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by

Sébastien Racaaie

Abstract — | wrote these notes for a series of lectures at Imperial College during the
Summer Term2004. The aim was to introduce symplectic groupoids, Hamiltonian
actions of these groupoids and how this generalises other moment map theories.

The study of these subjects in these notes is by no mean thorough. My hope is
that these notes will instead consist in a nice introduction to the subject of symplectic
groupoids and Poisson geometry. For a more detailed introduction, the reader might
read Vaisman§] for example.
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I will denote(, ) the natural pairing between a space and its du#).ifa manifold
thenTQ is its tangent space. Lgtbe a smooth map betwe&hand a vector space
V. If X belongs to the tangent space@fat a pointp, thenX acts onf and give an
elementX - finV.
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1. Lie Algebroids

A Lie algebroid is a real vector bundle with a Lie bracket on its space of sections
which satisfies the Leibniz identity. More precisely,

Definition 1.1. — Let (Q be a smooth manifold. A (real) Lie algebroid ov@ris
a vector bundleA — @ with an antisymmetri®R-bilinear map on the space of
smooth sections ot

(A xI'(4) —
(,) — o, 0],
such that
[lov, 81, 7] + (8,7, 0] + [y, 0], 6 = 0, fora, 3,y €T(A)  (Jacobi)
and an endomorphism of vector bundles (called the anchor map)
p:A—TQ

which induces a homomorphism of Lie algebra betwEéA) and X = I'(T'Q);
moreover it should satisfy

[, fB] = flew, B] + (p(e) - f)B (Leibniz).

Remark 1.2 — It follows form the Leibniz identity that if and 3’ are two sections
of A that agree on a neighbourhood pfe @, then

[, B](p) = [, B'](p), Yo € T(A).

This means thafa, 8](p) can be computed locally and in local coordinates, it de-
pends only omx(p), B(p) and the first derivatives ef and 3 at p.

Examples of Lie algebroids are numerous (not to say manifold). Later, we will see
that Poisson manifolds can be defined in terms of Lie algebroids.

Example 1.3 — Let@ be a manifold. Sections @fQQ — @ are vector fields. The
tangent bundld’Q) — Q with bracket of sections the usual bracket of vector fields
and anchor map the identi®@Q — T'Q is a Lie algebroid called gair algebroid.

Example 1.4 — A Lie algebra is a Lie algebroid over a point.

Example 1.5 — Let@ be a manifold and a real Lie algebra acting oi); in other
words we have a morphism of Lie algebras

t — I[(TQ)
f — Vg.

ConsiderA = t x @ a trivial vector bundle ove€). Identify sections ofi with maps
@ — t. Define a bracket on sections by

[Oé, ﬁ} (p) = [Oé(p), 6(p)} + UB(p) = & — Vqa(p) - B,
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and a morphism of vector bundles
p:A — TQ
&p) — velp)
These data define a Lie algebroid calledaction algebroid.

2. Poisson manifolds

Definition 2.1 — A Poisson structure on a manifold is a Lie algebroid structure
onT*@Q — @ such thatiff, ] is the bracket orl-forms andp : 7*Q — T'Q is the
anchor map, then for any functiorfsg on @ andp € @

[df, dg](p) = dy(dg, p(df))-

Notice thatp is automatically antisymmetric. Indeédif, df] = 0 for all functions
f implies that ddf, p(df)) is constant for allf. Letc(f) be this value. Assume there
existsf such that(f) # 0, then

c(f?) = 4f2c(f),
and f? is constant and equal %{—2 which implies thatf is constant and(f) = 0

Proposition 2.2 — Let @ be a Poisson manifold. There exists a Lie bracket on its
algebra of smooth functions that iskabilinear antisymmetric map

C™(Q) x C™(Q) — C™(Q)
(fr9) — {f.9}

which satisfies for all functiong, g andh

{fg,h} = f{g,h} + g{f,h} (Leibniz),
and

{f.g},h} +{{g,h}, f} +{{h, f},9} =0 (Jacobi)

The converse is also true, that is given a bracket on the algebra of smooth functions
that satisfies the Leibniz and Jacobi identities, theis a Poisson manifold. This
result is left as an exercise for those interested (alternatively, you candjgad [

Proof. — Define the bracket in the following way: I¢tandg be functions or)
and set

{f,93(p) = <dpg,p(dpf)>
P(dpf)‘g-
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This bracket is clearlR-bilinear. It is antisymmetric because

{f,9}(p) = (dpg,p(dpf))
= <_P(dp9)vdpf>
= —{g,f}(p).

