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Progress
Progress summary

Example: Thames pressure modelling

Progress on project

@ Software development ongoing

@ Daily weather generator: fitting of joint mean-variance model now
available (needed for realistic simulation of many weather
variables e.g. pressure, temperature):

Yst ~ N(Hsnﬁgt)

o ()
Ust = Bo*i‘ZBiXst
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@ Pressure model developed for Thames
@ Next three months:
e Software for fitting multivariate models complete
e Preliminary multivariate model development done for Thames
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Example: Thames pressure modelling

Example: pressure modelling for Thames

Model with constant variance Joint mean-variance model

Monthly residual means Monthly residual standard deviations Monthly residual means Monthly residual standard deviations
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Scene-setting
Uncertainty in weather inputs to models Implications for simulation
Implications for calibration

Weather inputs to models: preliminaries

@ In HYDEF, (sub-)daily weather data are inputs to hydrological /
hydrogeological models

@ Basic setup: (deterministic) model produces outputs y* as
function of inputs x* and parameters 6:

y =1(x*,0).

@ Models & measurements are imperfect: need to acknowledge
discrepancy between model output y* and observation y:

y=y"'+e=1f(x*0)+¢ .
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Models: requirements and uses

@ Parameter vector 6 often unknown & must be estimated —
calibration

@ Given 0 and inputs x*, determine outputs y* or observations y —
simulation

What if available weather inputs x are not the same as the required x*?
Possible reasons:

@ X is usually either station data or derived products (e.g. reanalysis)
@ x* often gridded values / complete records
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More reasons why x = x*

@ Problems with station data:

e Short records (particularly when simultaneous records needed)

e Spatially inhomogeneous sampling

e Inhomogeneities / inconsistencies due to observer practice,
instrumentation, changing environment, station moves, ...

e Errors / artefacts due to equipment failure, human / animal
interference, transcription error, postprocessing, . ..

e Not all required variables recorded routinely (e.g. for
evapotranspiration calculations)

@ Challenge to modellers: please be realistic in your input
requirements!
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More reasons why x = x*

@ Problems with station data:

e Short records (particularly when simultaneous records needed)

e Spatially inhomogeneous sampling

e Inhomogeneities / inconsistencies due to observer practice,
instrumentation, changing environment, station moves, ...

e Errors / artefacts due to equipment failure, human / animal
interference, transcription error, postprocessing, . ..

e Not all required variables recorded routinely (e.g. for
evapotranspiration calculations)

@ Challenge to modellers: please be realistic in your input
requirements!
@ Problems with derived products:

e Many derived from station data = inherit problems above
e Most rely on models / algorithms — additional uncertainties /
imperfections introduced here
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X 7 X*: implications for simulation

@ Common practice: take ‘best estimate’ as proxy for x* e.g.
gridded data products
@ Many popular products based on some form of interpolation:

e Inverse distance weighting
e Kriging
e etc.
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X 7 X*: implications for simulation

@ Common practice: take ‘best estimate’ as proxy for x* e.g.
gridded data products
@ Many popular products based on some form of interpolation:
e Inverse distance weighting
e Kriging
e etc.
@ But:
e Interpolated values are smoothed = variability reduced (affects,
e.g., extremes)
e Interpolation introduces artificial inhomogeneities e.g. due to
different distances from nearest neighbouring gauges
e Interpolation gives false impression of reduced uncertainty ...

@ Similar criticisms apply to other forms of ‘best estimate’
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Example: simulation experiment

@ Simulate 30-year sequences at 12 locations

. vV v
(blue triangles): o BgB °
o . . vV v
o Multi-site generalized linear model (GLM) v
used: identical structure at all sites e 3
e Sequences ‘typical’ of SE England v v
e Spatial scale: ~ 75% of days have sites all o o o
wet or all dry, wet-day inter-site correlations  [f= = o] @

~ 0.6-0.8.

