Weather inputs to hydrological / hydrogeological models

Richard Chandler and Chiara Ambrosino r.chandler.ucl.ac.uk, c.ambrosino@ucl.ac.uk

Department of Statistical Science, University College London

HYDEF progress meeting, Wallingford, 27th June 2012

Progress summary Example: Thames pressure modelling

Progress on project

- Software development ongoing
- Daily weather generator: fitting of joint mean-variance model now available (needed for realistic simulation of many weather variables e.g. pressure, temperature):

$$Y_{st} \sim N\left(\mu_{st}, \sigma_{st}^{2}\right)$$
$$\mu_{st} = \beta_{0} + \sum_{i=1}^{p} \beta_{i} x_{st}^{(i)}$$
$$\log \sigma_{st}^{2} = \gamma_{0} + \sum_{i=1}^{q} \gamma_{i} z_{st}^{(i)}$$

• Pressure model developed for Thames

lc

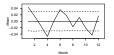
- Next three months:
 - Software for fitting multivariate models complete
 - Preliminary multivariate model development done for Thames

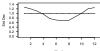
Progress summary Example: Thames pressure modelling

Example: pressure modelling for Thames

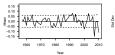
Model with constant variance

Monthly residual means



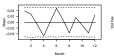


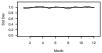
Annual residual means Annual residual standard deviations



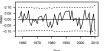
Monthly residual means

Monthly residual standard deviations

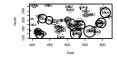




Annual residual means



Annual residual standard deviations



Richard Chandler (r.chandler@ucl.ac.uk) Weather inputs to hydrological / hydrogeological models

Scene-setting Implications for simulation Implications for calibration

Weather inputs to models: preliminaries

- In HYDEF, (sub-)daily weather data are inputs to hydrological / hydrogeological models
- Basic setup: (deterministic) model produces outputs y* as function of inputs x* and parameters θ:

$$\mathbf{y}^* = f(\mathbf{x}^*, \mathbf{\theta})$$
.

 Models & measurements are imperfect: need to acknowledge discrepancy between model output y* and observation y:

$$\textbf{y}=\textbf{y}^*+\boldsymbol{\epsilon}=\textbf{f}\left(\textbf{x}^*,\theta\right)+\boldsymbol{\epsilon}$$
 .

< ロ > < 同 > < 回 > < 回 > < 回 >

Scene-setting Implications for simulation Implications for calibration

Models: requirements and uses

- Parameter vector θ often unknown & must be estimated calibration
- Given θ and inputs x^{*}, determine outputs y^{*} or observations y simulation

Question

What if available weather inputs \mathbf{x} are not the same as the required \mathbf{x}^* ? Possible reasons:

- x is usually either station data or derived products (e.g. reanalysis)
- x* often gridded values / complete records

(日) (同) (日) (日) (日)

Scene-setting Implications for simulation Implications for calibration

More reasons why $\mathbf{x} \neq \mathbf{x}^*$

- Problems with station data:
 - Short records (particularly when simultaneous records needed)
 - Spatially inhomogeneous sampling
 - Inhomogeneities / inconsistencies due to observer practice, instrumentation, changing environment, station moves, ...
 - Errors / artefacts due to equipment failure, human / animal interference, transcription error, postprocessing, ...
 - Not all required variables recorded routinely (e.g. for evapotranspiration calculations)
 - Challenge to modellers: please be realistic in your input requirements!

Scene-setting Implications for simulation Implications for calibration

More reasons why $\mathbf{x} \neq \mathbf{x}^*$

- Problems with station data:
 - Short records (particularly when simultaneous records needed)
 - Spatially inhomogeneous sampling
 - Inhomogeneities / inconsistencies due to observer practice, instrumentation, changing environment, station moves, ...
 - Errors / artefacts due to equipment failure, human / animal interference, transcription error, postprocessing, ...
 - Not all required variables recorded routinely (e.g. for evapotranspiration calculations)
 - Challenge to modellers: please be realistic in your input requirements!
- Problems with derived products:
 - Many derived from station data \Rightarrow inherit problems above
 - Most rely on models / algorithms additional uncertainties / imperfections introduced here

Scene-setting Implications for simulation Implications for calibration

$\mathbf{x} \neq \mathbf{x}^*$: implications for simulation

- Common practice: take 'best estimate' as proxy for x* e.g. gridded data products
- Many popular products based on some form of interpolation:
 - Inverse distance weighting
 - Kriging
 - etc.

