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Introduction

Thetorsion of acélular (smplicial) complex was introduced in the 30s by W. Franz
[29] and K. Reidemeister [90] in their study of lens spaces. The lens spaces L(p, q)
(p fixed) have the same fundamental groups and thus the same homology groups.
However, they arenot all homeomorphic. They are not even homotopically equivalent.
This can be observed by detecting some below the radar interactions between the
fundamental group and the simplicial structure. The torsion captures some of these
interactions. Inparticular, it isableto distinguish lens spaceswhich are homotopically
equivalent but not homeomorphic, and moreover completely classify these spaces up
to a homeomorphism. This suggests that this invariant is reaching deep inside the
topological structure.

What is then this torsion? What does is compute? These are the kind of ques-
tions we try to address in these notes, through many examples and various equivalent
descriptions of thisinvariant.

From an algebraic point of view, the torsion is a generalization of the notion of
determinant. The most natural and general context to define the torsion would involve
the Whitehead group and algebraic K-theory as in the very elegant and influential
Milnor survey [72], but we did not adopt this more general point of view. Instead we
look at what Milnor dubbed R-torsion.

Thisinvariant can be viewed as ahigher Euler characteristic typeinvariant. Much
likethe Euler characteristic, thetorsion satisfiesaninclusion-exclusion (a.k.a. Mayer—
Vietoris) principle which can be roughly stated as

Tors(A U B) = Tors(A) + Tors(B) — Tors(A N B)

which suggests that the torsion could be interpreted as counting something.

Theclassical Poincaré-Hopf theorem states that the Euler—Poincaré characteristic
of asmooth manifold counts the zeros of a generic vector field. If the Euler-Poincaré
characteristic is zero then most vector fields have no zeroes but may have periodic
orbits. Thetorsion countsthese closed orbit, at |east for some families of vector fields.
As D. Fried put it in [34], “the Euler characteristic counts points while the torsion
countscircles’.

One of the oldest results in algebraic topology equates the Euler-Poincaré char-
acteristic of simplicial complex, defined as the alternating sums of the numbers of
simplices, with a manifestly combinatorial invariant, the alternating sum of the Betti
numbers. Similarly, the R-torsion can be given a description in terms of chain com-
plexes or, a plainly invariant description, in homologica terms. Just like the Euler
characteristic, the R-torsion of a smooth manifold can be given a Hodge theoretic
description, albeit much more complicated.

More recently, thisinvariant turned up in 3-dimensional Seiberg—Witten theory, in
thework of Meng—Taubes ([68]). Thisresult gave ustheoriginal impetusto understand
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the meaning of torsion.

This is a semi-informal, computationally oriented little book which grew out of
our effortsto understand theintricacies of the Meng—Taubes—Turaev results, [68, 115].
For thisreason alot of emphasisis placed on the Reidemeister torsion of 3-manifolds.
These notes tried to address the author’s own struggle with the overwhelming amount
of data involved and the conspicuously scanty supply of computational examplesin
the traditional literature on the subject. We considered that at an initial stage a good
intuitive argument or example explaining why a certain result could be true is more
helpful than a complete technical proof. The classical Milnor survey [72] and the
recent introductory book [117] by V. Turaev are excellent sources to fill in many of
our deliberate foundational omissions.

When thinking of topological issuesit isvery important not to get distracted by the
ugly looking but elementary formalism behind thetorsion. For thisreason we devoted
the entire first chapter to the algebraic foundations of the concept of torsion. We give
severa equivalent definitions of the torsion of an acyclic complex and in particular,
we spend agood amount of time constructing a setup which coherently dealswith the
torturous sign problem. We achieved this using a variation of some of the ideas in
Deligne’s survey [18].

The general algebraic constructions are presented in the first half of this chapter,
while in the second half we discuss Turaev’s construction of several arithmetically
defined subrings of the field of fractions of the rational group algebra of an Abelian
group. These subrings provide the optimal algebraic framework to discuss the torsion
of amanifold. We conclude this chapter by presenting a dual picture of this Turaev
subringsviaFourier transform. Theseresultsseemto benew and simplify substantially
many gluing formulaefor the torsion, to the point that they become quasi-tautol ogical.

The Reidemeister torsion of an arbitrary simplicial (or CW) complex isdefined in
the second chapter. Thisis simply the torsion of a simplicial complex with Abelian
local coefficients, or equivalently thetorsion of the simplicial complex of the maximal
Abelian cover. We present the basic properties of this invariant: the Mayer—Vietoris
principle, duality, arithmetic properties and an Euler—Poincaré type result. We com-
putethetorsion of many mostly low dimensional manifoldsandin particular weexplain
how to compute the torsion of any 3-manifold with b1 > 0 using the Mayer—Vietoris
principle, the Fourier transform, and the knowledge of the Alexander polynomials of
links in $3. Since the literature on Dehn surgery can be quite inconsistent on the
various sign conventions, we have devoted quite asubstantial appendix to this subject
where we kept an watchful eye on these often troublesome sings.

The approach based on Alexander polynomials has one major drawback, namely it
requires a huge volume of computations. We spend the whole section 82.6 explaining
how to simplify these computation for a special yet very large class of 3-manifolds,
namely thegraph manifolds. Thelinksof isolated singularitiesof complex surfacesare
included in this class and the recent work [ 75, 76] provesthat the Reidemeister torsion
captures rather subtle geometrical information about such manifolds. We conclude
this chapter with some of the traditional applications of the torsion in topology.
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Chapter 3 focuses on Turaev's ingenious idea of Euler structure and how it can
be used to refine the concept of torsion by removing the ambiguities in choosing the
bases needed for computing the torsion. Turaev later observed that for a 3-manifold
a choice of an Euler structure is equivaent to a choice of spin®-structure. After we
review afew fundamental properties of this refined torsion for 3-manifolds we then
go on to present aresult of Turaev which in essence says that the refined torsion of a
3-manifold with positive b1 is uniquely determined by the Alexander polynomials of
linksin $2 and the Mayer—Vietoris principle.

Thisuniquenessresult does not include rational homology spheres, and thus offers
no indication on how to approach this class of manifolds. We spend the last part of
this chapter analyzing this class of 3-manifolds.

In §3.8 we describe a very powerful method for computing the torsion of such
3-manifolds, based on the complex Fourier transform results in Chapter 1, and an
extremely versatile holomorphic regularization technique. These lead to explicit for-
mulaefor the Fourier transform of thetorsion of arational homology spherein terms of
surgery data. Theseformulaestill have the two expected ambiguities: asign ambiguity
and a spin® ambiguity. In §3.9 we describe a very simple algorithm for removing the
spin© ambiguity. Thisrequiresaquitelong topological detour intheworld of quadratic
functions on finite Abelian groups, and surgery descriptions of spin and spin® struc-
tures, but the payoff is worth the trouble. The sign ambiguity is finally removed in
§3.10 in the case of plumbed rational homology spheres, relying on an ideain [75],
based on the Fourier transform, and arel ationship between the torsion and the linking
form discovered by Turaev.

Chapter 4 discusses more analytic descriptions of the Reidemeister torsion: in
terms of gauge theory, in terms of Morse theory, and in terms of Hodge theory. We
discuss Meng-Taubes theorem and the improvements due to Turaev. We aso out-
line our recent proof [83] of the extension of the Meng—Taubes-Turaev theorem to
rational homology spheres. As an immediate consequence of this result, we give a
new description of the Brumfiel-Morgan [7] correspondence for rational homology
3-spheres which associates to each spin® structure a refinement of the linking form.

On the Morse theoretic side we describe Hutchinson—Pajitnov results which give
a Morse theoretic interpretation of the Reidemeister torsion. We barely scratch the
Hodge theoretic approach to torsion. We only provide some motivation for the ¢-
function description of the analytic torsion and the Cheeger—M{ller theorem which
identifies this spectral quantity with the Reidemeister torsion.

Acknowledgements | spent almost two years thinking about these issues and | was
helped aong the way by many people. | am greatly indebted to Frank Connolly who
introduced me to this subject. His patience and expertise in answering my often half

1This work was partially supported by NSF grant DM S-0071820.
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colleagues Bill Dwyer, Stephan Stolz, Larry Taylor and Bruce Williams for many
illuminating discussions which made this scientific journey so much more enjoyable.
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mind. They may have not seen the “light of day” were it not for Andrew Ranicki’'s
interest and support. | want to thank himfor theinsightful comments concerning these
notes which have substantially helped me to improve the quality of the presentation.

| want to thank Vladimir Turaev whose work had a tremendous influence on the
way | think about this subject. | appreciate very much hisinterest in these notes, and
his helpful suggestions.
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Notations and conventions

e For simplicity, unless otherwise stated, we will denote by H,. (X) the homology with
integral coefficients of the topological space X.

e For K = R, C, we denote by K thetrivial rank n, K-vector bundle over the space
X.

oi:=./—1

e u(n) =thelLieagebraof U(n), su(n)=theLieagebraof SU(n) etc.
o7y =7Zs0:={n€Z; n>0}.

e For all integersm < nwesetm, n := 7N [m, n].

e For any Abelian group G we will denote by Tors(G) its torsion subgroup. We will
use the notation Z,, := Z/nZ.

o If R isacommutative ring with 1, then R* denotesthe group of invertible elements
of R.

e Also, we will strictly adhere to the following orientation conventions.

e If M isan oriented manifold with boundary then the induced orientation of M is
determined by the outer-normal-first convention

or (M) = outer normal A or (OM).

o If F — E — B isasmooth fiber bundle, where F and B are oriented, then the
induced orientation of E is determined by the fiber-first convention

or (E) = or (F) A or (B).
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Chapter 1
Algebraic preliminaries

81.1 The torsion of acyclic complexes of vector spaces

The notion of torsion isamultifaceted generalization of the concept of determinant of
an isomorphism of vector spaces. We begin with a baby example to give the reader a
taste of the ingredients which enter into the fabric of torsion, and of the type of issues
it addresses.

Example 1.1. Suppose that Up and U are finite dimensional real vector spaces and
S, T: U1 — Up aretwo linear isomorphisms. If we take into account only the vector
space structures then we could consider S and T to be equivalent, i.e. there exist
A; e Aut(U;),i =0, 1, such that

T = AoSAT™. (1.1)

Suppose now that A; C U;, i = 0,1 are lattices and S, T are compatible with
them, i.e. S(A1) C Ag, T(A1) C Ag. We could then ask whether there exist
A; € Aut(A;) C Aut(U;),i =0, 1, such that (1.1) holds. We can easily construct an
invariant to show that S and T need not always be equivalent in this more restricted
sense. Consider for example the finite Abelian groups

1(S) = Ao/S(A1), I(T) = Ao/T(A1).

If Sisequivalentto T then|I(S)| = |I(T)| and we seethat the quantity S +— |1 (S)]is
an invariant of thisrestricted equivalence relation. It isvery easy to computeit. Pick
Z-basesof A;,i = 0, 1. We can then identify S and T with integral matrices and, up
toasign, |1(S)| and |I(T)| are the determinants of these matrices.

The torsion tackles a dlightly more general question than this. This generality
entails several aspects, all motivated by topological issues. First, instead of latticesin
real vector spaceswewill work with free modules over acommutativering R. Instead
of thefield of real numberswewill work with afield K related to R viaanontrivial ring
morphism x : R — K. If F isafree R modulethen F ®, K isaK-vector space. The
role of the groups Aut(A;) we will played by certain subgroups of Autg(F), which
act in an obviousway on F ®, K. Finaly, instead of morphisms of R-modules we
will consider chain complexes of R-modules. O

Wewill begin our presentation by discussing the notion of torsion (or determinant)
of achain complex of finite dimensional vector spaces. In the sequel, K will denote
afield of characteristic zero. A basis of a K-vector space will be a totally ordered
generating set of linearly independent vectors.
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Suppose f : U1 — Up is an isomorphism of n-dimensional K-vector spaces.
Once we fix basesu; = (u;1,...,u;,) Of U;, i = 0,1, we can represent f as an
n X n-matrix

A = A(uo, u1) € GL,(K),

and as such it has adeterminant det A € K*.
Suppose additionally that 2 isagroup® acting linearly on U;, i = 0, 1. We denote
by Fr (U;), the set of bases of U;. There is an obvious right action of 2 on Fr (U;),
and we will denote by [u; ]9 the A-orbit of u; € Fr(U;),i = 0, 1. If wechangeu; by
elementsin 2,
uj—u;-gi,

then the matrix description of f changes according to the rule

A = A(u1, uo) > A(u1g1, uogo) ‘= (u1g1/u1) *A(mogo/uo),  (1.2)

wherefor any u, v € Fr (U) wedenoted by v/u the matrix describing the base change
ur— v,

v=u-(v/u), (@/v)=(/w) "
Also, we set
[v/u] := det(v/u)
det2 = {[ug/ul; g €A, u € Fr(Up) UFr(Uy}.

Observe that det2( is a subgroup of the multiplicative group K*. In particular, the
determinant of A changes by an element in the subgroup det(2() c K*.

Definition 1.2. The correspondence
(ug, u1) — 1/det A(ug, ug) € K* — K*/ det(2l)

defines an element in K*/ det(2() which depends only on the 2(-orbitsof u;,i = 0, 1.
We denoteit by

T(f, [uwols, [walen)

and we call it the torsion of the map f with respect to the 2(-equivalence classes of
basesu, v. O

To ease the presentation, in the remainder of this section wewill drop the group 21
from our notations since it introduces no new complications (other than notational).

Observe that an isomorphism f : U1 — Ug can be viewed as avery short acyclic
chain complex

0— Ul—f>U0—>0.

Lintuitively, 2 is the group of ambiguities. All the vectorsin the same orbit of 2 are equal partners and
in agiven concrete setting there is no canonical way of selecting one vector in afixed orbit.
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The notion of torsion described above extends to acyclic chain complexes of arbitrary
sizes. Suppose that

s PR
C=0-C B ™. B g0

is an acyclic, complex of finite dimensional K-vector spaces. Fix bases ¢; of C;.
Because C isacyclic there exists an algebraic contraction, i.e. a degree one map

n:Ci— Cina

such that
on+nd =1c.

(SeeAppendix 8A.1.) Setn = nan.

Exercise 1.1.(a) Prove that 7 is an algebraic contraction satisfying 72 = 0.

(b) Show that if 2 = Othenn = 7. |
Consider the operator
a+n:C— C.
It satisfies

@+M>=0h+70 =1,
so that it is an isomorphism. Moreover, with respect to the direct sum decomposition
C = Coven @ Coqy
it has the block form

R 0 Tm
d+n= [Tlo 0 } + Tor:Cogd = Cavens  T10: Coven = Coga:

We deducethat Ty isan isomorphism of vector spacesand Tlgl = To1. Wecan define

T(C.e) =T+, [ceven] [€oa]) = det(d + 1 : Cogg — Qeven)_1
= dEt(a + 1 Coen — Qodd)'

We need to be more specific about ¢4 and ¢ e,. If We denote by 2m + 1 (resp. 2v)
the largest odd (resp. even) number not greater than the length of C then

Cogd = C2m+1U---UecaUe1, Coqen=C20U---UcaUco. (1.3)

Proposition 1.3([19]). det(d+ 1 : Coen — Coga ) iSindependent of the choice of 7.
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Proof. Suppose g, 1 aretwo algebraic contractions. Set 7 := n1 —no, n; = no +179.
Observe that n0 = —adn and n, isan algebraic contraction of C. Moreover

s = (0 + s + s7) = A + sGn; + 1,07) + 57797,
Weset T, := 3 + i, and ), = L |;_ofii+s = 7dn, + n,87. Derivating? the identities

A2 =0, 9f +nd=1,
we deduce that

A A/

men, = _ﬁ;ﬁt, aﬁ; = _ﬁ;a
Thisshowsthat 7,7, = —#,T;. Using the identity 7;> = 1 we obtain
Tivs =04 Niys =T + 50 = Tt(1+STlﬁ;)'
To prove that det(7; : Cojen — Cogq) 1S iNdependent of ¢ it suffices to show that
Observe that
Tiily = (endn; + 0, 09) + 89 =: A+ B.

Since A(Cy) C Ci42, we deducetr(A) = 0. Next, consider the filtration Cgq o, D
kerd D Ima > 0. Observethat BCq,e, C IMmd and B actstrivialy on ker 9. This
shows that tr B = 0 and completes the proof of the proposition. O

Definition 1.4. The quantity T(C, ¢) is called the torsion of the acyclic complex C
with respect to the bases c. O

Observethat if ¢’ is another basis of C then using (1.2) we deduce

T(C. ¢) = T(C. o) [ 1} /i1 V" (1.4)
i=0

Convention. When the complex C is not acyclic we define itstorsion to be 0.

We can dternatively define the torsion as follows. Choose finite, totally ordered
collectionsb; C C; of suchthat therestriction of 0 to b; isone-to-onefor al i, bg = 9,
and

0b;+1 U b; isabasisof C;. ©)

(This condition uses the acyclicity of C.) Now set ¢ := @;¢;, and define the torsion
of C with respect to the bases ¢; by

T(C. lela) = [ [1@bi0)bi/ei1 ™Y € K*/ det(@). (15)
i=0

2The derivatives are understood in the formal sense, as linearizations,
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The relationship between these two definitions is very simple. Let usfirst introduce
a notation. If X is a basis of a vector space U, and u is a vector in U, then the
decomposition of « along this basis will be denoted by

U= Z(ulx)x.

xeX

Given collections b; as above we define a contractionn : C — C,

Cisu= Y (udb)db+ Y (ulb)b'— Y (u|db)b € Ciy1.

bebjy1 b'eb; bebjt1
We define ¢! = db; 1 U b;. Then
T(C, ¢) = det(d + 1: (Ceven» Coven) = (Cogd» €od)) = 1.

The equality (1.5) now follows by invoking the transition formula (1.4).
We present below another simple and effective way of performing concrete com-
putations.

Proposition 1.5([38, 110]).2 Suppose C is an acyclic complex of finite dimensional
K-vector spaces. Denote by ¢ the length of C, fix a basis ¢ of C and denote by D; the
matrix of the linear operator

d: Ci+1 — Ci

with respect to the chosen bases. Set
n; .=dimgC;, s;:=dmgker(d: C; » C;_1).
Assume there exists a t-chain, i.e. a collection
{Si,D); Si cLni, si =181, i=0,1,...,¢—1, D;: Ki+17%+1 _ K5}

such that the matrix D; obtained from D; by deleting the columns belonging to S; 1
and the rows belonging to 1, n; \ S; is quadratic and nonsingular (see Figure 1.1).

Then
-1

T(gs Q) = l_[ det(bi)(—l)i+l+vi ’
i=0
where
vi={(, ) €ZxZ; 1<x <y, xelmn\S, yeSi|

3This result has along history, going back to A. Cayley [12].
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Dii1 Lni\S;

Lnipa\Siv1

ni4] = Si4l =i

Figure 1.1. Visuaizing a t-chain.

Proof. Let
¢ = {Ci’]_, ey Ci,ni}~
Define
bi :={cij; j & Si}
where the above vectors are arranged in the increasing order given by j. The bases b;
satisfy the condition (1) and moreover,

[0b;+1b;/ci] = (—1)" det(D;). O

Example 1.6(Algebraic mapping torus, [33, 34]). A useful operation one can per-
form on chain complexes is the algebraic mapping torus construction, [33]. More
precisaly, suppose (C, 9) isachain complex of K-vector spaces, ¢ isabasisof C and

f:€—>C

isachain morphism, i.e. adegreezero map commutingwith 8. Thealgebraic mapping
torus of C with respect to f isthe chain complex

(T(f);0r), T(fl:=Ck ® Cg-1,

Ck Cr_1 u a 1-1) u
ir: & — @ , > .
Cr-1 Cr_2 v 0 —0 v

The bases ¢ define bases T (¢) in T'(f), unique up to ordering. Assume det(1— f) €
K*. Then the map

0 0

n: Tk = Ty, n=
a-pn1to
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is an algebraic contraction, and the operator

d+n:T(f)odd = Qodd eaQe\/en = T(f)even = Qe\/en 69Qodd

isgiven by

9 Q-1

d+n=
L a-H"t -4
9 A-H1 [1 -01-f)
N -1t o 0 1
We conclude
T(T(f), T(e) = +dety (1 — f): C — C) " = +¢(D) (L6)

where the s-determinant det; and the s-zetafunction g:f(t) arediscussed in 8A.2. O

81.2 The determinant line of a chain complex

We want to offer yet another interpretation for the torsion, in terms of determinant
lines, [18, 23, 38, 53]. This has the conceptua advantage that it deals in a coherent
way with the thorny issue of signs. Assume again that K is afield of characteristic
zero.

Definition 1.7. A weighted K-lineis apair (L, w), where w is an integer caled the
weight, and L isaone-dimensional K-vector space L together with alinear action of
K* on L of theform

KfxLs(tu—txu:=tY uecl

An isomorphism of weighted lines (L;, w;), i = 0, 1, isaanisomorphism Lo — L1
which commutes with the K*-action. O

Example 1.8. SupposeV isK-vector spaceof dimensiond. Thentheone-dimensional
space AV isnaturally aweighted line of weight 4. The pair (A4V, d) is called the
determinant line of V and is denoted by Det(V). The trivial line equipped with the
weight w-action of K* will be denoted by (K, w). By definition Det(0) = (K, 0). O

We can define the tensor product of two weighted spaces (L;, w;),i =0, 1

(Lo, wo) ® (L1, w1) = (Lo ® L1, wo + w1).
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The dual of aweighted line (L, w) isthe weighted line
(L,w) 1= (L*, —w).

We can organize the collection of weighted lines as a category where

if wo# wy

Hom((Lo. wo). (L1, wy)) = .
(Lo, wo). (L1 W) =y o T L) if wo = w.

Remark 1.9 (Koszul's sign conventions). We would like to discuss an ubiquitous but
quite subtle problem concerning signs. Suppose (L;, w;),i = 0, 1, areweighted lines.
The tensor products

U=Lo®L; and V=L1® Lg

are not equal as sets but are isomorphic as vector spaces. We will identify them, but
not using the obvious isomorphism. We well use instead the Koszul transposition

Yror,:U—V, Lo®l1— (—1)""Y1 ® L.
Similarly, givenaweighted line (L, w), wewill identify thetensor product (L, w) &
(L, w) with Det(0) using in place of the obvious pairing, the Koszul contraction
Trr: (L, w) 1 ® (L, w) — Det(0) defined by
LOL*> u,u™— u*_lu:= (—1)w(w_1>/2(u*, u) e K,

where (s, ¢): L* x L — K denotes the canonical pairing.
Notethat (L~1)~1 £ L but we will identify them using the tautological map

1 L« (L7H™ L

The identifications Y1, 1,, Trr and i, are compatible in the sense that the diagram
below is commutative.

n 11 ®1 N Ty -1 n
L H 1oLt =Lt ——— 1%L

m(/TrL

Det(0).

Finally note that Lo ® (L1 ® L) # (Lo ® L1) ® L but we will identify them via
the tautological isomorphism

Lo®(L1® L) — (Lo® L1) ® Lz, Lo ® (£2® £2) = (Lo ® £1) ® La.
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The tautol ogical identification (Lo & L1)~* <~ Lyt & L1 * iscompatible with the
above rulesin the sense that the diagram below is commutative.

(Lo*®LTH&(Lo®L1)

lé/) \]-Lf

(Lo®L1) & (Lo®L1) (Lo*®Lo)®(LT'®L1)
m (/LO®TFL1
Det(0) .

To simplify the presentation we will use the following less accurate descriptions of
the above rules.

Lo®Li=(-D""L1®& L1, L'®L= (D" V?Det(0), (L H =L

(Lo® L) ® Ly =Lo® (L1®Lp), (Lo®L) t=Lgt& L1t

Two weighted lines U, V are said to be equal up to permutation, and we write this

U =, V,if thereexist weighted lines (L;, w;),i = 1, ..., n and a permutation
o:{1,....,n} > {1,...,n}

such that

—n

Y
U=@Q)._Li. V=@Q)._ Lo

We denote by T = Y, the composition of Koszul transpositionswhichmapsU to V..
We can generalize the Koszul contraction to the following more general context.
Suppose for examplethat (L;, w;),i = 0, 1, 2, 3, are weighted lines. Then define

TU=L1Q®L{®Ly®Lo®Ls3— V:=L1® L, ® Lz,
M1®MS®M2®MO®M3|—> (—1)w0w2(u8J uo)‘uo®u2®u3.

This contraction continues to be compatible with the Koszul transpositions in the
following sense. For any permutation ¢ of the five factors

Ly, L}, Lz Lo, L3
we get anew line Y, (U) equipped as above with atrace
Tr:Yy(U) -V
and the diagram below is commutative

U—>T(U)

N
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Example 1.10. Supposethat L;, i = 0, 1 are weighted lines with the same weight w
andu € L51®L1 isanontrivial element. Then u definesan elementin Hom(Lg, L1)

uot— u_Jlus.
If u =u3®u1then
u_lug = (—1)w(w+1)/2(u’6, uo)u1. ]

If W, = P,z W; isafinite dimensional Z-graded K-vector space then its deter-
minant line is the weighted line

—

Det(W) = ®j€Z Det(W_;)’.
Itsweight is the Euler characteristic
X(W) =Y (=1)/ dimW;.
Jez
For example, if W = Wy & W1 & Wo, then
Det(W) = Det(W,) & Det(W1) ™ & Det(Wo).

To perform numerical computations we need to work with richer objects, namely
based vector spaces and based weighted lines. All the tensorial operations on vector
spaces have a based counterpart. The dua of a based vector space (W, w) is the
based vector space (W*, w*), where w* denotes the dual basis. The dual of a based
weightedline (L, w, §) isthebased weightedline (L, w, 8)~1:= (L*, —w, §*) where
8* denotes the basis of L* dual to 4,

(6*,8) = 1.
We can define the ordered tensor product of based weighted lines
(Lo, wo. 80) ® (L1, w1, 81) = (Lo ® L1, wo + w1, 80 A 81).
To any based vector space (W, w) we can associate in a tautological fashion a based
weighted line (Det(W), dim W, det w). If
W, w) = P W,, wy)
nez

is abased graded vector space, the associated based determinant lineis
(Det(W), x (W), det w) = () (Det(W-,), dim W, detw_,) ~".
Giventwobasedweightedlines(L;, w;, 8;),i = 0, 1,andamorphism f: (Lo, wo) —
(L1, w1) we defineitstorsion to be the scalar (51| f150) € K uniquely determined by
the equality
f(80) = (811 f130)é1.
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Example 1.11. Suppose W = P
space, d,, := dimg W,,. Define

W, is afinite dimensional Z-graded K-vector

nez

Det (W) := ® Det(W_y,), Det_(W) := ® Det(W_2,_1),

nez nez

Det, (W) = Dety (W) & Det_ (W)~ =, Det(W).
For example, if W = Wo @ W1 & W5 then

Det, (W) = Det(W2) & Det(Wo) & Det(Wy)
= (=14 Det(W) = (—1)%% Det(Wy) @ Det(W1) L & Det(Wp). O

We have the following important result.
Proposition 1.12. Suppose

O—>Ai>C—g>B—>O

is a short exact sequence of finite dimensional K-vector spaces. Then there exist
natural isomorphisms

Try,: Det(A) ® Det(C)~1 & Det(B) — Det(0),

and
det/,: Det(A) ® Det(B) — Det(C).

Proof. Fixanisomorphism#: C — A& B suchthat thediagram below iscommutative

0 A C 0

oS

1y h 1p

0 A A®B B 0.

We obtain an isomorphism

Det(A) & (Det(4) & Det(B)) " & Det(B) /5! Det(4) & Det(C) ! & Det(B)

which is independent of the choice . Define Try , as the composition

Trr, =Tro[f®g 171,
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i.e
Det(A) & (Det(A) & Det(B)) " & Det(B)
[f®g11[ \
Det(A) @ Det(C) ! & Det(B) I Det(0),
8
where the map

Tr: Det(A) & (Det(A) ® Det(B)) ' & Det(B) — Det(0)
isthe Koszul contraction. By taking tensor products we obtain an isomorphism
Det(A) ® Det(C)~! & Det(B) & Det(C) — Det(C),

and if we take the Koszul contraction on the left hand side we obtain another i somor-
phism

Det(A) & Det(B) < Det(A) @ Det(C)~1 & Det(B) & Det(C)
The definition of det , is now obvious. m

Proposition 1.13. Suppose (C, 9) isa finite dimensional chain complex. Then there
exists a natural isomor phism

dety: Det(H.(C, d)) — Det(C).

Proof. We have short exact sequences
0— Riy1(:=IMdjp1) = K;(:=kerd;) > H;(C,3) — O,

and
0—>KiCL>Ci—a>Ri—>O.

Using Proposition 1.12 we have isomorphisms
detg}l)i; Det(Ri+1) "Y' & Det (Hi(C. a))(_l)’ . Det(k) Y,

and _ | | |
det’,"": Det(k;) "Y' & Det(R) Y — Det(cH Y.

By taking tensor products we obtain isomorphisms

U; == Det(Ri+1) "Y' & Det (H; (C, )™ & Det(R) "Y' — Det(c) Y,
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and o
[detd]: ) Un — Det(O).

Taking the Koszul contractions of the pairs (R; 1 R;) in the left-hand-side we obtain
an isomorphism
Tr: L — Det(H.(C,0)).

Then det; is the unique isomorphism which renders commutative the diagram below.

L
>
Det(H.(C, 9)) ----go=---> Det(C). .

Definition 1.14. Theinverse of the aboveisomorphism isknown asthe Euler isomor-
phismand will be denoted by Eulc = Eul(c j). m

Example 1.15. Consider the elementary complex

0 Ci=VvEv=co>0
Then the Euler isomorphism
Det(V)~! & Det(V) — Det(0)

coincides with the Koszul contraction. Thissimple fact lies at the core of the remark-
able compatibility between the Euler isomorphism and the various Koszul identifica-
tions, and keepsin check what Deligne called in [18] “ le cauchemar designes’. O

Example 1.16. Suppose that (C, ¢, d) is a finite dimensional acyclic complex. We
can choose as in the previous section linearly ordered finite collections b; C C; such
that the restriction of 9 to the span of b; is one-to-one, and the linearly ordered set
db;11 U b; isabasisof C;. Wethen get abasis

i _1hi—1
§:=-- A (detdby1 A deth;) " A (detdb; Abi_1) Y A e Det(O).

The Euler isomorphism maps Det(C) to Det(0), and the basis § to the canonical basis
(=1)" of Det(0), where
 1bil(1bi| + (1)
1):X:IbI(IbIJr( ))_

2
i=1 o
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Exercise 1.2. Provethat theisomorphism dety, , constructed in the above proposition
has the following compatibility properties.

(a) Consider the elementary acyclic complex
00— O=C2‘—L>K=C12»K=C0—>O.

Then det, , isthetautological isomorphism Det(K) — Det(K).

(b) Consider the commuitative diagram

0 Ag < fo Co 80 Bo 0
f g1
0 Ag © C1 B 0

inwhichthevertical arrowsareisomorphisms. Thenthediagrambel ow iscommutative

. detfy.go
Det(Ap) ® Det(Bg) —— Det(Co)
{det a®det B ldet y

~ dety; ¢;
Det(A1) ® Det(By) — Det(Cy). O

Exercise 1.3. Show that for any short exact sequence of vector spaces

0-a%8Lcoo
and for every s, t € K* we have
detsy. s = sIMAr =AM C et 4. O
Exercise 1.4. Show that for every + € K* we have

EU|(g,t3) = l‘gEU|(g,3), ¢ = Z(—l)”n(dlm C, —dim Hn(g))
nez O

Suppose now that (C, ¢, 9) isabased acyclic complex. Det(C) isabased weighted
line with basis det ¢. Since

Det(H,(C, 9)) = Det(0).

we deduce that Det(H, (C, 9)) hasanatural basis, 1.
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Proposition 1.17.
T(C,¢) = (—1)"(1|Eulc| detc).

where v is defined asin Example 1.16.

Exercise 1.5. Prove the above equality. O

When K = R we can be even more explicit. More precisely, fix Euclidean metrics
on each of C;. Then, asexplained in 8A.1, we can explicitly write down ageneralized
contraction (Definition A.7), i.e. adegree one map

n: Ck = Cit1

suchthat n2 = Oand P = dn+nd = (9 +n)? isaprojector onto aperfect subcomplex
with the same homology as C. More precisely, we can choose n of the form

n=(@ii*+ A)~1o*

where A = (9+9*)?, andi isthenatural inclusioni : ker A — C. Theformal Hodge
theorem shows that ker A = H,(C). Consider the linear operator

o S Co = b0 & Co | (28 [ 10, 0%, ][ 22 |
We thus get an isomorphism
Det ker Aodd ® Det(Cen) — DEtKer Agven ® Det(C oy9)
Thisyields the isomorphisms
Det ker Aogg & Dety (C) — Detker Aeyen,
and

I: Dét, (C) — Det(ker Aodd) ' & Detker Agven — Dt (Hy(C)).

Up to a permutation, thisis the Euler isomorphism. More precisely, we have a com-
mutative diagram

Det, (C) —— Det, (H.(C))
T T

EU|C
Det(C) ——— Det(H.(C0)).
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81.3 Basic properties of the torsion

The torsion behaves nicely with respect to the basic operations on chain complexes.
Consider first a short exact sequence of chain complexes

0— (4.92) 5 (C.3c) 5 (B.op) — 0,
Using Proposition 1.12 we obtain canonical isomorphisms
det;, .. € Det(A,) & Det(B,) — Det(C,),
and thus an isomorphism
detr o () 5 (1"
etro: Q) (Det(4,) & Det(B,))~ — Det(C).
Now observe that
—_ 0 A (_1)"! A
&) _(Det(A,) & Det(B,))" "~ =, Det(4) & Det(B).
We get an isomorphism
dets,: Det(A) ® Det(B) — Det(C)

compatible with the Koszul permutation identifying the two weighted lines,

——00

Det(4) & Det(B), Q) (Det(4,) & Det(8,)) """

On the other hand, we have along exact sequence

L H A B HNO S HB) D Hy(A) >

We can regard this sequence as an acyclic complex which we denote by H (A, B, C).
The Euler isomorphism of this acyclic complex induces an isomorphism

EUIH(A,B,C)3 Det(H(A, B, C)) — Det(0).

Taking the tensor product of Det(H (A, B, C)) with Det(H,(C)) and then applying
the Koszul contraction to the pair

Det(H.(C))™!, Det(H.(C))
we obtain an isomorphism

H(dety,): Det(H.(A)) & Det(H.(B)) — Det(H.(C)).
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Proposition 1.18. The diagram below is commutative.

N detf,g
Det(4) ® Det(B) ——  Det(C)
EU|A® Eung EUIQ (17)
H (det

Det(H.(4)) & Det(H.(B)) ——%' Det(H.(C).

To better understand the meaning of the above result suppose we fix bases a, b, ¢
of A, B and respectively C, and bases [a], [b], [c] of H.(A), H.(B) and respectively
H,(C). We assume that

c=fl@ud, gb®)=>

We can now identify Eul 4, Eulg, Eulc with scalars in K*. H (dety,,) can also be
identified with a scalar, the torsion of the acyclic complex H(A, B, C). Then (1.7)
implies

Eulc -Tt4 5.c) = £ Euls-Eulg. (1.8)

Exercise 1.6.Prove (1.7) and (1.8). O

Theaboveresult impliesimmediately that the torsion ismultiplicative with respect
to direct sums. More precisely, we have the following elementary, but extremely
versatile result.

Theorem 1.19. Consider a short exact sequence of, based acyclic complexes of K-
vector spaces

0= (4> (oS (B.b)—0,

such that
c=f@uUb', gb)=>.

Then H (dets ) = 1,
(det c|det/,,| deta & detdb) = +1,

and
(1/Euls |deta)- (1| Eulp |detd) = (1| Eulc |detc) - (detc|dets la & b).

In particular,
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For any chain complex (C, 9) and any k € Z we denote by (C[k], 9) the degree
shifted complex defined by

C[k]l = Ci+ka Vi € Z.
Observe that .
Det(C[k]) =, Det(C)"",

and we have a commutative diagram

Koszul

Det(C[k]) (Det(C)) "Y'

k
Eulcpg [Eul v

Koszul

Det (Hyx(C)) “% (Det H,(C)) ™",

Given achain complex
(C.0) = EP(C;. 3))

JEZ
of K-vector spaces we can form itsdua C~ defined by

C; = CL; :=Hom(C-;,K),

and whose boundary maps are the duals of the boundary maps of C. We have a
commutative diagram

Eul- ® Eulc

Det(C™) & Det(C) Det (H.(C™1)) & Det (H.(C))
x /
Det(0).

In particular, if C isacyclic, and ¢ isabasis, then
J(C, 0 -T(C,c7) ==1, (1.9)

where ¢, = ¢*,. Suppose now that the field K is equipped with an involutive
automorphism
e: K- K.

Example 1.20. If K = C we can take ¢ to be the complex conjugation. If K = Q(z),
thefield of rational functionsin onevariable, thenthe correspondencer — r~1induces
such an involution. O
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The e-conjugate of a K-vector space V is the vector space V = V¢ which coincides
with V as an Abelian group while the scalar multiplication is given by

KxV>(@®,v)—e)v.

Wedenoteby s = ey : V — V* the tautological bijection. A linearmap A: U — V
tautologically induces alinear map A¢: U¢ — V&.
An e-pairing between the K-vector spaces U, V isabilinear map

(,0): U x V& > K.

Observe that such a pairing induces a K-linear map

T: VS = U* v (o).

The K-pairing is called perfect (or aduality) if the induced K-linear map

T:V® = U*
isan isomorphism. If U, V happen to be Z,-graded
UZU,L,@U_., V=V,®V_

then the duality is called supersymmetric if the operator 7' is supersymmetric, i.e. it
is either purely odd, 7'(V£) = UZ, or purely even, T'(Vi) = U¥. Correspondingly,
a supersymmetric duality can be even or odd. We will denote by v the parity of a
supersymmetric duality.

Consider the length n chain complexes of C = &/_oCi and D = ®]_,D; of
K-vector spaces with ambiguities2(. A chain complex pairing isapairing

(o,): Cx D > K

such that the induced map T is a degree zero morphism between the chain complexes

T: D" — C[n].

Observethat such pairings are supersymmetric with respect to the natural Z,-gradings
on the chain complexes. The parity of the pairing is the same as the parity of n- the
length of the chain complexes. A pairing is called perfect if the induced morphismis
an isomorphism. We have the following immediate result.

Proposition 1.21(Abstract duality theorem). Suppose
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is a perfect pairing of acyclic complexes of length n. Then the following diagramis
commutative:

Det(D) —**—— pet(D*) —2— Det(c™) V"

_1\n
Eulp Eulé_l>

Det(Hy (D)) — = Det(H,(D")) —— Det(H,(C )",

In particular, if C isacyclic and ¢ is a basis then the equality (1.9) implies

)n+1

e(T(D, [d)) = T(D', [d]) = £T(C, [eDY",

whered = T 1(c™).

81.4 Some generalizations

The notion of torsion can be defined in a much more general context than the one
discussed above. We refer the reader to [19, 72] for a more in depth study. We will
need only amild generalization of the ideas developed so far.

Often, instead of complexes of vector spaces over afield K one encounters com-
plexes C of free modules over an integral domain R. Denote by K the quotient field
of R. An R-basis of C canonically induces aK-basis of C ® K. Thetorsion of C
(with respect to some R-basis) is, by definition, the torsion of the complex C ® g K
with respect to theinduced basis. Thereisno canonical choice of R-basisand thuswe
must consider any two of them equivalent. This ambiguity is encoded by the group
2A = GL(C, R) of automorphisms of R-modules. This group acts transitively on the
set of R-bases and thus the torsion iswell defined as an element of K/R*, where R
denotes the multiplicative subgroup of invertible elements of R.

Suppose more generally that R isonly acommutative ring with unit,and¢: R —
K is a nontrivial morphism from R to afield K. If C is achain complex of free
R-modules, then we can form the complex of K-vector spaces

Q(p =C B K.
Then a R-basis of C defines aK-basis of C¥, and we define
TC, ) :==T(CY, ).

Suppose R is aquasi-field, i.e. acommutative ring with 1 which decomposes as
afinite direct sum of fields of characteristic 0
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Denote by ¢; the natural projection R — K;. Suppose C is achain complex of free,
R-modules. A R-basis ¢ of C induces aK;-basis of C# and as above we obtain a
torsion

T4 (C. [ela) € K}/ detA U (0).

The direct sum

P74 (C. lela) € (;K;)/ detA

j=1
isan element in R/ det 2 —the space of orbits of the determinant action of 2l on R.

We can further extend the class of coefficient rings to include the quasi-integral
domains, i.e. the commutative rings R with 1 such that the associated ring of fractions
Q(R) (i.e. thelocalization with respect to the primeideal of zero divisors) isaquasi-
field
O(R) = @;K;.

Denote by ¢;: R — K; the natural morphism. If C is a chain complex of free,
R-modules then, by definition, itstorsion is the direct sum

T(C.») =P TY(C.") € Q(R)/ det 2.
J

L et us observe the following simple fact.

Proposition 1.22. Suppose R is a quasi-integral domain of characteristic zero, K is
afield of characteristic zeroand ¢ : R — Kisanontrivial morphism. If C isachain
complex of free R-modules then

90(7(Q7 °)) =T% (g9 *).

81.5 Abelian group algebras

In this section we want to describe a few special features of the group algebras of
finitely generated Abelian groups since they will play a central role in topological
applications.
Suppose H is afinitely generated Abelian group. It can be non-canonically de-
composed as
H = Fg & Tors(H),

where Fy denotes the free part of H, Fy = H/ Tors(H). Denote by Q(H) thering
of fractions of the group algebra Z[ H].

Proposition 1.23. Z[H] is a quasi-integral domain of characteristic zero.
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Proof. Let usfirst consider the two extremes, Tors(H) = 0, or Fg = 0.

o If Tors(H) = Othen H = Fy,andif rank H = n, then Q(H) isthefield of rational
functionsin n variables with rational coefficients.

olf Fy = 0,sothat H = Tors(H), then Q[ H] isa semisimple, commutative algebra,
and thus decomposes as a sum of fields; see [55]. In particular, Q[H] = Q(H).

In general we have

QIH] = QITors(K) [ Ful = @) KilFul,

where the summands KK; are the fields entering into the direct sum decomposition of
QI[Tors(H)]. Thus,

Q(ZIH)) = Q(H) = @D Ki(Fn).

Each of the above summandsisafield of rational functionsinn = rank(H) variables.
|

Example 1.24. If H isfinite cyclic, then the fields in the decomposition of Q[ H] are
al cyclotomic fields. We illustrate this on the special case when H is afinite cyclic
group of order n > 1,

H ={1, X, ..., x”_l}.

Then
QIH]I=Q[t]/(t" = 1).

The decomposition in Q[¢] of " — 1into irreducible factorsis (see [55])

M—1= ]_[ D4(1),

d|n

where ®,, denotes the m-th cyclotomic polynomial

o, ()= [] ¢=¢") ¢ =¢n:=exp@ri/m).

(r,m)=1

ThusQ[#]/(#" — 1) decomposes as a direct sum of cyclotomic fields

QIH] = QItl/ (" — 1) = P Qlt)/(Pa()) = P Fa-

d|n d|n O

Remark 1.25. Sinceevery finite Abelian group H isadirect sum of cyclic groupswe
deduce inductively that al the fields K; in the decomposition

QIH] = PK;
j
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are isomorphic to subfields of C. The natural projectionsr; : Q[H] — K; c C
induce group morphisms
it H— C*.

Theseareknown asthe charactersof H and determinethe harmonic (Fourier) analysis
on H. Anelement f € Q[H] can beregarded as afunction

f:H— Q.

Its components rr; ( f) are determined by the Fourier transform of f. We refer to 81.6
for more details. O

The natural morphism Q(H) — Q(Fpg) induced by the projection
w:H — Fy = H/Tors(H)

is called the augmentation map, and we will denote it by aug. It has a natural right
inverse

aug™l: Q(Fy) — Q(H),

1
Fysfr— Y h (vg:=|7"10)=|Tors(H))).
VH =1

Set 3 := aug~1(1). Observe that
aug *(aug(q)) = ¢7, Vg € Q(H).

Theideal of Q(H) generated by J will be denoted by (7). Itisthekernel of aug. The
above identity shows that, as aring, the ideal (J) is isomorphic to the field Q(Fg).
From the identity 32 = J we deduce the following consequence.

Corollary 1.26. The map
Q(H) — keraug, x+— x —xJ
is a surjective morphism of algebra. Moreover the element
1:=1—7€keraug

isthe identity element in the subalgebra ker aug.

Following Turaev [111], we define a family of subrings 9 (H) ¢ Q(H), k =
0,1,2,... asfollows.
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A. If rank(H) > 1then
No(H) :=Z[H],
M (H) ={q € QH); (1—h)q € W_1(H),Vh € H}.
Roughly speaking, 91, (G) consists of all solutionsin x € Q(G) of the linear system
(1—g)*x € Z[G], VgeG.
B. If rank(H) = O then
Ny (H) =keraug Cc Q(H), Vk=0,1,....

Observe that
No(H) CM(H)C--- CM(H)C---.

We set
NH) = lim Ny (H),
k— 00

S :=vyJ= Z ueZ[H), vy =|Tors(H)|.
ueTors(H)

Proposition 1.27([111]). Let H be a finitely generated Abelian group of rank > 1.
@ Ifrank(H) > 2then 9% (H) = Z[H],Vk=0,1,2, ....
(b) Supposerank(H) = 1. Denote by ¢ a generator of F := H/ Tors(H) and set
T = aug~(r). Then
x € W(H) = Z[H] + SZ[H]1 - T)~ .
Proof. (a) It suffices to prove M1(H) = No(H). The equality is obvious if H is
torsion free. Suppose now Tors(H) # 0. Any x € Q(H) decomposes uniquely as

xi=X+xt

where

1

X = Jx = aug” “aug(x), xt = 1-J)x.

Suppose x € Q(H) issuch that
(1—h)x € Z[H], YheH.
Observe that aug(x) € M1 (H/ Tors(H)) = Z[H/ Tors(H)] so that

X = aug’laug(i) e JZ[H].
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By summing over i € Tors(H) we deduce

vgxt =vy(1—=Jx= Y (1—hxeZ[H]
heTors(H)

We conclude that x € Q[ H] and thus we can write

X = thh,

heS

where S C H isafiniteset and x;, € Q. Since H isinfinitewe can find hg € H such
that S isdigoint from ig + S. Then

ZIH] > (1 — ho)x = th(h — hoh).
heS

Thisshows x;, € Z.
(b) Again, the conclusion is obvious when H istorsion free. Set
"(H) = Z[H] +Z - SZ[H)(1 - T)7 .

We will first prove the equality
RIS ‘ﬁi

Next, using induction, we will establish the general identity
M =N, k>2
Pick T € H suchthat aug(t) =t <= T = Jt. Since
Q1-03l-1t=31-1HA-T)1t=7
we deduce
I1-Nt=31-n! = 6a-nF=6a-0F* Vi

We can now prove that 9t C O, Yk > 1. Indeed, if x € 0, h € Tors(H) and
m € Z then
A-ht™E=6G-1"6)=601-T"),

so that
(1—ht™x € ‘ﬁ;{fl = Mi—1.

To prove the reverse inclusion, consider x € 9t (H). Then

aug(x) € N (H/ Tors(H))
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so that
1
% = Jx = aug taug(x) € IZ[t] + JZ[r](1— 1)k = —6SZ[H]|1 - 1)~
vy

Summing the congruences (1 — h)x € Ny_1(H) over h € Tors(H) we deduce

vgxt € W_1(H) = ZIH] + SZ[H]1 - T)~*D,

Thus 1
x e V—(Z[H] + GZIHI(1-T)7%)
H
and
L—h)x € ZIH] + SZ[H]1—7)" %D vheH.
We write

xt=A4, ¥=6Bl-0v)7~
We need to consider two cases.
A. k = 1. Inthiscase
1 1 - 41 -1
x=Ae —Z|H], x=6B(1l—-1) "€ —6ZH|1-1)" ",
VH VH

and we can write

A=Z( Z am,uu>rm, B=Z( Z bm’uu>1’m.

meZ uecTors(H) meZ uecTors(H)

b= bumu-
u

Then
GB=6 ZEmt’".

Denote by a,,,, (resp. B,,) theimage of a,, , (resp. by,) in Q/Z. Observe that
VhBm = 0=vgoy 4.
Since (1 —u)6G =0, Yu € Tors(H) we deduce
Q—ux=1—-u)A e€Z[H], VYueTors(H) <= omy = Umu, (1.10)

VYu,v € Tors(H), Ym. Denote by «,, the common value of «,, ,, u € Tors(H) and
by k,, theinteger O < k,,, < vy such that

k .
= —a, InQ/Z.
Vi
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Define . 1
K=Y 2"me —_SZ[H].
vy

m‘)H

Theidentities (1.10) can be rephrased in the following compact form,
A — 6K € Z[H].
On the other hand, the identities
Ql—tmeZ < ayy1— oy +Pn+1=0, Vm

can now be rewritten
G(1l—-1)K+ 6B e GZ[H]

s0 that

x=(A-6K)+6(B+(1-0K)1-1) e Z[H]+SZ[H]1- 1) =N,.

B.k > 1. Set
S:=1{h e H; apby, # 0}.

Thenif hg € H issuchthat S N (hg + S) = ¥ and we conclude asin part (a). O

The above proposition has the following immediate consequence.

Corollary 1.28. Suppose that H is a finitely generated Abelian group. Denote by
1 : H — 9(H) the natural morphism. If P, Q € 9t(H) then

P|Q < P|QG(h)—1), VheH.

