

Hydrological extremes and feedbacks in the changing water cycle (HydEF)

Imperial College London British Geological Survey University of Reading University College London

Board meeting 2, February 15th 2012, Imperial College

The role of groundwater in the changing water cycle for the Thames and Eden catchments: An update of BGS activities

Imperial College- 15th February 2012 Denis Peach, Chris Jackson, Stephanie Bricker and Andrew Hughes

HydEF – Summary of BGS' tasks

Catchment	Area	Geology	lssue	Current	Approach
				understanding	
Eden	DTC test	Permo-	Groundwater	Good -	Develop CM and GW model –
	catchments	Triassic	availability	background u/s	recharge through superficials likely to
		Sandstone	during drought	Limited – DTC	be higher important
		overlain by		catchments	
		superficials			
Thames	Oxford	Oxford Clay	Groundwater	Very good	Build on existing
		overlain by	flooding		understanding/model
		superficials			
	Pang and	Chalk	Groundwater	Very good	Build on existing
	Lambourn	overlain by	flooding and		understanding/model
		superficials	drought		
	Cotswolds	Sub-karstic	Baseflow to	Limited	Develop understanding of whole area
	Jurassics	limestone	River Thames		then apply simplified approach.
		and	during		
		complex	droughts		
		structure			
	Colne	Chalk	Behaviour of	Good in	Extend MaBSWeC to east by one
	Valley	overlain by	adited sources	valleys, poor	catchment and then develop
		superficials	during	elsewhere	understanding/simulation of adited
			droughts		sources in the Colne Valley.
Isle of Wight	Chalk	Cretaceous	Groundwater	Good -	Develop understanding of whole area
		overlain by	availability	background u/s	then support PhD student.
		superficials	during drought		

HydEF – Eden Valley

- Geological understanding: Catchment scale, Lazonby Gorge and granulation seams
- Hydrogeological understanding – DTC
- Project-based: conceptualisation

© NERC All rights reserved

Geological materials © Nerc. All rights reserved. Topography © Crown Copyright reserved.

NATURAL ENVIRONMENT RESEARCH COUNCIL

HydEF – Oxford

- Model composition under development
- BGS now has RS Infoworks licence for 1 years and model files
- Linked model only north of Botley Road
- Issue over representation of flood plain storage

© NERC All rights reserved

Pang - Lambourn

MSc project on Blue Pool (Tim Foster - Imperial)

- Dual response system rapid karstic flow chalk, sustained diffuse flow from palaeogene and chalk
- Model for diffuse & point recharge and rapid & sustained flow

as well as for Palaeogene springs samples on the Reading Beds (from Wheater et al, 2006).

Pang - Lambourn

Drilling project (BGS funded)

- To assess the contribution of the Palaeogene deposits to the Blue Pool
- Two boreholes side by side (one chalk, one Palaeogene)

Another MSc project to follow on from the work Tim did.

Cotswolds

MSc Project - hydro conceptualisation and neural networks (Katy James – Cardiff Uni)

Cotswolds

MSc Project - hydro conceptualisation and neural networks (Katy James - Cardiff Uni)

Cotswolds

- Water balances
- Lithological vs structural control on flow
- Stream head migration
- Flow accretion profiles

Catchment	Water balance		
Cotswolds @ Farmoor	- 20 MI/d – springs (Deficit)		

Water balance	MI/d
Inferior Oolite	+ 8
Great Oolite	+ 112
Abstraction (non-Oolite)	- 22
Springs (Estimated)	- 52
Outflow to R. Frome (E)	- 35
Total	+11 MI/d (~balanced)

© NERC All rights reserved

Cotswolds, next steps...

- BGS funded 3D geological model
- More interpretation of existing hydro data and integrate with 3D model
- MSc project field based, Birmingham University
- Abstract accepted at the IAH Fractured Rock conference in Prague, May 2012
- Paper using a geological framework to underpin hydrogeology understanding of extremes

HydEF – Cotswolds groundwater modelling

- Developing semi-distributed model of aquifer system.
- Will be incorporated into multi-aquifer model of Thames catchment.
- OpenMI compliant code almost complete.

HydEF – Complexity

Spatial variability in extreme events

- Rainfall extremes exhibit high variability – even across (relatively) modest sized basin
- Hydrogeology impacts on flood response
- Variation of rainfall anomalies during droughts

HydEF – Complexity

HydEF – Thames catchment multi-model composition

HydEF – next steps

- Eden Continue to support MEng student and await PDRA (interviews 12th/13th march)
- Pang/Lambourn Blue Pool modelling supported by drilling the borehole
- Thames Basin finalise paper and continue develop a multi-model composition
- Colne Start!!
- Cotswolds continue with modelling
- Oxford Continue to develop linked GW-SW model
- IOW support through hydrogeologists at Wallingford/Geologists at Keyworth as appropriate

