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Elementary splittings of groups

Definition 1 Let A, B,C be groups and «
C - A, B . C — B injective homomorphisms.
The amalgamated free product of A and B
over o and B is the direct limit of this diagram
of groups. We abuse notation and denote this

A*CB.

Definition 2 Now suppose A = B. Consider
{A;|lt € Z} a collection of copies of A, {C;|j € Z}
a collection of copies of C, and homomor-
phisms «; : C; — A; coinciding with «, B; :
C; — A;41 coinciding with 8. Let H be the
direct limit of this system, and uw . H — H the
shift automorphism mapping G; — Gi—l—l' The
semidirect product H % Z is called the HNN-
extension of A over o and B, and abusively
denoted

A*C.



A more concrete picture of these construc-
tions is given by their presentations. Let A =
(G|R), B = (H|S). Then it is easy to write
down a presentation for A xo B, namely

(G,H|R, S,{a(c)B(c™1)|c e C}).

Axo B is the freest group into which A, B inject
and the images of C are identified.

In the case where A = B = (G|R), the HNN-
extension Axo has presentation

(G, t|R, {ta(c)t 18(c D|c e C}).

Axc is the freest group into which G injects
and the isomorphism between the images of C
IS realized as conjugation by an element. The
element t is known as the stable letter.



Example 3 The (non-abelian) free group of
rank 2, F', can be decomposed in either way. It
can be written as the amalgamated free prod-
uct of two copies of Z over the trivial group:

F =7Zx1 7 = 7% 4.

It is also the HNN-extension of Z, over the triv-
ial group:

F:Z*l.

Example 4 Free abelian groups only decom-
pose in one way, namely as an HNN-extension
of a codimension-one subgroup by itself:

7" =7""1 s .

The homomorphisms a,8 : Z"~1 — 7zn=1 are
both taken to be the identity.

By the end of this talk we will see many more
less trivial examples.



T he topological perspective

Van Kampen’s theorem provides the connec-
tion between these decompositions and topo-
logical decomposition.

Theorem 5 (Van Kampen) Let X,Y, Z be path-
connected topological spaces and o : Z — X,

B . Z —Y mi-injective continuous maps. Then
the fundamental group of the double mapping
cylinder of a, B is canonically isomorphic to the
amalgamated free product

If X =Y then the fundamental group of the
mapping torus of ao B~ is canonically isomor-
phic to the HNN-extension

7T]_(X) *7'(']_(2) .



This gives many more examples of elementary
splittings. The easiest are for surface groups.

Example 6 The fundamental group of a sur-
face has many elementary splittings, which can
be seen by cutting along simple closed curves.
(If the surface has boundary, the curves shouldn’t
be boundary-parallel.)

If the curve is separating, the result is an amal-
gamated free product. If the curve is non-
separating, the result is an HNN-extension.



Reduced words

The main technical tool for dealing with ele-
mentary splittings is the notion of a reduced
word. Consider G = A xo B. A word in the
elements of A and B is reduced if it is of the
form

ai1bias...anbn

where a; € A,b; € B, and moreover a; ¢ C for
i >1 and b; ¢ C for i < n.

Theorem 7 Every element of G = Axg B can
be represented as a reduced word. Moreover,
the number n is unique.



Here is a sketch of the proof

Choose sets of coset representatives for A/C
and B/C. Let X be the set of reduced words of
the form caibias...anbyn, Where c € C and a;, b;
are chosen coset representatives. Then G acts
on X by left-multiplication, and the resultant
map G — X defined by

g—g.e

provides a left-inverse to the natural map X —
G; this gives the surjectivity of X — G and the
uniqueness of the decomposition.

For the HNN-extension G = Axs a reduced
word is of the form

aptlay...ap,_1t"an

where ¢; = £1; furthermore, if ¢, = —€;41 then
a; ¢ C. A similar theorem holds.