Example 1.29. Suppose H = Z @& G where G isafinite Abelian group. Denote by ¢
the generator of Z. Then

~ 1 l Ly—
T=0=6t= <N2g>t, N = |G|
geG
The group algebra Q[ H] isisomorphic to the ring of Laurent polynomials
QIH] = QIGIl, ™1 = P Kile, 171,

Then
NH] = ZIH]+SZ[T, T Y, A-T)"1. 0

The correspondence H +— 91(H) is functorial. More precisely we have the
following result dueto V. Turaev.
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Proposition 1.30([111]). Every epimorphism
f:HL— H»

induces a morphism of Q-algebras f; : 91(H1) — 91(H2) such that the diagram
below is commutative.

H — H>

N(H) - N(H).

Proof. f; isdefined asfollows. Observefirst that f induces a morphism
f« 1 ZIH1] — Z[H2] — N(H2).

If rank(Hy) > 2thenweset f; = f.. If rank(H1) = Othen f; denotes the restriction
of f tokeraug C Q[H1].

Whenrank(H1) = 1thedefinitionisabit moreintricate. Denote by ¢ a generator
of Fy, = Hi/Tors(Hy), choose t € Hj an element projecting to ¢ and set T :=
aug~1(r). We claim that there exists an unique X = Xy € M(H) such that

Xfi(t—1) = Xf(T —1) = fu(S1), Xfu(h—1)=0, Vh e Tors(Hy). (1.11)
Uniqueness. If X, X’ aretwo solutions of (1.11) then
(X —X)feu—1) =0, Vue H.
Since f : H1 — H> isonto we deduce from Corollary 1.28 that X — X’ = 0.
Existence. Any element u € H decomposes uniquely as
u=ht*, heTy, kel

Then
[(BD) fuu — 1) = fu(S1ht — G1) = £ (J1) fi(TF — D).

Thus
fx(@ = DIfe(w — 1) fx(S1), VYu € Hi.

Since f : Hy — H> issurjective we deduce from Corollary 1.28
fu(t = D[ fu(G1) INN(H).
Thus, there exists X1 € 91(H>) such that

fx(61) = X1 fu(r = 1).
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We then set
Xy = X1/f:(T1).
Finally, define f; = f. onZ[H] and

f(6UT — D7 = Xy O

Remark 1.31. If Hy A H> L] Hs3 is are epimorphisms of Abelian groups then

(f2o fu)e = (f2)z 0 (f1)e.

Thus the correspondence G — 91(G) defines a covariant functor from the category
of finitely generated Abelian groups with epimorphisms as arrows to the category of
commutative Q-algebras. Werefer to the next section for amore geometric description
of the morphism f; in terms of Fourier transform. O

Example 1.32. Suppose f isthe natural projection Z — Z, = Z/(nZ). Then
~ —1 —1 l - j n
ND 22l Q-7 NE) = (12 s7) 2l s =1,
n =

Then f; is determined by

1 1=@1-7), 1> @1-s, 3:5(1—

S|
[
~.
N—

Observe that
-1~ GG-DA-2).

Theinverse of (1 — s) inthe algebraker aug with unit 1 = 1 — J is (see[81] or §1.6)

~

u—sr1=<%—auo,

()"

and ((x)) is denotes Dedekind’s symbol

where

0 x €’
(@)= {x—[xj—% x € R\ Z.

(Lx] :=thelargest integer < x.) O



30 1 Algebraic preliminaries

81.6 Abelian harmonic analysis

When studying thetorsion of a3-manifold oneisoften lead to solving linear equations
of theformax = b, wherea, b belong to thegroup algebraC[G] of afinitely generated
Abelian group G. When G has torsion elements the ring Z[G] has zero divisors and
thus the above equation may have more than one solution. Finding the annihilator of a
givenelementa € C[H]isnever aneasy job duetothecomplexity of themultiplication
operationinthisalgebra. Thiscomplexity isonly artificial and magically disappearsif
we perform asimpl e but extremely versatiletrick, namely taking the Fourier transform
of theaboveeguation. IntheFourier picturethe above equation simplifiesdramatically
to the point that it can be solved explicitly.

The versatility of the Fourier transform can be very clearly seeninthe very simple
description of the rings 91(G) and morphisms f; introduced in the previous section.
These rings are essentialy described in terms of linear equations in the ring Z[G].
More precisely, 91(G) is obtained by adjoining to Z[G] certain solutions x € Q(G)
of the family of linear equations linear equations

1-gf-x=f ge€G, feZGl

The Fourier transform fitsthese equationslike aglove. The goal of the present section
isto explain in detail these claims.

Suppose G is afinitely generated Abelian group. We denote by 1 the counting
measure on G, ug({x}) = 1, Vx € G. The group algebra C[G] can be thought of as
the vector space Co(G, C) of continuous, compactly supported functions f: G — C
equipped with the convolution product. More precisely, if §,: G — C denotes the
Dirac function concentrated at g € G,

1 ifx=¢g
0 ifx #g,

then the correspondence C[G] — Co(G; C) isgiven by

CIGle A=) aggr> A() := Y _agdy(+) € Co(G.C).
geG geG

8g(x) =

The convolution product on Co(G, C) isgiven by

(fox f)(@) =) f(g—mgh).

heG

We denoteby G := Hom(G, U(1)) the Pontryagin dual of G, i.e. the group of charac-
ters. G isalocally compact topological group, and wedenoteby /i the Haar measure
on G normalized so that i is the counting measure if G is finite and g = d6 if
G = S. The Fourier transformis alinear isomorphism

F: L%(G, ng) — LG, jig)
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defined by
Foo = <f,x>=f(;f<g>@dua<g>, vy € 6.

Itsinverseis described by the Fourier inversion formula

1 R
@) =—= ff(x)x(g)dﬁc(x), Vf e CoG,O).
nG(G) JG

If f e Co(G,C)then f e C(G,C)and
Frg() =F0-8x), VfgeCoG,0), xeb.
The Fourier transform produces a morphism of C-algebras
(CIG], +, %) — (C(G,0), +,-), A A4,

where“ - denotes the pointwise multiplications of functions.

Remark 1.33. Inapplicationsitisconvenient to consider the holomorphic counterpart
of the Pontryagin dual. Thus, if G isafinitely generated Abelian group, we set

G := Hom(G, C*).

We will refer to the elements of G as holomorphic characters. Notethat G ¢ G. G
is an union of complex tori of dimension rank(G). Given afunction f € C[G] we
define its complex Fourier transform by

fO0=Y_f@x . Vxed.

geG

Observethat the restriction of the complex Fourier transformto G isthe usual Fourier
transform. O

We want to discuss in detail a few concrete situations relevant in topological
problems.

1. rank(G) = 0. We denote the group operation multiplicatively. For any x € G we
denoteby R, C S*therangeof x. R, isafinitecyclic group. Theintegration along
thefibersof x : G — R, produces alinear map

x«: CIG] = C[Ry], [+ fX.

More explicitly,

fley= Y f(g. Y¥f:G—>Q acRy.

x(g)=a
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When y isthetrivia character 1 then
St = aug(f).
Observe the following identities
foO=)Y ffe-a f)=aug(f)
QERy

N(G) = {f € QIG]; f(1) =0}
We conclude that afunction f: G — C iscompletely determined by the functions

f*: Ry — C, Vx €G.

Inthe special case f € Q[G], the components of f with respect to the decomposition
of Q[G] asadirect sumof fieldsareall amongst theelementsof f* € Q[R,]. Thus,in
order to understand the components of f we need to understand the Fourier transform

of f.
The Fourier transform of 81 isthe constant function 1 on G. The Fourier transform
of the idempotent J (with respect to the convolution product) is the Dirac function

81:G—>(C

concentrated at the origin. Thisis an idempotent with respect to the pointwise multi-

A

plication. In particular, the function 1 — J can be interpreted as the identity element
on the algebra of functions f: G \ {1} — C.

We have seen that if ¢: Go — G1 is an epimorphism of finite Abelian groups
thereis an induced morphism

¢z N(Go) — N(G).

We want to present a description of this morphism using Fourier analysis.

Let G;“ = G;\ {1},i = 0, 1. The Fourier transform maps 9N(G;) isomorphically
onto asubring MN(G,) of theri ng of functions G; — C consisti ng of functionsvanish-
ing at 1. Wewill identify this subring with a space of continuous functions G;k — C.

The epimorphism ¢ inducesamonomorphismé: G1 — Go and thusapull-back map
$*: C(G3.©) > C(G1,©).

Proposition 1.34. The following diagram is commutative.

N(Go) —— C(GE, C)

Lok

N(G1) —— C(G*, C).
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Proof. The morphism ¢ isthe restriction of the integration-al ong-fibers map
¢x: C[Go]l — C[G1]
to the augmentation ided, ker aug,. Since

auge, (@«(f)) = augg,(f), V[ € C[Go]

we deduce that ¢, (ker augg,) C Ker augg,. The proposition follows from the more
general statement R
P 0 F =TF o ¢py.

Indeed for every x € G1 and f € C[Gg] we have

¢* () = FBO) = (£,00) = Y f@s00©@) = Y f(©)x($(2)

g€Go g€Go

=3 (X f@)ie= Y 0.(NEE(E) =T o (/).

81€G1 ¢(g)=g1 g1€G1 O

Example 1.35. Supposethat thefinite Abelian group G isequipped with anondegen-
erate, symmetric, pairing

q:GxG—>Sl, (u,v) = q(u,v) =:u-v.
In this case we have a natural isomorphism
G—>G, g gi=q(g).
Observe that
Ry =R, =G/g", glt:={ueG; qg.u)y=1es".

Theelement f8 := f8 e Q[R,] can be aternatively described by

fE@y= " f.

u-g=o |

2. rank(G) = 1. Inthiscasethere existisomorphisms G = Z @& H where H isfinite.
Then A A

G=stxH.
More invariantly, H is the torsion subgroup of G, and if 1: H — G denotes the

inclusion map, the subgroup st c G canbe identified with the kernel of the dual map
1: G — H. Thiskernel isthe component of 1 € G.
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To define the Fourier transform we need to have away of identifying the elements
in 91(G) with functions on G. Such an identification requires a bit of additional
data. Fix an orientation o on G ® R. Thisis equivalent to choosing an isomorphism
G/ Tors(G) = Z. Thisinduces an epimorphism

deg =deg,: G — Z.
Fixt € G suchthatdegr = 1. ThisdefinesasplittingG = Z& H, andanidentification
NG) = Z[G, 61— 1.

Using the formal equahty
1-1t n>0t

we can identify the element & (1 — 1)~ with the function

1 if deg,(¢) =0

G~ Z, = .
o ~ o (8) {O if deg,(g) <O.

More generally, we can identify & - (1 — r) % with the function

—k
Gag+—>a)(g)~< )eZ,
° degy ¢

where deg} = max(deg,, 0). Define the Novikov ring A, (G)
Ao(G) :={f: G — Z; 3C € Rsuchthat f(g) = 0if deg,(g) < C}.

The multiplication in this ring is again the convolution product which is well defined
due to the support constraint on the functions in this ring. We have an injective
morphism

N(G) = Ao(G), [+ fo,

uniquely determined by the requirements

ZIG15 )  Peg =P > Py € Ao(G), Po(g) =Py,
geG

and
SAL—1)"Fr> Gy kwp k- *wy.
N —
k
This morphism depends on o, but not on the choice of ¢ such that deg, r = 1. We
denote by N, (G) the image of this morphism. Note that afunction f € N,(G) need

not have acompact support. In fact, the function w, isnot even L with respect to the
discrete measureon G.
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The characters of G have the form
X =e @, @E H, ep(t") :=€", 0<6 < 2m.

If f e LYG, ug) then

foo =Y r@i@ =3 (3 romem)e ™.

geG neZ heH

Inparticular, if 8, : Z® H — C denotesthe Dirac function concentrated at (0, k) € G
then

A A A 1
8 (x) = x@@), n(x) = x(h), ’J(X)=HZX(h)-
heH

Jisan idempotent in the algebra of continuous functions G — C. One can check
immediately that J is the characteristic function the identity component of G. If we
set T =T =t then A A
T(x) =4800IX)-
T isafunction on G supported on the identity component S* <> G whereit is equal
to
TO)=e¢".

The Fourier transform extends in a natural way to the ring N, (G), but its range will
contain distributions on G of a specia kind. We begin with the simplest situation.

A. Tors G = 0. Fix an orientation o on G ® R. In this case there exists an unique
t =t, € G suchthat deg, + = 1. We also have an identification

C* 5 G:=Hom(G,C*), z+ x;, x:()=z.

Denote by M(C*) the field of meromorphic functions on C*. To each function f €
Co(G, C) = C[G] we associate its complex Fourier transform f: G — C which can
be identified with a Laurent polynomial in M(C*),

fO) <= D faHz", x( =z

nez

Observef = f|‘z|:1. TheFourier transform F: Co(G, C) — C(S1, C)iscompletely
determined by algebra morphism

Fo: CIG] > f > f eM(CH.

To understand the obstacle we face when trying to extend the Fourier transform to N,
we only need to look at a simple example. Observe that

w(x) = 1—1n=1-z"1eMTH.
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Thishas an inverse in the ring M(C*). However, itsrestriction to thecircle |z] = 1is
notinvertibleinthering C (S, C) becauseu (1) = 0. Thisdegeneracy can be detected
working directly with the Fourier transform.

We have identified (1 — r)~1 with the function w, which does not have compact
support, and it does not belong to L1(Z). Its Fourier transform is no longer afunction
on S1, itisadistribution &, described by

21 )
(@0, @) = Z/O @@ "do, Vo e CF (S, 0).

n>0

The above sum is convergent because

2 )
‘/ ga(e)e—'""d@( —0m™), asn— oo, Vk >0,
0

Observe that _

(@0, €™y = 2m (1™).
However, this distribution can be suitably identified with the boundary value* of the
holomorphic function 1/u(z) = (1 -z~ 1~ = Z; € J. More precisely, we have
the following result. (For more information on this type of distributions we refer to

[37].)

Proposition 1.36.

2
(o, @) = Iim/ 0©) 4o, Vo € C°(SL, )
o u(re?)

so that
W = 1@(l/u)l|z|=r

inthe sense of distributions. Moreover (1—e~?)-&, = 1inthesenseof distributions,
i.e. & isindeed a distributional inverse of the smooth function u(¢) = (1 — ¢~ 1),
lc] = 1.

Proof. For simplicity, we write w instead of w, since we will be using the same
orientation throughout the proof below. Observethat if ¢ is constant, ¢ = ¢, then

2 .
(@, c) =2mc = Iim/ cu(re'?)do.
™1 Jo
Thus, it suffices to prove that
2 )
(@, @) = II\rH/ u(ré®)p©)do, Ve: ST — C, ¢(1) = 0.
r 0

4We are indebted to Brian Hall for this observation
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Observe that ©
r
K (©) = u(rt)e() = r% =1
Since ¢(1) = 0 we deduce from the dominated convergence theorem that the series
of L1(s1) functions

D oo™, jgl=1
n=0

convergesin the L1-norm to

Kotw) = 720, el =1
Thus o

(@, @) = /0 Ko(e)p(0)do
and we need to show that

2r . .
Iim/ (K- (") — Ko(e") )p(0)db = 0.
™1Jo

This follows easily from the dominated convergence theorem.
To provethat @ isthe distributional inverse of u(¢) we need to show that for every
smooth function ¢ : ST — C we have the identity

2 )
(6, up) = / 0(@)do.
0

Since u(1) = 0 the above arguments show that
2 ) ) ) 2 )
(&, up) = / Ko(e®)u(e?)p(e?) = / o(e'?)do
0 0
because Ko(e'?)u(e'?) = 1. O

Every element f € 91(G) can be uniquely written as

P(t)

=G P@t) € Z[t, 171

f

Arguing as above we deduce that the Fourier transform of £, isthe distribution f, €
D’(S1), with singular support concentrated at 1 € S defined by

N ()
for= M @
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Definition 1.37. The complex Fourier transform of a function f € N,(G) is by
definition the unique meromorphicfunption F,(f) onC* whoserestrictionto ST\ {1}
coincides with the Fourier transform f, of f. O

In view of the above discussion we deduce that
fy = lim Fo(f).
fo iy o(f)

The complex Fourier transform maps the ring 91(G) to a space of meromorphic func-
tionson G viathe composition

N(G) 2 Ny (G) i M(C*) := meromorphic functions on C*.
We denote by 91,(G) the image of 91(G) via the complex Fourier transform ..
Observe that ,
No(G) = Z[z, 271 1 - 271,
where z is the function x — x(z,). Similarly, we can defined the (rea) Fourier
transform on 91(G)

NG) 3 f = foi= M Fo(Hli=r € D'(SH

where the limit isin the sense of distributions asin Proposition 1.36.
We want to describe the dependence of these construction on the choice of orien-
tation o. Denote by 7+ the unique element in G such that deg,, , (r+) = 1. Set

wi=0A-1)=1—-1-Y) e NG).

Forevery x € G weset 7o = x(r+), sothatz_ = 1/z.

1

1_2;1 - 1—Z_

Fo(L/uo)(x) = =TF o u_o)(x).

This showsthat the complex Fourier transform of 1/u isameromorphic functionon G,
independent of the orientation o. Thus the complex Fourier transform is amorphism

N(G) — M(G)

independent of the orientation. We denote its range by DM(G).

The situation with the real Fourier transform is a bit more subtle. In this case the
range of thereal Fourier transform consistsof distributionson G. Tobeabletoidentify
the space of smooth functions on G with a subspace® of the space of distributions on
G we need to have an integration, i.e. an orientation on G. Thisisequivalent to fixing
an orientation o on G.

The following proposition summarizes the facts established so far.

5We do not want to get into a discussion about densities asin [42].
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Proposition 1.38. Suppose rank(G) = 1, Tors(G) = 0. Then an orientation o on
G ®R definesisomorphismsG «— Z, G <« Sl c C*, G «— C*,andN(G) «—
N, (G). The (real) Fourier transformon Z[G] C No(G) extends to a map

NG) = No(G) = D'(SY,  f fo

whose range 9, (G) is a space of distributions on S with singular support concen-
trated at 1 € S* which are solutions of certain division problems.

The complex Fourier transform on Z[G] extends to a morphism of algebras
F: MN(G) - M(G) independent of o such that

fo|sl\{1} = ?(f)|sl\{1}-
We denote by 91(G) the range of the complex Fourier transform.

Suppose G = Z, and o isthenatural orientation. Denoteby 7 thenatural projection
. Z — 7Z,. Weknow that it induces in anatural way a morphism

e N(Z) — N(Zy).

We would like to give a very intuitive definition of this morphism using the Fourier
transform. Note that 7= induces an inclusion

ﬁ:Z,,—)Z%Sl

The Fourier transform of M(Z,) is a ring M(Z,) of functions 4 on Z, such that
h(1) = 0. This can be naturally identified with the ring of functions on the subset
Z =7 \ {1}. Wecan use p to puIIback the functions on S to functions on Z,, and

more generally, we can pullback to Z; the distributionsin 91(Z). We thus have amap

% NDL) — C(Z;,C), NZL)> D> Dy,
Note that if @ € ‘ﬁ(Z) is the distributional restriction of the holomorphic function
d € N(Z), then }
|5 = Dy,
where the above restriction exists classically, not just as a distribution.

Proposition 1.39. The diagram below is commutative.

NZ) —— N(Z)

N(Z,) —— (@, 0).
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Proof. Note first that

w3 (f) = A=) xm(f), VfeCl, 171
(* = convolution product) while ; ((1— r)~1) isuniquely determined by the division
problem
@ -D"hHxA-1=1-7.

If f =Y s F()H7 €Clr,t7], and ¢" = 1, ¢ # 1, then
Foms (@) =F(AL=D*me(f)) = L —81(0)) - T () (02(6) =0)

=Y (OO =YY" fj+ ke = F@) =2 (@)
k=1

k=1jeZ
Set V :=my(1—1)"1) € N(Z,). Then V(1) = 0and
VEOL-¢hH=@A-510), ¥"=1
We conclude that if ¢ # 1 we have
V() = 1/u@) = o).
This concludes the proof of Proposition 1.39. O
Example 1.40. The Fourier transform of 7 ((1 — £)~1) isthe function

ro=1"% 71
N =

On the other hand, the Fourier transform of the Dedekind symbol
Ap:Zy — Q, k mod nZ — A, k) = ((k/n))

is(see[88, Chap 2, Sec. C])

We conclude that 1
Vzé(l—j)—A,,. O

B. rank(G) =1, Tors(G) # 0. Set H := Tors(G), F := G/H and

6=ZheZ[G].

heH
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Fix anorientation o on G ®R. Then G = Hom(G, C*) isan union of one-dimensional
complex tori, and the orientation o defines an orientation on G, and thus identifies the
identity component of G with C*.

A function f € N,(G) has noncompact support, but has temperate growth, and
thusit hasaFourier transform asatemperate distribution. Denoteby 91, (G) C D/(G)
the Fourier transform of N, (G).

Since 8, (x) = % (¢) we conclude that 8 is the constant function 1 on G and

SO =Y 8G) =Y x(h).

heH heH

We set K, := ker x|y and we deduce

_ |H| xlu=1
0 otherwise.

S =Ky Y«

aERy

Fix t € G such that deg,r = 1. ﬁé = J is the characteristic function of the
identity component of G, so that the Fourier transforonf Go-(L—1t)FeN,(G)is

adistribution supported on the identity component of G. Viathe isomorphism
Z®H — G, (n,h)— ht",

which identifies the identity component of G with S, this distribution is defined by
the limit

1 - |H|
St zlim———p.
AN (1—p-17-1)

We deduce that A - .
No(G) :=No(G) = Z[G] + No (F).

Arguing as in part A we obtain a complex Fourier transform F: 91(G) — M(G)
which isindependent of the orientation o, such that for every f € 91(G) we have

fo|é\{1} = ?(f)|(;\{1}~

Observing that we have a diagram
G
N
F H

we can represent the range N(G) of tpe complex Fourier transform as a sum of
the space of Laurent polynomials on G with a space of holomorphic functions on
G \ {1}, supported on the identity component of G. To simplify the presentation we
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will denote the Fourier transform of g € 9t by f. Suppose now that ¢: G1 — G2 is
an epimorphism of Abelian groups and rank(G1) = 1. It induces a monomorphism

¢: G2 — G.
This induces by pullback a morphism
¢*: N(G1) - N(G).

Arguing asin the proofs of Propositions 1.34 and 1.39 we deduce that the following
diagram is commutative

N(G1) —— N(Gy)

b1 é*
F -~

M(Ga) —— N(Go).

3. rank(G) > 2. Setr := rank(G), H = Tors(G), F := G/H. Then F isan
r-dimensional torus which can be identified with the identity component of G.

In this case M(G) = Z[G], and thus N(G) := FOUG)) C C(G,C). More
precisely, 9(G) coincides with the subring generated by the Fourier transforms of the
Dirac functions §,. Observe that

8,00 =x(2), VxeG.

The complex Fourier transform is defined in the obvious way.
Arguing as before we deduce that if ¢ : G1 — G2 isan epimorphism of Abelian
groups, rank(G1) > 2, then the diagram below is commutative

NG1) —— N(G)
@h |¢3*
N(G2) ®C —— NGo).
The above analysis has the following elementary consequence.
Corollary 1.41. (a) Suppose G isa finitely generated Abelian group of positive rank,
and f € 91(G). Then the complex Fourier transformof f isholomorphicon G \ {1}.

If moreover rank(G) > 1 then the complex Fourier transform of f is holomorphic
onG.
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(b) Suppose that «: G — H is an epimorphism of finitely generated Abelian
groups. Thisinducesaninjectiona: H < G, and for every f € 91(G) we have

otnf=&*(f)=fo&.



Chapter 2
The Reidemeister torsion

We now begin in earnest our topological journey. In this chapter we present the basic
definitions and facts concerning the Reidemeister torsion of a CW (or simplicia)
complex. We have decided that it would be more profitable to the reader to limit to
an acceptable minimum the foundational arguments, and instead present many, and
diverse exampleswhich in our view best convey the reason why aparticular fact could
betrue. Thereader interested in filling in our deliberate foundational gaps can consult
the classical survey [72] of J. Milnor, or the recent monograph [117] by V. Turaev.

82.1 The Reidemeister torsion of a CW-complex

Suppose X is a compact metric space and S(X) is afinite CW-decomposition of X.
Set H := Hi(X).

Remark 2.1. To eliminate any ambiguity, let us mention that for us a CW-decompo-
sitionisafiltration of X by closed subsets

x© CX(l) C--- CX(") C---
such that there exist homeomorphisms
(Ju x D" X))~ X

in which J, is afinite set, D" denotes the closed n-dimensional ball, and ~ denotes
the equivalence relation defined by an attaching map

@n: Jy x D" — XD,

Theset X iscalled then-skeleton of X. The componentsof X ™\ X~ arecalled
the (open) n-cells. We denote by S, (X) the set of n-cells. An orientation of a cell
o € S,(X) isachoice of anisomorphism

H,(o,00;7Z) — 7. O

Consider the maximal Abelian cover 7: X — X of X, that is the cover of X
defined by the Hurewicz morphism

m1(X) — H.
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We can view X asaquotient X = X/H.
The CW-decomposition of X canonically defines a chain complex C(X) of free

Abelian groups,
CX)= P Halo. do).
n oeS,(X)
By orienting the n-cells and ordering S, (X) we obtain bases of this chain complex.
We will refer to these as geometric bases. The ambiguities in fixing such bases are
encoded by the action of the group

Sk (X
GX = 1_[ Gsk(x) X sz( )
k>0

where &5 denotes the group of permutations of aset S. The CW-decomposition of X
liftsto a CW-decomposition S(X) of X which, asaZ-module, is generated by al the
lifts of the cellsin S(X). Denote by C(X) the associated chain complex. The group
H can be identified with the group of deck transformationsof X — X and as such it
actson C(X). Hence, C(X) hasanatura structure of free Z[H]-module.

We can obtain Z[ H]-bases of C(X) asfollows. Fix abasis ¢ of C(X). Choose a
lift & of each oriented cell « of ¢. We obtain the following Z[ H]-basis ¢ of C(X).
={a; aec,}

1>

This construction is not unique, for two reasons. Firstly, the choice ¢ depends on a
re-ordering, and a change in orientations. Secondly, the lifts are not unique. These
ambiguities can be gathered in the group

A = GX X l_[ l_[ H.
k>0 aeSk(X)

Observe that
detA=+H — (Q(H),-), Q(H)—-QZ[H]).

Definition 2.2. The torsion of the chain complex g(f() of free Z[ H]-modules with
respect to the above A-orbit of Z[ H]-basesis called the Reidemeister torsion of S(X)
and is denoted by T(S(X)), (or Tx when the CW-structure is clear from the context).
It iswell defined asan element of Q(H)/ + H. O

Notation. If x, y € Q(H) thenx ~y <= 3h € H, 3¢ = £1: x = €hy.

If Y C X isasubcomplex of X then we can define the relative torsion as follows.
First form the chain complex of Z[ H]-modules C (S(X, Y)) associated to the CW-pair
(X,Y),Y ;= 7~1(¥). Next, chooseabasis¢/Y of therelative complex C(S(X, Y)),
and then lift it to aZ[ H]-basis of S(X, Y) of theform

c/Y ={a; a e SX)\SM}.
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As before, the ambiguities of this construction form agroup 2f and
det2A = +H < (Q(H), ).

Thetorsion T(S(X, Y), [¢/Y]2) iswell defined as an element of Q(H)/ &+ H which
we denote by Ty y.

If R isanintegral domain and ¢ isamorphism Z(H) — R then we can form the
complex of free R-modules

CY(X,Y):=C(S(X,Y)) ®, R.

The cell decomposition of X provides us as above with natural choices of basesin this
complex. Thetorsion will be an element

Ty €K/ +o(H),

where K is the field of fractions of R. Using Proposition 1.22 we deduce that if
char(K) = 0 then
TSy =e(Txy).

Remark 2.3. A morphism ¢: Z[H] — R defines a system of local coefficients R,
on X and the homology of the complex C(S(X, ¥)) ®, R is canonically isomorphic
with the homology of (X, Y) with coefficientsin the local system R,, (see[17, Chap.
5], [102] or [121, Chap. VI]).

In dealing with the gluing properties of the torsion it is perhaps more convenient
to adopt this new point of view because, asexplained in[17, ibid], the homology with
local coefficients satisfies the same set of defining axioms the ordinary homology. O

Example 2.4(Thecircle). Suppose X isthecircle S with the natural CW-decompo-
sition consisting of asingle0-cell g, andasingle1-cell 1. Then H = H1(S1, Z) = 0.
We write it multiplicatively, and we denote its natural generator by . The group Z
actson X = R by translations

" .x=x4+n.

Define
ao=0, a1 =][0,1].

In C(X) we have

This shows C(X) is acyclic. Define

co={ao}, c1={a1}, bo=0, by=]{ai}.
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Then
[0b1bo/co]l = (t = 1), [b1/e1]l =1
S0 that
T~ (- ~+"t — 1)1 e Q) /(%). O

Example 2.5(The two-dimensional torus). Suppose X isthetorus 72 equipped with
the CW structure consisting of

e One 0-cdll .

e Two 1-cédlls 81, Bo.

e One 2-cell y.

with attaching maps described by the classical diagram in Figure 2.1.

B1

A1
Figure 2.1. The CW-structure of a 2-torus.

Observethat X = R? and H = Z2 with (multiplicative) generators 11 and r,. We
choose the bases ¢; asfollows.

eco={& = (0) e R?}.
eci=1]p=1x{0}CR? B,={0} x I CR? I =]0,1]}.
002={)9=IX1CR2}.

Inspecting Figure 2.1 we deduce

da =0,

3pr=(1— D&, 8B = (12— D,
39 = A —1)p1— (L —11)po.
Now choose
b =1{p}, bi=1{p1), bo=10
Then
[b2/e2l = 1. [(@b)b/er] = det [ 2 cl,] = (-1,
[(@b1)bo/col = (11 — D).
We conclude that
Tr2 ~ 1~ +7'15°. O
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Example 2.6(The higher dimensional tori). Suppose X is the n-dimensional torus
X .= R"/7Z". Denote by 1; the generators of the (multiplicative) group H := Z" =
71(X). They determine a basis (¢;) of the (additive) group Z". For each ordered
multi-index I =1<i1 < -+ < i <nweset
eji=ej N---Nej, € Aan.
The universal Abelian cover isR" — R"/Z" and
Cv(X) = Z[H) @z AFH.
The monomials{e;; |I| = k} determine aZ[;, tj‘l]—basis(él) of Ck(f() defined by
e ={(x1,....xy) €[0,1]"; x; =0V, ¢ I}.

We use the wedge product to introduce a Z,-graded Z[ H ]-algebra structure on C (X).
The boundary operator R R
3: C(X) — C(X)

is then more than just a morphism of Z[ H]-modules. It isan odd derivation uniquely
determined by the conditions

deg =0, Jde;:={; —Deyg, i=1...,n.

Equivaently, it can be defined as the contraction with the formal vector field

T := Z(zk — Dey.

k

Fix an element u € H, and form the Koszul map
ku: Ce(X) > Cri1(X), o uAow.
For simplicity welet u := e1. Observe that
d(er ANs) +er Ade=(1—11)e
so that, if we define
n:CX) > CX), o (- anw

then 91+ nd = 1. Hencen isacontraction of the complex C(X). Asin §1.1 weform
the operators
D=0+4n.

Thetorsion of C(X) isthen

Ty ~ det(D: Coen(X) = Coga(X)).
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Set L, := Z". We have produced a sequence of operators
Dy: AYL, ®7 Z[L,] - AL, ®7 Z[L,]

such that det(D,)) = ©(T"). If wewrite L,41 = L, ® Z - ¢,11 then we obtain
decomposition

AL, =AY, AL, ey, AL, 1= AL, @ AYL, Al

Using these splittings we obtain the following block decomposition for D, 41
. D, =x

D,=0d+n: AL, @ Z[L,] > A*®L, ® Z[L,].
Since D, D,, = 1 we deduce

where

det(D,11) =0, Vn>1.

Thus
Trn ~1, Vn>1 O

The above identity is a consegquence the following more general principle.

Example 2.7(Thetorsion of ST x X, X-finite cell complex). Denote by 7 both the
natural morphism
H1(SY x X) — Hy(SY),

and the induced map
Q(H1(S* x X)) — Q(r) = Q(H1(Sh).

Then -
T~ =710 ~ ThY.

Observethat T¢; , canbecomputed usingthecover R x X — $1x X. Theassociated
cell complex has a Z[t]-module structure. More precisely

CRx X) =C[R) ®z C(X),

where C(R) is the chain complex of Z[¢]-modules discussed in Example 2.4,

0— 711 X 71— o.

Then
Cr(R x X) =Z[tler ® Cy_1(X) & Zlt]eo ® C (X)),
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with basis
e1 ® Sk—1(X) Ueg @ Si(X).

The boundary operator 9: C, (R x X) — C,_;(R x X) acts according to the pre-
scriptions

de1®ar—1) = (L—1)eo @ op_1 — e1 @ dox, (eo ® 0x) = eg @ 1.
Define the morphism of Z[¢]-module

n: Cr 1 (Rx X) = C (R x X),

e0 Q@ o—1 — e1Q®o0r—1, e1Q®oar—2+ 0.

t—1
Observethat n2 = 0 and dn + nd = 1, i.e. n isan algebraic contraction. Then

TT

Sixx — det(é +n: Qeven(R x X) — Qodd(R ® X))

With respect to the bases
e0® So(X)Ue1 ® S1(X)Uepg ®@ S2(X)U - --

of C and

—=even?
e1® So(X)Ueo® S1(X)Ue1 ® S2(X) Uep® S3(X) U - -
of C g4, the operator 9 4 n has the description

ng columns n1 columns #ny columns

norows (t—1)71 —0 0
ni rows 0 -2 B

N2 rows 0 0 (R

where ny := #5,(X). We deduce
TSTIXx = (- 1)_Zk(—l)knk =(t— l)—x(X) _ Tg(l(X). a

Example 2.8(Thetorsion of aproduct). Thecomputationsintheaboveexamplegen-
eralize asfollows. Suppose X and Y are compact CW-complexes. Denote by  both
the natural map

Hi(X xY) — Hi(X),
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and the induced morphism

Q(H1(X x Y)) — Q(H1(X)).

Then y
‘TJ)EXY ={I;((( )‘ (21)

To prove this consider the Abelian cover of X x Y induced by 7. It coincides with
X x Y, where X isthe universal Abelian cover of X. Denote by (C(X), dg) the chain
complex of Z[H1(X)]-modules generated by the CW-decomposition of X. Then
the chain complex of Z[ H1(X)] modules corresponding to the CW-decomposition of
X x Y hastheform

(C(X x ¥),8) = (C(X), do) &z (C(V), dy).

where the hat " over the ® signs signifies that we are taking a graded tensor product.
Suppose for simplicity (C(X), do) isacyclic and denote by 1 an algebraic contraction.
Now define

H:Cp (X X Y) = C(X xY)

by the equality

16 ®38) = (no) ®34,
for every cell 6 of ):( and every cell § of Y. Thismorphismisan algebraic contraction
of the complex C(X x Y). Now order the cellsof Y

61,02, ...

asin (1.3) such that
dimé; > dimé; ;1.

Using the decomposition

geven/odd(j( xY)= @QW X) ®8;,

where v; 4+ dim§; = even/odd, we deduce that the operator
d+1: Coen(X X ¥) = Cogg(X x Y)
has lower triangular form, and the i-th diagonal element
C,, (X0 ®8 - C, 1(X)®

has the form 5 1
(9 + 1) )

Formula (2.1) isnow obvious. Werefer to[31, 34, 35] for more information about the

torsion of afiber bundle. O
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Example 2.9(Thetorsion of lens spaces). The lens space L(p, g) is defined as the
quotient
L(p.q) = 5°/o14.

wherefor (r, p) = (s, p) = 1 wedenote by ¢, ; the action of cyclic group Z, on
$%:={(z1.22) € C% |21’ + |z2)* = 1}

defined by therule
¢ ors (21,22) = (721, ¢22), V¢l =1

The maximal Abelian cover of L(p, ¢) is the sphere $2. To compute the torsion of
the lens space L(p, q) wefirst need to produce a Z,-equivariant CW-decomposition
of $3. For j € Z,, define
E} ={(’,0 e 5%,
- 2n(j+1) }
p
E? = {(z1.5¢) € 8% 1 €10, 1]} = {(z1.5¢7) € C* s e R, V]2 +s2 =1},

2] 2r(j+1
Efz {(Zl, 22) € §3; 7] <agz2 =< L}

E} = {(e”’,O) es3 T~y
p

Each Ej" is homeomorphic to a closed k-ball, and the collection

k
{Ej }0§k§3,jeZ,,
forms aZ,-equivariant decomposition of $3. Set
k._ k
¢ = Int(Ej).

We orient the cells inductively over k such that, taking into account the orientations,
we have

p—1
2 _ 1
dcf = ci’
i=0
and
1 0 0 3 2 2
acj=Cj+1—cj, 8cj=cj+l—cj.
Observe that
k _ k _ k _ k _
¢-ci=ciy, k=01 and {cj=cii, k=23
Hence

p—1

8c(2) = (Z §j>cé,

j=0
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and

9ej = ¢ = Ve 9¢) = (¢ = De].
wherer - ¢ = 1 mod pZ. Suppose K isafield and ¢: Z[¢] = Z[Z,] — Kisa
nontrivial ring morphism. Set ¢ := ¢(¢) and CY := C.(S%) ®y K. Observe that

C{=K-c§, k=0,...,3
This shows the chain complex C? is acyclic and an elementary computation yields

T g ~ A=DHA=H7L

Observe that if we choose a different generator s of H1(L(p, q)) defined by s7 =t
we have
T g ~ A=sHHL—9) O

Thetorsion of aCW-complex depends on the CW-structure. The following result
states this more precisely. For a proof and more details we refer to [16, Chap. 1V] or

Theorem 2.10(Combinatorial invariance of torsion). The torsion Ty y is invariant
under subdivision of the CW-pair (X, Y).

It is known that any compact smooth manifold admits C-triangulations, and any
two have acommon finer subdivision (see[72, 89] for more details). This shows that
we can define the torsion of asmooth manifold using C*-triangulations and the result
will be independent of triangulations. In other words the following true.

Theorem 2.11. The torsion of a compact smooth manifold is a diffeomorphism in-
variant.

Remark 2.12. The absolute torsion Tx of a ssimplicial complex X is known to be
a topological invariant of the cellular complex X; see [13]. However, the relative
torsion T,y isnot atopological invariant; seethebeautiful paper [69] or Remark 2.62,
page 105. O

From the exact homol ogy sequence of a pair and the multiplicativity of thetorsion
we deduce the following result.

Theorem 2.13. Suppose (X, Y) isa CW-pair, K isafieldand ¢: Z[H1(X)] — K is
aring morphism. If j denotes the inclusion induced morphism

J+ Q(HL(Y)) = Q(H1(X))
and either T} # 0or T4% # 0. Then

Y aqP | qeoj
Ty ‘Tx,y Ty .
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If f: X — Y isacelular map then we can form its mapping cylinder
My = (X x[0,1]UY)/{(x,1) = f(x)}.

Y is a strong deformation retract of My and in particular, H1(My) = Hy(Y). We
define the torsion of f by the equality’

Tf = ‘IMf,X S Q(H]_(Y))

If 7 isahomotopy equivalence then H1(X) = H;(Y) so thetorsion of f isalso an
element of Q(H1(X)). In general, the torsion of a homotopy equivalence may not
be ~ 1. However, we have the following fundamental result of J. H. C. Whitehead
([16, 19, 72)).

Theorem 2.14. If f isa simple homotopy equivalence then
Tr~ 1

Wewill not present aformal, geometric definition of thenotion of simplehomotopy.
Weonly want to mention atypical exampleof such homotopy: the collapse of asimplex
onto one of itsfaces (see Figure 2.2). In general, asimple homotopy is a composition
of such elementary collapses.

Figure 2.2. Elementary collapse.

For example, a 3-manifold with boundary equipped with asimplicial decomposi-
tion is ssimple homotopy equivalent to a 2-dimensional simplicial complex.

Using Theorem 2.13 and 2.14 we deduce that if two cellular complexes X, Y are
simple homotopy equivalent then

Tx ~ Ty.

IThe torsion of the pair (My, Y) isknown to betrivial, ~ 1, (see[72, §7]).
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Example 2.15(The solid torus). The inclusion ST < D? x S1, p — (0, p) isa
simple homotopy equivalence so that the torsion of a solid torsion is identica to the
torsion of acircle

Tposst ~ (t — L O

Using the multiplicativity property of thetorsion and the Mayer—Vietoris sequence
we deduce the following consequence.

Theorem 2.16(Gluing Formula). Suppose X1, X2 are subcomplexes of X such that
X=X1UX, and X1NXp=Y.
SQuppose K isafieldand ¢ : Q[H1(X)] — Kisaring morphism. Let
J QUHL(Y)) = Q(HU(X)),  jk: Q(H1(X,)) = Q(H1(X)), k=12
denote the inclusion induced morphisms. If T° ;" ° # Othen
TY TP~ T TR,

Example 2.17(Thetorsion of fibrations over acircle). Wefollow closely the presen-
tation in [33]. Suppose

is a smooth fiber bundle over 1, with compact, closed, connected, oriented fiber F.
Fix aRiemann metric on X suchthat = isaRiemann submersion. = definesagradient
flow which covers the canonical rotational flow on St (with period 27). We denote
by h: X — X thetime 2 -map of thisflow. It induces a map

w=hlp:F=n"Y0)—>rt2r)=F

known as the geometric monodromy of this fibration.

Fix a cellular structure on F and a cellular approximation w” of the monodromy
map w and form the mapping torus X’ of /. One can show (see [33, 49]) that the
torsion of X isequal to thetorsion of X’ and we will compute the torsion of X’. The
group Z actson C, (7 ~1(F); Z) by

tk,o)=(k+1 0),
so that we have the isomorphism of Z[z, t~1]-modules

C.( Y (F);Z) = C.(F,7) ® Z[t, t 1.
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The natural projection 7 : X’ — ST defines an infinite cyclic cover
7 X, > X/,

the pullback of exp: R — R/27iZ = S* viaw. The space X’ has a natural CW-
structure which lifts to a CW-structure on the cover X’,. The cellular chain complex
C«(X'; Z) has a tructure of Z[t, t~1]-module given by the actions of the group of
deck transformations of X/, and can be described as the agebraic mapping torus of
the morphism of Z[z, t—1]-cellular complexes
W =t1': CuiNF); Z) — C.(77Y(F); ),
(k,0) > (k+1, W' (0)) = 1(k, ' (0))

Using the identity (1.6) in Example 1.6 we conclude that
T(Cu(X 3 Z)) ~ £, (1),

where ¢, (t) is the s-zeta function of the induced morphism ., on the Z,-graded
vector space H,(F, R). The map 7 induces amorphism H := H1(X) — Z and thus
amorphism

m: Q(H) — Q@).

The last equality can now be formulated

7)7(1 ~ CM(Z)-

Werefer to [33] for adescription of thewholetorsion of X. Thefinal result ishowever
not so explicit.

To understand how much information about the torsion of X is contained in the
above equality we need to understand Hy(X, Z). This homology can be determined
from the Wang exact sequence, [121, Chap. VII], which is a consequence of the fact
that the chain complex C, (X ; Z) isthe algebraic mapping torusof C, (F) with respect
10 fix,

> Hy(F) =5 Hy(F) 5 B0 25 = )
We obtain a short (split) exact sequence
0 — coker(1— uy) — H1(X) > Z — Q.

Thelinear map H1(X) — Z has asimple geometric interpretation: it is given by the
integral of the angular form

w = 27[7'[
along acyclec € H1(X). Note that if

det((1— )t Ha(F) — Hi(F)) # 0.
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then H1(X) hasrank 1. In this case we have
Ty~ Cuo).

If F happensto be a Riemann surface of genus g then, using the computationsin 8A.2

we deduce
gaug det(1—rHi(w))
X (1-1)2

Example 2.18(Thetorsion of connected sums). Suppose N1 and N> are two closed,
oriented, triangulated, smooth 3-manifolds such that

ri = rank H1(N;) > 0, i=12
We want to prove that
‘IN]_#NZ = O’

i.e
H,(N1#N2; K;) # 0,

where K is an arbitrary field entering into the decomposition of Q(H1(N1#N>)),
denotes the natural projection

Q(H1(N1#N2)) — K,

and K, denotes the corresponding local system of coefficients. We will follow an
approach we learned from Frank Connolly. We refer to [110, 84.3] for a different
proof of adightly weaker result. Set N := N1#No,

G; == H1(N;), G := H1(N1#N3) = G1® G1.

Let M; denote N; with a small open disk D; removed and ; : 1\7,- — N; denote the
universal Abelian cover of N;. Set

M; = 77N (M),

Finally denote by S the 2-sphere M1 N M, C N. The universal Abelian cover N of
N isobtained asfollows.

e Fix alift D; of D; to N;, i = 1, 2 we canidentify 9M; = G; x S so that
3(G1 x M2) = (G1® G2) x S = (G2 x M1).

For (g1, g2) € G1 x G2 we denote by ,, M; the component of 3 M; labelled by g;.

e Glue G1 x M> to G x My along the boundary using the identifications (see Fig-
ure 2.3).

{81} X g, M2 ~ {g2} X Oy M1.
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1D

1.1
12
1.2 @1
21

(Y]
2.2

1.2
()

2,2
3.2

(3.2

Figure 2.3. Covering a connected sum.

Suppose K is one of the fields entering into the decomposition of Q(G). The
discussion in 81.5 shows that K is the field of rational functionsin r1 + rp variables
with coefficients in some finite extension of Q. In particular, since r; > 0 this shows
that the monodromy groups

M; = Ranger;, i :=G; — G — QG) > K

areinfinite, sothat the coveringsof M; and N; defined by the morphismsz; areinfinite,
thus noncompact. Since M; is an open 3-dimensional manifold we deduce

H3(M;; Ky,) = H3(Ni; Kz;) = 0. (%)

We deduce similarly that
H3(N;Kz) =0.

The Mayer—Vietoris sequence for the homology with local coefficients (see [17,
Chap. 5]) now implies

0 — Ha(S: K) — Hao(M1; Kny) © Ho(M2; Kyy) - Ha(N; Ky) — Hi(S; K).
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Since S is simply connected we deduce that the last group is trivial and the first is
isomorphic to K. We thus have a short exact sequence of K-vector spaces

0— K — Hx(Mz1; Ky,) @ Ho(M2; Ky,) > H2(N; Ky) — 0. ()

The middle part of (xx) can be determined from the long exact sequence of the pair
(Ni, M;):

0 — H3(N;, M;; Ko) — H2(M;; Ky,) — H2(N;; Ky) — Ha(Ni, Mi; Ke) — .
Using excision we deduce
0 — H3z(Dj, S; K) > H2o(M;; Ky,) > Ha(Ni; Ky) —> H2(Di, S;K) — 0. (sx3%)
The sequence (=) implies
dimg H>(N; Ky ) = dimg Ha(M1; Kyy) 4+ dimg Ho(M2; Ky,) — 1,

while (x*x) implies
dimg Ho(M;; Ky,) > 1,

so that dimg Ho(N; K;) > 1. O

§2.2 Fitting ideals

We interrupt for alittle while the flow of topological arguments to discuss some basic
algebraic notions needed to go deeper inside the structure of torsion.

Let R be a Noetherian integral domain and denote by K its field of fractions.
Suppose T: U — V isamorphism of free R-modules

UZRP, VZRL

Choosing basesin U and V we can represent T by ag x p matrix with entriesin R,
andwedenote by I1(T) C R theideal generated by theentriesof T. Clearly I1(T) is
independent of the chosen bases of U and V. Equivalently, this meansthat 11(T) is
invariant under elementary row and column operationson 7. T induces morphisms

ART: AYU — AFV,
and we set
I(T) := L(A*T) Cc R.

In more concrete terms, I (T) is the ideal generated by all the k x k minors of T.
Observe that
R :=1Ig(A) D I1(T) D I>(T) D - --
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and
Li(T1@® T2) D 1 (Ty) + Ik (T2), L(T1-T2) C Ix(T1) - [r(T2), Vk,T1, T>.

Suppose
ULbvosmM-o0
is apresentation of thefinitely generated R-module M. Let g =rank V,r = rank U.

Then g isthe number of generators, while r isthe number of relations of this presen-
tation. Assumer > g. Define

Fi(T) = I, 4(T).

Any other presentation can be obtained from the above by performing a succession of
elementary transformations described below, [92].

1. Changebasesin U and V.

2. ReplaceU,Vby R U and R® V and T by 0® T, where 0 denotes the trivial
map R — R.

3. Thereverse of 2.

4. Replace U by R@® U T by T o ny, where ;. denotes the natural projection
ReoU — U.

5. Thereverse of 4.

Clearly theideal F;(T) isinvariant under these elementary transformations. This
shows it isan invariant of the module M. It is called the k-th Fitting ideal, of M and
is denoted by Fi(M). Observe that

FoM) C h(M) C--- C Fpe(M) C --- .

Fo(M) is caled the order ideal of M and is denoted by O (M). In case M admits a
presentation in which there are fewer relations than generators then we set O (M) =
(0)

If R happens to be factoria then we define the order of M, ord(M) € R/R*, as
the greatest common divisor of the elementsin Fo(M).