It satisfies the Leibniz identity because

{fg:h}(p) = (dph,p(ds(f9)))
= (dph, p(f(p)dpg + g(p)dyf))
= f®N{g,h}(p) +g@{f h}(p)

Finally, it satisfies the Jacobi identity because

{{f,g9},h} = (dh,p([df,dg]))

and

Ha b}, f1+{{h, f},9} = (df,p(d(p(dg) - h))) + (dg, —p(d(p(df) - h)))
—p(df) - (p(dg) - k) + p(dg) - (p(df) - )
= —(dh,[p(df), p(dg)]),

so that
{{f7g}7 h} + {{97 h}7 f} + {{h7 f}?g} = <dh7 p([dfa dg]) - [p(df)7 p(dg)]
= 0,
because is a homomorphism of Lialgebra. Ol

Definition 2.3. — If Q and P are Poisson manifolds, a smooth map P — Q is
called Poisson if for all functiong, g in C*°(Q)

e {f, 9} ={¢" f.¢ g}
It is called anti-Poisson if
e {f, 9} = —{¢ f.9 g}
Particular examples of Poisson manifolds are the symplectic ones.

Definition 2.4 — A symplectic manifoldQ, w) is a manifold@ with a non-degenerate
closed2-form, that is & = 0 and the map

TQ — T7Q
€ — w(§7 )
is an isomorphism.
Proposition 2.5 — A symplectic manifold@, w) is naturally a Poisson manifold.

Proof. — Use the isomorphism betwedh() and T*Q to define a Lie algebroid
structure orfif™@. O
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3. Lie Groupoids

In the language of categories, a groupoid is a small category in which all mor-
phisms are invertible. A Lie groupoid is then a groupoid with a nice smooth structure.

Definition 3.1 — A Lie groupoid is given by

— two smooth manifold§ (the morphims or arrows) an@ (the objects or points),
— two smooth maps: G — @ the source map and: G — @ the target map,
— a smooth embedding:  — G (the identities or constant arrows),

— a smooth involutiod : G — G, also denoted: — z~ 1,

— a multiplication

m:G2 — G
(z,y) — =z-y,

whereGy = G x; G = {(z,y) € G x Gls(z) = t(y)},

such that the source map and target map are surjective submersions Giensa
smooth manifold becaugseand s are submersions), the multiplication is smooth and

s(z-y) =s(y), t(z-y) =t(z),
z-(y-z)=(z-y) 2,

¢ is a section of botfs andt,

t(z)) z=z=2x-1(s(x)),

s(z7h) = t(x), t(z1) = s(x),

r-x = (t(z)), z7 -z = 1(s(x)),

wheneverz, y) and(y, z) are in G,.

ok wnE

I will identify @ with its image inG using.; so that ifp € @ then alsg € G.
Lie groupoids are almost as numerous as Lie algebroids. Here are few examples.

Example 3.2 — Let@ be a manifold. LeG = @ x @ and define

s(pa) = ¢

tlp,g) = p
(p,q) - (¢;7) = (p,7)
I(p,q) = (q¢,p)
tp) = (pp)

These data define a Lie groupoid callegair groupoid.

Example 3.3 — A Lie group is a Lie groupoid witl§) a singleton.
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Example 3.4 — Let @ be a manifold and<” a Lie group acting on the left on this
manifold. LetG' = K x Q and define

1,

( P ) = k-
tk,p) = p
(k,p) - (k™ -p) = %hm
I(k,p) = (K1E'-p)
t(p) = (e,p) whereeisthe unit ofK.

These data form a Lie groupoid called antion groupoid.

Example 3.5 — A particular and important case of the last example is whers
¢* the dual of a Lie algebrdé and K, a Lie group integrating, acts on¢* by the co-
adjoint action. The total space of the action groupoidsisx ¢*. It can be identified
with T* K by the map
Kx¢" — T'K
(k,a) — ao Ry,

whereRy, is the tangent map~ T, K — T Kto the map induced by multiplication
by k£ on the right.