Graphs of groups

Definition 8 Let I be an oriented connected
finite graph. For each vertex v let G, be a
group. For each edge e let G be a group, and
let

atl:Ge — Gy(e)

and
ol G — Gs(e)

be injective homomorphisms. The data
(r,G,ott o1

defines a graph of groups. We often abusively
denote it just by I'.

Example 9 The simplest non-trivial examples
occur when I has just one edge. There are
two cases: [ has one vertex, and I' has two
vertices.



Example 10 Let T be an oriented graph on
which a group G acts simplicially and cocom-
pactly, without edge inversions. Let I be the
quotient topological space, an oriented finite
graph. For each vertex v of ' choose a lift v €
T, set Gy, = Stabg(v). This choice is well de-
fined up to isomorphism, because Stabgn(g.v) =
gStab(?)g~ 1.

For each edge e of ', choose a lift e in T'; set

Ge = Stabg(e),; again, this is well defined up

to isomorphism. Moreover, the inclusions
Stabg(e) — Stabg(t(e)), Stabg(s(e))

induce injective homomorphisms

Ge — Gt(e)? Gs(e)

which are well defined up to conjugation by an
element of the vertex group, these are taken
to define 61,01, respectively.

The resultant graph of groups I is called the
quotient graph of groups; write T =T/G.
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The fundamental group

Let " be a graph of groups. Consider the group
F(I") generated by the vertex groups {Gy}, and
the set of edges {e} of I, subject to the fol-
lowing relations: if e is an edge and g € Ge
then

edt(g)e™t =91 (g).

Let ¢ be a path in ', combinatorially repre-
sented by the string

€
et ... e

A word of type c is an element of F(I") of the
form

€
goe1' 91 - --gn—1€:'gn

where ¢, = +1 and, furthermore, if ¢, = +1
then g; € Gt(e) and if ¢, = —1 then g; € Gs(e)'

Fix a vertex vg. Then w1 (I",vg) is the subgroup
of F(I') consisting of words whose type is a
loop based at vg.
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Graphs of groups generalize elementary split-
tings.

Example 11 Let " be a graph of groups with
one edge and two vertices; let A, B be the ver-
tex groups and C the edge group. Then

m1(M) = A x¢ B.

The isomorphism is given by forgetting the
edge elements.

Example 12 Let [ be a graph of groups with
one edge and one vertex; let A be the vertex
group and C the edge group. Then

m1(M) = Ax¢o .

The isomorphism is given by mapping the edge
element to the stable letter of the HNN-extension.
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An alternative description

It will be useful to be able to think about the
fundamental group in a second way. Fix © a
maximal tree of I'; let E be the set of edges
in I — ®. Then the fundamental group of I
relative to ©, denoted w1 (I',®), is the group
generated by the vertex groups {Gy,} and the
edges in E, with the following additional rela-
tions: if e € E and g € Ge then

edt(g)e™t =9, 1(g).

Note that there is a natural map F(I') — w1 (M, ®)
given by mapping edges in © to the identity.

Lemma 13 Let [T be a graph of groups, let
vg be a vertex, and let © be a maximal tree.
Then the induced map

w1 (M, vg) = ™1 (7, ©).

IS an isomorphism.
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Dévissage

The first aim is to prove a reduced word theo-
rem for graphs of groups. Here is a very useful
technical lemmas.

Lemma 14 Let ' be a graph of groups, and
let " a subgraph. Let A be the graph of
groups defined by contracting ! to a single
vertex v and setting G, = w1(I'"). Then the
natural map

F(I') — F(A)

iIs an isomorphism.

Using dévissage allows results about graphs of
groups to be proved by induction.
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Reduced words in graphs of groups

A word of type ¢ as above, of the form

€1 €n
dgo€q1 91 ---9Gn—1€n 9n,
IS reduced if the following two conditions hold:

e if n =0 then gg # 1;

e if n > 0, whenever e, = e;41 and ¢ =
—€it1, 9i & 0 (Ge).

Note that this notion of being reduced coin-
cides with the notions of being reduced in the
one-edge cases. Note also that every element
of m1(I") can be represented by a reduced word.