Example 2.19.
0 if0O<k<g

FilRD =1 itk >gq

Example 2.20. Suppose G isthe Abelian group generated by e1, ez, e3 subject to the
relations
e1+ex+e3=0, 2e1—ex+3e3=0, e1=3e3.
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Then it admits the presentation

Z3£>ZS—>G—>O

} |

The order ideal isthe ideal generated by | det(A)| = 13. It coincides with the order
of the group. In particular, ord(G) = +13€ 7/ + 1. O

where A isthe 3 x 3 matrix

R e
I
wWREN
wo R

Example 2.21. Suppose M = R/I, I C R isanidea of R. Then O(M) = I.
Indeed, if I isgenerated by n elements, then M admits a presentation

R R M0

so that
OM)=1(L)=1. |

Example 2.22. Suppose M = Z,,. Then
Fo(M) =nZ, Fi(M)="Z. O
Proposition 2.23. Suppose M can be generated by ¢ elements. Then
(anng(M))? € D(M) C anng(M) := {r € R; r - M = 0}.

Proof. Letxs, ..., x, begeneratorsof M. If ay, ..., r, € anng(M) thenwecanform
apresentation of M containing the relations

aix; =0, i,j=1...,q

which proves the first inclusion. To prove the second inclusion, consider ag x g-
matrix of relations between the x;’s. Then, det(A)x; = 0, thus proving the second
inclusion. O

Corollary 2.24. Suppose R isa Noetherian integral domain. If M isa submodule of
afree R modulethen O(M) C anng (M) = 0.

For a proof of the next result we refer to [55, X1X,82].
Proposition 2.25.

F,(M & M") = Z F (M) Fs(M").

r+s=n
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Corollary 2.26.

Fk(M@®R?) =0, Vk<q, F,(M®RT)=9OM).

Example 2.27. Suppose R = Z and
M =7Zp, & - ® Ly, nglng-1|---In1.

Set N :=n1...n. Then

N N
Fo(M)=NZ, FAM)= —1Z,..., FjoalM) = ———7Z, Fy(M) = 7.
ni ni...ng_1

O

Example 2.28(The elementary invariants of amatrix). SupposeR = Z[r, t~1]. Any
matrix A € SL,,(Z) defines a R-module structure on Z"

pt,t™Y u=pA, A Yu, Vpu,tHeR, uel.
We denote thisis R-module by (Z", A). It admits the presentation
R 24 pr A 7 4y S0,
where f4 isthe map

R'=7"®zR— 17" Y it/ v Aliij.
j

Denoteby ¢; € Z[t] the elementary invariants of A (see[55, X1V, §2]), i.e. themonic
polynomials uniquely determined by the conditions

qrlqr-1l---1q1,  pa(t) :=det(t — A) =q1...qx,
suchthat, asaQ[¢]-module, (Q", A) isisomorphic to thedirect sum of cyclic modules
k
@". 4) = P Qlrl/(g))-
j=1
(Observe that gy isthe minimal polynomial of A.) We deduce

FoZ", 4) = (pa®),  Fu@', )= (£ *;Y)

pA(t)),....
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§2.3 The Alexander function and the Reidemeister torsion
Assume R is aNoetherian, unique factorization domain with 1 and
C,39):0-Cy—>Cy1—>--+—>C1—>Co—>0

isachain complex of finitely generated R-modules. We define the Alexander function
A(C) to be zeroiif ord(H; (C)) = O for somei. Otherwise, we set

14

A(C) =[] ord(H;(©))

j=0

(_1)i+l

Example 2.29(Thecircle revisited). The ring Z[z, t—1] is the localization of a fac-
torial Noetherian ring and so itself must be factorial and Noetherian. Consider the
complex of Z[z, t~1]-modules discussed in Example 2.4,

C: 0 C1=2Z[tt 42 co=2t, 17— 0,
where § isthe multiplication by (r — 1). Then
Hi(C) = Z[t,t™Y,  ord(H1(0)) ~ 1,
Ho(C) = Z[t,171/(L - 1),
so that (see Example 2.21)
ord(Ho(C)) ~ (1 — 1).
Thus A(C) ~ (r — 1)~ L. O

Example 2.30. Suppose U is atorsion module over R = Z[r, t~1] which is free as
aZ-module. We deduce that the rank of U over Z isfinite, say . The polynomia ¢
defines an automorphism

AecAutz(U)=SLWU)=SL(r,7Z), ur>t-u.
Then, according to Example 2.28 we have

ordz, 11U ~ pa(t) := det(t — A). 0

Suppose (X, Y) is a compact CW-pair. Set H := Hi(X), F = H/Tors(H),
denoteby X — X the universal (maximal) Abelian cover of X, andby aug: H — F
the natural projection. We can form the complex of Z[ F']-modules

C™M8(X,Y) = C(S(X), S(Y)) ®aug Z[F]. (2.2)
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Z[F] is Noetherian and factorial so the Alexander function of this complex is an
element in Q(F), well defined up to multiplication by a unit in the ring Z[F]. We
denote this Alexander function by A(X, Y) and we will refer to it as the Alexander
function of thepair (X, Y). Thenext result, dueto Turaev, generalizesthe computation
in Example 2.29.

Theorem 2.31([33, 73, 111]). If (X, Y) isa compact CW-pair then
Tyy ~AX,Y) € QF).

Remark 2.32. The above result is similar in spirit with the classical Euler—Poincaré
theorem which states that the Euler characteristic of asimplicial complex is equal to
the Euler characteristic of its homology. In the above theorem, 7948 is defined in
terms of a smplicial (CW) decomposition while the Alexander function is defined
entirely in homological terms. O

Proof. We follow the approach in [111]. This theorem is a consequence of the
following abstract result.

Lemma 2.33. Suppose R is a Noetherian, factorial ring of characteristic zero, K is
itsfield of fractions and

Cc: 0-Cp,—->Cyp-1—>+---—>C1—>Co—0
isa chain complex of free R-modules, equipped with a basis ¢ such that
rankg Hy(C) =0, i.e H,(C)= TorsH,(C).
Then

T(C. leD = ¢ [ T ord(m;(0)) ",
j=0

where ¢ isa unit of R.
Proof. Denoteby J; thecokernel of 9;11: C;+1 — C;,andby A; thematrix describing
di+1: Ciy1 = G

with respect tothebasisc. Setn; := dimg C; @ Kandr; := dimg A; ® K. We have
an exact sequence
0— H;(C)—> Ji > Cij_1,

and since C;_1 isfree we deduce that Tors H; (C) = Tors(J;). Hence,

O(H;(C)) = O(Tors(J;)) = ord(H;(C)) = ord(Tors(J;)). (2.3)
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On the other hand, observe that if By; isany nonsingular square submatrix of Ay; of
order rp;, 0 <i < [(m — 1)/2], then there exists an unique t-chain
{(So, Do), - - -, (Sm—1, Din—1))
such that Dy; = By;. Thus
det Dy; = det(By;) € O(Tors(Jz)). (2.4)

If we write T(C, ¢) as an irreducible fraction x/y, we deduce from Proposition 1.5
that
x/y= H det Dy; 1/ det Dy;
i>0
Sincethery; x rp; sub-matrix By; inthe equality (2.4) isarbitrary, we deduce that the
denominator y of T dividesall the generatorsof [ [;..o O (Tors (Jo; )) becausethey are
al of theform [, det Bz;. Hence

T(C, o) - [[O(Tors(J2)) € []O(Tors(J2i41)).
i>0 i>0
The opposite inclusion
T(C. o)t [[O(Tors(Jair1)) € [ [ O(Tors(J2:))
i>0 i>0
isproved inasimilar fashion. By writing T(C) = x/y, x, y € R we deduce
x-[[o(Tors(J2) = y - [ [O(Tors(J2i 41)).
i>0 i>0
Replacing O — ord, and using (2.3) we deduce
x - [ Jord(Hz (©)) ~ y - [ [ ord(Hai1(0)).
i>0 i>0
so that .
T(©) ~ [Tordc; €)™,

j=0
where we recall that ~ denotes the equality up to multiplication by aunitof R. O
Definition 2.34. Suppose X isafinite CW-complex of dimension < 2 and denote by

F thefree part of H1(X), F := H1(X)/ Tors(H1(X)). The Alexander polynomial of
X is by defined by the equality

A(X) ~ ord(H1(C™¥(X))) € Z[F]

where C948(X) is defined asin (2.2). O
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Theorem 2.35([110, 111]). Let X be a finite CW-complex with x (X) = 0 having
the simple homotopy type of a finite two-dimensional cell complex. Then

Tx € M(H1(X))/ + H1(X),

and
AX) if bi(X)>2
TEHe ~

AX) _
S0 it () =1,

where in the second line ¢ denotes a generator of the free part of Hy(X).

Proof. We can consider X to be afinite two-dimensional cell complex with a single
zero-cell. Denote by m the number of 2-cells which we label by

,...,n.
Since x (X) = 0the number of 1-cellsism + 1 and we label them by
Lo, L1, ..., 4y,.

Set H := Hj(X) and denote the maximal Abelian cover by X — X.Thelx (m+1)-
matrix with entriesin Z[ H] representing the boundary operator

3: C1(X) — Co(X)

has the form
[lo—1¢é1—1-- &, —1],

where ¢; denotes the element of H determined by the cell ¢;.
The boundary operator 9: C2(X) — C1(X) isrepresented by a im + 1) x m,
matrix D. Now choose

by={t1,....tw}, by={lo,....0n}\ {€}
where ¢ issuchthat ; # 0 € H. Then
A(X) - (€ — 1) ~ det D,

where Dy is the matrix obtained from D by deleting the row corresponding to the
cell £;. Thus
(1-h)Tx € Z(H), VheH.

Using Proposition 1.27 we deduce that Ty € 9t1(H). The second part followsimme-
diately from Theorem 2.31. We |leave the details to the reader. O
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82.4 The Reidemeister torsion of 3-manifolds

The smooth, oriented manifolds are very special topological spaces and this special
structure is reflected in their Reidemeister torsion as well. We will discuss in some
detail the simplest nontrivial situation, that of 3-manifolds.

Oneimportant distinguishing characteristic of an oriented manifold isthe Poincaré
duality. J. Milnor has shown that this phenomenon has a Reidemeister torsion coun-
terpart; see [70].

Consider a smooth, compact, oriented n-dimensional manifold M. (We do not
exclude the possibility that 9 M # (1.) We assume M istriangulated and we denote by
C (M) the corresponding simplicial chain complex. Denote by C”(M, M) the dual
cellular chain complex [67, 85.3], and by (s, «) the natural Poincaré pairing

(o,): C)_ (M, dM) x Cx(M) - Z, k=0,...,n.

More precisely, if o isak-simplex of M and D (o) denotesisdual (n — k)-polyhedron
then

1 ifo=n

0 ifo#n.

Set H := H1(M), and denote as usual by M — M the universal Abelian cover. The
simplicial decomposition of M induces a simplicial decomposition (6) on M. This
produces a dual cellular decomposition (D(c}) ) Thisis equivariant in the sense that

(D(o),n) =

D(h-6)=h- D), Y6, heH.

C (M) hasanatural structureof Z[ H]-module. Usingtheinvolution ¢ of Z[ H]induced
by the automorphism 4 — —h of the additive group H we obtain a conjugate Z[ H |-
module C#(M). The equivariance of 6 +— D(6) shows that the Poincaré pairing
extendsto aZ[H]- bilinear pairing

(o, 9): C"(M) x C5(M) — Z[H].

Set F := H/Tors(H). Q(F) isthefield of rational functionsinthevariablesry, .. .,
(b := b1(M)), and is equipped with the involution ¢ defined by ¢ — ti‘l. We get
complexes

CaugM) := CM) gy Q(F),  Cyg (M) := C*(M, IM) @711 QF),
and aQ(F)-bilinear e-pairing
C> (M,dM) x C¢

—aug —aug

(M) — Q(F).

The Poincaré duality implies that the complex C° computes the homology of the pair
(M, aM) (with various twisted coefficient systems) and the above pairing is perfect.
Using the abstract duality result in Proposition 1.21 we deduce

o(T) - (Tt) VT ~

(2.5)
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In particular, if M isa3-manifold then
&(Th ") ~ Taaom (26)

If moreover x (M) = 0 (which meansthat either 9 M isempty or it isan union of tori)
then we deduce from the short exact sequence of the pair (M, M) that

aug __ qaug
(‘TM “TM,BM’

because Ty) ~ 1. Thus, if x (M) = 0 we have
e(Ty %) ~ Ty (2.7)

Moregenerally, if Kisoneof thefieldsinthedecompositionof Q(H) andn : Q(H) —
K denotes the natural projection, then the involution ¢ on Q[ H] descends to an invo-
lution on K we deduce that if 77, € K\ {0} then

5(7/@) ~ TAZ,BM'

In particular, if we (non-canonically) regard 7, asafunction Ty, : H — Q, then the
above duality statements can be rephrased as

Tu(h) ~ Ty (h ™)
meaning there exist € = e(M, 9M) = +1 and hg € H such that
Ty (h™Y) = €Ty (hho), Vh € H. (2.8)

Example 2.36. The smooth 3-manifolds with boundary admit cell decompositions
which aresimple homotopicto 2-dimensional cell complexesand thusthey arecovered
by Theorem 2.35. Suppose M is the complement of aknot X < 3, M = 5%\ K.
Then Hy(M) = Z and

T~ Ty~ Agc(0)/(L—1),

where A (1) isthe Alexander polynomial of $3\ K. The duality (2.7) is equivalent
to
Ax(t) ~ At ™).

Thepolynomial Ag (1) isusually referred to asthe Alexander polynomial of theknot K .

More generally, if X < $2isalink withn > 2 components, then the torsion of
its exterior is an element in the group algebra Z[Z"] called the Alexander polynomial
of the link. We refer to Appendix 8B.1 on methods of computing the Alexander
polynomial of aknot or link in §3. O

Exercise 2.1. SupposeX < S3isasplitlink,i.e. thereexistsanembedded $% < $3,
digoint from X, such that each component of $2\ $2 contains at |east one component
of XK. Prove that the Alexander polynomial of X istrivial. (Hint: Use the same
strategy asin Example 2.18.) O
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The Reidemeister torsion of aclosed 3-manifold has specia arithmetic properties.
The next result, due to V. Turaev, summarizes some of them. Later onin §3.6 we will
discuss more refined versions of these arithmetic properties.

Theorem 2.37([110, 111, 114]). Let M beasmooth, closed, oriented, three-manifold.
Then
Tm € N2(H1(M))/ + H1(M)),

and
AM) if by(M) > 2

Tyt~ 8%y i) =1

0 if b1(M) =0.

The origina proof of this theorem can be found in [110] and is based on a clever
use of the gluing formula (see also [112]). For a more elementary approach, based
on the definition of torsion, we refer to [114]. Corollary 1.41 implies the following
result.

Corollary 2.38. Suppose M is a 3-manifold, possibly with boundary, and let G :=
Hy(M). If by(M) > 0 then the complex Fourier transform of the torsion of M is
a holomorphic on G \ {1}. If b1(M) > 1 then the complex Fourier transformis a
holomor phic function on G.

Thefollowing result generalizes the classical fact stating that the sum of the coef-
ficients of the Alexander polynomial of aknotin $3is=+1.

Theorem 2.39(Alexander formula). Suppose M isan oriented 3-manifold such that
bi(M) =1, r := |TorsHy(M)|. Then |Ay (D] = r.

Proof. Set H := H1(M), F: H/ Tors(H) = Z. We will consider only the specia
case when aM # ). (For example, M is the complement of a knot in a rational
homology sphere.) For the general case we refer to [112].

In this case M is simple homotopy equivalent to a 2-dimensional CW-complex
X with asingle O-cell. We can assume that the closure of a one-dimensional cell is
a circle which describes a generator ¢ of F. We denote this circle by Y. From the
multiplicativity properties of the torsion we deduce

Ap@®) =Ty -1 =Tg).

The chain complex C*“8(X, Y) of Z[H] modulesis very simple. It hasno cellsin
dimensions other that 1, 2 and the torsion is given by the determinant of the boundary
map

3: C3 (X, Y) — C{" (X, Y).
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If m denotesthenumber of 2-cellsof (X, Y) thenwecanregard d asam x m matrix with
entriesin Z[z, r~1]. Wewill write 8 (r) to emphasizethis. Thematrix 3(1) := 9()|,—1
is the boundary map

Ca(X,Y) > C1(X,Y),

and
|Apm(D)| = |detd(D)| = [Hi(X, Y)| = | Tors H1(M)]. m

Remark 2.40. Theaboveargument can besignificantly strengthened. Moreprecisely,
suppose M is a closed oriented 3-manifold without boundary such that b1(M) = 1
which is equipped with a CW decomposition. Fix an orientation of H1(M, R) and
choose agenerator ¢ of the free part of Hy(M) compatible with the above orientation.
Fix ordered bases ¢ of the cellular complex Cy (M), k = 0, ..., 3. The Alexander
polynomial of M depends on these bases and we will denote this dependence by
Am(t; ©).

The Poincaré duality on M induces a canonical orientation on H, (M, R) so that
the canonical Euler isomorphism

Eul: DetC.(M) ® R — Det H,(M, R)
can be identified with an real number
e(e) € {£1}.
Then one can show (see[114, Thm. 4.2.3]) that
€(©Ap(1;¢) = | TorsHi(M, Z)|.

We will have more to say about hisissue later onin §3.5. O

82.5 Computing the torsion of 3-manifolds using surgery
presentations

One of the most efficient methods for computing the torsion of a 3-manifold is based
on the following surgery formuladue V. Turaev.

Theorem 2.41(Surgery Formula, [111]). SupposeX = K1 U---UXK, isanoriented
link in the interior of a compact, oriented 3-manifold X such that x (X) = 0. Denote
by Uy atubular neighborhood of K in X. Then the natural morphism

a: Hi(X \ Ux) — Hi(X)
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is an epimorphism and
ay (TX\UK =Tx- l_[ — K1), (2.9
where oy : M(H1(X \ Ux)) — M(H1(X)) isthe morphism induced by « described

in §1.5.

This result is an application of the multiplicativity property of the homological ex-
act sequence of the pair (X, X \ Ug). For more details about surgery we refer to
Appendix §B.2.

Exercise 2.2.Prove Theorem 2.41. O

In applicationsit is much more convenient to use the Fourier transform of thisformula.
Set G = H1(X \ Ug) and H = H1(X). The morphism « induces an injection

a: H G
while the element [K;] € H defines viathe Fourier transform a function
[K:1: A — C, [K1(0 = x(K:D, Vx € A.

The surgery formula can now be rewritten as
& (Txwy) = Tx - ]_[ — [K:1). (2.10)

The formulation (2.10) has one major advantage over the formulation in (2.9). More
precisaly, the product in (2.10) is the pointwise product in the algebra of complex
valued functions on A and the zero divisors of are given by the functions which are
zero at some point of H. On the other hand, the zero divisors of the group algebra
C[H] are much harder to detect. From (2.10) we deduce

a* (j—X\UK(X)) n _
Ty (x) = MMy (1-7@x:D) iz (2.11)
? if [Ti—a(1 - x(%iD) =0.

We can sometimefill in the question mark above using the following simple observa-
tion.

Lemma 2.42. Suppose b1(X) > 0 and the homology clagses [X1], ..., [K,] have
infinite ordersin H1(X). Then (2.11) uniquely determines Ty.
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Proof. Set H = Hom(H, C*). The complex Fourier transform Ty of Ty isholomor-
phicon H \ {1} if b1(X) = 1, and in fact holomorphic on H if b1(X) > 1. If the
homology classes [K;] have infiniteordersin H foral i = 1, ..., n then the zero set

n

z:={xe i [T-x*axip) =0

i=1

isan analytic subvariety of H \ {1} of positive codimension. Thisimpliesthat # \ Z
isdensein H. The function Ty is unambiguously defined on H \ Z by (2.11), and
admits an unique holomorphic extensionto H \ {1}. O

In the remainder of this section we will describe through examples how the above
results work in concrete applications.

Example 2.43(Trivial circle bundles over Riemann surfaces). Suppose X = ST x
X¢, Where X, isan oriented Riemann surface of genus g. We will consider separately
three cases.

1. g =0, X = St x §2. Then X is obtained by gluing two solid tori along their
boundaries via the tautological identification. This showsthat Hy(X) = Z and using
the surgery formula we deduce

Ty =@1-1n"2
2.g=1,X = T3. Inthis case we have
Tx ~ 1.

3. g > 2. For simplicity we consider only the case g = 2. The manifold S x ¥ can
be obtained from two copies of S x 72 using the fiber connect sum operation. More
precisely, consider two copies Y1, Y» of the complement of atiny open disk D c T2
and set

X =8t xv.

Then
7% =D x StU X;,

and theinclusion induced morphisma : H1(X;) — H1(T?) isanisomorphism. From
the surgery formula (2.10) we deduce that

Tx, ~Tpa-(L—1t)~ (1 —1),
where ¢ denotes the homology class carried by the fiber. We have the decomposition

X:=8'xS=X1UXy, Xo:=X1NXo=T2
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Denote by j,: Hi(Xx) — H1(X), k = 0,1, 2, the inclusion induced morphisms.
The Mayer—Vietoris gluing formulaimplies

TI0 Tyy ~ I T 2 (12 (2.12)
Thisshows j # 0. We conclude that j,Ty, = 1 and
Ty = (1—1)2
For Riemann surfaces of genus g we have
Tstes, ~ (9 — D72
Thisisin perfect agreement with the computationsin Example 2.7. O

Example 2.44(Nontrivial circle bundles over Riemann surfaces). Consider adegree
¢ circle bundle
Sl —> N[ - X

over a Riemann surface of genus ¢ > 0. N, can be obtained form Ny using the
following procedure.

« Remove atubular neighborhood U of afiber of No sothat U = S x D? and set
V:=No\U = §t x (2\ D?.
e Orient U using the obvious diffeomorphism
U = aD? x S,

Observe that the above diffeomorphism produces a canonical basis of H1(dU) and
hence an identification with Z2. Similarly, orient 3V using the obvious diffeomor-
phism

AV Za(x\ D? x St

This diffeomorphism produces a natural basis of H;(dV) and thus an identification
with Z2. Asin the previous example we deduce

Ty ~ (9 — H*3

where ¢ denotes the homology class carried by the fiber.

e Glue back U to V using the attaching map

-10
Iy :=|:_£ 1].

To obtain more explicit results we need to rely on the Mayer—Vietoris sequence.
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Denote by « the natural morphism o: H1(V) — Hy(Ng), and set G = Hy(Ny).
Denote by g the natural morphism H1(U) — H1(N,). First, notice that Ho(Ny) is
torsion free, of rank 2¢g and Ho(V) istorsion free of rank 2g, so that we can split the
following short exact portion off the Mayer—Vietoris sequence

jvag, MU
0> HU(TH 'S o 25 HyNy) — 0.
Hi(V)
Denote by c1, ¢z the natural generators of T2, and by ¢, x1, ..., x2, thenatural gener-

ators of H1(V) (so that ¢ corresponds to the fiber and the x;’s generate H1(X \ D?)).
Also, denote by y the natural generator of H1(U). Finally, denote by I, and respec-
tively Iy the morphisms

Iy: HHOU) — Hi(U), Iy: H1(dV) — Hi(V).
In terms of the above generators we have
Iy(c1) =0, Iv(c2) =¢, Iy(c) =0, Iy(cd=y.
Then j, = Iy o T, %, jy = Iy, sothat
Jyica—=0, coy.
SinceI';* = I'y we deduce
Juicir —c1—Lep = =Ly, co2> co— @

Using the bases {c1, ¢z} in Hi(T?) and {y; ¢, x1, ..., x2,} in Hi(U) & H1(V) we
deducethat j; @ jy hasthe (2g + 2) x 2-matrix description

01
-1

A= 0 0}, (2.13)
0 O
Denote by A the sublattice of Z2¢+2 generated by ¢, y + ¢. Sinceker(f —a) = A
we deduce
alph) =0 and k=B =a@

Re-label ¢ := a(¢). ¢ generatesthetorsion part of H1(N,) whichisacyclic subgroup
of order |¢|. Moreover, k = ¢~ and using (2.11) we deduce

(X(@) = 1)%*72 if x(p) #£1

? if x(p)=1.

T, (X) ~
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Observe that Lemma 2.42 isunapplicablein this case since ¢ isatorsion class. When
g = 0, then N, can be identified with the lens space L (1, —¢), and the only character
x such that x (¢) = listhetrivial character. In this case H1(N;) isatorsion group,
and we have (see Theorem 2.37 of §2.4)

T, (1) = 0.

To complete the determination of Ty, for ¢ > 0 we will rely on atwisted version of
the Gysin seguence.

Consider anontrivial character x : Hi(N;) — ST suchthat x (¢) = 1. The usual
Gysin sequence of thefibration Ny — X impliesthat x factorsthrough the morphism
7s: Hi(Ng) — H1(X), i.e. there exists anontrivial character 5 : H1(X) — ST such
that the diagram below is commutative;

H1(Ne)

TTx

The induced map x : Z[H1(N¢)] — C defines a system of local coefficients on N,
which we denote by C,,. Since x factors through the morphism =, we deduce that
it defines a system of local coefficients on the total space X of the associated disk
bundle. We denote this induced local system by C;. Using the Poincaré duality we
deduce that we have isomorphisms

Hi(X, Np; Cy) = HYX(X, C;) = HY X (2, C;) = Hi—2(Z, Cp).
The homological long exact sequence of the pair (X, Ny) can now be rewritten
o= Hp(Ng, Cy) — Hi(2,C;3) - Hp2(2,C;) — ---. (2.14)

Set b (x) = dimc Hi (2, Cy) and e(x) = bo(x) — b1(x) + b2(x). Thene(y) is
independent of x and we have

e(x) =e(l) =2—2g, Vy.

Ontheother hand, when x £ 1thenbg(yx) = b2(x) = 0. Thiscan be seen asfollows.
The 0-th cohomology space is naturally identified with the space global sections of
thelocally constant sheaf Cj. Since x isnontrivial there are no such sections. Hence

bo(x) =0, Vx #1
On the other hand we have a Hodge-DeRham duality

A H3(2,Cy) x HY(Z, Cz-1) — H*(Z, 0)



76 2 The Reidemeister torsion

s0 that
ba(X) =bo(x H =0, Vx#1

Thusbo(x) = ba2(x) =0,Vx # 1landsincee(x) = 2 — 2g we deduce

bi(x) =2—-2g, Vx#1

Using this information in the fragment £ = 1 of the sequence (2.14) we deduce that
we have a surjection

In particular, if g > 1 wededuce H1(N¢, K,) # 0 sothat in this case

When g = 1 then H.(N,, C,) = 0 and from the sequence (2.14) we deduce

T, (x) ~ 1.

Later in Example 2.57 we will explain how to extend the above technique to the more
general case of Seifert manifolds. For a different approach we refer to [31, 35]. We
also want to refer to [34, 81,2] whereit is explained how to obtain information about
the torsion of the total space of an arbitrary fiber bundle. O

It is known (see[41, 92, 96]) that any 3-manifold can be obtained from S by an
integral Dehn surgery on an oriented link in $3. A description of a 3-manifoldsasa
Dehn surgery on alink is known as a surgery presentation of a 3-manifold anditisa
very convenient way of operating with 3-manifolds. Many topological invariants can
be algorithmically read off a surgery presentation. Wewill spend the remainder of this
section explaining how to obtain almost complete information about the Reidemeister
torsion using surgery presentations. For the very basics concerning Dehn surgery we
refer to Appendix 8B.2 which we follow closely as far as the terminology and the
orientation conventions are concerned. For a more in depth look at this important
topological operation we refer to [41, 92, 96].

Suppose X = K1 U- - - UK, isan n-component oriented link in $2. We denote by
E the complement of a tubular neighborhood U of K < $3. Then E is an oriented
3-manifold with boundary. Moreover, H1(E) is afree Abelian group of rank », and
the collection of oriented meridians

{wis i=1...,n}

defines an integral basis. We denote by %; the canonica longitude of X; < §3
oriented such that
Aipi =1,
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where the above intersection pairing is defined using the canonical orientation of 0 E
asboundary of E. H1(dE) isafree Abelian group of rank 2» and the collection

i pwys i, j=1,...n}
isanintegral basis. Set
¢ij = LK(X;, K;) = Lk(X;, X;),

where Lk denotes the Z-valued linking number of two disjoint knotsin $3. Then the
inclusion induced morphism

Jj: HH(OE) — H1(E)

is described in the above bases by

Wi i A Y b
ki

We perform anintegral Dehn surgery on thislink with coeffici entsd = (di, ..., dy) €
7Z". The attaching curves of this surgery are

ci=dipni+r;, i=1...n.
Denote resulting manifold by M ;. The natural morphism
a: Hi(E) — Hi(M3,7)

isonto, and leads to the following presentation of Hy(N, Z)
Hy(E) > spanglcit i = 1.....n}) —2> Hy(E) — Hi(Mj) — O,

ci > diti + Y Lkifk.
ki
We denote by P = P; the symmetric n x n matrix with entries

o i #E
Pi=a ifi=.
The above presentation can be rewritten in the computationally friendly from
P
7" — 7" - H1(M3) — 0. (2.15)

Thecoresof theattaching solid tori definehomology classesin M ; whichfor simplicity
we denote by k;. Algebraicaly, these homology classes are the images via o of



78 2 The Reidemeister torsion

K; € Hi(E),i =1,...,n,where K; = j1;,and A} € H1(E) are homology classes
determined by the conditions

k}-c,-:zS,-j, i,j:l,...,n.
For example, we can pick
)L} = —Wj.
To compute the torsion of M ; we use the following consequence of Turaev’s surgery
formula Theorem 2.41.

Corollary 2.45.

n

ap(Te) ~ Tuy - [ [ — k), (2.16)
i=1

where ay: M(H1(E)) — N(H1(M)) is the morphism induced by o described in
8§1.5.

As explained before, it is convenient to use the Fourier transform trick described
in 81.6. To ease the presentation we set

G := Hi(E), H = Hi(M}).
Thenwa: G — H isan epimorphism, and by passing to duals we get an injection
a: H— G.

Wecanthusview H asasubgroup of G. TheFourier transform of T isa(generalized)
function Tz on G, and the Fourier transform of 7, m; isa(generalized) function Ty,

on H. Then (2.16) becomes the linear equation
n
TeG0 =Tu;00 - [[A1- %K), VxeH<G. (2.17)
i=1
The homology classesk; € H are represented by the vectors
Ki = —u; eG=7".

For each x € H weset x; := x([11i]), where [11;] := a(u;) € H. We can now
rewrite (2.16) as

TeGa o) =Ty O ox) - [ (= ). (2.18)
i=1

The next example will illustrate the strengths and limitations of the above surgery
formula.
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Example 2.46(Surgery on the Borromean rings). Consider the Borromean rings de-
picted in Figure 2.4. Denote by E the complement of this link. This link has the
property that any two of its components are unlinked unknots. Hence ¢;; = O,
Vi, j = 1,2,3. However, this link is nontrivial since its Alexander polynomial is
(see[8])

Tg ~ (1 — D(p2 — D(uz — 1).

X1

K2

Figure 2.4. Surgery on the Borromean rings.

Set M = M3,0,0). Notethat j hasthe simple form
Wi = Wi, A= 0.
The attaching curves of this surgery are
c1=3u1+Xr1, c2=2»Xi, c3=A3.

We can pick

The first homology group of M has the presentation
73 L 73 - Hy(M) — 0
where P isthe 3 x 3 matrix
300
P=|(000
000

Thus H = Hi(M) = Z3 @ Z? with generators [1], [i2], [13]. We deduce

H=Uszx (8% U,:={zeC" "=1},



80 2 The Reidemeister torsion

and (2.18) becomes

1= DO —DOE—D ~ Tu(xw x2o x3)L— x) A — x2)(L— x3),
V1, x2. x3 € St x3 = 1. We deduce

Tuaxz ) ~1 Yxa#l xe#1 x3# 1
Fix x1 # 1. Then ﬁM(Xl, X2, x3) isaLaurent polynomial in x2, x3 sothat we deduce

Tm(xw x2, x3) ~ 1, Vxi, x2, x3, x1# 1.

We natice that the surgery formula contains no information about T w (A, x2, x3). This
is the Fourier transform of T, which according to Theorem 2.37 is the Alexander
polynomial of M. O

Motivated by Lemma 2.42 we isolate a specia class of surgeries.

Definition 2.47. A closed 3-manifold M satisfying b1(M) > 0 is said to admit a
nondegenerate surgery presentation if there exists an oriented link X = X1 U --- U
X,  §3, and surgery coefficientsd € Z" suchthatif M = M j»and al the homol ogy
classes k; haveinfinite ordersin Hy(Mj). O

The nondegenerate surgeries can be easily recognized using the following elemen-
tary algebraic result.

Proposition 2.48. Consider an n-component oriented link X — %, and a vector
d e 7' SetG:= Hi(S3\ X). The surgery defined by the coefficients d is non-
degenerate if and only if for everyi = 1, ..., n there exists w; € Hom(G, Z) such
that

(II)I',PJ/,L]'):O, vVi=1...,n, and <17)1,Ml)750

Exercise 2.3.Prove Proposition 2.48. O

The proof of the following result is a smple exercise in Kirby calculus ([115,
§3.9)).

Proposition 2.49. Any 3-manifold M withb1 (M) > 0admitsanondegeneratesurgery
presentation.

Example 2.50. To fix the “deficiency” of the surgery described in Example 2.46 we
dide K> over X1. The link and the surgery coefficients change as indicated in Fig-
ure 2.5. This surgery is nondegenerate and produces the same 3-manifold as the
surgery in Example 2.46. The new problem we are facing is the computation of the
Alexander polynomial of the new link. We leave the quite unpleasant computation to
the reader.

o
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INC

3 K1

X2
X3

Figure 2.5. The effect of aKirby move.

The above discussion shows that we can compute the torsion of any 3-manifold
with b1 > 0 provided we have away to compute the Alexander polynomiasof linksin
$3. Thereareagorithmsfor computing Alexander polynomialsof links (seee.g. §B.1
and thereferencestherein), but this may not always be apleasant task. We will take up
thisissue again in the next chapter and explain how to extend the above consideration
to rational homology 3-spheres.

Example 2.51. Wewant toillustrate the above observations by computing the Reide-
meister torsion of the 3-manifold obtained by Dehn surgery on the two component link
depicted in Figure 2.6. Thetorsion of the complement E of thelink is the Alexander
polynomial of thislink which was computed in [26] and is

Axc(p1, p2) = 1 — pa + ud) (A = 211) — pépa(2 — ).

The linking number of these two knots with the orientations indicated in the figure is
Lk(X1, K2) = 2.

Figure 2.6. A two-component link.
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We perform a (4, 1) surgery on this link, and we denote by M the resulting
3-manifold. The group H = Hi (M) admits the presentation

P
Fy1 = spany(c1, c2) — Fo = spany(u1, u2)—H — 0,

- [47]

Ki=—-puet1, Ky=-—u2eF1.

where

Also,

Using the MAPLE procedure ismith we obtain
10 0 1 0 -1
[oo]-vrv v=[V 2] v-[0

This means that the bases {Vc1, Vo) in Fo and {U a1, U= Luo} diagonalize the
presentation matrix P. The coordinates of p1 and w2 in the new basis are

— 0 — 1
/’1’1 l ’ :LLZ 2 .
We denote by ¢ the generator in H. We deduce that

klz_gv k2:2g3

so that both these homology classes have infinite orders. In other words, this surgery
isnondegenerate. Let x € H \ {1}. The surgery formula (2.17) becomes

A—x+xD-(Q=20) - x*x72Q=0) ~Tu() - A—xHA - x>

<0 that .

A= x4+ xDQA+ 0 ~TuGO@ = x)?A+x)
which implies
1—x+x?

T 00~ g ]

Exercise 2.4. Compute thetorsion of the 3-manifold obtained from the Dehn surgery
depicted in Figure 2.5. O
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82.6 Plumbings

In this section we want to describe a special yet large class of 3-manifolds, and then
outline a method for computing their torsions. These 3-manifolds, known as graph
manifolds, or plumbings, play an important role in the study of isolated singularities
of complex surfaces. They are al obtained by gluing elementary pieces of the form
$1 x %, where ¥ isasurface with boundary. We begin by describing acombinatorial
method of catal oging these manifolds.

Start with agraph G. We denote by V the set of verticesand by E the set of edges.
The edges are oriented. We do not exclude the possibility that the graph has tails?.
We denote by T the set of tails, sothat 7 N E = ¢. Multiple edges connecting the
same pair of vertices or loops are also allowed. For each edge e we denote by v (e)
the final/initial point. For each vertex we denote by E:F the set of outgoing/incoming
edges, and by T, the set of tailsat v. St E, = Ef U E; , deg, v = |[EEX|, 1, = | T,
anddegv = deg, v + deg_v +t,.

A decoration of G isafunction

I'' E— SLo(Z), e+ TI'(e).

A weight on G isafunction g: V — Zxo. Denote by C the 2 x 2 matrix

-10
c-[29]
Suppose (G, V, E, T, g, ") isaweighted decorated graph. We construct a 3-manifold
with boundary as follows.

e Associate to each v € V a Riemann surface X, with degv boundary components.
Fix a bijection between the components of 3%, and E, U T,,. Set M, := St x %,
and denote by ©, thefiber of thistrivia fibration over X,,.

e For each v € V and each ¢ € E, fix an orientation preserving diffeomorphism
between the component 3, M, of M,, and the oriented standard torus ®, x 9.X%,.

e For each edge ¢ € E glue the torus 9. M,_(. to the torus 9,M,, () using the
orientation reversing diffeomorphism which is described by the matrix C o I'(¢) with
respect to the oriented bases

([88 Ev,(e)]’ [®v,(e)])’ ([ae Eer(e)]v [®v+(e)])

of Hl(aeMvi(e)).

After the aboveidentificationswe obtain an oriented 3-manifold with | T | boundary
components. We denoteit by M (G) and wewill say that M isageneralized plumbing
described by theweighted decorated graph G. G isalso known asthe plumbing graph.

2A tail is an arc with one boundary component a vertex of the graph, while the other is free.
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Thisisrelated to thetraditional plumbing construction described in [46, 88] where
the decorations have the special form

m 1
mn—1n

0 1 10
o[ 3] n=[9) wez

To see this, note that

107017 -1 0
CP’”~":[—n 1]'[1 oH—m 1]

and the expression in the right hand side is exactly the description of the attaching
map in [46, p.67]. Observe aso that 2 = —1and 7}, o T;, = Tyyyn, Vm,n € Z.

Despite its name, the generalized plumbing construction does not produce more
manifolds that the usual plumbing. To seethiswewill describe afew simple methods
of simplifying the combinatorics of a decorated graph G which do not affect the
topology of M(G). Assume for simplicity that there are no tails.

If G(V, E,{M,}, ') isaweighted, decorated graph we define its conjugate with
respect to asubset S C E to be the graph Gs(V, Eg, S, T's) such G ¢ has the same
edgesas G but theonesin S have opposite orientationswhile the others are unchanged.
Moreover

T'(e) = 4Py, =+ [ } — +T,DT,,

where

_ T, ifecE\S
Is(e) = _
Cr;ic ifeecs

Observethat CT,,1C = T,, and CP,,1C = P, .

Proposition 2.52. For any weighted decorated graph G(V, E, {M,}, I') and any sub-
set § C E the generalized plumbings M (G) and M (G s) are diffeomorphic.

Exercise 2.5. Prove the above proposition. O
Figures 2.7 and 2.8 represent pairs of conjugate weighted decorated graphs de-
scribing in one instance a circle bundle over a Riemann surface and in the second

instance a simple plumbing.

0 T, g 0 T, g
— —»e = - o

Figure 2.7. A degree d circle bundle over a Riemann surface of genus g.
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80  Pun 41 81 Pum 80
o-—>0 = o———>0

Figure 2.8: Plumbing a degree m bundle over a Riemann surface of genus gg with a degree n
bundle over agenus g1 Riemann surface.

Suppose (G, V, E, g, I') isadecorated graph and vg is avertex of G of genus 0
as depicted in Figure 2.9. The concatenation of G at vg is the decorated graph G,
obtained via the transformation of the graph G depicted in Figure 2.9. It consists of
replacing the two edges at vg decorated by I'. by a single edge connecting the two
neighbors of vg by a single edge decorated by ' - I'_. The following result is now
obvious.

Proposition 2.53. The manifolds M (G) and M (G,,) are diffeomorphic.

Figure 2.9. Concatenation.

To proceed further we need the following algebraic result.

Proposition 2.54. Denote by & C SL»(Z) the semigroup generated by the matrices
Pn+ ,n,m € Z. Then

,m

® = SLy(Z).
Proof. Since ®? = —1 we deduce that —1 = ®? € &. In particular
dl=—0ea.
Observe next that

Sz[(l) H:Pflecs and S‘lz[(l) _11]=¢2P+1,1e®.

Thus & contains the semigroup generated by {41, S, S~1, ®, ®~1} which coincides
with SL2(Z) (see[100, Chap. VIII]). o
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The above proposition implies that by applying the concatenation trick severa
times we can transform any decorated graph into one in which all the decorations are
of theform P,fﬁ .- Thusany manifold which can be obtained by ageneralized plumbing
can aso by obtained by atraditional plumbing.

Figure 2.10. A sphere with several holes.

Any compact, oriented Riemann surface, possibly with boundary, can be decom-
posed into Riemann surfaces of genus zero of the type depicted in Figure 2.10. We
have thus proved the following result.

Corollary 2.55. Any generalized plumbing is diffeomor phic with a regular plumbing
of circle bundles over Riemann surfaces of genus zero.

When the plumbing graph has no loops? the combinatorics of the problem simpli-
fies somewhat in the case of usual plumbings of circle bundles over spheres. First, we
no longer have to keep track of the genera of the vertices, since g(v) = 0, foral v. A
decoration can now beidentified with apair of integersm (e), andasigne(e) = +1
so that

U(e) =€) Tn, PTin_

Due to the equality CP,;}IC = P, ,, we deduce from the conjugation trick that the
orientation of the edge e is irrelevant. The decorated graph of a plumbing can be
simplified by performing the changesindicated in Figure 2.11.

:l:Pm,n
- e
I)
Y
— e
m + n

Figure 2.11. Describing aregular plumbing.

Define the Chern number of avertex to be

a) = ) m_()+ Y m(e).

ecEy ecEf

3These correspond to selfplumbings and lead to quite subtle phenomena; see [37].



82.6 Plumbings 87

The decorated graph then describe plumbings of circle bundles of degree ¢1(v) over
spheres, according to the undecorated graph. In the left-hand-side Figure 2.12 we

0 n 0o -2 + -2

o ——————¢ ¢ ——0
4] -1 1] 4

+ + + +
-1 + -1 +

¢ —— 0 ¢—————@

o -1 1o -2 -2

Figure 2.12. Plumbing —2-bundles over spheres.

have the decorated graph describing a plumbing of bundles over spheres. Each vertex
has Chern number —2. The usual graphical representation of this plumbing (defined
in[46, 88]) isshown in theright-hand side of Figure 2.12. In general, wewill drop the
numbersm 4 (e) attached to the edges of the graph, and we replace them with numbers
c1(v) attached to the vertices. From now own, we will use only this description of
plumbings over spheres. We will refer to this plumbing description as the usual,
regular, traditional etc. If additionally, all the edges have the same sign + we will no
longer indicated it on the plumbing graph.

Anusual plumbing diagram can be transformed so that the resulting manifold does
not change. For more details on this calculus with plumbings we refer to [78].

To compute the torsion of a plumbing we need to produce a surgery description
of such a3-manifold. Fortunately there is asimple way to do this. We follow closely
the prescriptionsin [37, 78]. Assume for simplicity that there are no loops®.

Figure 2.13. Surgery description of plumbings.

First, mark edgeses, . . ., ey, Of thegraph G sothat the graph obtained by removing

4We can eliminate them by concatenation.
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themarked edgesisaconnected tree. Now replace each vertex v of thegraph G withan
oriented unknot K, with surgery coefficient c1(v). If two verticesvs, v, areconnected
by a (marked or unmarked) edge of G, then locally link K,, to K,, away from the
other components asin Figure 2.13 so that the local linking between these to unknots
is equa to the sign along the edge connecting them. If the vertices v1 and v, are
connected by several edges we have to perform this local linking procedure several
times. The unknots K,, will be transformed into two unknots with linking number
equal the signed number of edges between v1 and v».

Next, for every marked edge ¢; introduce an unknot K; with surgery coefficient O
which linksthe unknots corresponding to theverticesof ¢; asin Figure2.14. For exam-
ple, the plumbing described in Figure 2.12 has the surgery description in Figure 2.15.

~(op

Figure 2.14. Simulating the cycles of the plumbing graph.

_2@”\

Figure 2.15. A circular plumbing of —2-spheres.

Exercise 2.6. Show that the surgery presentation in Figure 2.15 is nondegenerate in
the sense of Definition 2.47. O

Thedetermination of torsion viasurgery descriptionshasone computational limitation:
it requires the computation of Alexander polynomials of links with many components
and crossings which often can be avery challenging task. However, thellinksinvolved
in plumbings are quite special, and if the combinatorics of the plumbing graph is not
too sophisticated they can be obtained quite easily using the following simple facts.
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Proposition 2.56. (a) Ifthelink X’ isabtained fromthelink X by adding an additional
component C which isthe meridian of a component X; of X then

Ager ~ (i — 1) - Ax. (2.19)

(b) (Seifert-Torresformula, [98, 109].) Denote by X’ thelink is obtained fromthe
link X = X1 U---UX, by adding a component X, 1 which isa simple closed curve
on the boundary a thin tubular neighborhood of X,, of the form pi, + qu,, p # 0.
Then

Ager (U1, - ooy ng1) = Agc(itts o il s 1) (TP pns1 — 1), (2.20)

whereT =[];_; uf",e,- = Lk(X;, X, +1). Moreover, if X" denotes the link obtained
from X’ by removing the component X,, then

TP —1
1

Ager (L1 - oy Bn—1s Pnt1) = Agc(U1, - Hn—1, 1) - (2.21)

Exercise 2.7.Prove, without relying on (2.19), that the Alexander polynomia of the
link depicted in Figure 2.16 is~ (1 — ), where . denotes the meridian of the middie
component. (Hint: Find a simple CW-decomposition of the exterior of thislink, or
use the Fox free calculusin 8B.1.) O

—~

LY

Figure 2.16. A simplelink.

Exercise 2.8.Prove the identity (2.19). (Hint: Fix atubular neighborhood U; of X;
containing C. This allows us to regard the exterior of K as a subset of the exterior
of X'. Now use the Mayer—Vietoris theorem coupled with the computation in the
previous exercise.) O

Exercise 2.9.Prove (2.20) and (2.21). O

Exercise 2.10.Use (2.21) to compute the Alexander polynomial of the (3, 5)-torus
knot depicted in Figure 2.17. O

If the graph G of a plumbing is a (connected) tree, all its edges are positive, and
X = (Ky)vey isits associated link, then an iterated application of the trick (2.19)
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Figure 2.17. A MAPLE rendition of the (3, 5)-torus knot.

produces the equality

Tsayge ~ [ J(o — DOOVL, (2.22)
i=1
Things get much more complicated when the plumbing graph has cycles. In our
next examples we want to describe how to compute the torsion for simply connected
plumbing graphs and for the simplest non simply connected plumbing graphs.

Example 2.57(Thetorsion of Seifert manifolds. The case b1 > 0.). Consider  the
star-shaped generalized plumbing graph depicted in Figure 2.18. The center of the
star has genus g. All the other vertices have genus zero. All Seifert manifolds can be
described by such star-shaped plumbing graphs, with possibly more than three rays
(see[46]).

Applying the concatenation trick we obtain the simpler generalized plumbing de-
scription at the bottom of Figure 2.18 whereI'1, ', I's € SL2(Z). Denote the result-
ing manifoldby M = M(g,T'1, 2, '3). Let H := H1(M). To compute the torsion
of M weusethe surgery formulain Theorem 2.41. First we need to find apresentation
of H.

Denoteby X an oriented Riemann surface of genus g with 3 boundary components.
Then G := H1(S! x ¥) hasapresentation

G ={p,b1,b2,b3,c1,...,Cc24: b1+ b2+ b3 =0}

where ¢ denotes the homology class carried by the fiber S, b1, b, b3 denote the
cycles carried by the boundary components of X, and cy, .. ., ¢z, form asymplectic
basis of 1-cycles obtained by capping the boundary components of . The boundary
of §* x ¥ consists of three tori, and the manifold M is obtained by filling them with
solid tori U;, i = 1, 2, 3, attached according to the prescription given by I'q, I'2, I's.
Suppose

r,-:[p" x"] i=123
qi Vi
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Figure 2.18. A star-shaped plumbing.

We obtain the following presentation of H
H = {p, b1,b2,b3,c1,...,c28; b1 +b2+b3=0, —p;b; +qip = 0}.

The cores of the attaching solid tori U; define the homology classes K; represented
by —x;b; + y;¢. If we denote by rr the natural projection G — H we deduce

7 (Tsing) = Tu - (1= K1 — K2)(1— K2).
Thisimplies
3
i=1

To see how this works in practice we consider the special case g = 1 and

45
F1=F2=F3=[3 4].

| dentify the free Abelian group generated by b1, by, b3, ¢ (in this order) with Z#, and
the free Abelian group generated by b1, b2, b3, ¢, c1, c2 With 78. Then H admits the
presentation

Z4i>ZG—>H—>O,
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where _ _
1-4 0 0

1 0-4 0

1 0 0-4

P=1o0 3 3 3

0 0 0 O

0 0 0 0

We now use MAPLE's ismith procedure to reduce P to the Smith normal form

P=USV,
where
100 0 ] 3 3 -5 4 00]
0100 2 2 -4 3 00
S-—0040 U 3 2 -5 4 00
1000 36|’ ~ | -24 -15 39 -32 00 |’
000 O 0 0O 0 0 10
| 000 O | | O 0O 0 0 01]
and
10 -32 -3
Vo 01 -18 -17
~— o0 -7 -8
00 1 1
We deduce that
H = 22@24@Z36.
Wedenoteby e1, . . ., eg thenew basisof Z given by thematrix U —1. Then ez generates

the Z4-summand, e4 generates the Zzg-summand. The vectors es, eg determine an
integral basis of the free summand of H. They areimages of the basisvectorscy, ¢z €
H1(T?). The coordinates of ¢ in the new basis are given by the fourth column of U
andweseethat ¢ = 4eqin H. Fromthefirst three columns of U weread thefollowing
equalitiesin H.
b1 =e3+12e4, by =2e3— 15e4, b3z = e3+ 3es.

