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Equations over free groups

Fix F a free (non-abelian) group of rank at

least 2, and consider a finite set Φ of equations

wi(x1, . . . , xn) = 1

in n unknowns. Let G = G(Φ) be the group

with presentation

〈x1, . . . , xn|wi(x1, . . . , xn)〉.

A solution of Φ defines a homomorphism

G→ F,

and, conversely, such a homomorphism defines

a solution of Φ. So the ‘variety’ associated to

Φ is really just Hom(G,F). This is the object

we shall attempt to describe.
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First examples

• G = Fr the free group of rank r. Then

Hom(G,F) ≡ Fr.

• G = Zr the free abelian group of rank r.

Let µ : G → Z be projection onto the first

factor. Any homomorphism f : G → F de-

composes as

G
α
→ G

µ
→ Z→ F

for some automorphism α. So we have an

epimorphism

GLr(Z)× F→ Hom(G,F).
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PSfrag replacements
π1(Σ) = G

µ
Fr

• G = π1(Σ) the fundamental group of a

closed orientable surface of genus g > 1,

and let µ : G → Fr be the homomorphism

induced by the inclusion of Σ as the bound-

ary in the handlebody of genus r. Then

every homomorphism G → F decomposes

as

G
α
→ G

µ
→ Fr → F

for some automorphism α of G arising from

an automorphism of Σ. So we have an

epimorphism

Aut(Σ)× Fr → Hom(G,F).
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Makanin-Razborov Diagrams

A general description of Hom(G,F) along these
lines was first given by Makanin and Razborov.

Theorem 1 (Makanin, Razborov) To every

finitely generated group G there is associated

a finite tree of homomorphisms from G to F,
called aMakanin-Razborov diagram. Each group

in the tree is a limit group, and each homomor-

phism G → F factors through a branch of the

diagram, after composing at each stage with

automorphisms of the limit groups.
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Limit groups

There are many equivalent definitions of limit

groups. This one will best suit our purposes.

Definition 2 A group G is a limit group if, for

any finite subset S ⊂ G, there exists a homo-

morphism f : G→ F, such that f |S is injective.

Here are the simplest examples.

• Free groups

• Free abelian group

• Fundamental groups of closed surfaces of

Euler characteristic less than −1
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The rest of this talk is devoted to explaining

the proof of theorem 1 (skating over some de-

tails). Its principle assertions are about the

finiteness of the tree. The next theorem shows

that the tree is only finitely long.

Theorem 3 Let

G1 → G2 → G3 → · · ·

be a sequence of epimorphisms of finitely gen-

erated groups. Then the corresponding se-

quence of monomorphisms

Hom(G1,F)← Hom(G2,F)← Hom(G3,F)← · · ·

eventually stabilizes.
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The proof of theorem 3 makes use of a little

classical algebraic geometry.

Theorem 4 (Hilbert’s Basis Theorem) If R

is a Noetherian ring then the polynomial ring

R[x] is also Noetherian.

In particular, every descending sequence of al-

gebraic varieties

X1 ⊃ X2 ⊃ X3 ⊃ . . .

eventually terminates.
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Proof of theorem 3: Embed F ↪→ SL2(R).
(For example, a hyperbolic metric on a punc-

tured sphere gives an embedding F ↪→ PSL2(R).
This lifts to SL2(R).) This induces an embed-

ding

Hom(G,F)→ Hom(G,SL2(R)).

Fix a presentation

G = 〈g1 . . . gm|r1, r2, . . .〉.

A homomorphism f : G → SL2(R) is just a

choice of values for the f(gi) such that the

relations f(rj) are satisfied. In other words,

Hom(G,SL2(R)) ↪→ SL2(R)m

as a subvariety. (I think Richard would rather

I said sub-scheme.) By Hilbert’s Basis Theo-

rem, the resulting decreasing sequence of va-

rieties eventually stabilizes. QED
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The remainder of the proof of theorem 1 con-

sists of showing that the diagram is finitely

wide.

Definition 5 Let G be a finitely generated group.

A factor set is a finite set of proper quotients

{qi : G→ Li}

such that any homomorphism f : G→ F factors

as

G
α
→ G

qi→ Li → F,

where α is a ‘modular’ automorphism of G.

I won’t define modular automorphisms, but if

G isn’t a limit group then the group of modular

automorphisms is trivial.

Theorem 6 Every non-free finitely generated

group has a factor set

{qi : G→ Li}

with each Li a limit group.
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A nice reduction

There’s a nice observation that reduces theo-

rem 6 to the case of limit groups straight away.

Suppose G is not a limit group. Then there

exist elements g1, . . . , gn such that any homo-

morphism f : G→ F kills one of the gi. Now

{qi : G→ Li = Gi/〈〈gi〉〉}

is a factor set for G.
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Metric trees

Metric trees (also known as R-trees) generalize
the usual (simplicial) notion of tree. A metric

space is geodesic if every pair of points are

joined by an isometrically embedded interval.

Definition 7 A metric tree is a geodesic met-

ric space (T, d) in which every geodesic triangle

is isometric to a tripod.
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Simplicial trees are clearly metric trees. Here’s

a non-simplicial example.

Example 8 (The SNCF metric) Consider the

metric on R2 given by

d((x, y1), (x, y2)) = |y1 − y2|

and

d((x1, y1), (x2, y2)) = |y1|+ |x1 − x2|+ |y2|

for x1 6= x2.

