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Abstract— Robots need the capability of placing objects in
arbitrary, specific poses to rearrange the world and achieve
various valuable tasks. Object reorientation plays a crucial role
in this as objects may not initially be oriented such that the
robot can grasp and then immediately place them in a specific
goal pose. In this work, we present a vision-based manipulation
system, ReorientBot, which consists of 1) visual scene under-
standing with pose estimation and volumetric reconstruction
using an onboard RGB-D camera; 2) learned waypoint selection
for successful and efficient motion generation for reorientation;
3) traditional motion planning to generate a collision-free
trajectory from the selected waypoints. We evaluate our method
using the YCB objects in both simulation and the real world,
achieving 93% overall success, 81% improvement in success
rate, and 22% improvement in execution time compared to
a heuristic approach. We demonstrate extended multi-object
rearrangement showing the general capability of the system.

I. INTRODUCTION

Placing objects in a specific pose is a vital capability for
robots to rearrange the world to create arbitrary configurations
of objects. This capability enables various applications such
as product display, storing, or packing, which require tidy,
secure, and space-saving object arrangements. When objects
must be specifically placed, reorientation is often a crucial
manipulation step, to change the object pose in favor of the
subsequent steps. Reorientation makes a specific surface of
an object accessible when a goal configuration restricts the
feasible grasp points, which can be inaccessible in the initial
state. With a pile of objects, these grasp points can be blocked
by the ground or the surrounding objects, forcing the robot
to rotate or flip the object (Figure 1).

Traditionally, object reorientation has been accomplished
with hand-designed reorientation poses (e.g., 90-degree rota-
tion), for which a motion planner generates a trajectory [28],
[34]. Although a motion planner can generate a decent
trajectory given appropriate and diverse reorientation poses,
this approach is often inefficient because of the limited number
of pose candidates, requiring multiple reorientation steps for a
significant rotation (e.g., flipping). A single-step reorientation
would be a solution for this inefficiency; however, it requires
careful choices of reorientation poses, which must be both
feasible and regraspable. Because of this complex requirement,
human heuristics (e.g., canonical, upright reorientation poses)
do not achieve high levels of success.

To overcome the limitations of human heuristics for
motion generation, an alternative is a learning approach to
generate successful and efficient motion trajectories. Although

Fig. 1: ReorientBot picks, reorients, regrasps, and places objects
to rearrange them from a pile to various target configurations.
Learned models enable the robot to dynamically reorient objects
with significant rotation (release and stabilize with gravity), which
is hardly achievable with human heuristics.

learning approaches for robotic manipulation have become
common [11], [17] especially in short-horizon tasks such as
indiscriminate grasping without precise placement [13], [18],
it is still unclear how to best model long-horizon tasks as it
becomes harder to train models as the task horizon increases.

Our method uses a sampling-based approach for motion
generation, where learned models evaluate the quality of
candidate motion waypoints. These learned models predict
the success and efficiency of the coarse waypoints, from which
trajectories are generated by traditional motion planning. This
waypoint evaluation (cf. trajectory evaluation by feeding a
long list of waypoints) assumes that the coarse waypoints
(e.g., grasp and reorientation pose for object reorientation)
stand for the whole trajectory and can be used for evaluation
before actually generating the trajectory. This early evaluation
drastically reduces the planning time and allows the model
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Fig. 2: System overview, a hybrid of learned components (�, �) and traditional motion planning, consisting of 1) vision-based 6D
pose estimation and volumetric reconstruction; 2) motion waypoint generation; 3) trajectory generation using the waypoints.

to use numerous motion candidates to find the best motion.
Using this approach, we present ReorientBot, a hybrid of

learned waypoint selection and traditional motion planning
with visual scene understanding using a single robot-mounted
RGB-D camera (Figure 2). The state of a scene is captured by
pose estimation for target objects and volumetric reconstruc-
tion of non-target objects with a vision system trained for a
known object set. This state information is used to generate
proposals of the start (grasp/regrasp pose) and end motion
waypoints (reorientation/placement pose) with filtering by
learned models, which are then fed into motion planning to
generate trajectories. The reorientation poses include unstable
object states from which the object will settle down to the
desired orientation (dynamic reorientation), enabling efficient
single-step reorientation even for a significant rotation. To
our best knowledge, this is the first work that shows dynamic,
single-step object reorientation for specific-posed placement
with diverse initial and goal states of objects. We demonstrate
the capability of the system in the real world showing a real-
time scene understanding, planning, and execution.