Thus K; = —5b; + 4¢p = —5b; + 16e4 and we deduce

K1 =—e3+28e4=—e3—8e4, Kyp=—2¢3+ 194, K3= —e3+ e4.
We obtain the following equation in Z[ H ]

(L—eD® =Ty — e3te®) (1 — e3ed®) (1 — egtes).
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The characters of H havetheform x = ptz1z2, p* = ¢ = 1, 71, z» € S1. When
we Fourier transform the above equation we obtain

Q-3 =Tu(p. ¢ 21, 220(A = pe®A - p% ) (A - p0),
Vp* = 36 = 1,Vz1, 22 € ST. Observe that
4.17=-4 mod36, 4.-8=-4 mod 36,
so that if we set

wo = wo(x) = ¢4, w1 = w1(x) = pc,
w2 = wa(x) = p?¢cY, wg=ws(x) = p¢ 7L,

3
a- wé)3 = l_[(l— a)g)

k=1

Note that the functions a)g, w;, i = 1,2, 3 are precisely the Fourier transforms of
o, [K;]l € Z[H], i =1, 2, 3. We conclude
(1-wh)® £ 3
A TonTwp@ay I izl —w) #0
Tm(p, ¢, z21,22) ~ (2.23)

? if TI>_,(1—w;)=0.

Toresolvetheambiguity inthelast equality wewill analyzein greater detail the gluing
process. Set X := St x ¥. We have aninclusion

#:H<— G, G=Hi(X).

Thefunctionswg, w;: H — S%,i = 1, 2, 3arerestrictionsof functionson G, namely
the Fourier transforms of ¢, [K;] € Z[G]. We will continue to denote these functions
on G by the same symbols as their restrictionsto H.

Suppose x € H isacharacter such that w;(x) = 1, for somei = 1,2, 3. Then
a)g‘(x) = 1. Wenow regard x asacharacter of G withtheproperty x (¢) = 1. Inother
words, x factors through a character y of Hy(Z). Asin Example 2.44, the character
x determines alocal coefficient system on X which we denote by K;. We can now
use the Kiinneth formula for homology with local coefficients, [6], to conclude that

Ho(X,Ky) = Ho(SY, C) ® Ho (2, Kj).

The groups H,(X, Kj) can be easily determined since X is simple homotopy equiv-
aent to awedge of circles (see Figure 2.19).
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&

2

Figure 2.19. A cellular Morse decomposition of the torus with three holes.

More precisely, H, (%, Ky ) is determined by the based chain complex

C1(c1. c2, b1, b2) 2 Co(v) = 0, 9¢; = (zi —Dv, 3b; = (Bi — Dv, (2.24)

where z; = x(ci), Bi = x(bi), i = 1,2. If weset by(x) = dimg Hy (S, Ky) and
e(x) = bo(x) — b1(x) + b2(x) then

e(x) =3, bax) =0,

DO =10 ity 21,

We deduce that if x # 1then
dimc Ho(X, K,) = dimc H3(X,K,) =0,

dime H1(X,K,) = dim¢c H2(X, K, ) = 3.

The manifold M decomposes as an union X U U, where U denotes the union of
the attached solid tori U;, i = 1,2, 3. Denote by V' the overlap of these two parts,
V =XnNU. Visanunion of threetori, Ty, T, T3. Fix x € H \ {1} such that

(1—w100)(1— @200)(1 — w3(x)) =0.

Iy ={1<i <3 w(=1.
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We distinguish two cases.

1. [Iy] < 3. The character x induces a local coefficient systems on each of the
parts X, U;, T;, i, j = 1,2,3, in the above decomposition of M. Moreover, the
local coefficient system induced by x on T; is trivial if and only if i € I,. This
follows from the fact that along both K;, and the attaching curve of the Dehn gluing
of U; the character x isequal to one. These two curves form abasis of H1(7;). The
Mayer—Vietoris sequence has the form

0— H3(M,K,) - Hy(V,Ky) - Ho(X,K,) - Hy(M,Ky) — ---
Now observe that
dimc Ho(V,K,) = |I| < 3=dim Hx(X,K,).

This forces Ho(M, K,) # 0sothat Ty () = O whenever |1, | < 3.

2. I, | = 3. Inthiscasethe Mayer—Vietorissequenceimpliesthat H,(M, K, ) = 0s0
that T (x) # 0. To compute the torsion we use the more refined version (1.8) of the
multiplicative property of theMayer—Vietorissequence. TheMayer—Vietorisseguence
for the homology with local coefficients defined by x reduces to three isomorphisms

0— Hi(V.Ky) 2 H(UKy) ® H(X,K,) — 0, k=012 (225
where ¢ isthedirectsum It e Mt e Myt @ j, and
J: H(V,Ky) = Hi(X,Ky)

is the morphism induced by the inclusion V — X. We need to fix cellular structures
on U, V, X, M such that the attaching maps I'; are cellular. On the other hand, as
explained in [72] on smooth manifolds the choice of cellular structure is irrelevant
as far as torsion computations are concerned, and we may as well work with cellular
complexes simple homotopic to the original choices. Next, we need to pick basesin
H (U, K,), H(V,K,), H (X, K,). Denoteby di(x), k = 0, 1, 2, the determinants
of theisomorphisms(2.25) withrespect to thesebases. Thecellular structureson X, U,
V, and the basesin the corresponding homol ogies produce viathe Euler isomorphisms
scalars
Euly, Euly, Euly e K;

The generalized multiplicative formula now implies that

da(x)do(x)
di(x)

L et usnow explain how to carry out the computations. Observefirst that therestrictions
of thelocal coefficientssystemto V and U aretrivia. Thespaces Hyo(U), Ho(V) have

Euly -Euly = £ Euly Ty (%) -
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canonical bases and since Ho(X, K, ) = 0 we deduce do(x) = 1. Next observe that
H>(U) = 0and H2(V') has acanonical basisinduced by the orientation.
We denote by C the complex defined in (2.24) and by D the trivial complex

05D =C2Dy=C—0

describing the homology of the fiber of X. We use the based complex C ® D to
compute the twisted homology of X. Asbasisof H1(%, K,) we choose

{b1, b2, (L —2z2)c1+ (z1 — Dz2}).

A quick look at Figure 2.20 showsthat (1 — z2)c1 + (z1 — 1)c2 = b1 + bo + b3. AS
basis of H>(X, K, ) we choose

{b1 x @, bo x ¢, b3 x ¢}.

z2c1

o O
N D1

b2 N

¢ 7102

b3

\

c1
Figure 2.20. The twisted homology of the torus with three holes.

We deduce that d2(x) = 1. We now choose {b;, ¢} as basisof H1(T;),i = 1,2, 3.

Since
1 _| 4 -5
I —[—3 4}

¢ (bi) = =3¢ ® b; € H1(U;) & Hi(X, Ky),
(@) =49 ®0 € H1(U;) ® Hi(X,Ky).

we deduce that

We conclude that dq(x) = +£43. It iseasy to check that Euly = 1 and Euly = £1.
It remains to compute Eul . This can be done using the based complex

0> A>=C1®D1—> A1 =(Co® D1) ® Ag = (C1® Dg) - Co® Dg — 0.
Concretely, thisis the torsion of the acyclic based complex
0— H2(X,Ky) — A2 @ Hi(X,K,) - A1 ® Ho(X,K,) - Ag — 0,
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where Hi (X, K, ) isidentified with a subspacein A;. A simple computation shows
that thistorsion is +1. Hence A
Tu() = +4°.

To determine the torsion we need to use the inverse Fourier transform,

1 A
Tv= D, TuWh, Tu)="7 > Tup &2, 22)p0E0).
heTors(H) pA=¢36=1

The surprising thing about the above formula is that a priori it is not immediately
clear that the inverse Fourier transform will produce an integer valued function. We
will present below an elementary argument proving this arithmetic fact directly. In
the process we will shed additional light on the algebraic structure of the torsion of a
3-dimensional Seifert manifolds.

The correspondences x +— w;(x) define morphisms I:Ii - st i =123
We denote by G; the range of the morphism w;, and by Z; its kernel. Observe
that Zo := Z1 N Z» N Z3 coincides with the identity component of A Denote by
I, : H — C the characteristic function of the subset Z; — H. Set

3
fir H—>C, fip,t,z1,2) =) of —4lz, i=123

k=0
Observe that .
]i;cjé if w; #1
filx) =
0 if w; = 1
This shows that

Tu(x) = 100 - 200 - f3(0) £ 8%z, ¥y € H.
Denote by # ~1[+] the inverse Fourier transform. We get
3

Tv=[]F A

k=1

where the above product is the convolution product on C[H]. Now observe that the
Pontryagin dual of G; can be naturally identified with atorsion subgroup of H, more
precisely the cyclic subgroup generated by [K;].

F Iz = Lk,
Next observe that
F o1l = eze,® = [K1] € Z[H],
FHwa) = e3e3’ = [K2] € Z[H],
F Ywsl = e3- es = [K3] € Z[H].
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Hence
3

3 3 3
Ty = ]‘[([Kj] - 42[1{,}5) + ]‘[4(2[19]").

j=1 £=0 ji=1 ¢=0
The sign ambiguity can be resolved using the Casson—Walker—L escop invariant of M,
[58], but we will not get into details. O

Consider a generalized plumbing given by the circular decorated graph at the top
of Figure 2.21. Such plumbings arise naturally in the study of cusp singularities (see
[45]). Using the concatenation trick we see that this graph is eguivalent with the
one-loop graph at the bottom of Figure 2.21. This 3-manifold fibers over S1, and
the monodromy is § = I',...T"1. Equivaently, this is the mapping torus of the
diffeomorphism S: 72 — T2. We will denote it by M. Given this very explicit
description of Mg we will adopt a direct approach.

r'y...I'oIMy

Iy I'y
Figure 2.21. An arbitrary circular plumbing.

Example 2.58(Thetorsion of circular plumbings). Denoteby A thestandard lattice
inR2. Weview S as an automorphism of Ag and we denote by A g the sublattice

As = (1— S)(Ag).
From the Wang exact sequence we deduce that we have a short exact sequence
0— Ao/As - Hi(Mg) — 7Z — Q.
Now we need to distinguish three cases.

1. Sis elliptic, i.e. | Tr S| < 1. There are very few such elementsin SL»(Z) and the
manifold M isvery special. Moreprecisely M isfinitely covered by a3-dimensional
torus so that it admits a flat metric. Moreover its diffeomorphism type belongs to a
very short list of Seifert fibrations over S2 (see [97, p. 443]). In particular, it can be
aternatively represented by a simply connected plumbing graph and the computation
isan iterated application of the Mayer—Vietoris principle which weleaveto the reader.
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2. S is parabolic, i.e. | Tr §| = 2. For example the plumbing in Figure 2.12 leads to

14
S:Pflz[o 1]

In this case My is an S'-bundle over atorus (see [97, p. 470]) and its Reidemeister
torsionis 1.

3. S is hyperbolic, i.e. |TrS| > 3. Inthiscasedet(1 — S) # 0,i.e. rank Ag =
rank(Ao) = 2. Fix asplitting of H = H1(My)

H=Gs®7Z, Ggs=Ag/As.

Observe that S(As) C Ag sothat S induces an action on RZ/AS which commutes
with the action of the deck group Ao/ A s of the cover

T :=R%/Ag 5 R%/Ag =: Xo. (2.26)
We have an explicit description of the universal Abelian cover Mg of Ms. More
precisely 5
Mg =R?/Ag x R.
The action of (g,n) € Gs ® Z = H on My isgiven by
(u,n)-(x,t) =(S"(g-x),t+n)=(g-S"x,t+n), Vix,t) e RZ/AS x R.

Denote by O < d1|d2, did2 = | det(1 — §)|, the elementary divisors of the sublattice
Ag. Fix aZ-basis {e1, eo} of Ag suchthat {d1e1, doeo} isabasis of Ag. We denote
by So the matrix representing S with respect to this basis,

andset B :=1— Sg. Then
didp =|detB| = |TrB|=12—=TrSo| =|(a -1 + (d — 1)|,

anddy = gcd((a — 1), b, ¢, (d — 1)). Denoteby D the 2 x 2 matrix diag(ds, d>) and
set

d
i a gb
So:= D 1SoD = € SLa(Z).
Z—;c d

The diffeomorphism S of X is described by the matrix Sop. It is covered by a diffeo-
morphism S of = described by the matrix So. S commutes with the action of the
deck group G 5. Note that we can identify G s with asubgroup of R?/A g and as such
it actson X by trandations.
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Fix n € Z-¢ and denote by Fix,, the fixed point set of §": g — Xo. For any
x € Fix, thediffeomorphism S defines a permutation of the fiber 7 ~1(x) of the cover
(2.26). Thisfiber is an orbit of the action of G5 on =. Since S commutes with this
action of G g we deduce that there exists g, € G such that

S"i =g, X, Vienmn lx).
Following [32, 33] we define the twisted Lefschetz index of S”

L(s")= ) L(S",x)g € Z[Gs],

xeFix,

where L(S", x) denotes the local Lefschetz index of the fixed point x of $". More
precisely
L(S",x) =sign(1— Sg) =sign(2 — Tr §p) =: €.
It is convenient to write
L(S") = ) Le(S"s.
8€Gy
Observe that

~ 1 -
Ly(S") = —L(5" - g).
|G sl

The homeomorphisms $" and §" — g of g are homotopic and using the L efschetz
fixed point theorem we deduce

L(S"—g)=L(S")=2—-Tr(S8) =2 —TrSh.

Hence

A - 1
L") =L(S"Is, Ts=-—— > (2.27)
| S|g€Gs

Define the twisted L ef schetz zeta function

¢ =ep(3 LS ) e QUGS (228)

n>0

Theresultsin[32, 33] show that the Reidemeister torsion of M isequal to the above
twisted zetafunction. To obtainamoreexplicit descriptionweintroduceanew variable

T :=7Jgt.
Since 35 = Jg in Q[G 5] we deduce that

T" = jstn.
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We can now rewrite (2.28) as
2 n "
CG%:WMZ;MSry)GQmﬂHHL
Asshown in Appendix 8A.2 the last expression simplifiesto

det(1—T7So) 1—(TrS)T +T? T?—-2T+1+(2—-TrSoT

O="a"712 T a-rz - A—17

If we now recall that |Gs| = |det(1 — Sp)| = |2 — Tr Sp| = |2 — Tr S| and we set
Gs = deGS g we can now rewrite the last equality as

J— o J— i — S
Tmg =¢(S) =1+s€ign(2-Tr S)—(l— T2

The last quantity belongs to the ring 9t2(H1(My5)) as predicted by Theorem 2.37. O

Remark 2.59. The computational examples presented in this section conspicuously
avoided plumbings defining rational homology spheres, i.e. 3-manifolds with finite
Hj. These plumbings graphs are trees, and al the vertices have genus zero. In the
next chapter we will deal with thisissue in great detail and explain an algorithm for
computing the torsion of any rational homology 3-sphere. O

Exercise 2.11.Compute the Alexander polynomial of the link in Figure 2.22, and
then compute the Reidemeister torsion of the 3-manifold described by the surgery
presentation indicated in this figure. Compare with the computation in the previous
example. O

Figure 2.22. A non-simply connected plumbing.
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§2.7 Applications

As mentioned in the introduction, the torsion captures rather subtle topological inter-
actions. Wewill illustratethe strength of thisinvariant by presenting the classifications
of the 3-dimensional lens spaces.

Recall that L(p, q) is defined as the quotient

L(p,q) = §%/o14
wherefor (r, p) = (s, p) = 1 wedenote by ¢, ; the action of cyclic group Z,, on
%= {(z1, 22) € € [ + |z2? = 1}
defined by therule
¢ ors (21,22) = (£"21, ¢ 22), V¢ =1

Observe that
L(p,q) = S3/or g, Y(p, k) =1

This shows immediately that 71(L(p, q)) = Z, s0 that the integer p is a homotopy
invariant of the lens space. The lens spaces

L(p,q), 1l<qg<p, (p,g)=1

have identical fundamental groups and homology so these classical invariants alone
do not suffice to distinguish them.

Theorem 2.60(Franz—Rueff-Whitehead, [30, 94, 120]). Two lens spaces L(p, go)
and L(p, q1) are homotopically equivalent if and only if

go=+t%q1 mod p (2.29)
for some ¢ € Z.

Proof. We denote the homotopy equivalences by ~.
Step 1.
q1=+?q0 mod p = L(p, q0) = L(p, q1)

For every integers k1, k2 such that (p, k;) = 1 define map fi, «,: §3 > 3 by
fi(z1,z2) = (|z1|(1_kl)z'il, Izzl(l_kz)zlﬁz)-
Observe that f has degree k1k>, and it isequivariant, i.e.

firkz (€ Ors (21, 22)) = € Okyrkas (21, 22)-
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Thisshowsthat f, x, induces amap
[fkl,kz] : S3/<>r,s - S3/<>k1r,k2s

of degree kiko. Fix a point p € S3 and a small ball B centered at p such that
gkor,sBﬂBzQ),VO<k<p. Set

p—1
U=|]J¢"orns B.
k=0

We can equivariantly modify fi, x, in U to change its degree by any multiple of p.
Suppose for simplicity that g1 = £2go0 mod p. Denote by rg the inverse of gg mod
p- Themap fi 14110 1S (01,49» Ot,e4,)-€QUivVariant so that it induces a map

[fli,fqlro]: L(Pa 610) - L(P’ q1).

We can arrange that deg fr,¢4,10 1S any number congruent to 0%g1r0 = 1 mod p.
In particular, we can arrange o that it has degree 1. Thus fy ¢4, induces an iso-
morphisms H,.(S%) — H.(S%). Using the Hurewicz and Whitehead's theorems we
deducethat f isahomotopy equivaence.

Clearly, [ fe,e41r0] induces an isomorphism between fundamental groups. Since
m(L(p, ¢i)) = mx(8%),i = 0,1, k > 2, and the morphisms

[fﬁ,llqlro]* LTk (L(p’ QO) — Tk (L(p1 Ql))

coincide with the morphisms (fr.¢g1r0)s : 7k (S3) — 7 (S%) which are isomorphisms
we deduce from Whitehead's theorem that f is a homotopy equivalence.
Step 2.
L(p.qo) ~ L(p.q1) = qo = £t?q1  mod p.
To seethiswewill usethelinking formof L(p, ¢) (seethe classical but very intuitive

[57, Chap. V] or [99, §77] or the more formal [5, p.366] for details). Thisis a
symmetric, bilinear map

Apq: Hi(L(p, @) x Hi(L(p,q)) — Q/Z

defined as follows. Pick ¢,d € Hi(L(p,q)) represented by smoothly embedded
circlesthen pd bounds a 2-chain D which we can represent as an embedded surface
with boundary pd. Denote by ¢ - D the (signed) intersection number of ¢ and D and
set

1
Apg(c,d):=—c-D mod Z.
p

Up to asign, the linking form is a homotopy invariant of the lens space. In fact, we
have (see [99] or Example B.8)

Apg(ku, ku) = —k*q/p mod Z,
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whereu isagenerator of H1(L(p, q)). If L(p, qo) >~ L(p, q1) thelinking forms must
be isomorphic. Thus there exists generators u; of H1(L(p, q;)) = Zp, i = 0, 1 such
that ug = fuy inZ, and

4o/ P = Apgo(uo, o) = £Ap g (Cur, Lug) = £€2g1/p mod Z. O

Since +2 is not a quadratic residue modulo 5 we deduce
L(5,1) % L(5,2).
On the other hand, since 2 is a quadratic residue modulo 7 we deduce
L(7,1) ~ L(7,2).
The reader can verify easily that two lens spaces L(p, ¢;), i = 0, 1 such that
q0==%q1 Or qog1==+1 mod p

are homeomorphic. We can thus parametrize the homeomorphism classes of lens
spaces by pairs (p, g) such that

1<g<p/2, (p.g)=1 (2.30)

Inthislist, some spaces are homotopically equivalent, e.g.L(7, 1) >~ L(7, 2). Wewill
show that no two lens spacesin thislist are homeorphic. Infact, we havethefollowing
result.

Theorem 2.61(Reidemeister—Franz [29, 90]). If (po, go) and (p1, g1) satisfy (2.30)
then

TL(po.q0) ~ TL(prqy = (P0,q0) = (P1,q1)-

Proof. The implication <= is obvious. Conversely, if T7(p0,q0) ~ TL(p1,q1) then
clearly po = p1 =: p. We have to show that if thereexistr € Z, —p/2 <r < p/2
and e € {£1}

1-0A-¢")=e"1-0)1-¢™), V=1
then go = ¢g1. The above identities are equivalent to
1-¢P=eg"(1-¢™)

foral ¢7 = 1. Assumefor simplicity that » > 0. Thisimplies that the polynomial of
degree < p
P(x) = ex" T — x90 — ex” + 1.

has p distinct roots. Thisimpliesr = 0, ¢ = 1 and go = ¢1. O

The last result implies that the Reidemeister torsion distinguishes the homeomor-
phism types of the homotopically equivalent spaces L(7, 1) and L(7, 2).
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Remark 2.62. The Hauptvermutung (Main Conjecture) asksif two of homeomorphic
simplicia complexesarenecessarily combinatorially equivalent. Theanswer isknown
to be positivefor manifolds of dimension < 3. Inavery beautiful paper [69], J. Milnor
has shown that the Hauptvermutung is false in dimensions > 6. More precisely he
considered the manifolds with boundary

X1:=L({7,1)x D", Xo=L(7,2xD", n>3

and then defined Y; as the (simplicial) space obtained from X; by adjoining the cone
on 9X;. He showed that the simplicial spaces Y; are homeomorphic but not com-
binatorially equivalent. The relative Reidemeister torsion captures the finer com-
binatorial structure. Surprisingly, the absolute torsion is a topological invariant (see
[101, 13]) and thusitisblind to the combinatorial structure. A few yearslater, R. Kirby
and L. Siebenmann (see [101]) have constructed topological manifolds violating the
Hauptver mutung. O



Chapter 3
Turaev’s refined torsion

In the previous chapter we have defined the torsion of acell complex X as an element
of Q(H1(X))/ = H1(X).

Inthebeautiful paper [113], Vladimir Turaev hasexplainedthe «/ H1(X) ambiguity
of thetorsion interms Euler structures. In the special case of 3-manifolds, these Euler
structures are equivalent to spin©-structures. In other words, the Reidemeister torsion
of a 3-manifold is rather an invariant of a spin® structure. In this chapter we will
survey these results of Turaev. We assume the reader is familiar with the basic facts
concerning spin and spin® structures on smooth manifolds, as discussed for example

in[37].

83.1 Combinatorial Euler structures

Suppose X is a connected, finite simplicial complex. Denote by | X| the associated
topological space, and by X’ the first barycentric subdivision of X. For each simplex
o of X wedenote by [o] its barycenter. Form the O-chain

ex =) (=DM [o] € Co(X).

oeX

If | X| were a compact, oriented manifold without boundary then, according to [43],
ex would bethe Poincaré dual of the Euler classof X. Observethat x (X) = Oimplies
that ey isaboundary.

Definition 3.1 (V. Turaev, [113]). Suppose x(X) = 0.
(&) An Euler chainon X isasingular 1-chain ¢ € C1(|X|) such that

dc = eyx.

(b) Two Euler chains ¢, ¢’ are called homologousiif the chain ¢ — ¢’ isaboundary.

(c) A combinatorial Euler structure is a homology class of Euler chains. We denote
by ¢ul. (X) the set of combinatorial Euler structures. O

A special case of Euler chain is a star-shaped 1-chain (suggestively called spider
by Turaev), consisting of acenter O € |X|, and paths from O to [o] for dimo even
and paths from [o] to O, for dimo odd (see Figure 3.1). One can prove easily that
any Euler structure is homologous to a spider. If Y is asubcomplex of X such that
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Figure 3.1. A spider.

x(X,Y) = 0then arelative Euler structureisasingular 1-chain ¢ in | X| such that

dc = ex)y = Z (—=DdMo4].

seXx\Y

We can define similarly a homology relation between relative Euler structure and
obtain aspace ¢ul. (X, Y).
The first homology group H := H1(X) actson €ul. (X, Y) in anatural way

kerd x 3 Yex) > (z,c) > z-ci=z+c.

Thisactionis clearly free and transitive so that ¢ul,. (X, Y) isan H-torsor.

Denote by | X | the universal Abelian cover of | X|. | X| isequipped with atriangu-
lation X. A family F of simplicesof X iscalled fundamental if it definesaZ[ H basis
of the simplicial chain complex C(X) viewed in a natural way as a Z[H]-module.
Equivalently, this means that each simplex of X is covered by exactly one simplex
ind.

Fix O € |X|,and O € | X| above O. If ¢ isaspider with center at O, then any path
y of c admitsan uniquelift 7 in | X | starting at 0. The family of endpoints of the lifts
y arethe barycenters of afundamental family. Conversely, if ¥ ¢ X isafundamental
family, then any collection of paths 7 starting at O, and ending at the barycenters of
the simplicesin F isthe lift of a spider, whose homology class is independent of the
choices of 7. We can thus identify® the space of combinatorial Euler structures on X
with the set of fundamental families of X.

One can prove that if X1 is a subdivision of X then there exists a natural H-
equivariant isomorphism

Cul(X) — Cul(X1).

1The idea of using spiders to construct Z[ H-bases goes back to Reidemeister [91]. See [102] for a
particularly nice presentation.
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Exercise 3.1.Prove the above claim. O

Since any two piecewise smooth triangulations of a smooth manifold have acommon
subdivision, the above considerations unambiguously define the space of combinato-
rial Euler structures on a smooth manifold.

In the next section we will present a different description of the notion of Euler
structure on a smooth manifold where the combinatorial structure does not intervene.

83.2 Smooth Euler structures

Suppose X isacompact, oriented, m-dimensional manifold, possibly with boundary.
We assume that the space of components of Y is decomposed into two digjoint parts
(possibly empty) and we writethisd X = 9, X U d_X. Itisconvenient to think of X
as an oriented cobordism between the two distinguished parts 0+ of its boundary (see
Figure 3.2).

_X a+X

Figure 3.2. An oriented cobordism.

Definition 3.2 (V. Turaev, [113]). A smooth Euler structure on (X, 91X, 0-X) isa
nowhere vanishing vector field V on X pointing outwards on 9, X and inwards on
_X. O

By the Poincaré-Hopf theorem we deduce that smooth Euler structures exist if
andonly if x(X,9+X) =0.

Two smooth Euler structures V, V' are called homologousiif there exists a closed
m-dimensional ball D c Int M such that the restrictionsof V and V' to M \ Int D
are homotopic as nowhere vanishing vector fields pointing outwards along 9, X and
inwardsalong d_ X . (The homotopy can behave arbitrarily along d D.) One can verify
easily that this is an equivalence relation. We denote by Cul (X, 94+ X) the space
of homology classes of smooth Euler structures on this oriented cobordism. When
9_X = P wewritesimply Euly(X, 3X).

It isuseful to compare the relation of being homologous with the stronger relation
of being homotopic. Consider acellular decomposition of (X, 3 X) which hasasingle
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m-dimensional cell. Given two nonsingular vector fields V, V', the first obstruction
to them being homotopic is given by an element (see[103])

V/V' e H"((X, 84 X) x (1,31); tp-1.(S" 1)
PD
~ H"Y(X,0,X) = Hi(X, 0_X),

where PD denotes the Poincaré duality. This obstruction vanishesif the vector fields
are homologous. If this happens, thereis still a secondary obstruction

§'(V, V') e H™ (X, 94X) x (I, 1); mm(S™™H)
= H™(X, 04X; mn(S™7h),

where
0 m=2
S H =172 m=3
Zo m > 4.

The above discussion shows that we have awell defined map
/: Culg (X, 0.X) x Culy (X, 04.X) — Hi(X,0_X), (U,V)—U/V,

which describes the first obstruction to U being homotopic to V. This operation
satisfies a few elementary properties. (Below we will think of H1(X,9_X) as a
multiplicative group.)

U/V=1 U=V. (E1)

/vy-(Viw)=u/w. (E2)
Vh € Hi(X,3X), VV € Culy (X, 04X),

Jaunique U € €uly (X,0+X) suchthath =U/V. (E3)

We will denote by % - V the unique element U postulated by (E3).
Wehavethusobtained afreeandtransitiveactionof Hy (X, 09— X) on Culg (X, 94+ X),

Hi(X,0-X) x Culy (X,04+X)> (h, V)= h -V € Cul; (X, 0+ X).

In particular, if 89X = ¢, the spaces of combinatorial and smooth structures on
(X, 0+X) must be isomorphic. A little bit later we will prove that there exists a
canonical isomorphism between these two spaces of Euler structures. We want to
present an explicit description of the action of H1(X) on Culy(X, 4 X). Assume
d_X =, sothat 9, X = 9_X.

Consider anelement & € H1(X, Z), and an Euler structure represented by avector
field U. Choose an oriented, simple closed curve ¢ representing 4 and denote by N
atubular neighborhood of ¢ < IntX. Thus N = D"~ 1 x s where ¢ = {0} x SL.



110 3 Turaev’'srefined torsion

$1 acts in an obvious way by rotations on N, and we denote by R the infinitesimal
generator of this 1-parameter group of rotations on N. Also, we denote by v the
obvious extensionto N of the (origin pointing) radial vector field on D"~ to avector
fieldon N. (Think of v asthegradient of thefunction d, (x) = dist, (x, £) whereboth
the distance and the gradient are computed using aRiemann metric g. Thisshowsthat
the choice of v isunique up to ahomotopy.) Modulo a homotopy we can assume that

U=—-R onN.
Assuming D™~ isthe disk of radius = define

v on X \ Int N
"~ |cos(r)R +sin(x)¥ on IntN,

where r: D™~1 — R denotes the radia distance. We call this operation the Reeb
surgery along h. In Figure 3.3 wetried to illustrate the differences between the flow
of U, ontheleft, and theflow of V, ontheright. ThenV/U = h € H™Y(X, dX; Z).
To see this notice that given any smooth (m — 1)-cell o of (X, 9X) we get amap

fr$"t = "L flga =V flga=U

such that deg( f) = #(¢ N o). The degree of themap f is precisely the obstruction to
deforming V|, to U |, keeping V|, fixed.

5)( )

1
T
\j
\
t
!

(
(

Figure 3.3. Reeb surgery

Remark 3.3. Indimension m = 3 there are countably many possibilities of framing
N = D? x $1, and any two differ by a sequence of Dehn twists. Thus the choice R
may not be canonical. However, any two such choices will be homotopic as nowhere
vanishing vector fields on D? x S because the only possible obstruction lives in
H?(S' x D?; 7Z) = 0. Thusthe Reeb surgery operation isawell defined operation on
homology classes of Euler structures. O
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Let us observe that the involution U +— —U on the space of vector fields induces
abijection
Culs (X, 0+ X) — Culs (X, 0-X).

Wewill denotethisbijection by U — U, and wewill call this map the conjugation of
Euler structuresWhen X isclosed the above bijection definesan involution on Eul(X),

Culy(X) 2 e~ ¢ € Culg(X).
For every ¢ € Eulg(X) we set
c(e) :=¢/e € H(X).
Proposition 3.4. If ¢ € €uly(X) is represented by the nonsingular vector field U

on X then c(e) is the Poincaré dual of the Euler class e(U+) € H™ 1(X), where
m = dim X, and U~ denotes the (m — 1)-plane sub-bundle of 7 X orthogonal to U.

Proof. Fix aCW-decomposition of X with asinglem-cell. Denoteby S1(U ) theunit
sphere bundle of U+ and by S1(7 X) the unit sphere bundle of TX. Set Uy = +U
and denoteby V asection of S1(U~) over the (m — 2)-skeleton. Thesection V defines
anatural homotopy (see the left-hand side of Figure 3.4)

U:[-1,1 x X2 — §y(TX), (t, %) Uy(x), Us1="Us,
connecting U_ to U inside the plane spanned by Uy and V.

1%

F-~-
a IR
!
o I
":E Ut |
Ag Aq

\
Ut v, A1

Figure 3.4. PD c(e) = e(UL).

Suppose o isan (m — 1)-cell of X with attaching map f: 90 — X" ~2 and set
Y = X"=2 U 0. Thenboth U, extendto Y. Set
S={-1xoU[-1L1]x00cU{l} xo =-A_1UAgU A;.

Fix atrivialization of T X over o sothat wecanview U asconstantsmapso — ™1
and V|3, asamap V: do — S"2, where weidentify $”~2 to the Equator on § 1
perpendicular to U. Now define (see right-hand side of Figure 3.4)

Ui OnAiq
U onAo.

H:S— 5" 1=
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Observethat deg H is precisely the obstruction to extending the homotopy U over the
o,i.e
deg H = (PD(e/?), 0 ) = (PD(c(e)), o ).

Onthe other hand, H ishomotopic to the suspension £V of themap V: do — §™ 2.
By Freudenthal suspension theorem [5, 44] we deduce

degV =deg>V = deg H.
Now observe that deg V is precisely the obstruction to extending V over o, i.e.
degV = (PD(c(e)), o).
This concludes the proof of the proposition. O

Theorem 3.5(Turaev, [113]). Suppose X is a compact, oriented, smooth, m-dimen-
sional manifold (possibly with boundary) equipped with a smooth triangulation

(K,L) <> (X, 0X).

Assume x (X, dX) = 0. Then there exists a natural Hy(X)-equivariant isomorphism
p: Cul (K, L) - Culy(X, 0X).

Thisisomorphismis compatible in a natural way with the barycentric subdivisions.

Proof. We will describe only the construction of p. For simplicity, we will do this
only inthe case 9X = ¢. First we need to introduce a bit of terminology.

Consider a line segment [«, 8] € R™ which we can assume to be of length 3.
Denote by V the set of pointsin R situated at a distance < 1 from this segment but
a a distance > 1 from its endpoints « and 8; see Figure 3.5. We denote by D,

ind, =1

Figure 3.5. A special vector field near a 1-dimensiona simplex.

(resp. Dg) the closed disk of radius 1 centered at « (resp. B). Weset B, := D, NV,
Bg := Dg NV (seeFigure 3.5).
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A special vector field near this segment is by definition anowhere vanishing vector
field u on V such that u = 075 ondV \ (By U Bg). A specia vector field defines a
map
i(x)

go:Bya— S"L x>

1
| (x)]
which is constant on 8 B,,.. We can regard g, as acontinuous map B, /9By, — S™ 1.

As such it has a degree which we denote by ind,, g ii. We can define indg i in a
similar fashion. Observe that

indy, g +indg, = O.

Clearly, for every n € Z we can find a specia vector field v, near [«, 8] such that

inda,ﬁ lj,l = n.
Denote by K’ the first barycentric subdivision of the triangulation K. For each
smplex o of K we denote by [o] its barycenter. If S = ([oo], [01],...,[0,]) iSa

simplex of K", (00 < 01--- < 0, aresimplices of K) then define a vector field v,
onint S by

Vi) = ) Li)x(x0)(oj] = x).

O<i<j<p

Above, Ao(x),A1(x), ..., Ap(x) denote the barycentric coordinates of x < IntS.
These vector fields define aflow on K we will refer to asthe Stiefel flow. The vertices
of K’ coincide with the stationary points of this flow (see Figure 3.6).

Figure 3.6. The Stiefel flow on a2-simplex.

For any 1-dimensiona simplex ([oo], [01]) of K’, the vector field V; is special
near this segment. Moreover, we have

indjo}. (01 V1 = 0.

Surround every vertex [o] of K’ by atiny openball D(o). For every edge ([o0], [01])
of K’ wedenote by T (o9, 01) as

T (00, 01) := (tubular neighborhood of ([o0], [01])) \ (D (00) U D(01)).
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Suppose now that
£= )" £(00.01)([00l, [01])

op<01

isan Euler chain. We can find anowhere vanishing vector field Ve on K \ |
such that the following hold.

D(o)

o<K

e V¢ isspecia near each segment ([oo], [01]) , 00 < 01, and
iNdjog).[01] V& = £(00, 01).

e Outside the union of tubes | J T (09, o1) We have

00<01
Ve = V1.
We will show that V;: extends to a nowhere vanishing vector field on K. Thisis
equivalent to the fact that the induced map
Ve: dD(o) — ™71
is homotopically trivial, i.e.
d(o) :=deg(Ve: 3D(0) — s" 1) =0.

Set
do(0) = deg(V1: 3D (o) — S"71).

In [43] it was shown that do(o) = (—1)%™°. (This identity is intuitively clear in
Figure 3.6.) Observe that

d(0) =do(0) + Y (i, Ve —indyy V1) + Y (indyy Ve — indsy V1)

o<n n<o
= (1M 4+ (Y s — Y Em o).
o<n n<o
On the other hand
>0 o) =05 = Y (Y s(.0) = Y &G0 )lo]
o o n<o o<n

from which it follows that d(c) = 0, Vo < K. Thus V; extends to a nowhere
vanishing vector field on X. The correspondence

E> Ve

establishes the isomorphism postulated in Theorem 3.5. O

Inthesequel wewill frequently switch between combinatorial and/or smooth Euler
structures so that we will drop the subscripts ¢ and s in Eul, .
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Remark 3.6. (a) One can define a notion of Euler structure which combines both
the combinatorial and the differential combinatorial aspects. If X is a closed, com-
pact, oriented smooth manifold such that x (X) = O, then following [49], we can
define an Euler structure asapair (V, ¢) where V is asmooth vector field on X with
nondegenerate zero set v—1(0) and ¢ is a smooth 1-chain such that

dc = v 1(0)

where the zeros of v are weighted by the Poincaré-Hopf signs. The notion of isomor-
phism is defined in an obvious way.

(b) One can give a combinatorial description of the conjugation of Euler structure.
Suppose X is asmooth, closed oriented manifold such that x (X) = 0. Fix asmooth
triangulation of X sowecanidentify X withapolyhedron. SupposetheEuler structure
e isrepresented by the Euler chainc € C1(X). ThentheEuler structuree isrepresented
by the Euler chain

= Z (_1)dim00+dim(7]_(o,0’ Ul) + (_1)dimXC‘

op<01

If we think of combinatorial Euler structures in terms of fundamental families of
simplicesin the universal Abelian cover, then we can give an even simpler description
of thisinvolution.

Suppose ¥ is a fundamental family representing the Euler structure e. Then the
Euler structure ¢ is represented by the fundamental family &, were  consists of the
cellsdual to the cellsin F. For proofs of these facts we refer to [113, Appendix B]. O

§3.3 W2) and Spin‘(3)

V. Turaev observed in [114] that the space of smooth Euler structures on 3-manifolds
can be identified with the space of isomorphisms of spin® structures. This identi-
fication has its origin in some low dimensiona representation theoretic “accidents’
which we will be discussed in the present section. In the following section we will
explain in detail the connection between spin® structures and smooth Euler structures
on 3-manifolds.

Recall that

Spin‘(n) = Spin(n) x U(1)/Zy, 7o = {(1,1), (=1, —1)} C Spin(n) x U(1).
In dimension 3 we have an isomorphism Spin(3) = SU(2), and the natural map
SU2) x St (T,2) — zT € U(2)

descends to an isomorphism Spin‘(3) = U(2).
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We want to discuss several facets of thisisomorphism. We denote by u (n) theLie
algebraof U(n), su(n) the Lie algebra of SU(n) etc. We begin by presenting a more
explicit description of the morphism U(2) — SO(3).

Consider the adjoint representation

Ad: U2) — Aut(u(2)).

The diagonal U(1) — U(2) isthe center of U(2) and thus u(2) splitsinto irreducible
parts
u@2=u)® (£(2)/£(1))-

Wedenoteby Adg: U(2) — SO(3) themorphisminduced by the aboverepresentation
of U(2) on the real 3-dimensiona space u(2)/u(1).

Moreexplicitly, the spaceu(2) /u(1) can beidentified with the orthogonal comple-
ment of 8,u (1) inside u(2). Thiscomplement isprecisely su(2). A matrix A € su(2)
has the form

A:['x .Z], xeR, zeC.
—z —lx

From this description we get a natural decomposition su(2) = R @ C. The rep-
resentation Adg associates to each unitary frame f := (fq, f,) of C? a matrix
Ado(f) € Aut(su(2)) asfollows. If

fi:[ui]’ ui, vi € C, lwil?+vil?=1,i=12

Vi

uiuo + vivp = 0.
so that
7. | U1 u2
then Ado(}) actson su(2) by
- ix z
ado()- | 5|
_ w1 w2 | ix z Uy v1
v v —z —ix | uz U2

|:i((|141|2 — Juz|?)x 4+ 2Im(u1iizz)) i(u1d1 — uab2)x + u1voZ — u2512:|

—z —ix

* *
Observe that if .
f= [” _u”] € SU®2)

v
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then
_ i(Jul? — [v|x — 2iTm(uvz) 2Juvx + u?z — 9%z
}_ 1x Z ) }* _
|:—Z —ix] . . '
In particular,
_ri o1 2P Ut
Ado(f)|:0 _i:|=2l .
itv —5(lul? = v[?)

L et us point out that the matrix which appears on theright hand side of the above equal -
ity is precisely the quadratic term which enters into the formulation of the Seiberg—
Witten equations.

The above description of the morphism U(2) +— SO(3) is obviously coordinate
dependent. We will now present a coordinate free description of this isomorphism.
Suppose now that V isareal, 3-dimensional, oriented, Euclidean vector space. Ob-
serve first that, as an SO(V)-module, V is isomorphic to the adjoint representation
of SO(V) onitsLiealgebra. (Thisisapurely 3-dimensiona phenomenon.) Thisis
given by the correspondence

Vove Xy = (v xe) eso(V). (3.
Above, “ x” denotes the cross product. It can be alternatively defined by
U Xv:.=xx(uAnv),

where x isthe Hodge operator. By fixing anonzero vector t € V wedetermine several
things.

e A subgroup G, C SO(V), the stabilizer of T with respect to the tautological action
of SO(V)on V. G, isamaximal torusin SO(V) so that G; = S1. TheLiealgebra
of G, isgenerated by the infinitesimal rotation X, in (3.1).

e An action of G; = S on the orthogonal complement V; of = in V. Thus, V; is
equipped with acomplex structure J, and a Hermitian metric

(u,v) := (u,v) —i(Ju,v),

where (s, «) denotes the Euclidean (real) inner product.

Now form the space
V. =Re&VZRe&R 7)oV, =Ca V,.

V, is equipped with a complex structure and Hermitian metric which depend on .
We will construct a representation

@r: U(V,) - SORT @ V;) = SO(V)
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asfollows. Define avector space isometry

) ir-0 (- ¢)
I.:V —su(Vy), RtdV,>(t, o) +— .
-0 ¢ _i[ ‘e
If T € U(V;) then ¢, (T) € SO(V) isdefined by the commutative diagram

. Ado(T) A
su(Ve) — su(Vr)

@ (T)
Vv —— V.

More explicitly, if

T::[Zl <"¢2)], z; € C, ¢; € Vg,

P12

then
t

¢

(12112 = |g2/Dt + 2Im(z10, ¢2)
¢r(T) |: :| = .

—it (2191 — 22¢2) + 21220 — (¢1, ) P2

Let us point out a confusing fact. We have produced two U(2)-representations on
R @ V. Thefirst oneisthe tautological representation

6: UCe V) »> Aut(Ce Vy),
and it is a complex representation. The second oneis
1®¢g.: U2 — Aut(Ra V),

anditisreal. Thefirst representation isthe complex spinor representation of Spin©(3)
and has (infinitesimal) weights {61, 62}. The second representation is precisely the
adjoint representation and its complexification has weights {0, 0, (62 — 61)}.

We have thus shown that a choice of an unit vector T € V canonically defines a
complex structure J; on R @ V and a morphism

UR®V, J;) = SO(V).

Let us point out another low dimensional accident. A
Denote by Herm(V) the space of hermitian structureson V := R @ V compatible
with the natural orientation. More precisely,

Herm(V) = {J € SOR & V); J? = —1}.
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Denote by ¢ thevector 1 » 0 € R @ V. One can check that the map

Herm(V) > J +— Jeg € S1(V) = unit spherein V,
isabijection. We denoteits inverse by

S1(V) > 1+ Jr € Herm(V).
The complex space V; is precisely (V, J;). Moreover, ¢, isamorphism
go: UV, Jp) — SO(V).
Finally, we want to explain why the map between classifying spaces
w: BU(2) — BSO(3)

induced by the morphism Adg: U(2) — SO(3) is ahomotopic fibration with homo-
topic fiber BS™. We will prove a more general result.

Lemma 3.7. Suppose
1 H< G f) G—1

isan extension of compact Liegroups. Then theinduced map between the cor respond-
ing classifying spaces

Bé: BG — BG

is (homotopically) a fibration with homotopic fiber BH.

Proof.2 Denote by EG — BG (resp. EG — BG) the universal (classifying) G-
bundle (resp. G-bundle). The natura projection

EG x EG — EG

is naturally G-equivariant, where G actson EG via¢ and diagonally on EG x EG.
We thus have a map

BG = (EG x EG)/G — EG/¢(G) = BG.

One can check easily thisis afibration with fiber EG/H = BH. O

2] am indebted to Stephan Stolz for this simple argument.
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83.4 Euler structures on 3-manifolds

Suppose X is a smooth, compact, oriented 3-manifold. Assume for the purpose of
this preliminary discussion that 9X = @. Then ¢ul (X) isan Hy(X)-torsor. On the
other hand, the space Spin©(X) of isomorphism classes of spin structureson X isan
H?2(X)-torsor. By Poincaré duality we have

Hy(X) = H3(X)

which shows there exist hijections Gul (X) — Spin°(X). In this subsection we will
construct onesuch canonical bijection. Thiswill requireafreshlook at spin€ structures.
Aswe have explained in the previous section, Spin€(3) = U(2) and

SO(3) =U(@2)/ U,

where U(1) liesinside U(2) asthe diagona subgroup. We denote by Adp: U(2) —
SO(3) the ensuing morphism.

Definition 3.8. Suppose X isafinite cell complex and P — X isaprincipal SO(3)-
bundle. We define a spin© structure on (X, P) asapair (F,a) where F — X isa
principal U(2)-bundle over X, and « is a surjective, U(2)-equivariant map

a: F— P.
where U(2) actson P viathe morphism Adp: U(2) — SO(3). O

The notion of isomorphism of spin¢-structures is obvious. We will denote by
Spin‘(X, P) set of isomorphism classes of spin® structureson X.

To obtain a homotopic theoretic description of Spin“(X, P) we need to use the
classifying spaces B SO(3) and B U(2). The morphism U(2) — SO(3) induces a
map

w: BU2) — BSO(3)
which is a homotopic fibration with fiber BS1 = CP> = K (Z, 2). Since thefiber is
2-connected there is only one obstruction to the lifting problem bel ow.

BU(2)

/

?
.// T
7
/
/

x /T BSO(3).

It is given by a three dimensional integral class, the third Stiefel-Whitney class
Wa(f) € H3(X,Z). Two such lifts will be homotopic once they are homotopic
over the two skeleton. The obstruction to homotopy is given by a single primary
obstruction in H2(X, Z). We obtain the following result, very similar in spirit to
J. Milnor’s characterization of spin structurein [71].
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Proposition 3.9(Gompf, [40]). Suppose X isa compact CW-complex, and P — X
isa principal SO(3)-bundle. Denote by X the k-skeleton of X. A spin‘-structure
on P isaU(2) structureon P|y@ which extendsto P|y).

Two spin-structures (F;, «;), i = 1,2 on P are isomorphic if and only if the
restrictions of F; to the 2-skeleton of X are isomorphic as U(2)-bundles. Moreover,
the group H?(X, Z) acts freely and transitively on Spin¢(X, P), i.e. Spin°(X, P) is
naturally an H2(X, Z)-torsor.

SupposeY <« X isasubcomplex, P — X isaprincipal SO(3)-bundleon X, and s
isahomotopy classof sectionsof P|y. Then P definesan SO(3)-bundle[P] — X/Y.
We define aspin® structureon P relativeto (Y, s) to beaspin® structureon P induced
by a spin© structure on [P] via the natural projection X — X/Y. The notion of
isomorphism is the obvious one.

We can provide a more geometric description of the notion of spin® structure.
Denote by V the rank 3 real vector bundle P x, R3 where p: SO(3) — Aut(R3)
is the tautological representation. Any nowhere vanishing section r of V defines a
spinc-structure on o, on P asfollows.

e Form therank 2-real vector sub-bundle V; < V spanned by the vectors orthogonal
to . We arient V; using the convention

or(V) = (r) nor(Vy).

We have thus equipped V; with aU(1)-structure.
o Form the oriented, rank 4 real vector bundle

vrzg@vgg@h:)@vr-

The above decomposition equips V. with a complex structure defining a principal
U(2)-bundle Fy = Fr(V;) — X. Asexplained in 83.3, the vector field t definesa
lift

@ Fr(V;) > Fr(V) =P

which is the spin© structure associated to the vector field . We denoteit by o;. The
associated bundle of complex spinorsisthe complex bundle V; and it has determinant
line bundle V;. We denote it by det(c) = det(o,). Observethat if h € H2(X) and
o € Spin“(X, P) then

det(h - o) = det(o) + 2h, (3.2

where
H?(X) x Spin°(X, P) > (h,0) — h -0 € Spin°(X, P)

denotes the action of H1(X) on Spin‘(X, P), and we have used the identification
between complex line bundles on X and H2(X) given by the (integral) first Chern
class.

