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1 Introduction

The purpose of these notes is for me to recollect what I have been trying to
learn about the subject of mirror symmetry and to explain it to others. I
describe, with as little technical language as I can, some aspects of mirror
symmetry. In particular I discuss Calabi-Yau manifolds and their Hodge di-
amond, deformation theory of complex structures and the Bogomolov-Tian-
Todorov theorem. I will outline the concept of Large Complex Structure
Limit point in the case of 1-dimensional complex moduli, discuss periods,
monodromy and the computation of the Yukawa coupling which provides
a formula for the number of rational curves on the mirror manifold. As
inevitable, I make extensive use of classical theorems of Kählerian geome-
try such as those found in the first two chapters of Griffiths and Harris [2].
These notes are largely based on Part II of the book [3], which I recommend
to anyone wanting to learn about the subject for the first time. Another
very good book is [1], which has a lot of interesting material, but starts at
a higher level and the emphasis is more on algebraic geometry, especially
toric. The survey articles of David Morrison, such as [6] are also quoted as
a good reference.

2 Calabi-Yau’s and their Hodge numbers

Mirror symmetry is a, so far, rather mysterious construction relating ap-
parently unrelated families of some special kinds of Kähler manifolds called
Calabi-Yau manifolds. Let X be an n-dimensional complex manifold and

∗Department of Mathematics, Imperial College, London, U.K. e-mail:
d.matessi@ic.ac.uk

1



KX = ΛnT ∗X (1,0) the complex line bundle of forms of type (n, 0), also called
the canonical bundle of X .

Definition 1 An n-dimensional complex manifold X is Calabi-Yau if it is
Kählerian, π1(X) = 0 and c1(KX) = 0, where c1 is the first Chern class.

Proposition 1 The line bundle KX of a compact Calabi-Yau manifold X
is holomorphically trivial, i.e. X admits a nowhere vanishing global holo-
morphic (n, 0)-form Ω.

Proof. The line bundle KX is obviously holomorphic. It is known that holo-
morphic line bundles are classified by the so called Picard group H1(X,O∗),
where O∗ is the sheaf of nowhere zero holomorphic functions (cfr. [2] pgg.
132-133). The 0 in H1(X,O∗) is the class of holomorphically trivial line
bundles. Remember the exponential exact sequence

0→ Z → O → O∗ → 0,

where O is the sheaf of holomorphic functions, the second arrow is inclusion
and the the third is f "→ e2πif . Corresponding to it is the long exact sequence
of cohomology, one part of which is:

0 = H1(X,O)→ H1(X,O∗) c1→ H2(X,Z). (1)

The fact that H1(X,O) = 0 follows from Dolbeaut’s theorem ([2], pg.45),
saying that H1(X,O) ∼= H0,1(X,C), then from Hodge’s decomposition
(which holds since X is Kählerian, [2] pg.116):

Hk(X,C) =
k⊕

l=1

Hk−l,l(X,C),

and finally from the assumption that X is simply connected. The last arrow
of (1) now tells us that c1 is injective, i.e. that a line bundle with vanishing
c1 is holomorphically trivial. 2

Let hp,q denote the (p, q)-Hodge number of X , i.e. the dimension of
Hp,q(X,C). Remember that from Hodge theory, when X is Kähler, we have
that:

Hp,q(X,C) = Hq,p(X,C),

and therefore:
hp,q = hq,p.
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Instead from Serre duality we have:

Hp,q(X,C) ∼= Hn−p,n−q(X,C),

and therefore:
hp,q = hn−p,n−q .

WhenX is Calabi-Yau, the previous Proposition and Dolbeaut’s theorem
imply that hn,0 = h0,n = 1 and h1,0 = h0,1 = 0. Moreover observe that

Hn,1(X,C) ∼= H1(X,ΩnX) ∼= H1(X,O) = 0,

where the first isomorphism is Dolbeaut and the second follows from the
definition of Calabi-Yau. From Serre duality we also get

h0,n−1 = hn−1,0 = 0.

