1: If any of the nine τ -veto bits (one for each of the 3×3 regions that comprise

the jet) is set, then τ -jet identification is vetoed, and the candidate is classified

as a central jet. Conversely if none of the nine τ -veto bits are set then the jet

is classified as a τ jet.

• v2: Using this algorithm, the τ -veto bits are ignored. Instead, for a jet candi-

date to be classified as a τ jet, up to a maximum of one of the eight calorime-

ter regions neighbouring the jet seed is permitted to have a transverse energy

above some programmable isolation threshold. Otherwise, the candidate is

identified as a central jet.

It is also possible to apply separate corrections to the top-four identified τ , central

and forward jets, as a function of η and ET . Whilst this feature was not utilised for

2010 data taking, it is expected to be used in future running.

4.2.3 The GCT Hardware

The hardware of the GCT is modular, and is divided into several cards each per-

forming a different task relating to the determination of quantities and candidates

thus identified. The data from the RCT are the input to the first set of these

cards, the source cards, as shown in Figure 4.5(a). There are 63 source cards in

the system, with seven belonging to each of the nine RCT-crate pairs, as shown in

Fig. 4.6. These source cards serialise the data and re-transmit it on four optical
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Figure 4.4: The 3 × 3 jet-finder window at L1. Each cell represents a trigger tower, which is
the sum of the transverse energy contributions from both the ECAL and HCAL. The τ -jet veto

patterns are shown on the right.

fibres, passing relevant information to the next set of cards, the electron and jet leaf

cards (Figure 4.5(b)), and internally across the η = 0 region on an RCT-crate pair.

This is necessary to ensure that the algorithms correctly analyse centrally-emitted

electrons and jets, as discussed in Section 4.2.4.

There are two electron leaf cards, whose job it is to sort the electron candidates

already found at the RCT level in both the η > 0 and η < 0 regions, and six jet leaf

cards, which perform jet finding and are evenly split between the two η regions. Data

from the jet leaf cards are then passed onto the wheel cards (Figre 4.5(c)), which

sort jet candidates from both sides of the detector, in a similar vein to the electron

leaf cards, and calculate energy sums. Finally, the concentrator card (Figure 4.5(d))

takes information on the electron candidates from the two electron leaf cards, and

the jet candidates along with the energy sums from the two wheel cards, before

communicating with the GT via an optical interface.

4.2.4 Jet-Finding Algorithm: Hardware Implementation

The challenges associated with building a system as specified above centre around

handling the enormous data throughput and the processing required for the jet-
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(a) The GCT source card. (b) The GCT leaf card.

(c) The GCT wheel card. (d) The GCT concentrator card.

Figure 4.5: Photos of the GCT source card (a), leaf card (b), wheel card (c), and concentrator
card (d). The wheel card is shown with two leaf cards attached.
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Figure 4.6: An overview of the GCT system, which is made up of several sets of cards. 63 source
cards, split across 18 RCT-crates, are the input to the GCT. Solid arrows indicate the direction
of data flow, whilst dashed arrows indicate data-sharing between crate-pairs across the η = 0

boundary as well as between jet leaf cards.
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finding, along with the fact that a significant proportion of data has to be duplicated

and shared for object finding to take place in the required latency. This sharing can

require data flows similar in magnitude to that of the input data volume, depending

on the method used.

In order to reduce the total data shared, the GCT hardware employs a pre-clustering

algorithm [39] which involves 18 “jet-finders” operating on the entire (η, φ) space

simultaneously, sharing information with their neighbours only when clustered jets

are found. These jet-finders naturally map onto the boundaries defined by the RCT

crates, as shown in Figure 4.7, so that each jet-finder acts on data from a single

RCT crate, an area spanning 11 calorimeter regions in η (half the detector) and

two in φ (40 ◦). A maximum of three jets can be found by each of the φ strips in

a jet-finder, and hence 108 (= 3 × 2 × 18) in total per event. In order to maintain

continuity across the η = 0 boundary, the original design made the immediately

adjacent cells in η available to each jet-finder. This was subsequently changed to

share information from two adjacent cells, for reasons as discussed in Section 4.3.4.

An example of the jet-finding algorithm is shown in Figure 4.8. The first stage

involves creating a 2×3 mini-cluster around any local maxima identified in the 12×2

strip. Equality statements between regions are set-up such that the central cell is

required to be greater than its neighbours in certain directions, but greater than or

equal to its neighbours in others. This ensures that clustered jets are formed with

a clear separation (i.e. at least one calorimeter region) in both η and φ.

In the second stage, the jet-finder transfers the three largest mini-clusters in a given φ

strip to the closest φ strip on the neighbouring jet-finder. These are then compared

against the existing mini-clusters in that φ strip, and those that are adjacent or

diagonally adjacent to a larger mini-cluster are removed. The equalities are once

again set-up to prevent problems occurring with two mini-clusters having the same

value. In the third and fourth stages, the surviving mini-clusters have their three

adjacent regions summed in to produce a 3×3 clustered jet.

The jet-finder as described reduces the data sharing requirement from 66% to 25%

of the aggregate input data, when compared to the sliding window method. At this

point, it is worth highlighting several features of the algorithm.
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Figure 4.7: The calorimeter map that the 3×3 jet-finder operates over is made up of 396 calorime-
ter regions; each jet-finder is mapped onto an RCT crate which is made up of an 11×2 strip of

these regions. RCT crate labels are shown for negative pseudo-rapidity only.
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Figure 4.8: The jet-cluster method, with only six cells in η shown. An example of overlapping
jets is highlighted.
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• Vertical phase sensitivity - an artefact of pre-clustering is a sensitivity to where

the boundaries between jet-finders are drawn. Working through the example

of Figure 4.8 again, it should be clear that different results would be obtained

if the jet-finder was offset by one unit in φ. It is important to note however,

that whilst shifting the boundaries would result in different jet energies, the

objects would not be missed by the trigger. Given each jet-finder spans two

regions in φ, this vertical phase sensitivity is limited to just one unit in φ.

• Overlapping jets - a feature of the jet-finder as implemented is that it allows

jets to be centred with a minimum of at least one region separation in both

η and φ. At this limit, non-zero regions from overlapping 3×3 windows con-

tribute energy to more than one jet, as highlighted in Figure 4.8. The net

result is that there is more HT than ET in such events, as demonstrated by

the correlation plot of Figure 4.9(a). Figure 4.9(b) however, shows the corre-

lation plot produced by considering only events where the jet separation is at

least two regions in both η and φ, showing no events with more HT than ET .

• “Maxima” finder - given that the jet-finder at L1 operates on a fixed 3×3

sliding window, it is only an approximation to the cone-finder which is used

offline. If a jet spreads over an area larger than 3×3 regions, only the highest

energy part will contribute to the L1 jet. In some cases therefore, not all

energy depositions will contribute to a jet, thus partially explaining why there

is more ET than HT in the correlation plot of Figure 4.9(b).

4.3 Commissioning the GCT

The GCT was installed and commissioned in the CMS experimental cavern in two

stages, first with the necessary elements for the electron/photon trigger, and then

with the remainder of the system for the jet and energy sum triggers. Given the

complexity of the system, two major tools were developed and used extensively

(Figure 4.10) that naturally map onto the two major steps needed for complete

commissioning:
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(a) The correlation with a minimum jet cen-
tre separation of one region in both η and
φ.

(b) The correlation with a minimum jet
centre separation of two regions in both η
and φ.

Figure 4.9: Correlation plots of L1 HT against L1 ET for a QCD Monte Carlo generated sample
as obtained from the GCT software emulator, one of the tools used during commissioning (see

Section 4.3).
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1. The ability to generate and load pattern files that emulate the input to the

GCT, in order to validate the information reaching the start of the algorithms.

Part of the GCT design allows for buffers where these patterns can be loaded

at the input to the system, and then read back at the input to the processing

algorithms. Between these steps, rearrangement of the data is necessary and so

this validation is essential if an understanding of the jet-finding and subsequent

processing is to make sense.

2. The ability to run the input to the GCT algorithms through a full C++

software emulation of the system and compare the outputs against each other.

This bit-level emulation is made possible by the fact that the GCT is an

entirely digital system, and ensures that the hardware functions as expected,

which is especially useful for simulation studies.

In addition to the above, a one-sixth reconstruction of the GCT was assembled in

the laboratory to enable fast testing, problem solving, and development when the

full system was in use. In order to aid such debugging, intermediate data internal

to the GCT hardware was also saved to disk, approximately doubling the size of the

GCT output data, which is the reason why such information is suppressed during

normal running.

4.3.1 Step 1a: Cable-mapping check

Before the tasks described above were undertaken, it was essential to check the

cable mapping between the 252 optical fibres carrying data from the GCT input to

the electronics which perform the algorithm processing. This was done by sending

a unique number down each fibre, capturing at the output, and comparing to the

number expected from a cable-mapping algorithm. This highlighted a small number

of cable-mapping errors which were promptly resolved.
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Figure 4.10: The GCT commissioning stages.

4.3.2 Step 1b: Link stability check

Once the cable mapping had been verified, the link stability was exhaustively tested.

This was first done by testing the transmission quality of each link for data corrup-

tion using several different types of patterns. No cyclic redundancy check (CRC) or

synchronisation loss errors were detected when tested in the laboratory system, and

the links performed reliably each time. However, when ported to the experimen-

tal cavern system, CRC errors began to appear occasionally. This was eventually

traced to a firmware synthesis/constraints problem that has since been resolved;

a more complete description of this problem is discussed in [40]. The links were

also stress tested continuously for over a fortnight, O(105) times, a process which

involves resetting each link and transmitting data for approximately 10 seconds.

4.3.3 Step 1c: Validating the input to the GCT algorithms

As described, the GCT acts as a readout device for both itself and the RCT, and

so a correct interpretation of the interface between these two systems is essential to

validate the input area on which the algorithms operate. This is the first step in the
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(a) The input regions to the GCT algo-
rithms as generated with a pattern.

(b) The input regions to the GCT algo-
rithms as seen by the hardware.

Figure 4.11: A sample pattern injected at the input to the GCT. Several geometric mismatches
in η and φ can be seen between the intended input (a) and the corresponding output (b).

commissioning of the various outputs. Two checks were made at this point, both of

which can be verified using patterns of varying complexity. The first checked that

no errors were made in the reorganisation of serial data down the optical fibres into

a format suitable for jet-finding and electron/photon candidate sorting. The second

involved the interpretation of the raw data by the software unpacker. Patterns such

as the one shown in Figure 4.11 were used to resolve several geometric mismatches

in η and φ for the jet-finding input. The cause can be seen as a combination of a

reflection along η = 0 and an ordering problem along the φ direction. A similar test

for the electron/photon system was performed, which has a much simpler mapping.

Another check was also made at this point to ensure that the duplicated regions

which ensure the jet-finder remains continuous across the η = 0 boundary were

identical. All such problems were resolved promptly.
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Figure 4.12: An illustration of the problem with sharing only one adjacent region at the η = 0
boundary with the jet finder as described in Figure 4.8

4.3.4 Step 2: Basic algorithm and emulator checks

Given the confidence that the input to the jet-finder was now correct, a similar logic

was used to perform simple tests of the jet-finding algorithms. Patterns where the

results of the jet-finding could be calculated by hand were used to test both the C++

emulator and hardware. Initially, single regions of energy were injected, and these

picked out multiple problems, primarily in the interpretation between the different

hardware components, but also in the software emulator. Several errors were seen

with the classification of the different types of jets, and the handling of overflowing

quantities.

More complicated patterns were then used to probe the behaviour of the jet-finding

algorithm in hardware. Although the clustering worked as expected, a problem

with the jet-finding along the η = 0 boundary was uncovered. This is summarised

in Figure 4.12, which shows a sample energy deposition across the η = 0 boundary.
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The first stage shows the information available to each of the four jet-finders, with

duplicated regions shown with a green background. Once the pre-clusters are sent

to neighbouring jet-finders and compared, it can be seen that a lack of duplicated

information has resulted in two jets being created with no clear separation in η and

φ, which is not allowed with the algorithm as prescribed. The result of this was an

adaptation of the jet-finding algorithm, to use information from not one but two

adjacent cells in η, so that each jet-finder operates on a 13×2 strip of calorimeter

regions. In general, for an n × n jet finder (recall n = 3 for the GCT), where n is

odd so that a jet centre can easily be defined, at least (n+1)
2

cells need to be shared

across the boundary to maintain continuity.

4.4 Further Commissioning with Cosmic-Ray Muon

Data

After completing the steps as outlined above, the GCT performance was tested

by participation in global CMS cosmic-ray muon runs. In these runs, the muon

trigger system of the CMS experiment was used as the primary trigger source, and

consequently the calorimeter data taken by these triggers was dominated by noise.

However, by using low thresholds and special calibrations it was possible to test the

calorimeter trigger chain for electrons and jets using these data.

As the GCT reads out both its input and output, running the emulator over the

input data provides a way of comparing the hardware output with that of simu-

lation. Another software tool was developed at this stage to allow a detailed look

at any discrepancies on an individual event basis, saving the input for such rogue

events, along with the emulator and hardware output, in order to make debugging

easier. Patterns were then created where necessary to recreate such problems in the

laboratory system (described in Section 4.3) with additional debugging information.