(日) (同) (日) (日) (日)

Scene-setting Implications for simulation Implications for calibration

$\mathbf{x} \neq \mathbf{x}^*$: implications for simulation

- Common practice: take 'best estimate' as proxy for x* e.g. gridded data products
- Many popular products based on some form of interpolation:
 - Inverse distance weighting
 - Kriging
 - etc.
- But:
 - Interpolated values are smoothed ⇒ variability reduced (affects, e.g., extremes)
 - Interpolation introduces artificial inhomogeneities e.g. due to different distances from nearest neighbouring gauges
 - Interpolation gives false impression of reduced uncertainty ...
- Similar criticisms apply to other forms of 'best estimate'

Scene-setting Implications for simulation Implications for calibration

Example: simulation experiment

- Simulate 30-year sequences at 12 locations (blue triangles):
 - Multi-site generalized linear model (GLM) used: identical structure at all sites
 - Sequences 'typical' of SE England
 - Spatial scale: ~ 75% of days have sites all wet or all dry, wet-day inter-site correlations ~ 0.6–0.8.

• □ ▶ • • □ ▶ • • □ ▶ • •

Scene-setting Implications for simulation Implications for calibration

Example: simulation experiment

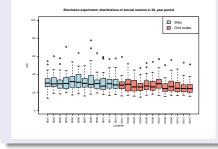
- Simulate 30-year sequences at 12 locations (blue triangles):
 - Multi-site generalized linear model (GLM) used: identical structure at all sites
 - Sequences 'typical' of SE England
 - Spatial scale: ~ 75% of days have sites all wet or all dry, wet-day inter-site correlations ~ 0.6–0.8.

- Use kriging to create gridded daily dataset from simulations
- Regular grid: 12 nodes (red squares)
- Compare annual maxima / GEV return levels for original & gridded data

Scene-setting Implications for simulation Implications for calibration

Results of simulation experiment

Distributions of annual maxima, and pooled return level estimates



Return	Estimate (mm)	
period	Original	Gridded
10 yr	44.0	38.0
50 yr	57.8	49.4
100 yr	63.9	54.4

(日) (同) (日) (日) (日)

Implications for simulation

Gridded

< ロ > < 同 > < 回 > < 回 > < 回 >

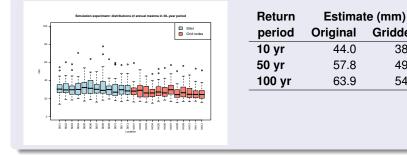
38.0

49.4

54.4

Results of simulation experiment

Distributions of annual maxima, and pooled return level estimates

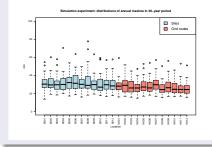


- Maxima for gridded data are smaller and less variable ۲
- Gridding reduces return level estimates by $\sim 15\%$ •

Scene-setting Implications for simulation Implications for calibration

Results of simulation experiment

Distributions of annual maxima, and pooled return level estimates



Return	Estimate (mm)	
period	Original	Gridded
10 yr	44.0	38.0
50 yr	57.8	49.4
100 yr	63.9	54.4

Actual return periods for gridded estimates: 5, 19 and 34 years

- Maxima for gridded data are smaller and less variable
- Gridding reduces return level estimates by $\sim 15\%$

Scene-setting Implications for simulation Implications for calibration

An alternative: multiple imputation

- Imputation = sampling missing data from conditional distribution given available observations
- Multiple samples quantify uncertainty due to missing data
- Interesting ideas emerging for visualisation of multiple imputations

Scene-setting Implications for simulation Implications for calibration

An alternative: multiple imputation

- Imputation = sampling missing data from conditional distribution given available observations
- Multiple samples quantify uncertainty due to missing data
- Interesting ideas emerging for visualisation of multiple imputations

Provocative proposal (with support from statistical community)

Data product creators should routinely provide multiple samples ...

