Algebraic Geometry over Groups

H. J. R. Wilton

November 3, 2004

Equations over free groups

Fix \mathbb{F} a free (non-abelian) group of rank at least 2, and consider a finite set Φ of equations

$$w_i(x_1,\ldots,x_n)=1$$

in n unknowns. Let $G = G(\Phi)$ be the group with presentation

$$\langle x_1,\ldots,x_n|w_i(x_1,\ldots,x_n)\rangle.$$

A solution of Φ defines a homomorphism

$$G \to \mathbb{F}$$
,

and, conversely, such a homomorphism defines a solution of Φ . So the 'variety' associated to Φ is really just $\text{Hom}(G,\mathbb{F})$. This is the object we shall attempt to describe.

First examples

ullet $G=F_r$ the free group of rank r. Then $\operatorname{Hom}(G,\mathbb{F})\equiv \mathbb{F}^r.$

• $G=\mathbb{Z}^r$ the free abelian group of rank r. Let $\mu:G\to\mathbb{Z}$ be projection onto the first factor. Any homomorphism $f:G\to\mathbb{F}$ decomposes as

$$G \xrightarrow{\alpha} G \xrightarrow{\mu} \mathbb{Z} \to \mathbb{F}$$

for some automorphism α . So we have an epimorphism

$$GL_r(\mathbb{Z}) \times \mathbb{F} \to \mathsf{Hom}(G,\mathbb{F}).$$

• $G=\pi_1(\Sigma)$ the fundamental group of a closed orientable surface of genus g>1, and let $\mu:G\to F_r$ be the homomorphism induced by the inclusion of Σ as the boundary in the handlebody of genus r. Then every homomorphism $G\to \mathbb{F}$ decomposes as

$$G \xrightarrow{\alpha} G \xrightarrow{\mu} F_r \to \mathbb{F}$$

for some automorphism α of G arising from an automorphism of Σ . So we have an epimorphism

$$\operatorname{\mathsf{Aut}}(\mathbf{\Sigma}) imes \mathbb{F}^r o \operatorname{\mathsf{Hom}}(G,\mathbb{F}).$$

Makanin-Razborov Diagrams

A general description of $Hom(G, \mathbb{F})$ along these lines was first given by Makanin and Razborov.

Theorem 1 (Makanin, Razborov) To every finitely generated group G there is associated a finite tree of homomorphisms from G to \mathbb{F} , called a Makanin-Razborov diagram. Each group in the tree is a limit group, and each homomorphism $G \to \mathbb{F}$ factors through a branch of the diagram, after composing at each stage with automorphisms of the limit groups.

Limit groups

There are many equivalent definitions of limit groups. This one will best suit our purposes.

Definition 2 A group G is a limit group if, for any finite subset $S \subset G$, there exists a homomorphism $f: G \to \mathbb{F}$, such that f|S is injective.

Here are the simplest examples.

- Free groups
- Free abelian group
- ullet Fundamental groups of closed surfaces of Euler characteristic less than -1

The rest of this talk is devoted to explaining the proof of theorem 1 (skating over some details). Its principle assertions are about the finiteness of the tree. The next theorem shows that the tree is only finitely long.

Theorem 3 Let

$$G_1 \rightarrow G_2 \rightarrow G_3 \rightarrow \cdots$$

be a sequence of epimorphisms of finitely generated groups. Then the corresponding sequence of monomorphisms

 $\mathsf{Hom}(G_1,\mathbb{F}) \leftarrow \mathsf{Hom}(G_2,\mathbb{F}) \leftarrow \mathsf{Hom}(G_3,\mathbb{F}) \leftarrow \cdots$ eventually stabilizes. The proof of theorem 3 makes use of a little classical algebraic geometry.

Theorem 4 (Hilbert's Basis Theorem) If R is a Noetherian ring then the polynomial ring R[x] is also Noetherian.

In particular, every descending sequence of algebraic varieties

$$X_1 \supset X_2 \supset X_3 \supset \dots$$

eventually terminates.