This software package also displays global rank, η and φ distributions of such errors,

which may indicate the nature and hence number of underlying problems. Such a

software tool proved invaluable in tracking down errors at the O(10−6) level. The

typical output from this software package is shown in Figure 4.13. The folder names
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Figure 4.13: Sample output from the software package described in Section 4.4.

contain the event number (from a pattern test in this case), which allow the event

to be tagged and isolated if required, and also an index that highlights the type

of error (N in this case represents non-isolated electron/photon candidates). The

global error histograms are shown on the right for both the hardware (data) and

emulator outputs, represented by the D and E indices respectively. The software

package also generates status flag histograms summarising the matching status of

events, i.e. whether or not the rank and/or location (if applicable) of quantities

matched, which is a useful metric in evaluating the overall status of the hardware vs

emulator comparison. Also produced are the overall distributions for all quantities

for both the emulator and hardware.

The GCT was involved in tens of thousands of such global runs, and discrepancies

that occurred were identified quickly and understood promptly using this method.

Such discrepancies can be grouped into three general categories:

1. Hardware problems - analysis of hundreds of millions of cosmic-ray muon

events revealed subtle implementation features which patterns did not probe.
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Figure 4.14: An illustration of the equal rank sorting discrepancy between the GCT software
emulator and hardware. The (rank, η, φ) of the candidates are shown in GCT units.

These required updates to firmware, and more data to be taken for these

updates to be verified.

2. Emulator problems - one of the most notable emulator discrepancies involved

the preferences given to the sorting of equal-rank objects. Figure 4.14 shows

an example of five equal-rank objects, which are found identically in both

hardware and emulation. A difference in the priorities allocated during the sort

process between the hardware and software meant that two different sets of

top-four objects were passed on, leading to discrepancies on an individual event

comparison basis. Whilst this was not a problem from a physics standpoint,

such discrepancies had the effect of slowing down the validation process and

masking other problems. Unlike firmware updates, software can be updated

and verified without the need to take more data, as in this case where the

software was adapted to describe the firmware sorting process.

3. Configuration problems - both the emulator and hardware have a set of con-

figurable parameters which control the behaviour of the different triggers and

system in general. For example there is a configurable threshold on the trans-

verse energy of jets contributing to the total HT . Discrepancies can arise from

a mismatch between the emulator setup, and what these values were in the

hardware when the data was taken. Although these configuration parameters

are now stored in a database along with the time interval of their validity,

some effort was required to ensure a correct match. Again, no more data has

to be taken for such changes to be verified.
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Figure 4.15: An example of a novelty pattern used during the GCT commissioning.

By using such global runs as an iterative process in commissioning the GCT, it

should be noted that on some occasions, making progress on one front introduced

errors elsewhere. In order to spot such occurrences, patterns were added to the

suite described in Section 4.3 whenever new problems were uncovered. These were

then cumulatively run and analysed for discrepancies with the emulator immedi-

ately after any firmware updates. Towards the end of the commissioning activities,

several novelty patterns were added to this suite, an example of which is shown in

Figure 4.15.

The tools developed to debug and commission the GCT discussed in this chapter are

also used in a similar capacity for data quality monitoring (DQM). Currently, the

data vs emulator comparisons are run online and it is planned that this will also be

run offline. Any rogue events flagged up from such comparisons can then be placed

into the DQM error stream (to be implemented), where they can be analysed with

the software as described.
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4.5 Performance

One way of determining the success of the procedure defined in this chapter is via a

hardware vs emulator comparison from events generated by simulation. Figures 4.16

to 4.25 detail such a comparison for 2000 events from a possible SUSY signature,

which shows 100% agreement for all GCT quantities on an event-by-event basis.

Figure 4.16: Central jet candidates
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Figure 4.17: τ -jet candidates
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Figure 4.18: Forward jet candidates
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Figure 4.19: Isolated electron/photon candidates
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Figure 4.20: Non-isolated electron/photon candidates
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Figure 4.21: Total HT (top) and total ET (bottom)
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Figure 4.22: Missing HT
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Figure 4.23: Missing ET
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Figure 4.24: The HF ring ET sums; inner ring in negative rapidity (top left), inner ring in positive
rapidity (top right), second ring in negative rapidity (centre left), second ring in positive rapidity

(centre right).
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Figure 4.25: The HF ring bit counts above threshold; inner ring in negative rapidity (top left),
inner ring in positive rapidity (top right), second ring in negative rapidity (centre left), second ring

in positive rapidity (centre right).
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Chapter 5

The Level-1 Missing HT Trigger

5.1 Introduction

As discussed in Chapter 4, the Level-1 Trigger of the CMS experiment is designed to

reduce the LHC event rate from 40 MHz to 100 kHz using information from the CMS

calorimeters and muon chambers. One such trigger, the missing transverse energy

(Emiss
T ), is computed every event by calculating the vector sum of transverse-energy

deposits from all 396 calorimeter regions, followed by a rotation through 180◦. This is

important for many different analyses, not least because large amounts of Emiss
T may

indicate the existence of physics beyond the Standard Model. For example, SUSY is

expected to have such a signature via the neutralino, and could be observed with a

much lower integrated luminosity than for a potential discovery of the Higgs Boson.

A missing energy trigger which is fast to commission and not affected by instrumental

effects, pile-up, detector noise, hot channels etc. will therefore be important. It has

been suggested in previous studies [41] and experiences at the Tevatron [42], that a

missing transverse energy sum computed not from all calorimeter region ET deposits,

but from all jet-ET deposits found in an event, a missing HT trigger (Hmiss
T ), would

satisfy this criterion.

The performance between these two missing energy triggers is compared in this

chapter, by studying the QCD rate versus signal efficiency curves, for both SUSY and
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Standard Model signals in simulation. Samples of both the mSUGRA benchmark

parameter points [43] LM0 and LM1, and a tt̄+jets sample are compared against a

QCD sample, as this will have the largest cross-section for any process at the LHC

(see Figure 3.1). As well as looking at missing energy triggers, the total transverse

energy (ET ) and jet transverse energy (HT ) triggers are also compared. The response

of the jet-based energy sums, HT and Hmiss
T , to jet energy corrections, individual

Ejet
T thresholds, and restrictions on the acceptance of jets are also quantified.

5.2 Hardware Implementation

The total number of jets that can be found in an event at Level-1, and hence those

contributing to both HT and Hmiss
T , is 108. A schematic of how the energy sum

quantities are calculated in the GCT is shown in Figure 5.1. The total ET is equal

to
∑
i

Ei
T where i runs over all calorimeter regions, whilst the total HT is equal to∑

j

Ejet,j
T where j runs over all jets found above a programmable transverse energy

threshold. The missing energy sums are calculated by first working out the respec-

tive sums in bands of phi. These are then resolved into the corresponding x and

y components, before being vectorially added, rotated by 180◦, and recombined in

quadrature into a magnitude and an angle. The total missing energy components are

therefore equal to Emiss,x
T = −

∑
i

Ei
T cosφi and Emiss,y

T = −
∑
i

Ei
T sinφi. The corre-

sponding Hmiss
T components are calculated as in the total energy case, by replacing

the summation from calorimeter regions to all jets found above a programmable

transverse energy threshold. The programmable thresholds for HT and Hmiss
T are

independent.

The Emiss
T calculations are performed in hardware using the CORDIC algorithm [44] [45].

Given that the Hmiss
T calculation can only be performed after jet-finding, it is re-

quired to be faster (to meet the overall trigger latency), and so a look-up-table

is instead used to perform the x and y projections. This in turn requires more

bandwidth. The precision of all the energy sum trigger quantities at the GCT are

summarised in Table 5.1. The upper limit on the Hmiss
T precision, seven bits, is a
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Figure 5.1: A schematic of the energy sum calculations performed in the GCT on the calorimeter
regions.

Table 5.1: The precision of the energy sum trigger quantities in the GCT.
Quantity Bit Precision

ET 12 + overflow
HT 12 + overflow

Emiss
T magnitude:angle 12 + overflow : 7

Hmiss
T magnitude:angle 7 + overflow : 5

hardware bandwidth constraint; a result of the fact that the Hmiss
T trigger was im-

plemented retrospectively into the GCT specification. In order to make the ranges

of the two missing energy trigger quantities more similar, the bottom three bits of

the Hmiss
T magnitude are truncated.

5.2.1 Jet-based Configurable Parameters

The use of jet-based energy sums at Level-1 provides an opportunity for two major

configurable parameters, both of which are studied:

1. Jet energy corrections. Jet energy corrections are programmable (ET ,

η) dependent corrections that, when applied, are applied to every jet that
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is found. The η-dependent correction is designed to compensate for the re-

sponse and geometry of the detector, whilst the ET -dependent correction is

designed to account for both the non-linear and non-compensating nature of

the calorimeters. In the current implementation of the GCT it is not possible

to apply these corrections to the HT and Hmiss
T quantities, but their effects

are studied nevertheless to understand their potential and determine if they

should be included in a possible upgrade. The jet energy corrections used in

this study are discussed in [46].

2. A programmable threshold cut on the jets used in the energy sums.

As previously discussed, two independent thresholds exist, one for HT and one

for Hmiss
T . By making a threshold cut on a scalar sum such as HT , the removal

of jets will simply reduce the overall scalar sum. For a vector sum quantity

such as Hmiss
T however, there are two effects which arise and work against each

other:

(a) The introduction of fake missing energy into a perfectly balanced event

(or otherwise) by not considering those jets which balance the event but

fall below the threshold.

(b) The removal of real missing energy by cutting out all jets in an event

which lie below the threshold, but do not balance.

5.3 Monte Carlo Generated Samples

5.3.1 Samples Studied

In order to determine the effects of the jet-based configurable parameters, as well as

analysing both the performance of the Hmiss
T versus Emiss

T trigger and HT versus ET

trigger, three types of Monte Carlo generated samples at proton-proton centre-of-

mass energy of
√
s = 10 TeV were studied (motivated by the schedule of the LHC

at the time):
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Table 5.2: Information on the Monte Carlo generated samples used in this study [6] [7].
Sample Generator numbers of events ×106

SUSY LM0 Pythia 0.2
SUSY LM1 Pythia 0.1

tt̄ Madgraph 1.0
QCD (80 GeV < p̂T <∞) Pythia 21.0

1. Supersymmetry (SUSY). Two R-Parity conserving mSUGRA benchmark

parameter points [43], LM0 and LM1, are analysed.

2. tt̄ production in association with jets.

3. QCD.

Full details of the numbers of events and generator used for each of the samples

described above are shown in Table 5.2. The samples were run through a full

simulation of the CMS detector, where a software emulation of the GCT hardware

models the response of the various energy sum triggers. The following sections study

the effects described in Section 5.2.1, and how this response varies between the signal

samples above, i.e. with both true and fake missing energy content.

5.3.2 Characterising Samples

Before such an analysis is performed, it is helpful to attempt to characterise the sam-

ples, with a view to understanding the different responses to jet energy corrections

and threshold cuts. The SUSY processes can be characterised by an experimental

signature which has a real missing transverse energy, from particles which pass un-

detected through the CMS detector, along with high transverse-energy jets. The

same is true for the tt̄+jets process, albeit with a lower transverse energy content.

The topology of QCD events is typically back-to-back, and as such the amount of

missing energy in these events is close to zero and arises from jet energy mismea-

surement in the detector. Semi-leptonic decays from QCD do give rise to real Emiss
T

however.
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Characterising Jet Energy Corrections

Figure 5.2: Hcorr
T /HT , with no threshold applied, on an event-by-event basis for the different

samples shown.

The effects of applying jet energy corrections are shown in Figure 5.2 for each of the

samples. This is done by calculating, with no threshold cuts applied in both cases,

the ratio of the sum of all corrected jets found in an event, Hcorr
T , to the sum of all

uncorrected jets found in the same event, HT . Effectively, different samples have

different topologies and are affected differently by the (ET , η) dependent corrections.

Whilst it is clear that larger corrections are applied to the lower energy distributions,

the shapes of these ‘smearing functions’ are also important. The LM1 correction

is much finer than that of the other samples, which are similar. The tails of the

SUSY ‘smearing functions’ are also longer than the Standard Model samples. This

has consequences when constructing cumulative plots before and after applying jet

energy corrections, as the shapes of such functions will affect the slope of cumulative

plots, whilst the average value of the correction will determine when the cumulative

curve inflexes. The correction smearing function for a sample is highly correlated

to its initial distribution however, so translating effects relatively between samples

is non-trivial.
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Characterising Threshold Cuts

Figure 5.3: Hthresh>30 GeV
T /HT on an event-by-event basis for the different samples shown.

In a similar vein to the characterisation of jet energy corrections, Figure 5.3 shows the

ratio of uncorrectedHT in an event with a threshold of 30 GeV on jets,Hthresh>30 GeV
T ,

to HT . The distributions with the softest jets are affected the most by such a cut,

both with the number of events which have no jets above the threshold and hence

also no Hmiss
T , and by the average scaling factor for HT . The characteristics of these

distributions will also affect the cumulative efficiency curves.

Characterising Njets vs HT

Figure 5.4 shows the correlation between the HT and the number of jets found in an

event, for the different samples at the Level-1 trigger, with no threshold applied to

clustered jets. The number of jets found per event affects the sensitivity to jet energy

corrections and threshold cuts, since a larger number of jets for some HT implies a

lower energy per jet, and hence both larger corrections and a larger threshold effect.

