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1 Introduction

It is very natural in the study of discrete groups to ask for a description of the
‘variety’ Hom(G,H), for finitely generated groups G and H. For example:

1. Recall that a group G is Hopfian if every epimorphism G → G is an
automorphism, and co-Hopfian if every monomorphism G → G is an
automorphism. For example, free groups are Hopfian, but not co-Hopfian.

Setting G = H and understanding Hom(G,G) could lead to a proof that
G is Hopfian or co-Hopfian.

2. An algorithmic understanding of Hom(G,H) could be useful in solving
the isomorphism problem.

3. Consider a system of equations Φ over a group H, given by words

wi(x1, . . . , xn)

in n unknowns. Then it’s easy to see that solutions to Φ are precisely in
bijection with Hom(G(Φ), H), where G(Φ) is the group with presentation

〈x1, . . . , xn|w1, w2, . . .〉.

This so-called ‘algebraic geometry’ over H is also the starting point for
the study of the first-order theory of H.

One of the oldest and hardest problems in the first-order theory of groups is
the ‘Tarski problem’, which asks which groups have the same first-order theory
as the free group. This problem was recently solved by Zlil Sela (see [18], [19],
[12], [13], [14], [15] and [16]). The aim of this series of talks is to explain his
description of Hom(G,F), for F a free group of rank at least 2. (In fact, much of
the theory carries through to describe Hom(G,H) for H torsion-free hyperbolic.)
This description takes the form of a Makanin-Razborov diagram, which will be
defined in the second talk.

Limit groups are a crucial feature of Makanin-Razborov diagrams. There
are many different definitions of limit groups, and another aim of these talks is
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to explain all the different definitions, why they are equivalent, and how they
fit into the theory of Hom(G,F).

Rather than plunging straight into Makanin-Razborov diagrams, therefore,
we start with a class of groups that will turn out to be equivalent to limit groups,
but are easier to define and to work with.

2 Fully residually free groups

2.1 Definition and easy examples

Fix F a free group of rank r > 1.

Definition 2.1 A finitely generated group G is residually free if, for any non-
trivial g ∈ G, there exists a homomorphism f : G→ F with f(g) 6= 1.

G is fully residually free or ω-residually free if, for any finite subset X ⊂ G,
there exists a homomorphism f : G→ F whose restriction to X is injective.

Note that the choice of F does not matter. Here are some easy examples.

Example 2.2 (Free groups) If F is a free group then F ↪→ F. In particular,
F is fully residually free.

Example 2.3 (Free abelian groups) If A is a free abelian group, then any
finite subset can be embedded by a homomorphism in Z. In particular, A is fully
residually free. The proof is left as an exercise.

2.2 Elementary properties

A group G is called commutative transitive if the centralizer of any element is
abelian; equivalently, for a, b, g ∈ G, if a commutes with g and g commutes with
b then a commutes with b.

Recall that a subgroup H ⊂ G is malnormal if, whenever g ∈ G−H,

gHg−1 ∩H = 1.

A group G is completely separated abelian (CSA) if every maximal abelian sub-
group is malnormal.

Exercise 2.4 A CSA group is commutative transitive.

It’s easy to see some elementary properties of fully residually free groups.

Proposition 2.5 Let G be a fully residually free group.

1. Any finitely generated subgroup of G is fully residually free.

2. G is torsion-free.
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3. Any pair of elements of G generates either a free group or a free abelian
group.

4. G is commutative transitive.

5. G is CSA.

Proof: Property 1 is trivial.
Let g ∈ G. Then there exists a homomorphism f : G → G with f(g)

non-trivial. So f(gn) 6= 1 for all n, so gn 6= 1. This proves 2.
To prove 3, consider g, h ∈ G, and assume [g, h] 6= 1. Then there is an

epimorphism
f : 〈g, h〉 → F2.

Therefore g, h generate a free non-abelian group.
Consider a, b, g ∈ G with [g, a] = [g, b] = 1. There exists a homomorphism

f : G→ F which is injective on the set

{1, g, [a, b]}.

Now f([g, a]) = f([g, b]) = 1 so f(a) and f(b) and f(g) must all lie in the same
cyclic subgroup if F; in particular, f([a, b]) = 1. Therefore [a, b] = 1. This gives
4.

Let H ⊂ G be a maximal abelian subgroup, consider g ∈ G, and suppose
there exists non-trivial h ∈ gHg−1 ∩H. Let f : G→ F be injective on the set

{1, g, h, [g, h]}.

Then f([h, ghg−1]) = 1, which implies that f(h) and f(ghg−1) lie in the same
cyclic subgroup. But in a free group, this is only possible if f(g) also lies in
that cyclic subgroup; so f([g, h]) = 1, and hence [g, h] = 1. By 4 it follows that
g commutes with every element of H, so g ∈ H. This proves 5. QED

These properties immediately give some examples of groups that aren’t fully
residually free.

• By 2, any group with torsion is not fully residually free.

• By 3, the fundamental group of the Klein bottle is not fully residually
free.

• Direct products are not fully residually free. Specifically, suppose G =
A×B, where A is non-trivial and B is non-abelian. Then B is contained
in the centralizer of any element in A, so G is not commutative transitive
and hence not fully residually free.

A slightly less trivial non-example is the fundamental group of the surface
Σ of Euler characteristic -1, which has presentation

〈a, b, c|a2b2c2〉.

By work of Lyndon (see [9]) that, whenever three elements of F satisfy a2b2c2 =
1, in fact abc = 1. It follows that π1(Σ) is not fully residually free.

We shall see that, apart from the fundamental groups of the three simplest
non-orientable surfaces, all surface groups are fully residually free.
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2.3 Difficult properties

Fully residually free groups have other properties that are much less obvious.
They are summarized in the following theorem.

Theorem 2.6 Suppose G is fully residually free.

1. G is finitely presented. Indeed, there exists a finite K(G, 1).

2. All abelian subgroups of G are finitely generated.

3. If G is non-abelian then it has a non-trivial cyclic splitting.

4. G is CAT(0) with isolated flats.

We shall prove 1, 2 and 3 in this series of talks, following Sela. There is a
simpler independent proof that fully residually free groups are finitely presented
due to Guirardel, who shows that fully residually free groups act freely on Rn-
trees (see [8]). Alibegovic and Bestvina proved 4 in [2]; Alibegovic (in [1]) and
Dahmani (in [7]) had already independently proved that fully residually free
groups were hyperbolic relative to their maximal abelian subgroups.

Note that, by property 3 of the theorem, the only 3-manifold groups that
are limit groups are free products of Z and Z3.

2.4 A criterion in free groups

To prove that a group G is fully residually free, it suffices to show that for any
finite X ⊂ G− {1} there exists a homomorphism f : G→ F with 1 /∈ f(X). So
a criterion to show that an element of F is not the identity will be useful.

In the short term, this will make it possible to prove that surface groups are
fully residually free. Eventually, it will give a complete constructive characteri-
zation of limit groups.