As for Lie groups, an important property of Lie groupoids is that they can act on
spaces.

Definition 3.6. — LetG be a Lie groupoid over a manifol@. Let M be a manifold.
A left action ofG on M consists in the following data

—asmoothmap/ : M — Q,
— a smooth map

GSXJM — M
(x,m) — x-m,

such that

1. J(xz-m) = t(x), when(z,m) € Gs x5 M,
2. y-(z-m)=(y-z)-mwhens(y) = t(z) and(z,m) € Gs xj M.

Notice thatGs; x ; M is a manifold becauseis a submersion.

Example 3.7 — If K acts on the left oid), then the action groupoi& x () acts on
the left onQ@ with J = the identity map of) and

(k' p)-p=k-p.
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4. The Lie Algebroid of a Lie Groupoid

Let G be a Lie groupoid ovef). Since the target magis a submersion, its kernel
is a vector bundle ove®. Call it TG — G. Letz be inG. Multiplication by x on
the left induces a diffeomorphism

1 (s(@)) — t7H(t()),

and its tangent map gte ¢ ~!(s(z)) induces an isomorphism

L,: TJG — T,ﬁ,yG.
A vector fieldX on G is called left invariant ifX takes its value il G and forz in
G andy int~1(s(x))

L X(y) = X(z - y).
Let A — Q be the restriction oI G to @ (in other words A = *T*G).

Let « be a section ofd.

Lemma 4.1 — There exists a unique extensionofo a left invariant vector field
X, onG.

Proof. — One just has to put

Xao(z) = Lya(s(x)).

We have identified left invariant vector fields Ghwith sections of A.

Lemma 4.2 — The bracket of two left invariant vector fields is a left invariant vec-
tor field; hence, the bracket of left invariant vector fields induces a bracket, denoted
[ bl ]: On F(A) "

Proof. — Let X andY be two left invariant vector fields of'. Lety be inG and
p = t(y). Both X andY are tangent to the submanifold®(p). We deduce that
[X,Y](y) is tangent ta ! (p) and

[X’ Y]G(y) = [X’ Y]t—l(p)(y)’
moreover, letr € G such thats(z) = t(y),
L[ X, Y]i1)(y) = [LaX, LaY]i105) (2 - y)
= [X,Y]i1p(z-y).

Proposition 4.3 — Let« and 8 be sections of — Q. Then

ds([a, B]) = [ds(a),ds(B)],

where on the right hand sidé, ] is the bracket on vector fields ovéx
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Proof. — Extenda andg to left invariant vector fieldsY andY’, respectively. Let
©, andiy, be their respective flows

d d
Xy =5, . ouly), Yy = @l . Pr(y)-
Lemma 4.4 — We have
ou(z - y) = - u(y),
and
¢r(33 : y) =T wr(y)

whenever - y is defined.

Proof. — Forz € G with s(x) = t(y), let

pu it (H(x) — tTH(t)

2 — z-pu(zTl2).

We have
vo(2) = 2
and
d / _ d —1
@@u('z) = L, du‘Pu(x - 2)
= L, X, 1.,
= X,.
The result follows forp. A similar proof holds forp. O

Lemma 4.5 — We have

S0y =80, 08.

Proof. — Itis a matter of a simple calculation
sopuy) = souly-s(y))
= s0Lyopyu(s(y))
= sopu(s(y)).

We can now prove the Proposition. We have

(sopu)o(sopw) = sopupw

S0 Pyt
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which proves thap — s o ¢, (p) is the flow of the vector field € X) on Q. Sim-
ilarly, p — s o ¢, (p) is the flow of the vector field Y") on Q. The Proposition
follows because by definition of the bracket of vector fields

d d
[X7Y] = — —_— pruowrogpu(p)'
p dU u=0 dT' r=0
Hence
dys[X,Y] = Ll 80 Py 0 Py 0 Py (p)
D I du u=0 dT r=0 - " “
= A 9D epi o (sou) o (sop)®)
dul,_, dri._, o ’ !
= [dpS(Xp)7dp5(Yp)]'
O
We conclude

Theorem 4.6 — The bundleA — @ is a Lie algebroid with the above bracket on
its space of sections and anchor given by the differentiafdhe source map. It is
called the Lie algebroid off = Q.