This is especially true for the Standard Model samples, since the correlation between

jet multiplicity and HT for the SUSY samples in Figures 5.4(a) and 5.4(b) shows a
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(a) SUSY LM0 (b) SUSY LM1

(c) tt̄ + jets (d) QCD

Figure 5.4: Correlation between HT and Jet Multiplicity (with no threshold) at the Level-1
trigger for samples of SUSY LM0 (a), SUSY LM1 (b), tt̄ (c) and QCD (d).

circular contour, whilst this is more elliptical for the Standard Model tt̄ and QCD

samples in Figures 5.4(c) and 5.4(d) respectively. The SUSY samples also have a

larger transverse energy content than the Standard Model samples, with the LM1

sample also exhibiting a softer component between 0 and 100 GeV, as can be seen

in Figure 5.4(b).
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(a) SUSY LM0 (b) SUSY LM0

(c) QCD (d) QCD

Figure 5.5: HT vs ET correlations for SUSY LM0 (a) and QCD (c). Hmiss
T vs Emiss

T correlations
for SUSY LM0 (b) and QCD (d).

Characterising Overlapped Jets

As discussed in Section 4.2.4, the sliding window jet-finding method implemented

in the GCT does not prohibit single energy depositions contributing to multiple

jets. The extent to which this effect occurs is important when comparing HT to ET

and Hmiss
T to Emiss

T , and can most easily be characterised by looking at correlation

plots of the above quantities. These are shown for both SUSY LM0 and QCD in

Figure 5.5, where it is clear that in general, HT > ET . This effect is larger for
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QCD, which implies that there is a corresponding higher rate of overlapping jets.

The correlations for the missing energy quantities are broader, mainly due to the

fact that clustered jet energies, and not individual region energies, are resolved into

components before the vector summation. Again, in general Hmiss
T > Emiss

T , where

the effect is exaggerated for QCD in the region 0 to 100 GeV due to the higher rate

of overlapping jets.

5.4 Signal Performance

5.4.1 Characterising Signal Performance

Figures 5.6(a) and 5.6(b) show the cumulative signal efficiency as a function of ap-

plied threshold on both total and missing energy quantities respectively for the SUSY

LM0 sample, where the sensitivity to the jet configurable parameters discussed in

Section 5.2.1 are applied. It can be seen that HT and ET perform very similarly, HT

having a slightly better efficiency, approximately 2% at 400 GeV, mainly due to the

effect causing HT > ET as previously described. The same plots for a QCD sample

are shown in Figures 5.7(a) and 5.7(b) respectively. The difference in cumulative

efficiency between HT and ET in this case is approximately 5% at 150 GeV, which

can be attributed to the higher rate of overlapping jets in QCD, as discussed in

Section 5.3.2. Similarly, Hmiss
T performs better than Emiss

T by approximately 2% at

100 GeV for SUSY LM0, but 4% at 30 GeV for QCD for the same reasons. Recall

that due to hardware bandwidth constraints on the available precision of Hmiss
T only

the range 0-256 GeV is considered.

The effect of applying a 30 GeV threshold cut on jets contributing to the HT scalar

sum reduce the total energy content, and hence the efficiency for both samples. This

effect when compared to ET is approximately 7% at 400 GeV for uncorrected jets in

SUSY LM0, whilst approximately 20% at 150 GeV in QCD. The effect is larger for

QCD due to the larger fraction of jets which are below the threshold, e.g. as shown

by the first bin in Figure 5.3. By applying such a cut, an edge on this threshold is

introduced – as it is not possible to create a scalar sum smaller than the threshold
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(a)

(b)

Figure 5.6: Cumulative efficiency distribution plots of a SUSY LM0 Monte Carlo generated
sample for various (a) ET -type quantities, (b) Emiss

T -type quantities.

using a jet larger than the threshold – increasing the number of events with zero

HT , which is mirrored by the plateau in the cumulative plots. The opposing effects
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(a)

(b)

Figure 5.7: Cumulative efficiency distribution plots of a QCD Monte Carlo generated sample for
various (a) ET -type quantities (b) Emiss

T -type quantities.

of a threshold cut for Hmiss
T as described in Section 5.2.1 are seen by the fact the

cumulative signal efficiency relative to Emiss
T is lower in the region of the threshold
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cut i.e. 0-30 GeV, but larger beyond that, due to the introduction of fake missing

energy. For the SUSY LM0 sample this difference in efficiency is approximately

2% at 100 GeV, whilst for the QCD sample, this number is approximately 20% at

30 GeV, again due to the higher number of jets which are not above the 30 GeV

threshold in such a sample, which increases the Hmiss
T content.

Similar curves are seen after jet energy corrections have been applied which increase

the energy of each jet. The original distributions are convoluted with the curves

shown in Figure 5.2 which has the overall effect of the cumulative efficiency curves

falling both later and slower. For Hcorr
T relative to ET , a fixed efficiency of 50% for

a SUSY LM0 sample occurs at 590 GeV corrected to 300 GeV uncorrected, whilst

the same efficiency for QCD occurs at 280 GeV corrected to 130 GeV uncorrected.

The convolution of the vector sum reduces the overall sensitivity for the comparison

between Hmiss
T and Emiss

T . A similar analysis for the SUSY LM1 and tt̄ samples

yield similar results conceptually, however the differences in sensitivity to the effects

described relative to the QCD sample are now discussed.

5.4.2 Comparing Signal Performance

The combined effects of the various parameters on both the QCD and SUSY LM0

samples for ET -type and Emiss
T -type quantities are shown in Figures 5.8(a) and 5.8(b)

respectively. The various curves in the region of interest for the total energy quanti-

ties show that ET and HT perform within 1% across the range. The effect of making

a 30 GeV threshold jet cut on HT are more pronounced for LM0 signal efficiency

however. For example for a fixed SUSY LM0 efficiency of 80%, the QCD ‘rate’ dou-

bles to 36% relative to ET . However the opposite is seen when applying jet energy

corrections, which reduces the QCD ‘rate’ by 2% for the same SUSY LM0 signal ef-

ficiency of 80%. Similar results are obtained for the missing energy quantities Emiss
T

and Hmiss
T , however the convolution of the missing energy sum calculations reduces

the agreement to < 5% across the range.

A similar analysis applied to a tt̄ + jets sample is shown in Figure 5.9. Overall, the

tt̄ + jets sample has a lower signal efficiency for the same QCD rate relative to the
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SUSY LM0 sample. This is primarily because of the lower energy jet distribution,

which make the tt̄ + jets and QCD distributions more alike. The sensitivity to the

various parameters for the ET -type distributions is the same as for the SUSY LM0

sample. However, the performance of the Emiss
T and Hmiss

T triggers differ slightly at

high tt̄ signal efficiency, with the Hmiss
T trigger with 30 GeV jet threshold performing

within 5% of the Hmiss
T trigger with no threshold applied.

The analysis using the LM1 benchmark point is shown in Figure 5.10. The major

difference in the results can be attributed to the much harder jets, and hence result-

ing higher energy content, which changes the behaviour of the smearing functions

in Figures 5.2 and 5.3 to a greater extent relative to QCD. This results in Hcorr
T

performing worse than ET by e.g. 6% at a SUSY LM1 signal efficiency of 85%. This

effect is smaller for Hmiss,corr
T relative to Emiss

T , at about 2%.

5.4.3 Characterising Detector Noise

In the absence of beam, CMS participated in many global cosmic-ray muon runs,

such as those described in Section 4.4, in which the magnetic field was turned on

and data taken was triggered primarily by cosmic-ray muons. However, such runs

also included triggers from detector noise, in particular from the HCAL. The leading

and second leading jet-ET distributions are shown in Figure 5.11 from one such run

triggered in this way. The maximum jet multiplicity for this run was five, with only

one non-zero jet typically reconstructed offline per event. The distributions shown

motivate values for a threshold cut on the HT and Hmiss
T triggers, ranging from

10 GeV to the 30 GeV threshold used in this study, which would largely suppress

such backgrounds.

5.5 Conclusions

In general, with no thresholds or corrections applied to jets found at the Level-1

trigger, the performance of the jet-based and calorimeter-based energy sum triggers

are very similar, with ET and Emiss
T generally having a higher signal efficiency versus
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(a)

(b)

Figure 5.8: SUSY LM0 signal efficiency vs QCD efficiency plots for various (a) ET -type quantities
(b) Emiss

T -type quantities.

QCD rate for the signal samples analysed, more so for Emiss
T . This is primarily due

to the jet-finding method implemented in the GCT. The application of thresholds
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(a)

(b)

Figure 5.9: tt̄ + jets signal efficiency vs QCD efficiency plots for various (a) ET -type quantities
(b) Emiss

T -type quantities.

and corrections to jets provides additional flexibility. Whilst imposing threshold

cuts on both HT and Hmiss
T generally increases the QCD rate for a fixed signal
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(a)

(b)

Figure 5.10: SUSY LM1 signal efficiency vs QCD efficiency plots for various (a) ET -type quan-
tities (b) Emiss

T -type quantities.

efficiency relative to ET and Emiss
T respectively, basic characterisation of detector

noise shows that such parameters are useful in reducing the noise rate. When



5.5 Conclusions 107

Figure 5.11: The leading, and second leading, jet-ET distributions, as part of a run triggered on
HCAL noise in the CMS detector.

jet energy corrections are applied, the performance of HT and Hmiss
T are generally

improved so that they are more efficient than the ET and Emiss
T triggers respectively.

This effect is smaller for Hmiss
T due to the convolution from the vector sum. There

are cases however, where jet energy corrections can reduce signal efficiency, and this

is shown for Hcorr
T with the SUSY LM1 sample, which has a hard jet spectrum and

a correspondingly sharp correction function.

In summary, jet-based energy sum triggers are complementary to the calorimeter-

based triggers, and the configurable parameters discussed provide flexibility to adapt

to the beam and detector conditions experienced.
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Chapter 6

Utilising W Boson Polarisation

As motivated in Section 2.4, W bosons at the LHC are expected to exhibit a large

transverse polarisation at high-PT , which will predominantly affect the angular dis-

tribution of the decay products in the chosen frame of reference (the helicity frame

in this case). Such an effect, when combined with charge asymmetry arguments,

can be used as a tool in the search for New Physics.

6.1 Generator-Level Expectations

In order to test both the parameterisation of Equations (2.7) and (2.8), and the

expectations discussed in Chapter 2, the MADGRAPH [6] Monte Carlo generator,

interfaced to PYTHIA [7] was used to produce approximately ten million W+jets

events and 1.2 million Z+jets events, at a proton-proton centre of mass energy of
√
s = 7 TeV. The CTEQ6L1 set [47] from the LHAPDF package [48] of parton

distribution functions were adopted.

The generator-level cos(θ∗) distributions of the positively charged lepton in three

bins of PT (boson), for both W and Z bosons are shown in Figure 6.1 (see Chapter 2

for reminder of definitions). The results of fitting these distributions to the analytical

form in Equation 2.7 are listed in Table 6.1. As expected, fL is dominant for the W ,

and increases with PT (W ). The fL dependence can be seen from the (1− cos(θ∗))2
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Figure 6.1: The cos θ∗ distribution from the positively charged lepton shown in bins of PT (boson)
for the W (top) and the Z (bottom). The expected yield for 10pb−1 is shown along with the
analytical fit to Equation 2.7. The error bars shown are as a result of the number of events in the

Monte Carlo sample. (
√

s = 7 TeV)

dominance of the cos(θ∗) distribution, which is thus predominantly valued at −1

i.e. most of the energy from the decay goes to the left-handed particle, which is the

neutrino in this case. A similar plot for the negatively charged lepton (not shown)

has the cos(θ∗) distribution predominantly valued at +1, which again implies that

most of the energy from the decay goes to the left-handed particle, which is the

charged lepton in that case. For the Z, a flatter distribution is expected, as the

relationship between Vi and fi is not the unity matrix and hence values of cos(θ∗)

at ±1 are similar (c2L/c
2
R = 1.36, see Section 2.4). Table 6.1 also lists the values

of Vi for the Z-boson, which are obtained via the relation in Equation 2.11. This

illustrates the fact that the Z boson is also predominantly left-handed as discussed,

and makes studies of both bosons complementary in determining the Ai coefficients.

The evolution of the Ai parameters for W± bosons are shown as a function of PT (W )

in the helicity frame in Figure 6.2. As expected, with increasing PT (W ), the degree
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Figure 6.2: The coefficients of Equation (2.9) calculated in the helicity frame for W± bosons as
a function of PT (W ). The scatter of the points is due to the limited number of events in each bin,

which fall with increasing PT (W ). (
√

s = 7 TeV)

of freedom associated with the mass of the boson tends to zero, and hence so does

the longitudinal component f0 ∼ A0, whilst the value of A4 ∼ ±(fL − fR) stays

approximately constant.

