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The difficulty in summarising Seiberg-Witten theory is that the Seiberg-
Witten equations are complicated. The data they involve—Spin®-structures,
complex spinors, coupled Dirac operators—are themselves tricky to under-
stand, never mind the analysis required to understand their solutions. But,
while the equations appear awkward, the moduli spaces of Seiberg-Witten
solutions modulo gauge are compact, oriented, typically zero-dimensional
manifolds, and this makes Seiberg-Witten invariants considerably easier to
compute than Donaldson’s instanton invariants. Witten’s paper of Novem-
ber 1994 [W] suppresses detailed calculations, but the basic arguments are
beautifully clear; it is this style, rather than the useful but impenetrable
thicket of detail provided by Nicolaescu [N], for instance, that I would like
to emulate in this lecture. I have also made considerable use of Donaldson’s
review [Do]. For an elegant discussion of spinors consult [De].

1 Spin“-structures
The compact Lie group Spin®(n) is defined to be

_ Spin(n) x U(1)

Spin®(n) L) (1)

where Spin(n) is the unique Lie group which double covers SO(n), realised as
the following subset of the Clifford algebra Cliff(n) associated to the negative
of the Euclidean norm || - || on R™:

Spin(n) = {zy - - -9 € Cliff(n) : z; € R"; ||z;|| = 1}.

*Comments and corrections gratefully received at tim.perutz@ic.ac.uk



We have

Spin‘(3) = (SU(2) x U(1))/ + (1,1) = U(2);
Spin‘(4) = (SU(2) x SU(2) x U(1))/ + (1,1,1)
= {(4,B) € U(2) x U(2) : det(A) = det(B)}.

A Spin‘-structure on an oriented Riemannian n-manifold (X, g) is a lift of
the structure group from SO(n) to Spin®(n) under the natural S'-fibration
7 : Spinf(n) — SO(n). Thus if {U,} is a cover of X, all of whose multiple
intersections are contractible, then a Spin-structure is encoded by a Cech
1-cocycle Gop @ Uy N Uz — Spin‘(n) such that the maps gas = o s are the
transition functions for (TX, g). The lifted transition functions define a prin-
cipal bundle Pgpiye(2n) and a homomorphism of principal bundles Pspine(2n) —
Pso(2ny which restricts fibrewise to the covering map Spin‘(2n) — SO(2n).

e A Spin-structure, that is, a lift of the structure group to Spin(n),
induces a Spin®-structure via the map

Spin(n) — Spin‘(n) : = — *(x,1).

e An almost complex structure—a lift of the structure group from SO(2k)
to U(k)—also yields a canonical Spin®-structure, because the natural
map U(k) — SO(2k) factors through Spin®(2k).

e Hirzebruch and Hopf proved that any smooth oriented manifold of di-
mension < 4 admits a Spin®-structure (see [GS]); in contrast, a smooth
oriented 4-manifold admits a Spin-structure iff its intersection form is
even, iff wy = 0.

Let s be a Spin®-structure with 1-cocycle Jop = (F£hag, £Cap). Then z,p :=
(+Cap)? defines a U(1)-valued 1-cocycle, and hence a complex line bundle L.
We call L the determinant line bundle det(s) of the Spin°-structure s.
Write ¢ (s) for its first Chern class ¢,(L) € H*(X;Z), which is represented
by the Z-valued 2-cocycle nag, = 5= 10g(zap2sy25,); it reduces mod 2 to
wa(X).

We regard Spin“-structures as equivalent if their associated 1-cocycles
gag and hag are cohomologous, in the sense that egg,s = haﬁea for a 0-cocycle

: Uy — (1,£1) C Spin‘(n), and write Spin®(X) for the set of equivalence
classes. There is a free, transitive right action of the group ﬁl(X; S1) on
Spin®(X). Thus, if Spin®(X) # 0 then we can identify it non-canonically
with H'(X;S"), and hence with the group of smooth line bundles. Given



61,69 € Spin“(X) we can write s = §; ® L for a line bundle L, so that
det 5o = det 5; ® L? and crucially

C1 (52) =C (51) + 2¢4 (L) (2)

If s is the canonical Spin®-structure of an almost complex structure, then
det(s) is Ky', the dual of the canonical line bundle, and we can write a
general Spin®-structure as Ky' ® L.