Proof. — We already know that the bracket satisfies the Jacobi identity and that the
anchor map is a morphism of Lie algebra. There only remain to check the Leibniz
identity: it is satisfied because fgra function on@, the extension off 3 to a left
invariant vector field o7 is (f o s)Y". O

The construction of a Lie algebroid from a Lie groupoid resembles the construction
of a Lie algebra from a Lie group; and indeed

Example 4.7 — A Lie group is a Lie groupoid over a point and its Lie algebroid is
the Lie algebra of the group seen as a Lie algebroid over a point.

Example 4.8 — The Lie algebroid of a pair groupoid) x Q@ = @ is the pair
algebroid7Q — Q.
The Lie algebroid of an action groupofd x Q = @ is the action algebroidx Q —

Q.

A particular case of the last example if whénis the duale* of the Lie algebra
of a Lie groupK and K acts ont* by the co-adjoint action. Its Lie algebroid is the
action Lie algebroid x ¢* — ¢*. Notice also that this Lie algebroid together with
the natural identification of x £* with T*¢* makest* a Poisson manifold (it is called
a Lie-Poisson manifold). Its bracket is given by

We will see that this example is of particular importance is the theory of Hamiltonian
spaces with equivariant moment maps.
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5. Lie’s Third Theorem

We have seen that from any Lie groupoid one can derive a Lie algebroid. It is
natural to ask if the converse is also true, that is can any Lie algebroid be integrated
to a Lie groupoid. This is a difficult question which found a complete satisfactory
answer only recently, see Crainic and Fernandgs [

In short, the answer is that a Lie algebroid can NOT in general be integrated to a
Lie groupoid, moreover, to get a satisfactory theory one needs to allow the total space
of a Lie groupoid to be a non Hausdorff manifold.

However, | will guote the following Theorem without proving it.

Theorem 5.1 — Let A — () be Lie algebroid. Assume there exists a Lie groupoid
G = @ integrating A — . Then, there exists a unique, up to isomorphism,
source simply connected Lie groupoid (with non necessarily Hausdorff total space
G) integratingA — Q.

A Lie groupoid is source simply connected if the fibres of the source map are
simply connected. In this case, the fibres of the target map are also simply connected.

6. Symplectic Lie groupoids

We will see in this section that when the Lie algebroid of a Poisson manifold can
be integrated to a Lie groupoid, this groupoid carries a symplectic form compatible
with the structure of groupoid.

Let G = @ a Lie groupoid with multiplicationn : Go — G. Letw be a2-form
on G and callpry, respectivelyprs, the projection fromGs on the first, respectively
second, factor off x G.

Lemma 6.1 — The following properties are equivalent
1.
m'w = priw + priw,

2. the2-formw @& w & —w on G x G x G vanishes on the submanifold =
{(z,y,z-y) € G x G xG|t(y) = s(z)}.
A form which satisfies these properties is called multiplicative.
Proof. — The map
Gy — A
(@,9) — (z,y,2-y)
is a diffeomorphism. It pulls back ® w & —w t0 priw + prjw — m*w. O

Definition 6.2 — A symplectic groupoid is a Lie groupo@ = () with a multi-
plicative symplectic form.
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An important property of symplectic groupoids is that their space of objects is natu-
rally a Poisson manifold.

Theorem 6.3 — Let (G = Q,w) be a symplectic groupoid. Thep has a unique
Poisson structure such thatis Poisson and is anti-Poisson.

Proof. — LetA — Q@ be the algebroid off = ) and denote by : A — T'Q its
anchor map. Because= so I (I is the inversion map), the following Lemma shows
that if s if Poisson then is anti-Poisson.

Lemma 6.4 — We have
Gw=0
and
I =-w.
Proof. — Consider the embedding
/:Q — GxGxG
p — (p.pp).
Its image is inA and/* (w ® w ® —w) = t*w, thusc*w = 0.