In particular we obtain

Proposition 2 The Hogde diamond of a Calabi-Yau 3-fold X looks like:

1
0 0

0 h1,1 0
1 h1,2 h1,2 1
0 h1,1 0
0 0

1

3 Examples

Let’s now look for interesting examples. We start from dimension 1.

3.1 Dimension 1.

All complex curves are Kählerian, but the only simply connected one is P1,
whose canonical bundle is not trivial. Therefore, strictly speaking there are
no 1 dimensional Calabi-Yau manifolds, but if we just require X to have
holomorphically trivial canonical bundle, i.e. h1,0 = 1, then we must have
b1(X) = 2, i.e. X is topologically a torus. In fact let Λ ⊆ C be a lattice of
maximal rank, i.e. Λ = spanZ〈τ1, τ2〉, where τ1 and τ2 are twoR-independent
complex numbers. ThenX = C/Λ is a genus 1 curve whose canonical bundle
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is trivialized by the form Ω = dz, where z is a coordinate on C. It turns out
that by some simple symmetries any such X is biholomorphic to one where
τ1 = 1 and τ2 ∈ H, where H is the upper half plane in C.

Exercise. Let p ∈ C[x0, x1, x3] be a homogeneous polynomial of degree
3. Prove that, for generic p, X = {p = 0} ⊂ P2 is a smooth genus 1 curve.
Moreover show that the one form

Ω =
dx1

∂p/∂x2
,

seen as a form with poles on the affine chart {x0 )= 0}, restricts and extends
to a well defined, nowhere vanishing holomorphic 1-form on X . Notice how
degree 3 of p is the only case when this happens. 2

3.2 Hypersurfaces

We now look for Calabi-Yau manifolds among hypersurfaces of known com-
plex manifolds, such as Pn+1. A useful tool is the adjunction formula. Given
a hypersurface X of some Kähler manifold M , let NX denote the normal
bundle of X inside M . It is obviously a holomorphic line bundle of X . We
have:

Theorem 1 (The adjunction formula) Given X , a hypersurface of an
n + 1-dimensional complex manifold M , we have:

KX = KM|X ⊗NX .

Proof. Roughly, if Ω is a local section of KM , i.e. a holomorphic n + 1
form around a point in X and ν is a holomorphic section of NX , then the
contraction ιν Ω|X is a holomorphic n form on X . This gives the above
identification. 2

Now suppose X is a hypersurface of degree d in Pn+1, i.e. X is the zero
locus of some degree d homogeneous polynomial. When is c1(KX) = 0?
One practical way to compute c1 of some holomorphic line bundle L is to
look for a meromorphic section σ of L. If σ has poles of degree qk along
hypersurfaces Pk and zeroes of degree rl along hypersurfaces Zl then:

c1(L) = PD(
∑

l

rlZl −
∑

k

qkPk),
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where PD denotes the Poincare dual in homology. For a more rigorous
treatment of these facts look in Griffiths and Harris, Section 1.1, Divisors
and Line Bundles.
So for example

c1(KPn+1) = −(n+ 2)PD(H),

where H is the class of a hyperplane. You can see this by trying to define a
holomorphic n+ 1-form Ω on Pn+1 by taking Ω = dx1 ∧ . . . ∧ dxn+1 on the
affine chart U0 = {x0 )= 0}. When you change chart, say on U1, you find
that Ω has a pole of degree n + 2 on H0 = {x0 = 0}.
On the other hand if X is a hypersurface of M , sections of the normal

bundle NX correspond to infinitesimal deformations ofX insideM , therefore
they will vanish, intuitively, along a hypersurface of X reppresenting X ·X ,
the self intersection class.
In particular if X is of degree d in Pn+1, then:

c1(NX) = PD(X ∩X) = PD(dH ∩X),

since X is homologous to the class dH . We may now apply the adjunction
formula:

c1(KX) = c1(KPn+1)|X + c1(NX) = PD((d− n− 2)H ∩X).

We may then conclude:

Proposition 3 A smooth hypersurface X of degree d in Pn+1 is such that
c1(KX) = 0 if and only if d = n+ 2.