2 Spinor bundles

A basic fact about real Clifford algebras is that there is a Z/2-graded C-
vector space Sy, = S5, ®S,, and an isomorphism of Z/2-graded (or ‘super’)
algebras

cl : Cliff(2n) ® C — End(Sy,).

In fact, a choice of almost complex structure J on V = R*® ® C effects a
splitting V' = V10 @ V9! of V into Zi-eigenspaces for J, and we can take

Son = A®*V = A*VO,

with the Z/2-grading induced by the natural Z-grading by degree. In par-
ticular, dimc S3, = dimc S;, = 2" 1. Via the inclusion map 7 : Spin(2n) —
Cliff " (2n) we obtain a representation

p: Spin‘(2n) — Aut(Sy,) 1  £(z,2) — zcl(i(x))

which decomposes into representations p. : Spin“(2n) — Aut(S;,).
Consider an oriented Riemannian 2n-manifold (X, g) and a Spin“-structure
with principal bundle Pspine(2,). Form the associated bundles

+ +
Ss = PSpinc(Qn) Xp SQna Ss = PSpinc(Qn) Xy Sgn-

Sections of these bundles are called (positive or negative) complex spinors.
On a 4-manifold (X, g) we can be more explicit. Working over a chart U,
we have

SHU) = A(T*U) @ A°X(T*U),  S_(U) = AY(T*U). (3)

Note first that
AST = det(s) 2 A°S,,

an observation which it is enough to verify locally. Next, we can use the
metric to identify A%? with the bundle A2 of complexified self-dual 2-forms:

St = AAT*U) & A2(T*U). (4)
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Thus locally a positive spinor decomposes into two pieces, a function X — C
and a complexified self-dual 2-form. In the case of the canonical Spin®-
structure of an almost complex 4-manifold formulae (3) and (3) hold globally,
but in general we must twist by sections of a complex line bundle.

3 Dirac operators

Let V denote the Levi-Civita connection on (X?", g), regarded as a connec-
tion on the principal frame bundle Pso(2n). Given a Spin-structure on X
we can identify the Lie algebras of Spin(2n) and SO(2n) and so obtain a
connection on Pspin(2n), hence also on the associated spinor bundles. If we
only have a Spin‘-structure s then we need a bit more information, since
Spin®(2n) has Lie algebra so(2n) @ u(1). However, if we take in addition a
unitary connection A on det(s) then we do obtain a connection V4 on the
complex spinor bundle S,, which respects the Z/2-decomposition. Locally
this connection looks like

1 1
A f— ) .. . .
\Y —d++§zA+§ZQ”ele], (5)
1<g
where the e; are an orthonormal frame field for T X, and they act by Clifford

multiplication, explained in a moment. The Dirac operator D4 : ['(S;) —
['(S,) is now defined by

Dys = Zei(Vfl_s).

This needs some thinking through: V“s lives in ['(T*X ® S;), and the co-
variant derivative Vfis contracts this to a section of S;. Now over each point
r € X, e; can be considered as an element of Cliff(2n), hence as an endo-
morphism of S; thus ¢;(V2u) € T'(S,). The jargon is that e; acts by Clifford
multiplication cl : TM ® S, — S,;. A coordinate-free expression for Dy, is

Da=cloV,: I'(Ss) & T'(T*M ®S,)
U D(TM ® S,)
s T(S,).

The Dirac operator satisfies a Weitzenbock identity due to Lichnierowicz
(‘one of the most fruitful calculations in differential geometry’—SKD):

1
DiyDa = (V)Y + 2+ Sel(F)), (6)



where s is the scalar curvature of g, and the :R-valued curvature 2-form Fy
can act by Clifford multiplication by identifying %x A y with the Clifford
product zy. One can check that D, exchanges sections of the subbundles
SZ; in fact, usually the notation Dy is used for the map ['(S]) — T'(S;). T
remark without elaboration that D, is a generalised Laplacian, that is its
symbol map (re)defines a Clifford algebra stucture.

