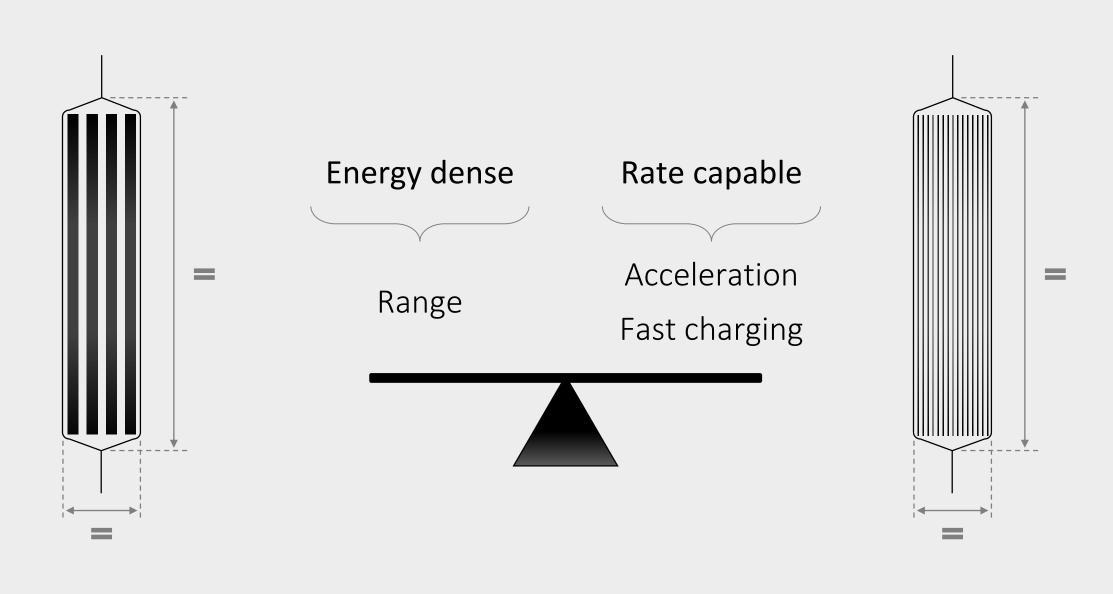
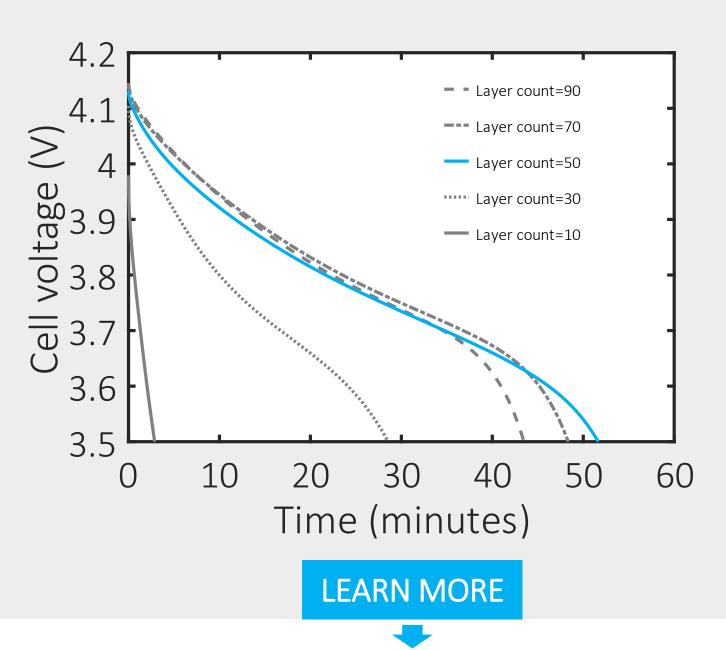
Imperial College London