Table 6.1: Helicity parameters of the W and Z bosons for three different PT (boson) [GeV] bins.
(
√

s = 7 TeV)

boson:lepton charge 50 < PT (V ) < 75 75 < PT (V ) < 100 PT (V ) > 100

VL = fL W : + 0.544 ± 0.002 0.561 ± 0.004 0.605 ± 0.005
VR = fR W : + 0.231 ± 0.002 0.245 ± 0.003 0.257 ± 0.004
VL = fL W : − 0.519 ± 0.003 0.530 ± 0.005 0.582 ± 0.005
VR = fR W : − 0.263 ± 0.002 0.268 ± 0.004 0.284 ± 0.005

fL Z : + 0.400 ± 0.005 0.424 ± 0.009 0.445 ± 0.011
fR Z : + 0.366 ± 0.005 0.363 ± 0.009 0.397 ± 0.010
VL Z : + 0.496 ± 0.021 0.598 ± 0.037 0.579 ± 0.043
VR Z : + 0.270 ± 0.021 0.189 ± 0.036 0.263 ± 0.043

A similar generator level study for W bosons only was also performed using ALP-

GEN interfaced to PYTHIA, with the same parton distribution functions as above.

Six million events were generated, in bins of PT (W ) and jet multiplicity, however

this time at
√
s = 10 TeV (dictated by the LHC schedule at the time). The high-PT

region PT (W ) > 100 GeV is considered exclusively. Figure 6.3 shows the PT (W )
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Figure 6.3: The W± boson transverse momentum distributions, and their ratio. (
√

s = 10 TeV)

distributions for the different W boson charges and their ratios. The ratio W+

W− is

slightly below two for W bosons with a transverse momentum of about 100 GeV

and increases with increasing PT (W ), to values above two. This relationship is

attributed to the dominance of the valence quark participation in the production

of W bosons, i.e. the probability of finding a valence u quark with increasingly

larger values of xbjorken is progressively larger than for a valence d quark of the same

momentum (see Figure 2.2).

The dependence of the W± boson helicity on the boson’s PT (W ), rapidity (|Y (W )|),

and jet multiplicity, are shown in Figures 6.4, 6.5 and 6.6 respectively. The behaviour

for both W boson charges is the same within the statistical errors of the Monte Carlo

sample, as expected from discussions in Chapter 2. The |Y (W )| dependence is the

most dominant effect and clearly shows an increase in the left-handed component,

and a decrease in the right-handed component, for an increase in |Y (W )| i.e. in the

more forward region. The PT (W ) dependence also shows an overall increase in the

left-handed component, in agreement with Figure 2.9 of Section 2.4. The dependence
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Figure 6.4: The PT (W ) dependence of W boson helicity. (
√

s = 10 TeV)

on the jet multiplicity, defined by the number of partons with more than 30 GeV

of transverse momentum, is very small. However there seems to be a trend that for

the larger jet multiplicities the right-handed helicity is slightly decreased.

6.2 Event kinematics and lepton acceptance

To gauge how polarisation effects are manifested in detector observables, the charged

lepton and neutrino PT distributions from W± decays at the generator level are

shown in Figures 6.7 and 6.8 respectively, along with their ratios, in the same

PT (W ) > 100 GeV region. Equivalent distributions were first shown in [49], where

the same effects are observed. Due to the predominant left-handedness of both W+

and W− bosons, the 100 GeV cut on PT (W ) leads to a peak at around 100 GeV

for the negatively charged leptons, whilst the positively charged leptons peak closer

to 0 GeV. Beyond 100 GeV, the distributions are approximately similar. Overall

however, this means that negatively charged leptons will have a much higher aver-

age PT than positively charged leptons, and hence are affected differently by e.g. a

detector-like requirement of PT > 10 GeV on the corresponding charged lepton.
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Figure 6.5: The rapidity dependence of W boson helicity. (
√

s = 10 TeV, PT (W ) > 100 GeV)

Figure 6.6: The jet multiplicity dependence of W boson helicity. (
√

s = 10 TeV, PT (W ) >
100 GeV)
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Figure 6.7: The charged lepton PT distributions from both W+ and W− decays, and their ratio.
(
√

s = 10 TeV, PT (W ) > 100 GeV)

Figure 6.8: The neutrino PT distributions from both W+ and W− decays, and their ratio.
(
√

s = 10 TeV, PT (W ) > 100 GeV)
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Figure 6.9: The charged lepton |η| distributions from both W+ and W− decays, and their ratio.
(
√

s = 10 TeV, PT (W ) > 100 GeV)

Figure 6.10: The neutrino |η| distributions from both W+ and W− decays, and their ratio.
(
√

s = 10 TeV, PT (W ) > 100 GeV)
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Given that neutrinos, which represent the missing transverse energy in the detector,

arise from the same W± decays, the converse is true. If such an Emiss
T requirement is

utilised in a search for New Physics along with one lepton, the W boson contribution

will contain more positively charged leptons than negatively charged ones. This can

be seen from Figure 6.8, where the transverse momentum of the neutrinos is shown

for both W boson charges. This effect not only stems from the fact that more

W+ than W− bosons are produced, but also from polarisation i.e. the fact that

the neutrinos from W+ decays carry a larger fraction of the W momentum than

neutrinos from W− decays.

The charged lepton and neutrino pseudo-rapidity (η) distributions for both W boson

charges are shown in Figures 6.9 and 6.10 respectively. The charged leptons have a

similar η shape at values below the acceptance of the CMS detector (|η| < 2.1 to 2.4

for muons, see Section 3.2.4), whereas whilst the neutrino η distributions exhibit a

larger difference between the charges, they cannot be reconstructed from available

detector information.

Figure 6.11 shows the transverse momentum distributions and their ratio for neu-

trinos from W+ decays, before and after a detector-like requirement of PT > 10

GeV and |η| < 2.1 on the corresponding charged lepton. The spectrum after such

requirements is largely affected in the region between 100− 300 GeV, but becomes

increasingly similar in amplitude with increasing PT (neutrino) with the original. For

the anti-neutrinos from W− decays shown in Figure 6.12, the effect is much less pro-

nounced. This is due to the predominant left-handed helicity of the W boson, which

preferentially gives most of its momentum to the negatively charged lepton, hence

reducing the impact of such detector-like requirements. In summary, applying such

detector-like requirements affects the neutrino PT distribution from W+ decays to

a greater extent than from W− decays, which leads to more events from W+ decays

contributing to e.g. an all-hadronic (0-lepton) search for New Physics.
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Figure 6.11: The PT distributions, and their ratio, of neutrinos from W+ decays before and after
a detector-like requirement on the charged lepton, of PT > 10 GeV and |η| < 2.1. (

√
s = 10 TeV,

PT (W ) > 100 GeV)

6.3 The Lepton Projection Variable

6.3.1 Introduction

Whilst studies of the W boson probe the differences between left-handed and right-

handed production more clearly than the Z boson, it is not possible to unambigu-

ously reconstruct the W boson four-vector from detector-level information. The

neutrino from the W decay introduces a two-fold ambiguity on the momentum of

the W along the beam axis, ~pz(W ), which in turn affects the boost to the boson

rest frame. There are thus three alternatives:

1. Select one of the two solutions in pz, e.g. the one with the smallest |~pz|, and

then correct for the presence of wrongly-selected solutions,

2. Use both solutions in pz, weighting each solution with information from the

Monte Carlo,
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Figure 6.12: The PT distributions, and their ratio, of anti-neutrinos from W− decays before
and after a detector-like requirement on the charged lepton, of PT > 10 GeV and |η| < 2.1.

(
√

s = 10 TeV, PT (W ) > 100 GeV)

(a) The cos(θ∗) distribution (b) The LP variable distribution.

Figure 6.13: The cos(θ∗) (a) and LP variable (b) distributions for charged leptons from W±

decays. The fitted functions in (a) are from equations 2.7 and 2.8 (
√

s = 10 TeV, PT (W ) >
100 GeV)
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3. Introduce another variable which is calculable using only measured quantities

and which exhibits a high degree of correlation with cos(θ∗).

Of the above three, the third method is chosen in this thesis, mainly for its simplicity,

but also because:

• such a variable can be used in searches for New Physics, as will be illustrated

in Section 6.4.2. In this regime, it is best to work with quantities which are

fully calculable from observed quantities, without performing a boost to the

rest-frame under a specific mass hypothesis,

• templates of such a variable can be generated according to a pure left-handed,

right-handed or longitudinal boson, thus allowing a measurement of the W

boson polarisation via e.g. a maximum likelihood fit of these templates. This

is the main theme of Chapter 7.

A Lepton Projection (LP) variable is thus constructed. It is defined to be the pro-

jection of the transverse momentum of the charged lepton (~PT (`)) to the normalized

transverse momentum of the W boson ~PT (W ):

LP =
~PT (`) · ~PT (W )

|~PT (W )|2
(6.1)

The distribution of the LP variable for PT (W ) > 100 GeV is shown for both W

boson charges in Figure 6.13(b), with the corresponding cos(θ∗) distribution for

the same phase-space shown in Figure 6.13(a) for comparison. Similar features are

seen, namely the charge asymmetry of W+ vs W−, and the effects of the W boson

polarisation, with the negatively charged lepton peaking at higher values of LP than

the positively charged one. Using detector-level quantities, ~PT (W ) may be estimated

using e.g. the missing energy and lepton vectors: ~PT (W ) = ~Emiss
T + ~PT (`). In the

regime where the W boson mass cannot be ignored, i.e. at low PT (W ), values of

the LP variable can lie outside the range [0,1]. This is discussed in Sections 6.3.2

and 6.3.3.
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6.3.2 Correlation with cos θ∗

The momentum of either W boson decay lepton in the lab frame, relative to the W

boson flight direction, may be written as:

|~P (`)‖| = γ
MW

2
(cos(θ∗) + β) (6.2)

|~P (`)⊥| = sin(θ∗)
MW

2
(6.3)

where P (`)‖ is the lepton momentum parallel to, and P (`)⊥ is the lepton momentum

perpendicular to, the W -boson flight direction in the laboratory frame, and hence

|~P (`)| = MW

2

√
γ2(cos(θ∗) + β)2 + sin2(θ∗). Writing LP3D = |~P (`)|

|~P (W )|
and noting:

β = |~P (W )|
E(W )

, γ = E(W )
MW

=

√
1 +

(
|~P (W )|
MW

)2

(6.4)

a rearrangement yields:

cos(θ∗) =
(
2LP3D − E(W )

|~P (W )|

)
(6.5)

Hence in the high-PT (W ) limit, where LP3D = LP, and E(W )

|~P (W )|
= 1, the LP variable

and cos(θ∗) are equivalent. The correlation between 2(LP− 1
2
) and cos(θ∗) is shown

in Figures 6.14(a) and 6.14(b) for values of PT (W ) > 200 GeV and PT (W ) > 400

GeV respectively. As can be seen, the larger the momentum of the W boson, the

more closely LP tracks the actual value of the cos(θ∗) variable. Values at about zero

in LP correspond roughly to values of −1 in cos(θ∗) due to the boost back to the

boson rest frame.

6.3.3 Correlation with φ∗

In the massless limit, the LP variable is not correlated with φ∗, by virtue of the

fact that in the laboratory frame the W boson and decay lepton flight direction are
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(a) PT (W ) > 200 GeV (b) PT (W ) > 400 GeV

Figure 6.14: Correlation plots between cos(θ∗) and 2(LP − 1
2 ), for W bosons with a transverse

momentum above 200 GeV (a) and above 400 GeV (b) (
√

s = 10 TeV)

essentially collinear. This is confirmed by the equivalence of cos(θ∗) and LP in this

limit, as shown in Section 6.3.2. At low momentum however, where mass effects

cannot be neglected, the decay lepton is no longer constrained to travel along the

boson flight direction i.e. the mass of the W boson contributes to the decay such

that the value of the projected lepton ~PT (`) can both be larger than |~PT (W )|, as

well as in the opposite direction, leading to values of the LP variable outside the

range [0, 1]. Also, the shape of the LP variable is a function of PT (W ). This φ∗

dependence of PT (`) at low PT (W ) translates directly to the LP variable, and can be

seen by plotting the difference between it and the massless approximation of cos θ∗,

as a function of φ∗. This is shown in Figure 6.15(a) for 50 < PT (W ) < 100 GeV

and Figure 6.15(b) for PT (W ) > 100 GeV. The φ∗ dependence is clearly visible, and

gets smaller with increasing PT (W ). Values of φ∗ = π/2 correspond to x = 0 in

the helicity frame (see Figure 2.7), i.e. the W mass contributes to a change in the

lepton flight along the detector φ direction in the lab frame, and so the transverse

momentum of the lepton is unchanged. This is identical to the scenario in the

massless limit, and hence in this case the difference is zero.

In conclusion, the φ∗ dependence of the LP variable exhibited in Figures 6.15(a)

and 6.15(b) implies that the shape of the LP variable is not only dependent on

cos(θ∗), regardless of lepton acceptance effects.
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(a) 50 < PT (W ) < 100 GeV (b) PT (W ) > 100 GeV

Figure 6.15: Correlation plots between [2(LP − 1
2 )] − cos(θ∗) and φ∗, for W bosons with a

transverse momentum between 50 and 100 GeV (a) and above 100 GeV (b) (
√

s = 7 TeV)

6.3.4 Effects of Ai coefficients

More generally, the correlation with φ∗ means that the LP variable is dependent on

more than just the diagonal elements of the helicity density matrix, namely fL, fR

and f0, i.e. the A0 and A4 coefficients from Equation 2.9. Given that one of the

aims of this analysis is to generate templates of the LP variable to fit to the data

in order to extract the corresponding helicity of W bosons, it is necessary to gauge

the sensitivity of the LP variable to those coefficients which will not be fitted for i.e.

the implicit assumption for the values of A1, A2 and A3.