4 The Seiberg-Witten equations

Fix the following data:

e A smooth, oriented!, Riemannian 4-manifold (X, g); we won’t assume
compactness yet.

e A Spin‘-stucture s on X, with determinant line bundle L = det(s).
e A hermitian metric h on L.

e A closed, imaginary 2-form 7, the perturbation parameter.

The Spin“structure s defines complex spinor bundles SF. Define the con-
figuration space A, to be the set of pairs (¢, A) where

e ¢ is a section of S} (a ‘spinor field’ on X);
e A is a unitary connection on L (a ‘potential’).

For each such A there is a Dirac operator Dy : ['(S]) — T'(S;). The
Seiberg-Witten equations are:

Dy =0 (Dirac equation)

1
c(Fy +n") = iq(w) (monopole equation)

The Dirac equation takes place in I'(S,), the monopole equation in End(S}).

S

Here ¢(1) € End(S]) is the traceless symmetric endomorphism

— 1
o) =F @ v — 5P,

or in matrix form

o(5) =" s )

'T mean oriented, not just orientable, i.e. we fix an isomorphism H*(X;Z) — Z.
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4.1 Gauge symmetry

The Seiberg-Witten equations have more symmetry than meets the eye: they
are preserved by a (left) action of the U(1) gauge group G = Map(X, U(1)).
Let’s try to understand how this group acts.

First, U(1) acts by scalar multiplication on the vector spaces ST, so (from
their definition as associated bundles) we get a fibre-preserving action of G
on SE. Hence G acts on sections I'(SF). Now things get more subtle: G
naturally acts by conjugation on the set of connections on S;; given our
unitary connection A on L, we obtain a covariant derivative V4 on S,, and
v - VA == 4VA44y~1. But this connection is also induced from a unitary
connection on L, namely A—2(dy)y~!. The factor of 2 looks strange if you're
used to Yang-Mills theory—to see where it comes from look at equation 5.
Finally, we have a formula for the action on configuration space A,:

v (W, A) = (v, A = 2dy.y7Y);

using this formula you can deduce the invariance of the Seiberg-Witten equa-
tions. The Seiberg-Witten moduli space associated to our data is defined
to be

M, = {Seiberg-Witten solutions}/G C A;/G.

4.2 Involution

There is an additional symmetry of the equations, this time beween solutions
with perturbation parameter n and those with parameter —». It is induced
by the involution (hqg, 2ag) — (hag, Zag) on Spin®(X).

5 Properties of the equations

Suppose (¢, A) is an L?-solution to the Seiberg-Witten equations on X (e.g.
any solution when X is compact). By the Weitzenbock formula (6),

0= D"Datp = (VAH*VAY + Zw + %Fi(w)

(recall s is scalar curvature). Taking inner products with ¢, integrating, and
simplifying using the monopole equation, it’s straightforward to show

/X <|VA¢|2 + %I@DI“ — (77*(@/)),%0)) vol, = — /X Z|¢|2volg. (7)



5.1 Non-negative scalar curvature

Suppose s > 0 everywhere, and take n = 0. Then the LHS of (7) is non-
negative while the RHS is non-positive, hence both are zero. So ) = 0 and
F =0. We will discuss solutions of this form later; the point is that, when
by > 0, for generic metrics they do not exist. We will conclude from this
that on a closed 4-manifold with b > 0 admitting a metric of non-negative
scalar curvature the Seiberg-Witten invariants vanish identically. Both this
statement and its contrapositive are useful in 4-manifold topology.

5.2 Finiteness

Now suppose sg := —miny(s) > 0 on the compact manifold X. Again, take
a solution (1, A) to the n = 0 equations. By (7) we have

Qv top + Jlefvol, <% |w|2volgs@\/vm(x> [ 1wl
X 4 4 Jx 4 X

where the second inequality is an application of Cauchy-Schwartz. Throw
away the |[V49|? term and rearrange, to obtain the bound

/ [ < 2Vol(X).
X

This in turn yields an L? upper bound on F, and since by Chern-Weil
theory we have

1 1
2 _ 2 __ 2 —12
AN = 75 [ Fi= 3 [ (FFF = P Pvol,

c2(s)[X] is bounded above. We will see later from an index calculation (8)
that for generic metrics there are no solutions when ¢?(s)[X] < 2x(X) +
37(X), where x and 7 are Euler characteristic and signature. So c}(s) is
bounded in H*(X;Z), hence ¢,(s) is bounded in H?(X;Z), hence there are
only finitely many Spin®-structures on X for which the n = 0 Seiberg-Witten
equations admit solutions.