(日) (同) (日) (日) (日)

Scene-setting Implications for simulation Implications for calibration

An alternative: multiple imputation

- Imputation = sampling missing data from conditional distribution given available observations
- Multiple samples quantify uncertainty due to missing data
- Interesting ideas emerging for visualisation of multiple imputations

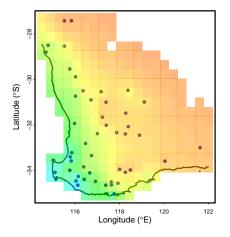
Provocative proposal (with support from statistical community)

- Data product creators should routinely provide multiple samples ...
- and should NOT provide a 'best' value

(日) (同) (日) (日) (日)

Scene-setting Implications for simulation Implications for calibration

Example: gridded precipitation

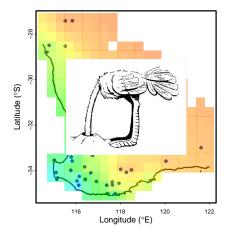


- Area: south-west Western Australia
- Observations: rainfall totals for May–October 2009, from 51 stations
- Requirement: rainfall totals on a fine regular grid
- Interpolation (kriging) yields 'best' estimate
- But estimated field doesn't look like precipitation!

< ロ > < 同 > < 回 > < 回 > < 回 >

Scene-setting Implications for simulation Implications for calibration

Example: gridded precipitation



- Area: south-west Western Australia
- Observations: rainfall totals for May–October 2009, from 51 stations
- Requirement: rainfall totals on a fine regular grid
- Interpolation (kriging) yields 'best' estimate
- But estimated field doesn't look like precipitation!

< ロ > < 同 > < 回 > < 回 > < 回 >

• Use at your own risk ...

Scene-setting Implications for simulation Implications for calibration

Visualising multiple samples: the user interface?

(idea & sampling algorithm due to Adrian Bowman, University of Glasgow)

イロト イポト イヨト イヨト

Scene-setting Implications for simulation Implications for calibration

$\mathbf{x} \neq \mathbf{x}^*$: implications for calibration

- Recall: goal of calibration is to identify appropriate value of parameters θ
- Given observations y and (perfect) inputs x*, calibration usually performed by optimising some objective function:

$$\hat{\pmb{ heta}} = {\sf arg min}_{\pmb{ heta}} \; {\pmb{ heta}}(\pmb{ heta}; \pmb{ heta}, \pmb{ heta}^*), \, {\sf say}.$$

- Q(·) chosen to penalise differences between observations y and model outputs y* = f(x*, θ):
 - Weighted or unweighted least-squares criterion
 - Negative log-likelihood
 - Etc.

Progress Scene-setting Uncertainty in weather inputs to models Implications for simulation Discussion points Implications for calibration

Example: least-squares fitting of a straight line

• Model:
$$\mathbf{y}^* = (y_1^* \dots y_n^*)'$$
 etc.,

$$y_i^* = \alpha + \beta x_i^* .$$

- Parameter vector is $\theta = (\alpha \beta)'$.
- Least-squares objective function is

$$Q(\boldsymbol{\theta}; \mathbf{y}, \mathbf{x}^*) = \sum_{i=1}^n (y_i - \alpha - \beta x_i^*)^2 ,$$

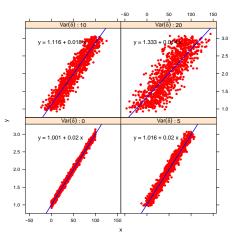
which gives accurate and unbiased estimates of θ under general conditions if *n* is large.

What if $\mathbf{x} \neq \mathbf{x}^*$ and we minimise $Q(\theta; \mathbf{y}, \mathbf{x})$ instead of $Q(\theta; \mathbf{y}, \mathbf{x}^*)$?

Scene-setting Implications for simulation Implications for calibration

$\mathbf{x} \neq \mathbf{x}^*$: effect on fitting a straight line

- Model: $y_i^* = 1 + 0.02x_i^*$ but only have $x_i = x_i^* + \delta_i$ for $x_i^* = 1, ..., 100$
- Take $\delta \sim \textit{N}(0,\sigma^2)$ with $\sigma^2 = 0,5,10,20$
- Take $y_i \sim N(y_i^*, 0.05^2)$
- NB intercept increases & slope decreases as x diverges from x*
- Result holds generally for linear regression models ('regression dilution bias'); similar issues for more complex models



< ロ > < 同 > < 回 > < 回 > < 回 >

Scene-setting Implications for simulation Implications for calibration

Confronting the calibration problem

- Previous examples show that ignoring errors / uncertainty in inputs can lead to biased / non-physical model calibration
- How to address this? Ideas from statistical literature:
 - SIMEX (SIMulation-based EXtrapolation) add extra noise to inputs and then extrapolate back to zero noise
 - Bayesian methods represent all quantities explicitly (computationally challenging)
 - Estimating equations cheap and cheerful?