In order to do this, the difference in the shape of the LP distribution at generator

level is determined, according to a relative increase of 10% in each of the Ai coef-

ficients individually i.e. “new” shape − “old” shape. Since the Ai coefficients are

a function of the W boson charge, PT (W ) and |Y (W )|, their values are determined

in such bins via fitting to the analytical form of Equation 2.9. Three bins in PT (W )

are chosen, (0− 50 GeV, 50− 100 GeV, > 100 GeV) and seven bins in |Y (W )| (in

bins of 0.5 up to 3.0, and one bin for |Y | > 3.0). A simple reweighting of each event

is then performed based on a relative increase of 10% of each of the Ai coefficients.

The results of this procedure for the positive charge for the A0 to A4 coefficients are

shown in Figures 6.16 to 6.18 respectively, whereby similar results are obtained for
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(a) The A0 component derivative (b) The A1 component derivative

Figure 6.16: The LP(+) derivatives for two bins in PT (W ) shown for A0 (a) and A1 (b).

the negative charge, and opposite results are obtained for a relative decrease of 10%

of each of the Ai coefficients.

The difference in the shape of the LP distribution for the A0(∼ f0) parameter is as

expected, enhancing the longitudinal mode (increasing LP values around 0.5) and

suppressing the left-handed and right-handed modes (reducing LP values around

0.0 and 1.0). The size of such derivatives depends on three parameters, namely the

initial value of the Ai parameter in the PT (W ) bin chosen, the correlation of the LP

variable with φ∗, and the number of events in the bin. The size of the derivative of

the A0 parameter reduces with increasing PT (W ), presumably since the longitudinal

mode gets smaller. The derivative of the A4(∼ (fL − fR)) distribution also behaves

as expected, enhancing the left-handed mode, whilst suppressing the right-handed

mode. The size of this derivative is about an order of magnitude larger than the

others, which indicates that the LP variable is most sensitive to this parameter.

The A1 and A2 derivatives are correlated in shape to the A0 variable, whilst the

derivative of A3 is small by virtue of its initial value being very small, as seen in

Figure 6.2. The corresponding derivatives at the reconstruction level, which also

fold in the detector acceptance, are discussed in Chapter 7.
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(a) The A2 component derivative (b) The A3 component derivative

Figure 6.17: The LP(+) derivatives for two bins in PT (W ) shown for A2 (a) and A3 (b).

Figure 6.18: LP(+) derivative for two bins in PT (W ) shown for A4.
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6.4 LP variable applications

The studies presented in Sections 6.4.1 and 6.4.2 illustrate two potential applications

of the LP variable at the reconstruction level i.e. using detector-level quantities. The

first relates to using the different polarisation properties of W bosons with respect

to those produced from tt̄ events, in order to distinguish between them, whilst the

second uses the polarisation properties of both W and tt̄ events in the search for

New Physics. These studies were performed using Monte Carlo samples generated

at
√
s = 10 TeV, and are normalised to 100pb−1 of integrated luminosity. The same

Monte Carlo samples as those in Sections 5.3 and 6.1 are used.

6.4.1 Distinguishing tt̄ and W events

The idea behind using the LP variable to separate tt̄ and W boson events stems

from the expectation that for tt̄ events, a symmetric contribution from both charges

will occur, both in the shape of LP distribution, and also with the number of events.

This is due to the different production mechanisms for such events (quark-quark

and gluon-gluon dominated), where the initial states and their CPT -counterparts

are present in equal amounts. In order to test such expectations, a Standard Model

enriched phase space (tt̄ and W ) is chosen. The following object and kinematic

definitions are used:

• Jets: PT > 30 GeV and |η| < 3,

• Muons: PT > 15 GeV and |η| < 2.1,

• ~Hmiss
T =

j=N∑
j=0

− ~P j
T , where N is the number of jets and ~P j

T is the transverse

momentum of jet j,

• HT =
j=N∑
j=0

P j
T .

The following selection criteria are applied:
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• Hmiss
T (∼ PT (W )) > 200 GeV,

• Nmuons = 1,

• ∆R (muon, jet) > 0.5 (for QCD rejection),

• Njets > 2.

The LP variable distributions for the sum of, and difference between, both muon

charges are shown in Figures 6.19(a) and 6.19(b) respectively. The SUSY LM0

and LM1 benchmark signals are shown for completeness, but do not contribute to

the calculations which follow. The tt̄ and W+jets distributions of Figure 6.19(a),

in the case where both charges are combined, show similar behaviour, whilst the

difference between the two charges is clearly dominated by W+jets (as expected),

and is relatively flat for values of LP > 0.3.

By counting the resulting numbers of events for both lepton charges and calculating

the difference between these numbers (N+ −N−), it is possible to estimate both tt̄

and W+jets contributions individually using charge asymmetry arguments, namely

that this difference is expected to be zero for a tt̄ sample. The ratio r = Ngen
+ /Ngen

−

is found to be r = 1.93 ± 0.17 at the generator level for W bosons. The result of

multiplying (N+ −N−) with r+1
r−1

is shown in Table 6.2 for the W+jets case. The tt̄

estimate is simply the difference between this estimate and the measured (N++N−).

Whilst the calculation of this ratio at generator level includes muon acceptance cri-

teria, the reconstruction efficiency and resolution effects of these muons are ignored,

mainly due to the fact that the statistical uncertainty is dominating. The results in

Table 6.2 show that the predicted and measured values agree within the statistical

uncertainties of the Monte Carlo simulation, which only reflects a closure test of

the simulation. For reference, the statistical uncertainty in the estimation of the W

boson content for a dataset equivalent to an integrated luminosity of 100 pb−1 at 10

TeV, is about 25%, and is inversely proportional to the number of W boson events

selected. At 7 TeV, the ratio of W+jets to tt̄ events changes in favour of W+jets

events, since the tt̄ cross-section decreases faster then the W boson cross-section

with decreasing centre of mass energy.
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(a) The LP variable for the sum of both
muon charges

(b) The LP variable for the difference be-
tween both muon charges

Figure 6.19: The LP variable for the sum of (a) and difference between (b) both muon charges
in the Njet > 2 phase space.

(a) The LP variable for the positively
charged muon

(b) The LP variable for the negatively
charged muon

Figure 6.20: The LP variable for the positively charged (a) and negatively charged (b) muon in
the Njet > 2 phase space.

Table 6.2: Predicted and measured events for 100 pb−1 at 10 TeV in the absence of SUSY. The
uncertainties reflect the limited number of simulated events.

dataset predicted number of events measured number of events

W+jets 130 ± 24 143 ± 7.8
tt̄ 115 ± 24 99 ± 2.5
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Figure 6.21: The (LP+0.5) distributions (templates) multiplied by the sign of the lepton charge
for W+jets (red), tt̄ (green) and Z+jets and QCD (black) events passing the selection criteria as
defined in the relevant part of Section 6.4.1 are shown. The black dots represent the result of a
toy experiment according to the total number of events in each bin for an integrated luminosity of
100pb−1, with the blue line representing the binned maximum likelihood fit result to this toy data

using the individual templates. (
√

s = 7 TeV)

Aside from using the difference in the number of events for both lepton charges (i.e.

charge asymmetry), the difference in shapes of the tt̄ and W+jets LP variable (i.e.

polarisation), as shown in Figures 6.20(a) and 6.20(b), can also be used to gain

further separation power. This is demonstrated using the
√
s = 7 TeV Monte Carlo

samples as defined in Section 6.1, with the selection criteria being modified to:

• Hmiss
T > 100 GeV,

• PT (µ) > 20 GeV.

Templates of the LP variable for W+jets, tt̄, and Z+jets and QCD events are

shown for both charges on the same histogram in Figure 6.21. A binned maximum

likelihood fit of these templates to the result of a toy experiment for an integrated

luminosity of 100pb−1 is also shown across both charges. The results show that the

statistical uncertainty at 100pb−1 is reduced to 7% when combining both charge

asymmetry and polarisation effects.

6.4.2 New Physics searches

In order to demonstrate how the LP variable can be used in the search for New

Physics at
√
s = 10 TeV, the

√
s = 10 TeV selection criteria of Section 6.4.1 are

modified as follows:
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(a) The LP variable for the positively
charged muon

(b) The LP variable for the negatively
charged muon

Figure 6.22: The LP variable for the positively charged (a) and negatively charged (b) muon in
the SUSY phase space.

• HT > 350 GeV (∼ 2×mtop),

• Njets > 1.

The LP variable for both the positive and negative muon charges is shown in Fig-

ures 6.22(a) and 6.22(b) respectively for the updated selection criteria. Once again,

the helicity and charge asymmetries for W+jets and tt̄ events are clearly visible. For

the R-parity conserving SUSY signal, the charged lepton is typically less aligned with

the direction of Hmiss
T . This is because the Hmiss

T stems from at least two invisible

LSPs and a neutrino, which also typically means that the charged lepton PT is

smaller than Hmiss
T , and in some cases can point in the opposite direction to it. Con-

sequently, the SUSY benchmark points exhibit significantly different characteristics

from W+jets and tt̄ events.

The LP variable distribution for the sum of both positive and negative muon charges

is shown in Figure 6.23(a). Again, the tt̄ and W+jets shapes are similar when

the charges are combined. Figure 6.23(b) shows the corresponding plot for the

difference between the two charges, and even in this phase-space region W+jets

events dominate.
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(a) The LP variable for the sum of both
muon charges

(b) The LP variable for the difference be-
tween both muon charges

Figure 6.23: The LP variable for the sum of (a) and difference between (b) both muon charges
in the SUSY phase space.

(a) Cut efficiency at reconstruction level (b) Cut efficiency at generator level

Figure 6.24: The cut efficiencies for the LP variable with both charges summed, constructed
using reconstruction-level (a) and generator-level (b) information.
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Table 6.3: Predicted and measured events for 100 pb−1 at 10 TeV, with the LP variable in the
signal region LP < 0.3.

datasets predicted W+jets and tt̄ events measured events

SM only 85 ± 9 77 ± 9
LM0+SM 105 ± 10 209 ± 14
LM1+SM 86 ± 9 126 ± 11

Figure 6.24(a) shows the efficiency for a cut on the LP variable for combined charges

of both W+jets and tt̄ events. At a value of LP=0.3, the cut efficiency is about the

same for both samples individually, between 0.43 - 0.46. Figure 6.24(b) shows the

cut efficiency based on the generator level information, in which muons that do not

originate from a W -boson decay are not included. Again, only the acceptance cuts of

the generator muon are applied, whilst the reconstruction efficiency and resolution

effects are ignored. The Hmiss
T is calculated on parton level without any acceptance

cuts. Comparing Figure 6.24(a) with Figure 6.24(b) implies that resolution effects,

instances of muons originating from b-jets and other effects in general are small.

This distribution can be assumed to be well predicted by MC simulation, and may

be confirmed by validation exercises in the 1-jet bin. At generator level, the cut

efficiencies are the same for W+jets and tt̄ at a cut value of LP=0.3, where the

efficiency is 0.46. This value can then be used to extrapolate from a control region

(LP > 0.3) to a signal region (LP < 0.3) at reconstruction level.

Table 6.3 shows the results of such a procedure, where there is a slight over-

estimation in the number of SM only events. This is because the cut efficiencies

differ slightly between reconstruction and generator level. Also note that the QCD

background (2.4 events) is not predicted. The systematic uncertainty of this ap-

proach will depend on how well the W boson helicity can be measured and under-

stood at the time such a procedure might be performed. In the case of predictions

with signal, the number of SM events are not largely affected, as the control region

has a low signal contamination. For the LM1 parameter point, this contamination is

almost zero, whilst for the LM0 point, this contamination leads to an increment of

about 20-25% in the predicted number of SM events in the signal region. However,

in both cases a signal can clearly be observed.
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In conclusion, the LP variable can be used to distinguish between events originating

from W and tt̄ events on a statistical basis, achieving a statistical uncertainty of

7% at 100pb−1. The fact that New Physics is unlikely to exhibit the same helicity

effects and asymmetries as tt̄ or W+jets means that the LP variable can also be

used as as a search parameter. The applications of the LP variable illustrated in

this chapter however, are not intended to fully optimise certain parameters (such as

signal over background), but to serve as an example of how helicity effects may be

used.
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Chapter 7

Towards a Measurement of W
Boson Polarisation

7.1 Introduction

Recalling Equation (2.9):

dN

dΩ
∼ (1 + cos2 θ) + 1

2
A0(1− 3 cos2 θ) + A1 sin 2θ cosφ

+1
2
A2 sin2 θ cos 2φ+ A3 sin θ cosφ+ A4 cos θ

it can be seen that when detector effects are considered, most notably from finite

resolution, acceptance and reconstruction efficiency, the cos(θ∗) and φ∗ distributions

will be distorted such that the form of e.g. the cos(θ∗) distribution is no longer

solely dependent on the A0 and A4 coefficients of the helicity density matrix (i.e.

fL, fR and f0), but also on the other Ai coefficients. This is due to the fact that∫ 2π

0
α(φ∗) cosφ∗dφ∗ 6= 0, where α(φ∗) models the detector acceptance as a function

of φ∗, and so the A1, A2, and A3 coefficients no longer vanish when integrating over

φ∗.