Lemma 2.7 Let z ∈ F− {1}, and consider an element g of the form

g = u0z
i1u1z

i2u2 . . . un−1z
inun

where n ≥ 1 and, whenever 0 < k < n, [uk, z] 6= 1. Then [g, z] 6= 1 whenever
mink |ik| is sufficiently large. In particular, g 6= 1.

Choose a generating set for F so the corresponding Cayley graph is a tree
T , and fix x ∈ T . An element a ∈ F specifies a geodesic [x, ax] ⊂ T . Likewise,
a string of elements a0, a1, . . . , an ∈ F defines a path

[x, a0x] · [a0x, a0a1x] · . . . · [a0 . . . an−1x, a0 . . . anx]

in T , where · denotes concatenation of paths.
Here is the idea behind the lemma. In the path corresponding to the defining

expression for g, a subarc corresponding to a power of z lies in a translate of
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yk−1

gk−1x
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yk gkAxis(z)

gkx

Figure 1: The proof of lemma 2.7.

Axis(z). A high power of z pushes the path a long way along this translate; the
next uk term then pushes the path onto a new translate.

Proof of lemma 2.7: Note that the case where either u0 or un commutes with z
follows from the case where neither do; therefore assume [u0, z], [un, z] 6= 1.

For 0 ≤ k ≤ n, let

gk = u0z
i1u1z

i2u2 . . . uk−1z
ikuk.

Note that gn = g. Also, set g−1 = 1. Every non-trivial element of F acts
hyperbolically on T ; fix some x ∈ Axis(z) ⊂ T .

Let γ be the path in T associated with the expression for g, as above. To
be precise, for 1 ≤ k ≤ n let

αk = [gk−1x, gk−1z
ikx]

and
βk = [gk−1z

ikx, gkx].

Also write β0 = [x, g0x]. Then

γ = β0 · α1 · β1 · . . . · βn−1 · αn · βn.

Let lc(w) denote the cyclically reduced length of an element w ∈ F (with respect
to the fixed generating set). There are some useful observations to be made
about αk and βk.

1. The length of αk is lc(z
ik) = |ik|lc(z). The length of βk is d(gk−1z

ikx, gkx) =
d(x, ukx).

2. Each αk is contained in gk−1Axis(z).
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3. No βk is contained in any single translate of Axis(z). The start point of
βk lies in gk−1Axis(z). The end point of βk lies in gkAxis(z). Let xk be
the last point of βk in gk−1Axis(z). Let yk be the first point of βk in
gkAxis(z).

Henceforth, assume |ik|lc(z) > d(x, uk−1x) + d(x, ukx) whenever 1 ≤ k ≤ n.
The precise statement from which the lemma follows is

gAxis(z) 6= Axis(z).

Suppose gAxis(z) = Axis(z). Since T is a tree, xk = yk−1 for some k; otherwise,

[x, x0] · [x0, y0] · [y0, x1] · . . . · [yn−1, xn] · [xn, yn] · [yn, x]

is a non-trivial loop.
By definition yk−1 lies in the image of βk−1; since gk−1x is an end-point of

βk−1 it is immediate that

d(yk−1, gk−1x) ≤ d(x, uk−1x).

Likewise the image of βk contains xk. Therefore

d(xk, gk−1z
ikx) ≤ d(x, ukx).

Now the triangle inequality gives

|ik|lc(z) = d(gk−1x, gk−1z
ikx)

≤ d(yk−1, gk−1x) + d(xk, gk−1z
ikx)

≤ d(x, uk−1x) + d(x, ukx)

contradicting the previous assumption on |ik|.QED

2.5 Surface groups

This subsection is devoted to showing that the fundamental groups of closed
orientable surfaces are fully residually free.

In fact, a larger class of groups than just surface groups are shown to be
limit groups. Let F be a free group of rank at least 2, and fix a cyclic subgroup
〈z〉 ⊂ F that is closed under taking roots. Consider the amalgam

F ∗〈z〉 F.

Such groups are called pinched word groups.

Example 2.8 Let Σ be the closed surface of genus 2. Then there’s an obvious
simple closed curve that realizes π1(Σ) as a pinched word group.

Since all orientable surfaces of higher genus cover the surface of genus 2, it
suffices to show that π1(Σ) is fully residually free.
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Proposition 2.9 Pinched word groups are fully residually free.

The assumption that 〈z〉 is closed under taking roots is necessary; otherwise
G is not commutative transitive.

A key part of the proof will be the automorphisms naturally associated to
an abelian splitting, called Dehn twists.

Definition 2.10 Suppose G = A ∗C B, and z ∈ B centralizes C. Then the
Dehn twist associated to z is the automorphism δz defined by

δz(a) = a

for a ∈ A and
δz(b) = zbz−1

for b ∈ B.
Similarly, if G = A∗C and z ∈ A centralizes C, the Dehn twist associated

to z is the automorphism δz defined by

δz(a) = a

for a ∈ A and
δz(t) = tz

for t the stable element.

Proof of proposition 2.9: Without loss, assume F = F. Let X ⊂ G − {1} be
finite. It suffices to show that there exists a homomorphism h : G → F such
that 1 /∈ h(X).

Let f : G → F be the obvious retraction; let δz : G → G be the Dehn twist
in z which is the identity on the first factor.

Consider x ∈ X. By the structure theorem for amalgamated free products,
x has normal form

x = a0z
i1b1z

j1a1 . . . bn−1z
jn−1anz

inbn

where the ak lie in the first copy of F , the bk lie in the second copy, ik, jk ∈ Z,
and furthermore:

1. for k > 0, ak ∈ F − 〈z〉;

2. for k < n, bk ∈ F − 〈z〉.

Then for m ∈ Z,

δmz (x) = a0z
i1+mb1z

j1−ma1 . . . bn−1z
jn−1−manz

in+mbnz
−m,

so
f ◦ δmz (x) = a0z

i1+mb1z
j1−ma1 . . . bn−1z

jn−1−manz
in+mbnz

−m
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where all terms are now thought of as elements of F. Since the ak and bk
don’t commute with z (for k > 0 and k < n respectively), this expression for
f ◦ δmz (x) satisfies the conditions of lemma 2.7. So for sufficiently large m, the
result follows. QED

Note that this proof has not used the full power of the free group criterion.
The same proof would work for any double

G = L ∗Z L

where L is fully residually free and Z is maximal abelian in L. Eventually,
continuing inductively in this vein, we will obtain a complete recursive charac-
terization of fully residually free groups.

3 Makanin-Razborov Diagrams and Algebraic

Limit Groups

3.1 Main results and definitions

We return now to our study of Hom(G,F). To state the main theorem properly,
though, a definition is needed.

Definition 3.1 A sequence of homomorphisms (fi : G → F) is convergent if,
for any g ∈ G, fi(g) is eventually either always trivial or always non-trivial. To
a convergent sequence is associated the stable kernel ker−→fi of elements that are
eventually trivial.