Richard Chandler 1k) Weather inputs to hydrological / hydrogeological models



Scene-setting
Uncertainty in weather inputs to models Implications for simulation
Implications for calibration

Example: simulation experiment

@ Simulate 30-year sequences at 12 locations

. v
(blue triangles): o iR o
o Multi-site generalized linear model (GLM) v
used: identical structure at all sites 8 B v
e Sequences ‘typical’ of SE England v v
e Spatial scale: ~ 75% of days have sites all o o
wet or all dry, wet-day inter-site correlations g =)

~ 0.6-0.8.
@ Use kriging to create gridded daily dataset from simulations

@ Regular grid: 12 nodes (red squares)

@ Compare annual maxima / GEV return levels for original & gridded
data
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Results of simulation experiment

Distributions of annual maxima, and pooled return level estimates

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Return Estimate (mm)
period Original Gridded
. 10 yr 44.0 38.0
R e SRS 50 yr 57.8 49.4
SRR L S A 100 yr 63.9 54.4
| e e etes :

5555558338333
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Results of simulation experiment

Distributions of annual maxima, and pooled return level estimates

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Return Estimate (mm)
period Original Gridded
. 10 yr 44.0 38.0
R e SRS 50 yr 57.8 49.4
SRR L S A 100 yr 63.9 54.4
| e e etes :
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@ Maxima for gridded data are smaller and less variable
@ Gridding reduces return level estimates by ~ 15%
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Results of simulation experiment

Distributions of annual maxima, and pooled return level estimates

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Return Estimate (mm)
period Original Gridded
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estimates: 5, 19 and 34 years

@ Maxima for gridded data are smaller and less variable
@ Gridding reduces return level estimates by ~ 15%
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An alternative: multiple imputation

@ Imputation = sampling missing data from conditional distribution
given available observations

@ Multiple samples quantify uncertainty due to missing data

@ Interesting ideas emerging for visualisation of multiple
imputations
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An alternative: multiple imputation

@ Imputation = sampling missing data from conditional distribution
given available observations

@ Multiple samples quantify uncertainty due to missing data

@ Interesting ideas emerging for visualisation of multiple
imputations

Provocative proposal (with support from statistical community)

@ Data product creators should routinely provide multiple samples ...
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An alternative: multiple imputation

@ Imputation = sampling missing data from conditional distribution
given available observations

@ Multiple samples quantify uncertainty due to missing data

@ Interesting ideas emerging for visualisation of multiple
imputations

Provocative proposal (with support from statistical community)

@ Data product creators should routinely provide multiple samples ...
@ and should NOT provide a ‘best’ value
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Example: gridded precipitation

@ Area: south-west Western Australia

-28

@ Observations: rainfall totals for
May—October 2009, from 51 stations

-30

@ Requirement: rainfall totals on a fine
regular grid

Latitude (°S)

@ Interpolation (kriging) yields ‘best’
estimate

-32

@ But estimated field doesn’t look like
precipitation!

-34

116 118 120 122
Longitude (°E)
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Example: gridded precipitation

@ Area: south-west Western Australia

-28

@ Observations: rainfall totals for
May—October 2009, from 51 stations

-30

@ Requirement: rainfall totals on a fine
regular grid

Latitude (°S)

@ Interpolation (kriging) yields ‘best’
estimate

-32

@ But estimated field doesn’t look like
precipitation!

-34

@ Use at your ownrisk ...

116 118 120 122
Longitude (°E)
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Visualising multiple samples: the user interface?

Latitude (°S)

-28

-30

-32

-34

116 118 120 122
Longitude (°E)
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(idea & sampling algorithm due to Adrian Bowman, University of Glasgow)
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X ## X*: implications for calibration

@ Recall: goal of calibration is to identify appropriate value of
parameters 6

@ Given observations y and (perfect) inputs x*, calibration usually
performed by optimising some objective function:

~

0 = arg ming Q(0;y,x"), say.

@ Q(-) chosen to penalise differences between observations y and
model outputs y* = f(x*,0):
o Weighted or unweighted least-squares criterion
o Negative log-likelihood
e Etc.
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Example: least-squares fitting of a straight line

e Model: y* = (y; ... y¥) etc.,
yi = o+ px;

@ Parameter vector is 6 = (. B)'.
@ Least-squares objective function is

Q(6;y,x%) Xn: — 0 — Bx)

which gives accurate and unbiased estimates of © under general
conditions if nis large.