Figure 7.1 shows the φ∗ distribution at generator level for leptons with and without

a PT (`) > 10GeV and |η(`)| < 2.1 acceptance cut. The distribution around φ∗ = 0,

i.e. low PT (`), is affected the most as expected from Section 2.4.2. The dependencies
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Figure 7.1: The lepton φ∗ distribution at generator level before (solid dots), and after an accep-
tance cut of PT (`) > 10GeV and |η(`)| < 2.1 for PT (W ) > 100GeV. (

√
s = 7 TeV)

on the A1, A2 and A3 coefficients are taken from the Monte Carlo simulation, whose

values are as shown in Figure 6.2.

In order to extract the values of fL, fR, and f0, there are two approaches that may

be taken to quantify such detector effects:

1. Define a functional form modelling the effects of the CMS detector and use

this to perform an analytical fit on the resulting detector distribution.

2. Produce detector-level templates for the scenarios where the W boson helicity

is fixed to be 100% left-handed, 100% right-handed and 100% longitudinal, and

perform a maximum likelihood fit of these templates on the resulting detector

distribution.

As described in Chapter 6, and given the complexity of the first method, the template

method is chosen in this analysis, specifically with the LP variable. The studies

presented in this chapter are thus aimed at a first measurement of the helicity of

W bosons at the LHC using the first data acquired from the
√
s = 7 TeV collision

dataset. All Monte Carlo generated samples used in this chapter are generated at
√
s = 7 TeV.
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7.2 Event Selection Criteria

Before any studies of the template method are carried out, it is helpful to define

a set of detector-level selection criteria which will be used to extract the W boson

helicity. Given that one of the aims of this analysis is an early measurement of this

helicity, the PT (W ) region probed can be extended to PT (W ) > 50 GeV, i.e. in a

regime where mass effects cannot be ignored, as supported by the LP derivatives of

the Ai coefficients from Figures 6.16 to 6.18.

In this thesis, the muon channel is considered exclusively, primarily because it is

the easiest of the three lepton flavours to reconstruct offline from detector-level

quantities. This is done using the CMS muon stations, as described in Section 3.2.4,

using two different methods:

1. Global muons are reconstructed using information from the muon stations,

which is then matched with a track reconstructed in the silicon tracker. Global

muons are the only type of reconstructed muon which are triggered on. The

pseudo-rapidity coverage of such muons is |η(µ)| < 2.4, whilst the range of the

trigger is limited to |η(µ)| < 2.1.

2. Tracker muons are reconstructed using tracks from the silicon tracker, which

are then matched to tracklets in the muon stations. The pseudo-rapidity

coverage of such muons is |η(µ)| < 2.4.

In addition to prompt muons from the decay of W and Z bosons, muons recon-

structed in the CMS detector originate primarily from two “background” sources [50]:

1. Heavy Flavour: muons from semi-leptonic (weak) decays of c and b-flavoured

hadrons,

2. Light Flavour: decays-in-flight of pions and kaons produced inside hadronic

jets.
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Muons may also be reconstructed from hits left in the muon chambers originating

from hadrons which “punch-through” the HCAL, as well as other reconstruction and

instrumental effects. Muons from all these sources which pass the event selection

criteria are classed as fake muons. In order to suppress such background muons, a

simple and robust muon identification is applied to aid the selection criteria.

7.2.1 Muon ID variables

The muon identification used is cut based, with the aim of simplifying efficiency cal-

culations and selecting prompt muons. The following ID variables, derived from [50] [51],

are used:

• A reconstructed muon must be identified as both a global and tracker muon.

This is to protect against accidental wrong matchings with the tracker (in the

case of global muons), or with noisy muon chamber segments (in the case of

tracker muons). This cut is also effective against muons reconstructed from

decays-in-flight and punch-through.

• The number of valid tracker hits associated with the reconstruction of the

muon must exceed 10. This is to ensure a good transverse momentum estimate,

and to veto against decays-in-flight which give rise to a lower track occupancy.

• The normalized χ2 of the global muon fit (using silicon tracker and muon

chamber information) must be smaller than 10, to reject bad fits.

• The transverse impact parameter of the muon with respect to the beamspot

must be less than 2mm. This is a loose cut which rejects the majority of

reconstructed cosmic muons. (This could potentially be replaced with a cut

of the transverse impact parameter of the muon with respect to the primary

vertex in a tighter selection.)

• The number of pixel hits must be at least one, to suppress muons from decays-

in-flight.
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• There must be at least two muon stations involved in the reconstruction of the

tracker muon. This cut suppresses punch-through and accidental matchings,

and is used to comply with the same logic used at the trigger.

• There must be at least one valid hit in the muon chambers associated with

the reconstructed global muon, in order to prevent decays-in-flight and punch-

through.

• The pseudo-rapidity range of the reconstructed muons must be within the

range |η(µ)| < 2.1 in order to match the muon trigger requirements.

The reconstructed muons must also be isolated, according to the isolation variable

Irel
comb < 0.10, which is defined as:

Irel
comb =

∑(
PT (tracks) + EEM

T + EHAD
T

)
PT (µ)

where
∑
PT (tracks),

∑
EEM

T and
∑
EHAD

T are the sums of all the transverse mo-

menta from the tracks, electromagnetic deposits and hadronic deposits respectively,

within a cone of ∆R =
√

(∆φ)2 + (∆η)2 < 0.3.

7.2.2 W → µν Muon Event Selection

The selection requirements in the muon channel are as follows:

1. Trigger: the existence of at least one muon above 9 GeV at the HLT,

2. Exactly one tight muon,

3. Exactly zero electrons,

4. Less than four jets,

5. A ∆Rmin(muon, jet) > 0.5 cut,

6. A transverse mass of at least 30 GeV,

7. A Z-boson mass window veto of ±25.0 GeV,
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8. A PT (W ) > 50 GeV cut.

The following definitions are used:

• A tight muon is defined using the muon ID as in section 7.2.1, but with PT (µ) >

10 GeV.

• An electron is defined as having PT (e) > 20 GeV and |η(e)| < 2.5.

• A jet is defined using the anti-kT algorithm with a cone-radius of 0.5, and

PT > 20 GeV, |η(jet)| < 5.0 and electromagnetic fraction < 0.9.

• The Z mass window veto is applied on the value of the invariant mass between

the tight muon and all other reconstructed muons individually, lying in the

range 91.2±25.0 GeV. If no other reconstructed muons exist, the event survives

this cut.

• The transverse mass is defined as MT =
√

2PT (µ)PT (ν)(1− cos(∆φ(µ, ν))),

where the neutrino transverse momentum is estimated using Emiss
T .

• The value of PT (W ) is estimated from | ~Emiss
T + ~PT (µ)|, hereafter referred to as

the reconstruction level PT (W ).

7.2.3 Event yields

The number of W boson events surviving the selection requirements as defined in

Section 7.2.2, are shown in Table 7.1 for an integrated luminosity of 1pb−1. Also

shown are the contributions from the major SM backgrounds to this analysis, namely

from QCD, Z+jets and tt̄ events, along with the cross-sections used.

7.3 Ai derivatives at reconstruction level

Given the impact on the cos(θ∗) and φ∗ distributions from detector effects, the inher-

ent LP variable dependence on both cos(θ∗) and φ∗, as described in Sections 6.3.2
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Table 7.1: Muon channel event-yields for signal (W ) and SM backgrounds, expected for an
integrated luminosity of 1pb−1 following the selection requirements as defined in Section 7.2.2.

The QCD sample used is for p̂T > 15 GeV.

W+Jets QCD Z+Jets tt̄ S/B
Cross-section (pb) 31314 NNLO 8.76× 108 3100 NNLO 157.5 NLO -

Trigger 6313 493887 908 46.6 0.01
Nµ = 1, Ne = 0 5041 30571 473 21.2 0.16
< 4 jets 5654 30515 469 7.29 0.18
∆Rmin(µ, jet) < 0.5 5487 29439 455 6.94 0.18
Z Window Mass Cut 5479 29439 327 6.47 0.18
PT (W ) > 50GeV 261 23.4 15.6 4.47 6.00
MT > 30GeV 212 0.01 6.24 3.65 21.4

and 6.3.3 respectively, changes. In order to see the effects that this has on the

correlations of the LP variable, the exercise of Section 6.3.4 is repeated at the recon-

struction level, using the event selection criteria of Section 7.2.2. The Ai derivatives

at the reconstruction level are shown in Figures 7.2 to 7.4. The overall features are

the same, namely the dominance of the A0 and A4 coefficient derivatives.

7.4 Template Generation

There are two approaches that may be taken in order to generate templates of the

LP variable for the 100% left-handed, 100% right-handed and 100% longitudinal

helicity states. One can either regenerate the Monte Carlo samples and detector

reconstruction three times, one each for polarisation state, or reweight the existing

Monte Carlo sample for different polarisation fractions. Given the computational

overhead associated with event simulation, the second method is chosen.

7.4.1 Reweighting Method

The reweighting procedure is based on changing the shape of the cos(θ∗) distribution

at generator level without any acceptance cuts, such that fL = 1.0, fR = 1.0 and

f0 = 1.0 independently. Since the values of the fi parameters are a function of the
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(a) The A0 component derivative (b) The A1 component derivative

Figure 7.2: The LP(+) derivatives at the reconstruction level for PT (W ) > 50 GeV shown for
the A0 (a) and A1 (b) coefficients.

(a) The A2 component derivative (b) The A3 component derivative

Figure 7.3: The LP(+) derivatives at the reconstruction level for PT (W ) > 50 GeV shown for
the A2 (a) and A3 (b) coefficients.
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Figure 7.4: The LP(+) derivative at the reconstruction level for PT (W ) > 50 GeV shown for the
A4 coefficient.

charge, PT (W ) and |Y (W )|, the reweighting factors must model this dependence.

The W boson production phase-space ((PT (W ), |Y (W )|)) is binned independently

for each charge. As in Section 6.3.4, three bins in PT (W ) (0-50 GeV, 50-100 GeV,

>100 GeV), and seven bins in |Y (W )| (in bins of 0.5 up to 3.0, and one bin for |Y | >

3.0) are chosen. In each bin of this two-dimensional grid, the cos(θ∗) distribution

is fitted according to Equations (2.7) and (2.8), in order to extract the set (fL, fR,

f0) which correspond to the generated Monte Carlo sample. These values define

the amount of reweighting necessary in each such bin, which is applied on an event-

by-event basis to any distribution of choice, e.g. the LP variable. This can be

done either at the generator level, or at reconstruction level using the corresponding

generator level information of the same event e.g. for those events which pass the

selection requirements of the analysis. The final piece of information required is

therefore the generator level value of cos(θ∗) for a particular event. Given the

limited number of events generated in the MC sample, the cos(θ∗) distribution itself

is segmented into 200 bins of equal size (0.01) spanning the range [-1.0, 1.0] inclusive.

The reweighting factor applied to the distributions of choice in a typical event, for

some such cos(θ∗) bin b, in some (PT (W ), |Y (W )|) bin, for a particular charge ±, is

then defined as:
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k±pol(PT (W ), |Y (W )|) =

∫ b+0.01

b
F new(cos θ∗) d cos θ∗∫ 1.0

−1.0
F new(cos θ∗) d cos θ∗

÷
∫ b+0.01

b
F old(cos θ∗) d cos θ∗∫ 1.0

−1.0
F old(cos θ∗) d cos θ∗

(7.1)

where:

• F new,old(cos θ∗) = fnew,old
L

(1∓cos θ∗)2

4
+ fnew,old

0
1−cos2 θ∗

2
+ fnew,old

R
(1±cos θ∗)2

4
,

• f old
L,R,0 = f±L,R,0 (PT (W ), |Y (W )|) as measured from the original MC sample.

This value is a constant for a particular charge and (PT (W ), |Y (W )|) bin,

• fnew
L,R,0 = fL,R,0 (template flavour) i.e. for a 100% left-handed template, the set

(fL, fR, f0) = (1.0, 0.0, 0.0) etc.

This procedure was carried out at the generator level, for a generator level PT (W ) >

50 GeV cut, and the shapes of the corresponding 100% left-handed, right-handed

and longitudinal templates for both lepton charges are shown in Figure 7.5. Since

the input values of the fi parameters depend on both PT (W ) and |Y (W )|, the

reweighting factor, k±pol, is also dependent on both the PT (W ) and |Y (W )|. This

introduces a subtle issue that is addressed in the following section.

7.4.2 Dependence of the fnew
L,R,0 on PT (W ) and |Y (W )|

To generate the LP templates at the reconstruction level, the association between

the generator level and reconstruction level information is used to calculate the

appropriate reweighting factors. The shapes of these templates is very important.

In the case of the cos(θ∗) distribution at the generator level, the shapes of the 100%

left-handed, 100% right-handed and 100% longitudinal templates are by definition,

all independent of both PT (W ) and |Y (W )| and so no further corrections to the

method described in Section 7.4.1 are required. However, the maximum likelihood

fit will use the LP variable, and as shown in Figure 7.6, the shapes of the LP variable

are not the same with varying PT (W ).
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(a) The LP(+) templates at generator level (b) The LP(−) templates at generator level

Figure 7.5: The LP template shapes at the generator level, for a generator level PT (W ) > 50 GeV
cut, shown for both the positive (a), and negative (b) lepton charges.

