Mechanistic Model of Lithiation and Delithiation in Silicon

Yang Jiang¹, Gregory Offer^{1,2}, Jun Jiang¹, Monica Marinescu^{1,2}, Huizhi Wang¹

¹ Department of Mechanical Engineering, Imperial College London (✓: j.jiang@imperial.ac.uk)

Introduction. Silicon has been an attractive alternative to graphite as an anode material in lithium-ion batteries. Here we report a new mechanistic model of silicon multi-step phase transformations, crystallization and anodes considering amorphization. The asymmetric voltage hysteresis of silicon is reproduced, the abrupt appearance of the crystalline Li-Si phase in lithiation and its gradual disappearance in de-lithiation are retrieved.

1. Unique behaviors

Heterogeneous amorphization

Homogeneous crystallization

3. Simulation results

Voltage curves

o-a-Li,Si

a-Li, Si,

← c-Li,Si,

Growth of c-Li₁₅Si₄ in lithiation

Intensity of c-Li₁₅Si₄ (332)⁸

▶ Intensity of e-Li₁₅Si₄ (431) 8

Amorphization of c-Li₁₅Si₄ in delithiation

2. Reaction pathways

Conclusions. A mechanistic model is developed for silicon anodes. processes of phase transformations, crystallization and amorphization underlying the electrode behaviors are resolved in the model. Comparisons show a good agreement between the model and experimental results.

² The Faraday Institution