So low dimensional examples of such hypersurfaces are quartics in P3, also
known as K3 surfaces and quintics in P4. Notice also that the 1 dimensional
case of cubics in the previous section is a particular case of this result. In
the following exercise you can verify the above proposition directly, also
obtaining an explicit holomorphic n-form.

Exercise Let X be a smooth, degree d = n + 2 hypersurface in Pn+1 and
let f be the homogeneous polynomial defining X . On an affine chart for
Pn+1, say U0 = {x0 )= 0}, define a holomorphic n-form (with poles):

Ωf =
dx2 ∧ . . .∧ dxn+1

∂f/∂x1
.

Prove that it restricts and then extends to a well defined nowhere vanishing
holomorphic n-form on X . 2
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We have not yet shown that our examples are simply connected. We will
only show:

Proposition 4 Given any smooth hypersurface X of Pn+1 with n ≥ 2, we
have

Hq(X,Q) ∼= Hq(Pn+1,Q), (2)

when q ≤ n− 1.

We apply Lefschetz Theorem on hyperplane sections (cfr. [2, pg. 156])
which says the following. Let M be any smooth n+1-dimensional subman-
ifold of PN for some N and let V = H ∩M , where H is a hyperplane. For
sufficiently general H , V will be a smooth manifold, called a hyperplane
section of M . Lefschetz’s theorem says that the map

Hq(M,Q)→ Hq(V,Q)

given by restriction, is an isomorphism for q ≤ n−1 and injective for q = n.
Now we consider X to be a degree d hypersurface in Pn+1. Take the d-tuple

Veronese embedding Φ of Pn+1 into PN , where N =
(
n+ 1− d
n + 1

)
−1. It is

defined by [x0 : . . . : xn+1] "→ [µ0 : . . . : µN ] where the µk’s range among all
possible degree d monomials in the xj variables. Let M = Φ(Pn+1). We can
easily see that for a suitable hyperplane H of PN , we have Φ(X) =M ∩ V .
Lefschetz’s theorem applied to such M and V and for q ≤ n− 1, gives 2. 2

3.3 The cohomology of the quintic

We will now compute the Hodge numbers of a smooth quintic X in P4,
which, as we just saw, is Calabi-Yau. Proposition 2 tells us that we only
need to find h1,1 and h2,1, while from Proposition 2 we already obtain that
h1,1 = 1. Therefore we can obtain h2,1 from the Euler characteristic of X
through the formula:

X (X) = 2− 2h2,1.
The generalized Gauss-Bonnet Theorem tells us that, on an n dimensional
complex manifold:

X (X) =
∫

X
cn(TX).

To apply it to the quintic we need to compute c3(X). Let L → P4 be the
tautological line bundle of P4 defined by:

L = {(p, ') ∈ C5 × P4|p ∈ '},
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and let L∗ be its dual. The sheaf of holomorphic sections of L and L∗ is
often denoted OP4(−1) and OP4(1) respectively. We have c1(L∗) = PD(H).
We need the following two facts:

TP4 ⊕C ∼= (L∗)⊕5

TX ⊕NX ∼= TP4|X
A proof of the first fact can be found in [4, pg. 190] or can be checked with
some thought. The second fact is obvious. Let c =

∑
cj be the total Chern

class. From the first ismorphism we get:

c(TP4) = (1 + PD(H))5.

From which we get

cj(TP4) =
(
5
j

)
PD(H)j, when j = 1 . . .4

Applying c to the second isomorphism we have

c(TX)(1+ c1(NX)) =
3∑

j

(
5
j

)
PD(Hj ∩X).

As we already know c1(NX) = PD(5H ∩ X). Then, by expanding the
lefthand side, using c1(TX) = 0 and comparing degrees, we obtain

c2(TX) = 10PD(H
2 ∩X)

c3(TX) + c2(TX)PD(5H ∩X) = 10PD(H3 ∩X),

from which we obtain

c3(TX) = −40PD(H3 ∩X).

Integrating we get ∫

X
c3(TX) = −40H3 ∩X.