To summarize, the contributions of this work are:
• The first work on dynamic, single-step reorientation,

enabling a robot efficiently reorient objects for object
rearrangement from an arbitrary initial state to goal state;

• Learned motion waypoint selection, taking advantage
of the generality of traditional motion planning and the
inference speed and robustness of learned models;

• A full real-time manipulation system, showing capa-
ble object rearrangement with visual scene understand-
ing, learned motion selection, and motion planning.

II. RELATED WORK

A. Robotic pick-and-place

As a crucial step to isolate objects from a scene, ob-
ject picking has been widely studied since early robotic
research [4]. Recent work has integrated vision-based object
segmentation and grasp planning to achieve object picking in

more challenging, cluttered environments with object overlap
and occlusion [12], [29], [30], [38]. To handle unseen objects,
several studies trained a model to generate object agnostic
grasp points [23], [37] or more general actions such as
end-effector transformations [13], [18] from input images.
Although these studies showed a strong capability of picking
objects in various situations (e.g., occluded, unseen), the
placement after picking was mostly simple (e.g., dropping in
a box) not knowing how an object is grasped.

A couple of studies have tackled the whole pipeline of
robotic pick-and-place, including specific-posed placement.
kPAM [20] designed semantic keypoint detection to select a
grasp point and plan a placement trajectory, demonstrating
intended grasping and specific-posed placement. Shome
et al. [26] showed a tight object packing of box-shaped
objects incorporating hand-crafted reorientation motions.
These previous studies restricted either object’s initial state
(e.g., target grasp point is accessible), goal state (e.g., few
different orientations), or shape (e.g., box). In this work, we
tackle object placement with diverse initial and goal states
using various-shaped objects in the YCB object set [5].

B. Object reorientation and regrasping

Robotic research on object reorientation and regrasping
dates back to the 1980s with the seminal work by Tournassoud
et al. [28], and it has been tackled as an essential skill
for robotic manipulation [7], [25], [33]. Several studies
demonstrated reorientation and placement via stable object
states sampled with object’s known [19], [32], [34] or
abstracted geometry (e.g., bounding box) [21], or predicted by
a learned model [6], [10]. Although they showed successful
object reorientation given enough time of execution, they
sacrifice the motion efficiency by discarding unstable poses
that will eventually become stable in the desired orientation
after being released. This restriction makes reorientation with
a significant rotation (e.g., flipping) difficult. In this work, we
use unstable poses as well as stable poses to plan reorientation
to achieve single-step, efficient object reorientation.



In-hand manipulation also has been tackled as a solution
to reorient objects to achieve a specific orientation. Dafle et
al. [9] showed an in-hand regrasping capability with a three-
fingered hand such as rolling and flipping. Andrychowicz
et al. [2] and Akkaya et al. [1] extended this further to a
five-fingered hand to show even more dexterous manipulation
such as solving a Rubik’s cube. Although promising, the
robot’s capability heavily depends on the specially designed
robotic hand, limiting its applicable environments, object
sizes, and poses (e.g., the hand is attached to a fixed base).
In this work, we use a suction gripper with a general-purpose
robotic manipulator, both of which are widely used for robotic
manipulation in industry and research communities.