An (algebraic) limit group (over F) is any group of the form

L = G/ker−→fi

for (fi) a stable sequence of homomorphisms G→ F.

Example 3.2 Any fully residually free group is a limit group. Suppose G is
fully residually free, and let

S1 ⊂ S2 ⊂ . . . ⊂ G

be an exhaustion of G by finite sets. Then for each i there exists a homomor-
phism fi : G→ F injective on Si. Then (fi) is a convergent sequence with trivial
stable kernel.

Here are the two main theorems of this series of talks.

Theorem 3.3 (Finite width) For any finitely generated group G that isn’t
free there exists a finite collection of proper epimorphisms

{qi : G→ Li}

with each Li a limit group, such that any homomorphism G→ F factors through
one of the qi, after precomposing with some automorphism of G. If G is not a
limit group, no precomposing is necessary.
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Theorem 3.4 (Finite length) Any sequence of epimorphisms of limit groups

L1 → L2 → . . .

eventually stabilizes.

Iterating the construction of theorem 3.3 gives a tree of epimorphisms through
through which any homomorphism G → F factors, ‘twisting’ with automor-
phisms at each stage. By theorem 3.4, the branches of the tree end in free
groups after finitely many epimorphisms.

3.2 Finite length

We’ll start with the proof of theorem 3.4, which, over free groups, admits a neat
simplification.

Lemma 3.5 Consider a sequence of epimorphisms

G1 → G2 → . . . .

The corresponding sequence of monomorphisms

Hom(G1,F)← Hom(G2,F) . . .

eventually stabilizes.

Proof: Identifying F with the fundamental group of a hyperbolic punctured
sphere exhibits an embedding

F ↪→ PSL2(R),

which lifts to an embedding F ↪→ SL2(R); this in turn induces an embedding

Hom(Gi,F) ↪→ Hom(Gi, SL2(R))

for each i.
Pick a presentation

〈s1, . . . , sn|r1, r2, . . .〉

for G. Any f ∈ Hom(G,SL2(R)) can be thought of as a set of choices for
f(s1), . . . , f(sn) that satisfy the relation r1, r2, . . .. These relations are polyno-
mial conditions in SL2(R), so Hom(Gi, SL2(R)) is identified with a subvariety
of SL2(R)n. The decreasing sequence of subvarieties

Hom(G1, SL2(R)) ⊃ Hom(G2, SL2(R)) ⊃ . . .

terminates by Hilbert’s Basis Theorem. QED

Proposition 3.6 Limit groups are fully residually free.
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Proof: Let L be a limit group, and let G and fi be as in the definition. Consider
a (generally infinite) sequence of epimorphisms

G = G0 → G1 → . . .→ L

obtained by adding one relation at a time. Let G′ be such that

Hom(G′,F) = Hom(L,F).

Then all but finitely many fi factor through G′, since each added relation is
killed by almost all fi. Therefore all but finitely many fi factor through L, and
each non-trivial element of L is killed by only finitely many fi. Therefore L is
fully residually free. QED

This shows that the classes of algebraic limit groups and fully residually free
groups coincide, and allows us to prove theorem 3.4.

Proof of theorem 3.4: Consider a proper epimorphism

q : L→ L′

for L residually free. Then

Hom(L,F) ) Hom(L′,F);

for given k ∈ L with q(k) = 1, there exists f ∈ Hom(L,F) with f(k) 6= 1, so
f /∈ Hom(L′,F). The theorem now follows from lemma 3.5 and the fact that
limit groups are residually free. QED

3.3 An attempt to prove finite width

Having proved the finite length of the Makanin-Razborov diagram, we turn to
its finite width. The idea is to compactify Hom(G,F), following ideas contained
in [6].

To this end, let Q(G) be the set of epimorphisms

q : G→ H,

where q1 : G → H1 and q2 : G → H2 are regarded as equivalent if there is an
isomorphism i : H1 → H2 with q2 = i ◦ q1. Alternatively, Q(G) can be regarded
as the set of normal subgroups of G, and we will usually work from this point
of view. There’s an obvious map

Hom(G,F)→ Q(G)

that sends each homomorphism to its kernel. To compactify Hom(G,F), there-
fore, we start by topologising Q(G).

The interpretation of Q(G) as the normal subgroups of G identifies it with
a subset of 2G, the power set of G. Equip 2G with the product topology –
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the weakest topology with respect to which the projections onto the factors are
continuous. To work with this topology, we need to understand it better. Fix a
finite generating set for G, and let Bn ⊂ G be the ball of radius n in the word
metric. For a subset X ⊂ G, and a positive integer n, consider the set of subsets

U(X,n) = {Y ⊂ G|Bn ∩X = Bn ∩ Y }.

Lemma 3.7 The topology induced by the neighbourhoods U(X,n) is the product
topology.

Proof: The product topology is generated by the sub-basis consisting of the
open sets

V (g) = {Y ⊂ G|g ∈ Y }

together with
V ′(g) = {Y ⊂ G|g /∈ Y }

for all g ∈ G. Now, for any X ⊂ G and n,

U(X,n) =
⋂

g∈Bn∩X

V (g) ∩
⋂

g∈Bn−X

V ′(g).

Conversely, for g ∈ G of word-length n,

V (g) =
⋃

g∈X⊂Bn

U(X,n)

and
V ′(g) =

⋃

g/∈X⊂Bn

U(X,n).

QED
These equivalent perspectives make it easy to read off the properties of the

topology.

Theorem 3.8 Consider 2G endowed with the product topology.

1. 2G is compact.

2. 2G is metrizable.

3. A sequence Xi ⊂ G converges if and only if every g ∈ G is eventually
always in Xi or eventually not in Xi. The limit is the set of elements that
are eventually in Xi.

4. Q(G) ⊂ 2G is closed, hence compact.

Proof: Part 1 is Tychonoff’s theorem.
Given X,Y ⊂ G, define

d(X,Y ) = e−n

where n is the greatest integer such that Bn ∩X = Bn ∩ Y . This gives 2.
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Part 3 is just exactly what it means to converge in the usual definition of
the product topology.

Suppose now that Xi is a sequence of normal subgroups, converging to X ⊂
G. Then for g, h ∈ G, let n be greater than the length of g, h and gh. Then for
all sufficiently large i,

g, h ∈ X ∩Bn ⊂ Xi

and
gh ∈ Xi ∩Bn ⊂ X,

so X is a subgroup. Similarly, for g ∈ G and h ∈ X, ghg−1 ∈ X, so X is normal.
This proves 4. QED

Note that it follows from 3 that

G/ ker fi → G/ker−→fi

in Q(G). In particular, the set of limit groups for G could equivalently be defined
as the closure of the free groups in Q(G).

Remark 3.9 In a sense, the philosophically correct interpretation of parts 2,3
and 5 of proposition 2.5 is that being torsion-free, commutative transitive and
CSA are closed properties in Q(G).

We are now ready to attack theorem 3.3, in the case where G is not a limit
group.