Now, in P4, H3 is the class reppresented by a line, which generically inter-
sects X in 5 points. Therefore

X (X) =
∫

X
c3(TX) = −200,

giving us h2,1 = 101. We summarize the result in
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Proposition 5 The Hogde diamond of a smooth quintic X in P4 is:

1
0 0

0 1 0
1 101 101 1
0 1 0
0 0
1

- intersections - other examples

4 The complex moduli

One of the main ingredients in the mirror symmetry construction is the space
of deformations of the complex structure of a Calabi-Yau manifoldX , the so
called complex moduli of X and denoted byMcx(X). We will first review
some facts of the general theory of deformations of complex structures.

4.1 Deforming the complex structure

Let X be any compact complex n-dimensional manifold and denote by J
its integrable almost complex structure, i.e. J ∈ Γ(EndTX), J2 = − Id
and NJ = 0, where NJ is the Nijenhuis tensor associated to J (cfr. [5, pg.
123]). Clearly the space of diffeomorphismsDiff(X) ofX acts on (integrable)
almost complex structures by J "→ φ∗J, where φ ∈ Diff(X). Ideally we
would like understand the space all possible integrable J’s on the same
underlying differentiable manifold X after quotienting by this action, i.e.
we are interested in:

Mcx(X) =
{J ∈ Γ(EndTX)|J2 = Id, NJ = 0}

Diff(X)

Usually such a space is very complicated and very little is known about
it. More often, what one can do is understand this space locally around a
given complex structure J0. We can formulate the problem formally with
the following definition:

Definition 2 A local deformation space of a compact complex manifold X
consists of the data (X , S, p, s0), where X and S are analytic spaces, p :
X → S is a surjective, proper and flat morphism and s0 ∈ S is such that
X0 = p−1(S0) is isomorphic to X .
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To clarify a bit the definition, keep in mind that it implies that in the
case S is isomorphic to some contractible open set in some Cr then X is
diffeomorphic to X × S and p is the projection. Therefore what is varying
here is the complex structure J on the same underlying manifold X . The
definition says the variation is analytic, i.e. J depends analytically on a
parameter s ∈ S. One would like to have the biggest of such deformation
spaces, i.e. one that contains all the others and which doesn’t contain any
trivial deformations. Here is the definition:

Definition 3 The deformation space (X ,Def (X), p, s0) is the universal de-
formation space of X if for any other deformation space (X ′, S, p′, s′0) of X
there exists a unique analytic map f : S → Def (X) such that f(s′0) = s0 and
the deformation space (f∗(X ), S ′, f∗(p), s′0) is isomorphic to (X ′, S, p′, s′0),
i.e. one has the following commuting diagram:

X ′ %−→ f∗(X )
p′ ↓ ↓ f∗(p)
S

Id−→ S

Often one denotes by just Def(X) the universal deformation space. The ex-
istence of the function f says that Def(X) contains all possible deformations
of X , while uniquenes tells us that Def(X) does not contain repetitions. In
general Def(X) may not exist or may be singular. The theory of deforma-
tions of complex structures has been develloped by various people such as
Kuranishi, Kodaira and Spencer. They studied obstruction to the existence
of Def(X) and conditions guaranteeing that Def(X) is smooth. Let TX de-
note the sheaf of holomorphic sections of the holomorphic tangent bundle
of X . The results are stated in terms of the cohomology of TX .

Theorem 2 (Kuranishi) If H0(X, TX) = 0 then a universal deformation
space exists.

The condition is saying that X should not admit holomorphic vector fields,
which induce a non-discrete space of automorphisms. Moreover we have

Theorem 3 (Kodaira-Spencer) Tangent vectors to Def(X) at s0 are nat-
urally identified with classes in H1(X, TX) = 0. If also H2(X, TX) = 0 then
Def(X) can be identified with an open neighbourhood of 0 in H1(X, TX) = 0,
in particular Def(X) is smooth.