Thediscussion at theend of §3.3 showsthat achoice of spin® structureisequivalent
to achoice of anowhere vanishing section of T X. Two choices of such sections lead
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to isomorphic spin‘-structures if and only if they are homotopic over the two skeleton
of X.

Exercise 3.2. Formulate and prove the counterparts of the above statements for rela-
tive spin© structures. O

Inthe special casewhen X isaclosed, oriented threemanifold suchthat x (X) = 0,
and V = T X we deduce that the correspondence

nowhere vanishing vector field T on X — o, € Spin“(X)

induces a bijection
Cul(X) — Spin“(X), e o..

Proposition 3.4 implies that
PD c(¢) = det(o,).

The above discussion also shows that the above map is H2(X, Z)-equivariant.

Finally, wecan equivalently describeaspin®-structureasanelement u € H2(Fr x),
Fr x :=theprincipal bundle of oriented orthonormal framesof T X, whose restriction
to each fiber is a generator of H%(SO(3)) = Z,. The correspondence between these
two descriptionsiis clear.

A nowhere vanishing section = of 7 X definesatrivial complex line sub-bundle of
the rank two complex vector bundle V, := (t) @ T X. We thus obtain atrivia U(1)
sub-bundle of F = Fr v, We then construct the line bundle

T
Lo:=F— F/Ul) =Fry.

Thentheclassu := c1(L£;) € H2(Fr x) restricts to the generator on each fiber.
In terms of the second interpretation, the action of H 2(X,7Z)on Spin©(X) hasthe
description
x-u=nix4u, uecH?*Fry), x e H¥(X),

where 7x: Frxy — X isthe natural projection. (The above action of H2(X) on
H2(Fr x) obviously preserves Spin‘(X) c H2(Fry).)

Thegroup of orientation preserving diffeomorphismsof X inducesanatural action
on ¢ul (X), and thus an action on Spin‘(X).

The case of 3-manifolds with boundary deserves specia consideration. Suppose
X is a compact, oriented 3-manifold with boundary 9X a union of 2-tori. Let us
now point out the remarkable fact that the tangent bundle of atorus S has a canonical
framing induced by an arbitrary diffeomorphism

$: S — St x st

Exercise 3.3. Prove that the homotopy class of the framing of 7' S described aboveis
independent of the diffeomorphism ¢: § — ST x S1. O
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The restriction of the SO(3) bundle T X to the boundary X has a canonical
trivialization induced by the outer normal section

D:0X — TX|ax,

and the canonical framing of 79 X. We can thusdefine spin® structureson X relativeto
dX and the above canonical framing of T X|;x. The notion of relative spin© structure
can be given a more geometric description.

Fix for convenience a Riemann metric g on X and denote by n the unit outer
normal. Recal that R denotes the trivia real line bundle over a (generic) space.
Observe that the rank 4- vector bundle

Vor=R®TX)hx = (R® (n)) ® THX,

is canonically atrivialized U(2)-bundle. We denote by Jo the complex structure on
Vo. A relative spin‘ structure is then aU(2)-structure J on V := R & T X together
with an isomorphism ¢: V|3x — Vo. Two réelative spin‘ structures o; := (J;, ¢;),
i = 0, 1arecdledisomorphic if there exists an isomorphism ®: (V, Jo) — (V, J1)
which makes the following diagram commutative.

®
(V, Jo)lax (V, J)lax

WS

Vo, Jo).

Thespace Spin©(X, d X) of isomorphism classesof relative spin© structuresisnaturally
an H2(X, 9X)-torsor. We have an obvious H(X, 3X) map

Cul(X,0X) — Spin°(X,9X), er> o(e),

which must be an isomorphism. The group of orientation preserving diffeomorphisms
of (X, 9X) actsnaturally ¢ul(X, 3 X), and thus onthe space of relative spin©-structures
aswell.

Forany o = (V,J) € Spin‘(X, dX), the determinant line bundle det(c)|3x is
equipped with a canonical nowhere vanishing section so that we have a well defined
class

c1(det(o)) € H*(X, 0X).

Theidentity (3.2) shows that the map
c: SpIn‘(X, 0X) - HA(X,3X), o c(o):=ci(deto)
isone-to-oneif H2(X, 3X) has no 2-torsion.

Example 3.10. Suppose X isthe solid torus ST x D?. The relative spin‘-structures
o on X are uniquely determined by

c(o) :=c1(deto) € H*(X,0X) = Hi(X) = Z.
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Denote by (r, 8) the polar coordinates on D2 and by ¢ the angular coordinate on S2.
Consider the nowhere vanishing vector field V on X defined by

V(r,0,¢) :=cos(nr/2)d, + Sin(zr/2)0,.

Thevector fieldsin(rr/2)0, —cos(rrr/2)d, isasection of V-1 which vanishestransver-
sally exactly along the core of the solid torus. Thus, if oy denotes the relative spin®
structure determined by V then

Coy = £[C] € H1(X)

where [C] denotes the oriented core, i.e. the cycle ST x {0} € X. We deduce that for
any spin‘ structure o € Spin©(X, 0X) we have

c(o)=02n+Dlc], neZ.

The canonica spin® structure on the solid torus is the spin© structure ocay Uniquely
determined by the condition
c(ocan) = —[C]. o

Example 3.11. Suppose
X=1xS8*'xsY 1=[-11].

We can regard it as a trivial cobordism between 9_X := {—1} x T2 and 9, X :=
{1} x T2. The longitudinal vector field 9, induces a canonical spin® structure og €
Spin(X, 94 X).

On the other hand, we can regard X asa3-manifold with (disconnected) boundary
dX. The space Spin®(X, 8X) isan Hy(X) = Z2-torsor. Since Hy(X) = H2(X, 3X)
has no 2-torsion we deduce that the map

Spin°(X, 0X) 3 o > c1(det(o)) € HX (X, 0X) = Z

is one-to-one. Hence, in this case a relative spin©-structure is uniquely specified by
the associated determinant line bundle.
Observe first that the image of Spin‘(X, 8X) in Z? viathe above map is

e+27, §el?
We claim that £ = 0. To seethis, frame T X using the moving frame
(e1, e, e3) := (0, Og1, 0g2).
Now defineI'g € Vect (X) by

To(t, 61, 6%) = sin(rt/2)eq + cos(rt/2)es.



§3.4 Euler structureson 3-manifolds 125

Clearly I'g points outwards on 9 X. Moreover, the vector e, defines anowhere vanish-
ing section of (I'g). This shows that the relative spin® structure induced by I'g has
trivial determinant and thus € = 0.

We will denote by og the spin© structure induced by I'g and we will refer to it as
thetrivial spin structure on thetrivial cobordism. O

The vector field I'g constructed in the above example has the following obvious
universality property.

Lemma 3.12. Suppose X is an oriented 3-manifold with boundary an union of tori.
Fix a tubular neighborhood U of 39X — X of theform[—1, 1] x X oriented such
that 9, isthe outward pointing longitudinal vector field. Then any nowhere vanishing
vector field V pointing outward on 9 X is homol ogousto a vector which coincideswith
Ipgalong U.

Fix a tubular neighborhood U of dX as in the above lemma. Suppose V is a
nowhere vanishing vector field on X whichisequal to 3, along U. Define the vector
field V by

_ —V inX\U

~|ro inU.

This operation induces an involution

Cul(X,0X) — Cul(X,0X), er>ce.

Proposition 3.13. Let ¢ € ¢ul(X, 9X). Then
e=c(o(e) e
i.e c(o(e)) =c(e/e).
Exercise 3.4.Prove the above resullt. O
The conjugation operation on Euler structure translates to an involution
Spin‘(X, 9X) — Spin‘(X,0X), o > &.

Suppose now that a closed, oriented 3-manifold X is decomposed into two, manifolds
with boundary by an embedded torus (or union of tori) %,

X =XoUX1, 0X;=(-1'®, i=01
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Fix atubular neighborhood U of ¥ < X whichisorientedly diffeomorphicto 7 x X.
Enlarge
Xi—> X, =X;Ulxx, i=01

Any nowhere vanishing vector field V; on X; which points outwards on 3X; can be
assumed to coincidewithT'oonU =1 x ¥ C X;,i =0, 1. Thus

Vo=Vi onl x ¥ = XoN X1,
so that we can form the glued vector field on X
V = Vo#V1.
It is easy to see that thisinduces a map
#: Cul (Xo, 0X0) x Cul (X1, 0X1) — Cul(X).

This pairing is not necessarily injective and/or injective. We will refer to this pairing
asthe gluing operation.

83.5 The Reidemeister—Turaev torsion of Euler structures

Suppose X isaconnected, finite ssimplicial complex suchthat x (X) = 0. Fix pg € X.
Set H := H1(X) and denote by

n:)?—)X%)A(/H

the universal Abelian cover. Fix pg € X covering po.

Pick now an Euler structure e € ¢ul (X) which we can represent by a spider s
centered at po. s admitsauniquelift to aspider § on X centered at po. TheO-chain 95
depends only on the homology class of the spider s, i.e. only on the Euler structure ¢!
Every point ¢ € 95 isthe barycenter of asimplex ¢, of the triangulation of X induced
by the triangulation of X. Itisclear that if g1 # g2 then ¢,, and ¢,, do not cover the
same simplex of X. This means that the collection

c. = {¢g: q €94}
isageometric basis of the Z[H]-moduleg(}?), and we can now define
Tx,e.po = T(C(X). €. po) € QUH)/ £ 1.

The +1 is due to the multiple choices of orderings/orientations of ¢. Moreover, since
x(X) = Owecanseethat T . 5, isindependent of po. Thus, we can use the notation
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Tx ... Wewill call it the Reidemei ster—Turaev torsion of the Euler structuree. Observe
that
Txne~h-Txe, VheH, e¢ecCul.(X).

Above, “~" denotesthe equality in Q(H)/ £+ 1.

This refined torsion was defined in terms of asimplicial structure on X. One can
prove, much likein the un-refined situation, that thistorsion isinvariant in an obvious
sense under subdivisions and simple homotopy equivalences. For details we refer to
[113, 83,4].

One can get rid of the £1 ambiguity by ordering and orienting the simplices of X.
A choice of ordering and orientations on ¢ clearly induces an ordering and orientation
onany lift ¢,. An equivalence class of orderings and orientations of the simplices of
X iscompletely determined by an orientation of the homology space H, (X, R). This
can be seen using the Euler isomorphism

Eul: Det(Cy«(S(X)) ® R — Det(H. (X, R)).

We define a homology orientation on asimplicial complex X to be atrivialization of
the determinant line Det; H, (X, R). Fix ahomology orientation o. For any geometric
basis ¢ of C,(X) we define asin Remark 2.40.

e(c, 0) = signEul (det(c)) € Det(H, (X, R)) = R.

If ¢ isageometric basis of C..(X) and s isa spider representing a fixed combinatorial
Euler structure e, then we get a geometric basis ¢, of the Z[ H1(X)]-module C*()?)
which coversc. We usethishbasisto computethetorsion, and wedefinethesign-refined
torsion of (X, ¢) to be

Tx.e.o i=€(¢, 0)T(Cx(X), &,).

This quantity is independent of the geometric basis ¢. The relative Reidemeister—
Turaev torsion is defined in asimilar way (see[113, 117]).

83.6 Arithmetic properties of the Reidemeister—Turaev torsion
of 3-manifolds

This section is a refinement of §2.4 where we proved several arithmetic properties
of the torsion of 3-manifolds. We take-up this subject again, emphasizing the new
aspects due to the sign, and spin®-refinements introduced in the previous section. For
moreinformation, and detailswe refer to [ 114, 116] which served as our main sources
of information.

Denoteby X thecollection consisting of triplets (M, o, o) satisfyingthefollowing
conditions.
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e M isacompact, smooth, oriented 3-manifold, possibly with boundary consisting of
an union of tori.

o0 € Spin“(M, dM).

e 0 is an enhanced homology orientation. This means that if b1(M) # 1, then o
is an usua homology orientation, and if by (M) = 1, then o is an orientation of the
one-dimensional real vector space H1(M, R).

We denote by 361“ the subfamily of X* consisting of manifolds with positive b1.
Remark 3.14. A closed oriented 3-manifold admits a natural homology orientation
defined by the Poincaré duality. Similarly, the complement of an oriented link in a
rational homology sphere admits a natural homology orientation (see [116, 83]) for
details. Inthesequel if an admissible manifold iseither closed or it isthe complement

of alink in arational homology sphere we will tacitly assume it is equipped with the
natural orientation, unless indicated otherwise. O

For (M, o,0) € X+ wedenote by Ty/..0 € Q(H1(M)) the sign refined Reide-
meister—Turaev torsion of the pair (M, dM) and the Euler structure o . It satisfiesthe
following properties.

‘J‘M’h.o‘,o ~ h‘J{M’g’g, h e Hl(M), o € SpinC(M, 3M), (3.3)
where we recall that ~ denotes equality up to asign. In particular
Moo = Tié.0 =(5/0) 0.0 =c(0) Tt o0 (34)

We can be much more precise about the signs in the above formula. More precisely,
we have (see[113, Appendix B], [116, Appendix 3])

TMo.o = (=10 Ty, o = (=M (o)1), ,. (35)

Example 3.15. We have defined the canonical spin© structure ocan on the homol ogi-
cally oriented solid torus Z = D? x S with axis K = {0} x S* by the equality (see
Example 3.10)

c(ocan) = K1 € Hi(Z).

The torsion of the canonical spin‘ structure ocay iSthen
Tz~ 1-K)™L O

Remark 3.16. Suppose M is closed (and equipped with the canonical homology ori-
entation). We denote by Spin(M) the space of isomorphism classes of spin structures
on M. ltisnaturally an H1(M, Z5)-torsor. There exists a natural map

Spin(M) — Spin“(M),  Spin(M) > € — o (€) € Spin“(M).
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Its image consists exactly of the fixed points of the involution o — & on Spin‘(M).
For every spin structure e on M we set

TM,G = TM,O‘(G) € Q(H).
The symmetry properties (3.4) and (3.5) imply
TM.e = iM,e, Ve € Spin(M).

When M isarational homology sphere the map € — o (¢) isan injection. O

To list the other properties of the sign-refined Reidemeister—Turaev torsion we need
to discuss separately several cases. Let M, 0, 0) € X+, and set H := Hy1(M).

A. b1(M) > 2. We already know that Ty ., € MN2[H] (see §2.4).

B. b1(M) = 1. Here we distinguish two subcases.

B.1. 0M = (). We already know that Ty, , € M2(H) (see §2.4). We can be much
more precise. The orientation o on Hy(M, R) defines a bijection H/ TorsH — Z,
and thus a surjection

deg,: H — Z.

Fix anelement T € H suchthat deg, T = 1. Asin 81.5 we set

Gu:= Y heZH].
heTors(H)

Then (see [114, §4.2])

deg, (c(0)) +2
2

Supposethat o = o (€), € € Spin(M). Then deg, (c(¢)) = 0, and the above equality
takesthe form

Tvo + AL-T)16y —1-T)"26y c Z[H]

T

Set deg; := max(deg, 0), and define

TM,e,o -

56y € QH), Ty.=Tme— Wa.

T
o N N
Wy = § deg, (h™)h = T-1

heH

Observe that _

Wy =Wy
which implies that 71\04,5 isan element of Z[ H] symmetric with respect to the conju-
gation in Z[H]. We will refer to Tp, _ as the modified Reidemeister—Turaev torsion
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of M. Itisindependent of the orientation of Hy(M, R) For reasons which will be-
come apparent in 84.1, we will refer to W), asthe wall crossing term defined by the
orientation of H1(M, R). Thus

Theo = Thyeo + Wi (3.6)
We set
AMeo=A—=T)Tyco € Z[H].

As our choice of notation suggests, one should think of Ay ., as arefined version
of the Alexander polynomial of M. Thisintuition agrees with the identitiesin Theo-
rem 2.37. We deduce from the equality (3.6) that

Apeo=1-T2Ty +T6.
If we take the Fourier transform of the above equality we deduce
Ap.e(1) = | TorsH|

which is precisely the Alexander formula.

B.2. 9M = S x S1. Inthiscase M can be viewed as the complement of aknot in
a rational homology sphere. An orientation of the knot induces a natural homology
orientation. In this case Hiy(M) = O for k£ > 1 and the homology orientation defines
asaboveasurjectiondeg, H — Z. Chooseanelement T suchthat deg, 7 = 1. Then
(see[114, 84.2])

Troo— (1 —T) 16y € Z[H]. (3.7)

In particular, thisimplies Ty » € 1(H) as established in Theorem 2.35.
C.b1(M) = 0. ThusaM = ¢ and we know that Tys » € M(H). Interms of Fourier

transform this means that A
Tu.s() =0.

Thistime Ty» ¢ Z[H] but the torsion still has some extra arithmetical properties.
More precisely, if og isthe canonical homology orientation, then (see [114])

TM.o.00(€ —1D(h—1) = —IKky(g,h) mod Z, Vg,he Hi (M), (3.8)

where lkys: H1(M) x H1(M) — Q/Z isthe linking form of the rational homology
3-sphere M.

Observe that if (M, o, 0) € X, then any orientation preserving diffeomorphism
f of M induces anew enhanced homology orientation f*o and anew spin® structure.
Definee(f) € £1 by the equality f*o = €(f)o. Then

T, fro. 150 = €()e(f*0/0) fe(Th.0.0)- (3.9)
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83.7 Axiomatic description of the Reidemeister—Turaev torsion
of 3-manifolds

Denote by X the collection consisting of pairs (M, o) satisfying the following condi-
tions.

e M isacompact, smooth, oriented 3-manifold, possibly with boundary consisting of
an union of tori. We will refer to such amanifold as admissible.
oo € Spin“(M, aM).

We denote by X, the subfamily of X consisting of manifolds with positive b1.
We summarize the results established so far. The Reidemeister—Turaev torsion is an
invariant

X5 M,0) > Tyo € QHi(M))/ £1
satisfying the following properties.

Axiom 0. Integrality.

Th.o € {%[H] oM =0 o Spint (M, 9M).

M[H] if oM # ¢,
Axiom 1. Topological invariance. The map
Ty.e: SPIN“ (M, 0M) — N[H]/+£1, o+ Tye,

is Hi(M)-equivariant, and moreover, if f: M — M’ is an orientation preserving
diffeomorphism then

Tu, rror R c(f*0/0) fx (T o).

Axiom 2. Excision. Suppose M isan admissible 3-manifold,and L = L1 U---UL,
isan oriented link in M such that [L41], ..., [L,] haveinfinite ordersin H1(M). (In
other words, M istheresult of anondegenerate Dehn surgery.) Denote by Z; asmall,
open tubular neighborhood of L; < M and set

E:=M\ (Oz,-).

i=1

Denote by o; the canonical spin® structure on the solid torus. Then, the elements
(1 — [L;]) areinvertible in 911 (H1(M)) (cf. Lemma 2.42 in §2.5), and for every
o € Spin‘(E, dE) we have

i#(rIE,a)
[T (X —tLa)’

‘J’M,a#ol#.‘.#on ~
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wherei: H1(E) — Hy1(M) denotes the inclusion induced morphism.

Axiom 3. Normalization. Suppose L < $3 isalink with at least two components.
Denote by E the exterior of E. Then for every o € Spin“(E, 9E) thetorsion 7¢ » is
arepresentative of the Alexander polynomial of thelink E, i.e.

TEo ~ AL,

where we recall (see page 45) that ~ denotes the equality in 9t2(H)/ £ H, while
denotes the equality in Mo(H)/ £ 1.

Suppose H is afinitely generated Abelian group of rank > 1. In 81.5 we have
identified 9t2(H) with aring of functions

f:H—>Z

with semi-infinite support, with multiplication given by the convolution product. For
every f € Z[[H]] we can define

supp(f) :={h € H; f(h) # 0}.
Observethat if (M, og) € X we define
supp(M) := {o € Spin°(M, dM); o :=h - 00, h € SUPPTy,0 }

= {o € Spin“(M, 9M); 0 € supp(Tur,0)}.

Clearly, supp(M) is independent of the initial choice og € Spin“(M,dM). The
group I"y; of isotopy classesof orientation preserving diffeomorphismsof M preserves
Spin“(M, aM) and Axiom 1 implies that supp(M) is 'y invariant. Thisis avery
powerful restriction when b1 (M) > 2 becausein this case

‘J‘M’o‘ € Z[H]
so that supp(M) isafinite I'ys-invariant subset of Spin©(M, aM).

Theorem 3.17(Uniqueness Theorem; Turaev [115]). If E1, E2 aretwoinvariantson
X1 satisfying the above axioms then

]
[1]

1=~

2.

Proof. Let usfirst observethat if H isafinitely generated Abelian group of rank > 1
then an element U € 91(H) istrivia if and only if there exists a non-torsion class &
such that

(1—h)U =0.

Define as above suppg, (M) C Spin°(M, 9 M) for any admissible M and set

Y == (M, 0) € X1 B1(M, o) ~ E2(M, o)},
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Y :={(M,0) € X1; E1(M,0) ~ E2(M,0)}.

Clearly ) C 9.
The normalization axiom impliesthat )’ contains the complements of linksin $3
with at least two components. Moreover, the Hy (M)-equivariance implies

(M, o) €9 (respectively Q) <= (M, o’) € Q) (respectively 9)),

Vo' € Spin(M, dM). For thisreason, wewill say that M € ) (or Q) if (M, 0) €9
(or)’) for someo.

Sinceany admissible 3-manifold can be obtained by anondegenerate Dehn surgery
we deduce from the excision axiom that )’ contains all the admissible manifolds. At
this point however, it is not even clear that ) # . The uniqueness theorem is
equivalent to the equality )’ = 2) whose proof will be carried out in several steps.

Stepl.7 x St x ste®.
Step2.D? x St e 9.
Step 3.1f K1, ..., K, m > 2 aredigoint unknotsin $3 such that

LK(K1, Kn) 20, Vi=2,...,m

then the exterior of thelink L = U; K; belongsto ).

Step 4. The exterior of any weakly trivial link in $%in9). (A link is called weakly
trivial if its components are unknots.)

Step 5. The exterior of any link in $2isin 9.
Step 6.9 = 9).

The proof of Step 1 is based on the observation that 7 x St x St isthe exterior E
of the Hopf link in $3. Moreover, using Axiom 3 we deduce suppg, (E) consistsof a
singleo; € Spin“(E, dE) which must be T'g-invariant. Thereis only one such Euler
structure, namely the trivial one constructed in Example 3.11. Using Step 1 and the
excision axiom we deduce that if K denotes the core of a solid torus X = D? x St
then

(1-[K])E1(X) ~ Bu(X \ K) ~ Ea(X \ K) ~ (1— [K])E2(X),

S0 that
(1—[K1)(E1(X) £ E2(X)) =0, Ei(X) € M(H1(X)).

Thus E1(X) ~ E2(X), and this completes Step 2.

Step 3 follows by induction on the number m of components. Thecasem = 1
is covered by Step 2. We assume the claim is true for k < m and we prove it for
links with m components. Denote by E the exterior of alink L = |J/_; L; with m
components such that Lk (L1, Lj) # 0,V # 1. Let usfirst show that E1(L) # 0.
Denote by M the complement of L1 in S3. Then we can regard E as the complement
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of LoyU-.-UL, in M. Since Lk(L1, L;) # 0 we deduce that L; determines a
nontrivial homology classin Hy(M). If E1(E) = 0 then the excision axiom would
imply E1(M) # 0which we know is not the case.

Fix op € SpPIn“(E, dE). Since E € 2/, thereexists g € H1(E) such that

E1(E,00) = egE2(E,00), ¢ ==L
From the H1(E)-equivariance we deduce
E1(E,0) =egB2(E,0), Vo € Spin°(E,dE).

g isuniquely determined by the above equality since E1(E) # 0. Denote by w; an
oriented meridian of L;. The cycles u; form abasis of H1(E) and thus we can write

m
ki
g=[]w'" kei
i=1

We can now conclude by gluing back to E the tubular neighborhood of L;, i > 1, we
have removed and then using the excision axiom. We get alink with fewer components
to which we apply the induction hypothesis to conclude

k=0, Vj#i

Step 4 follows from the excision axiom and Step 3. Step 5 follows from Step 4 using
the excision axiom, and the fact that given any link L < $° there exists a digjoint
link K — S3 such that the exterior of K U L is diffeomorphic to the exterior of a
weakly trivial link; see Lemma 3.18 below. Finally, Step 6 follows from Step 5 using
the excision axiom and the fact that any admissible 3-manifold can be obtained by a
nondegenerate Dehn surgery. O

Figure 3.7. Two spanning disks with different piercing properties.
Lemma 3.18. For any link L — $° there exists a digjoint link K — $3 such that
the exterior of K U L is diffeomorphic to the exterior of a weak link.

Proof. Present L by alink diagram. We can transform L into a weak link L’ by
switching certain over/under- crossings into under/over-crossings. In fact, we only
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need to do this at self-crossings of the components of L. At each such crossing ¢
consider a small unknotted circle C, bounding a small disk D, pierced twice by L.
We choose C,; so that D, is pierced in the same direction; see Figure 3.7.

Thecircle C, represents anontrivial element in §3\ L. We denote by K thelink
formed by all these unknotted circles. Clearly K U L’ istrivial. Alsoitisclear that the
exterior of K U L isdiffeomorphic to the complement of K U L’ because the change
of an over/under-crossing to an under/over-crossing can be performed by a Dehn twist
of the complement of C, localized on the fattened spanning disk. O

Remark 3.19. In concrete problems, the most difficult to deal with is the normal-
ization axiom because the Alexander polynomial of a link is computationally very
involved. Fortunately V. Turaev has indicated in [112, 84] an elegant way to bypass
this difficulty.

Denote by £ thefamily of linksin $2 and for each L denoteby A(L) itsAlexander
polynomial. To prove that

E(S3\L)=A(L), VLefg

it suffices to know that Z (52 \ unknot) = A(unknot) and that E(S% \ L) changes
exactly asthe Alexander polynomial when thelink L is subjected to some elementary
universal transformations which can be described by certain universal Dehn surgeries
on §%\ L. Thusthe difficulty in proving that an invariant coincides with the refined
Reidemeister—Turaev torsion boils down to computing that invariant in the for the
complement of the unknot in S and to proving afew surgery formulae O

By design, the above approach cannot deal with rational homology spheres due
mainly to the excision axiom. In 84.1 we will outline an uniqueness statement of
atotally different nature, which involves additive gluing formulae, but only closed
manifolds satisfying b1 < 1. For now we are content to do the next best thing, that
isto explain how to compute the torsion of arational homology 3-spheres relying on
surgery presentations.

83.8 The torsion of rational homology 3-spheres. Part 1.

Suppose N is a rational homology 3-sphere described by the Dehn surgery on the
oriented link X = Ky U --- U K,, c S with rational surgery coefficients

?: (pl/CZla,pn/Qn) e@na ql > 07 (plaql) :la Vl :1a--'an-

We denote by E the complement of thislink, and we set G = H1(E), H = H1(N).
Wedenote by u; € G themeridian of K;, oriented by the condition

Lk53(9<,-, /,L,') =1
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The manifold N is obtained from E by attaching » solid tori which we denote by
Z1, ..., Z,. The meridians u; determine homology classes u; € G, and [;]in H.
The collection {[u;1},_,, generates H, while the collection {u;}1<;<, isanintegral
basis of G. We thus have a natural isomorphism G = Z". In particular G @ R = R”
is equipped with a natural Euclidean inner product which we denote by (s, «).

The linking matrix of thelink isthe n x n symmetric matrix L with entries

0 — Lkgs(K;, XK;) ifi#j
Y7o if i =j.
For any vector X € Q" we denote by D; the diagonal matrix

D; =diag(xs, ..., x,).

We form the symmetric n x n matrix

P :=LD; + Dj. (3.10)
More explicitly, its entries are
_ ity ifi#E
Dij = L
Di if i =j.

Define
Py = PD[;—1 =L+ D;.

Notethat Pgisasymmetric matrix withrational coefficients. AsexplainedinAppendix
8B.2, det P # O, and in fact |H| = |det P|. Moreover the linking form of N is
completely determined by the inverse of Py, in the sense that

Ky (i1, 1) = —(Pg i ) mod Z.
Choose vectors @, f € Z" such that
piBi —gioi = 1.
Moreover, if g; = 1 we choose («;, 8;) = (—1, 0). Form the matrix
K:=L-Dg+D,. (3.12)

The matrix K has the following interpretation. Denote by =: G — H the natura
projection. Thecoresof theattached solidtori Z; determinehomology classesk; € H,
i = 1,...,n. The columns of K define elements K1,...,K, € G. Then (see
Appendix §B.2)

k,':JTKj, iZl,...,fl.
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Forevery S € 1,n := {1, ...n} wedenoteby E s themanifold obtained by performing
the surgery only alongtheknots K;,i € S := 1, n\ S. Equivaently, Eg isthe exterior
of thelink in N determined by the cores of the attaching solid tori {Z;; i € S}.

We set Gs = Hi(Es). Thus N = Egy and H = Gy. Observe that to every
inclusion S1 < S there corresponds a projection Gs, — Gs,;, and an inclusion
Gsl — GSZ. In particular we get a projection 7g5: G — Gg, and an injection
is: H<> Gg,VS. From the identity

DﬁDE —DiD; =1

we deduce that
PD; — KDj = 1.

In particular, thisimplies that
quTSKi = —TTsU; € GS, Vi e S (3.12)

When S = {j} weset E5 := Ej, Gs := G, we denote the projection G — G; by
7;, and theinjection H < G; by i;.

Definition 3.20. A surgery presentation of arational homology sphereis called non-
degenerateif for any i # j the homology class 7; K;, hasinfinite order in G;. O

Here is an agebraic criterion for recognizing nondegenerate surgeries.

Lemma 3.21. The following statements are equivalent.
(i) The surgery is nondegenerate.

(i) The matrix P is nondegenerate, i.e. every off-diagonal element of P~1 is
nontrivial.

Proof. (ii) = (i). We argue by contradiction. Suppose there exist ig # jo such that
the class 7, K;, has finite order in Gj,. The equality (3.12) implies that 7, 1;, has
finite order in G;. Then thereexistsn € Z* and v € Z" such that

Vo =0, nuig=P- -0 < U =nP 1. (3.13)
Thus, the coordinates of i := r—llﬁ are given by the ig-th column of P~1. Since P is
nondegenerate we deducethat vy # 0, Vk # ip. Thiscontradictsthe conditionv;, =0
proving that (ii)) = (i). Theimplication (i) = (ii) isproved in asimilar fashion. O

Exercise 3.5.Prove that any rational homology 3-sphere can be described by a non-
degenerate Dehn surgery. O
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Definition 3.22. Suppose G is finitely generated Abelian group. Two meromorphic
function f1, f2 on G := Hom(G, C*) are called t-equivalent, and we write this f1 ~
f2 if thereexists go € G and e = +1 such that

1) = ex(g0) f20x),  ¥x € G\ (f{H(00) U f5 H(00)). O

Suppose now that the surgery presentation (3.10) is nondegenerate. Then G is
a complex n-dimensiona torus, and the complex Fourier transform of the torsion
of E is a holomorphic function T £(x) on G. Observe that for every ¢ € G the
complex Fourier transform of ¢ viewed aselement in Z[G] isthe holomorphicfunction
G>xm— 8e(x) = x(g)~1 e C*. Thecomplex Fourier transformsof 1— K; € Z[G],
1 <i < n, are the holomorphic functionson G,

x> 1=68k,(0=1—x(K)™
Sincerank G g = | S|, wededucethat the space of repreﬁentationség = Hom(Gg, C*)

isan union of complex tori of dimension | S| and, according to Corollary 2.38, thecom-
plex Fourier transform of Tg; isaholomorphic function ‘fES (x)onGg\{1}. Sincethe
edementsgK;, i € S haveinfinite ordersin G g we deduce from the surgery formula
Theorem 2.41 and Lemma 2.42 that T £ 1S t-equivalent to the unique holomorphic
extension of the meromor phic function

Te(x)
[Ties(X— x~HK))

Let x € H \ {1}. Since the collection {[K1l, ..., [K,]} generates H there exists j
suchthat x ([K;]) # 1. We deduce from the surgery formula Theorem 2.41 that

Gs\ {1} 3 x

Tn(x) ~ Te,jx), VxeH\ ({1

1-x(K;D™t
The above observations show that for nondegenerate surgeries, the computation of
thetorsion of E; simplifies considerably. We have thus proved the following surgery
formula.

Theorem 3.23. Suppose that the rational homology 3-sphere N is described by a
nondegenerate Dehn surgery onanoriented link X = 1 U- - -UK,. Set E := S3\ K,
G := Hy(E), H := H1(N), G := Hom(G, C*), and define K; by (3.11). Denote
by = the natural surjection G — H. Itsdual # is an embedding A < G. Then
the complex Fourier transform of T is a holomorphic function on G \ {1}, and the
meromor phic function

Te(x)
[T1(1— x~(K}))

isregular at the poinAtsX € H \ {1} — G. Moreover if we set Fp(1) = 0, then the
restriction of Fp to H ist-equivalent to the Fourier transform of the torsion of N.

Fp(x) =
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Let usnow explainhow to usetheabovetheoretical resultin concretecomputations.
Foreach x € H \ {1} we set

Sy = {is x(TKi) # 1).

Pick i € S,. Then x belongsto G; \ {1}. Thegroup G; isan union of complex tori,
and we denote by T, ; the connected component containing x. More precisely there
exists w; € Hom(G, Z) such that

Ty i = {t *y; x; 1t € C*},
where3 N
(1 %, x)(V) := Wiy (3), VieC*, 7ed.

We think of w; asarow vector, and of u; as column vectors. Observe the following.
If wesetz; := x(u;), andn; := (w;, u;),and g = > vilj € G then

8,00 =[]z et wa, x)=[]r""z] =1"s,(x). (3.14)
J J

The weight w; is determined as follows. G; isan Abelian group of rank 1. Then its
dual G,- := Hom(G;, Z) isafreeAbelian group of rank 1 whichinjectsinHom(G, 7).
Then w; isnontrivial integral multiple of one of thetwo generators of Hom(G;, Z) <
Hom(G, Z). More explicitly this means that

<J)13Pl>7éo’ <J)laP]>:Oa V.]#lv
where P; denotes the j-th column of the presentation matrix P. If we consider the
basise/ € Hom(G, Z), _
(e, wi) =48,
we deduce that there exists k € Z* such that
w; :k-niei-P_l, Vi,

where n; isthe least common multiple of the denominators of the entries on the i-th
row of P~L. Inother wordsw; € Z" \ {0} must be an integral multiple of thei-th row
of P71, Weseethat 1 > 1 x5, X isacomplex curveinside G, which passes through
x at =1 Hence

Fr(0) = —— g JE( 5 0
P = (l— X(Ki)—l) t—1 Hj#i(l_t(@i,KﬂX(Kj)—l)'

We can write the above equality in a more symmetric form. Namely

. Te(t %4, X)
] S :> F = Ilm = . )
1€ Jy P(X) 1 nj(l_[(wi,Kj)X(Kj)—l)

3pay attention to the negative sign in the definition of g, -

Vm e Z*. (3.15)
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We can improve this formula, to take into account al i € S,. More precisely, the
above argument shows that for every weight w € Hom(G, Z) \ {0} such that

we have

1 . rj'E(l‘ *yw X)

F = - - )
P00 HieSX (l_X(Ki)_l) ’I—>1 njeS‘X (l—t<w’K/'>)

(3.17)

Definition 3.24. (a) A weight w € Hom(G, Z) \ {0} satisfying (3.16) iscaled admis-
siblefor .

(b) We will refer to the process of computing Fp () described in (3.17) as regu-
larization along an admissible weight. O

Remark 3.25. (a) Thefunction Fp determinesthe Reidemeister—Turaev torsion of N
only up to asign and spin® structure ambiguity. Later on in 83.9 and 8§3.10 we will
explain how to remove these ambiguities.

(b) The nondegeneracy condition is a technical assumption which we use only
because it simplifies considerably the final appearance of the surgery formula. In the
recent preprint [116], V. Turaev has established very general surgery formulaewhich do
not require the nondegeneracy condition. As one can expect, for degenerate surgeries
they involve many more termsthen our (3.17) and are computationally more complex.

O

Before we present several concrete computations based on the above formula, we
want to describe an important class of nondegenerate surgery presentations which
arisesin singularity theory.

Proposition 3.26. Suppose P isan n x n matrix with rational entries satisfying the
following conditions.

(i) P issymmetric and negative definite.

(i) Every off-diagonal element is non negative.

(iii) For any collection S & 1, n, thereexisti € S and j € S such that p;; > 0.
Then the matrix P is nondegenerate.

Proof. Denote by ey, ..., e, the canonical basis of Q". We define an order relation

on Q"

L7=E uie,'217=g vie; < u; >v;, Vi=1 ..., n.
i i
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We will first prove that if u isavector such that Pu > 0thenu < 0. We write
i=d—b, abeQ, a-b=0,Vi
Then
0 < (Pii, @) = (P(@@—b),d) = (Pd,a) — (P, d) < (Pd,a).
On the other hand
(Pé, b) = Zpijaibj > 0.
i#]

Hence we conclude that {Pa,a) = 0, and since P is negative definite we deduce
a=0.

We can now prove that form every i # j we have (P~ le;, ej) #0. Set f =
P_lei. Then

Pf=e¢=>0

sothat f < 0. We will prove that
fi=,¢)= (P le;, ej) <0, Vj.
We argue by contradiction. Define
S:={jel,_n; fi <0} #0.

If S # 1,n then we can find ip € S such that p;,j, > O for some jo € S. Then

fio = (f’ eio) =0.

0<(Pf eip) = Z Pjiofj = PiojoSjo < 0.
J#io

This completes the proof of the proposition. O

We will now focus exclusively on a very specia class of surgery presentations,
namely rational plumbings along trees. Consider a connected tree (G, V, E) whose
vertices weighted by rational numbersr, = p,/qy, v € V. Asin 82.6, we associate to
such aweighed graph the 3-manifold M (G, 7) described by a surgery on an oriented
link X = K¢ c S° defined as follows.

e Thereis a bijection between the vertices of G and the components of I, v — X,.

o All the components are unknots.

o If u, v € V are connected by an edge then the sublink {X,,, &, } is the Hopf link.
Otherwise these two components are unlinked.

e The surgery coefficient corresponding to X, isr,.
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When all the surgery coefficients are integral we re-obtain the surgery description
of the usual plumbings. The plumbing matrix Po(G) = Po(G, r) is defined by

LK(K,, Xy) ifu#v

Puv DPu/qu if u=nv.

Set P(G,r) = Dj - Po(G,r). Observe that the matrix Po(G) coincides with what
we called Py = L + D;, and P(G, ) coincides with the presentation matrix asso-
ciated to the surgery. We say that the weighted graph (G, 7) is nondegenerate if the
associate surgery it describes is nondegenerate. Note the following consequence of
Proposition 3.26.

Corollary 3.27. Supposethat the plumbing matrix Po(G, 7) isnegativedefinite. Then
the presentation matrix P (G, 7) = DL + Dj is nondegenerate.

Plumbings defined by negative definite matrices arise naturally in the resolution
of isolated singularities of complex surfaces.

We can use the slam-dunk operation in [37, §85.3] to transform one weighted graph
to an equivalent one. Thisoperation is described in Figure 3.8, wheren isan integral
surgery coefficient. We have the following elementary fact whose proof is left to the
reader.

<> n—1/r "\

Figure 3.8. Slam-dunk.

Proposition 3.28. If theweighted tree (G’, ¥’) isobtained from (G, ) by aslam-dunk,
and Py(G, ¥) is nondegenerate or negative definite, then so is Po(G', 7).

Exercise 3.6. Prove Proposition 3.28.

Weillustrate the above theoretical facts on a concrete example.

Example 3.29(A plumbed rational homology 3-sphere). Considered the 3-manifold
M described by the plumbing in Figure 3.9.
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2 X1 2
2 X2
K2

Ke

Figure 3.9. A plumbed rational homology 3-sphere.

In this case the matrix P is

with determinant 48 so that M is aration

2/3

~1/3

1/6
1/6

-1/3
| —1/3

(3100117
131100
P 012000
1010200
100020
| 10000 2

al homology 3-sphere. Itsinverseis

~1/3 1/6 1/6 -1/3 -1/37
2/3 -1/3 -1/3 1/6  1/6
~1/3  2/3  1/6 —-1/12 —1/12
~1/3  1/6  2/3 -1/12 -112 |’
1/6 -1/12 -1/12  2/3  1/6
1/6 -1/12 -1/12  1/6  2/3 |
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(3.18)

S0 we see that the surgery is nondegenerate. Invoking the MAPLE procedure ismith we
deducethat H := H1(M) := Za4 ® Z12,

where

The above decomposition of P defines a new integral basis e1,

[eNeNe ool

[eNeoNoNal Nel
[eoNeoNelh Nele]

OO PFrOOoOOo

P:=UDYV,
0 O 0 0 O 0O O 1]
00 1 0 O 0O 0 -3
0 0 Uo— 0 -1 1 2 1 0
0o 0]’ 1 -1 0 O 1 0 3
4 0 -2 0 O 2 1 5
0 12 | | 14 2 -1 -19 -1 43|

..., eg, and the coor-

dinates of 1; in this new basis are given by the entries in the j-th column U; of U.



144 3 Turaev’'s refined torsion

es defines a generator of the Z4 summand, while eg defines a generator of the Z1o-
summand.

The manifold M can aso be described as a Dehn surgery on the link depicted in
Figure 3.9. Using the formula (2.22) on page 90 we deduce that the torsion of the
complement E of thislink is

Tg ~ (1 — D?(u2 — 1),

where u; denotes the meridian of the component X; of this link. Denote by E the
complement of thislink, and by G its first homology group. In this case, the matrix
K is—1. For every x € G = Hom(G, C*) we set

Gii=x(e), zi=xu)eC i=1...,6.
The Fourier transform of the Alexander polynomial defines the holomorphic function
Te@ = (' - D2t - D2

Notethatif x € Hthen¢; = 1forl <i < 4. Weset (u, v) := (¢, L) € C* x C*.
Observe now that u* = v12 = 1. Thenz; = ¢Yi and
{Ul — M_2U14 — M2U2, é,Uz — U2, §U3 — U_l,

§U4 — uzv—19 — M2U5, §_U5 — l/tl)_l, {UG — MUS.

We conclude that for x € G.

(' - DX -1, p1-D@2-1
1_[?:1(1 = zj) L ]—[?:3(21' -1

Recall that this means that for every spin© structure o on M, there exist ks € 78 and
¢ = +1 (independent of o) such that

Tru(x) ~ Fp(x) =

Faro O = ex (k) Fp(x), Vx € A\ {1}

Thevaue of Fp at x isobtained by regularization along a x -admissible weight. We
consider a special case.

Suppose for example that the character x issuchthat v=1 = 1 = v, but u? # 1.
Thenu? = —landz; # 1,i.e 1€ S,. Then

fUlZ—l, §U2=v2=l, §U3= i
V=1, Y=y (Yo =u, u=di. (319

We use the surgery formula (3.15) with the admissible weight w described by an
integral multiple of the first row of P~1. Wetake

17) = (43 _37 13 17 _27 _2) = (U)]_, O w6), w; = <w7 M’l)
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owy 2wy —2 —2 @ "z1 = D"z — 1)

Fp(t=5 x) =t 7212
v T sz - )
_ 2 (-t~ =D -1
T =D (= D2 - Dtz - 1)
3 13t + D -1
=D+ D=2 —ur2-1)°
We conclude 3
limF, DX = —————.
tm Pt *g X) u —1)2
In Exampl e 3.49 on page 162 we explain how to determinethe vector k, for aparticular
spin© structure. O

Thereisone important lesson to be learned from the above example. It ispossible
that different characters of H may not have a common admissible weight, and thus
the computation of F'p for these characters may require regularizations along different
weights. If however the plumbing graph hasarich symmetry the computationssimplify
considerably. We will describe below one such class of surgery presentations which
arises in the study of isolated quasihomogeneous singularities. In this case a miracle
happens. We can find aweight which is admissible for all characters!

Example 3.30(Seifert fibered rational homology 3-spheres). Consider the surgery
presentation in Figure 3.10. It describes a Seifert fibered rational homology 3-sphere.

We assume
v /8
0= — Z <0

sincethis condition arises naturally in the study of the singularities and guaranteesthe
nondegeneracy of the surgery presentation.

Using the surgery trick (2.19) on page 90 we deduce that the Reidemei ster—Turaev
torsion of the exterior of thislink is

Agc ~ (o — 1" 7L,

We denote by N the 3-manifold obtained by the surgery in Figure 3.10, by E the
complement of thelink, and we set G := Hi(E), H := H1(N). Then H admitsthe
presentation

(mj, j=0,1,...,v; u1... 1y =1, M?iugi =1i=1...,v). (3.20)
We now pick integers (p;, ¢;),i = 1, ..., v such that

aiqi — Bipi =1,
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0 @
ay /By

\
)
a1/B1 a2/ B2
- < ~
, 0 2/B2
/ \
\
'\ a1/p1
/
\
N P ay /By

~

— —

Figure 3.10. Surgery presentation of a Seifert fibered rational homology sphere.

and setasusua K; := [L /,LO The central surgery coefficient isintegral and we have

Ko = uol. Later on we will be more specific about the choices p;, g;. For each
x € Hom(G, C*) we set

Zi=x"tw), G=x"Y KD =2, iel, =(1...,v)
If x e H then (3.20) implies
w=¢" =t viel, (3.21)
For every x € H we defineits support to be
Sy =1{iel; §#1}.
Lemma 3.31(Support lemma). Let x € FI\{l} suchthat x (1o) = 1. Then|S, | > 2.

Proof. Since the classes K; generate H we deduce S, # . Suppose |S,| = 1, say
Sy ={1}. Thus¢; = 1, Vi # 1. Therelations (3.21) imply that
1=¢", Viel,

i

Theequalitiesz; = ;f" together with therelation z1 ...z, = 1imply ;fl = 1. Hence

=gt =1
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Since ged(a1, B1) = 1 we must conclude that ¢; = 1 as well. This contradicts the
condition S, # ¥ and concludes the proof of the lemma. o
Suppose now that x € H \ 1. We distinguish two cases.
1. zp0 # 1. Using (3.21) we concludethat ¢; # 1,Vi =0, 1, ..., v. Wededuce
(zo—1" 2
l_[;'}zl(l - (i) .

2. zo = 1. Using the Support Lemmawe deduce |S, | > 2. Assume (1,2} C S,,i.e
&1 # 1, & # 1. We want to choose aweight w € Hom(G, Z) \ {0} satisfying the
conditions (3.16). In this case these conditions take the form

Fp(x) =

woBi + wie; =0, Vi> 2.

where w; := w(w;). In other words w; = —%wo. Observe that for every i > 2 we
have
= pipBi w
n; = {(w, K;) = wogq; + piw; = wo(qgi — ——) = —.
o; o
Leto = lem (o, ..., ay). Weset wg = —a SO that n; = —O%. Using (3.17) with
(W, K1) = 0%1 (w, Ko) = %,wededuce
. zot* — 1
F = lim . 3.22
PO = lim T, = gl (3.22)

O

Remark 3.32. (@) Observethat the surgery formula (3.22) holdsin both caseszg = 1
or zo # 1. In other words, the weight we have constructed is admissible for all the
characters! This formula, first appeared in [75], where it plays a central role in the
proof of some conjectures arising in singularity theory. For a complete and explicit
description of the limit in the right hand side of (3.22) we refer to [76].

(b) Therational function in the right-hand-side of (3.22) also appearsin[77] under
analgebraic-geometric guise. Moreprecisely, inthat paper itisproved that thisrational
function (of ¢) coincides with the Poincaré series of associated to the graded ring of
regular functions on the singular, quasihomogeneous, affine surface associated to the
plumbing in Figure 3.10. This similarity played an important role in [76]. It would
be interesting to know if there is a deeper connection between these two apparently
unrelated incarnations of this rational function. O
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83.9 Quadratic functions, spirf structures and charges

The surgery formulaewe have devel oped so far have one drawback. They produce the
torsion up to asign and a spin‘ structure ambiguity. In this section we will describe
several methods of keeping track of the spin® structures when working with surgery
presentations.

The first method of keeping track of spin® structures is algebraic in nature. To
present it we need an algebraic digression.

Definition 3.33. Suppose H is afinite Abelian group. A quadratic function on H is
afunctiong: H — Q/Z suchthatthemap b = b,: H x H — Q/Z defined by

Hx H>(x,y)— b(x,y) :=qxy) —q(x) —q(y) € Q/Z

isabilinear formb: H x H — Q/Z. We say that ¢ isarefinement of b.

A quadratic form is a quadratic function ¢ satisfying ¢(nx) = n?g(x) for all
x € H,n € Z. Inthis case we say that ¢ isaquadratic refinement of b, .

Given abilinear form » on H we denote by ¢ (b) the set of refinements of » and
by Q(b) the set of quadratic refinements. Clearly Q(b) C Q¢(b). O

Notethat if x € H and g € Q°(b) then x + g € Q°(b). Conversaly, if g1, g2 €
0°(b) then g1 — g2 € H. Thisshows that we have afree and transitive action

H x Q°(b) — Q°b), HxQM) > (x,9) — x +q.

In other words, Q¢(b) isa H-torsor.