6 The gauge theory strategy

In gauge theory one considers the space My g(g) of solutions modulo gauge
transformations to a PDE on a vector bundle F over a smooth oriented
manifold X. Solutions to the PDE are invariant under a group of bundle
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automorphisms, the gauge group. We are interested just in the orientation-
preserving diffeomorphism type of X; however, the PDE will involve some
auxiliary data g (metrics on X and F, perturbation parameters, ...) which
are not preserved by orientation-preserving diffeomorphisms. The idea, then,
is this:

e If the gauge group acts freely, the configuration space divided by the
gauge group action will be a smooth Banach manifold, containing the
moduli space M(g). There may be reducible solutions, which have
nontrivial stabilizer. We must arrange that for generic? data ¢ these
reducibles do not hit M(g). More than this, we need to show that
reducibles do not occur in generic 1-parameter families of data
g. This will allow us to construct ‘cobordisms’ between moduli spaces
M(g1) and M(g,) in such a way as to show that M(g) does not depend
on g.

e If the equations are elliptic then away from reducibles their lineariza-
tions will define Fredholm maps between Banach manifolds. For generic
choices of the data g, the moduli space M(g) will then be a smooth
finite-dimensional manifold (Sard-Smale theorem); reducible solutions
would introduce singularities. The dimension of M(g), for generic g,
is the index of the equations; this can be computed using the Atiyah-
Singer index theorem.

e In some cases the moduli spaces will be compact; if not, one must
construct some appropriate compactification, typically as a completion
in the ambient space. The ‘ends’ of the compactification often have a
natural geometric description.

e One must define an orientation for the moduli space. Writing 7" for the
linearization of the operators defining the PDE, ker(T")®(coker(T))* de-
fines an element of the real K-theory on X, the index bundle ind(7);
its top exterior power is actually a real line bundle detind(T"), and
Donaldson gave a recipe for producing an orientation of the moduli
space from an orientation of detind (7).

This list is to some extent an idealisation; one must consider variants, such as
isolated reducibles appearing in generic 1-parameter families; and to get the
arguments to work one must usually allow solutions in certain Sobolev spaces,
then use a ‘bootstrapping’ argument to show that this doesn’t affect the

2A property holds generically in a metric space if it holds on a countable intersection
of open, dense subsets, itself dense by Baire’s theorem.



topology of the moduli space. However, it does represent the basic strategy
used in a number of problems—one of course, being Seiberg-Witten theory:

e Instantons (Donaldson theory);

e Pseudo-holomorphic curves in symplectic manifolds (Gromov, Gromov-
Witten invariants);

e Floer homology (Lagrangian, instanton, Seiberg-Witten, etc.) and 3-
manifold invariants (Casson, etc.).

The moduli spaces in Donaldson or Seiberg-Witten theory can be used in
two basic ways. First, to give non-existence proofs, e.g. for smooth, closed,
oriented 4-manifolds with negative definite, non-diagonal intersection form,
by deriving a contradiction from the topology of the moduli space. Second,
to define invariants of such manifolds. The strategy is then

e If the moduli space M is a 0-dimensional compact manifold then it is a
finite set; one counts the points with signs obtained by comparing the
canonical orientation of a finite set with the orientation constructed on
M, and obtains an invariant

Z €z, Ep==E1l.

e In higher dimensions, construct a map u : Hy(X;Z) — H*(M;Z). If
M has even dimension 2d then define invariants as

(u([(Z]) U --- U p((Ed]), M])-

We will only discuss a cheap version of this, using a fixed class U €

H*(M;Z).