Proof of theorem 3.3 when G is not limit group: Consider F(G), the closure
of the set of free groups in Q(G). Since G is not a limit group, every epimor-
phism in F(G) is proper. So {V (g)|g ∈ G} is an open cover for F(G). Let

{V (g1), . . . , V (gn)}

be a finite subcover. Then every homomorphism

f : G→ F

factors through one of the quotients

qi : G→ G/〈〈gi〉〉.

The only complication is that the quotients qi(G) may not be limit groups.
Replacing G with its residually free quotient

G/
⋂

f :G→F

ker f

it can be assumed that G is residually free. Now Hom(qi(G),F) is strictly
contained in Hom(G,F), so one may apply lemma 3.5 and induction to conclude
that each qi(G) has a collection of finitely many proper quotients through which
any homomorphism to F factors. QED
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This argument fails when G is a limit group, since then there exist convergent
sequences with trivial stable kernel, so {V (g)|g ∈ G} is no longer a cover of F(G).
We need to find a subspace F′(G) ⊂ F(G), covered by {V (G)|g ∈ G}, such that
any q ∈ F(G) is related to some q′ ∈ F′(G) by an automorphism. To do this,
we use a geometric analogue of the techniques of this section.

4 Geometric Limit Groups

4.1 The space of trees

Recall the basic definitions and results of the theory of trees.

Definition 4.1 A (real) tree is a geometric metric space (T, d) in which every
geodesic triangle is a tripod. Equivalently, T is geodesic and satisfies Gromov’s
four-point condition:

d(w, x) + d(y, z) ≥ min(d(w, y) + d(x, z), d(w, z) + d(x, y))

whenever w, x, y, z ∈ T . For details of the equivalence of these definitions see,
for example, [5].

A (real) G-tree is a real tree with an action of G by isometries.

A tree T is non-degenerate if it is not a point. A G-tree T is trivial if G fixes a
point of T . T is minimal if it contains no proper G-invariant subtrees.

Lemma 4.2 If T is non-trivial then T contains a separable unique minimal
subtree.

For the proof of this lemma see, for example, [3].
Consider the set A(G) of non-trivial minimal real G-trees. A(G) is endowed

with the equivariant Gromov-Hausdorff topology, defined as follows. A sequence
(Tn, dn) of G-trees converges to a G-tree (T, d) if and only if, for any ε > 0
and any finite subsets K ⊂ T , P ⊂ G, there exist Kn ⊂ Tn and bijections
bn : Kn → K such that

|dn(gbn(xn), bn(yn)− d(gxn, yn)| < ε

whenever xn, yn ∈ Kn and g ∈ P . This can be thought of as saying that larger
and larger subtrees of Ti coincide with subtrees of T .

Let PA(G) be the projectivization of A(G), so (T, d) is identified with (T, λd)
for all λ > 0.

Fix a set of generators for F with respect to which the Cayley graph is a
tree TF with the word metric dF. A homomorphism f : G→ F defines a G-tree,
with the action given by left multiplication. Since G/ ker f acts freely, if f 6= 1
then Tf is non-trivial. Let Tf ∈ PA(G) be the equivalence class of the minimal
G-invariant subtree. The space of interest is T(G), the closure of

{Tf |1 6= f ∈ Hom(G,F)}
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in the equivariant Gromov-Hausdorff topology.
Compactness of the space T(G) was proved first in [10], in which the limits

are constructed using convex hulls. A quicker and more general method, though,
is to use non-standard analysis.

4.2 Ultraproducts

An ultrafilter is a finitely additive probability measure

ω : 2N → {0, 1}

An ultrafilter ω is non-principal if, whenever S ⊂ N is finite, ω(S) = 0.

Lemma 4.3 Non-principal ultrafilters exist.

For this and all subsequent results in this section, see chapter I.5 of [5].
Let X be any topological space. For points xn, x ∈ X, write limω xn = x if,

for any open set x ∈ U ⊂ X,

ω{n ∈ N|xn ∈ U} = 1.

The point x is called the ultralimit of the sequence xn (with respect to ω).

Lemma 4.4 Fix ω a non-principal ultrafilter. If X is a compact metric space
then every sequence has an ultralimit (with respect to ω).

Proof: Let xn be a sequence in X, and suppose xn has no ultralimit. Then
every x ∈ X has an open neighbourhood Ux with ω{n ∈ N|xn ∈ Ux} = 0. Now
{Ux|x ∈ X} is an open cover of X; let {Ux1

, . . . , Uxn
} be a finite subcover. But

then
1 = ω(N) ≤

∑

i

ω{n|xn ∈ Uxi
} = 0

a contradiction. QED
Let (Xn, dn, xn) be a sequence of pointed metric G-spaces (ρn denotes the

G-action). Let

Y ⊂
∏

n

Xn

be the subspace of sequences (yn) such that dn(xn, yn) is uniformly bounded.
The space Y admits a pseudometric defined by

D((yn), (zn)) = lim
ω
dn(yn, zn).

The associated metric space is denoted (Xω, dω) and is called the ultraproduct
of the sequence (Xn, dn, xn).

Lemma 4.5 Let ω be an ultrafilter and (Xn, dn, xn), (Xω, dω) as above.

1. If the (Xn, dn) are geodesic then so is (Xω, dω).
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2. If each (Xn, dn) is an R-tree then (Xω, dω).

Proof: Consider elements y = [(yn)], z = [(zn)] ∈ Xω. Assuming each Xn is
geodesic, let γn : [0, dn(yn, zn)] → Xn be a geodesic from yn to zn. Define
γ : [0, dω(y, z)]→ Xω by

t 7→
[

γn
(dn(yn, zn)

dω(y, z)
t
)]

.

Note that this is well-defined since, for any point wn on γn,

dn(xn, wn) ≤ 2dn(xn, yn) + dn(xn, zn).

Moreover, γ is a geodesic, since for s, t ∈ [0, dω(y, z)],

dω(γ(s), γ(t)) = lim
ω
dn

(

γn
(dn(yn, zn)

dω(y, z)
s
)

, γn
(dn(yn, zn)

dω(y, z)
t
))

= |s− t|

as required. This proves 1.
Assertion 2 follows immediately from Gromov’s four-point condition. QED
Suppose each (Xn, dn) admits a G-action. Then the action G×Y → Y given

by
g(yn) = (g.yn)

descends to an action on (Xω, dω) by isometries.
Ultraproducts are useful in this context because they provide limits in the

Gromov topology.

Lemma 4.6 If (Xn) is a sequence of G-spaces let Xω be the ultraproduct for
some choice of base-points. Suppose X ⊂ Xω is a separable G-equivariant sub-
space. Then some subsequence of (Xn) converges to X in the Gromov topology.