Theorem 15 Consider a reduced word w in
F(I") of type ¢, where c is a path. Then w is
not the identity.
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Sketch of proof: The theorem follows from
the observations that the inclusion map

F(I' — F(N)
and the dévissage map
F(I) — F(A)

preserve the property of being reduced.

We already know the special case of amalga-
mated free products; dévissage upgrades this
to trees of groups, by induction.

We also already know the special case of HNN-
extensions; dévissage upgrades this to roses of
groups, by induction.

Using dévissage to contract a maximal tree in
an arbitrary graph of groups gives a rose of
groups; the theorem follows.
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Developing graphs of groups

Theorem 16 Let [ be a graph of groups, let
© be a maximal tree, and set G = ©1(I",©).
Then there exists a tree T' on which G acts
without edge inversions, and

r=7T/G.

It's not hard to see what the vertices and edges
of this tree must be. Let q : T'" — I be the
quotient map, and suppose x is a vertex or an
edge of 1T'. Then

Stabg(Z) = éle(;z)g_1
for some g € G, by construction. Therefore
take as vertices the set

[ |Go\G

of left-cosets of vertex groups. Likewise take
as edges the set

| |Ge\G

of left-cosets of edge groups.
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The graph T is defined by attaching the edges
to the vertices according to the following for-
mulae:

t(gGe) — gth(e)

and

s(9Ge) = gGg(e)-

We are thinking of G as the fundamental group
relative to a maximal tree ©; in particular, the
element e is the identity if e lies in ©.

There is an obvious map 17" — [ given by

gGm|—>$

for x a vertex or an edge. This descends to an
iIsomorphism of graphs; the edge groups and
vertex groups are isomorphic, and the 9-maps
are equivalent up to conjugation by an element
of a vertex group. It remains to see that T is
a tree.
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First we show T'is connected. For every edge e
in ©, there is an edge in 1" joining the vertices
Gye) and Gy, therefore © lifts to T', and for
any pair of vertices u,v of I', Gy, and G, are
joined in T.

Consider a vertex of the form ¢gG, of T, for
g € Gy. Since Gy is joined to Gy, it follows that
gGy is joined to gGy = Gy.

Now consider a vertex of the form eG, for e
an edge. Then eGy is joined to eGy) = t(Ge),
and so to Gg(,).

But the elements of the vertex groups and the

edges generate w1(I,®); applying this argu-
ment inductively gives the connectedness of T'.
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We now show that 7' is simply-connected. Con-
sider a path in T, beginning at Gy,. It first
crosses an edge goGe,; (for some gg € Gag,
s(e1) = vg) to goeellel where v{ = t(e1). Re-
peating this process inductively gives a repre-
sentation of the final vertex of the loop as the
coset

goe1 g1 - - - €5'Guy,.
The loop backtracks if and only if, for some ¢,

goeilgl . e?Gvi = goeilgl . efigiei+1Gvi+1.
This only happens if € = €j4+1, € = —€;41,
and g; € 9¢!Ge;. In other words, backtracking
occurs if and only if the word is not reduced.

Now the claim that the path is a loop is equiv-
alent to asserting that

goe1 g1 - .. e = gn € Gy
or equivalently

9oe1 g1 - .- eltgy, T =
But this is a reduced word, so that can’'t hap-
pen.
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Application: SLy(Z) = 7/4 *7,/2 7,/6

Recall that Isom(H?2) & PSL>(R), so SLy(7Z)
acts on H? in a natural way, with kernel {£1}.
G = PSL»(7Z) is generated by

z—z+1

and
—1
Z = —
Z
and a fundamental domain for the action is

given by

1
{121 > 1, |Rez| < 2},

The translates of the segment [i,e%] form a
tree, on which G acts without edge inversions.
It is easy to check that Stabg(i) is generated

by z — =L and is of order 2, while StabG(e3)
IS generated by z+—1—= and is of order 3.

This action on the tree gives a decomposition
of G as Z/2x7/3, and of SL>(Z) as Z/4*Z/QZ/6.
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