Scene-setting Implications for simulation Implications for calibration

Estimating equations in 2 minutes

- Idea: calibration often done by solving estimating equation
 g(θ; x, y) = 0 (NB objective function optimisation covered by this
 -- g(·) is gradient vector).
- If 'target' value of θ is θ₀ i.e. y^{*} = f(x^{*}, θ₀ then unbiased estimating equation has E[g(θ₀; x, y)] = 0.
 - Expectation implies probability distribution uncontroversial if multiple sets of observations (x, y) are possible given same set of model quantities (x*, y*).
- Under fairly general conditions, unbiased estimating equations lead to decent estimators of θ in large samples.
- Details: Jesus & REC, Interface Focus 2011.
- Implication: bias-correct the estimating equation for x ≠ x*, and correction of θ̂ will follow.

イロト イポト イヨト イヨト

Progress Scene-setting Uncertainty in weather inputs to models Implications for simulation Discussion points Implications for calibration

Example: bias-correcting the linear regression model (I)

- Given y_i^{*} = α₀ + β₀x_i^{*}, y_i = y_i^{*} + ε_i, x_i = x_i^{*} + δ_i, δ_i ~ N(0, σ²), might consider minimising least-squares objective function as before
- Leads to estimating equation

$$\mathbf{g}(\boldsymbol{\theta}; \mathbf{x}, \mathbf{y}) = \mathbf{X}' \left(\mathbf{y} - \mathbf{X} \boldsymbol{\theta} \right) = \mathbf{0} \Rightarrow \hat{\boldsymbol{\theta}} = \left(\mathbf{X}' \mathbf{X} \right)^{-1} \mathbf{X}' \mathbf{y} \; ,$$

where
$$\theta = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$
 and $\mathbf{X}' = \begin{pmatrix} 1 & \cdots & 1 \\ x_1 & \cdots & x_n \end{pmatrix}$

• At 'target' value $\theta_0 = (\alpha_0 \; \beta_0)',$ can show that

$$\mathbb{E}\left[\boldsymbol{g}\left(\boldsymbol{\theta}_{0};\boldsymbol{x},\boldsymbol{y}\right)\right]=-\left(\begin{array}{cc}\boldsymbol{0} & \boldsymbol{0}\\ \boldsymbol{0} & \boldsymbol{n\sigma}^{2}\end{array}\right)\boldsymbol{\theta}_{0}=-\boldsymbol{V}\boldsymbol{\theta}_{0}\;(\text{say})\;\neq\boldsymbol{0}\;,$$

so estimating equation is biased.

Progress Scene-setting Uncertainty in weather inputs to models Implications for simulation Discussion points Implications for calibration

Example: bias-correcting the linear regression model (II)

Previous result shows that

 $\mathbb{E}\left[\textbf{g}\left(\theta_{0} ; \textbf{x}, \textbf{y}\right)\right] = \mathbb{E}\left[\textbf{X}'\left(\textbf{y} - \textbf{X}\theta_{0}\right)\right] = -\textbf{V}\theta_{0} \; .$

Suggests modifying the estimating equation to

 $\tilde{\mathbf{g}}\left(\boldsymbol{\theta}; \mathbf{x}, \mathbf{y}\right) = \mathbf{X}'\left(\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\right) + \mathbf{V}\boldsymbol{\theta} = \mathbf{0} \ ,$

which is unbiased.

- Corresponding estimator is $\tilde{\theta} = (\mathbf{X}'\mathbf{X} \mathbf{V})^{-1} \mathbf{X}' \mathbf{y}$ instead of least-squares estimator $\hat{\theta} = (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \mathbf{y}$
- NB need to know V but this should come with uncertainty assessment for weather inputs
- Various refinements possible; standard errors available etc.

Scene-setting Implications for simulation Implications for calibration

Example: bias-correcting the linear regression model (III)

Simulation example revisited

Setup as before, but now with

 $n = 1000, x_1^* = 0.1, x_2^* = 0.2, \dots, x_{1000}^* = 100$ to show effect more clearly. Target values: $\alpha_0 = 1$, $\beta_0 = 0.02$. βŝ β ά $Var(\delta)$ ã 1.001 0.020 1.001 0 0.020 5 1.016 0.020 0.986 0.020 10 1.116 0.018 1.015 0.020 1.333 0.014 1.022 0.020 20

Discussion points

- How do you feel about working with multiple samples of weather inputs?
- Simulation under uncertain weather inputs is definitely an issue for HYDEF. What about calibration?
- What is done in the hydrological / hydrogeological communities about this at present?
- Any better ideas?