Figure 7.6: The 100% left-handed template of the LP(+) variable, shown for two bins of PT (W )
at the generator level.
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Since the aim of the final fit is to extract the average fL,R,0 from a particular

(PT (W ), |Y (W )|) phase space that corresponds to the reconstruction level selec-

tion, an additional correction factor is applied to each of the 100% left-handed,

right-handed and longitudinal templates. This extra correction factor favours the

regions where, on average, the most left-handed, right-handed and longitudinal W

bosons lie respectively. It is also applied on an event-by-event basis, and for a given

PT (W ) and |Y (W )| bin, can be written as:

K±
L,R,0(PT (W ), |Y (W )|) =

N±
L,R,0

N±
L +N±

R +N±
0

÷
∑
N±

L,R,0∑
N±

L +N±
R +N±

0

(7.2)

where:

• N±
L,R,0 =

∫
Pbin

T (W )

∫
|Y bin(W )|W

′(PT , |Y |,±)f ′L,R,0(PT , |Y |,±) dPT d|Y |. The PT

and |Y | refer to the W boson distributions,

• The summation runs over all 21 bins of the (PT (W ), |Y (W )|) phase-space.

The prime in the notation above indicates that the phase space used in the above

correction factors is the one that is selected by our reconstruction-level cuts, with

no acceptance effects applied, and is not the same as in Section 7.4.1. This can be

seen more clearly from Figure 7.7, which shows the (PT , |Y |) phase-space of the W

bosons at the generator level which survive a reconstruction level PT (W ) > 50 GeV

cut. Whilst the same PT (W ) and |Y (W )| binning is used as in Section 7.4.1, the

number of W bosons and the fL,R,0 values in each bin are recalculated, and are in

general different.

The results of carrying out this procedure at the reconstruction level using the

selection criteria as defined in Section 7.2.2 are shown in Figure 7.8, where the

corresponding templates for both muon charges are shown. The templates also

include the contributions from τ → µ decays. Events stemming from such decays

are predominantly valued at LP= 0, since the extra decay means that in general,

the lepton is no longer well aligned with the W boson.
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(a) Generator level |Y (W )| versus PT (W )
distribution.

(b) Generator level PT (W ) distribution.

Figure 7.7: The generator level |Y (W )| vs. PT (W ) (a) and PT (W ) (b) distributions for those
events surviving a reconstruction level PT (W ) > 50 GeV cut.

(a) The LP(µ+) templates at the recon-
struction level

(b) The LP(µ−) templates at the recon-
struction level

Figure 7.8: The LP template shapes at the reconstruction level, with the selection criteria of
Section 7.2.2, shown for both the positive (a), and negative (b) muon charges. Also shown are the

contribution from τ → µ decays.
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7.5 Fitting procedure

7.5.1 Description

The measurement of the fi parameters is performed using a maximum likelihood

fit to the LP variable, separately for both muon charges. The RooFit [52] package

is used, which is a dedicated tool used for modelling the expected distribution of

events in a physics analysis, and is specialized to perform likelihood fits to data. The

probability density function (PDF), S(x), is constructed as a composite function

involving three terms which are used to describe the three event hypotheses of the

W± helicity (left-handed, right-handed and longitudinal):

S(x) = fL · hL(x) + fR · hR(x) + (1− fL − fR) · h0(x) (7.3)

where the coefficients fL and fR represent the corresponding fraction of left-handed

and right-handed helicity states. Using the natural constraint that the helicity

fractions must sum up to one, the longitudinal coefficient is expressed as f0 =

1.0 − fL − fR, reducing the number of degrees of freedom of the fit to two. The

helicity state functions hL(x), hR(x) and h0(x) are the three template histograms

as shown in Figure 7.8.

The range of allowed values for the fractional parameters (fL, fR) is by definition

the range [0, 1]. However, without an additional constraint, the possibility for

scenarios where the sum of the coefficients exceeds one is not excluded, e.g. when

fL = fR = 0.6. In such cases f0 will be negative, and as this is an unphysical solution,

the likelihood function is further constrained by the inequality (fL + fR) ≤ 1.

The template fit to data is performed via a log-likelihood fit. The values of fL and

fR are found via minimising:

− log(L(~f)) = −
∑
D

log(S(~xi; ~f)) (7.4)

where the likelihood function L(~f) =
∏
D

S(~xi; ~f) i.e. is the product of probabilities

given by S(x) for all data points in the dataset D(x) where x = the LP variable.
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7.5.2 Acceptance Correction Factor

By definition, the number of events contributing to the three generator-level tem-

plates of Figure 7.5 are equivalent for each charge individually, by virtue of the

reweighting applied. As discussed in Chapter 6, the charged lepton PT spectra are

markedly different between the charges, representing the predominant left-handed

polarisation of the W bosons (fL ≈ 60%), and hence are affected differently by

the detector acceptance and selection criteria (essentially PT (µ) > 10 GeV and

|η(µ)| < 2.1). These effects are exaggerated when considering 100% left-handed,

right-handed and longitudinal polarisations of the W bosons individually for each

charge. At the reconstruction level therefore, the number of events contributing to

the three templates for a particular charge are not the same. If the hL, hR and h0

functions as defined in Equation 7.3 are individually normalised to one, the infor-

mation on the relative normalisations of these templates must therefore be taken

into account separately in the final fit result, by way of an acceptance correction

factor. This correction factor is therefore applied after the fitting procedure, and

has no effect on either the shape of the templates or the quality of the fit. It takes

the form:

C±
L,R,0 =

∫ ∫
W ′±(PT , |Y |)f ′±L,R,0(PT , |Y |) CMS±(PT , |Y |) dPT d|Y |∫ ∫

W ′±(PT , |Y |)f ′±L,R,0(PT , |Y |) dPT d|Y |
(7.5)

where:

• The PT and |Y | refer to the W boson distributions,

• The function CMS±(PT (W ), |Y (W )|) represents the behaviour of the CMS

detector. This is currently taken from simulation, and encodes the expected

detector response, as well as the trigger and reconstruction algorithms.

This means that the numerator in Equation 7.5 is the integral of the respective

template at the reconstruction level with the full selection criteria applied (see Sec-

tion 7.2.2), and the denominator is the integral of the same template at the generator

level, with only the reconstruction level PT (W ) cut applied. Both integrals are over

the LP range used in the maximum likelihood fit.
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In this analysis, both the shapes and relative normalisations of the respective tem-

plates for both charges are taken from the MC. As is shown in Section 7.5.3, the effect

of such an acceptance correction is around 10%. The error on the CMS function is

also estimated to be about 10%, and so overall the uncertainty on this correction is

O(1%).

7.5.3 Closure Test

In order to validate the procedure presented so far, in the absence of a background

hypothesis, a closure test is performed individually for both charges. The first test

is at the generator-level, and involves the reconstruction-level PT (W ) > 50 GeV cut.

This results in the (PT (W ), |Y (W )|) phase space as shown in Figure 7.7(a). The

cos(θ∗) distribution for all events which survive this cut is plotted, and the resulting

distributions for both charges independently are fitted according to Equations 2.7

and 2.8. These fit results are summarised in Table 7.2 below and are used as the

baseline values.

Generator level templates of the LP variable for both charges in this same phase

space are generated according to the factors in Section 7.4 and fitted to the cor-

responding LP distribution using a maximum likelihood fit. For the purpose of

the closure test, the central value of the fit is extracted using all the events in the

W+Jets MC sample, corresponding to an integrated luminosity of approximately

400pb−1. The results of this procedure are also shown in Table 7.2 and can be com-

pared directly to the analytical fit results where there is very good agreement, as

expected. This demonstrates that the reweighting procedure generates the correct

templates of the LP variable.

Going to the reconstruction-level and applying the full selection requirements of

Section 7.2.2, the templates of Figure 7.8 are similarly fitted. The fit to this pseudo-

data is shown in Figure 7.9 for both muon charges, where again, the error bars

correspond to the total number of events in the W+Jets MC sample. The fit re-

sults are shown both before and after the acceptance correction of Equation 7.5, in

columns (c) and (d) of Table 7.2 respectively. The original values are recovered to

within the statistical uncertainty of the Monte Carlo sample.
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(a) The LP(µ+) fit at reconstruction-level (b) The LP(µ−) fit at reconstruction-level

Figure 7.9: The LP fit result (blue line) at the reconstruction level, with the selection criteria of
Section 7.2.2 and the templates of Figure 7.8, shown for both the positive (a), and negative (b)
muon charges. The pseudo-data (black points) error bars correspond to an integrated luminosity of
400pb−1, whilst the histograms are scaled to arbitrary units. The left-handed (red), right-handed

(green) and longitudinal (yellow) templates are also shown.



7.5 Fitting procedure 150

Table 7.2: A closure test of the methods described in Section 7.4. The errors on the analytical
fit results (a) stem from the number of events in the Monte Carlo sample, which is equivalent
to 400pb−1 of integrated luminosity. Step 1 (b) shows the central value for the template fit
at generator level. Step 2 (c) shows the central value for the template fit at reconstruction level
without acceptance corrections applied. Step 3 (d) shows the same value as (c), but with acceptance

corrections applied.

(a) Baseline (b) Step 1 (c) Step 2 (d) Step 3

f−L 0.5214± 0.0040 0.5212 0.4747 0.5206
f−R 0.2707± 0.0034 0.2647 0.3010 0.2676
f+

L 0.5543± 0.0032 0.5506 0.5239 0.5607
f+

R 0.2270± 0.0026 0.2239 0.2640 0.2314

7.5.4 Background Templates

When considering the detector level information from those events which survive

the selection criteria, the templates defined thus far are not the whole story. As can

be seen from Table 7.1, a non-zero contribution from several other SM processes

i.e. backgrounds, exist. In order to incorporate the effects of such background

events, an additional component is added to the PDF, i.e. a background template.

The generation of such background templates is less involved than the procedure as

defined in Section 7.4. The background template shapes are simply those from the

resulting LP distribution at the reconstruction-level for the relevant SM processes,

and are shown both before and after the MT > 30 GeV cut in Figures 7.10(a)

and 7.10(b) respectively for the positive muon charge. The contribution from QCD

events is greatly reduced following the MT cut, which also changes the shape of the

Z+Jets contribution, cutting out most events where LP = 0.

Correspondingly, the fit function is rewritten as a composite model, to include a

signal (S(x)) and a background (B(x)) component:

g(x) = fsig · S(x) + (1− fsig) ·B(x) (7.6)

The likelihood function is then written as the product of probabilities given by g(x)

for all data points in the dataset D, i.e. L(~f) =
∏
D

g(~xi; ~f).
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(a) The LP(µ+) background shapes before
the MT > 30 GeV cut at reconstruction-
level

(b) The LP(µ+) background shapes after
the MT > 30 GeV at reconstruction-level

Figure 7.10: The LP(µ+) background shapes shown before (a) and after (b) the application of
the MT > 30 GeV cut. The yield is normalised to an integrated luminosity of 1pb−1.

Figures 7.11(a) and 7.11(b) show an example of the likelihood fits to the LP(µ+) and

LP(µ−) distributions respectively, with the presence of a background component.

The error bars on the pseudo-data have been scaled to an integrated luminosity of

10pb−1. The fit result is represented by the blue curve, and the individual templates

are shown superimposed in red (left-handed), green (right-handed) and black (lon-

gitudinal), along with the background template, shown as the yellow shaded area.

The central values of the fit for (fL, fR)± are (0.561, 0.232)+ and (0.521, 0.268)−,

and are consistent with the values from Table 7.2.

7.5.5 Fit Performance

In order to investigate the fitting performance, the one and two sigma contours of the

likelihood fit for the parameters fL and fR are plotted in Figure 7.12 for both muon

charges, where the error bars on the pseudo-data are still scaled to an integrated

luminosity of 10pb−1. The solid blue line represents the contour which connects all

points where the function g(x) of Equation 7.6 takes on its minimum value plus

one standard deviation. The dashed blue line represents the same quantity, except

for two standard deviations. By virtue of the elliptical contour shapes, the results
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(a) The LP(µ+) template fit at
reconstruction-level

(b) The LP(µ−) template fit at
reconstruction-level

Figure 7.11: The LP distribution template fit at reconstruction level shown for positively charged
(a) and negatively charged (b) muons. The error bars on the pseudo-data are rescaled to an

integrated luminosity of 10pb−1.

are quite linear in (fL, fR) space, at least for the positively charged muon. Given

the relatively fewer negatively charged muons, the corresponding contours exhibit a

slight asymmetric behaviour, which is remedied when considering a larger dataset,

e.g. 100pb−1 (not shown).

An alternative combination of the helicity parameters can be constructed, namely to

be directly correlated to the A0 and A4 coefficients. Figures 7.13(a) (µ+) and 7.13(b)

(µ−), show the corresponding one and two sigma contours in the ((fL+fR), (fL−fR))

space, i.e. (A0, A4) space. The fit is also symmetric in this case, however the

correlations are greatly reduced between these two measurements.