Some references to these results are ........
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Although we will not prove these theorems, we can at least say how
one starts to prove them. Let TX be the real tangent bundle of X . The
existence of an almost complex structure J is equivalent to the existence of
a smooth splitting

TX ⊗R C = TX (1,0)⊕ TX (0,1)

such that TX (0,1) = TX (1,0). In fact TX (1,0) = {V − iJV |V ∈ TX} and
when J is integrable TX (0,1) is the holomorphic tangent bundle which is
often identified with TX itself. Integrability of J is equivalent to the fact
that the Lie bracket of two vector fields of type (1, 0) remains of type (1, 0).
The dual splitting of the cotangent bundle

T ∗X ⊗R C = T ∗X (1,0)⊕ T ∗X (0,1)

is the usual one in terms of forms of type (1, 0) and (0, 1). Let us now denote
by X0 the manifold X with a specific choice of complex structure J0 and by
X1 the same X but with a different almost complex structure J1. We say

that X1 is near X0 if TX
(0,1)
1 is the graph, inside TX ⊗ C, of a linear map

−α : TX (0,1)0 → TX (1,0)0 (taking the minus sign is just a convention). In
fact it can be easily proved that if α is a sufficiently small such map, then

the subspace of TX ⊗C defined by Tα = {V − α(V )|V ∈ TX (0,1)0 }, i.e. the
graph of −α, defines a splitting TX ⊗C = Tα⊕ Tα and therefore an almost
complex structure J1 such that TX

(0,1)
1 = Tα.

Now a linear map α : TX (0,1)0 → TX
(1,0)
0 is a section of the bundle

T ∗X
(0,1)
0 ⊗ TX (1,0)0 , i.e. α ∈ Ω(0,1)(X0, TX0), the space of (0, 1)-forms with

values in the tangent bundle (which we identify with TX (1,0)0 ). Therefore
nearby almost complex structures can be identified with a small neighbour-
hood of the zero section of Ω(0,1)(X0, TX0). If z = (z1, . . . , zn) is a set of
holomorphic local coordinates on X0, then α as above can be written as:

α = ahk
∂

∂zh
⊗ dzk.

When is the almost complex structure defined by α also integrable? To
answer this question we first define a pairing:

[·, ·] : Ω(0,1)(X0, TX0)⊗ Ω(0,1)(X0, TX0)→ Ω(0,2)(X0, TX0).

If β = bhk ∂∂zh ⊗ dzk is another section then we define

[α, β] =

[
ahl

∂

∂zh
, bhk

∂

∂zh

]
⊗ dzl ∧ dzk,
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where the bracket on the righthand side is the usual one. One can easily
check that it is defined independently of the holomorphic coordinates. We
have:

Theorem 4 Given α ∈ Ω(0,1)(X0, TX0) sufficiently close to the zero sec-
tion, the almost complex structure it defines is integrable if and only if it
satisfies:

∂α+
1

2
[α,α] = 0 (3)

Proof. By definition, a local basis s1, . . . , sn of (0, 1)-vectors with respect
to the new almost complex structure is given by:

sk =
∂

∂zk
− ahk ∂

∂zh
.

A corresponding basis of (1,0)-forms is:

τk = dzk + a
khdzh

The way to prove that they are (1, 0)-forms is to show that τk(sl) = 0 for all
k and l. As mentioned earlier, the almost complex structure is integrable if
and only if the Lie bracket of (0, 1)-vectors is still a (0, 1)-vector, i.e. if and

only if [sk, sl] ∈ TX (0,1)1 for all k and l. This is the same as saying

τj([sk, sl]) = 0 ∀j, k, l = 1, . . . , n

By writing it explicitely, this condition is easily seen to coincide with equa-
tion 3. 2

Now assume that α(t) is an analytic family of nearby integrable complex
structures, i.e. depending analytically on a parameter t ∈ C , such that
α(0) = 0. Denote by α̇(t) the derivative of α(t) with respect to t. Since α(t)
satisfies (3) for all t, taking the derivative of (3) w.r.t. t and evaluating at
t = 0 we see that

∂α̇(0) = 0.