The second part of the Lemma is equivalent to: 2Herm w & w vanishes on
{(z,z™ 1), x € G}. But/*w = 0 implies m*w vanishes on this manifold; hence
w®won{(z,z71), x € G} is the restriction ofpriw + priw — m*w defined on
Gs. O

, .= . ,
Letz € G andp = s(x). Let¢ be inA,. Define £ , = L&, this is a vector il G.

Similarly, define?x = R,I.&, avector inT;G the kernel of ds. Sometimes, the
subscriptx will be omitted when it is clear from the context at which point we are
working.
Lemma 6.5 — Let{ and¢ bein A, then

— =

wx( C ) § ) = 0.
Proof. — Indeed, both vector(s?x,ot(m), ?x) and(Ox,?(t(m),?m) areinT(, ;(z),)A
andw @ w @ —w vanishes or\. O
The following Lemma will also be needed to prove the Theorem.
Lemma 6.6 — Letp be a point inQ, then
<_

(1) T,6=T,Q® A, =T,Q® A,

and the map
¢:T,Q — A
defined by: fow in T,,Q and{ in A,

$(0)(€) = wp(v, €)
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is an isomorphism. In particular, the dimension@fas a manifold is equal to twice
the dimension of)

dimG = 2dimQ.

Proof. — We havezp = Kerd,t ande = Kerd,s; sinceso v = id =t o, the
equality @) follows.
Assumep(v) = 0. For all in A4,
_>
wP(“? é ) = Oa
but
wv,u) =0

for all w in T,,Q as well, hencev = 0 by (1). Assume that € A, is such that
¢(v)(€) = 0forallvinT,Q. We also have

-
wp( g ) C ) = 0

for all ¢ in A,. Again, this proves that = 0, thus¢ is surjectie. O
The symplectic formwv on G defines a Poisson structure with anchor map :

TG — TG. Assumen : T*QQ — TQ is the anchor map of a Poisson structure
onQ. Forx € G, let

Sua i TnG — Ty @Q
be the tangent map af it induces, by pull-back, a map
sy Ty@ — TEG.
The source map is Poisson if and only if for all functiong, g onQ
s{f,9y = {s"f,s"g}
s*(dg(n(df))) = (s*dg)(w'(s*df))
(ds(2)9, Ms()s(@) ) = (Ds(2)9s Swowy 5050y f), forallz € G.
Hence,s is Poisson iff
2) Ns(z) = S+ 0wy 05y, forallz €G.

Sinces is surjective, this proves the uniguenesg dfit exists. To prove its existence,
we must prove that the above formula fpdepends only or(z) and not one. This
will follow from the next Lemma.

Lemma 6.7 — Letp = s(z). Consider
—1 %, ok
¢, 0pp:T,Q — T,Q.

We haves, , o w, ! o sk = ¢, 1 o pr.

T
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Proof. — Indeed,
s*@ow;los; = ¢;lop;
<— s*7mow;103* = qﬁ;loL;os; 1)
— Segzowyl = ng;loL;;
<= $poSsy = Liow,
< Lpowpolyposiy = Ljouws,

this last line is true iff for allX,, € T,,G and¢ € A,

%
©)) wz(Xz, € o) = Wp(tap © 850Xz, §p)-
Let X € T,G and¢ € A,. If y € Gis such tha{z,y) € G2 then
T(m,y)GQ = {(Yl,Yg) eT,.G® TyG | S*(Yl) = t*(Yg)}.

We haves,(X) = t. o tx 0 54(X), thus(X, tx 0 54(X)) € T3, (p))G2. Moreover
m«(X, 1 0 54(X)) = X, indeed, ify is a path satisfying/(0) = x and¥(0) = X,
then ‘
——N—
m.(X, 1z 0 5.(X)) = m(7,00507)(0) = 4(0) = X.
In a similar way (that is by choosing appropriate paths), one can prove that

(€2rtep 0 p€) +€) € Tia)Go
and R R

M€ astapop(§) +6) =2& 4.
Because of Propertyl) in Lemma6.1

e (M (X, 1ay © 50,2(X)), M0 (€ 4t 0 plE) + €)) =
Wm(Xa 13 a:) + Wp(b*,p © 5*,:1:(X): Lyp © P(f) + E)’

but the left hand ﬂde of this equation is equatdg (X, ?x) and the right hand side
is equal towg (X, & 2) + wp(tsp © 85,2(X), &). O

Thusn is well defined. It defines a bracket on the space of sectioriB*¢f by

the formula of Definition2.1 That this bracket satisfies the Jacobi and the Leibniz
identity automatically follows from those same identities for the bracket of sections
of T*G — G. O

Because not every algebroid can be integrated to a groupoid, the converse of The-
orem6.3is not true. We need to assume that the Poisson structure comes from an
integrable Lie algebroid.