7 The Seiberg-Witten case

Reducibles. If the gauge group G fails to act freely on (¢, A) then clearly
¢ = 0; then F'{ +n™ =0, and the stabilizer of (¢, A) is U(1). Consider the
unperturbed case 7 = 0 (so we have an ‘abelian instanton’). Now Fj4/2mi
represnts ¢; (L), so it lies in the integral lattice in H*(X;Z), and F{ =0, so
it lies in the anti-self-dual subspace. But if b > 1 then for generic metrics an
integral, anti-self-dual harmonic form is zero, and for b5 > 2 the same is true
for generic 1-parameter families of metrics. So to get absolute invariants
we must assume b > 2, while for by = 1 we will get ‘chambers’ in the
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space of metrics, giving different invariants. Note how useful it was that we
considered pairs (¢, A), not just connections A.

Index. Witten shows that the linearization of the Seiberg-Witten equa-
tions is elliptic, of index

ind(d* @ d*) +ind(D,),

where both terms are given by standard formulae. The result is that the
‘expected’ dimension of M, is

HeL) — () +3r(X)} )

where y and 7 denote Euler characteristic and signature. If the index
is negative the moduli space will generically be empty. One feature of
this formula is immediately striking: on an almost complex 4-manifold,
c2(TX)[X] = 2x+ 37, so conveniently the expected dimension for the canon-
ical Spin“-structure is zero.

Compactness. The Seiberg-Witten moduli spaces are always compact,
unlike the instanton moduli spaces. Witten remarks that the lack of com-
pactness in the instanton theory can be explained in the following way: the
equations are conformally invariant; there exists a nontrivial L? instanton
on flat R*; such a solution may be embedded into a small region of any
4-manifold, giving a highly localised approximate solution; this may some-
times be perturbed to an exact solution. There may therefore be a sequence
of instanton solutions shrinking to zero size, and such a sequence has no con-
vergent subsequence (think of approximations to the delta distribution). In
contrast, we saw in out discussion of non-negative scalar curvature that the
Seiberg-Witten equations admit no nontrivial L? solutions on flat R*. One
can prove compactness by establishing an L* bound on the curvature Fy
using the maximum principle, then applying elliptic theory.

Orientation. In Seiberg-Witten theory the orientation on detind(7)
arisies from an orientation of the vector space H? (X;R) @ H'(X;R).

7.1 Invariants

In the 0-dimensional case we make a signed count of solutions, setting

SWx(s) = Z Ery €y =E1.
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In higher dimensions we can use the pullback square
"'U, —— U
M, —— A,/G

where U; = A;/Stabg(pt). Since U; — A;/G is a line bundle away from
reducibles, we can take first Chern classes and so obtain an element U =
c1(1*Us) € H*(M,; Z). Now define

SWix(s) = (1= U)7", [Ms]).

Note that this can be nonzero only when dim M, is even. When by > 1
SW x(s) is an invariant; when by = 1 it takes two values, depending on 7
and ¢, and we may consider it crudely as an unordered pair of integers.

A less sensitive but more readily computable invariant is

Bas(X) = {c(det(s)) : s € Spin“(X); SWx(s) # 0} C H*(X;7Z),

the set of Seiberg-Witten basic classes. In all known cases where by > 1,
the basic classes correspond to 0-dimensional moduli spaces, but when b = 1
this is frequently not the case.

8 Seiberg-Witten invariants of Kahler surfaces:
Witten’s factorization method

In this section (X, w) is a compact K&hler surface with canonical line bundle
Kx. We'll also assume by > 1 with respect to the canonical orientation
w? > 0: since by = 2p, + 1 we can then take as perturbation parameter a
holomorphic 2-form n € H°(X; Kx). As we've seen, the canonical Spin‘-
structure sy has determinant line bundle Ky', and spinor bundles

S§ = A"T*X @ A’T*X =Co Ky', S, =A"T*X.