Proof: Let S ⊂ X be a countable dense subset, and let

S1 ⊂ S2 ⊂ . . . ⊂ S

be an exhaustion of S by finite subsets. Let

P1 ⊂ P2 ⊂ . . . ⊂ G

be an exhaustion of G by finite subsets. Define In ⊂ N to consist of those i ∈ N
for which

|di(gxi, yi)− d(gx, y)| <
1

n

for all g ∈ Pn and x, y ∈ Sn. By definition, ω(In) = 1. Let n1 be the least
element of I1, and inductively define ni to be the least element of Ii not to be
contained in {n1, . . . , ni−1}. The subsequence (Xni

) now converges to X in the
Gromov topology. QED

15



4.3 Compactness of T(G)

The only remaining tricky detail is to ensure that the ultralimit is non-trivial.
This is achieved by carefully controlling the base-points and scaling the metric,
and is the key trick of the ‘Bestvina-Paulin’ method.

Let fn : G→ F be a sequence of homomorphisms, and Tn the corresponding
sequence of minimal G-trees with the usual word metric dF. Fix a generating
set S for G. Consider the function σn : Tn → R given by

σn(x) = max
g∈S

dF(x, fn(g)x);

let
δn = inf

x∈Tn

σn(x).

Each tree Tn is simplicial, and the function σn is integer-valued on vertices and
mid-points of edges, and linear in between. Therefore σn attains its infimum on
Tn, say at xn. Since S is finite, for some g0 ∈ S,

ω{n ∈ N|dn(xn, g0xn) = 1} = 1;

that is, g0 ω-almost always realizes the maximum in the definition of σn(xn).
Equip Tn with the modified metric dn = dF/δn. By the results of the previous

section, the ultralimit (Tω, dω) of the sequence

(Tn, dn, xn)

is a metric G-tree. Furthermore, consider a point y = [(yn)] ∈ Tω. Then

dω(y, g0y) = lim
ω
dn(yn, g0yn) ≥ lim

ω
dn(xn, g0xn) = 1;

in particular, g0y 6= y, so Tω is non-trivial. Let T ⊂ Tω be the minimal G-
invariant subtree, which is separable. Then a subsequence of Tn converges to T
in the equivariant Gromov-Hausdorff topology. This is a limit for the sequence
Tn in T(G). Henceforth, denote the metric on T by d.

4.4 Geometric limit groups

Definition 4.7 Let T be a real G-tree in T(G) as constructed in the previous
section; let kerT be the kernel of the action of G on T . A geometric limit group
is any group of the form

G/ kerT

for such a T .

To extract information from this geometric picture, a careful analysis of
equivariant Gromov-Hausdorff is needed. The results of this analysis are sum-
marized in the following technical theorem.
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Theorem 4.8 Let Tn be a sequence of non-trivial minimal G-trees arising from
homomorphisms fn : G→ F as above, converging to a non-trivial minimal tree
T . Then the following hold.

1. If T is not a line then ker−→(fn) = kerT .

2. The stabilizer in G/ kerT of a tripod is trivial.

3. Stabilizers in G/ kerT of non-degenerate arc in T are free abelian.

4. If J ⊂ I are non-degenerate arcs in T then StabG/ kerT (I) = StabG/ kerT (J).

5. T is a line if and only if, for all sufficiently large n, fn has non-trivial
abelian image.

The proof of this theorem is omitted.
The first consequence of the theorem is that the two different notions of limit

group coincide.

Corollary 4.9 The set of algebraic limit groups and the set of geometric limit
groups coincide.

Proof: If L is a finitely generated free abelian group then L is both an algebraic
and a geometric limit group. It follows from parts 1 and 5 of the theorem that,
for L non-abelian, the two notions coincide. QED

Furthermore, the theorem ensures that T has the properties we shall require
to apply Rips theory to study the action in detail.

Definition 4.10 A real G-tree T is stable if, for every descending sequence of
non-degenerate subtrees

T ⊃ T1 ⊃ T2 ⊃ . . .

the corresponding sequence of pointwise stabilizers

StabG(T ) ⊂ StabG(T1) ⊂ StabG(T2) ⊂ . . .

eventually stabilizes.
A G-tree is very small if it is non-trivial, minimal, stable, has abelian (non-

degenerate) arc stabilizers, and trivial tripod stabilizers.

Corollary 4.11 For a geometric limit group L = G/ kerT , the tree T is a very
small L-tree.

5 The Shortening Argument

5.1 Definitions and the statement

The shortening argument is a difficult trick that closely analyses the action of
G on T , to force the kernel to be non-trivial. In this section, we’ll just try
to outline some of the argument, and complete the proof of the finite width
theorem.
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Definition 5.1 A generalized abelian decomposition for group G is a finite
graph of groups ∆ with abelian edge groups and three classes of vertices.

1. Surface vertices are the fundamental groups of compact surfaces with bound-
ary. It is required that the surface carry a pseudo-Anosov automorphism;
that is, it is either a torus with a single boundary component, or has Eu-
ler characteristic at most -2. Edges adjoining surface vertices are infinite
cyclic, and identified with the fundamental groups of boundary components.

2. Abelian vertices are finitely generated abelian groups. For A an abelian
vertex, let P (A) be the subgroup generated by incident edge groups. Then
define the peripheral subgroup to be

P (A) =
⋂

{ker(f)|f ∈ Hom(A,Z), f(P (A)) = 0}.

3. All other vertices are designated rigid.

Definition 5.2 Let ∆ be a generalized abelian decomposition for G. The asso-
ciated modular group Mod(∆) is the subgroup of Aut(G) generated by:

1. inner automorphisms of G;

2. Dehn twists of edges of ∆;

3. unimodular (that is, determinant 1) automorphisms of abelian vertices A,
which are the identity on the peripheral subgroup;

4. automorphisms of surface vertices arising from automorphisms of the un-
derlying surface that fix boundary components (note that these induce well-
defined group automorphisms, since the base-point can be taken in a bound-
ary component).

The modular group of G, Mod(G), is the group of automorphisms of G generated
by the modular automorphisms of all generalized abelian decompositions of G.

Definition 5.3 A homomorphism f : G → F is equivalent to all homomor-
phisms of the form i ◦ f ◦ α where i ∈ Inn(F) and α ∈ Mod(G).

Fix a generating set S for G. The length of f is defined to be

|f | = max
g∈S

l(f(g)),

where l is word-length in F.
A homomorphism f : G → F is short if its length is minimal in its equiva-

lence class.

This is precisely the notion we need.

Theorem 5.4 (See [11]) Suppose G is freely indecomposable. Let fi : G→ F
be a convergent sequence of short homomorphisms. Then

ker−→fi 6= 1.

Suppose ker−→fi = 1. Then G has a very small action on T . The plan is to use
this action to find an automorphism to shorten the fi.
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5.2 A flavour of the proof

The proof relies heavily on the Rips theory of finitely-generated-group actions
on trees. Bestvina and Feighn, in [4], give a more delicate version of the short-
ening argument that only requires Rips theory for finitely presented groups. An
alternative proof would involve quoting Guirardel’s result that limit groups are
finitely presented, then applying the usual shortening argument, using only the
finitely presented Rips theory.