III. METHOD OVERVIEW

Given the goal state of target objects, our system runs
detection, pose estimation, motion planning to rearrange
objects. This system, shown in Figure 2, consists of 1)
visual 3D scene understanding via 6D pose estimation and
volumetric reconstruction; 2) motion waypoint selection that
pairs start and end waypoints via learned filtering; 3) trajectory
generation by motion planning using the selected waypoints.

This system includes reorientation and regrasping as
needed, which is determined via planning the direct pick-and-
place from an initial state to a goal state. If this planning fails
to find a collision-free motion, the system switches to another
motion planner for reorientation. This process is repeated
until the motion planner finds a collision-free path for pick-
and-place. We optimize the reorientation step to change the
object’s orientation successfully and efficiently to make the
target grasp point accessible to place it in the specified goal
state. For this optimization, we sample numerous candidates
of reorientation poses, which learned models evaluate via
the prediction of feasibility (the existence of a collision-free
trajectory) and efficiency (the length of the trajectory).

IV. VISUAL SCENE UNDERSTANDING

Consider a pick-and-place task, with target objects in a pile
that a robot must grasp, reorient, regrasp, and place them in a
specific pose. This specific-posed placement requires a robot
to detect and estimate the target object’s initial pose in a pile
to compute the relative transformation the robot must apply
to achieve the goal state. For non-target objects, semantic
scene understanding (detection; pose estimation) might not
be as important as for the target since the information is used
only for collision avoidance. Therefore, we use a heightmap
to represent non-target object’s geometry without semantics,
allowing faster training and better test-time generalization
being agnostic to estimation errors.

A. Object pose for target object

We run a state-of-the-art object-level mapping system,
MoreFusion [31], to find target objects using an RGB-D
camera mounted on a robotic arm. MoreFusion consists of
learning-based 2D object detection and volumetric 6D pose
estimation for the detected objects. Given the class of a target
object as a task specification, we retrieve the target’s pose

(e.g., the initial state in a pile) from the object-level map for
the subsequent pipeline.

B. Heightmap for non-target objects

Given depth images from the RGB-D camera, we build a
heightmap, which represents the distance of the object’s top
surface from the ground at each XY position, to represent the
state of non-target objects. We capture the depth images of
a pile from the top-down view, and set the pile center to be
the center of the heightmap with fixed XY bounds to provide
consistent and overall scene information.

V. MOTION WAYPOINT GENERATION

The start and end configurations of a robot and a target
object (i.e., grasp and placement poses) define the waypoints
of a motion trajectory. These waypoints are used along with
the semantic map of a scene by motion planning to generate
a collision-free trajectory. We generate these waypoints by
random sampling and learned filtering to select the feasible
and efficient motion to execute.

A. Waypoint sampling for pick-and-reorient

The goal of the pick-and-reorient stage is to change the
target object orientation such that the robot can grasp specific
grasp points to place an object in a specific goal pose (e.g.,
box packing; shelf storing). A grasp pose represents the
start waypoint, and a reorientation pose represents the end
waypoint of a reorientation trajectory. We sample the grasp
poses on the 3D reconstruction of an object and sample the
reorientation poses on an open, planar space near the pile.

1) Grasp pose (start waypoint): As the start waypoint for
reorientation, grasp poses are sampled on the initial state of
a target object in a pile. Given the target object pose from
pose estimation, we render the object with a virtual camera in
simulation to extract the mask and depth image. We convert
the depth image into a point cloud and compute surface
normals. Using the object mask aligned to the point cloud
and normals, we randomly extract ∼30 points and normals
on the object surface, which gives the position and quaternion
q = [qx, qy, qz, qw]

ᵀ of the grasp pose:

[qx, qy, qz]
ᵀ = vg × vs (1)

qw =

√∑
i

v2
g,i +

∑
i

v2
s,i + (vᵀ

g · vs), (2)

where vg and vs are the gripper and surface normal.
2) Reorientation pose (end waypoint): As the end way-

point, we sample reorientation poses on a planer space
adjacent to a pile for efficiency (they could be sampled on any
planer surface). Each pose is validated by checking collisions
between the CAD model of a target object and the volumetric
reconstruction of non-target objects.