Proof of theorem 3: Embed $\mathbb{F} \hookrightarrow SL_2(\mathbb{R})$. (For example, a hyperbolic metric on a punctured sphere gives an embedding $\mathbb{F} \hookrightarrow PSL_2(\mathbb{R})$.) This lifts to $SL_2(\mathbb{R})$.) This induces an embedding

$$\mathsf{Hom}(G,\mathbb{F}) \to \mathsf{Hom}(G,SL_2(\mathbb{R})).$$

Fix a presentation

$$G = \langle g_1 \dots g_m | r_1, r_2, \dots \rangle.$$

A homomorphism $f: G \to SL_2(\mathbb{R})$ is just a choice of values for the $f(g_i)$ such that the relations $f(r_j)$ are satisfied. In other words,

$$\mathsf{Hom}(G, SL_2(\mathbb{R})) \hookrightarrow SL_2(\mathbb{R})^m$$

as a subvariety. (I think Richard would rather I said sub-scheme.) By Hilbert's Basis Theorem, the resulting decreasing sequence of varieties eventually stabilizes. **QED**

The remainder of the proof of theorem 1 consists of showing that the diagram is finitely wide.

Definition 5 Let G be a finitely generated group. A factor set is a finite set of proper quotients

$$\{q_i:G\to L_i\}$$

such that any homomorphism $f:G \to \mathbb{F}$ factors as

$$G \xrightarrow{\alpha} G \xrightarrow{q_i} L_i \to \mathbb{F},$$

where α is a 'modular' automorphism of G.

I won't define modular automorphisms, but if G isn't a limit group then the group of modular automorphisms is trivial.

Theorem 6 Every non-free finitely generated group has a factor set

$$\{q_i:G\to L_i\}$$

with each L_i a limit group.

A nice reduction

There's a nice observation that reduces theorem 6 to the case of limit groups straight away. Suppose G is not a limit group. Then there exist elements g_1, \ldots, g_n such that any homomorphism $f: G \to \mathbb{F}$ kills one of the g_i . Now

$$\{q_i: G \to L_i = G_i/\langle\langle g_i \rangle\rangle\}$$

is a factor set for G.

Metric trees

Metric trees (also known as \mathbb{R} -trees) generalize the usual (simplicial) notion of tree. A metric space is *geodesic* if every pair of points are joined by an isometrically embedded interval.

Definition 7 A metric tree is a geodesic metric space (T,d) in which every geodesic triangle is isometric to a tripod.

Simplicial trees are clearly metric trees. Here's a non-simplicial example.

Example 8 (The SNCF metric) Consider the metric on \mathbb{R}^2 given by

$$d((x, y_1), (x, y_2)) = |y_1 - y_2|$$

and

$$d((x_1, y_1), (x_2, y_2)) = |y_1| + |x_1 - x_2| + |y_2|$$

for $x_1 \neq x_2$.

G-trees

A metric tree equipped with an action of a finitely generated group G by isometries is called a G-tree. Here we review a few of the basics of the theory of group actions on trees.

A G-tree T is trivial if there is a point of T fixed by G.

T is *minimal* if it contains no proper G-invariant subtrees.

Lemma 9 Every non-trivial G-tree contains a unique minimal subtree, which is a countable union of lines.

Cayley graphs

Let G be a group, and S a generating set. Then the *Cayley graph* of G with respect to S is the graph with vertex set G and an edge (g,h) if

$$h = gs$$

for some $s \in S$. The Cayley graph has a G-action inherited from left-multiplication by G, and a G-invariant metric given by counting the number of edges in the shortest path.

Example 10 Loops in the Cayley graph correspond to relations between the generators. So a group has a Cayley graph which is a tree if and only if it's free.

Fix a generating set for \mathbb{F} , such that its Cayley graph T is a tree. Then a homomorphism f: $G \to \mathbb{F}$ induces an action of G on T, where

$$g: t \mapsto f(g)t$$
.

Denote the minimal G-invariant subtree of T by T_f .

The space of trees

Let A(G) be the set of non-trivial minimal G-trees. It can be endowed with a topology, known as equivariant Gromov-Hausdorff topology. I won't give details of this topology here.

Let $\mathbb{P}\mathcal{A}(G)$ be the quotient space arising from identifying (T,d) with $(T,\lambda d)$ for all $\lambda>0$. The space of interest is

$$\mathfrak{I}(G) \subset \mathbb{P}\mathcal{A}(G)$$

the closure of $\{T_f|f\in \operatorname{Hom}(G,\mathbb{F})\}$, the subspace of G-trees arising from homomorphisms to \mathbb{F} .

Strategy

The strategy for proving theorem 6 is now approximately as follows.