Optimising Li-ion Cell Layers Rapid Cell Design For EV Fast Charging


Ian D. Campbell*, Krishnakumar Gopalakrishnan, Dr. Monica Marinescu, Dr. Marcello Torchio, Dr. Gregory J. Offer, Prof. Davide Raimondo


@lan_Campbell1

@Imperial_ESE

i.campbell15@imperial.ac.uk

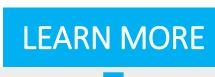
*PhD Candidate

ENERGY & POWER BALANCE

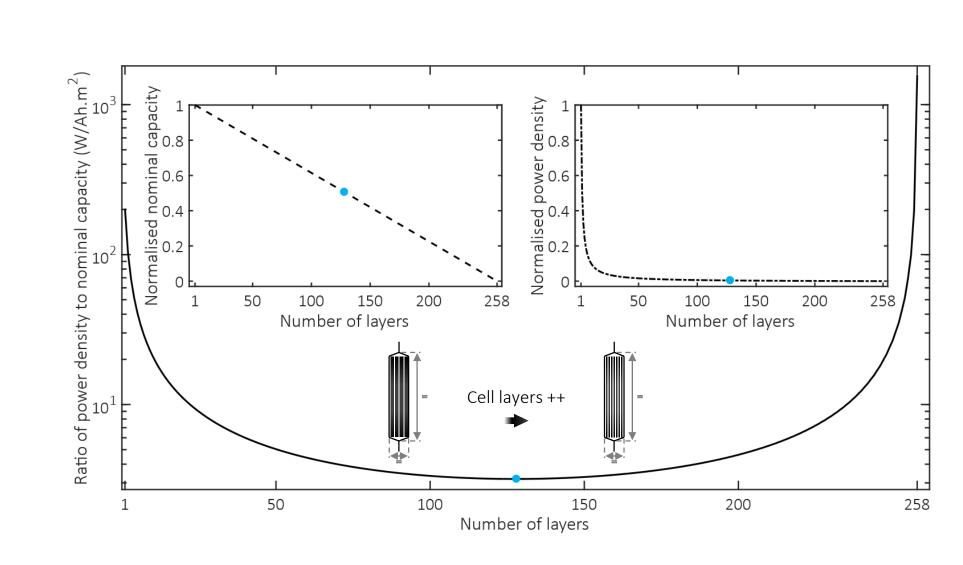
- Conflicting requirements pose a layer optimisation problem
- Desire trading of energy & power in equally-dimensioned cells
- Layer reconfiguration trades fraction of active material mass with surface area available for redox reaction
- Maximum usable energy is available for neither the most rate capable nor most energy density layer configuration
- Empirical determination of optimal layer count is slow, costly & may not provide energy-density maximising result
- We propose a rapid & inexpensive model-based alternative

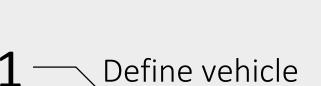
LAYER OPTIMISATION

- Stack thickness & active & inactive material quantities are recalculated for each new layer count (n) using derived expressions
- The optimal (i.e. range-maximising) layer configuration is the minimum number of layers that meets EV acceleration and fast charging targets
- Initially, we gain a lot of rate capability for little energy density loss since power density per layer decreases faster than cell nominal capacity
- At higher layer counts it becomes increasingly expensive, in terms of energy density sacrificed, to accommodate higher powers
- Efficient designs employ < half the maximum possible number of layers


$$L_{stack} = \sum_{j} L_{j}(n) + L_{Al}(n) + L_{Cu}(n)$$

$$... \forall n \in \mathbb{N}, j \in \{pos, sep, neg\}$$


$$L_{j}(n) = nl_{j}$$


$$L_{Al}(n) = \begin{cases} \frac{\left(\frac{n}{2}\right)l_{Al}, if \ n \ is \ even}{\left(\frac{n+1}{2}\right)l_{Al}, if \ n \ is \ odd} \end{cases}$$

$$L_{Cu}(n) = \begin{cases} \left(\frac{n+2}{2}\right)l_{Cu}, & if \ n \ is \ even \\ \left(\frac{n+1}{2}\right)l_{Cu}, & if \ n \ is \ odd \end{cases}$$

