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Progress on project

Software development ongoing
Daily weather generator: fitting of joint mean-variance model now
available (needed for realistic simulation of many weather
variables e.g. pressure, temperature):

Yst ∼ N
(
µst ,σ

2
st

)
µst = β0 +

p

∑
i=1

βix
(i)
st

logσ
2
st = γ0 +

q

∑
i=1

γiz
(i)
st

Pressure model developed for Thames
Next three months:

Software for fitting multivariate models complete
Preliminary multivariate model development done for Thames
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Example: pressure modelling for Thames

Model with constant variance Joint mean-variance model
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Weather inputs to models: preliminaries

In HYDEF, (sub-)daily weather data are inputs to hydrological /
hydrogeological models

Basic setup: (deterministic) model produces outputs y∗ as
function of inputs x∗ and parameters θ:

y∗ = f (x∗,θ) .

Models & measurements are imperfect: need to acknowledge
discrepancy between model output y∗ and observation y:

y = y∗+ ε = f (x∗,θ)+ ε .
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Models: requirements and uses

Parameter vector θ often unknown & must be estimated —
calibration

Given θ and inputs x∗, determine outputs y∗ or observations y —
simulation

Question

What if available weather inputs x are not the same as the required x∗?
Possible reasons:

x is usually either station data or derived products (e.g. reanalysis)

x∗ often gridded values / complete records

Richard Chandler (r.chandler@ucl.ac.uk) Weather inputs to hydrological / hydrogeological models
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More reasons why x 6= x∗

Problems with station data:
Short records (particularly when simultaneous records needed)
Spatially inhomogeneous sampling
Inhomogeneities / inconsistencies due to observer practice,
instrumentation, changing environment, station moves, . . .
Errors / artefacts due to equipment failure, human / animal
interference, transcription error, postprocessing, . . .
Not all required variables recorded routinely (e.g. for
evapotranspiration calculations)

Challenge to modellers: please be realistic in your input
requirements!

Problems with derived products:
Many derived from station data⇒ inherit problems above
Most rely on models / algorithms — additional uncertainties /
imperfections introduced here

Richard Chandler (r.chandler@ucl.ac.uk) Weather inputs to hydrological / hydrogeological models
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x 6= x∗: implications for simulation

Common practice: take ‘best estimate’ as proxy for x∗ e.g.
gridded data products
Many popular products based on some form of interpolation:

Inverse distance weighting
Kriging
etc.

But:
Interpolated values are smoothed⇒ variability reduced (affects,
e.g., extremes)
Interpolation introduces artificial inhomogeneities e.g. due to
different distances from nearest neighbouring gauges
Interpolation gives false impression of reduced uncertainty . . .

Similar criticisms apply to other forms of ‘best estimate’

Richard Chandler (r.chandler@ucl.ac.uk) Weather inputs to hydrological / hydrogeological models
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Example: simulation experiment

Simulate 30-year sequences at 12 locations
(blue triangles):

Multi-site generalized linear model (GLM)
used: identical structure at all sites
Sequences ‘typical’ of SE England
Spatial scale: ∼ 75% of days have sites all
wet or all dry, wet-day inter-site correlations
∼ 0.6–0.8.
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Gauge Grid node

Map of simulation region

Use kriging to create gridded daily dataset from simulations

Regular grid: 12 nodes (red squares)

Compare annual maxima / GEV return levels for original & gridded
data
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Results of simulation experiment

Distributions of annual maxima, and pooled return level estimates
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Simulation experiment: distributions of annual maxima in 30−year period

Sites

Grid nodes

Return Estimate (mm)
period Original Gridded
10 yr 44.0 38.0
50 yr 57.8 49.4
100 yr 63.9 54.4

Actual return periods for gridded
estimates: 5, 19 and 34 years

Maxima for gridded data are smaller and less variable

Gridding reduces return level estimates by ∼ 15%
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An alternative: multiple imputation

Imputation = sampling missing data from conditional distribution
given available observations

Multiple samples quantify uncertainty due to missing data

Interesting ideas emerging for visualisation of multiple
imputations

Provocative proposal (with support from statistical community)

Data product creators should routinely provide multiple samples . . .

and should NOT provide a ‘best’ value

Richard Chandler (r.chandler@ucl.ac.uk) Weather inputs to hydrological / hydrogeological models
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Example: gridded precipitation
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Area: south-west Western Australia

Observations: rainfall totals for
May–October 2009, from 51 stations

Requirement: rainfall totals on a fine
regular grid

Interpolation (kriging) yields ‘best’
estimate

But estimated field doesn’t look like
precipitation!

Use at your own risk . . .
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Visualising multiple samples: the user interface?

(idea & sampling algorithm due to Adrian Bowman, University of Glasgow)

Richard Chandler (r.chandler@ucl.ac.uk) Weather inputs to hydrological / hydrogeological models



university-logo

Progress
Uncertainty in weather inputs to models

Discussion points

Scene-setting
Implications for simulation
Implications for calibration

x 6= x∗: implications for calibration

Recall: goal of calibration is to identify appropriate value of
parameters θ

Given observations y and (perfect) inputs x∗, calibration usually
performed by optimising some objective function:

θ̂ = arg minθ Q (θ;y,x∗) , say.