We start with the simplest examples of non-simplicial free group actions on
trees.

Example 5.5 (Abelian type) Suppose T ∼= R and G ∼= Zn. There exists
a faithful homomorphism G → Isom(R) mapping each generator to something
algebraically independent of the other generators.

Example 5.6 (Surface type) Let Σ be a surface (or, more generally, a 2-
orbifold), and F a minimal foliation on Σ with transverse measure µ. This
induces a pseudometric on Σ̃ given by

d(x, y) = inf
α
µ(α)

where α lifts to a path from x to y. The associated metric space is a tree, on
which π1(Σ) acts freely.

In fact, these are the only examples we need to worry about.

Theorem 5.7 Let G be a finitely generated, freely indecomposable group with
an very small action on a minimal tree T . Then T is covered by orbits of a
finite collection of subtrees T1, . . . , Tn such that:

1. gTi ∩ Tj is at most one point if i 6= j;

2. gTi ∩ Ti is either Ti or at most one point;

3. the action of Gi = Stab(Ti) on Ti is either of abelian type, or of surface
type, or simplicial.

G has a graph of groups decomposition with:

1. vertices corresponding to orbits of points of T with non-trivial stabilizer;

2. vertices corresponding to orbits of Ti;

3. edges corresponding to orbits of simplicial edges of Ti;

4. edges corresponding to points of intersection of orbits of Ti.

The idea is to find automorphisms that shorten the length of a geodesic
[x, gx], for any generator g. We’ll just do a couple of cases.

19



Suppose T is a tree of abelian type. Fix ε > 0. Suppose g1 is the generator
with the longest translation length, and g2 has the second longest translation
length. Then there exists k such that

|g1 + kg2| < |g1|.

Now replace g1 by g1 + kg2. Proceeding in this manner, every generator can be
given translation length less than ε. Since the translation length of a generator
in the approximating simplicial trees converges to the translation length in the
limit tree, this contradicts the assumption that the fi are short.

It is also true that, in the surface case, the translation lengths of generators
in the limit can be made arbitrarily small.

Now suppose T is the Bass-Serre tree of a splitting of the form

G = A ∗C B

for abelian C. In this case there’s a uniform lower bound on the translation
lengths of elements in T , so we have to shorten in the approximating spaces.

Let e be the edge fixed by C. Assume x is fixed by A, and y is the vertex
fixed by B.

Any generator is of the form

g = a0b1a1 · · · bnan

where |g| = 2n. Fix z ∈ C. The segments approximating e become arbitrarily
close to the axes of z. Then there exist m(n) so that

fn(zm(n))yn → x.

For large n, dn(xn, fn(g)xn) is approximately 2n, while dn(xn, fn ◦ δ
m(n)
z (g)xn)

is approximately 0.

5.3 The proof of finite width

Armed with Sela’s shortening argument, we are now in a position to prove the
finite width theorem.

Proof of theorem 3.3: If G is abelian, then any homomorphism to F factors
through projection onto a factor. So it can be assumed that G is non-abelian.

Suppose the theorem is proved for freely decomposable G. If G = G1 ∗G2 is
a non-trivial free product decomposition of G then Hom(G,F) ) Hom(G1,F).
By induction, every homomorphism G1 → F factors through some finite set

{qi : G1 → ÃLi}

of proper factors, so every homomorphism G→ F factors through

{qi ∗ idG2
: G→ Li ∗G2}.
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So G can be assumed freely indecomposable.
Let L ⊂ T(G) be the subspace of linear subtrees. Theorem 4.8 implies that

L(G) is open in T, and

V (g) = {T ∈ T(G)− L|g ∈ kerT}

is open. Consider the subspace T′(G) ⊂ T(G), the closure of the space of
trees arising from short homomorphisms G → F. By the shortening argument,
{U(G)|g ∈ G}∪{L} is an open cover of T′(G). By compactness, therefore, there
exists a finite subcover

{U(g1), . . . , U(gn),L}.

Now any short homomorphism G→ F factors through one of

{G→ G/〈〈gi〉〉} ∪ {G→ G/[G,G]}.

The argument is now concluded as in our first attempt.QED

6 JSJ Decompositions

6.1 Splittings of limit groups

A JSJ decomposition is, loosely, a universal splitting for a group G. To con-
struct JSJ splittings for limit groups, therefore, we will need to understand their
splittings, or equivalently, their actions on simplicial trees. Because limit groups
are CSA, the picture is greatly simplified. Here is the key lemma.

Lemma 6.1 Consider a one-edge splitting of a limit group G over an abelian
subgroup, and M ⊂ G a non-cyclic maximal abelian subgroup.

1. If G = A ∗C B then M is conjugate into A or B.

2. If G = A∗C and M is not conjugate into a A then for some conjugate M g

of M ,
G = A ∗C Mg.

Note: we don’t yet know that abelian subgroups of G are finitely generated.

Proof: Suppose G = A ∗C B, and let T be the Bass-Serre tree. Assume M is
not conjugate into either A or B. Because M is abelian, it follows from a coarse
classification of group actions on trees that H either fixes a line in T , or a point
on the boundary. If it fixed a point on the boundary, then there would be an
increasing sequence of edge stabilizers

C1 ⊂ C2 ⊂ . . . ⊂M.

But each Ci is conjugate to C and M is malnormal, a contradiction; so H fixes
a line in T , called the axis of M . Conjugating if necessary, C is the stabilizer
of an edge in the axis. But M acts as

M = M ′ ⊕ Z
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where M ′ fixes the axis, so M ′ ⊂ C and, by commutative transitivity, C ⊂M .
So C fixes the whole axis. But there is only one orbit of edges, so there exists
a ∈ A− C with aCa−1 = C. Since M is malnormal, a ∈M , a contradiction.

Now suppose G = A∗C , and M is not conjugate into A. As before, M
preserves an axis in the Bass-Serre tree T , C can be assumed to lie in M and
fix the axis, and A ∩M = C. Now if t is the stable letter of the splitting, then
without loss of generality, tCt−1 = C. Since M is malnormal, it t ∈M and the
result follows. QED

We will see that this lemma tells us that non-cyclic abelian splittings of limit
groups only interact in a very simple way.

Definition 6.2 A simplicial G-tree is k-acylindrical if the fixed point set of any
g ∈ G has diameter at most k.

Lemma 6.3 If G is a limit group and T is a simplicial G-tree with abelian edge
stabilizers then, without loss of generality, T is 2-acylindrical.

Proof: Let C ⊂ G be the stabilizer of an edge e of T . Since G is commutative
transitive, C lies in a unique maximal abelian subgroup M . By the previous
lemma, M can be assumed to fix a vertex v of T . Now after a ‘slide’, e adjoins
v. So every element of C can only fix edges adjacent to v. QED

6.2 The definition

For a one-edge splitting Γ, g ∈ G is called Γ-elliptic if g acts elliptically on the
associated Bass-Serre tree, or equivalently if g is conjugate into a vertex group
of Γ. If S is a set of splittings of G then g ∈ G is S-elliptic if it is Γ-elliptic for
all Γ ∈ S.