MThe fibre 4, equalsT;G. On this space, the anchor mapsis,. It is then easy to deduce that
Pp = Sw,w 0 Lg.
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Theorem 6.8 — Let@ be a Poisson manifold. Assume that the Lie algebfsi@ —

Q with anchor map; : T*Q — T'Q integrates to a source connected Lie groupoid
G = Q. Then there exists at most one symplectic foran G such that G = Q, w)

is a symplectic groupoid and such that the source map is Poisson.

In fact it can be proved (se&][in a much more general context), that whenever
T*@ can be integrated to a source simply connected grou@oid Q, there always
exists such a symplectic form @r. | will not prove this fact here because it neces-
sitates to know the construction 6fand | did not give such a construction in these
notes.

Proof. — Assume thaw is such a form. Let be an arrow irG andp = s(x). Then
it will satisfy

Gw=0,
and formula 8)

w(X, € a) = wpltap © 50.0(X), ),
forall X in TG and¢ in A, = T;Q ~ T;G. Moreover, since

T,G=T,Q® 4,
and according to Equatio)
Ns(z) = Ssz 0wy o5y, forallz € G,
the formw is entirely defined alon@ by: for X, Y in T,,Q and¢, ¢ in A4,
wp(X B &Y & ¢) = ((s4p(X)) = E(5:p(Y)) + £(0(C))-

Assume that’ is another symplectic form satisfying the properties of the Theorem.
Then for every parallel to a fibre of, the interior product of) — w’ with v vanishes.
Also, becauser — ' is closed, the Lie derivativé, (w — ') vanishes. Hence there
exists a&-form o on @ such thatv — v’ = s*o. Sincew — ' vanishes along/, we
must have; = 0 andw = w'. O

Let us see some examples.

Example 6.9 — Assume that) has the zero Poisson structure (the anchor map

T*Q — TQ is the zero map). The Lie algebroid*(Q — Q can be integrated

to a Lie groupoidlI™@Q = @ where the source map and target map are equal to the
natural projection and where multiplication is given by the addition in the fibres. The
symplectic form off™* @ is then the usual symplectic form on the cotangent bundle of
a manifold (that isv = df wheref is thel-form onT*(Q characterised byv*0 = «

for everyl-forma on Q).
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Example 6.10 — Assume that the Poisson structure@rcomes from a symplectic
formo. Then the symplectic form induces an isomorphism of Lie algebroids between
T*Q — Q andT(@ — Q. This algebroid integrates to the pair groupaditl x G.

It becomes a symplectic groupoid with the symplectic ferm—o.

Example 6.11 — Take(@ = ¢*, the dual of the Lie algebrlaof a Lie groupK. The

Lie algebroid7T¢* integrates to the action groupoill x ¢* = ¢* for the co-adjoint
action. It becomes a symplectic Lie groupoid with the usual symplectic form on the
cotangent bundl€*K — K (see Examplé.9for the definition of this symplectic
form).

7. Hamiltonian actions of symplectic groupoids

In this section | will define a moment map theory for actions of symplectic groupoids.
I will also show this reduces to the classical theory of equivariant moment maps in
the case of the symplectic groupald x £* = ¢*. To finish, | will introduce Lu’s
moment map theory for the action of a Poisson group.

Definition 7.1 — Let(G = Q,w) be a symplectic groupoid. Assume thaf, o) is
a symplectic manifold. A Hamiltonian action@ = Q,w) on (M, o) with moment
mapJ : M — Qis an action ofG = QonM viaJ : M — @Q such thatA ; =
{(z,m,x-m) | (z,m) € Gx M, s(x) = J(m)} is an isotropic submanifold (that is
a submanifold on which a symplectic form vanishegYbk M x M,w ® o ® —o).