What if x # x* and we minimise Q(6;y,x) instead of Q(8;y,x*) ?
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x # x*: effect on fitting a straight line

*] MOdel yl* = 1 +002XI* but Only ‘ ‘—‘50 ? 5‘0 1?0 1?0
have x; = X + &, for | e e
X;k — 1 e 100 | y—1.116+0?18~. " y71.333+.?.:(.7.rd@_:’ “ N

e Take & ~ N(0,02) with ]
62 =0,5,10,20 ]

@ Take y; ~ N(y;,0.05%) 1

> Var(3) : 0 Var(3) : 5

@ NB intercept increases & slope
decreases as x diverges from x* .

y=1.001 +0.02 x y=1.016+0.02 x ,

@ Result holds generally for linear — *°]
regression models (‘regression
dilution bias’); similar issues for
more complex models x
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Confronting the calibration problem

@ Previous examples show that ignoring errors / uncertainty in
inputs can lead to biased / non-physical model calibration
@ How to address this? Ideas from statistical literature:
e SIMEX (SIMulation-based EXtrapolation) — add extra noise to
inputs and then extrapolate back to zero noise
e Bayesian methods — represent all quantities explicitly
(computationally challenging)
e Estimating equations — cheap and cheerful?
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Estimating equations in 2 minutes

@ l|dea: calibration often done by solving estimating equation
g(0;x,y) = 0 (NB objective function optimisation covered by this
— g(-) is gradient vector).

o If ‘target’ value of 0 is 0 i.e. y* = f(x*, 6o then unbiased
estimating equation has E [g (6¢;x,y)] = 0.

e Expectation implies probability distribution — uncontroversial if
multiple sets of observations (x,y) are possible given same set of
model quantities (x*,y*).

@ Under fairly general conditions, unbiased estimating equations

lead to decent estimators of 0 in large samples.

@ Details: Jesus & REC, Interface Focus 2011.

@ Implication: bias-correct the estimating equation for x # x*, and
correction of 6 will follow.
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Example: bias-correcting the linear regression model (l)

® Given y; = 0o+ Pox/, yi =y +&;, xi = X\ +§;, § ~ N(0,6?),
might consider minimising least-squares objective function as
before

@ Leads to estimating equation

g(8;x,y) =X (y—X0)=0=06= (X’X)_1X’y,

where6:<u> and X’:<1 1)
B X1 Y Xn

@ At ‘target value 8y = (0 Bo)’, can show that

0 O
0 no

E[g (60:x,)] = — ( . )90 — VO, (say) #0.

s0 estimating equation is biased.
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Example: bias-correcting the linear regression model (ll)

@ Previous result shows that
E[g(60;x,y)] =E [X'(y — X6)] = —V6y .
@ Suggests modifying the estimating equation to
g(8;x,y) =X'(y—X6)+V6=0,

which is unbiased.

@ Corresponding estimator is 6 = (XX — V)~ ' X'y instead of
least-squares estimator 6 = (X'X) ' X'y

@ NB need to know V — but this should come with uncertainty
assessment for weather inputs

@ Various refinements possible; standard errors available etc.
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Example: bias-correcting the linear regression model (lll)

Simulation example revisited

Setup as before, but now with
n=1000,x; =0.1,x; =0.2,...,X]y0 = 100 to show effect more clearly.
Target values: 0 = 1, o = 0.02.

n ~

Var(d) a B o B
0| 1.001 0.020 | 1.001 0.020
51 1.016 0.020 | 0.986 0.020
10 | 1.116 0.018 | 1.015 0.020
20 | 1.333 0.014 | 1.022 0.020
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Discussion points

Discussion points

@ How do you feel about working with multiple samples of weather
inputs?

@ Simulation under uncertain weather inputs is definitely an issue
for HYDEF. What about calibration?

@ What is done in the hydrological / hydrogeological communities
about this at present?

@ Any better ideas?
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