Suppose now that M is a rational homology sphere, H := Hi(M). We set
NQ(M) := Q°(ky). The identity (3.8) on page 130 implies that the sign refined
Reidemeister—Turaev torsion defines a map

Jtors: SPIN“(M) — Q°(M), o — qiors(0)

by setting
tors(0) (M) = Tm,0,00(1) — Tm,0,00(h) mod Z,

where og is the canonical homology orientation.

Thelinking form Ik, produces an isomorphism H — H, and thus we can regard
Spin® (M) asan H-torsor viathisisomorphism. The map giors iSthen a H-equivariant
bijection. This fact suggests an algebraic encoding for spin® structures. A spin‘
structure is completely determined by the refinement qiors(o) of 1Kyy.

In [7], Brumfiel and Morgan have constructed another H-equivariant bijection
op: SPIN°(M) — Q°(M) which we now proceed to describe. Fix aspin® structure
on M. Then (see e.g. [37, 85.7]) there exists at least one simply connected spin®
4-manifold (M, &) such that M = 9M (as oriented manifolds) and o = 6, ;. Set
¢(6) := c1(deto) € H*(M, Z) sothat c1(det o) = c(6)], -
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A .~ PD A
Let L := H3(M,dM) = Ho(M), and denote by Q the intersection pairing
Q:LxL—2Z, Q) ={xUy [M,iM]).
Since M is arational homology sphere the intersection pairing Q is nonsingular, i.e.
the natural map /o: L — L := Hom(L, Z) induced by Q isan injection. Observe

v .~ PD A A
that L = H2(M) = H»(M, 3M. We have a short exact sequence

lo ~ 2 ~
L3[ HXM)=H 0.

For every ¥ € L we denote by [X] itsimagein H. Setv := |H|. Observe that for
every ¥ € L we have vx € Ip(L) so that Iél(wé) € L. The intersection form Q
defines anonsingular pairing

v

0:LxL—-Q, Q7= U—12Q(1§1<wé), 1, w3)
We say that Q isthe dual of Q. Then
Ik ([¥], [7]) = —Q(F,¥) modZ, Vi,yelL.
A vector « € L iscalled characteristic if
(k,x) = Q(x,x) mod2, VxelL.

A characteristic vector « defines a quadratic function

1,. .
ge: H = Q/Z, qe(¥) = =5 (0. %) + 0(F, %)) mod Z

Exercise 3.7.Provethat g, iswell defined, i.e.

L T« e 1. .
[X1] = [x2] = E(Q(K,X1)+Q(X1,X1)) = E(Q(K’ X2)+ Q(x2, ¥2)) mod Z. O

The quadratic function ¢, isarefinement of |ky,. The element ¢(6) is character-
istic, and we set
qtop(0) = qdc6)-

Lemma 3.34. The refinement qiop(o') isindependent of the choice (M, o).

Proof. Suppoge(!\?li, 6;),i = 0, laretwosimply connected, oriented, spin‘-manifolds
such that 9(M, 6;) = (M,0),i =0,1. Formasabove L;, Q;, and k; := c(0y),
i =0, 1. Denoteby — M1 themanifold M1 equipped with the opposite orientation, and
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by Q7 theintersection form on Ly = H?(—M1, —3Ma; Z) induced by the opposite
orientation. Then Q] = — Q1. Form the closed spin®-manifold M := Mo Uy —M.
The spin® structures 6; on (—1)' M; glue up to a spin® structure & on M. Set L :=
H?%(M, ) and denote by O the intersection form on M. We have the identifications

L = {(%o, ¥1) € Lo® L1; [¥ol = [#11},
and ) . .
Q0 =(Qo®—-01l;-

The cohomology class k = ci(det6) e L is a characteristic element of 0, and
Kk = (ko, k1) € Lo ¥ L. 5

Fix an element 1 € H and elementsx; € L; suchthat 7 = [x;],i = 0, 1. These
elements define x = (%o, ¥1) € L. Then

do(h) — g (h) = Z(0®%, x) + O(x,x)) =0 mod Z,

NI =

since k is acharacteristic element of Q O
Proposition 3.35. The map qiop: Spin“(M) — Q°(M) is H-equivariant.

Proof. Let o € Spin“(M) and (M, 6) asin the definition of qiop. Set k := c1(det o).
Recdl that Spin“(M) is a H-torsor via the isomorphism H = H h +— Xn =
Ikps(h,+). Let x € Handh € H suchthat x = x;,. We can find ¥ € L such that
h = [x]. Then

(M,h-0)=0d(M,%-6), c1(¥-6)=2%+«.
Clearly giop(h - 0) = xn + qtop(0). O

In 84.1 we will prove that qiop = qtors. NOw we want to provide a different,
intrinsic description of giop(€), € € Spin(M).

Let usfirst recall that according to Milnor [71], any spin structure on an oriented
vector bundle E of rank » > 3 over a compact CW-complex X is described by an
extension to the 2-skeleton of X of the framing (trivialization) over the 1-skeleton
defined by the orientation. Two such extensions define isomorphic spin structures if
and only if they are homotopic. In particular, if X isacompact oriented 3-manifold,
and E = T X, we deduce that a spin structure on X is defined by a framing® of T'X.
Two framings define isomorphic spin structuresif and only if they are homologous, i.e.
they are homotopic outside athree-dimensional ball. Wewill thuslabel spin structures
by homology classes of framings of the tangent bundle.

4Herewe have implicitly used the condition 72(SO(n)) = 0, Vn > 2 which impliesthat any framing of
T X outside a 3-ball extendsto aframing of X everywhere.
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To proceed further we need to recall another ssmplefact. Suppose E isan oriented,
real vector bundle of rank r > 3 over S1. There are two homotopy classes of framings
of E. Of thesetwo thereisatrivial one described asfollows. Extend E to an oriented
vector bundle £ over the 2-dimensional disk D. A framing of E istrivial if it can be
extended to a framing of E. We associate two each framing F of E — S its parity,
denoted by [F] € Z», by declaring the parity of the trivial framing to be 0. Note that
two framings F;,i = 1,2, 0on E; — S1 induce aframing 17‘1 ®FronE1® Erand

[F1& F3] = [F1] + [F2l.

We can extend the notion of parity of framings of to bundles over St of rank < 2 using
the stabilization trick. More precisely if F is aframing of areal, oriented 2-plane
bundle E — S, then we define its parity as the parity of the induced framing on
R* @ E where R=thetrivial real linebundle, s > 2. Inthiscasethecondition[F] =0
impliesthat there exists agauge transformation g : ST — SO(2) = S? of even degree
such that the induced framing F=F. g of E extends over the disk bounding S?.
Because of this fact, when speaking of even framings of a 2-plane bundle over S, we
will always understand framings which extend over the disk.

A spin structure on S? is equivalent to a homotopy class of framings of its stable
tangent bundle, 7, S* = R* @ T'S%, s isan arbitrary integer > 2. The canonical spin
structure corresponds to the canonical framing of the stable tangent bundle.

Suppose now that M is arational homology 3-sphere, H := Hi(M), and € €
Spin(M). Fix aframing Ffw of T M whichinducesthisspin structure. Fixh € H\{1}.
We represent 4 by an oriented knot K < M. The chosen framing of T M defines a
distinguished class of framings of the normal bundle vy of K < M. We will refer
to these framings of vk as even with respect to the spin structure . They are defined
as follows. Equip the stable tangent bundle T, K = R® @ TK of K with the trivia
framing Fx. Any framing F, of vk defines two framings Fx & F, and F, of
R* @ T M|k viathe isomorphisms

RE@TK)®vk =R '@ (R®TM|g).

Then theframing fv’u of VK if called even with respect to the spin structure ¢ if the
stable framings F, and ', are homotopic, that is

[F,] = [Fpl.

Suppose now that Zx is atubular neighborhood of K < M. We can identify Zg
with the unit disk bundle of vk . If werepresent aframing F, of vk asan orthonormal
pair of sections (f 1, f), then thefirst section traces an oriented simply closed curve
ondZg. Wewill denoteit by F, (K).

Lemma 3.36. The Q-valued linking number Lk (K, 17“,,(1()) of K and F,(K) is
independent mod 27 of the even framing F,, and the homol ogy classof H.
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Exercise 3.8.Prove the above result. O

We have thus obtained a map
1 -
Spin(M) x H > (¢, H) > dgp(€)(h) = > Lky (K, F,(K)) mod Z,
f’,, = some framing of vg whichis even with respect to e.

Proposition 3.37. For every e € Spin(M) the map
H 3 h > gip(€)(h) € Q/Z
isa quadratic refinement of 1k,,. Moreover
Gtop(€) = dtop(€)-

Proof. First of all, let us recall that (see [37, Thm. 5.7.14]) that there exists a spin
4-manifold (M, €) with the following properties.

e I(M,é) = (M, e).
e M isobtained by attaching 2-handlebodies {H1, . .., H,}to the four-ball D*.

Denote by A; the co-cores of the handlebodies. These disks define a generating
family [A;] of Ho(M, dM), and their boundaries trace oriented knots K; — M,
which define a generating family of H1(M). Denote by Q the intersection form on
H?(M) and by Q itsdual on Hom(Ho(M), Z) = Ho(M, dM).

Since M has the homotopy type of a 2-dimensional CW-complex we deduce that
spin structure € on M defines a framing F , of T M. We denote by n the unit outer
normal along M, and by Fy aframi ng of 7'M defining the spin structure e. The
condition 9é = ¢ signifies that, for each surface ¥ in M with boundary on 9 M, the
framing n @ Fy of TA?I|8M extends over X to aframing homotopic to the é-framing
of TM|2.

Denote by 7; the normal bundle of A; — M, and by v; the normal bundle of
K; < M. Observe that T,K; = T;A;|x,. Denote by F. the trivial framing of
T Ai|k;. Theframing of v; which is even with respect to the spin structure €, is the
framing F; such that the framing F |, , and the framing (T A; |, Fx,) ® (v;, F:)
on TSA?I |k, are homotopic. Since the framing F i |k; extendsover A; we deduce that
[F;]1=0,i.e F;extends (modul o an even degree gauge transformation) to aframing
of 1’)[.

Fix a pair of orthonormal sections (f;, g;) defining the framing F;. Extend fi
to a nowhere vanishing section }i of V;. Denote by f;(K;) the pushforward inside
M of K; aong the normal vector f,;. Define }(A,-) in a similar fashion. Clearly
AN }i(Ai) = (. Thislast condition implies (see e.g. the proof of [20, Proposition
A31]) that 5

Lku (Ki, fi(Ki)) = —0(A;, Ay).
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This shows
1 1. .
Qtop(€) (Ki) = > Lky (K;, f;(K;)) modZ = —EQ(Ai, fi(A)) modZ

1. .
= _EQ(Ai, fi(A)) modZ = quop(€)(K;), Vi m

The above result suggests a smple way of cataloging the spin structures on a
rational homology 3-sphere M. It goes as follows. Fix agenerating set S ¢ H, and
represent each s € S by aknot K; € H. Then we can describe a spin structure e
on H by indicating the framings of the normal bundle of each K which ar even with
respect to the spin structure €. In the remainder of this section we will explain how
to use this simple strategy to produce surgery descriptions of the spin structures on a
rational homology spheres. We begin with atopological digression.

Suppose now that M is an oriented 3-manifold with boundary ¥ = dM. Given a
spin structure e on X we can define arelative Stiefel-Whitney class

wa(M, €) € H* (M, dM; Zy).

This class is the obstruction to the existence of a spin structure € on M such that
0é = ¢. Wewill identify wo (M, €) viathe Poincaré-L ef schetz duality with an element
in Hi(M, Z>). Observe that the spin structures on a surface ~ can be equivaently
described by homotopy classes of framings of the stable tangent bundle 7, X.

Example 3.38.Suppose M = [ x %, I = [0,1], and ¢; are spin structures of
T M|yyxs defined by framings F; of TM|;xs = TyX. We denote the relative
class

w2(M; €0, €1) € H1(M, Z2) = H1(X, Z2)

by 8(e1, €p), or 8(1771, fv’o). It can be alternatively described as follows. These two
framings defineamap g: M — SO(3) with the property

Fi=Fq-g.
We obtain an element
g« Hom( Hy(M), H1(SO(3)) ) = Hom(H1(M), Z) = HX(Z, Z»).
Then g, isthe Poincaré dual of §(F1, Fo), that is
(g5, ¢) = 8(F1, Fo)-¢ mod 2Z, V¢ € Hi(Z). O
We have the following immediate result
Proposition 3.39. Suppose M is a 3-manifold with boundary . Denote by

Jo: Hi(Z, Zp) — H1(M, Z)
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the inclusion induced morphism. If ¢;, i = 0, 1, are two spin structureson X then
w2(M, €1) — w2(M, €0) = jo(8(€1, €0)).
On atorus S there are four spin structures
{ec; ce Hi(S, Zz)},
where ¢q is the unique spin structure on with the property
(S, €0) #0e QP".

Equivaently, g isthe spin structureinduced by the canonical framing of T'S defined at
page 122. In particular, the tangent bundle of an union X of 2-tori admits a canonical
framing which we will denote by €g. For every ¢ € H1(E, Z,) the spin structure e,
is the unique spin structure on ¥ such that

8(ec, €0) = c. (3.23)

Example 3.40(Spin structures on the solid torus). ConsiderthesolidtorusZ = S x
D?. Setx =[St x {1}] € H1(8Z), and i = [{1} x dD?] € H1(3Z). It hasanatural
spin structure €, induced by the obvious embedding of Z into the Euclidean space
R. Equivaently, €, is the spin structure on the solid torus induced by the unique
spin structure on the handlebody D2 x D2. This defines a spin structure €, on the
torus dZ. We will refer to it as the Euclidean spin structure. We want to compute
6(e., €9) = (€p, eg) € H1(0Z,7Z>).

We denote by Fo the framing of R & 7'9Z which induces the spin structure eo on
0Z. We define F, inasimilar fashion. Choose g: dZ — SO(3) such that

Fo=F, g.
Define g, € HY(3Z,75) asin Example 3.38. Then alittle soul searching shows that
(g4, ) = [Folu ]+ [Felu] = 1,

and
(84, A) = [Felnl +[Folnl =1

This shows that S(i?e, 1770) =pn+ X2 mod2Z sothat e, = €;4.
Using Proposition 3.39 we deduce that for every x € H1(3Z, Z2) we have

w2(Z, €x) = jolk —A — @) = jok +A.

Thus ¢; extendsto aspin structureon Z if andonly if k = A +nu mod2,n € Z. O
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Example 3.41. Consider thesolidtorus Z = $1 x D?. Setx = [S1x {1}] € H1(32),
andp = [{1} x 9D?) € H1(32). If f isaframing of the normal bundle of the axis of
solid torus, then the curve on 4 Z traced by thefirst vector in f carries the homology
classnu + A, n € Z. Theinteger n iscalled the degree of the framing, and compl etely
characterizes its homotopy class.

A spin structure € on Z induces a spin structure e on 9Z. In particular, it has the
forme,, x € H1(0Z, Zy). Since € extends over Z we deduce that « has the form

Kk =ncpu+Ar mod 2.

We claim that the framings of the normal bundle of axis K of the solid torus which
are even with respect to the spin structure € are exactly the framings of degreen =
n, mod 2. To provethisfact we need to verify thisstatement for asingle spin structure.
We will do this for the Euclidean spin structure €, defined in Example 3.40. Denote
by F. aframing of T Z which induces the Euclidean spin structure €. In this case

S(€.,€0) = A+ mod 2.

We have to show that the framings vk which are é.-even must have odd degrees.
Observe that framing fv‘v of the normal bundle vk of K — Z which is even with
respect to €, is determined by the condition [fv’] = [Fe] = 0. The canonical framing
[Fcan] Of vk given by the direct product description S* x D? has degree 0, and parity
[Fean] = 1. Thus F,, must have odd degree. 0

Suppose now that M is a 3-manifold whose boundary ¥ = dM is an union of
tori. Fix arelative spin© structure o € Spin“(M, dM). As explained on page 122,
the canonical framing of 7X defines a section s, of det o |y, and we have arelative
Chern class

c(o) = c1(deto, sy) € H>(M, dM) = Hi(M).
The following result follows immediately from the description of a relative spin©
structure in terms of the canonical framing of the tangent bundle of atorus.

Proposition 3.42.
c(o) = w2(M,e9) mod 2.

Exercise 3.9.Prove the above result. O

Suppose K = K1 U --- UK, isan oriented link in $3. Denote by Z; an open
tubular neighborhood of X;. The exterior of thelink is

n

E:=$\|]z.
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and set G := H41(E). OE has n boundary components which we denote by 9, E,
i =1,...,n. Denoteby u; and X; the meridian and longitude of X; oriented such
that

Ai-pi =1,

wheretheintersection product is defined in termsof the orientation of 3 Z; asboundary
component of E. Asin 83.8wedefinethelinking matrix of X to bethen xn symmetric
matrix L with entries
o LK(K;, K;) ifi # )

Yo if i =j.

We denote the inclusion induced morphism H1(0E,Z) — Hi(E,Z) by j. jo will
denote the similar morphism for Z»-coefficients. The images ju; of the meridians
define a basis of G, and thus an isomorphism G = 7Z". Since there is no danger
of confusion we will write u; instead of ju;. Denote by é € G = Z" the vector
1,....,0) =), ui. Then

Jhi = kaiﬂk = Le.
ki

We have the following result.

Proposition 3.43.
n n
wa(E.€0) = ) jolui + ) =D _ximi € HU(E. Z2), x =1+ & mod 2.
i=1 i=1 ki

Proof. E is equipped with a natural spin structure €, induced by the embedding
E < S3. Itinduceson each boundary component exactly the Euclidean spin structure
described in Example 3.40. Using the computationsin that example we deduce

0€ = €4y,

where

n
ko= Y (i +)mod2e H'DE, Zy).
i=1

Using Proposition 3.39 we deduce

w2(E, €0) = wa(E, €0) — wa(E, 3¢,) = joko =€+ Lé mod 2. (3.24)
O

Remark 3.44. For adifferent proof of thisresult werefer to[116, Lemmal.3]. O
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Consider the spin structuree = ¢, on dE labelled by anelement « € H1(0E, Z>).
The above identity coupled with Proposition 3.39 implies

wo(E,6) =0 < k—Kkpekerj, & joxk=¢+Le mod2  (3.25
Suppose we perform a Dehn surgery on thislink with rational surgery coefficients
FeQ" rp=pi/qi whereq; > 0, (pi,q;) = 1,Vi =1,...n. Wedenoteby Z; the
attaching solid tori, by M = M; the 3-manifold obtained by this surgery, and by H

itsfirst homology group, H := Hi(M). Set p = (p1, ..., Pn),q = (g1, ..., Gn)-
For every ¥ € Q" we denote by D; the diagonal matrix

Dy = diag(r1, ..., rp).
Then H admits the presentation
G i> G = H — 0,
where P isthen x n matrix
P:=L-D;+ Dj. (3.26)

The axes of the attaching solid tori Z; define homology classesin M which we denote
by k;. Here is how one can determine them.
For each i we choose a pair of integers («;, ;) such that

piBi —aigi=1, oi=qi+B=1 mod 2 (3.27)

If g; = 1, i.e. the surgery coefficient r; isintegral, thenweset o; = —1, 8; = 0. The

2 x 2 matrices
Pi @ .
;= , 1=1...,n,
l [(]i ﬁi]

define the attaching maps of the Dehn surgery. Note that the entriesin thei-th column
of P arethe coordinates of jT';u; with respect to the natural basisin G. We set

Ki = jTix) = oipi + Bi szil/vj €G.
J#i
Then k; = n(K;), Vi. We denote by K the matrix

K:=L-Dz+ Ds. (3.28)

Note that the entriesin the i-th column of K are the coordinates of K;. Then

KE:ZK,’.
i
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A spin structure € on M induces spin structures on ée; on E and €; on Z; with the
property that
Ti€iloz, = €extlo; Ex -

Wewriteéi|3zi = €¢;y €@(t|3iE = €x;» Whel’ec,‘, ki € H(0Z;, 7). Set

k =i € HIOE, Zy),

i
sothat €ext|ar = €. Thehomology classes ¢;, «; satisfy the compatibility conditions
k; = i

Since ., extends over Z; we deduce
ci = hi +uipi € HY(3Zi, Z2), ui € Z.
Since¢,,; extends over E we deduce that
Joki = Jo(ui + i), Vi
We conclude that
Joliituipi) = jo(pitri) <= Kituij(pipni+qiri) = jo(ui+ri) € GRZLy,

forali. Ifwesetu =), u;u; € G wecan rewritethisin the more compact form

Ké+ Pii=é+ Le mod2 *2 jko = jox mod2. (3.29)
The next proposition summarizes the above observations.

Proposition 3.45. Let M, P, K as above. Every spin structure € on M can be
described by a vector u € Z satisfying

Pu+Kée=¢+Le mod?2. (3.30)

Conversely, every vector u € 7" satisfying the above condition determines spin struc-
ture on é(u) on M. Moreover, for every 1 < i < n, thecurve (A; + u;u;) C 9Z;
defines a framing of the normal bundle of the core of Z; < M which is even with
respect to € (u).

The correspondence described in Proposition 3.45 can be further refined. Every
relative spin© structure o on E is completely determined by its characteristic class
c(o) € G. We can write 3

clo)y=pun", velZ'.

Proposition 3.42 and 3.43 imply thatisv is, in the terminology of [116], acharge, i.e.

V=e+Lemod2 <= V= joko mod2. (3.31)
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From now on, we will freely identify the spin© structureson E with charges. For every

m1

m € 7" we denote by u € Z[G] the monomial 't ... up™.
E isequipped with anatural homology orientation (see[116]), and if Ty , isthe
sign-refined torsion of E corresponding to the spin® structure o then (see (3.5))

Txor oty = (D" Tieo (1. ). (3:32)

The attaching solid tori are equipped with canonical spin¢ structures and we get a
surjection

7: SpIn‘(E, dE) — Spin“(M), Spin°(E, dE) 3 v — vM e Spin“(M).
The above correspondence is equivariantqi n the sense that if o1, o are two relative
spin¢ structureson E, o2 = g - 01, g = u* € G, then

1, . R
E(Uz— vl) =1 vl =n(g) v

Moreover

c@M) = m(c() - [ [ 17t = (u"~5€). (3.33)
Observe that two charges v1, v, induce identical spin© structures on M if and only if
1. .
E(Vl —vp) € Im(P).

Anintegral characteristic vector of the surgery presentation (see[37, Def. 5.7.19]) is
avector ¢ € Z" such that, for al i,

pi = pici + Y _Lijcjq; mod2 <= P¢= Dje mod2. (3.34)
J#i

Proposition 3.46. Suppose o is a spin® structure on E with charge v. Then the
following conditions are equivalent.

(i) The spin® structure v on M isinduced by a spin structure.

(i) Thereexistsau € Z" suchthat v = Keé + Pu.

(iii) There exists an integral characteristic vector ¢ € Z" suchthat u = ¢ + ¢
satisfiesv = P(u) + Ke.
Proof. (i) <= (ii) Thespin® structure o isinduced by aspin structureiff c(ou) = 1,
iff r(u’~X€)=1¢e H,iff vV — Ke € Im(P).
(i) = (iii) Suppose there existsu € Z" such that

V= Ke+ Pu.
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We want to provethat i — ¢ isan integral characteristic vector. Since v isacharge
v—e=Le mod 2.
We then have the following mod 2 equalities.
Pu—é)=v—Keée—Pe=e¢+Lée— Ke— Pe
(use the identities (3.26), (3.28))
=¢+ Le+ L(Dj + D;)é + Dzé + Dje.
At this point we recall the conditions (3.27) which imply
Dz;é=¢ mod 2, (Dj + Dz)e =¢ mod 2.

We deduce that

Pu—e) = DI;E mod 2,
i.e. (u —e) mod2 is acharacteristic vector, proving the desired implication. The
implication (iii) = (ii) istrivial. O

We denote by Char p the space of integral characteristic vectors, and set Char%, =
Char p mod 2. We denote by Np the space of charges v such that the spin© structure
vM on M isinduced by a spin structure. We have a natural equivalence relation on
Np

. - . . 1. .
V]~V — vi”:véw — E(Vl_vz) e Ilm(P).

Assume now that M is a Q-homology sphere. Then for every v € Np the element u
postulated in Proposition 3.46(iii) is unique

bD—Ké=Pii < i=P 1V -Keé),
and thus we have awell defined bijection
qu:\IIP,&,E: Chafp—>Np, EI—)KE+P()_C)+E)=(K+P)E+PE.
Lemma 3.47. ¥ = Wp descends to a bijection
Wp: Charl, — Np/ ~.
Proof. Since M isarational homology sphere, the above spaces of equivalence classes
arefinite, so it sufficesto prove only that W descendsto awell defined injection.
Clearly if ¢, = ¢» mod 2 thereexists X € Z" suchthat ¢, — ¢1 = 2. Then
1 - - - - -
E(‘pr(cz) —W(¢1)) = Pii = Wp(i1) ~ Vp(C2).
Theoppositeimplication Wp (¢1) ~ Wp(¢2) = ¢1 = ¢2 mod 2isproved similarly.c

A priori, this identification could depend on the choice of @, B satisfying (3.27).
We now prove that thisis not the case.
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Lemma 3.48. The correspondence
V=W, 5 Chah — Np/~.
isindependent of &, A satisfying (3.27).

Proof. Suppose we have two pairs (&', B and (&”, B") satisfying (3.27). Then there
existsavector k € Z" such that

D&”=D1}"Dﬁ+D&”7 D =DE-D,}+DI§,.

E//

Moreover,
D&// — D&// = (D*// — DB‘,) =0 mod 2.

Since (p;, g;) = 1 we deduce that all the components of k must be even so that

i ez
o.—2 .

Suppose x € Charp. Then

W5 jun(¥) = Wy 5/ (8) = L(Dg, — D3 )é + (Dgr — Dgn)é

= LD;-Dzé+ Dy - Dje = LD; - Dye + DDy - €.
Set ug = D,;OE. We can rewrite the above equality as
lp&//’g// ()?) — "D&/’B/ (;) = 2(LDEI’ -+ D[')’)IZO = ZPﬁO
This proves that
\IJ&//’E//()?) ~ \If&/,g,()_(.) in !NP,

and completes the proof of the lemma. O

Inview of Proposition 3.45wecanidentify Np/ ~ withthe spaceof spin structures

on M,
®: (Np/ ~) — Spin(M).

We have thus proved that the surgery presentation P of the rational homology sphere
M produces an explicit, canonical identification

Ep: Chard 5 (Np/ ~) 3 Spin(M).

The Euclidean spin structure on S x D? isthe restriction of the unique spin structure
on the handlebody D? x D?. We deduce form the computation in Example 3.41 that
the above identification is precisely the identification described in [37, 85.7] between
the space Charf, and the space Spin(M) of spin structureson M.
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Thereis asimple way to represent the integral characteristic vectors on a surgery
diagram using colors,® or on the plumbing graph, using e’sand o’S. If ¢ € Charp
then the components of X corresponding to ¢; = 1 mod 2 will be colored in black,
and the corresponding vertex of the plumbing graph will be indicated by o, while the
components corresponding to ¢; = 0 mod 2 will be colored in grey and the corre-
sponding vertex of the plumbing graph will be indicated by a (grey) e. Asexplained
in[37, 85.7], the colors of the verticesleft after aslam-dunk stay the same. We define
asurgery spin diagram to be a surgery diagram with a characteristic vector indicated
by coloring of the vertices by the rule explained above.

-2 -2 -2 —(n+1)/n
— — — — — — — — o - o
@
-~ 1
-2 -2 -2 —(n+1/n

(b)T—&n ***** -0

Figure 3.11. The two spin structures on the boundary of the A, plumbing, » = 1 mod 2.

Consider for example the boundary of the A,,-plumbing. Its associated plumbing
graphisa‘bamboo” of length n which can beiteratively slam-dunked to asingle point
with surgery coefficient —(n + 1)/n asin Figure 3.11.

Suppose n + 1 is even. The boundary of this plumbing has two spin structures
corresponding to the two characteristic vectorscg = (0, ...,0),¢1 = (1, ..., 1). The
first spin structure is depicted Figure 3.11 (@), and the second is depicted in Figure
3.11 (b). On the right hand side we depicted the equivalent diagrams obtained after
iterated slam-dunks.

Theimportance of the above abstract resultsto torsion computationsis best grasped
on a concrete example.

Example 3.49. Consider again the plumbed rational homology sphere discussed in
Example 3.29, page 142. We continue to use the same notations as in that example.
We have

310011
131100
p._|012000
~lo10200
100020
110000 2|

56 = the spin structure extends over the corresponding handle, whence the full grey disk, o = the spin
structure does not extend over the corresponding handle, whence the holed black disk.
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Inthiscasewe can choose K = —1. A vector ¢ € Z8 ischaracteristiciff thefollowing
mod 2 equalities hold:

l=c+c2+c5+cs

l=c14+cr2+c3+ca

0=c

0=c.

Hence ¢ = (0, 0, c3, ¢4, ¢s5, cg) Where ¢z + ¢4 = ¢s = ¢g = 1 mod 2. In particular
the vector ¢o = (0,0, 1, 0, 1, 0) is characteristic. Denote by ¢ the associated spin
structure. It isdepicted using e’'sand o’sin Figure 3.9. A charge on the complement
of the plumbing link & which induces this spin structureis

[5+17]

5+1

2+2
2

2+2
2

Vo= (K + P)é + Pcg =

Denote by o9 the relative spin® structure on E corresponding to vp. We deduce that
thereexistse = 1 and k € Z* such that

TE.00 = ik (11 — D?(u2 — 12,

where the vector  is uniquely determined by the condition (3.32)

Tt = D2t = D% = (- D22 — D2

This means L R
niluy? = p* T = k=(3.321.21).

Thus
Te.00 = eniuausmansie(ns — D(ua — 1%

Asin Example 3.29 suppose now that x € H issuchthat v = 1 but u2 # 1. Then
Theo(x) = ex~(uinduGuanudue) lim Fp(t x5 x).

3.3 -2, -1 -2-1 3
= —87,°2,°22°27, Ic g ——>-
1 %2 <3 4 <5 <6 (u— 1)2

We now use the identities (3.19) to conclude that

3u
(u— 12

Observe that the last equality confirms the symmetry relation

Titeo(X) =€

Tat.eo00) = Titco ()
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expected for the torsion associated to a spin-structure. We are left with one last
ambiguity, the sign . In the next section we will explain how to removeit. O

83.10 The torsion of rational homology 3-spheres. Part 2.

The identity (3.8) of 83.6 can be used to remove the sign ambiguity in the surgery
formula of Theorem 3.23. We will explain how to achieve this for a specia class
of rational homology spheres, namely those described by a nondegenerate, rational
plumbing along trees. We will follow closely the strategy in [ 75, Appendix A].

Consider atree I', and denote by V its set of vertices. For each vertex v € V we
denote by d, itsdegree. Asin 83.8, page 141 we associateto I" alink

Kr = Kp)vev

whaose components are unknots. Denote E = Er the exterior of this link, and by
L the linking matrix of this link (or equivalently, the incidence matrix of I"). Set
G := H1(E).

Define 8§ = 8- c QV as the set consisting of all possible choices of surgery
coefficients7 = (r, = pv/qv)vev SO that the corresponding presentation matrix

P =P =LD; + Dj
is nondegenerate. We need to fix a convention. In the sequel we will assume that
gy >0 and gcd(py,gqy) =1, VYveV.

Suppose 8 # . Inthis case 4 is an open subset of QY. For every 7 € § we denote
by M; the rational homology sphere obtained by Dehn surgery along I" with surgery
coefficients 7. We denote by Z,, the solid torus attached to the boundary of the v-
component of Xr. Weset H = Hy = H1(M;), and wedenoteby n: G — H the
natural projection. Set v := | det P| sothat |H| = v.

For each 7 fix @, B € ZV asin (3.27) of §3.9, page 157, and then defineaV x V-
matrix K = K; asin (3.28)

K = LDj + D;.

The equality D;Dgz — DjDg =1 implies

PDs—KDj=1 and KDj—PDs=L.

Thev-th column of K, whichwewill denoteby K, defineshomology class j (ot 1ty +
BvAy) in G, whichwewill continueto denote by K. Itsimagein H isthe homology
class of the axis of the attaching solid torus Z,,.
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Fix arelative spin° structure o on E,,. Using the surgery trick (2.19) on page 90
we deduce that there exists e € {1} and k, € Z” such that

Teo = eru'e [ o — D1
veV

Define the meromorphic function

Moey (X 2ue) — ) 7F

., G = Hom(G, C".
Moor(@— x-5(KV) ome. &)

Theorem 3.23 states that Fp is holomorphic near each x € Hy, and there exists
(T, 7) = £1 such that

Tuty 10100) = &(T, A ko) Fe (). (3.35)

Abovewe have denoted by [o ] the spin® structureon M induced by o. The ambiguous
ko, can be determined using the strategy outlined in the previous section.

To determinethe sign &(T", 7) notefirst that it depends continuously on 7. Thus by
slightly changing the surgery coefficients we can arrange that H; contains elements
of order > 2. Since the curves K, define a generating subset of H we deduce that
there exists at least one vp € V such that = K, has order > 2in Hz. Write Ty (5] 8
afunction

Tu: H— Q.

Using the identity (3.8) on page 130 we deduce
TuQ) — T (Koy) — Ty (h) + Ty (hKyy) = — IKpr (Ko, £)  mod Z.

Using the Fourier inversion formula, and (3.35) we deduce that for every h € H we
have

% FrOOL = x M Kip) (2= x (1) =Ky (Ko, h) mod Z,  (3.36)
X

forall h € H, where Z’X denotes summation over all the nontrivial charactersof H.

The nontrivial terms in the above sum correspond to characters x € H such that
x(wKy) #1,i.e. v9 € S,, whereasin 83.8 S, denotes the support of the character
x . Denote by Xg the set of such characters.

Theintegral pasis (1y)vey Of G definesanatural Euclidean inner product (e, <) on
G ® Q. Define ¢y € G := Hom(G, Q) by

(ZOa MU) = (Mv()’ Pilﬂu), Yv € V.
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More intuitively, o is described by the vo- -th row of P~ 1. There  exists a positive
integer v such that Im(ﬁo) 1 ZV Set wo = uozo, so that wg € G. For simplicity
we set

my = <1710, W), ky = (@0, Ky).
From the identity PD; — KD; =1we deduce

—qvky = my — voPyduyug, (3.37)

where §,,, denotes the Kronecker symbol. The weight wg is admissible for al the
charactersin Xy, and thus we can perform the regularization along this weight for all
the charactersin Xg. Using (3.15) we deduce that for every x € Xo we have

[Tyew (™ x L) — 1)1
[Toev(1 =tk x~1(Ky))

Denote by Eq the manifold obtained from Er attaching only the solidtori E,, v # vp.
Set

Fp(x) = I|I_>ml . Vx € Xo. (3.38)

Guo = Hi(Ey, 7), ©o:= Y geZlGol.
g€Tors(Gyg)

Asexplained in 8B.2 we have
Tors(Guy) = (Kyo) L := {h € H; ky(h, K,p) = 0}
s0 that
I Tors(Gy)| = — L _ 7
7T ordy (Ky)  vo

Set Gy, = HOM(Gyp, C*), Gyy = HOM(G . Z), and denote by GO the identity
component of G,,. The complex Fourier transform of G is

2 v 1 ifx €6
) 140} 0 |if X ¢ Gvo

We have anatural projection mr,,: G - G4, and thusinclusions Gvo - G, évo —
G. The weight wo generates the image of G,, — G. There exist exactly two
isomorphisms 680 — C*, and the weight wg fixes one such isomorphism. Via this
isomorphism, the tautological action of G2 on G, can be written as

C*x Gy 2 (t, x) = xs =1 ko X € G-
Define Ryy: Gy, \ {1} — C by
Rue() = (1= x 1K) Fr ()

-1 . 1)du
— -1 v _ l dvo—l HU#UQ(X (ﬂv)
(X (H’ O) ) Hv#vo(l _ X_l(KU))

-1
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Upto asign, thisisthe complex Fourier transform of the torsion of Eg, and thusit is
a holomorphic function.

Fix ¢ € Gy, such that (wg, g) = 1. According to (3.7) in §3.6 there exists
A € Z[Gyy]ande = £1suchthat R, isthecomplex Fourier transform of A+s% €
MN1(G,). Hence

RO (1= x X)) — AL~ x X)) = £So(x)
We deduce

g——llmR WA= = lim@ - ("o - 1)dvo*1]_[(tmv v
T AS okt (1 — tkv)

Thusthesign ¢ coincideswith the sign of thelimit on theright hand side. To determine
thissignit is convenient to introduce the following notation. If f () isameromorphic
function of the complex variabler thenthenotation f(t) ~ e(t —1)",e = +1,n € Z,
signifiesthat the function g(z) = (+ — 1)™" f () is holomorphic in a neighborhood of
1,¢(0) € R, eg(1) > 0. Observe that

" — ¥ ~ sign(m)* (r — DF.
Since the plumbing graph is a tree we deduce

Z(av — 2) = —2 x Euler characteristicof I' = —2.

Thisidentity shows that if m,, = 0, then R,,(1;)(1 — ) would have a pole of order
dy, —latt — 1. Sincethisfunction hasalimit at = 1 we deduce that when m,, = 0
wemust haved,, = 1, inwhich casetheterm (x ~2(u,,) —1)%0~1 hasno contribution
to the torsion. Hence, if we set sign(0) := 1 we deduce that for every v € V we have

(e = D~ sign(my)* THe = DL

Moreover, for v # vg we have

(1 — k) ~ —signtk)(r — 1) 2" sign(my) - (1 — 1).
We conclude that

Rup(L) ~ (=)%0~t —sign(m,) [ | signtk,)* 72 := €(vo). (3:39)
veV

Thus

A

So

Ryo(x) = A(x) +€(UO)T_1(@-
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Set A := A(1— g) + €060 € Z[G,,] and A(t) := A(1,). Notethat
AG)

Rvo(X) = 1

- x )’
The equality (B.4) in Appendix 8B.2, page 224, implies

A@Q) = e(vo)vio.

- 1 . 1
Iy (Ko g) = (Lo, g) MOdZ = — (wo, g) MmodZ = —.
Vo vo

In particular, since the order vg of K, is > 2 we deduce
Using (3.36) we deduce

1 /
e~ m[xj Ruo(x) (1= x:(9)) mod Z. (3.41)

To compute the expression in the left hand side we need an algebraic digression.

Lemma 3.50. 1
/ A A

P ———— P1 d Z, 342

i 2eyent ) =~ P mo (342)

for all P € Z[Gyl, t € C*.

Proof. Denote by po: Gy, — H the natural projection. We can then write

P= > punhg". pneQ

nez
heTors(GvO)

For every x € H wehave

P)= D punX(Pothg™)i".

nez

heTors(GvO)
Now observe that
L S~ pothg™) = -~ mod Z
— X (Po =——
[H| &~ § |H]|
xeH
The equality (3.42) follows by summing over 4 and n. O
Observe now that
A A
Rig) = — 20 (AW

1—x g x(g) —1
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so that X

Ry (01— x(8) = —x () A(X).
Since A € Z[G,], Lemma3.50 implies

1 / 1 ~
=D Rug) (1= x:(9)= LA
X

Hence

eMAD) _ e(P)e(wo)
Vv

1 :
&)= lim Xxj RO (1= x:(9))= ”

Using (3.40) and (3.41) we deduce

£(F) = €(Vo) = (=D 0t sign(m,) o™t [T sign(k,) 2. (343)
VF#V0

Remark 3.51. (a) If Pp := L + D; isnegative definite then Proposition 3.26 implies
my < 0,Vvand k, = —my/q, > Oforadl v # vg. Inthis case we conclude that
s(F) = €(vg) = 1. This agrees with the conclusionsin [75, Appendix A].

(b) A priori €(vg) depends on vg but formula (3.43) showsthat thisis not the case.
If P isnot negative definite it is not clear why such a fact should be true. Take for
exampl e the plumbing matrix

16 5 1

210 7 o7

— -1 _ 5 10 2
P=|1-31|, pl=| 5 10 2
1 2 7

015 L 2 I

This corresponds to the plumbing

2 -3 5
e —— o —— .

For example
€(v1) = —sign(16/37) sign(5/37) sign(—1/37) = 1,
€(v2) = —sign(—10/37) sign(5/37) sign(2/37) = 1.
e(v3) = — sign(7/37)? sign(—=1/37) = 1. |

Exercise 3.10.Suppose P isgiven by an integral, negative definite plumbing. Prove
that the quantity

dyy—1 _
W (vg) := my,’ l_[ mff“ 2
VF#VQ
isindependent of the vertex vo. O
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The following result summarizes the facts proved so far.
Corollary 3.52.

fATM;,[n] = - Sjg”((”*lﬂvo» fap) - l_[('“vo’ Pil#v)d"_z)

v

El

1 (" L(po) — )*
< x 7wy T = 1K)

vo an arbitrary vertex of I'. In the above formula the inner product (j¢,,, P 1u,)is
equal to the vgu-entry in the matrix P 1.

For example, the correct sign for the torsion computed in Example 3.49in 83.8is
determined by inspecting an arbitrary row of the matrix P~ in (3.18).

Suppose vg correspondsto thefirst row of P~1. Notethat theonly termsthat matter
correspond to odd degree vertices v of the plumbing graph such the corresponding
entry (puvy, P~1iy) isnegative. We deduce

€(vg) = —sign(2/3) - sign(—1/3) sign(—1/3) sign(—1/3) = 1.
If vo corresponds to the second row then
€(vg) = —sign(2/3) sign(—1/3) - sign(—1/3) sign(—1/3) = 1.

Inour next exampleweillustrate how to computethe sign refined Reidemeister—Turaev
torsion arational homology sphere relevant in singularity theory.

-2
" —p/p-1 -2
V3\ vy

-2
Figure 3.12. The D,-plumbing.

Example 3.53(The D,, plumbing.). The D,, plumbing isdescribed in Figure 3.12(a).
It consists of n > 4-vertices. The vector (0, ..., 0) is characteristic, and we have
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indicated thisin the figure. After several slam-dunksit can transformed to the equiv-
alent spin surgery diagram in Figure 3.12(b), where p = n — 2, and we have aso
indicated the result of the slam-dunks on the characteristic vector. More precisely
the new characteristic vector is also the trivial vector. Assume for simplicity that » is
even. We denote by M the boundary of this plumbing and define H and G as before.
We denote by ¢ the spin structure described by the above characteristic vector.

The plumbing matrix is

-2 1 1 p-1 —4p -2p -2p 4-4p
P 1 -2 0 0 P‘l—} —2p —p—2 —p 2p+2
~ ] 1 0 -2 0 ’ T4 -2p —-p —-p—-2 -2p+2
1 0 0 -—p -4 -2 -2 -4
Sincedet P = 4wededuce H = Za, Zo @ Z. When p is even we have
H =75 & 22,

H isgenerated by w1, w2, 13, i subject to the relations

1

2 2 — 2
1= p5=pus Wy =uh, K= Housua.

from which we deduce that 11 = 1, and H is generated by the elements of order two
w2, 3. Asfor thematrix K wecanchoosea; = —1,8 =0,1<i <3,asa = p+1,
Ba = —p (recall that «s and B4 must satisfy the congruences (3.27) on page 157) so
that
-1 0 0 -—p
0-1 0 0
0 0 -1 0
0O 0 O0p+1

K =

Then

. o () — 1)°
Tt e — oyl K (X (1) .
Me(X) =ex ~(n )l_[j(l_ X 1(KD)

Corollary 3.52 shows that the sign ¢ = 1. The monomial M’; is determined using the
arguments developed in §3.9. We can choose the trivial vector as integral lift of our
characteristic vector. The corresponding charge is

V= (K+ Ple=(-2-2-2,-2).

The exponent & is determined from the equality
e T R )
sothat 2k = (0, —2, —2, —2),i.e. k = (0, —1, —1, —1). Hence, forevery x € A\{1}
we have
(x L(up) - 1)°
(1— x (D) (1= x(12) (1 — x (1) (L — x(ufuy"™H)

Tar.e(X) = x (1u2/13/44)



172 3 Turaev's refined torsion

where the expression in the right hand side should be interpreted in the regularized
sense, using admissible weights. In this case, the first row of 4P~ produces such
an admissible weight w. The character x is completely determined by the complex
numbersz; := x(u;) = £1,i = 2, 3, 4. Instead of y we will write (z2, z3, z4). Set
w; = (W, u;). Since u1 = uousus = 1 € H have

Fare () = lim -
MU0 =10 (1— rw25) (1 — 1=w323) (1 — r—Pwrt(pDuwag, (PHD)
(= -1

=i
1 (1= 2227 (1 — 2327) (1 — za?)

There are exactly three possibilities.

oez4=1
. . (-1 P
-1, -1,1 =1 =7
TneL LU= I O a2y @) 4
ez3=1
Frre(—1,1,—1) = lim (% - 1) -2
M 2T T LI @ ) (1= 2) (1444 2
ez =1:
A | (- 1) 1
Tued, -1, -1) = | =5
e )= (1—r2r)(14227)(1+14) 2
Hence 1 4
_i(r _pth
TM,G(l)_4<4+1)_ 16 .
Similarly,
1 _iop 1 LN p
‘.TM,e(MZ)—ZXX:TM,E(X)X(MZ)—Z< 4 2+2)_ 16°
_1 _Y_p L\ »p
TJ'M,E(;L3)—4;TM,5(X)X(M3)—4< 275 2) 16

1 1 1 1 —4
Th.e(ua) = o > Tare (X (a) = Z(% -5- 5) Y
X

Theabove computationshaveaninteresting topol ogical consequence. Onthemanifold
M there are four spin structures{¢;; i =1, ..., 4},

e1=¢€, € =u;-€, i=234



83.10 Thetorsion of rational homology 3-spheres. Part 2. 173

If f isan orientation preserving diffeomorphism of M suchthat f*(¢1) = ¢;, thenwe
would have

IM.e(D) =Ty (D) = Tpre(ui)-
The above computations show that thisis possible if and only if ¢; = €1, so that the
spin structure €7 is atopological invariant of the oriented manifold M! The sameis

the case for 4.

We denote by T, the group of components of the group of orientation preserving
diffeomorphisms of M. T'j; acts on Spin(M), and the above computations show that
€1, €4 are fixed points of thisaction. Moreover these computations suggest that €2, €3
might belong to the same orbit of T'y,. The exercise below shows that thisis indeed

the case. O

Exercise 3.11.(a) For each spin structure ¢;, i = 1, 2, 3, 4 indicate a characteristic
vector representing it.
(b) Describe an orientation preserving diffeomorphism f of M such that

fer = e3. m]



Chapter 4
Alternative interpretations of the Reidemeister torsion

The Reidemeister torsion of an admissible 3-manifold can be given various equivalent
interpretations. It isthe goa of thisfina chapter to sketch three analytic methods of
describing thisinvariant: gauge theoretic, Morse theoretic, and Hodge theoretic.

84.1 A gauge theoretic interpretation: Seiberg—Witten invariants

Consider (M, o, 0) € X. Recall that this means that M is an admissible 3-manifold,
o is a (relative) spin® structure, and o is an enhanced homology orientation. The
attribute enhanced signifiesthat when b, = 1, the space H1(M, R) isoriented aswell.
Weset H := Hi1(M), and we denote by S, the associated bundle of complex spinors.

If oM # ¢ we attach a semi-infinite cylinder [0, co) x dM, and we equip the
ensuing noncompact manifold M with ametric ¢ which coincideswith the cylindrical
metric

dr® + g

onthecylindrical end, where g denotesaflat metriconatorus. Observethatif 9M # 0
then the vector field V coincides with 9, along the cylindrical end.

The Seiberg—Witten equations depend on an additional deformation parameter.
Thisisaco-closed 1-form 5 on M with the following properties.

P1. Therestriction of 5 to the cylindrical end is nontrivial, ¢-covariant constant and
harmonic. As such it defines acohomology class |3y € HY(IM, R).

P2.1f 9M # ¢ and b1(M) = 1then

nlom € Im(HY (M, R) — H(3M, R)) \ {O}.

The configuration space of the Seiberg—Witten theory is
G(T = F(Sa) X Aa,

where A, denotes the space of hermitian connections on the complex line bundle
deto :=detS, — M. When M # (J, so that M is noncompact, we require

/A |Fal2dv(g) < oo, (E)
M
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where F4 denotes the curvature of A. Observe that PD(c1(det o)) = c¢(o).

Every A € A, defines a symmetric Dirac operator ©4 : I'(Sy) — TI'(Sy). A
finite energy monopole is a configuration C = (¢, A) € C, satisfying (E) and the
Seiberg-Wtten equations

{D’“” =0 (SW)

c(xFa +in) = 3q(¥),

where ¢ (v) € End(S, ) is defined by

1
T(Se) 3¢ (¢, Y)Y — §|w|2¢ e I'(Sy),

and ¢: A*T*M — ENd(S,) denotes the Clifford multiplication “oriented” by the
condition

cdvy) = -1

The group of gauge transformations
Gy 1= C> (M, S
acts on the configuration space by

G; xCo 3 (y,C=W,A) > (v ¥, A—2dy/y) € C,.

It transformsmonopol esto monopoles. Thequotient C,, /&, isequipped withanatural
(Sobolev type) metric. We denote by 971, C C, /&, the set of orbits of monopoles.

M, isacompact subset of C,, /B, anditsinfinitesimal deformationsare described
by an éliptic complex of index 0. For any ¢ and a generic n these deformation
complexesareacyclic showingthat 9, isafiniteset. By fixingahomology orientation
of H,(M,R) we can associate asign ¢(C) = +1 to any orbit [C] € I, (see [68])
and define

Wy (0, 0, 8, 1) = Z &(C).

[CleMs

At this point we need to discuss separately three cases.