LEARN MORE

xEV platform

Powertrain

PHEV (series)

Module & cell configuration

12S1P (cells)

(w/o cells) Fast charge

xEV mass

SOC range

1,654 kg (inc. ICE)

30 - 80 %

Define criteria Fast charging Acceleration

 $T(t) < T_{max}$

 $T(t_f) < T_{max}$

 $V(t_f) > V_{min}$

 $z(t_f) > z_{min}$

 $V(t) < V_{max}$ $z(t) \ge z^*$

 $C_S^*(t) < C_{S_{Sat}}$

 $t < t_{max}$

$l_{ce} = \frac{L_{stack} - [0.5(n+1)]l_{cu} - [0.5n]l_{al}}{n} - l_{sep}$

$$r_{atio} = rac{l_{neg}}{l_{pos}} = rac{arepsilon_{pos}}{arepsilon_{neg}}$$

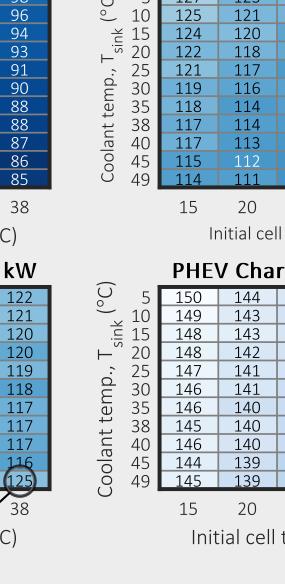
$$l_{neg} = l_{ce} - l_{pos}$$

$$l_{pos} = \frac{l_{ce}}{l_{ratio} + 1}$$

Li-PLATING PROTECTED FAST CHARGE

- Specify desired xEV configuration & define performance criteria
- Cells undergo simulated vehicle acceleration & fast charging
- Charge time is minimised with a constant power strategy
- Design for highest powers & impose Li concentration limit, $C_{s_{sat}}$
- Cell designs exhibit Li-plating protection & max. energy density
- Individual domain thicknesses are recomputed using stack thickness & a fixed, capacity-balanced, electrode thickness ratio

P2D SIMULATION


- Custom, efficient binary search screens layer configurations
- Open-source electrochemical P2D model directly accepts power input, solves for current & converges rapidly owing to Jacobian generated using algorithmic differentiation
- Each new layer configuration requires model updates
- Vector of layer State-of-Functions is produced; lowest layer count with a unity SoF is the optimal

PHEV Charging Power: 50 kW

Δx_{pos} Electrodes / diffusion State of Function = 0 Power Direct power input density Cell layers ++ Updates Workflow Workflow Active Required area Mass State of System Jacobian for rapid convergence Function = 1 Heat capacity Workflow LEARN MORE

Highest layer counts required at coldest condition in response to slow Li diffusion in graphite 15 20 25 30 Initial cell temperature, T_{init} (°C) PHEV Charging Power: 110 kW More layers 126 123 120 125 122 119 125 121 119 required at higher temps to curtail heat generation

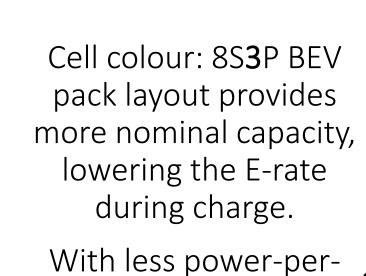
(less Watts/layer)

- PHEV Charging Power: 80 kW Values: optimal layer counts 35 Initial cell temperature, T_{init} (°C) PHEV Charging Power: 135 kW
 146
 140
 135
 131
 128
 126