Let ∆ be a generalized abelian decomposition for G. Then g ∈ G is ∆-elliptic
if:

1. g is conjugate into a vertex group of ∆;

2. if the vertex is surface then g is conjugate into a boundary component;

3. if the vertex is abelian then g is conjugate into the peripheral subgroup.

If g is not ∆-elliptic then there is an obvious one-edge splitting Γ of G such that
g is no Γ-elliptic.

Consider the set A of one-edge splittings of G satisfying:

1. the edge group is abelian;

2. the edge group is closed under taking roots.

Definition 6.4 An abelian JSJ decomposition for G is a generalized abelian
decomposition ∆ for G such that the set of ∆-elliptics is the set of A-elliptics.
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The remainder of this section is devoted to explaining why the existence
of abelian JSJ decompositions for limit groups is much simpler than it is for
general groups. In fact, the cyclic splittings are as hard as in the general case,
but the non-cyclic abelian subgroups are covered by lemma 6.1.

By lemma 6.1, every splitting of A is, at least, closely related to a splitting
in the subset A′ ⊂ A of splittings in which every non-cyclic abelian subgroup is
elliptic.

6.3 Non-intersecting splittings

Let Γ1,Γ2 be a pair of non-trivial one-edge splittings of a group G, with free
abelian edge groups C1, C2 respectively. Γ1 is Γ2−elliptic if C1 is conjugate into
a vertex group of Γ2; otherwise, Γ1 is Γ2-hyperbolic.

Lemma 6.5 If Γ1 is Γ2-elliptic then there exists a splitting Γ such that the set
of Γ-elliptics is equal to the intersection of the sets of Γ1- and Γ2-elliptics.

Proof: Assume that Γ1 is an amalgamated free product; the HNN-extension
case is similar. So

G = A1 ∗C1
B1 = A2 ∗C2

B2.

Suppose C1 is conjugate into A2; conjugating A2 if necessary, it can be assumed
that C1 ⊂ A2. Γ2 induces splittings of A1 and B2, denoted ΓA2 and ΓB2 respec-
tively. Without loss of generality, A1 ∩A2 can be assumed to be a vertex group
of Γ2

A; and likewise B1 ∩A2 can be assumed to be a vertex group of Γ2
B . Since

C1 ⊂ A1 ∩ A2, B1 ∩ A2, ΓA2 and ΓB2 can be joined by an edge stabilized by C1

to produce Γ, as required. QED
The graph of groups Γ is called the refinement of Γ1 by Γ2. Note that a

similar construction can be carried out when Γ1 and Γ2 have more than one
edge.

The pair (Γ1,Γ2) is elliptic-elliptic of Γ1 is Γ2-elliptic and vice versa. Like-
wise, such a pair can be elliptic-hyperbolic, hyperbolic-elliptic, and hyperbolic-
hyperbolic. Elliptic-elliptic pairs should be thought of as disjoint; hyperbolic-
hyperbolic pairs should be thought of as intersecting. The other two possibilities
can be ruled out, under certain assumptions.

Lemma 6.6 Let Γ1 and Γ2 be as above, and suppose G does not split over
any infinite-index subgroups of C2. Then (Γ1,Γ2) is either elliptic-elliptic or
hyperbolic-hyperbolic.

Proof: Suppose Γ1 is Γ2-elliptic, and Γ2 is Γ1-hyperbolic. As before, assume Γ1

is an amalgamated free product; the HNN-extension case is similar. Let Γ be
the refinement of Γ1 by Γ2.

Suppose the graphs of groups ΓA
2 ,Γ

B
2 are both trivial; so A1 and B1 are

both conjugate into vertex groups of Γ2. These vertex groups must be distinct,
since Γ2 is a non-trivial splitting; therefore C1 is conjugate into C2, and must
be conjugate to a finite index subgroup; but then C2 must be conjugate into a
vertex of Γ1.
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Assume, therefore, that ΓA
2 is non-trivial; an edge group is a conjugate of a

subgroup of C2, and also a subgroup of A1. This subgroup of C2 must be of
infinite index; since it is also an edge group of Γ, this contradicts the assumption
that G doesn’t split over infinite-index subgroups. QED

The would like to iteratively apply lemma 6.5 to construct the JSJ decom-
position; but we don’t yet know how to deal with hyperbolic-hyperbolic pairs
of splittings.

6.4 Intersecting splittings

A set of splittings is called intersecting if, for any splittings Γ,Γ′, there exists a
finite chain of splittings

Γ = Γ1, . . . ,Γn = Γ′

such that (Γi,Γi+1) is a hyperbolic-hyperbolic pair of splittings.
Henceforth, assume G is freely indecomposable. Suppose S ⊂ A′ is a set of

intersecting abelian splittings. If Γ has cyclic edge group and Γ′ has non-cyclic
abelian edge group, then Γ′ is assumed to be Γ-hyperbolic. Now by lemma 6.6,
Γ is Γ′-hyperbolic.

The model example of an intersecting pair of splittings is a pair of intersect-
ing simple closed curves on a surface. In fact, this is the only example!

Theorem 6.7 Let S be a maximal set of intersecting infinite-cyclic splittings of
finitely generated G. Then there exists a graph of groups ΓS for G with cyclic
edge groups and an orbifold vertex S such that every splitting in S arises by
splitting S along a simple closed curve, and every edge group is identified with
a boundary component or cone point of S.

The intersection of the sets of Γ-elliptics for all Γ ∈ S is the set of elements
that are conjugate into a vertex of ΓS other than S.

S is called an enclosing vertex for S. By assumption, every pair of non-cyclic
splittings in A′ is elliptic-elliptic.

6.5 Acylindrical accessibility

To construct the decomposition, now, we simply proceed by induction, splitting
repeatedly and replacing intersecting sets of splittings with surface vertices. We
need to know that this process terminates. If we knew G was finitely pre-
sented, then we could apply a relatively simple accessibility result of Bestvina
and Feighn. Since we don’t know that G is finitely presented, we have to use a
different approach.

Theorem 6.8 (Sela, [17]) Let G be a non-cyclic freely indecomposable finitely
generated group and Γ a k-acylindrical graph of groups for G. Then there is a
uniform bound on the number of vertices in the core of Γ.

By lemma 6.3, every splitting of A′, their refinements the graphs of their
enclosing vertices can be assumed to be 2-acylindrical.
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6.6 The construction

In this subsection, we prove the existence of abelian JSJ decompositions for
limit groups.

Theorem 6.9 Every freely indecomposable limit group G has an abelian JSJ
decomposition.

Proof: Associated to any one-edge splitting Γ ∈ A′, there is the maximal inter-
secting set of splittings S. If |S| > 1 then Γ is a splitting over Z, and there is
the associated graph ΓS. Otherwise, set ΓS to be Γ.