A. by > 1. A cobordism argument shows that swy, (o, 0, ¢, ) isindependent of the
choices (g, n). We denote this common value by swy, (o, 0), and we refer to it asthe
Seiberg-Witten invariant® of (M, o, o). It has the following properties.

e SWy (o, 0) = Ofor al but finitely many ¢’s.

o If 9M = @ then swy; (o) = SWy(5), Vo.

Iwhen working on closed manifolds, the homology orientation is the tautological one and we will not
includeit in the notation of the Seiberg-Witten invariant.
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For every o we can form the element

Wit o0 € ZIH], Wi o0 = Y SWy(h™'o, 0)h.
heH

Note that for every hg € H we have
SWit.hgo,0 = hoSWa,6,0-
Moreover, when oM =
SWi,o = c(0)SWp6 = c(0)SWy 6.
In this case for any spin structure € we have det(o (¢)) = 1 so that
SWiro(e) = Wit,0(6)-
For simplicity we set SWy; « := SWys 5(e)-

B. by = 1. Thissituation is abit more delicate. We discuss separately the two cases
IM =@ and dM # §.

B.1. oM = @. Fix ametric g. The enhanced homology orientation defines an
orientation on H ® R. Choose a harmonic 1-form w, which induces the chosen
orientationon H ® R, and [lwg |l 2(,) = 1. Note that this orientation also produces a
surjection

deg =deg,: H — H/Tors(H) = Z.

Weidentify H2(M) with H viathe Poincaré duality, and for every complex linebundle
L — M, we set
deg L := deg(PD c1(L)).

For o € Spin°(M) denote by P, (g) the space of co-closed 1-forms 5 such that

we (o, n) = / (n — 27 % cl(detcr)) A xwg # 0.
M

The wall
We :=1{n € g)o*(g); w(o, n) = 0}

decomposes P, (g) into two chambers

P o(8) = {n € Ps(g); Fwo(o,n) > O},

For generic n € P,(g) we denote by swy (o, 0, ) the signed count of (o, g, n)-
monopoles. It isknown that

Swy (o, 0,7) = SWy (o, 0,n),
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swy (o, 0, 7) = O for all but finitely many ¢'s, and
Wy (0, 0, 11) = SWy (0, 0, 72),
if we(o, n1) - we(o, n2) > 0. Weset
SWiy; (0, 0) 1= Sy (0, 0, 1),
where +w, (o, n) > 0. Thewall crossing formula (see [61]) states that

1
SWj, (0, 0) — SWj, (0, 0) = > deg(det o).

We define
SWito.00 = Y _ SWu(h™ Yo, Mh € Z[H],
heH
SWy g0 = D SWh(h o)k € ZI[H]].
heH

Suppose we pick og = o(€), where € is a spin structure, and n = ng such that
Sy 0 A ko, isavery small positive number. Fix T e H such that deg(7) = 1. We
deduce that

wo(h_l-ao,no)>0 — / no A *wg > —2mw deg, h <= deg,h >0
M

Hence
(g m0) € P,y (g) < deg,(h) <O.

We can rephrase the wall crossing formula in the more compact form using the wall
crossing term W), introduced in 83.6. More precisely

_ SyuT
Wit o) = Wiro o + ) deg* (h™Hh = SWir o010 + a-12
heH
where
deg” = max(deg.0), Sy = Y heZH]
heTors(H)
Observe that
WY o0 = SWi7 o e) — Wit = SWit 010 € ZIH] (4.1)

isatopological invariant, independent on the orientation o on H ® R, which satisfies
the symmetry condition

=50
SVVSl)/I,(r(e) = SVVM,G(E)’

and the equivariance property
S\Ng/l,a(hoe) = hosvvg/[

We will refer to S\N&U(e) as the modified Seiberg-Witten invariant of M associated
to the spin structure e.

Vho € Tors;(H).

,o(€)’
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Example 4.1(The Seiberg-Witten invariants of S x $2). Suppose M = ST x §2,
and go isthe Cartesian product of the round metricson St and S2. Thescalar curvature
of go isapositive constant so. H1(M) isgenerated by thefiber $*, and thus M carries
anatural enhanced homology orientation 0. We denote by wg = d¢ the angular form
along S1. It defines a generator of H1(M, R) which is positive with respect to the
above enhanced homology orientation. wg is a harmonic 1-form. After a possible
rescaling of the metric gg we can assume it has L2-norm 1. Choose g = cwo Where
c isavery small positive number.

Note that for every spin© structure o we have deg(det o) € 2Z. For every n € Z,
wedenote by o, the unique spin° structureon M such that deg(det ¢,,) = 2n. Observe
now that

Pr(g) ifn<0
no € (4.2
P, (g) ifn>0.

We want to prove that for any n € Z there are no (o, go, n0)-monopoles so that
SWp(0n,m0) =0, Vn € Z.
Indeed, suppose C = (¥, A) isao,-monopole. Using the first equation in (SW) we
deduce @ix// = 0. The Weitzenbdck formula now yields
Ayt A S0 1
(VO Vi + Zlﬁ + EC(FAW =0.
The second equation in (SW) implies

1 .
c(Fa) = c(xFy) = 2dW) — c(in).

Hence

1. 1
(V4 VA + 2 = Seling) + 3900 ) =0.

Taking the L2-inner product of the last equality with v, and then integrating by parts
we get

Ay 02 Lo Lo dow —
[ (1949 4+ i = S(etina. v + 36l ) dvw =0,
Since ng = cwp and 0 < ¢ « 1 we deduce that all the terms in the above equality

must be zero so that v = 0. Using this information in the second equation of (SW)
we deduce

. i c c
FA:—I*U():>—/ FA/\*a)o:—/a)o/\*a)o:—.
27 Jy 27 Jy 2

Hence
27 / c1(det o) A xwg = c.
M
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This equality isimpossible when

O<c< min{27r(c1(detan), wo)p2; n €7\ {0}},
which confirms our claim. We deduce that

Wy (0w, n0) =0,  Vn.
Using (4.2) we conclude that
W), (0) = SWp(a,m0) =0, ¥n <O.

Thewall crossing formulaimplies that for all n > 0 we have

SNJAC[(U,,) =n + SWy,(0,) = n + SWy,(0y, N0) = n.

Now interpret H1(M) as amultiplicative group, and denote by T the generator of H
satisfying deg T = 1. We deduce

S\N/tl,ao = ZSNL(G_H)T” — ZnT" = ZnT_" =

nez n<0 n>0

Tt T
1-7-1)° A-1)%
O

B.2. M = T2. Using the orientation? of H1(M, R) we can choose acycle ', ¢
Hy(M, Z) inducing the positive orientation on 1-dimensiona rea space Hi(M, R).
For each Riemann metric g pick a harmonic 1-form w, on M such that aong the
end [0, oo) x dM the restriction wgl;xapm COnverges exponentially as+ — oo to a
nontrivial harmonic 1-formon dM and

/ wg =1
ry

The space of parameters (g, n) decomposesinto
PE = (g, swg +9); £5 >0, ¢ € Q¥(M), d*¢ =0, ¢ has compact support}.

Then one can show that swy, (o, g, n) isindependent of (g, n) € P,. We dencte this
common value by SNAJ;(G). sw), (o) is defined similarly. Now define

SWj;: Spin“(M, aM) — ZI[HI(M)]l, o~ Y swh(hto)h.  (sw)
heH1(M)

Thisisan Hi(M)-equivariant map and (see [68])
SW;, (o) € M(H1(M)), VYo € Spin“(M, IM).

21t oM # ) then the homology orientation on H, (M, R) induces an orientation of H1(M, R) which
will be the one we choose.
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Example 4.2. (a) ([3, 80]) If M isthe total space of a degree d circle bundle over a
Riemann surface X of genus g then for any spin® structure o on M we have

sWy (o) ~ (L —1)%72 € Z[H1(M)]

where ¢ denotes the homology class of the fiber.
(b) If N1 and N> are closed, oriented 3-manifolds such that b1 (N;) > 1 then

SWn #Ny = 0. O

The above examples and the computations in §2.1 suggest that the Reidemei ster
torsion and the Seiberg—Witten invariant swjy, could berelated. We havethefollowing
more accurate statement.

Theorem 4.3(Meng—Taubes [68], Turaev [115]). TheSeiberg—Wtteninvariant swy,,
b1(M) > 0, satisfiesthe Axioms 1-3in 83.5 and thus coincides with the Reidemei ster—
Turaev torsion (up to a sign).

Remark 4.4. For agenera outline of the proof (based in essence on gauge theoretic
gluing results) werefer to[68, 115]. Asexplainedin Remark 3.19, the proof reducesto
proving surgery formulaefor the Seiberg—Witten invariant of admissible 3-manifolds,
and verifying that in the simplest case of asolid torusthisinvariant equalsthetorsion,
(1—1)~L. Thisisvery easily deduced from the surgery formulag and the computation
in Example 4.1.

Most of the analytical work needed to prove the gauge theoretic surgery results can
be found in the recent paper [108]. The topological counterparts of these analytical
gluing formulaewhich are required in the proof can be found in [112].

D. Salamon outlines in [95] a different, more geometric approach in the special
case of 3-manifolds which fiber over §1. In[21] S. Donaldson describes yet another
approach to the case b1 = 1 of Meng-Taubes theorem based on Topological Quantum
Field Theory. This approach was recently extended to any b1 > 0O by T. Mark in [66].

O

Exercise 4.1.Assuming that the Seiberg—Witten invariant satisfies the excision for-
mulain §3.7, prove that in the case of the canonical spin‘ structure on the solid torus
Z = St x D?itisequal, up to asign, with the Reidemeister—Turaev torsion. O

We can eliminate the sign ambiguity in Theorem 4.3 at least when b1(M) = 1
and oM = . In §83.6 we defined the modified Reidemeister—Turaev torsion of closed
3-manifolds such that b1(M) = 1 by the equality

T e = Tme — Wy € Z[H], Ve € Spin(M). (4.3)

We observed that 0
“Tg/l,e = ‘TM,E'
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Proposition 4.5. If b1(M) = 1and dM = ) then
SWy, . =Tme. €€ Spin(M).
Proof. We have an equality
SWi = £Tie = (SWS,  + War) = =(TY . + W)
To prove that the correct choice of signsis*“+" we argue by contradiction. Suppose

SWi, . = —Tye.

€
Then thisimplies that
Tue — Wy = —SWY, —2Wy ¢ Z[H]

which contradicts (4.3). O

Remark 4.6. We see that we can remove the sign ambiguity in the case b1 (M) = 1,
oM = @ by relying on thewall crossformulafor the Seiberg—Witten invariant and the
structural equality (3.6) for thetorsion. It is natural to expect that we could similarly
remove the sign ambiguity in the case b1(M) = 1, 9M = T2, by using the structural
identity (3.7) and an as yet non existent wall crossing formulafor the Seiberg—Witten
invariants of M. Things are more delicatein thiscase. Lim’s proof in [61] of the wall
crossing formulain the closed case does not extendsto the cylindrical end situation for
asimplereason. Inthe noncompact case the Fredholm property of apartial differential
operator isnot decided by the symbol of the operator alone, asisthe casein the closed
case. For manifolds with cylindrical ends thisis decided by global objects which are
no longer invariant under lower order deformations of the operator. O

Proposition 4.7. If M is a closed, homologically oriented 3-manifold such that
b1 (M) = 1then L
To(D = SWy (D) = 5831,

where Ay € Z[[TY2, T=1/2]] denotes the symmetrized Alexander polynomial of M
normalized such that A, (1) = | Tors(H1(M))].

Proof. Set H := H1(M) and

Gu:= Y heZlH].
heTorsH

The projection deg,: H — Z defined by the homology orientation o induces the
augmentation morphism

aug: Z[[H]] — Z[[t, ).
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Fix T € H such that deg, T = 1. The symmetrized Alexander polynomia Ay is
uniquely determined by the condition

Tk/z AM(T)

aug Ty = TH2 M,

for some k € Z. Using Theorem 4.9(a) we deduce

Ay (T) T
kj2 M _ _
T 1-12 " aug SWyy = aug SWE, + aug (6M)—(1 )2
swe d
= aug M+|T0rS(H)|m
We conclude that

TK2=Y A (T) = (T — 2+ T~ Y)aug SWE,(T) + | Tors(H)|.

The symmetry of SWP implies SWR,(T) = SW8,(T~1), and since Ay satisfies a
similar symmetry we conclude k/2 — 1 = 0. Hence

Ap(T) = (T — 2+ T~ Haug SW8,(T) + | Tors(H)|.
Differentiating the above equality twice at T = 1 we deduce
A, (1) = 2aug SW,, (1) = 25W°(1). O
Remark 4.8. Observe anice “accident”. Suppose M isasin Proposition 4.7. Then

Wy =&y Yy nT™".
n>1
Formally
Wy(D) =&y n=|Tors(H)| Y n
n>1 n>1

1
= |Tors(H)[¢(=1) = —EITOFS(H)I,

where ¢ (s) denotes Riemann’s zeta function. In particular

SWy (1) = SVV24(1) + Wu () = EMV’(l) - 1—2IT0rS(H)|-
Theexpressionintheright-hand-sideisprecisely the Casson—-Walker—Lescop invariant
of M, [58]. O
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C. Suppose now that b1 (M) = 0, i.e. M is arational homology sphere. Fix o €
Spin“(M). Inthiscasethe signed count of (o, g, n)-monopolesdependson (g, n) ina
more complicated way. To produce atopological invariant we need to add acorrection
to this count. For simplicity, we describe this correction only when n = 0.

Theline bundle det o = det' S, admits a unique equivalence class of flat connec-
tions. Pick one such flat connection A, and denote by © 4 the Dirac operator on S,
determined by the twisting connection A,. We denote its etainvariant by 7 gir (g, o).
Also, denote by nsgn(g) the etainvariant of the odd signature operator determined by
g. Finally define the Kreck—Stolzinvariant of (g, o) by

KS(g,0) =4ndir(g, o) + nsign(g).

Define the modified Seiberg—\Witten invariant of (M, o) by
1
sy (0) = 5K S(g,0) + sWu(0) € Q

Asshownin[61], theabove quantity isindependent of themetric, anditisatopological

invariant. Set
SWY, ==Y swh(h o)k € QLH].
heH
If o = o(¢) wehave
=0
SIVIOW,O’(G) = S\NM,U(G)‘

To establish a relationship between the Reidemeister torsion and the Seiberg—
Witteninvariantsfor rational homology sphereswe need to define amore sophisticated
modification of the torsion.

Suppose b1 (M) = 0. We denote by CW )y, € Q the Casson-Walker invariant of
M (see[58, 118] for more information about this invariant) and define

1
T e =Tme — 5 CWiy Op.

Observe that ‘.AT,%,G(l) = augTY . = 3|H|CW = Lescop invariant of M (see [58,
p. 80]).

Wewewill refertothequantitias?‘,fm€ forb1(M) = 0, 1themodified Reidemeister—
Turaev torsion of M. The Seiberg—Witten invariant and the modified Reidemeister
torsion are related. More precisely we have the following result.

Theorem 4.9. (a) [60, 65, 85]. SWy; (1) = T2, (1) if by (M) = 0.
(b) [81]. SWA, = T9, if M isalens space3

SWe have to warn the reader of a sign convention in [118, Prop. 6.2], where the lens space L(p, ¢)
is defined as the p/g-surgery on the unknot. However, the lens space L(p, g) as defined in §2.7 is the
— p/q-surgery on the unknot, [37, p.158], [46, p. 65-66].
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Part (b) of the above theorem can be dlightly strengthened to
SWO, =79, if M isaconnected sum of lens spaces. (4.4)

This equality follows from the vanishing of the torsion under connected sums, the
additivity* of the Casson-Walker invariant, and the additivity of the Kreck—Stolz
invariant.

Theorem 4.10([83]).
SWiy = Ti

for any rational homology 3-sphere M.

Outline of the proof. The first temptation would be to prove an extension of the
Uniqueness Theorem 3.17 which islimited to manifolds satisfying b1 (M) > 0. There
is however amgjor obstacle.

The Unigueness Theorem 3.17 involves invariants of admissible manifolds with
boundary, and for such manifolds the functional set-up for the Seiberg—Witten equa-
tions requires perturbation parameters satisfying the nondegeneracy condition P2 de-
scribed at the beginning of thissection. If weglueal ongtheir boundariestwo manifolds
M;,i =0, 1,suchthatb1(M;) = 1,dM; = T2, aimingto producearationa homology
sphere N = Mo#r2 M1, then we would have to use perturbation parameters v; match-
ing aong the boundaries. These would produce a non-exact closed 2-form xvp# * vg
on N which would contradict the condition b1 (N) = 0. Thus, whatever uniqueness
statement we would attempt to prove, it cannot involve the torsion of manifolds with
boundary.

On the analytical side, the way out of this quandary is to work with a different
class of allowable perturbations, the compactly supported ones. This creates a serious
problem. It substantially changes the structure of the deformation complex for the
Seiberg—Witten equations on manifolds with boundary. Itsindex will no longer of be
zero, as desired. However this choice of perturbation is forced upon us, and cannot
be avoided. We must renounce all the analytical achievementsin [68, 108] and prove
new gluing formulae

All is not lost. The analytical resultsin [62, 65, 85] can produce gluing results
for the modified Seiberg—Witten invariant, albeit much weaker than the onesin [108].
These new formulaefor the Seiberg—Witten invariant do not involve manifolds with
boundary.

On the topologica side, one has to renounce the multiplicative gluing formulae
discussed sofar and use additive ones[116, 86]. We outline below somethedifficulties
of this approach and the method we propose to get out of trouble.

We denote by D) the difference SW8, — T9,. Proving the equality of these two
invariantsisequivalent to showing that D, = 0. At thispoint the harmonic analysisin
81.6 comesin extremely handy. For example, the Marcolli-Wang result [65] translates

4This follows from the very general surgery results for etainvariantsin [52].
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into Dy (1) = O, for al rationa homology spheres. The true nature of the surgery
formuleeis best displayed in the Fourier picture. To explain the gist of these formulae
consider a 3-manifold N with b1 = 1 and boundary T2. N can be thought of as the
complement of aknot inaQHS. Pick two simple closed curves c1, ¢z on dN with
nontrivial intersection numbers with the longitude A € H1(dN, Z).

By Dehn surgery with ¢; as attaching curves we obtain two rational homology
spheres M1, M> and two knots K; < M;,i = 0,1. Let H; := H1(M;,7Z), G =
Hi(N,dN;Z). Denote by j the inclusion induced morphism H1(dN) — Hi(N).
Theknot K; determines a subgroup K} C H;, consisting of the characters vanishing
on K;. These subgroups are naturally isomorphic to the group of characters x of
Hi1(N) with the property that the composition

HiON) L V) 255 ¢
istrivia (see 8B.2). We thus have a natural isomorphism
f: Ki — K5

Putting together the gluing formulaein [62, 65, 85] and the additive gluing formul aze
in[116, §6] we get agluing formulafor Dy, of the form®

(A, c2) Dy () = (A, c1)Day (F () + IGIK,  Vx € Ki+

where (s, +) denotes the intersection pairing on H1(dN, Z), and X is a universa
correction term which depends only on the divisibility mg of the longitude and the
SLo(Z)-orbit of the pair (c1, ¢2) with respect to the obvious action of thisgroup on the
space of pairs of primitive vectorsin a2-dimensional lattice (see 8B.2). We will thus
Write K. [c1.c,], and call the triplet (mo; [c1. c2]) the arithmetic type of the surgery.
The results of [85] prove that

Kifereo) =0, Vlew, c2].

We call surgeries with mg = 1 primitive, and the surgeries with trivial correction
term, admissible.  We denote by R the class of rational homology spheres M such
that Dy, = 0. Both the family of admissible surgeries and the family R are “time
dependent” families, and during our proof we gradually produce larger and larger
classes of surgeries/manifoldsinside these families.

TheclassfR isclosed under connected sumsand certain primitive surgeries. Using
this preliminary information and basic Kirby cal culus one can show® that all homology
lens spaces belong to PR. As abonus, we can include many more arithmetic types of
Dehn surgeriesin the class of admissible surgeries.

5The reader should compare this description of the surgery formula with the ones in [65, 85] to truly
appreciate the amazing simplifying power of the Fourier transform.
61 learned this fact from Nikolai Saveliev.
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Loosely speaking, the homology lens spaces have the simplest linking forms. We
take this idea seriously and define an appropriate notion of complexity of alinking
form. The proof then proceeds by induction, including in X manifolds of larger and
larger complexity. This processalso increasesthe class of admissible surgeries, which
can be used at the various inductive steps. Such a proof isfeasibleif we can produce
alarge supply of complexity reducing Dehn surgeries. Fortunately, this can be done
using elementary arithmetic. We refer for more details to [83]. O

Using Theorem 4.10 we can now establish a relationship between the maps qiors
and gtop introduced in §3.9.

Proposition 4.11.
ftors = Qtop-

Proof. Since both maps are H -equivariant it suffices to prove that qiop(€) = qtors(€)
for some spin structure e on M. Using Theorem 4.10 we deduce that

1
drors(€) (h) = g(KS(e) —KS(h-€)) modZ, VheH.

To compute qtop(€) consider asimply connected spin four-manifold (M, ¢) such that

(see[37]) i
(M, é) = (M,e).

Next, choose h € H2(M, 7) suchthat [A] := h|sy € H isthe Poincarédual of 4, i.e.
[A1(+) = IKpr (1, »).

Setéy :=h-é.

Fix ametric g on M and extend it to a metric g on M which is a product near
the boundary. Denote by Sy, the Zy- graded of spinors associated to 6;,. Extend the
flat connection A, on det o to aconnection A;, on det S+ We get in this fashion an
operator ;, on Sp. Usi ng the Atiyah—Patodi—Singer index theorem [2] for 0, and the
signature operator on M we deduce

1
09+ 3 QM(h h) = Snar(he, g) mod Z,

24 2
and
M, )—}s n(M = L mod Z

24 Pl( 8 8 g = 8'75|gn .
Thus

1 1. ~~ 1.

éKS(he) = EQM(h, h) — ésgn(M) mod Z.
Hence

1 1. ~ -
qrors(h) = é(KS(e) —KS(h-€)) modZ = —EQM(h, h) ModZ = qiop(€)(h). O
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Remark 4.12. While the book wasin print, F. Deloup and G. Massuyeau have given
apurely topological proof of Proposition 4.11. For details we refer to their preprint
math.GT/0207/188. Thisresult plays akey rolein theinvestigationsin [75]. O

84.2 A Morse theoretic interpretation

The Reidemeister torsion resembl esin many respectsthe Euler characteristic. Accord-
ing to the classical Poincaré-Hopf theorem, we can interpret the Euler characteristic
as counting stationary points of smooth vector fields.

In the early 80's, D. Fried [33, 34] has shown that the Reidemeister torsion of
a smooth manifold X can too be interpreted as counting closed orbits of nowhere
vanishing Morse-Smale vector fields, i.e. gradient vector fields associated to smooth
maps X — ST without critical points (see also [28] for earlier results of this nature).
M. Hutchings and Y. Lee have recently extended Fried's result to any generic map
a: X — S Thegoal of thissubsection isto formulate this result and loosely explain
it. For detailsand proof werefer to[49] which served as our main source of inspiration.
For different approaches we refer to [47, 48, 87].

Suppose X is aclosed, compact, oriented, smooth manifold such that x (X) = 0.
Fix a Riemann metric g on X and a smooth function

a: X — St

such that the pair («, g) isadmissible, i.e.

e The critical points of « and the closed orbits of Vo are nondegenerate.
e The ascending and descending manifoldsof the critical pointsof « intersect transver-

saly.
A closed orbit of Va isanonconstant map
u: St > x
such that
du WVar)
—_ = = ou
dt

for some positive constant A. Two orbits are considered equivalent if they differ
by a reparametrization. We denote by @ the set of equivalence classes of closed
orbits. Each equivalence class of closed orbits u determines an unique homology
class[u] € Hi(X).
The period of aclosed orbit u isthe largest positive integer p such that u factors
through a p-fold covering
st st 7 7P
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Equivalently, the period isthe largest positive integer p such that
1
—[ul] € H1(X).
p

A closed orbit u# defines areturn map

¢u: (0O = ()",

where((0) )L denotes aneighborhood of the origin in the orthogonal complement of
1(0) in T, ) X. Theorbit is called nondegenerate if

det(1 — D¢,) #O.
In this case we define the Lefschetz sign
e(u) := signdet(1 — D¢,).

The function o defines a cohnomology class

1 * 1

w=wy:=—f"(d0) e H (X, Z).

2

Define the Novikov ring

Ay = {s =Y, snh € ZI[[HL(X)]]; VC € R, #{h, sp # 0, w(h) < C} < 00},

and the zeta function of «

G = exp(;g ;((Z)) []) € A

Itisnot apriori clear that ¢, isaLaurent serieswith integral coefficients. Thisfollows
from the equivalent description (see[34, 48, 95])

Ca = l_[ (1 — (_l)i,([u])[u])(_l)io([u])’

ue®*

where ©* denotesthe set of primitiveorbits(period 1), i ,o([«]) denotesthe number of
rea eigenvaluesof thereturn map intheintervals (—oo, —1) and respectively (—1, 1).

The Morse-Novikov complex associated to o and g isachain complex (C, d) =
(C(a; g), 0) of free A,-modules defined asfollows (see[47, 84, 86] for more details).

e Cy isthefree A, module generated by the critical points of f of index k. Denote
by X the universal abelian cover and by & the induced smooth function

a: X — R.



84.2 A Morsetheoretic interpretation 189

Choose a lift £ € X of any critical point x of f. Each such lift is a critical point
of &. Then the collection {x; ind(x) = k} isa Ay-basis of C;. A choice of Euler
structure uniquely specifies such alift. Here, we prefer to think of an Euler structure
asal-chain y on X such that

Va(x)=0
e The boundary map d: Cy — Ci_1 isdefined by
k=D (x5
ind (y)=k—1
where

(o)=Y (k.

heH1(X)
We denote by 7,(c) the torsion of the Novikov complex (C(a, g), 3), t,(a) €
O(Ay)/=%. Denote by i, the natural morphism
Q(H1(X)) = O(Aq).

We have the following result.

Theorem 4.13(Hutchings-L ee, Pgjitnov [49, 87]). For any admissible pair («, g)
and for any Euler structure o we have

io(T(X,0)) = log(0) = LaTg(@, 0).

For a proof of this result we refer to [47, 48, 49, 66, 87]. The strategy is easy
to describe. One constructs a homotopy equivalence between (C (e, g), d) and the
cellular chain complex of X with coefficientsin A,. Thisis not a simple homotopy
equivalence, and itstorsion is precisely the zeta function of the flow determined by «.
The theorem is then a consequence of the multiplicativity properties of the torsion.

We will however sketch an argument of M. Hutchings[47] showing that the above
identity follows immediately if we assume I, , is atopological invariant. More pre-
cisely, we have an apparently weaker result.

Theorem 4.14([47, 87]). Theinvariant I, , dependsonlyontheclassw, € HY(X, 7).
We will show, following [47], that
Theorem 4.14 — Theorem 4.13.

The proof will be carried out in two steps.

Step 1. Theorem 4.13 istrue when w, = O, i.e. « liftstoamap f: X — R. Inthis
case ¢, = landtheresultisclassical; see[72, Sec.9] or [86].

Step 2. Reduce the general case to Sep 1. This can be achieved immediately using
the following technical result, [47, 87].
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Lemma 4.15([56]). Fix an Euler structure ¢ on X and a smooth mapa: X — S1.
Then there exist a metric g on X and a smoothmap f: X — R such that

e Thepairs («, g) and (8 = o + exp(i f), g) isadmissible.
e The vector field V& 8 has no nontrivial periodic orhits.
e Thereisa canonical isomorphisms of chain complexes

(C(f.8).9) ® Ay = (C(B, 8), 0)-

Proof. The result is obviously true when « is homotopically trivial. Thus we only
need to consider the case when w, # 0 € H1(X,Z). By eventualy perturbing o
within its homotopy class we can find a metric g so that («, g) isadmissible. Pick a
smooth function £ : X — R. Welook for f of the form n&, wheren isavery large
positive integer. This assumption will guarantee the existence of a bijection between
the zeroes of V f and

VB, =nVf 4+ Ve,

and the corresponding stable and unstable manifol ds of these vector fields. Let usnow
show that for large n the vector field V8, will have no nontrivial periodic orbits.

We argue by contradiction. Suppose that for every n > 0 there is such an orbit
vn. We denote by 2rrs, € 27 its principa period. Then [y, ] has infinite order in
H1(X, Z) since

27 sy,
f dpy = / Bt > 0, (dBy = B1(d6) = 27, ).
n 0

In fact, Since wp, = wy € H(X, Z) there exists ¢ > 0 such that

(dBn, [yn]) = ¢, Vn.

Isolate the critical set Crit(f) of f inatiny neighborhood U, consisting of geodesic
balls of radii » > O centered at the critical points of f. We denote by L = L, the
minimum distance between two distinct components of U,. Denote by A, , the part
of the path y,, outside U, and by u,, , the part inside U,.. For each 0 < r <« 1 we can
find N = N(r) > 0 such that

Crit(B,) Cc U,, ¥Yn > N(r).
An,r @nd p,  consist of the same number of components
)\n,r,ka Mn,rks k=1,..., v(n).

We label the components so that ., ,x follows A, . Using the Morse Lemma for
% Brlu, we deduce that the length of each component of w, , is O(r). We need to
distinguish several cases.
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Uy

Figure 4.1. A periodic orbit.

Case 1. The path y, intersects several of the components of U,; (Figure 4.1). We
reparametrize

Yu(t) = yu(t/n)
so that 1
Vp =V, :=VE+ ;Vozn.
Assumefirst that 2, - hasno “loops’, i.e. componentswhich start and end at the same
component of U,. We deduce that there exists C > 0 such that
. . 1 1
inf |dA, - (0)| = inf |VE+ —Va| > Cr — —.
X\U, n Cn

Hence

o -

v(n)

1
= Z{/ <|d)‘n,r,k|2 - _g(dkn,r,ka d“)) +f g(ds§, d,un,r)ds} (*)
k=1 )Vn,r,k n Mn,r.k

> Cl|L 1 2 -C 2 L Ly
> v(n) \r=e, )77 )= vim)| —rc+r r s

If we now choose

1
Bhsl2 = e dards + [ g(ds diun)ds
Mn,r

n,r

n>maX(N(r), O<r<L,

Tt )
rLy.(Ly —r) ,
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we obtain a contradiction in (*).

If A, contains “loops’, we can shortcut them away, by connecting the initial
point and the final point of such aloop by a geodesic segment inside U,.. We obtain
a new closed path 7, which is tangent to V, outside U,. This leads as above to a
contradiction.

Case 2. y, intersects a single component of U, so that %, , consists only of loops.
Suppose the component of U, in question isaball of radius r centered at the critical
point xg of f. We assume r is considerably smaller than the injectivity radius Rg of
X at xo,

0 <r < Ryp.

Let us observe that y,, cannot be included in any contractible open set of X becauseit
carriesanontrivial homology class. Thus, one of the components, say A, , 1, must go
out of the geodesic ball of radius Rp/2 centered at xg, and in particular

R
length(Ay 1) > 70

Now form aclosed path y,, by joining the endpoints of A, , 1 by apath of length O ()
inside U,.. The equality
/ d¢=0

leads asin the previous caseto acontradiction. Thisconcludesthe proof of thelemma.
o

Remark 4.16. The Meng-Taubes-Turaev theorem in the previous section shows that
the Morse invariant I, of aclosed 3-manifolds coincides with the Seiberg—Witten in-
variant. At thismoment thereisno proof which directly identifiesthesetwo invariants.
However, the work of C.H. Taubes, [104, 105, 106, 107], on the invariants of (degen-
erate) symplectic manifolds suggests one explanation. We consider for simplicity the
case when X isa 3-manifold which fibers over acircle

J
F——X

lﬂ
st
where F isacompact, oriented Riemann surface of genus g. We can find a metric go
on X such that wg := 7*(d6) isharmonic. Then the 4-manifold
M:=S'x X

issymplectic. Indeed, if dg denotes the angular form on the component S* of M and
g = d¢? + go then
w :=dg A wg + *g,00
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isasymplectic form.

The Seiberg—Witten invariant of M coincides with the Seiberg—Witten invariant
of X. On the other hand, the closed trajectories y : ST — X of the gradient flow of
7, which contribute to the Morse invariant I, lead to symplectically embedded tori

lxy:Slel—>SlxX.

According the work of Taubes, the Seiberg—Witten invariants of M count precisely
such tori. The equality between the Seiberg—Witten invariant and the Morse invariant
of X implies that the correspondence

closed orbits of the gradient flow — symplect tori — monopoles

isin some sense abijection. Thework of Taubes explainswhy the second arrow above
isabijection. Thework of D. Salamon [95] offers strong evidence that the first arrow
isahbijection aswell.

84.3 A spectral interpretation: the Ray—Singer analytic torsion

Like the Euler characteristic, the Reidemeister torsion too has a Hodge theoretic in-
terpretation. Suppose X is a closed, connected, compact, oriented, smooth manifold
of odd dimensionn = 2m + 1.

A morphism p: m1(X) — St defines a pair (L,, A,) consisting of a hermitian
linebundle L, — X and aflat hermitian connection A, onit.

We denote by ©¥(L) the space of smooth L-valued degree k-differential forms
on X, i.e. sections of the bundle L ® A*T*X. Since A is flat we obtain a co-chain
complex

0— QL) - @by M ... oy — 0.
For consistency reasons, we will think of it as a chain complex
(C(p),d), Cip:=Q" D).

Thisisan infinite dimensional complex.

Suppose (C(p), d) is acyclic. We would like to define a notion of torsion for
this complex. Clearly the definitions we have used so far are useless. However, the
formula (A.1) in 8A.1 will provide away out of thistrouble.

A Riemann metric g on X induces a Hermitian metric on Q*(L) and Laplacians

Aj(p) = diyda +dad}: @/ (L) — Q/(L).

Theeguality (A.1) showsthat, provided we can make somerigoroussenseof det A; (o),
then we can define the torsion of this complex by the equality

o )2 . Hj odd dEt(Aj(p))‘i
27 Tk even et Ak (o)
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Since the operator A; is élliptic, selfadjoint and positive, its possibly nonexistent
determinant ought to be positive. We can pass to logarithms and obtain

l n
logz(p)| = 5 > (=D* klogdet Ak (p).
k=0

If A were apositive symmetric matrix, then we would have

logdet A = Z log A (o (A) = the spectrum of A, multiplicities included)
reo(A)

= _%|s=0< Z A‘") = —%lsonr(A“').
reo(A)

Using the classical formula
o0
N / "t Mdr
0
we can further write

d 1 * -1 —tA
logdet A = ——|;—o| —— 57 Tre "2de ).
ds I'(s) Jo

Fortunately, the last expression makes sense in infinite dimensions as well. We have
the following result, going back to H. Weyl.

Theorem 4.17([39], Chap. 1). Suppose A is a second order, selfadjoint, positive,
elliptic operator on a closed, compact Riemannian manifold (X, g) of dimension n.
Then, the operator e 2 is of trace class, the integral

o 0]
/ S Tre 24y
0

convergesfor all s € C |s| > 0, and the function

s> ——1 - S Y
A(S)—F(s) A t re ¢

admits an extension to C as a meromor phic function with only simple poles|ocated at
s = %,]’ =0,1,2,.... Inparticular, if n isodd, then A (s) isanalyticat s = 0.

Thus we can define the Ray—Singer analytic torsion of the acyclic representation
p:m(X)—> S 1

1 n
RS(p) = RSx(p. 8) = 5 3 (~1)kth,(;)(O). (4.5)
k=0

The above heuristic argument suggests that exp(R S(p)) isanatural candidate for the
torsion of C(p).
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Example 4.18(The analytic torsion of thecircle). Suppose X = S1. All the lines
bundles on S are trivial. The flat connections on the trivial bundle C — X are
parameterized by a € R mod Z. Givena € [0, 1) we can form the connection

Ve =d—iadd: Q°C) - QLC)
with holonomy
pa(t) = exp(2ria),

where ¢ denotes the canonical generator of 71 (S1).
We have two Laplacians

Ao(a) = A1(a) = Ay: C(C) - C*(O),
e . d d 2
Aa——ﬁ—l-ZI%—}—a = (_|%_a)
with identical spectra
p=m—a)% n=0,1,...}.

We see that the representation p, is acyclic if and only if @ = 0. The eigenvalue 2,
has an one-dimensional eigenspace generated by e, := exp(ndi). The zeta function
of A, is

1 1 1
éAﬂ”ZZW :Z n+1—a)? +Z (n +a)®

nez n>0 n>0

=¢(2s;1—a)+¢(2s;a),

where ¢ (s; a) denotes the Riemann—Hurwitz function, [122, Chap. XII1]. Thus

1d
RS(pa) = —§£|s=o(§(2s; a) +¢(2s;1—a))
=—(¢'(0;a)+¢'(0; 1 —a).

To proceed further we need the Lerch identity [122, §13.21],

¢'(0;a) =logl(a) — % log(27).

Thus
RS(pa) = —logT(@)T' (1 — a) + log(27) = — |og(§n?m)) + log(2)
log(2sin(za)) = lo ( ! )
= — a = —_— .
o NI a2

We now interpret the holonomy function ¢ — p, (¢) as acharacter of Hy(S1) so that
the last identity can be rephrased as

eXP(RS(p2) = | £51.(0a) |- o
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The identity proved in the above example is no accident. In fact, we have the
following remarkable results.

Theorem 4.19(Ray-Singer, [89]). Suppose (X, g) is a compact, oriented Riemann
manifold and p is a nontrivial character of H1(X). The quantity RSx (p, g) isinde-
pendent of the metric so that it isa topological invariant of the pair (X, p).

Theorem 4.20(Cheeger—Mller, [4, 9, 14, 74]).

exp(RSx (0)) = |[Tx (o).

(Observe that the £¢" multiplicative ambiguity of Tx does not affect the value of
1Tx (0)I.)

Werefer to[22, 23] for amore conceptual interpretation of theseresultsin termsof
metrics on determinant lines. Also, we want to mention that the proof in [4] directly
identifies the Ray—Singer analytic torsion to the Morse theoretic description of the
torsion.



Appendix A
Algebra

8A.1 Formal Hodge theory
Suppose K isafield of characteristic £ 2.

Definition A.1. A formal metric on aK-vector space V isabilinear, symmetric, map
g:VxV->K
such that the induced map
Dg:V—>V* v g,

is an isomorphism. D, is called the metric duality. A metric K-vector space is a
K-space equipped with aformal metric. O

If T isalinear operator between two metric K-spaces

T: Vo, go) — (V1, g1)

then its formal metric adjoint is the operator

TF: (V1. g1) = (Vo, £0)
defined by the commutative diagram

Tt
Vi—— W

Dy, k [Ds’p

x T *
Vi — W

where T* denotes the adjoint.
If (V,g) isametric K-space and U C V is a subspace, then the orthogonal
complement U~ of U in V is defined in the usual fashion.

LemmaA.2. Suppose (V, g) = (s, +) isametric K-space, and U — V isa metric
subspace, i.e. therestriction of g to U isa metric. Then

UNnUt =0, v=U+U"*
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Proof. Denote by i theinclusion U < V. The equality
Unut=0
follows from the fact that U is a metric subspace. Thus
U+U+r=UveU.

If v € V then
ifvyeU, v—itw)eU™.

Indeed, the statement i (v) € U istautological. The second follows from
(w—i*), u) = (v,u) — (v,i(w)) =0,Vu € U.

Thus
v=i*(v)+ (w—it'() e U+ U O

Corollary A.3. If U is a metric subspace of a metric space V and i denotes the
inclusion U — V then i* isthe orthogonal projection onto U. Moreover, there exists
a natural isomorphism

ut=zv/u.

Proposition A.4 (Forma Hodge theorem). Consider a length n chain complex of fi-
nite dimensional K-vector spaces

(C,9): 05Cr>Crn> .2ty

equipped with formal metrics (-, «) such that both Range(d) and ker(d) are metric
subspaces. Then there exist natural isomorphisms

Hodd(C, 3) — ker(d + 8% Cogg = Coven)s

and
Heven(C, 3) — ker(d + 8%: Coen = Coga)-

Proof. Using the above corollary we deduce
H.(C, 3) = Range(d) Nkerd.
Suppose u € ker(d + d8%). Thus

0= 9%u + (8*u)® = 8%9u
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so that
(du, dv) =0, V.

Thus
du € Range(d)*.

Since Range(d) N Range(d) = 0 we deduce du = 0. Thus
ueker®+9") < du=2du=0.
The condition du = 0 impliesu < ker  while the condition 8%*x = 0 implies that
Vv 0= (3%, v) = (u, 9v) < u € Range(d)*

so that
ker(d + %) c Range(d)* N ker 3.

The opposite inclusion isimmediate. O

Corollary A.5. Suppose (C, 9) isan acyclic complex of K-spaces. Then there exists
an algebraic contraction.

Proof. Fix aformal metric on C such that both Range(d) and ker 9 are metric sub-
spaces. Since the complex is acyclic, we deduce from the forma Hodge theorem
that

I+9":C—>C

isan odd isomorphism. In particular, the even map
A= (3 + 0% = 90" + 99
is a selfadjoint isomorphism which commutes with 3. The map
n = A™1p"
isacontraction satisfying n2 = 0. O
The last results admits the following generalization.

Corollary A.6. Assume (C, 9) is a finite length chain complex of finite dimensional
K-spaces. Then there exists a subcomplex X ¢ C whichis perfecti.e.

X C kero,
and also an algebraic deformation retract. The last condition means that there exist

maps
p:Cr— Xk, n1:Ci— Cipa
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such that
poi=1x, l—iop=209n+nd, 772=0

where i denotestheinclusion X < C. In particular, i induces an isomorphism

iv: X > H.(C, 9.

Proof. Pick aformal metric on C suchthat both ker 3 and Range d aremetric subspaces.
Define
X := ker(d 4+ 8%) = (Ranged)* Nker 3.

X isametric subspace and we can define

p = it
Corollary A.3 now impliesp oi = 1x.
Set
A= (09" +9%) and J:=ii" +A.
Thefinite dimensionality of the complex impliesthat J is selfadjoint, invertible, com-
mutes with 9 and for every x € X we have

Jx = x.
The last equality implies
Jiit = 7Yt = it
Now define
n:= J Lot
Then
m+nd=J A=t —-ii=1-Jti* =1—ii" O

Definition A.7. A generalized contraction of a chain complex of K-vector spaces
(C, 9) isadegree one map
n: Ck = Cikq1

such that 2 = 0, the chain morphism
P := (90 +nd)

isaprojector (P2 = P) and Range(P) is a perfect subcomplex. O

According to Corollary A.6, every finite dimensional complex of vector spaces
admitsageneralized contraction. Observethat any contraction of anecessarily acyclic
complex is ageneralized contraction.

Suppose now that (C, d) is an acyclic complex of finite dimensional K-vector
spaces and ¢ is a basis of C. It determines a canonical metric g = g(¢) on C by
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requiring that ¢ is an orthonormal basis. Suppose moreover that ker 9 is a metric
subspace of (C, g(¢)). Then

T(C,¢) =det (9 +n: Coyen = Coqg): 1:= A%

We deduce
T(C)? = det((3* + )@ +m): Coen = Ceven)

= det (3°3 + A7239": Coyen — Ceven)
To compute this determinant we decompose
Cj = K; ® Bj,
where
Kj =ker(d: Cj > Cj_1), Bj =K;- = Range(d"; Cj_1 — C)).
Observe that the Laplacian is compatible with these splittings, i.e.
A(Kj) C Kj, A(Bj) C Bj,

and
Alg, =09, Alg, = 9%.

Set
kj = det(A|Kj), bj = det(A|B_/.), 3j = det(A|cj) = kjbj.

Using the decompositions
Qa/a]ZBO®K2$BZ@
we deduce that 3*3 + A~239* has the diagonal block decomposition

A 0 0 ..

. o 0 Alo..
004+AT90"=|0 0 A ...

Thus
boby .. .byj ...

k2k4...k2j...'

Now observe that since d induces bijections B; — K;41 and 9* induces bijections
Kj+1— Bjwe have

T(C)? =

bj = det(aﬁaz Bj — Bj) = det(aﬁ: K/+1 — Bj)det(az Bj — Kk+1k/+1)
= det(39": Kj11 — Kj+1) = kj41,
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so that
7(0)? = Hieenbi
- [} oaa &i
and o
8j+1 i>090j+1-2i
bibji1=08j11 <= bjj1= 1= &= bjq= -0t
bj Hizo 5j72i

where §; = 1if k < 0. If n > O denotes the length of the chain complex (C;, = 0,
Vk > n and C,,—1 # Q) then we deduce

T(C, ¢)?> = —keen k| (A1)

The terms on the right hand side depend on the metric g(c). Let us point out that this
formula holds for any metric, not just g(c).

8A.2 Determinants and zeta functions

Suppose K is afield of characteristic # 2, U is afinite dimensional K-vector space,
and A: U — U isan endomorphism. The characteristic polynomial of A is defined
by

pa) :=det(r — A).

Using the identity

det(1— A) = > (=17 Tr(A/ A), (A.2)
j=0

where A/ A denotesthe linear map A/U — AJU induced by A, we deduce

pa(t) = 19MYU det(1 — 1~14) = d'mUZ( ) tr(A A).

Thecharacteristic polynomial isintimately related to the zetafunction of A, defined
by

tao) = exp( Y Tran ),

v>1

We define ¢ (A) := ¢4(1) so that, formally

Sals) = E(sA).
To explain the relationship between ¢4 and p4 we use the elementary identity

—log(L - (as) = (ai)v = 1_las =ep() (az)v),

v>1 v>1
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which implies that

r

1 ~1
a(s) = —————— < () =

det(1 —sA) pa(t)’

If we denote by S¥V the k-th symmetric power of a vector space V, then for every
endomorphism B: V — V we have
1
— =) tr(s*B). A3
det(1— B) ;)r( ) A3

Hence
ta() =Y i r(skA)).
k>0
If U isasuperspace, U = Ugyen ® Uodd, @nd A is an even endomorphism
A = Aeven @ Aodd
then we can define the s-characteristic polynomial
det(t — Aeven)
det(r — Aodd) -
We deduce that for any even endomorphism A of U we have

1N k
ﬁA(t)ti(U)<Z(Tl> tr(Aan,en))<Z<%) tr(SkAodd)>, (A9
k>0

j=0

pa(t) = dety(r — A) :=

where the Euler characteristic of U isthe s-trace of the identity map 1y
X(U) = '[I’S 1U = d'mK Ueven — d|m]K Uodd.
There is asuper-version of the zeta function

Eatt) = exp(Ztn(A“)%)

v>1
where tr; denotes the s-trace. We then have the identities
1 _ det(1 — rAodd)

Fao . h — x) > — — *
Cat™) - palt) =187 = La0) d 1 1A~ a1 Amm)’ *)
Using (A.2) and (A.3) we deduce
ea = (3 Tr(s Aeen) - (D (=177 Tr(AT Ao
k>0 j=0
**)

d
=2 (Y- (A Aa) - Tr(S"™ Aeven))-

d=0 j=0
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If X isacompact, closed, oriented smooth manifoldand f: X — X isasmooth map,
then its Lefschetz number is

L(f) :=try(fe: Hi(X;R) — H(X;R)).

The celebrated Lefschetz fixed point theorem states that (see [57, VIIIL.5)) if al the
fixed points of f are nondegenerate, i.e.

8x(f) :==det((1—df): TX - T:X) #0, Vf(x)=x

then

L(f)= Y L(fx)

xeFix(f)
wherethe local Lefschetz number L(f, x) isdefined by

L(f,x) =8ignéx(f).
The zeta function of f isdefined by
1) = e L)
k>1
Using the identities (*) and (**) we deduce

£r(6) = det (1 — rHoad(f))
f det (1 — ¢ Heven(f))

d
= (Z(—l)j Tr(A Hoda(f)) - Tr(s9~/ Ha,en)>.

d=0  \j=0

Thelast sum can beexpressed intermsof the symmetric powersof X. " X isdefined as
the quotient of the Cartesian product of X" modulo the natural action of the symmetric
group S™. Then (see [63])

Hogd(S"X) = @) A/ Hoga(X: R) ® S" 7 Heyen(X: R),
j odd

Heyen(8"X) = @D A/ Hodd(X; R) ® "/ Heyen(X; R).

J even

Hence
d

LS f) =) (=1)) Tr(A) Hoaa(f)) - Tr(S"7 Haven(f)).

j=0
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so that
() =Y LS f).

If for example X is a Riemann surface of genus g, then Ho(f) = Ho(f) = 1. If
wedenoteby A € Sp,, (Z) asymplectic matrix representing H1(f) then we deduce

det(1—tA)

Lr(t) = W

8A.3 Extensions of Abelian groups

In this section we survey some basic facts concerning extensions of Abelian groups
needed in surgery theory. We will denote by T the rational circle Q/Z and, for any
Abelian group A we will denote by A its dual

A := Hom(A, T).

Suppose A and C areAbelian groups. Anextension of A by C isashort exact sequence
of Abelian groups
0O—-A—-B—C—0.

Two extensions0 —- A — B; — C — 0,i = 0, 1 areisomorphic if there exists an
isomorphism f: Bg — B1 such that the diagram below is commutative.

0 A Bo C 0
14 [ fk 1c L
0 A B C 0.

We denote by Ext(C, A) the set of isomorphism classes of extensions.

Proposition A.8 ([64]). (a) ThecorrespondenceExt(C, —) isacovariant functor from
the category of Abelian groups to the category of sets.

(b) The correspondence Ext(—, A) isa contravariant functor from Abelian groups
to sets.

