



### **HydEF** project

Driving the hydrology: high-resolution weather generation

Richard Chandler (<u>r.chandler@ucl.ac.uk</u>)
Chiara Ambrosino (<u>c.ambrosino@ucl.ac.uk</u>)

Department of Statistical Science University College London

Steering group meeting, 15<sup>th</sup> February 2012, Imperial College













### **UCL** role in the project



Climate (Reading)







Land surface (Imperial)



Subsurface (BGS)





### **Objectives**

- To provide high-resolution weather inputs ('weather generator'), consistent with large-scale atmospheric conditions, for input into hydro(geo)logical models
- Multi-site, multivariate, hourly series required
  - E.g. variables needed by JULES (1km² resolution?):

| Rainfall rate | Air pressure      | Snowfall rate                       | Air temperature                    |
|---------------|-------------------|-------------------------------------|------------------------------------|
| Wind speed    | Specific humidity | Downward<br>short-wave<br>radiation | Downward<br>long-wave<br>radiation |

 Impacts of changing climate assessed by generating high-resolution inputs conditioned on large-scale outputs from climate simulators e.g. GCMs







# Why not use climate simulator outputs directly?

- Spatial resolution too coarse for many applications despite improvements in regional climate models
- Expensive to obtain multiple runs (~1 month for 100-year simulation) for uncertainty assessment / accurate estimation of extremes etc.
- Reproduction of precipitation still problematic from end-user perspective
- Can't calibrate to reproduce specific features of interest in particular application







# Statistical downscaling and weather generation

- Idea: build statistical model for relationship between large-scale circulation and local-scale weather – use to generate high-resolution data conditioned on climate simulator output
- Quick to generate multiple simulations & explore uncertainties
- Can calibrate / tailor to specific applications
- BUT existing generators do not use latest methodological developments and can perform poorly – hence some criticism in literature
  - Don't confuse concept with implementation!







#### **Developments and opportunities**

- Modern developments based on generalized linear models (GLMs) allow generation of realistic daily multisite series at both gauged and ungauged locations
- Probabilistic regression-like framework allowing many different types of distribution (normal, Poisson, gamma, binomial, ...) and complex relationships
- Tried and tested for single variables GLIMCLIM software (www.homepages.ucl.ac.uk/~ucakarc/work/glimclim.html)
- Competitive with other state-of-the-art tools with respect to extremes, interannual variability, persistence etc.
- Flexible framework allows physical understanding to inform model structures (UCL-Reading collaboration)







### Challenges for project

- Extend to simultaneous generation of multiple weather variables i.e. multivariate generator
  - Need to preserve inter-variable dependencies
- Provide data at hourly resolution
  - GLMs probably not appropriate here because of strong temporal dependence (correlation) within days
- Provide user-friendly interface for model building, calibration and simulation
  - GLIMCLIM unwieldy requires manual editing of definition files
- Resource: two person-years, + 3% of PI time









- 1. Acquire data
- 2. Identify modelling strategy
- 3. Extend existing software for model calibration and simulation
- 4. Develop models for Thames and Eden









- Hourly data obtained from British Atmospheric
   Data Centre (BADC), MIDAS Met Office dataset
- Period: January 1950 February 2011
- Available variables: rainfall, snow, air pressure, air temperature, wind speed, downward SW radiation
- Missing variables: specific humidity and downward LW radiation
  - Can be derived from other variables using standard procedures from literature











## Hourly data nominally available

■ Thames: 157 stations

Eden: 35 stations

#### **BUT** ....

(following months of work to preprocess files and extract data)







### Data (III)

Not all variables actually available at each station:

|                             | Stations with data |            |  |
|-----------------------------|--------------------|------------|--|
|                             | Thames (/157)      | Eden (/35) |  |
| Precipitation               | 71                 | 16         |  |
| Pressure                    | 52                 | 7          |  |
| Temperature                 | 140                | 28         |  |
| Wind speed                  | 135                | 28         |  |
| <b>Short-wave radiation</b> | 22                 | 2          |  |

- Short record lengths for some stations / variables
- Additional daily records explored little additional data available







# Data availability example – pressure, Thames catchment

#### Proportions of available observations - Pressure









### Data availability – implications

- Scarce data for some variables ⇒ potentially large uncertainty in these variables
- Alternative data sources (e.g. gridded data products) neglect this uncertainty – what are implications for hydrological impacts?
- Approach proposed here: use multiple imputation
  - Sample "missing" data from conditional distributions conditioned on all available observations
  - GLIMCLIM provides this already for daily data can extend as part of weather generator development







### **Modelling strategy (I)**

- Identify "short cuts" so that development is feasible with resource available
- Proposed approach:
  - 1. Use GLM to generate multisite, multivariate daily series
  - 2. Disaggregate to hourly using simple representations of diurnal cycle for all variables except precipitation e.g.

$$Y_{hd} = \overline{Y}_d + \alpha_h + \varepsilon_{hd}$$
 or  $Y_{hd} = \overline{Y}_d + A_d \alpha_h + \varepsilon_{hd}$ 

where  $Y_{hd}$  is value for hour h on day d;  $\overline{Y}_d$  and  $A_d$  are 24-hourly mean and range for day d (from daily series); and  $\alpha_h$  is value of diurnal cycle at hour h

3. For precipitation, use daily-hourly disaggregation scheme already developed at Imperial College







### Partitioning of variance for dailyhourly disaggregation











# Modelling strategy (II) – daily weather generator (WG)

- NB all current multivariate WGs start with precipitation and then derive other variables – non-physical
  - Reflects limitations of statistical techniques in early 1980s
- WG here uses modern statistical methods to preserve physical relationships between variables as implemented in numerical weather prediction models (see next slide)
- WG to be driven by indices reflecting results from Reading team to generate "hydrologically interesting weather"







# Modelling strategy (III) – daily WG structure









### Software development

- GLIMCLIM evolved from code written in Fortran
   77 in mid 1990s substantially expanded since
  - Model structures, site attributes, large-scale climate covariates etc. defined via definition files
  - Manual editing required tedious and error-prone
  - Results need to be exported to other software for further processing, visualisation etc.
- Currently working on interface to R (www.Rproject.org)
  - Freely available
  - Object-oriented programming environment can write scripts to automate all procedures e.g. updating models
  - Excellent graphical facilities for visualisation etc.







### Model development

- Limited progress to date pending software development
- Preliminary results available for daily pressure in Thames catchment
  - GLM with normal distributions
  - Both mean and variance vary through time need to incorporate joint mean-variance modelling into GLIMCLIM
  - Inter-site residual correlations fairly high so imputation should be fairly precise









### Any questions?



