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Abstract

This is a list of main theorems in complex geometry that I will use
throughout the course on Calabi-Yau manifolds and Mirror Symmetry.
In practice it is a very brief summary of results from Chapters 0 and
1 of Griffiths-Harris. I will only remind their statements as I need
them during the course. The main purpose of this list is to make the
course accessible also to those people who only have a vague familiarity
with these theorems. Hopefully, during the course, people will see
some of their nice applications which, due to physical exhaustion before
reaching the end of Chapters 0 and 1, they were not able to see before
(this was at least my experience for a while).

1 Dolbeaut’s Theorem

Theorem 1 Let X be a complex n-dimensional compact manifold and E →
X a holomorphic vector bundle. If we denote by E the sheaf of holomorphic
sections of E and by ΩqX the sheaf of holomorphic q-forms, then we have:

Hp
Čech
(X,ΩqX ⊗ E) ∼= H

q,p

∂
(X,E).

This theorem is analogous to a classical theorem of de Rham saying that the
Čech cohomology over R of a smooth manifold is isomorphic to its de Rham
cohomology. Here we have two types of cohomology groups. To form the
one on the lefthand side we do the usual Čech cohomology of a (pre)sheaf
on a sufficiently fine cover of X . On the righthand side are the Dolbeaut
cohomology groups of a vector bundle. These are just like ordinary Dolbeaut
cohomology groups except that ∂ acts on the space Ωp,q(E) of (p, q)-forms
with coefficients in E. Notice that ∂ is a connection on both Λp,qT ∗X and
E and therefore it makes sense to consider ∂ on their tensor product. For
more information on sheaves, bundles, Dolbeaut cohomology and a proof of
the above theorem consult [1, Sections 0.3 and 0.5].
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2 Hodge decomposition

Theorem 2 Let X be a compact n-dimensional Kähler manifold. Then

Hk(X,C) =
⊕

p+q=k

Hp,q(X,C). (1)

Moreover:
Hp,q(X,C) = Hq,p(X,C) (2)

This very important theorem is a consequence of the Hodge theorem and
of some identities which hold on Kähler manifolds. Let ∂

∗
: Ωp,q(X) →

Ωp,q−1(M) be the formal adjoint of ∂ with respect to some L2-norm on
Ωk(X) coming from an hermitian inner product on TX . Then we can de-
fine the Laplacian ∆∂ = ∂∂

∗
+ ∂

∗
∂, a second order selfadjoint operator on

Ωp,q(X). The space Hp,q(X) := ker∆∂ is called the space of ∂-harmonic
forms and consists of (p, q)-forms which are both ∂ and ∂

∗
closed. Hodge’s

theorem states that Hp,q(X) is finite dimensional and that in each cohomol-
ogy class [φ] ∈ Hp,q(X,C) there exists a unique ∂-harmonic representative,
and therefore that

Hp,q(X) ∼= Hp,q(X,C).
Hodge’s theorem holds on any compact complex manifold (even non Kähaler
ones). On a Kähler manifold it turns out that when ∂

∗
is calculated using

the Kähler metric, then
2∆∂ = ∆d,

where on the righthand side we have the analogous Laplacian for the oper-
ator d, (it takes quite a bit of effort to check this equality!). This implies
that ∆∂ is a real operator and that d preserves the (p, q)-type of a form,
i.e. that ∂-harmonic forms are also d-harmonic (in particular d-closed) and
that all the components of pure type of a d-harmonic form are ∂-harmonic.
From such considerations we obtain both ismorphisms (1) and (2).
For details consult [1, Section 0.6 and 0.7], although maybe for a proof

of Hodge’s theorem [3] is better.

3 Kodaira-Serre duality

Theorem 3 On any compact n-dimensional complex manifold X we have
a non degenerate pairing

Hp,q(X,C)⊗Hn−p,n−q(X,C) → C,
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in particular
Hp,q(X,C) ∼= Hn−p,n−q(X,C).