Q( ·) chosen to penalise differences between observations y and
model outputs y∗ = f (x∗,θ):

Weighted or unweighted least-squares criterion
Negative log-likelihood
Etc.

Richard Chandler (r.chandler@ucl.ac.uk) Weather inputs to hydrological / hydrogeological models
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Example: least-squares fitting of a straight line

Model: y∗ = (y∗1 . . . y∗n )
′ etc.,

y∗i = α+βx∗i .

Parameter vector is θ = (α β)′.

Least-squares objective function is

Q (θ;y,x∗) =
n

∑
i=1

(yi −α−βx∗i )
2 ,

which gives accurate and unbiased estimates of θ under general
conditions if n is large.

What if x 6= x∗ and we minimise Q (θ;y,x) instead of Q (θ;y,x∗) ?

Richard Chandler (r.chandler@ucl.ac.uk) Weather inputs to hydrological / hydrogeological models
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x 6= x∗: effect on fitting a straight line

Model: y∗i = 1+0.02x∗i but only
have xi = x∗i +δi for
x∗i = 1, . . . ,100

Take δ∼ N(0,σ2) with
σ2 = 0,5,10,20

Take yi ∼ N(y∗i ,0.052)

NB intercept increases & slope
decreases as x diverges from x∗

Result holds generally for linear
regression models (‘regression
dilution bias’); similar issues for
more complex models x

y
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Confronting the calibration problem

Previous examples show that ignoring errors / uncertainty in
inputs can lead to biased / non-physical model calibration
How to address this? Ideas from statistical literature:

SIMEX (SIMulation-based EXtrapolation) — add extra noise to
inputs and then extrapolate back to zero noise
Bayesian methods — represent all quantities explicitly
(computationally challenging)
Estimating equations — cheap and cheerful?

Richard Chandler (r.chandler@ucl.ac.uk) Weather inputs to hydrological / hydrogeological models
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Estimating equations in 2 minutes

Idea: calibration often done by solving estimating equation
g(θ;x,y) = 0 (NB objective function optimisation covered by this
— g( ·) is gradient vector).
If ‘target’ value of θ is θ0 i.e. y∗ = f (x∗,θ0 then unbiased
estimating equation has E [g(θ0;x,y)] = 0.

Expectation implies probability distribution — uncontroversial if
multiple sets of observations (x,y) are possible given same set of
model quantities (x∗,y∗).

Under fairly general conditions, unbiased estimating equations
lead to decent estimators of θ in large samples.

Details: Jesus & REC, Interface Focus 2011.

Implication: bias-correct the estimating equation for x 6= x∗, and
correction of θ̂ will follow.

Richard Chandler (r.chandler@ucl.ac.uk) Weather inputs to hydrological / hydrogeological models
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Example: bias-correcting the linear regression model (I)

Given y∗i = α0 +β0x∗i , yi = y∗i + εi , xi = x∗i +δi , δi ∼ N(0,σ2),
might consider minimising least-squares objective function as
before

Leads to estimating equation

g(θ;x,y) = X′ (y−Xθ) = 0⇒ θ̂ =
(
X′X

)−1
X′y ,

where θ =

(
α

β

)
and X′ =

(
1 · · · 1
x1 · · · xn

)
At ‘target’ value θ0 = (α0 β0)

′, can show that

E [g(θ0;x,y)] =−
(

0 0
0 nσ2

)
θ0 =−Vθ0 (say) 6= 0 ,

so estimating equation is biased.

Richard Chandler (r.chandler@ucl.ac.uk) Weather inputs to hydrological / hydrogeological models
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Example: bias-correcting the linear regression model (II)

Previous result shows that

E [g(θ0;x,y)] = E
[
X′ (y−Xθ0)

]
=−Vθ0 .

Suggests modifying the estimating equation to

g̃(θ;x,y) = X′ (y−Xθ)+Vθ = 0 ,

which is unbiased.

Corresponding estimator is θ̃ = (X′X−V)−1 X′y instead of
least-squares estimator θ̂ = (X′X)−1 X′y

NB need to know V — but this should come with uncertainty
assessment for weather inputs

Various refinements possible; standard errors available etc.

Richard Chandler (r.chandler@ucl.ac.uk) Weather inputs to hydrological / hydrogeological models
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Example: bias-correcting the linear regression model (III)

Simulation example revisited

Setup as before, but now with
n = 1000,x∗1 = 0.1,x∗2 = 0.2, . . . ,x∗1000 = 100 to show effect more clearly.

Target values: α0 = 1, β0 = 0.02.

Var(δ) α̂ β̂ α̃ β̃

0 1.001 0.020 1.001 0.020
5 1.016 0.020 0.986 0.020

10 1.116 0.018 1.015 0.020
20 1.333 0.014 1.022 0.020

Richard Chandler (r.chandler@ucl.ac.uk) Weather inputs to hydrological / hydrogeological models
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Discussion points

How do you feel about working with multiple samples of weather
inputs?

Simulation under uncertain weather inputs is definitely an issue
for HYDEF. What about calibration?

What is done in the hydrological / hydrogeological communities
about this at present?

Any better ideas?

Richard Chandler (r.chandler@ucl.ac.uk) Weather inputs to hydrological / hydrogeological models
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