- 1. Show that $\mathfrak{I}(G)$ is compact.
- 2. Apply compactness to the open cover

$$\mathcal{U} = \{U(k)|k \in G - \{1\}\}$$
 where $U(k) = \{T|k \in \ker T\}$.

The theorem would then follow; for by compactness, $\mathfrak{T}(G)$ is covered by

$$U(k_1),\ldots,U(k_n).$$

In particular, each homomorphism $f:G\to \mathbb{F}$ factors through one of

$$q_i: G \to L_i = G/\langle\langle k_i \rangle\rangle.$$

The slickest way to show compactness uses a technique of non-standard analysis pioneered by Gromov.

Ultralimits

An ultrafilter ω is a finitely additive set function on \mathbb{N} , such that for every $S \subset \mathbb{N}$, $\omega(S) \in \{0,1\}$. An ultrafilter is *principal* if any finite subset $S \subset \mathbb{N}$ has $\omega(S) = 1$.

Fix ω a non-principal ultrafilter (existence requires the axiom of choice). Let X be a topological space, and $x_n \in X$. Then $x = \lim_{\omega} x_n$ is the *ultralimit* of x_n if, for every open neighbourhood U of x,

$$\omega\{n\in\mathbb{N}|x_n\in U\}=1.$$

Lemma 11 If X is a compact space then every sequence has an ultralimit.

Ultraproducts

Let (X_n, d_n, x_n) be a sequence of pointed metric spaces. Let

$$Y \subset \prod X_n$$

be the subspace consisting of sequences (y_n) with $d_n(x_n, y_n)$ bounded. Then Y inherits a pseudo-metric given by

$$D((y_n),(z_n)) = \lim_{\omega} d_n(x_n,y_n).$$

The *ultraproduct* of the sequence (X_n, d_n, x_n) , denoted (X_ω, d_ω) , is the associated metric space. It has the following useful properties.

Lemma 12 Suppose all the X_n are geodesic. Then so is X_{ω} .

Suppose T_n is a sequence of trees. Then so is T_{ω} .

If each T_n admits a G-action then the induced action on Y descends to T_{ω} . Furthermore, a sequence of G-trees converges to its ultralimit in the equivariant Gromov-Hausdorff topology.

It remains to show that T_{ω} is non-trivial: then we can pass to the minimal invariant subtree. This is done by carefully choosing the basepoint and scale factor.

Fix a generating set S for G, and define σ_n : $T_n \to \mathbb{R}$ by

$$\sigma_n(x) = \max_{g \in S} d_n(x, gx).$$

Let $\delta_n = \inf_{x \in T} \sigma_n(x)$, and choose $x_n \in T_n$ to minimize σ_n . Now modify T_n by dividing the metric by δ_n . Let $t = [(t_n)] \in T_\omega$. For each t_n there exists $g \in S$ with

$$d_n(t_n, gt_n) \ge \sigma_n(x_n) = 1$$

so, by construction, for some $g \in S$,

$$d_{\omega}(t, gt) \geq 1.$$

Short automorphisms

The first part of the strategy is now complete. If the second part worked, then we could get away without modular automorphisms. The problem is that \mathcal{U} doesn't cover $\mathcal{T}(G)$.

Fix a basis S for G. For $f: G \to \mathbb{F}$, define

$$|f| = \max_{g \in S} l(f(s))$$

where l is word length in \mathbb{F} . A homomorphism f is *short* if

$$|f| < |i_c \circ f \circ \alpha|$$

for all $c \in \mathbb{F}$ and modular automorphisms α . The key is the following tricky theorem of Sela.

Theorem 13 For a sequence of short automorphisms $f_n: G \to \mathbb{F}$ with T_{f_n} converging to T, the limit action on T is not faithful.

Part 2 of our strategy now works, after restricting attention to

$$\mathfrak{I}'(G)\subset\mathfrak{I}(G)$$

the closure of the set of G-trees arising from short homomorphisms to \mathbb{F} . This completes the proof of theorem 6, and so theorem 1.

Further directions

This technique has proved very open to generalization, particularly in describing Hom(G, H) for other groups H.

- Sela has extended his work to cover word hyperbolic groups: groups whose Cayley graphs have uniformly thin triangles.
- Alibegovic has constructed Makanin-Razborov diagrams relative to limit groups.
- Groves is working on a series of papers which would generalize both of these, extending Sela's techniques to groups that are hyperbolic relative to their maximal abelian subgroups.