Consider the group morphisms
vA. ADA—> A, a1Dar+—> a1+ az

and
Ac:C—->C®C, cr—che.
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Given two extensions E; € Ext(C, A)
Ei: O-A—B —-C—=0, i=0,1

we can construct in the obvious fashion Eq @ E1 € Ext(C & C, A @ A). The Baer
sum of the two extensionsis

Eo+ E1:=VAAL e Ext(C, A)

where VA A% is the composition

A* vA
ExXt(COC,ADA) —5 EXt(C, A ® A) —> ExXt(C, A).

Proposition A.9 ([64, 93]). The Baer sumintroduces a structure of Abelian group on
Ext(C, A). Thetrivial (zero) extension isthe split extension

0O-A—->ApC—->C—0.
Moreover, for any short exact sequence of Abelian groups
O X—>Y—>Z—->0
and any Abelian group A we have the exact sequences
0 — Hom(Z, A) — Hom(Y, A) — Hom(X, A)
2 Ext(Z, A) —> Ext(Y, A) —> Ext(X, A) —> 0
and
0 — Hom(A, X) — Hom(A,Y) — Hom(A, Z)
5 Ext(A, X) —> EXt(A,Y) — Ext(A, Z) —> O.
Example A.10. Since Z is a projective Z-module we deduce that every extension
0->C—-B—~>7Z—0
is split so that Ext(Z, C) = 0 for any Abelian group C. O
The next result is particularly relevant in topol ogy.

Proposition A.11. Suppose C is a finite Abelian group. Given
A C—>T:=Q/Z

we define
Co={qgeQ®C; A(c) =g modZ}.



8A.3 Extensions of Abelian groups 207

(a) The sequence E,, defined by
0>7Z5C.5>C—0

is exact, where isinduced by theinclusionsZ < Q @ 0 < C, while = isinduced
by the natural projectionQ & C — C.

(b) The correspondence v : € := Hom(C, T) — Ext(C, Z) defined by
C3i E;, e EX(C,Z)

is a group isomor phism.

Proof. Part (a) is obvious. We will show that the correspondence in part (b) is a
bijection. For simplicity we will confine ourselves to the special case when C isa
cyclic group of order N.

Fix agenerator ¢ of C. Given an extension E € Ext(C, Z)

0—-Z—->B—-C—0

we can find bg € B which mapsto t. Then Nbg mapsto 0 € C so that there exists
m € Z — B such that
Nbg = m.

(Abusing notations we can write bg = m/N.) Now define
Ag:C—> T, kt+— km/N modZ.

The morphism Lz does not depend on the choice of the generator ¢ and the element
bo € B mapping to z. We have thus constructed a map

¢: Ext(C,Z) — Hom(C,T), E > Ag.
We let the reader check that
Ey, =FE < Yo¢p=1,

and
AE, =A & oy =1 O

The result in the above proposition alows us to determine Ext(C, F) where F is
afree Abelian group of rank m. More precisely, we have a natural isomorphism
Ext(C, F) — Hom(C, Fg/F)
where Fg := F ® Q. A morphism&: C — Fg/F = F ® T defines the extension

C; :=1{(G,¢) € (Fg) & C; i(c) = § mod F}. (A.5)
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Example A.12. Consider theinclusionsiy : Z2 — Z2, k = 1, 2, given by thematrices

40 20
wee30] aef29]

These lead to the Abelian extensions
0—>Zzi>Zz—>Z4—>0,

and
O—>ZZ£>ZZ—>ZQEBZZ—>O.

Thefirst extension is given by the morphism
A Za— (T)2, 1 (1/4,0)
while the second is given by the morphism
A2 Z2 x 77 — (T)2, (1,0)~ (1/2,0), (0,1) — (0, 1/2).

More generaly, if G isafinite abelian group which admits a presentation

O0— F N F—-G—0
then this extension is classified by a morphism
G — Fg/F.
This can be easily describes as follows. Consider the inverse
A7l Fg - Fo.
Observethat A1 (A(F)) = F C Fg so that we have an induced map
G = F/(AF) — Fg/F.

Itisprecisely the classifying map of the presentation. Themap G — Fg/F isclearly
an inclusion. Conversely, every inclusion

G — Fg/F

produces a (class of) presentation(s) of G.
It is perhaps instructive to see how this works in a concrete situation and to point
out aconfusing fact. Suppose F = Z" and A isdescribed by ann x n matrix

AeJ-:E ajjei, i,j=1...,n,
i
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where ¢; denotes the canonical integral basis of Z". Suppose

-1, _ ;o ’ N
A ej—Za,-je,, a[je(@, i,j=1,...,n.
i

Set G := Z"/AZ", and denote by [e;] the image of ¢; in G. Then the morphism
G — T" corresponding to the extension

0—>Z”i>Z”—>G—>O

is described by
a/lj
lej] — : mod Z.

/

a, j

The right-hand-side of the above equality is the j-th column of A~1.

In topological applications the map G — T" is described by n characters of G.
Sincethedual G embedsinthedual of Z” it iscustomary to describethemap G — T"
asavector consisting of n characters of Z". In this case they are

k=010 h). Aille) =af; modZ, i, j=1,....n.

In other words, A; isthe character of Z" described by the i-th row of AL O



Appendix B
Topology

8B.1 How to compute the Alexander polynomial of a knot

In this section we will survey afew methods of computing the Alexander polynomial
of aknot. Astesting ground for each of these methodswe will use thetrefoil knot (see
Figure B.2). For details and proofs werefer to [27, 92].

The Alexander polynomial of a knot K S is determined by the universal
Abelian cover of its complement Xx := $%\ K. By Alexander duality we have
H = Hi(Xg,Z) = Z and wedenoteby Xy — X the universal Abelian cover. Set
R := Z[t, 1. The homology group Hi(X, Z) has a natural R-module structure
induced by the deck transformations of the covering X k = Xk.

Thering R is a unique factorization domain and the Alexander polynomial is by
definition R

Ak = ordR (H]_(XK))
Itis an element of R uniquely determined up to amultiplicative term +¢%, k € Z. To
concretely compute A ¢ we heed to produce a presentation

R—>6—> HY(Xg)—> 0

wherei and & arefinitely generated free R-modules. Wewill present two algorithms
for producing such presentations.

1. Seifert matrices. Consider an oriented Seifert surface ¥ ¢ S8 suchthat 9% = K
and a small tubular neighborhood Ng of ¥ — $3. Then Ng \ X consists of two
components which we label Nlj;. (The orientation of = alowsusto canonically label
these components with + or —.)

¥ isagenus g surface with boundary St and thus H1(Z, Z) = Z2¢. Fix aset of
generators x1, . . ., xz, Of this homology group represented by embedded circles. By
pushing the circle x; into N weobtainacirclex;". The Seifert matrixisthe 2g x 2g
matrix Vi with entries defined by

Vjj = Lk(xi, XJ+)

Lk(K1, K2) denotes the linking number of two disjoint knots and can be computed
using the sign rulesin Figure B.1. Werefer to [59, 92] for more details.)

The matrix Ak (1) := V,? — t Vi iscalled an Alexander matrix of the knot K and
provides a presentation of Hy(Xx, Z)

70792 29 710792 & HY (X k. Z) — O,
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A K2

— | —> K1 > K1

Linking = +1 Linking = —1

Figure B.1. Sign rules for linking numbers.

In particular, we have
Ag(t) ~det Ak (¢).

Example B.1. Consider aspromisedthe caseof thetrefoil knot. Inthesecond diagram
in Figure B.2 we can clearly visualize a Seifert surface for the knot. It is obtained by
joining two digjoint disks by three twisted bands. This Seifert surface has genus one
and in Figure B.2 we describe a set of generators of Hi.

Figure B.2. Two equivalent diagrams for the trefoil knot.

The*+” and“—" signsin this picturefix the orientation of thistwo sided surface.
It is clear that xo and xf do not link so that vo; = 0. As for the other entries of the
Seifert matrix, they are described in Figure B.3. Thus

-1 1
V=10 )
s0 that

-1 -1

_ tr—1 —t 2 _
A(t)—[ 1 z—1]’ A~ =t =y
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X:—L‘r _x;_
X1 X2
Linking = —1 Linking= —1
X1
X3
Linking=1

Figure B.3. Computing a Seifert matrix for the trefoil knot.

The formulawe have just obtained is a special case of the more general description of
the Alexander polynomial of a(p, g)-torusknot (see[96]). Thetrefoil isa (2, 3)-torus
knot. O

2. Fox free differential calculus. R. Fox has developed [24, 25, 26, 109] an algebraic
machinery of determining a presentation of the Z[¢, t~1]-module Hi(Xg) once a
presentation of the knot group 1(X k) is given.

Suppose we are given a finite presentation (x1, ..., x,; R1, ..., R) of agroup
G. Then there exist natural Z-linear maps

D1, ..., Dy: Z[G] — Z[G]
uniquely determined by the requirements
D.1=0, D x; =5,’j

D.(u -v) = Dot +uDsv, Vu,veaG.

We can form the Jacobian of the presentation which isthen x m matrix J = J(x;; r;)
with entriesin Z[G] described by

Jij = DiR;.
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If H denotes the abelianization of G, H := G/D(G), D(G) := [G, G] then we
get a natural morphism v : Z[G] — Z[H] and correspondingly, an n x m matrix
J = ¥ (J) with entries in Z[H]. The transpose of J defines a presentation the
Z[H]-module D(G)/D?(G) ® Z[H],

ZIHI" — Z[H]" — D(G)/D*(G) & Z[H] — O.
Suppose now that G is the fundamental group of the complement of aknot K < $3
G =Gg =m(Xkx), Xk=S\K.
If we are given a presentation of G g with n generators and m relations then
H=Hi(Xg) =Z, D(G)/D*G) = Hi(Xk),

where as before, X k — Xk denotesthe universal Abelian cover. In this case we de-
noteby Jx theabelianization of the Jacobian matrix J. ThentheAlexander polynomial
isthe greatest common divisor of the set of (n — 1) x (n — 1) minorsof J; see[27] or
[59, Chap.11] for more details. Equivalently, and more invariantly, we can define the
Alexander polynomial asagenerator of thefirst Fittingideal F1(H1(Xg) @ Z[t, t~1])
which admits a presentation given by the transpose of Jx . Using Proposition 2.25 we
deduce that F1(M) = Fo(H1(Xk)).

One can obtain a presentation of G ¢ (called the Wirtinger presentation) from the
diagram of K asfollows.

o Orient theknot and mark the undercrossingsin the order given by the orientation. We

have thus divided K into n oriented arcs x1, . . ., x, €ach connecting two consecutive
undercrossings.
e G admits a presentation with x1, ..., x, as generators and one relation for each

undercrossing, asdescribedin Figure B.4. Wecan drop any onerelation and still obtain
acorrect presentation. It isclear that all the generators of the Wirtinger presentations
are mapped by the abelianization map into the generator ¢ of H1(Xg) = Z.

A

Xj xj

X X;

\j
Xk Xk

Xj = XpXiXp—1 Xj = Xp—1XjXf

Figure B.4. Wirtinger relations.
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Example B.2. We consider again thetrefoil knot. From thetop of Figure B.2 weread
the following presentation

-1 -1 -1
(X1, X2, X3; X2 = X3 "X1X3, X3 = X1 “X2X1, X1 = X5 X3X2).

Observe that only two generators are important since x3 = x; 1x2x1. Weseta = x1
and b = x5 so that x3 = bab~. We obtain the equivalent presentation

(a,b; a =baba b, b =abab ta™') < (a,b: bab = aba)

If we set
R = baba b~ 1a=1

then
D4R = Dy(baba= b1 —(baba=*b~Yat = D,(bab)—baba "t —baba b 1a=t

= D, (ba) — baba™ — baba™*b"Ya™' = b — baba™' — baba"b"1at
DyR = Dy(baba=*b™Y) = Dy(baba™Y) — baba=*b~1 = Dy (bab) — baba=1b~!
= Dy(ba) + ba — baba b~ = 1+ ba — baba b1
By passing to abelianization we get
D,R=1—1>—1, DyR=1+1>—1

S0 that
Jk =[—(®>—14+1) 2—t+1].

Thisshows Ag (f) ~ 12 — ¢ + 1. O

Remark B.3. The Fox free calculus works in the more general case of links with
several components as well, with very few but obvious changes. The Wirtinger pre-
sentation is obtained in the similar fashion, and we obtain a presentation of 71(Xg)
with the same number v of generatorsand relations. A generator g of thispresentation
will represent in H1(X ) the same homology class as the meridian of the component
of the link to which g belongs. Asin the case of knots, any relation can be dropped
from the presentation. We obtain an exact sequence of Z[ H]-modules

ZIHY" -5 Z[H) — Hi(Xk) @ Z[H]
from which we deduce that

ord Hi(Xx) = F1(Hi(Xk) ® Z[H]). O
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3. Conway'’s skein relations. The Alexander polynomia of a knot is uniquely
determined by the manner in which it changeswhen the crossing patterns of adiagram
are changed; see Figure B.5. A formula describing such a change is called a skein
relation. The Alexander polynomial of aknot K satisfies the symmetry property

Ak (1) ~ Ag (™.

Any polynomia Q € Z[r,t~1] is equivalent to a polynomia P e Z[tY/?, ~1/2]
satisfying P(r) = P(t~1). The polynomial P is unique up to a sign. E.g., the
polynomial (r — 1) ~ Y2 — =12 ~ y=1/2 _4+1/2,

A XX

Ly L_ Lo

Figure B.5. Changing the crossing patterns
Remarkably, any oriented link L determinesapolynomial Ay (r) € Z[tY/2, =1/
uniquely determined by the following conditions (see [59, Chap8]).
AL() = AL,
Aunknot (1) = 1.
and the Conway’s skein relation (see Figure B.5)
AL, ()= AL (1) == ") AL ).

When L isaknot, A is equivalent to the Alexander polynomial. We see that this
algorithm picks up a canonical representative for the Alexander polynomial of an
oriented knot. Thisis called the Conway normalized Alexander polynomial.

Example B.4. We want to compute the (Conway normalized) Alexander polynomial
of the trefoil knot, oriented as in Figure B.2. Look at the top crossing in the first
diagram of Figure B.2. Inthe conventionsof FigureB.5itisa L. Thecorresponding
L _ represents the unknot while Lg isthe Hopf link H depicted in Figure B.6.

Ax@®) —1=@"Y2 YA b ).

Thecrossingintheleft hand sideof FigureB.6isa L. ChangingittoaL_ transforms
H into a pair of unlinked unknots, while the move L, — Lg transforms the Hopf
link to an unknot. Since A;_(r) = 0 we deduce

Ag(t) = Y% - Y2
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Figure B.6. The Hopf link.

S0 that
Ax@®) =1+ ¢ Y2+ V22 ¢ 1411~ 241 0O

We want to explain abasic fact used in the proof of the Uniqueness Theorem 3.17.

8B.2 Dehn surgery and linking forms

The existing literature on Dehn surgery can be quite confusing, especialy as far as
the various sign conventions are concerned. For the reader’s convenience, we have
decided to include several useful facts concerning this important concept, paying
special attention to the many orientation conventions.

Suppose M2 isarationa homology 3-sphere, X < M3 isan oriented link in M3
with components X1, ..., X,,, U = U71=1 U; isasmall open tubular neighborhood
of X and

My =M\ U.

Set T := dU and H.(X) := H,(X, Z) for any topological space X.

1. The homology ofMy as an extension off1(M). Since
Ho(M) = HY(M) =0
we deduce from the long exact sequence of the pair (M, My) that
0— Hao(M, Mx) — Hi(Mx) - H1(M) — Hi(M, Myx) — 0.
Using excision we can rewrite
0— Ho(U,T) — Hi(Myx) — Hi(M) — Hy(U, T) — O.
The long exact sequence of the pair (U, T) now implies
Hy(U,T) = ker(Hy(T) — H1(U)) = 2"

and H1(U,T) = 0. Moreover ker(Hl(T) — Hl(U)) admits a natural basis i =
(11, ..., ) cOnsisting of meridians. More precisely, u; isthe generator of

ker(Hy(Ty) — Hy(0j))
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such that
LKy (nj, Xj) =1

where LKy, isthe Q-valued linking number of two disjoint embedded circles. Denote
by Z(1) the free Abelian group generated by the meridians. We thus have a short
exact sequence

0= Z(i) = 7" I Hy(My) — Hy(M) — O,
where
Jj: Hi(T) - Hi(Mx)

is the inclusion induced morphism. As explained in Appendix 8A.3, it defines an
element

A € Ext(Hy(M), Z™) = Hom(Hy(M), T™).
We claim that
hac(e) = Y WK (K, i € QUAY/ZAfL), Ve € Hi(M),
i=1

where
Ky Hi(M) x HH(M) — T

isthe linking form.
To see this, denote by v the order of Hy(M). If ¢ € H1(M) isrepresented by an
embedded circle C ¢ My then

vC =Y ki € Hi(Mx)
J

and thus
- k:
re(©) =) L.
x(O) =) u;
On the other hand

1
Ik Ki)=-> kjLk i Ki) =k d Z.
m(C, X;) 5 ; i LR (e, i) /v mo

Using the description (A.5) in 8A.3 we deduce that

Hi(Mx) = {(@, ¢) € Q" x Hi(M); aj = lky(Kj, c) modZ, Vj € Lm}. (*)
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2. The morphism j: H1(T) = Hy(0My) — Hi(My). We use the exact sequence
of the pair (My, T) and we deduce

0— H3(My,T) - Hx(T) — Ho(Myx) — Ho(My, T)

— H{(T) % Hy(Ms) — Hy(Ms, T) (**)
— Ho(T) — Ho(Ms:) — 0.

To deal with the relative homology we use excision
H.(Mx,T)= Hy,(M, U)
and then the long exact sequence of the pair (M, U),

0— Hy(M,U) - H1(U) - Hi(M)
— Hi(M,U) - Ho(U) - Ho(M) — O.

We deduce that
Hy(My, T) = ker(Hi(U) — Hi(M)) = Z"
and that the boundary map
Hy(My, T) — H1(U)
is 1 — 1. The above morphism factors through the inclusion induced map
12 Hi(T) — H1(U)
so that the morphisms
Hy(My, T) — Hi(T) and ker j C Hi(T) - Hi(U)

must be 1 — 1. Using the sequence (**) we deduce that H>(My, T) = ker j so that

v(ker j) = ker(H1(U) — Hi(M)). (B.1)

If we denote by (X) ¢ Hy(M) the subgroup generated by the components of the link
X we deduce that we have the short exact sequences

0— 1(ker j) = Hi(U) = (K) - 0
and
0— Hi(M)/(K) > Hi(M,U) — Z"* = ker(Ho(U) — Ho(M)) — O.

Hence,
Hi(Mx, T) = Hy(M)/(X) & 2",
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and
coker j = H1(M)/{X). (B.2)

3. Longitudes. Suppose X isalink with asingle component, i.e. aknot. If M isnot
an integral homology sphere there is no canonical way of choosing an integral basis
of H1(T)(Z Z?). On the other hand, there is a natural way of choosing a Q-basis of
H1(T) ® Q. A longitude is a generator A of

ker j = ker(Hy(T) — Hi(Mx))

suchthat 1« - & > 0where u denotes a meridian and the intersection product is defined
with respect to the orientation of 7' as boundary of U. Denote by r the order of X in
Hi(M). From the identity (B.1) we deduce that A = rX in Hy(U). In particular, this
implies i - A = r. Moreover, since A bounds in the complement of X we deduce that
Lky (A, K) =0.

We can now conclude that any homology classc in H1(T) isuniquely determined
by apair (o, n) € Q x Z satisfying the conditions

ni=p-c < 1(c) =nK e Hy(U),

and
1
a:=—(c-A)Lky(c,X) =nlky (X, X) modZ.
r

Asan element of H1(T'; Q) the cycle ¢ has the decomposition
n
c=ou+ —A.
r

Using theabovebasisof H1(T'; Q) wecanidentify theinclusion H1(T) «— Hy(T; Q)
with theinclusion G <— Q? where G is the additive subgroup of Q2 defined by the
conditions

1
G= { (%) Q@ “2Z; 0= nlky(X, X) modZ}.
r r
Observe that the longitude A need not be a primitive element in H1(T). Indeed,
1
ZHheG &= n=—, nlky.X)eZ
m m

If wewrite v
Ky, X)=-, 0<v<r,
r

then the above conditions become

r vV
R _GZ,
m m

so that we can choose m = (r, v) (:=(g.c.d.(r, v)). Hence

A=, r)Ag, Ao € Hi(T).
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Remark B.5. We would like to discuss arather subtle point. The pair (r, v modrZ)
was determined by the order and the self-linking number of K. We would like to show
that the sameinformation isalgebraically encoded by the pair of cyclesu, A € H1(T).

The Abelian group F := Hi(T) is free of rank two, and in order to perform
concrete computations we need to choose Z-bases. This is involves non-canonical
choices, and thus we need to be able to separate the invariant quantities from those
which are not. Clearly, the coordinates of v and A with respect to some Z-basis are
not invariant quantities. The determination of numerical invariants of the pair (u, A)
boils down to a group theoretic problem.

Describe the space @ of orbits of the group & := Aut(F) acting diagonally on
the space #» C F x F of pairsof linearly independent vectors.

Obsarvethat 7 := (1, A) € F x F, and the orbit

{(Tw,Tr); T € 6}

corresponds to the different choices of bases of F. A pair 7 = (e1, e2) € & defines
an injection
Jr: 7% > F, (n1,n2) — nie1 + noey.

The extension .
072 F > G,:=F/j:(Z% - 0

isacompleteinvariant of the orbit (& - ). Itiscompletely characterized by the group
G, and the characteristic element

x € Hom(Gy, T?) = Ext(Gy, Z?).

In our special case, m = (u, A), G, isacyclic group of order r, namely the cyclic

group generated by the knot X < M. The last statement implicitly assumed the

existence of a canonical generator. This is indeed the case. Pick as generator the

unique vector k € F N {xu + yA; x, y € [0, 1]} such that 11 - k = 1. Geometrically,

« isthe vertex of the Newton polygon of theconesu + tA, s, t > 0, closest to u.
The characteristic element yx is given by the pair of characters x1, x2 € Gﬂ.

x1(K)=1/r e T, x2K)=Iky(X,K)=v/reT.

Thiscanbeseeneasily usingtheZ-basis (u, «) of H1(T). Inparticular, A = —vu+rk.
m|

4. The morphism j: H1(T) — H1(My) revisited. Denote the components of X

by X;, asmall, open tubular neighborhood of X; by U;, the meridian of X; by x; and

the longitude of X; by 1;. Finally, denote by r; the order of X; in H1(M).
Observethat if i # j we have

Klj =T LkM(jC,', j(]) = LkM()xi, fK]) € Z.
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Since A; boundsin My, we deduce we deduce that we have the following equality in

Hi(Myx) _
Ai = Zf{uj.
J#
Using (*) in 1. on page 217 we deduce
Hy(Mx) = {(X; @jnj. ) € Qi) x Hu(M); o = Ky (c, K;) mod Z, Vj}.

Using the description of Hy(T') in 3., we deduce that the morphism j acts according
totherule

Jioju+ #Xi l—><Olej + r—l E Ef/is,nixi>
! ! SF£I

= (aj,uj + n; ZLkM(fKS,fK,‘)uS, n,-iK,~>, iLhj=1...,m.
SFEI

The natural map Hy(My) — H1(M) isgiven by

(Z oL, C) = C.
J

5. Mayer-Vietoris interpretation. The Mayer—Vietoris sequence associated to the
decomposition M = U U My |leads to the Abelian group extension

0 72" = 5y (T) “2L my(0) ® Hy(My) — Hi(M) - 0. (B.3)
This extension is classified by alinear map
Hi(M) — Hi(T)®T.
Arguing asin 1. we deduce that this classifying map is given by

e Y Ky (K, o)pj € H(T) @ T.
J

6. Dehn surgery. The manifold M can be described as a quotient space
U Upy My

where fo: 9U — 9 My isan orientation reversing diffeomorphism. Given any orien-
tation preserving diffeomorphism

)_):(Vla--'a)/m)a )/JBU]—>80]
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we can form a new manifold

called the Dehn surgery determined by y. Clearly the diffeomorphism type of M
depends only on the isotopy type of y. We denote by I" the group of these isotopy
classes. Observe that

I = [[SLHL(T)).
j=1

We denote by I'g the subgroup of T" consisting of diffeomorphism which extend to U.
Itisnot difficult to see that M depends only on the orbit y o T'g € T'/ To.
The set of orbitsT"/ I'g can be identified with the set of m-uples

m
¢ = (c1,¢2, ..., ) € 1_[ Hl(T})
j=1

such that ¢; isanontrivial primitive element of H1(7}). A diffeomorphism y belongs
to the orbit labelled by ¢ if and only if

() =¢ <= yi(u)) =cj.

For this reason, the Dehn surgery determined by § is often denoted by M.
Using the bases (i, ;) of H1(T;; Q) we can write

ni
cj = ajuj—{—r—{)»j, o :njlkM(Kj,Kj) mod Z. (***)
J

Itisoften convenient to identify ¢; with the pair of numbers (¢, n;). Theseareknown
as the surgery coefficients. When M is an integral homology sphere then the surgery
coefficients («, n) are both integers. In this case the («, n) surgery is traditionally
referred to as the «/n-surgery. Furthermore, if n = 1 then the surgery is called
integral. Two natural question arise.

A. Describe the homology of M; in terms of the homology of M, invariants of the link
K — Mandc.

B. Describe the linking form of H1 (M) in similar terms.

7. The homology ofM;. Arguing exactly asin 1., we obtain the extension
0 Z(fi) 2% Hy(Mx) — Hi(Mz) — 0

or, equivalently,

0— Z(@) —> Hi(My) — Hi(Mz) — O.
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Using the description of j in 4. we deduce that H1(M;) is the quotient of Hy(My)
modulo the subgroup generated by

(Oli,ui +n; Z LKy (K, Kij, ni:Ki>-
J#

If weformthem x m matrix P(X, ¢) with rational entries

B {n,- Lk (K. K0 j #i
Pji = .
Oll ] :lv

we deduce that M; isarational homology sphereif and only if
det P(K, &) # 0.

We consider two extreme situations.
a. M is an integral homology sphere.Then P = P (X, ¢) defines a presentation of
Hy1(Mz),

0— 2" Loz o HiMz) — 0.

Alternatively, Mz can be given the Mayer—Vietoris description

0— Hi(T) 22 Hi(0) @ Hi(My) — Hi(Mz) — O.

b. K is consists of a single componeniz = 1. Set @ := a1, n ;= ny €fc. ¢ andn
are constrained by
a=nlky(X,X) modZ.

Then

Hy(M.) = H1(My)/Z(c)
= {(tp, y) € Q(u) x Hi(M); t =1ky(y, X) modZ}/Ziap + nK).

8. Linking theory on Hi(M;). We will again consider two cases.
a. The manifold M is an integral homology sphere.In this case H1(M;) admits a
presentation of the form
0 Z(i) 259 70y — Hy(Mz) — .

According to the computations in Example A.12, this extension is classified by the
map

Q= P(K, &) : Z(a)/ PZ(i) — QUL /Z(j2).
On the other hand, according to the computationin 1., page 216, this classifying map
can be described in terms of the linking theory on Hy(Mz). We denote by [X;]z the
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homology class of the core of U; in Hy(Mz). These classes define via the linking
form of M; avector of n characters of Hy(Mz) which classifies the above extension.
Moreover, we have

Ikar: ([Kilz, [n;]) = Qi mod Z, Vi, j, (B.4)

where @ := (Q;;) = P71, that is
Pl = Qiji.
i

If we denote by («, «) the natural inner product on Q(u) defined by (i, ;) = §;;,
then we can write

Qij = (i, P ).
If we are “lucky enough”, so that [X; ]z generate H1(Mz), then the abovetrick allows
us to determine the linking form of M. Infact, thisis not amatter of luck.

Proposition B.6. Suppose that the surgery coefficient of X; is % so that

P(X,¢) = (pij)i<i j<n

where

{qj Lku (K, X)) if i # j

pij = e

Di ifi =j.

Then the classes ; generate H1(M¢z), and we have the equalities
qilKile = =i in Hi(Mgz), Vi.

Moreover,
WKtz (i 1) = —qi (i, P_luj) mod Z.

Proof. The Dehn surgery is described by afamily

m

i .

7= ..ovm) € [[SL@ D), yj:=[§j ﬂ;], piBi —ajqj = 1.
j=1 s

These matrices describe the attaching rules

mi > j(ci) = j(pipi + qihi) =bi = pisi +qi Y_ it
J#
li = jloipmi + Biri) = ki :==oiu; + B Zﬁijp,j,
J#
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where m; (resp. I;) denotes the meridian (resp. the longitude) of the i-th attaching
solid torus and
E,‘j = LkM(ﬁK,', ﬁK,) e 7.

The group Hy (M) isthe quotient of Z{ji) modulo the lattice spanned by the vectors
b;. Using the identities
piBj —eajq; =1
we deduce
Bibi — qiki = ;i
which showsthat —g;[K;]z = [u;] in H1(M7). The second statement in the proposi-
tion follows from the identity
—qi 2% = —q; Ky ([5G 1, [ 1) = IKpzz ([1i], [1;])  mod Z. O

Remark B.7. Denote by Py the symmetric matrix defined by

G ifiAj
Pij=\pi i5:_
g if i = j.

Then P(X, ¢) = Py-diag(qa, .. ., g»), andthe (i, j)-th entry of the symmetric matrix
p-1 iSqu,'j, that is

(1is Po i) = —qiGui, P~ 4wy).
The linking form of M; is completely characterized by PO_1 viathe equdlities,

WKt (i, 1) = —(ir Py i) O

Example B.8. The arguments in the proof of the above proposition can be easily
grasped in the following simple situation. Suppose X is aknot in M := S3. The
Dehn surgeries on X are determined by a pair of relatively prime positive integers
(p, q). If X isthe unknot in $2 then the (p, ¢) surgery on K produces the lens space
L(p, —q). Denote by A and . the longitude and respectively the meridian of X such
that 1« - A = 1. The complement My isasolid torusand u isitscore. u isagenerator
of Hi(Mx). The characteristic curve of the (p, ¢) surgery is pu + gA.
The first homology group of the manifold M, := M. admits the presentation

0— Zu 2> Zji = Hy(My) — Hi(Mp/q) — 0.

We deduce that Hy(M, ,) and the generator n of H1(Myx) induces a generator of
Hy(M,,4). Moreover, according to Example A.12 the above extension is classified
by the map

Zp — T, 1modpZ+— 1/p modZ.
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If we now denote by [-],/, the classin Hy1(M),/,) determined by aclosed curve « we
deduce

IkM,,/q ([JC][)/Q7 [//L]p/q) =1/p.
Since [u],/4 isagenerator of H1(M/,) we can write

[X1p/q = x[ulpsg. x € Z mod pZ.

Now observe that the gluing map y of this Dehn surgery is described by a matrix

_ | P a
y._[q ﬁ}ESL(Z,Z)

1 | B —a
v _[—q P]

The meaning of the entries of this matrix are given by the attaching rules

with inverse

m>c=pu+qgke H(OMyx), KX=Ar ap+ pre Hi(dMx).
Since . = 0 € H1(My) deduce from these rules that

(Klpsq = elulp/q-

Sincedety = pB —ag = 1wededucea = —g—1 mod pZ. Hence

IkMp/q(_qil[“]p,q’ [1lp,g) =1/p,

so that
IkM/)/q ([,Uv]p/qv [/»‘L]p/q) =—q/p mod Z. 0

b. € has only one component bu may have nontrivial homology. Inthiscaseit
iswiser totreat M and M, “democratically”, as equal partners. These two manifolds
have something in common, the 3-manifold with boundary My. This notation does
not respect our “ democracy rule’ andwewill set N := Mq.. The Dehn surgery process
can now be described as attaching the solid torus

U:=S'x D?

to the boundary 4N so that the curve pt x dD? is attached along a primitive curve
w € H1(0N). We denote the resulting closed manifold by ~,,. (In the old notations
M =N,.)

As an aside, note that the homologies of N and d N contain no information about
the homology sphere M. Thisisdetermined by an additional internal data, namely the
homology classin H1(T') carried by the meridian of the knot. We can loosely rephrase
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this by saying that the homology groups of N have no idea about the manifold M.
There is however one element in H1(T) which carries thisinformation.

As the complement of a knot in arational homology sphere, the manifold N has
several special topological features we would like to single out and rephrase in a
|language which makes no mention of M.

Observefirst that b1(N) = 1. Moreover, the boundary map

Ho(N,dN) — Hi(3N)

isinjective (see 2., page 218). Itsimage isarank one subgroup of H1(dN) generated
by the longitude . This subgroup isisomorphic to the kernel of the morphism

j : HL(ON) — H1(N).
A need not be a primitive element of Hy(dN) and we can write
A =moro, mo >0, Ag € H1(dN) isprimitive.

At 2. we have shown that H1(N, dN) isatorsion group. Using the Universal Coeffi-
cients Theorem we obtain the split exact sequence

0 — Ext(H1(N,OdN),Z) — H2(N, dN) - Hom(H2(N,oN),Z) — 0.
The Poincaré duality now leads to the isomorphisms

H1(N) = H3(N, dN) = Hom(Ha(N, N), Z) & Ext(H1(N, dN), Z)
=~ Hom(Ha(N, dN), Z) & Hom(H1(N, aN), T).

Thisisomorphism is most conveniently expressed in intersection theoretic terms. De-
note by H{ (N) thetorsion part of H1(N). The above isomorphismsimplies that we
have a nondegenerate linking pairing

lky: Hf (N) x Hi(N,dN) — T.
We obtain abilinear map
lky: Hf (N) x Hf (N) = T, Tky(c1. c2) = Ky (c1, i(c2))

where i denotes the morphism H1(N) — Hi(N,dN). Thisis a symmetric, yet
possibly degenerate form. If we identify Ho(N, dN) withker j = Z{L.) C H1(dN)
we see that we have amap

L: H(N) > HOM(Z(\),Z) = 7Z <= Lk: Hi(N) X Z{\.) — Z

which can be described geometrically asthe linking with A. A boundsachain A in N
and we define

L(c) = Lky(c, 1) ;= #(c N A), Ve e Hi(N).



228 B Topology

Observe that
L(jz) =X-z, VYze H1(ON),

where the dot denotes the (skew-symmetric) intersection pairing on H1(dN) defined
using the orientation on 9N as boundary of N. The subgroup j H1(dN) C H1(N) is
mapped by L onto the subgroup moZ C Z. \We obtain a short exact sequence

0— HI(N)=ker L — Hy(N) - 7 — 0.
Any o9 € H1(N) such that Lk(og, A) = 1 produces a splitting of the above sequence
H1(N) = H{(N) & Z{00).
Moreover, any element ¢ € H1(N) determines a morphism
¢ =lky(c. —) € Hi(N, aN).
The element ¢ is completely determined by the quantities
¢! € Hi(N,dN), n(c) := Lky(c, 1) € Z.
More precisely, we can write ¢ = [¢] + ¢
[c] =n(c)og, cf :=c—|c].
Define c* € Hom(H2(N, dN), Z) & Hom(H1(N, dN), T)
=[cl* +f,  [e]* :=Lky(c, =), ¢ =Iky(cT, ).

The correspondence ¢ <— ¢* is precisely the Poincaré duality.
Before we continue this line of thought we want to present a guiding example
which will provide some intuition behind the above abstract constructions.

Example B.9. Suppose N is the complement of a knot X in a rational homology
sphere M. Denote by r the order of X in H1(M). (If H1(M) = Owesetr = 1.)
Since the linking form on M is nondegenerate there exists aknot X* ¢ M such that

1
Lky (K, K% = =.
r
Then

Hi(N) = {(a, ¢) € Q x Hi(M); a = Ky (c, X) mod Z}.

The pair (1/r, X*), which corresponds to the homology classin N carried by the knot
XK*, can be taken as a generator of the free part of H1(N). We will denote this class
simply by X*. Observethat it corresponds to the choice og € H1(N) explained in the
preceding discussion. Thetorsion part of Hy(N) isisomorphic to

{0, ¢) € Q x Hi(M); lky (K, ) = 0} = K+ := ker Iky (K, —): Hi(M) — Z.
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We have seenin 2., page 218, that
Hi(N,0N) = H1(M)/({X).
The linking form on M induces a nondegenerate pairing
ker Iy (K, —) x Hi(M)/(X) — T.
Thisis precisely the nondegenerate linking
Iky: HI(N)" x H(N,dN) — T.

Thecurve A € H1(dN) which generatesker j can be uniquely written asmoXo where
Ao is primitive. If we set

" = Ik (5. %)

,

then mg = (v, r). Thusmg can be determined from A and » using the equality
A-p=r,
where d N is oriented as boundary of N. We can describe
H1i(ON)>z=au ® ;)», a =nlky (X, X).
The morphism j hasthe form
op + ; — (a,nXK) € H1(N).

Suppose we have chosen wg € H1(N) such that Ao - wg = 1. There is no unique
choice but each such choice can be represented as

no nov
wo =aou + —A, ag— — € Z.
r r
The eguation Ag - wp = Limplies
rag = mo
so that mo  no
—_— = — od Z
r r
If wewrite
v =movg, Fr =moro, (vo,70) =1
we deduce

1 novo
— = mod Z
ro ro
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so that

novo=1 mod rgZ, ag= E

and 1
Jwo = (—M n09<>, Jro = (0, rgX). 0
mo

We can finally explain what do we need to know to compute how the linking form
of arational homology sphere changes by performing a Dehn surgery along a knot.

Suppose N is the complement of a knot X in a rational homology spheres Ni.
u € H1(dN) isaprimitive curve such that

r:=Xx-u>0.
Fix « € 9N such that « - © = 1. We can assume that Dehn surgery is given by the
identification
st x aD? - 9N,
Slxptr—>/c, ptanzr—>,u.

If O denotes the center of D?, we denote by K theimage of S* x 0 in N,,. At 1. we
have shown that we have an extension

0 — Z{u) - Hi(N) - Hi(Ny) — 0
classified by the morphism
Ik, (K, =): Hy(N,,) — T.
We have the following result.
Proposition B.10. The linking form of N, is completely determined by the following

data.

l1. u,x € H1(ON) suchthat x - u = 1.

I2. TheAbeliangroups H1(N), H1(N, dN) andthemorphism j : H1(dN) — Hi(N).
Fixagenerator A of ker jandsetr = A -,k = A-«. FiXA € Ho(N, dN) such that
dA = X anddenoteby mgthe positiveinteger suchthat A = moiowhereig € H1(ON)
isa primitive class.

I 3. The Poincaré duality linking pairing

Iky : Hf (N) x Hi(N,dN) — T.

l4. Acycle op € H1(N) such that og - A = 1. Algebraically, thisis equivalent to
choosing a splitting
Hy1(N) = freepart @ torsion part.
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Is. A positive integer ro and a cycle
r

such that
rooo — jv = 0 € H1(N).

Remark B.11. The preceding discussion and Example B.9 show that these data are
completely determined by the homological properties of the pair (N1, X). In other
words, the computation of the linking form of a rational homology sphere can be
determined by performing only homological computations. Thisis certainly not the
case for the Reidemeister torsion which is not a homotopy invariant. O

Proof. Using |1 and |2 we can how determine
Hi(N,) = H1i(N)/{j i)
and thus the canonical extension
0— Z{u) — Hi(N) == Hy(N)/(jp) = Hi(N,) — 0.

The element X € H1(N,) istheimage of j« in H1(N)/(jur). The above extension
completely determines the morphism

Ik, (K, =): Hi(Ny) — T.

Observe that H{ (N) embeds in Hi(N,) = H1(N)/(jn) asthe kernel X, of this
morphism. We can now produce an isomorphism

Hi(N,)/(X) — Hi(N,dN) = Hi(N)/Range j

by going up-and-down aong the diagram below (with exact diagonals)

Rangej\ / Z{ )
_ Hi(N)
e
Hi(Ny) H1(N,0N)
/
Hi(Nyw)/(X)

Using |3 we now obtain the nondegenerate pairing

Ky, : K x Hi(Nu)/(K) — T.
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In particular, thisimplies we can now compute all the pairings of the form Iky,, (u, v)
whereu, v € H1(N,) and at least one of themisin X ,.

Tocompletethedetermination of Ik, wewill needto usethefollowing elementary
results.

Lemma B.12. Suppose X* € H1(N,,) issuch that
Iky, (X, X% =1/r € T.
Then for all u, v € H1(N,) we have

Ik, (K, u) = @, Iy, (K, v) = @, 0<n(),n() <r
uo :=u —n@)X* vo:=v-—n@wkK*e Ku

and

Iky,, (u, v) = Iky, (0 + n(@)XK*, vo + n(W)X?)
= Iky, (10, vo) + Iky, (n(v)uo + n(u)vg, fKt)—{—n(u)n(v) Ky, (KE, K.

The above result shows that in order to determine Iky, we need to find the self-
linking number Iky, (X*, X¥) for some solution K* of the equation

Iky, (X, K*) =1/r € T.

Thecycleop € H1(N) described in 14 descendsto asolution [og] € H1(N)/Z{u) =
Hy(N,,) of above equation. We can now represent the cycle v of |5 as alinear com-
bination "

v=ou+ ;A

S0 that
rroog =rjv =rap +nk =nk =noA.

Thus
n n
Ikn, (00, 00) = — (00N A) = —. m
rro rro

The proof of the above proposition explicitly describesan algorithm for computing
the change in the linking form under a Dehn surgery. As our next example will show,
the concrete implementations of this algorithm can be computationally demanding.

Example B.13(Surgery on M := L (24, 23)). Fix agenerator go of H1(L(24,1)) =
Z4 such that the linking form ¢ has the description

Xy
, =——¢€T.
q(xgo, y&0) 4
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Fix a knot Kg in this lens space representing 4g in homology. Denote Ug a small
(open) tubular neighborhood of Kgin M, and by 1o its meridian oriented such that

Ao - po =6,

where the above intersection pairing uses the orientation on dUp as boundary of
N := M \ Up. Thusord (X) = 6 and

16 4 2

—=——=—¢cT.

2476 3°

Thekernel of j: H1(dN) — Hi(N) isgenerated by acurve A € H1(dN). According
to Remark B.5 we can choose abasis of H1(T') so that o has the coordinates (0, 1)
while A hasthe coordinates (6, 4). Then

q (KXo, Xo) = —

Hy(N) = { (@ro. cgo) € Quo) x Zaa(go): @ = —5 modZ}.
Thus
H{ (N) = kerlkpy (Ko, —) = 6Zoa = Za(ug := 6g¢).
Similarly
Hi(N,dN) = Hi(M)/(Xo) = Za{vo),
where vo denotes the generator defined asthe image of g in H1(M)/(Xo). Then

1
Ik (0, v0) = Ik (620, £0) = =7

This equality produces | 3. Observe that

1
|kM(—g0, JCO) = 6

Thusog := (1/6p0, —gg) € H1(N) solves|,.

A nontrivial Dehn surgery on Ko is described by a primitive curve u € H1(dN)
such that 11 # 0. Suppose u = (1,0) 1= —3u + ga, i.e. we perform a (—2/3, 1)-
surgery. Then we can choosex := (0, 1) = uo. Observe that

2
ju= (— SH0. %o = 4go) € Hi(N), j() = (L,0) € Hy(N).

Hence H1(N,,) is defined by the extension

2n
o :(_ §a4ng0); n GZ} = {(@ cgs at g €2} > HiN,) = 0

More explicitly, observe that we have the direct sum decomposition

H1(N) = Z{o0) ® Za(ug := 6gg),
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and we can write ju = —4o0p. We conclude that
H1(Ny) = Za{oo) © Zaluo).

The extension

(-4o

0 7 20 7 & 74 - Zuoo ® Zaug — 0

is classified by the character

1
X1 Zaog X Zaug — T,  x(o0) = 7 x (uo) = 0.

Thecycle jx = 60g ® ug € H1(N) projectsto the cycle
KX =200 ® ug € Hi(N,),
and we have

Ky, (K, 00) = x(00) = 1/4, Iky, (K, uo) = x(uo) = 0.
We deduce that
ker Ky, (X, =) = Za(uo).

Now observethat o € H1(N) descendsto agenerator of Hy(N,,)/(K) = Za. 1t must
therefore descend to a generator of

Hi(N,0N) = Hi(N)/Range .

We have identified H1(N, dN) = H1(M)/{Xo) with the cyclic group of order 4 with
generator vo induced by g € H1(M). Observethat g liftsto —og € H1(N). Thus
the isomorphism

Za(oo) = H1(Ny)/(K) = H1(N, IN) = Za(vo)
can be concretely described by the correspondence og — —wvg. We conclude that the
pairing
Ik, : kerlky, (K, =) x Hi(N,)/(K) - T
has the form

X
IkNM(xuO, yvoo) = — Iky (xug, yvo) = Zy

Hence the pairing
IkNM: kerIkNH(ﬂC, —) x Hi(N,) = T
isgiven by
IkNM (ug, og) = %, |kN/L (ug, ug) = IkNu (ug, X — 209) = —%.

Since 409 = — j u we deduce that IkNM (00, 00) = 0. Summarizing all of the above

we deduce
ay+bx ax

4 2

Ik, (aug + boo, xug + yoo) = m



8B.2 Dehn surgery and linking forms 235

So far we have discussed only Dehn surgeries which produce rational homology
spheres. We want to spend the rest of this section discussing the remaining case.

Suppose N is homeomorphic to the complement of a tubular neighborhood of
aknot in a rational homology sphere M. Set T := dN. Orient T as boundary of
N. Denoteby A € Hq(T) alongitude, i.e agenerator® of the kernel of the inclusion
induced map H1(T) — H1(N). Denote by mg the divisibility of A, i.e. mg isthe
positive integer such that A = mgAg where Ag isaprimitive element of Hy(T).

For any primitiveclassc € Hy(T) denoteby N, the closed three-manifold obtained
from N by Dehn surgery with datac. If A - ¢ # 0O the three-manifold N, isarationa
homology sphere. When ¢ = Ag the three-manifold N, is a rational homology
s1 x §2. We denote it by No. We want to describe the homological invariants of Ny
in terms of the homological invariants of N. Denote by U the solid torus we attach to
N to produce Ng. Note that

H3(Ng) = H3(No, N) =7, 0= Hy(U,T) = H1(No, N)

and )
H>(N) =0, Hy(No, N) = Ho(U,T) = Z.

As generator of Ho(U, T) we can take the disk D,, spanning the meridian. The long
exact sequence of the pair (Ng, N) now implies

0 — H>(Ng) — Ho(U,T)(Z Z) — H1(N) — H1(Ng) — O.

Since the generator D,, of H>(U, T) goes to the torsion class j(rg) € Hi(N) we
deduce that the image of H>(Ng) in Hz(No, N) is generated by mo[D,]. Moreover,
we have a short exact sequence

0— (jro) > H1(N) — H1(Ng) — 0. (B.5)

where (j o) denotes the cyclic group of order mq generated by jAo.

Consider now the long exact sequence of the pair (Ng, U). Denote by A €
H>(N, dN) arelative 2-cycle bounding A. Observethat Ho(N, 9N) = Ha(Ng, U) is
generated by A. Since Ho(U) = 0 we deduce

0 — H>(Ng) — Ho(N,dN) = Z(A) LA Hi(U) — Hi(Ng) — Hi(N,dN) — O.

The connecting morphism 9 istrivial because dA = A = mou — 0 € Hy(U) so that
we obtain an isomorphism

H2(No) = H2(N, ON) = Z{A),
and a short exact sequence

0 — Hy(U) — Hi(No) — Hi(N,dN) = coker j — O. (B.6)

IThere are two generators, and a choice can be determined by fixing an orientation.
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We denote by X the homology classin Hi(No) carried by the core of U and by ix
the inclusion induced morphismig: H1(U) — Hi(No). Hence

H1(N, 9N) = Hi1(No)/(Xo).

The extension (B.6) defines a character of H1(N, dN) which, in view of the Poincaré
duality on (N, dN), can beidentified with the linking by atorsion element in H1(N).
Using (B.5) we deduce that this is given by the linking with Ag. Note also that X is
not a primitive class. It has divisibility mo.

Dualizing the sequence (B.6) we deduce

1— Hy(N,9N) — Hi(No) -5 Hy(0) — 1

Restricting the second map to theidentity component of bﬁ(ﬁm weaobtain asurjection

st~ Hi1(No)ig = H1(U)ig = st

Since the linking number of j(Ko) and A (in N) is mg we deduce that the map i§< is

an mo-cover. Denote by z the coordinate on Hy(U), and by T the coordinate on the
identity component of H;(Ng). The above map is described by z = 7™0.
Dualizing the sequence (B.5) we obtain the short exact sequence

1— Hy(No) — Hi(N) — Uy — 1, (B.7)

where U,,,, isthe group of mo-throotsof 1. Restricting to theidentity components we
deduce - o
Hi1(No)ig = H1(N)jg-

Denote by Ty the Fourier transform of the Reidemeister torsion of X. The surgery
formulaehave the form
‘TNo-igc7u=iTNlﬁN\o)- (B.8)

Observe now that since H isan Abelian group of positive rank the augmentation map
aug: Map(H, C) — Map(H/ Tors(H), C)

is precisely the integration along the fibers of H — H/ Tors(H). If f isthe Fourier
transform of f € Map (H, C) then the Fourier transform of aug(f) isthe restriction
of f tothe identity component of H.

If we now further restrict the surgery formula (B.8) to the identity component of

I-E(Fo) and then take the inverse Fourier transform we deduce

TR (T (A= Tt~ TH(T).



§B.2 Dehn surgery and linking forms

Recalling that
TV ~ An(TYA-T)7,

where Ay (T) denotes the Alexander polynomial of N, we conclude

An(T)
1-T)d—Tmo)’

Tae™ (1) ~
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