A general Spin‘-structure can now be obtained by twisting: s = 59 ® L;
det(s) = Ky' ® L?. The spinor bundles ST := SF are now

Si=Le(LeKy'), S;=LaA"'TX.
Using this splitting we write an even spinor ¢ € I'(S}) as

v=a+f, ael(l), BeT(L®Ky')=T(LaA").
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The space of complexified self-dual 2-forms can be identified with A?" @
C.w @ A%?, and using this decomposition Witten rewrites the n-perturbed
monopole equation as

F2,0 — F02 — aﬁ -, iFl’l W= |ﬁ|2 - |C¥|2,

where F' = F is the curvature of a connection B on L. The Dirac operator
D can be written in the form V2(85+05). The coupled Dolbeault operator
dp is a map I'(L) — D(L ® A%")—it kills T'(L @ A%?)—while its dual d} is
a map ['(L ® A%?) — I'(L ® A™). So the Dirac equation is
Do+ 3,8 = 0.

Therefore o o

F%20 = 0pdpa = —0p0 405,
so when 7 = 0 we have 950,35 + |28 = 0 and

/X ([ + laf?|?)vol,.

Hence F*? = a3 = 0. By the Newlander-Nirenberg theorem, 05 defines a
holomorphic structure on L. In particular, ¢;(L) is of type (1,1).

We now drop the assumption n = 0, but we can assume fXF/\n =
[x F»? An =0, because basic classes must have type (1,1). A similar pro-
cedure now shows

[ (@3 +15 - aPyvol, =0,
So we find:
e F%2 = (. Thus B defines a holomorphic structure on L.
e JOpa =0, so « is a holomorphic section of L.

° 5;6 =0, so 3 is a holomorphic section of L* @ K.

e o3 = n: solutions describe a holomorphic factorization of the per-
turbation parameter.

Conversely, given such data we can go backwards and find a unique solution
to the equations. So the slogan is

FEverything reduces to algebraic geometry!

A consequence of this factorization is that solutions of the monopole equation
are isolated—think of their divisors—and so the moduli space is at most
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0-dimensional. From the dimension formula, we find that a basic class x
satisfies
v = K%.

Of course, a Spin®-structure with non-empty O-dimensional moduli space may
not define a basic class: the signs attached to the points of the moduli space
could cancel out. Writing the Poincaré dual of n as > r;[C;] for disjoint
connected curves C; and r; > 0, we can see from the factorization that if the
line bundle L corresponds to a basic class then the divisor of a section of L
has the form > s;[C;] with 0 < s; < r;. Integrating the Kéhler form w on
the C; we see that if x € Bas(X) then

o<l =L es—r) [ ol <Tn [ w=kow

Equality occurs iff all s; = 0 or s; = r;, which means either L or Kx ® L* is
trivial, i.e. kK = K)i(l. In either case there is a single solution, so (conflating
line bundles with Spin°-structures) we have SWx (K3:') = +1.

To summarise:

(X,w) Kahler, p,(X) > 0, s € Bas(X). Then x? = K% and

k€ H*(X;Z)Nn H"(X); 0< |k w <Kyx-w;
k- wl =Ky wek==+Ky; SWx (K = +1.

An immediate consequence is that if Ky is torsion (which is true for tori,
K3s, Enriques and hyperelliptic surfaces) we have

Bas(X) = {£Kyx}.

The same is true for minimal surfaces with Ky ample (‘general type’): you
can prove this in a couple of lines using the Hodge index theorem and the
fact K? > 0. Consequently orientation-preserving diffeomorphisms between
manifolds of these types preserve the canonical class, up to sign®. On minimal
elliptic surfaces the set of basic classes is larger, and distinguishes various
diffeomorphism types. If X is a blow-up of X at a point, with exceptional
divisor Poincaré dual to F, then

Bas(X) = proper transform(Bas(X)) + E.

3Take care: an orientation-preserving diffeomorphisms f : X — Y induces f* :
Spin‘(Y) — Spin(X), and SWy = £SWx o f*. However, in general f* will not be
compatible with our identification of Spin®-structures with cohomology classes.

13



A final point: we used the canonical orientation on X, determined by setting
w? > 0. However, if b and b, were both > 1 we could have used the opposite
orientation. We would have found that the Seiberg-Witten invariants all
vanished. It seems to be typical of smooth orientable 4-manifolds that the
Seiberg-Witten invariants are nontrivial in at most one orientation.
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