This definition generalises the classical definition of a Hamiltonian action of a Lie
group as we will see in the next subsection.

It is a good exercise to check what are the spaces acted on in a Hamiltonian way
by the symplectic groupoid of a symplectic manifold (seen as a Poisson manifold).

7.1. Hamiltonian action of a Lie group. —

Definition 7.2 — Let(M, o) be a symplectic manifold. L&f be a Lie group acting
smoothly onV/. This action is called Hamiltonian if

— the formo is invariant,
— there is an equivariant magp : M — ¢* (equivariant for the co-adjoint action
of K ont*) called the moment map such that for akiyc £ = (£*)* c Q!(¢*)
4) 1,0 = J*X, 2

wherewv, is the fundamental vector field W generated by andi,, is the
inner product with this fundamental vector field.

) The vectorX defines a function o, in this formula | consider the differential of this function, still
denotedX .
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Theorem 7.3 — The symplectic groupoidK x &, w) of Example6.11acts in a
Hamiltonian way on(M, o) with moment map : M — ¢* if and only if K acts in
a Hamiltonian way or{}M, o) with moment map’ : M — ¢*.
Proof. — Identify K x &* with T* K by

Kx¢ — T'K

(k,a) — «aoRy-1.
Define a symplectic forrv = —df onT* K as in Examplé.11 Identify ¢ with T, K
by X +— Rp(X) = X - k. This allows us to identifyl(;, .y K x £* with £ x ¢*. In
this identification the multiplicative symplectic foffh w is given by
W(k,a) ((Xa /B)a (Ya 7)) = ’Y(X) - /8(Y) - Oé([X, Y])
and the induced Poisson structuretdis given by
i SR N

¢ — na(¢) :=—ao ad,

that is on functiongf, g in C*°(¢*)
{f,9} (@) = —a([daf, dagl).
The source map oK x t* = ¢ is s(k, @) = aoAdy and the target map ik, o) =
Q.
AssumeK x £ = £* acts onM with moment map/ : M — £*. In particular

we have a map

A (K x€)gx; M — M

(k,J(m) o Adp-1,m) — A(k,J(m)oAd-1,m).
This is equivalent to having an action

KxM — M
(k,m) —— k-m
and an equivariant map: M — ¢* (). That the action of the symplectic groupoid
is Hamiltonian is equivalent to: the manifo{d\; = (k, J(m) o Adg-1,m, k- m) |
k€ K,m € M} isisotropic in(K x ¢ x M x M,w & o & —0o). A vector tangent
to Ay at(k,J(m) o Ad-1,m, k- m) is of the form
Z=(X,Jim(Y)oAdy-1 — J(m)oAdy-1 0ady,Y,vx(k-m)+k-Y)
whereX ¢ tandY ¢ T,,M. Let
7' = (X/, J*7m(Y/) o] Adkfl — J(m) o Adk71 o adX/,Y/,’UX/(k . m) + k- Y/)

®)The verification that is multiplicative is left to the reader.

(M The verification of this fact is straightforward. The actions of the group and the groupoid are linked
by k-m = A(k, J(m) o Ady—1,m).
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be another such vector. The isotropy/of is equivalent to
(who®—0)(Z,72)=0,
that is
Jo(Y") o Ad—1(X) — J(m) o Ady—1[X', X] — Ju(Y) 0 Adj—1 (X) + J(m) o Ady—1 [ X, X'] +

om(Y,Y") — opn(k - vAdrlX(m) +k-Y k- UAd,ﬂX'(m) +k-Y") = J(m)oAd,1[X, X'] = 0.
Taking X = 0 and X’ = 0 in the above expression shows thais K-invariant. So
that after some simplifications we obtain
(5) Jo(Y) o Ady—1(X) — J(Y) o Ady—1(X') — J(m) o Adj—1 [ X', X]

_Um(”Adk,l)(v”Adk,lX') —om(Y, ”Adk,l)(') - Um(”Adk,l)(?Y/) =0,
By taking X’ = 0 in the above expression, we get

J(Y) o Adj—1(X) = Jm(vAdk_lx, Y').
This last equation is true for alt, Y if and only if
Lo =J"X,

that is if the action ofK” is Hamiltonian. Conversely, if the action is Hamiltonian, we
know that Equationg) is true wheneveX’ = 0. We need to check that it is also true
whenY’ = 0. In this case it reduces to