In order to test the fit stability, toy datasets of the LP distribution are generated

n times, and sampled according to the model PDF of Equation 7.6. The pull distri-

butions for fL and fR (and f0) are then calculated, according to the quantity:

(fnom − fmeas)

δfmeas
(7.7)
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(a) The one and two sigma contours for the
LP(µ+) template fit at reconstruction-level

(b) The one and two sigma contours for the
LP(µ−) template fit at reconstruction-level

Figure 7.12: The one and two sigma contours for the LP distribution template fit at reconstruction
level shown for positively charged (a) and negatively charged (b) muons in (fL, fR) space. The
error bars on the pseudo-data are rescaled to an integrated luminosity of 10pb−1, and the diagonal

line represents the limit of the constraint (fL + fR) ≤ 1.0.

(a) The one and two sigma contours for the
LP(µ+) template fit at reconstruction-level

(b) The one and two sigma contours for the
LP(µ−) template fit at reconstruction-level

Figure 7.13: The one and two sigma contours for the LP distribution template fit at reconstruction
level shown for positively charged (a) and negatively charged (b) muons in ((fL + fR), (fL − fR))

space. The error bars on the pseudo-data are rescaled to an integrated luminosity of 10pb−1.
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(a) The fL pull distribution (b) The fR pull distribution

Figure 7.14: The pull distributions of the fL (a) and fR (b) parameters for positively charged
muons, generated with a toy MC of 500 pseudo-experiments and at an integrated luminosity of

100pb−1.

where fnom is the nominal value of the fit parameter as shown in column (a) of

Table 7.2, fmeas is the measured value from the fit and δfmeas is the error returned

by each pseudo-experiment of the toy MC. This procedure was performed for 500 toy-

experiments each and at an integrated luminosity of 100pb−1, the results of which

are shown for positively charged muons in Figures 7.14 and 7.15. For a properly

functioning fit, the pull distribution of all the fit parameters must be consistent with

a Gaussian of mean zero and sigma one. A possible bias on the fractional helicity

parameters due to the fit model is found to be compatible with zero, establishing

the reliability of the fitting procedure.

7.6 Systematic Uncertainties

The following systematic uncertainties have been considered:

• Background estimate. This includes both the shape of the background in-

cluded in the fit as well as the uncertainty on the estimate of the expected

number of events from background processes. To estimate this systematic
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Figure 7.15: The pull distribution of the f0 parameter for positively charged muons, generated
with a toy MC of 500 pseudo-experiments and at an integrated luminosity of 100pb−1.

uncertainty, the fit is repeated with the background estimate increased (de-

creased) by three times the uncertainty on the central estimate. This yields

an uncertainty on (fL − fR)± < 4.1% and f±0 < 4.6%. The uncertainty in the

shape of the shape is estimated repeating the fit 100 times using a template

which is generated from the input background template, with each bin fluc-

tuating freely within Poisson statistics. In the muon channel, this yields an

overall uncertainty on (fL − fR)± < 8.0% and f0 < 6%.

• Charge misidentification. Any mismeasurement of the muon charge results in

a cross-contamination of the W+ and W− samples. To gauge the rate at which

such misidentifications occur, a MC study was performed using the generator

level information. For the PT (µ) spectra considered, this rate was determined

to be O(10−5), and hence for muons is a negligible effect.

• Ai dependencies. As discussed in Sections 7.3 and 6.3.4, a measurement of

the A0 and A4 parameters using the LP variable will depend on the other Ai

coefficients. The effects of increasing each Ai coefficient individually by 10%

(of its value) on the fit values of f0 and (fL − fR) are shown in Table 7.3. As

expected, the effect of increasing A0 and A4 is most prominent in the values of

f0 and (fL−fR) respectively. For a measurement of (fL−fR), the response to

A4 is about an order of magnitude larger than the other Ai parameters. For a

measurement of f0, the response to A1 and A2 is of a similar magnitude but in

the opposite direction to the response from the A0 parameter, as discussed in
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Section 6.3.4. The correlation between the A0 and A4 measurements i.e. the

fluctuation in (fL − fR) given a change in A0 and vice-versa, is small, as also

indicated from Figure 7.13.

• Energy Scale uncertainty. Since the transverse momentum of the W boson

is deduced from the Emiss
T of the event, any uncertainty on the resolution of

this Emiss
T corresponds to different values for the W helicity components. In

the muon channel, the uncertainty is dominated by the hadronic activity in

the event, and so the resolution of ~PT (W ) = ~Emiss
T + ~PT (µ) is smeared on an

event-by-event basis with a Gaussian (σ = 5%× value). The results are shown

in Table 7.3, where the effect is < 2.5% for a measurement of (fL− fR)±, and

< 4% for a measurement of f±0 .

• Contamination from Z boson decays. Partially reconstructed Z boson decays

(when one of the leptons is either outside the detector acceptance or is not

reconstructed) along with mismeasured Z boson decays (where one of the lep-

tons is not measured properly) result in events mimicking the W boson decay

signature. It is estimated that 5.0 events pass the selection criteria for this

analysis per inverse picobarn of integrated luminosity. To estimate the sys-

tematic uncertainty, an additional component for this Z boson contamination

is included in the fit. The uncertainties on both the measurements of f0 and

(fL − fR) from excluding the Z boson contribution from the background fit

are shown in Table 7.3.

• t − t̄ contamination. Using Monte Carlo simulation and a Next-to-Leading

Order cross section for the production of tt̄ pairs of 157.5 pb, it is estimated

that 3.6 events pass the selection criteria for this analysis per inverse pico-

barn of integrated luminosity. The effects of including this background into

the templated fit without a corresponding background template are shown in

Table 7.3.
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Table 7.3: The relative effects on the values of f0 and (fL−fR) by varying the quantity indicated
by the amount indicated. The selection requirements as defined in Section 7.2.2 are used.

(fL − fR)− f−0 (fL − fR)+ f+
0

Baseline Value 0.253 0.212 0.329 0.208

A0 + (A0 × 10%) -0.4% +9.9% -0.9% +11.5%
A1 + (A1 × 10%) +0.4% -5.2% +0.3% -5.8%
A2 + (A2 × 10%) +0.8% -3.8% -0.3% -4.3%
A3 + (A3 × 10%) -0.4% 0.0% 0.0% 0.0%
A4 + (A4 × 10%) +7.1% -1.9% +6.7% -2.4%

Exclude Z +4.0% -4.7% -4.9% -1.4%
Exclude tt̄ <0.5% <0.5% <0.5% <0.5%

Exclude QCD <0.1% <0.1% <0.1% <0.1%

Smear PRECO
T (W ) by 5% -2.4% +3.3% +1.2% +3.8%
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Chapter 8

First Look at LHC Data

8.1 Introduction

The data presented in this chapter were collected between March and September

2010, and correspond to approximately 3.2 pb−1 of collision data at a proton-proton

centre of mass energy of
√
s = 7 TeV. The criteria used for event selection are as

described in Section 7.2.2. In total 731 events pass such a selection, in very good

agreement with the yields presented in Table 7.1. Of these, 299 events contain a

negatively charged muon, whilst 432 are with a positively charged muon. This leads

to a charge ratio of 0.692, slightly larger than the expectations from Figure 2.3(b),

as expected given the PT (W ) > 50 GeV range considered (see Section 6.1).

Overlaid data and MC distributions for the LP variable and underlying quantities

are shown in Section 8.2, separately for events from both positively and negatively

charged muons, and the respective template fit results are shown in Section 8.3.

8.2 Data vs MC

For the following data and MC distributions, the MC is normalised to the integrated

luminosity using the cross sections from Table 7.1, as opposed to the number of

data events. The uncertainty on the value of the integrated luminosity (11%) is
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Figure 8.1: Overlaid data and MC distributions for the PT (µ+) distribution.

not taken into consideration. Overlaid data and MC distributions for the PT (µ),

PT (W ) and MT distributions are shown in Figures 8.1 to 8.3 respectively, whilst

the LP distribution is shown in Figure 8.4. The individual contributions from each

of the different MC samples are also shown. Overall, the data are described well

by the MC for the PT (µ), PT (W ) and MT distributions, and there is no significant

difference in the comparisons for the different charges. The data-MC comparison for

the LP distributions, which also encode the angular separation between the muon

and W boson, are also described well, namely the features around LP values of 0

and 1.

8.3 Template Fit Results

An initial indication of polarisation effects may be seen from the average value of

the LP(µ+) distribution with respect to the LP(µ−) distribution. From discussions

in Chapters 6 and 7, it is expected that the average of the negatively charged

distribution is larger, and it is found that the LP(µ−) average is 0.56 (RMS = 0.49),

whilst the LP(µ+) average is 0.46 (RMS = 0.48), which is within expectations.

Using the templates and fitting procedure as described in Chapter 7, polarisation

information from the 3.2 pb−1 of data as collected by the CMS experiment can be
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Figure 8.2: Overlaid data and MC distributions for the PT (W+) distribution.

Figure 8.3: Overlaid data and MC distributions for the MT (µ+) distribution.



8.3 Template Fit Results 161

Figure 8.4: Overlaid data and MC distributions for the LP(µ+) distribution.

extracted. The fit results are shown for positively and negatively charged muons

in Figures 8.5(a) and 8.5(b) respectively. The results are summarised in Table 8.1.

When compared to the results expected from Table 7.2, there is a good agreement

within the statistical errors for the positive charge case, whilst the result for the neg-

ative charge case is within two standard-deviations of expectation. The respective

contours from the fit to the data are shown in Figures 8.6(a) and 8.6(b) for posi-

tively and negatively charged muons respectively. The relative size of the contours

is consistent with a scaling of 1√
N

(with integrated luminosity), when compared to

the 10 pb−1 contours from the MC study shown in Figure 7.13.

In conclusion, a look at the first data from the LHC with respect to a measurement

of the W boson polarisation looks promising. The data agree well with expectations

from MC, as well as the fit results corresponding to an integrated luminosity of

3.2 pb−1 with the MC templates. However, the errors quoted on measurements of

the fi components are purely statistical, and a more detailed systematic study will

need to be carried out as part of a publication effort.
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Table 8.1: A summary of the fit results as shown in Figures 8.5(a) and 8.5(b) for positively
charged and negatively charged muons respectively. Also shown are the respective closure test

values from Table 7.2 for reference.

fL fR (fL − fR) f0

Data: LP(µ+) 0.554± 0.106 0.206± 0.081 0.347± 0.070 0.240± 0.176
MC: `+ baseline 0.554 0.227 0.327 0.219

Data: LP(µ−) 0.418± 0.121 0.321± 0.092 0.097± 0.088 0.262± 0.196
MC: `− baseline 0.521 0.271 0.251 0.208

(a) Template fit results for the LP(µ+) dis-
tribution

(b) Template fit results for the LP(µ−) dis-
tribution

Figure 8.5: Template fit results for the LP(µ+) (a) and LP(µ−) (b) distributions using 3.2 pb−1

of collision data.
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(a) The one-sigma (solid) and two-sigma
(dashed) contours for the LP(µ+) distribu-
tion template fit

(b) The one-sigma (solid) and two-sigma
(dashed) contours for the LP(µ−) distribu-
tion template fit

Figure 8.6: Contours for the LP(µ+) (a) and LP(µ−) (b) template fits using 3.2 pb−1 of collision
data.
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Chapter 9

Summary and Conclusions

Global Calorimeter Trigger

The GCT commissioning strategy was discussed in detail in Chapter 4 of this the-

sis. A software suite was developed to allow the event-by-event comparison of the

hardware with a bit-level software emulation. This was used in commissioning to

achieve 100% agreement for all trigger quantities, and also culminated in a defined

workflow for data quality monitoring of the GCT.

Missing Energy Triggers

Studies of the Level-1 energy sum triggers in Chapter 5 were performed using Monte

Carlo generated samples of Standard Model and super-symmetric physics processes.

The performance of jet-based (HT and Hmiss
T ) and calorimeter-based (ET and Emiss

T )

total and missing energy sum quantities were compared, and the effects of jet energy

corrections and jet threshold cuts were also studied. It was found that with no

thresholds applied, both ET and HT , and Emiss
T and Hmiss

T perform similarly. The

application of a jet threshold was found to reduce the performance of the jet-based

triggers, but strongly suppress detector noise. Jet energy corrections were found to

improve the performance of the jet-based triggers for certain topologies. This led to

the implementation and commissioning of the Hmiss
T trigger in the GCT.



165

W boson polarisation

The production of W bosons in proton-proton collisions (e.g. at the LHC) displays

new characteristics which are not present in proton-antiproton collisions (e.g. at the

SPS and Tevatron colliders). Not only is there an asymmetry in the production rate

of positive versus negative W bosons, but in addition, at high transverse momenta,

the bosons are expected to display large transverse polarisation (predominantly left-

handed). These effects were theoretically motivated in Chapter 2, and a leading

order Monte Carlo generator was used to observe these effects in simulation in the

helicity frame in Chapter 6, where two potential applications of these properties

were also shown.

The final two chapters summarised the effort towards measuring the W boson po-

larisation in the muon channel, using templates of the Lepton Projection variable

defined in Chapter 6. The template generation method and fitting procedure were

discussed in detail, and tested in simulation, in Chapter 7. An analysis of the first

3.2 pb−1 of LHC data from the
√
s = 7 TeV dataset was then presented in Chapter 8,

which showed very good agreement with expectations from Monte Carlo simulation

studies. The results of the template fit to these data were (fL−fR)+ = 0.347±0.070,

f+
0 = 0.240± 0.176, and (fL− fR)− = 0.097± 0.088, f−0 = 0.262± 0.196 for positive

and negative charges respectively. The errors quoted are statistical.
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