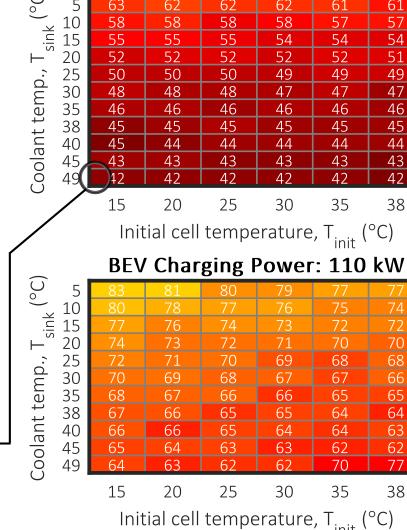
 144
 139
 134
 131
 127
 127

 145
 139
 134
 130
 127
 20 25 30 Initial cell temperature, T_{init} (°C)
 - Lighter cell colours (less Ah added to reach 80% SOC) because more layers are required to absorb higher charging powers
 - Black: T_{max} exceeded, thermal management system limit highlighted

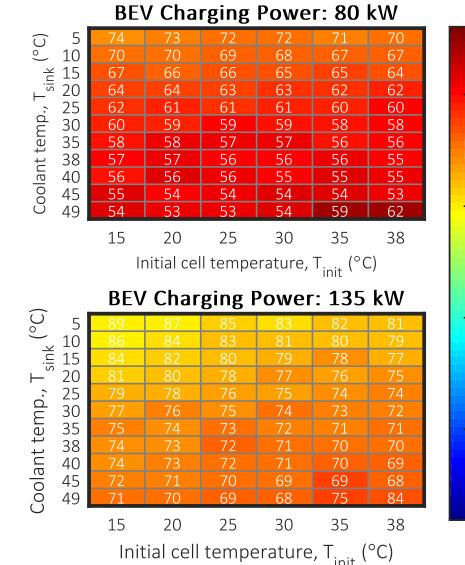
LEARN MORE

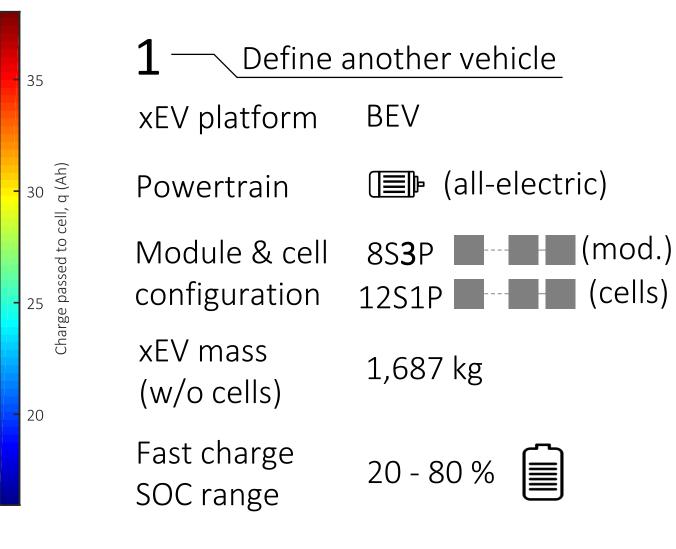

TAILORED CELL DESIGN MAPS

- Repeat for new coolant (ambient) & cell temperatures to generate cell design maps precisely tailored to vehicle fast charge targets
- Values in coloured cells are optimal layer configurations/counts
- Map colour is usable capacity; charge added, 30 80 % SOC window
- Black colours indicate unsuitable cell materials & thermal management system for specified temperatures & design targets
- Faster & lower cost than iterative, empirical cell development
- Method can offer xEV range extension over empirical cell designs by producing energy-density optimised layer configurations


COMMON MODULE DESIGN FOR EV PACKS

Initial cell temperature, T


- New layer configurations generated for a different vehicle platform, using a cell with identical external dimensions
- Produces energy-density maximising designs for this new vehicle... ..and enables common battery pack module design across both/many platforms, lowering R&D costs & time to market for automotive OEMs



cell-layer, we need fewer layers & can design more energy dense cells vs. PHEV configuration

BEV Charging Power: 50 kW