J(m)oAdk—l [X, X,]_J*(Y) o Adk—l(X/) = O'm(UAdk,lx, UAdkﬂX’)—'_am(Y’ UAdkﬂX’)‘

The two above underlined terms are equal by Equat®)rafd the two others are
equal by the equivariance of the moment map and Equazon ( O

7.2. Lu’'s moment map for Poisson Lie groups actions. —

Definition 7.4 — A Poisson Lie group is a Lie groufl with a Poisson structure
n: T*K — TK such that the multiplication

KxK—K
is Poisson (for the product Poisson structure Binx K).

Let K be a Poisson Lie group. The anchazan be seen as a section'dfl’' K —
K. This bundle can be trivialised using left translations, hepigequivalent to a
mapK — A?E. It can be proved that this map necessarily vanishes at the identity
and that its derivative at the identity, a linear morphism— A%t defines by duality
a Lie bracketA?¢* — £* on¢*. Thust* is naturally a Lie algebra. Denof€* the
simply connected Lie group integratitity

Itis proved in [7/] using an lwasawa decomposition that any semi-simple compact
connected Lie group has a non-trivial Poisson Lie structure. From now on, | will
assume thak’ is a compact connected and simply connected (hence semi-simple) Lie
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group with such a Poisson Lie structure. In this cdseand K* are both subgroups
of the complexifiedk© and K¢ ~ K*K. Becausek* ~ KC/K, the groupk®
acts onK* and this action restrict to an action &f on K* called the (left) dressing
action.

Definition 7.5. — Let (M, o) be a symplectic manifold. An action &f on M is
called Poisson if the action map

KxM-—M

is Poisson. An equivariant map: M — K* is called a Poisson Lie moment map
if for every X in ¢

Lyyw = J*(@K*,X>,

whee 0 - is the right invariant Maurer Cartan form ofi*.

Just as for usudl-valued moment maps, it turns out that the theory of Poisson Lie
moment maps can be described as a theory of Hamiltonian actions for a symplectic
groupoid (seeq] and [9])(®). The groupoid can be constructed in the following way:
let k — k anda — @ be the injections of and, respectivelyi* in KC; consider

G ={(k,a,b]) e K x K* x K* x K | ka = bl,
this is a groupoid oveK with source and target maps
s(k,a,b,l) =1, t(k,a,b,1) =k,
multiplication
(k,a,b,1) - (l,¢,d,h) = (k,ac,bd, h)

and inversion map

I(k,a,b,1) = (I,a” ', b1, k).
The manifoldG is diffeomorphic toK by

G — K€
(k,a,b,1) — ka.
The symplectic structure of ~ K€ is constructed from the Poisson structure on

K and K* using the fact that and¢* are subalgebras of the Lie algebrafof and
tC = ¢* @ ¢ as vector spaces (for more details, s8¢ [

) In fact the theory of Lie Poisson moment maps and the theoky hlued moment maps are equiv-
alent. Seef] and [9].
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Appendix: Poisson Lie structure on a simply connected compact Lie group

In this Appendix, | will explain how Lu and Weinstei][constructed a non-trivial
Poisson Lie structure on a simply connected compact Lie group.
Let K be such a group. Let
€ =eqit.
LetT be a choice of a maximal torus i andt its Lie algebra. Leti = it andn be
the sum of positive roots spaces. These are both subalgettasod

tC=tpamn.

Let K be the simply connected group integratbg(the complexified group ak).
Let A = Exp(a) andN = Exp(n). Then

K® = KAN = ANK,

this is the Iwasawa decomposition &C. The Killing form on K extends to an
hermitian form onK© whose imaginary part can be used to identifyanda & n.
HenceK andK* = AN are Poisson groups dual to each others.

Let us see an example. Take= SU(2), thenK® = SL(2,C). Also

a5 O ]orem)
v {[3 5] sec),

Proposition 7.6 — WhenK = SU(2), the Lie groupK™* consists in the set of
upper triangular comple®2 x 2 matrices of determinarit with positive reals on the
diagonal.

and

so that

This can be generalised &/ (n) for anyn.
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