PSfrag replacements

(x1, y1)

(x2, y2)
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G-trees

A metric tree equipped with an action of a

finitely generated group G by isometries is called

a G-tree. Here we review a few of the basics

of the theory of group actions on trees.

A G-tree T is trivial if there is a point of T

fixed by G.

T isminimal if it contains no proper G-invariant

subtrees.

Lemma 9 Every non-trivial G-tree contains a

unique minimal subtree, which is a countable

union of lines.
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Cayley graphs

Let G be a group, and S a generating set.
Then the Cayley graph of G with respect to
S is the graph with vertex set G and an edge
(g, h) if

h = gs

for some s ∈ S. The Cayley graph has a G-
action inherited from left-multiplication by G,
and a G-invariant metric given by counting the
number of edges in the shortest path.

Example 10 Loops in the Cayley graph corre-

spond to relations between the generators. So

a group has a Cayley graph which is a tree if

and only if it’s free.

Fix a generating set for F, such that its Cayley
graph T is a tree. Then a homomorphism f :
G→ F induces an action of G on T , where

g : t 7→ f(g)t.

Denote the minimal G-invariant subtree of T
by Tf .
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The space of trees

Let A(G) be the set of non-trivial minimal G-

trees. It can be endowed with a topology,

known as equivariant Gromov-Hausdorff topol-

ogy. I won’t give details of this topology here.

Let PA(G) be the quotient space arising from

identifying (T, d) with (T, λd) for all λ > 0. The

space of interest is

T(G) ⊂ PA(G)

the closure of {Tf |f ∈ Hom(G,F)}, the sub-

space of G-trees arising from homomorphisms

to F.
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Strategy

The strategy for proving theorem 6 is now ap-

proximately as follows.

1. Show that T(G) is compact.

2. Apply compactness to the open cover

U = {U(k)|k ∈ G− {1}}

where U(k) = {T |k ∈ ker T}.

The theorem would then follow; for by com-

pactness, T(G) is covered by

U(k1), . . . , U(kn).

In particular, each homomorphism f : G → F
factors through one of

qi : G→ Li = G/〈〈ki〉〉.

The slickest way to show compactness uses a

technique of non-standard analysis pioneered

by Gromov.
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Ultralimits

An ultrafilter ω is a finitely additive set func-

tion on N, such that for every S ⊂ N, ω(S) ∈
{0,1}. An ultrafilter is principal if any finite

subset S ⊂ N has ω(S) = 1.

Fix ω a non-principal ultrafilter (existence re-

quires the axiom of choice). Let X be a topo-

logical space, and xn ∈ X. Then x = limω xn

is the ultralimit of xn if, for every open neigh-

bourhood U of x,

ω{n ∈ N|xn ∈ U} = 1.

Lemma 11 If X is a compact space then every

sequence has an ultralimit.
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Ultraproducts

Let (Xn, dn, xn) be a sequence of pointed met-
ric spaces. Let

Y ⊂
∏

Xn

be the subspace consisting of sequences (yn)
with dn(xn, yn) bounded. Then Y inherits a
pseudo-metric given by

D((yn), (zn)) = lim
ω

dn(xn, yn).

The ultraproduct of the sequence (Xn, dn, xn),
denoted (Xω, dω), is the associated metric space.
It has the following useful properties.

Lemma 12 Suppose all the Xn are geodesic.

Then so is Xω.

Suppose Tn is a sequence of trees. Then so is

Tω.

If each Tn admits a G-action then the induced
action on Y descends to Tω. Furthermore, a
sequence of G-trees converges to its ultralimit
in the equivariant Gromov-Hausdorff topology.
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It remains to show that Tω is non-trivial: then

we can pass to the minimal invariant subtree.

This is done by carefully choosing the base-

point and scale factor.

Fix a generating set S for G, and define σn :

Tn → R by

σn(x) = max
g∈S

dn(x, gx).

Let δn = infx∈T σn(x), and choose xn ∈ Tn to

minimize σn. Now modify Tn by dividing the

metric by δn. Let t = [(tn)] ∈ Tω. For each tn

there exists g ∈ S with

dn(tn, gtn) ≥ σn(xn) = 1

so, by construction, for some g ∈ S,

dω(t, gt) ≥ 1.
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Short automorphisms

The first part of the strategy is now complete.

If the second part worked, then we could get

away without modular automorphisms. The

problem is that U doesn’t cover T(G).

Fix a basis S for G. For f : G→ F, define

|f | = max
g∈S

l(f(s))

where l is word length in F. A homomorphism

f is short if

|f | < |ic ◦ f ◦ α|

for all c ∈ F and modular automorphisms α.

The key is the following tricky theorem of Sela.
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Theorem 13 For a sequence of short auto-

morphisms fn : G → F with Tfn converging to

T , the limit action on T is not faithful.

Part 2 of our strategy now works, after re-

stricting attention to

T
′(G) ⊂ T(G)

the closure of the set of G-trees arising from

short homomorphisms to F. This completes

the proof of theorem 6, and so theorem 1.
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Further directions

This technique has proved very open to gener-

alization, particularly in describing Hom(G,H)

for other groups H.

• Sela has extended his work to cover word

hyperbolic groups: groups whose Cayley

graphs have uniformly thin triangles.

• Alibegovic has constructed Makanin-Razborov

diagrams relative to limit groups.

• Groves is working on a series of papers

which would generalize both of these, ex-

tending Sela’s techniques to groups that

are hyperbolic relative to their maximal abelian

subgroups.
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