At the level of forms the pairing is simply given by wedging the two forms
φ and ψ of type (p, q) and (n − p, n− q) respectively and integrating over
X . The fact that it descends to a well defined and non-degenerate pairing
follows from Hodge’s theorem (cfr. previous section) and the fact that

∆∂$ = $∆∂,

where $ is Hodge’s star operator $ : Ωp,q(X)→ Ωn−p,n−q(X) (for a definition
see [1, pag.82], but suffices to know that it is an isometry and that $2 = ± Id).
In particular $ sends harmonic forms to harmonic ones and being an isometry
it is an isomorphism (this shows at least the last part of the statement). For
the Kodaira-Serre duality we do not require X to be Kähler!

4 Line bundles and the Picard group

Let O denote the sheaf of holomorphic functions and O∗ the multiplicative
sheaf of nowhere zero holomorphic functions. We have

Theorem 4 The group of holomorphic line bundles, modulo isomorphism,
is naturally isomorphic to H1(X,O∗), also called the Picard group.

This theorem is quite simple. Let L be a holomorphic line bundle. Take
{Uα, sα} to be a sufficiently fine covering of X with choices of trivializing
local holomorphic sections sα of L. Then on overlaps Uα ∩ Uβ we have

sα = gαβsβ ,

where gαβ ∈ O∗. One can see that {Uα ∩ Uβ , gαβ} is a Čech cocycle (i.e.
an element of H1(X,O∗)) and that it is exact if and only if L is the trivial
bundle.

5 Exponential sequence and first Chern class

Notice that we have the natural exponential exact sequence:

0→ Z → O → O∗ → 0,
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where the second arrow is just inclusion and the third is f(z) '→ e2πi f(z).
This sequence translates in cohomology to the long exact sequence

. . .→ Hk(X,Z)→ Hk(X,O)→ Hk(X,O∗) δ→ Hk+1(X,Z) . . .

In particular one notices that the first non-trivial part of the sequence gives

0→ H1(X,Z)→ H1(X,O)→ H1(X,O∗) δ→ H2(X,Z).

The homomorphism δ maps the Picard group of X into H2(X,Z), giving us
an invariant of holomorphic line bundles. Its computability comes from the
important observation that δ is almost the first Chern class. To be more
precise, let us denote by H̃2(X,Z) ⊂ H2(X,R) the image of H2(X,Z) in
H2(X,R) induced by the inclusion Z → R and by c1(L) the first Chern class
of a line bundle (computed for example using a connection) then we have
the commuting diagram

H1(X,O∗) δ−→ H2(X,Z)
c1 ↘ ↓

H̃2(X,Z)

6 Divisors and first Chern class

Theorem 5 Let L → X be a holomorphic line bundle over the complex
n-dimensional manifold X . Suppose L has a meromorphic section s having
zeroes along a variety Z and poles along a variety P . Suppose Z = ∪kZk
and P = ∪kPk are the decompositions of Z and P into their irreducible
components and suppose also that s has zero of order rk and pole of order
qk along Zk and Pk respectively. Then we may form the divisor

D =
∑

l

rlZl −
∑

k

qkPk,

reppresenting a homology class in Hn−2(X,Z). We have

c1(L) = PD(D),

where PD(·) denotes the Poincaré dual.

I would just like to remind you some definitions here. Given a small open
set U , after trivializing L over U , the section s can be assumed to be a
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meromorphic function (which changes by multiplication by a function in O∗
when we change trivialization). Now, a theorem in complex analysis tells us
that s has a unique decomposition in irreducible factors:

s = hgr11 . . . g
rm
m f

−q1
1 . . . f−qll ,

where h ∈ O∗ and the gk’s and fk’s vanish in some non-empty subset of U
(defining Zk ∩ U and Pk ∩ U respectively). The above decomposition also
defines the notion of the orders rk and qk of zeroes and poles respectively.
The proof of the above theorem and a discussion of the above definitions is
in [1, Section 1.1].

7 Lefschetz’s hyperplane section theorem

Theorem 6 Let M be a smooth n+1-dimensional complex submanifold of
PN for some N and let V = H∩M , where H is a hyperplane. For sufficiently
general H , V will be a smooth manifold, called a hyperplane section of M .
Then the homomorphism

Hq(M,Q)→ Hq(V,Q)

given by restriction, is an isomorphism for q ≤ n−1 and injective for q = n.

A nice proof of this useful theorem using Morse theory is in [2].
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