This is saying that an infinitesimal deformation of a complex structure de-
fines a cohomology class in H (0,1)(X, TX0). When is α̇(0) exact? Well, sup-
pose that all α(t)’s reppresent the same complex structure, i.e. that there
exists a family of diffeomorphisms Ft : X → X such that F ∗t (α(t)) = α(0).
Let

V =
∂F

∂t |t=0
.
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Notice that V ∈ TX ⊗C. Define V ′ to be the (1, 0) part of V , then one can
prove

Proposition 6 A section α̇(0) as above is the infinitesimal deformation of a

trivial family of complex structures if and only if there exists V ′ ∈ Γ(TX (1,0)0 )
such that

α̇(0) = −∂V ′.

Remember that Dolbeaut’s theorem tells us that

H (0,1)(X, TX0) = H
1(X, TX).

Therefore the arguments just outlined illustrate the first part of Theorem 3.
The identification of a tangent vector to Def(X) with a class of H1(X, TX) is
also called the Kodaira-Spencer map. To proceed in the proof of Theorem 3
one expresses α(t) =

∑+∞
r=1 αrt

r , where αr ∈ Ω(0,1)(X0, TX0). Then tries to
solve (??) recursively in the α′rs and checks for convergence. After a lot of
work one finds that the only obstruction is the vanishing of H2(X, TX).

4.2 What about Calabi-Yau’s?

Our goal is to understand Def(X) of a Calabi-Yau manifold X . The first
obvious thing to do is to interpret the vector spaces H∗(X, TX) and see
what we can say about them. Notice that in the Calabi-Yau case, a choice
of non-zero holomorphic n-form Ω induces isomorphism

IΩ : H
(0,∗)(X, TX)→ H (n−1,∗)(X,C).

At the level of sections this isomorphism is as follows. If φ⊗v ∈ Ω(0,r)(X, TX),
where φ is the form and v the vector, then:

φ ⊗ v "→ ιvΩ ∧ φ.

The right-hand side is an (n − 1, r)-form. One can see that this map is
surjective at the level of forms and well defined and bijective at the level of
cohomology (e.g. using harmonic representatives from Hodge theory ??). In
the 3 dimensional case, from these isomorphisms and Dolbeaut’s theorem
we get

H0(X, TX) = H2,0(X,C)

H1(X, TX) = H2,1(X,C)

H2(X, TX) = H1,1(X,C)
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The first two equalities are good, because they tell us that applying Kuran-
ishi’s theorem we do have a universal deformation space Def(X) and that
we can expect its dimension to be h2,1, one of the Hodge numbers we were
able to compute for example for the quintic. The last isomorphism instead
is bad news, we cannot apply Kodaira-Spencer to Calabi-Yau’s to have a
smooth deformation space. Nevertheless the existence of a smooth universal
deformation space has been proved for Calabi-Yau’s:

Theorem 5 (Bogolomov, Tian, Todorov) Given an dimensional Calabi-
Yau manifold X , a smooth deformation space Def (X) of X exists of dimen-
sion hn−1,1.

We will not prove this theorem. This gives a nice interpretation of the
hodge number hn−1,1 as the dimension of the complex moduli of a Calabi-
Yau manifold. In particular, in the case of the quintic this number is 101,
so quite big.
One last important fact which is worth mentioning is what happens to

the Kähler condition as we deform the complex structure. There is a nice
stability theorem due to Kodaira-Spencer:

Theorem 6 (Kodaira-Spencer Stability) Let (X , S, p, s0) be a local de-
formation space of the compact complex manifold X0 = p−1(s0). If X0 is
Kähler, then there exists a neighbourhood U of s0 such that Xs = p−1(s) is
also Kähler for every s ∈ U .

There are counter examples due to Hironaka showing that for distant val-
ues of the parameter the Kähler condition may be lost. For Calabi-Yau
manifolds there are stronger stability results concerning the structure of the
Kähler cone, i.e. the set of degree 2 cohomology classes which admit as
reppresentative a Kähler form. These results are proved by P.H. Wilson
[...]. This stability theorem is important because many of our computations
concerning the Hodge numbers relied on the Hodge decomposition, which is
true only in the Kähler case.

5 What is a large complex structure limit?
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