We construct the JSJ decomposition ∆ inductively, as follows. Let Γ1 be
a one-edge splitting in A′. Let S1 be the maximal intersecting set of one-edge
splittings containing Γ1. Set ∆ = ΓS1

.
Now let Γ2 be a one-edge splitting in A′ − S1. Let S2 be the maximal

intersecting set of splittings containing Γ2. Then by definition, ∆ and Γ′
S2

are
an elliptic-elliptic pair of splittings. Define the new ∆ to be the core of the
refinement of this pair. Now continue in this way iteratively.

Because every splitting of Γ is without loss 2-acylindrical, it follows that this
process eventually terminates. The result is a JSJ-decomposition for G. QED

7 Constructive Limit Groups

7.1 The main theorem

Definition 7.1 Constructive limit groups (CLGs) are finitely generated and
defined inductively. A CLG of level 0 is a finitely generated free group. A group
G is a CLG of level at most n if one of the following holds.

1. G = G1 ∗G2, for G1, G2 CLGs of level at most n− 1.

2. G has a generalized abelian decomposition ∆. ∆ is assumed to have finitely
generated vertex groups and edge groups; furthermore, each edge group is
assumed to be maximal abelian on one side of the associated one-edge
splitting. There exists a homomorphism ρ : G → G′, for G′ a CLG of
level at most n− 1, satisfying the following properties:

(a) ρ is injective on edge groups;

(b) ρ has non-abelian image on surface vertices;

(c) ρ is injective on the peripheral subgroups of abelian vertices;

(d) ρ is injective on the envelopes of rigid vertices.

Some properties, such as the existence of a finite presentation, are much
easier to prove for CLGs than for limit groups. So the next theorem has some
profound consequences.

Theorem 7.2 The sets of limit groups and constructive limit groups coincide.
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The proof that all CLGs are limit groups is tricky but not very enlightening.
The idea is to twist ρ with modular automorphisms of ∆, and use lemma 2.7
to prove that G is fully residually free. The other direction, however, makes
heavy use of the shortening argument and JSJ decompositions. The rest of this
section is devoted to this direction of the proof.

7.2 Modular automorphisms

The most important observation is the relation of the abelian JSJ decomposition
to modular automorphisms.

Definition 7.3 Consider a one-edge splitting ∆, of the form

G = A ∗C B

or
G = A ∗C .

A generalized Dehn twist associated to a splitting is a Dehn twist, or if A is
abelian a unimodular automorphism of A restricting to the identity on the edge
group (and B in the first case).

Lemma 7.4 For any G, Mod(G) is generated by generalized Dehn twists in
one-edge splittings in A.

Proof: Surface automorphisms are generated by Dehn twists of the surface.
Unimodular automorphisms of abelian vertex groups A are generalized Dehn
twists in the obvious one-edge splittings of the form

G = A ∗
P (A)

B.

Consider Γ a one-edge splitting of G. If the edge group isn’t closed under
taking roots on one side then there is an immediate contradiction of property 4
of lemma 2.5. Let A be a vertex group of Γ, and suppose Z = ZA(C) Ã C. Let
Γ′ be the one-edge splitting obtained by expanding Z and contracting C. For
example, if Γ is the splitting G = A ∗C B then Γ′ is

G = A ∗Z (Z ∗C B).

Then the edge group of Γ′ is closed under taking roots, and any Dehn twist in
Γ arises as a Dehn twist in Γ′. QED

7.3 Abelian subgroups

It’s fairly easy to see that abelian subgroups of CLGs are finitely generated. To
show that limit groups are constructive, we’ll need to see that the same is true
of limit groups.

Proposition 7.5 Abelian subgroups of limit groups are finitely generated.
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Lemma 7.6 If G is a limit group with factor set

{qi : G→ Gi}

and H ⊂ G is any subgroup such that every homomorphism H → F factors
through some qi|H (without pre-composing with automorphisms) then, for some
i, qi|H is injective.

Proof: Suppose not. Then there exists non-trivial hi ∈ ker(qi|H). But G is a
limit group, so there exists f : G → H injective on {1, h1, . . . , hn}. But f |H
factors through some qi|H , so f(hi) = 1, a contradiction. QED

Proof of proposition 7.5: All limit groups are torsion free, so it remains to
show that any abelian subgroup A ⊂ G is finitely generated. For α ∈ Mod(G)
there exists a finitely generated subgroup Aα ⊂ A and a retraction rα : G→ Aα

such that α|A agrees with an inner automorphism on A∩ ker(rα). For, suppose
A is non-cyclic; then by lemma 6.1, A can be assumed to be conjugate to a
vertex in ∆. Now, if it’s true for α, β ∈ Mod(G) then setting Aαβ = (Aβ)α and
rαβ = rα ◦ rβ , it’s true for αβ too.

The homomorphism

∏

α∈Mod(G)

rα : G→
∏

α

Aα

has finitely generated image, since G is finitely generated. Therefore A = A0 ⊕
A1, where A1 is finitely generated and each rα is trivial on A0. Now by lemma
7.6, for some homomorphism q in the factor set of G, q|A0

is injective. Now by
induction q|A0

is finitely generated, hence so are A0 and A. QED

7.4 Limit groups are constructive

We’re now ready to prove that limit groups are constructive.
Let G be a generic limit group, and fix a generating set S. Let fi be a

sequence in Hom(G,F) such that fi is injective on elements of length at most

i in the length metric with respect to S. Then ker−→fi = 1. Choose f̂i to be

short maps equivalent to fi. By theorem 5.4, ρ : G→ G′ = G/ker−→f̂i is a proper

epimorphism, and so by induction assume that G′ is a CLG. Let ∆ be an abelian
JSJ decomposition for G. The claim is that ∆ and ρ satisfy the conditions of
definition 7.1.

Let E be an edge group of the JSJ decomposition. Then it is elliptic in
every one-splitting of A, so all generalized Dehn twists coincide with some inner
automorphism on E. Therefore for g ∈ E − {1}, f̂i(g) is conjugate to fi(g)
which is non-trivial for all sufficiently large i; so ρ|E is injective. Moreover, E
must be maximal abelian in a vertex of the associated one-edge splitting, by
commutative transitivity.

Abelian vertices of ∆ are finitely generated and free by proposition 7.5. Let
P (A) be the peripheral subgroup. As in the edge group case, P (A) is elliptic
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in all relevant one-edge splittings, so Mod(G) acts as inner automorphisms and
ρ|
P (A)

is injective.

Let S be a surface vertex, and suppose ρ(S) is abelian. Then for all suffi-

ciently large i, f̂i(S) is abelian. But note that every element of Mod(G) maps
S to (a conjugate of) itself, so eventually fi(S) is abelian, contradicting the
triviality of ker−→fi.

The envelope of a rigid vertex B is elliptic in every splitting of G, so is pre-
served up to conjugacy by Mod(G). Therefore ρ|B is injective. This completes
the proof.
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