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Deep learning diagnostic framework Generalised feature

Validated with three leading battery chemistries
aged under different conditions Q Almost all aging paths covered in the trained CNN

Q Suitable for any battery chemistry

U The diagnostic time for each OCV measurement of every battery is < 0.012 s
0 Demonstrated on multiple battery chemistry
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CNN: Convolutional neural network;OCV: Open circuit voltage; DM: Degradation mode; LLI: Loss of lithium inventory; LAMye: LAM in negative electrode; LAMp:: LAM in positive electrode; RI: Resistance increase; LAM: Loss of active material; NMC: LiNi,Mn,Coy ,.,O,/Graphite; LFP: LiFePO,/Graphite; NCA: LiNi,Co,Al,.,0, /Graphite
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