Since exhaustive collision checking of arbitrary positions
and orientations is time-consuming, we first determine the
XY positions where any orientation of the target object will
be collision-free. We use a cube with the dimensions of
the object’s longest axis, which allows an efficient collision
checking with the pile reconstruction. To sample the XY



positions, we discretize a 0.5m × 0.3m rectangular space
by 10 and 8 each, which provides 10× 8 = 80 candidates.
These candidate positions are evaluated with the cube to filter
positions that are too close to the pile.

Given the selected XY positions, we compute the Z position
and orientation using the actual CAD model of the object
instead of the abstracted cube. We discretize the orientation
by 8 in each axis of Euler angles, which gives 83 = 512
orientations for each XY position. For each orientation, we
compute the distance between the object’s bottom and the
ground plane and set the Z position to put the object on the
plane with a small margin of 2cm. Since we sampled positions
where the object’s arbitrary orientations would be collision-
free, we can reuse the same Z and orientations for other
positions. This multistep sampling avoids the slow, combina-
torial evaluation of reorientation poses, whose number could
be (XY positions)× (orientations) = 80× 512 = 40, 960.

The sampled reorientation poses include unstable states
on the plane, which eventually settle down to stable states
after being released. These unstable poses allow the robot to
reorient objects with a significant rotation in a single step,
for example, grasping the backside of an object to flip to
the front by leaning the object on the plane while creating a
space for the suction gripper as shown in Figure 1.

B. Learning to select reorientation poses
Not all the given reorientation poses (40,960 candidates)

enable the robot to regrasp the object with the intended grasp
for the final placement. To filter these unuseful poses, we
introduce a learned model that predicts whether a reorientation
pose will enable an intended regrasping as shown in Figure
3. This process uses the model to evaluate reorientation pose
candidates and selects the top-1000 best-scored poses to be
processed in the subsequent pipeline.

The learned model (right in Figure 3) receives a reori-
entation and target grasp pose and predicts the success of
regrasping after the object is released and settles down. We
also feed the pile heightmap to allow the model to take the
collisions into account. The model encodes the heightmap
with 6 layers of 3 × 3 convolution with max-pooling and
ReLU activations (ConvNet). The output is concatenated with
the object label, and initial, reorientation, and grasp pose
and processed by 3 linear layers (MLP) to predict the grasp
validity, trained with binary cross-entropy as a 0–1 probability.

To train the model, we evaluate the reorientation poses
using physics simulation and motion planning. With a
randomly sampled reorientation pose, the object model is
spawned in simulation to apply physics and infer how the
object will settle down after being released. Given the
stabilized states of reoriented objects, motion planning is
applied to test whether the target grasp pose is achievable.
This planning result gives the binary label of whether the
pair of reorientation pose and grasp pose is feasible (grasp
validity in Figure 3), which is used as supervision.

C. Waypoint sampling for pick-and-place
The goal of the pick-and-place stage is to place the target

object in the specific pose given as a task goal. The grasp
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Fig. 3: Learned filtering of reorientation poses, which selects
feasible (i.e., valid) poses from the uniformly sampled poses.

pose represents the start waypoint and the specified final pose
represents the end waypoint of the pick-and-place trajectory.

1) Grasp pose (start waypoint): As the start waypoint for
placement, we sample grasp poses from the visible surface
of a target object in the goal state with virtual rendering (cf.
initial state for reorientation). We position a virtual camera
that faces the virtually placed object with a slight translation
from the goal state, whose view angle is determined by the
direction of the opening of the container: horizontal with
shelves, vertical with boxes. By using this virtual rendering,
we can sample only the grasp poses visible from the opening
of the container while filtering infeasible grasp poses in
the back. The grasp position is sampled randomly from the
visible surface, and the orientation is determined with the
same process as §V-A.1, generating 30 grasp poses as drawn
on the goal state of the object in the shelf in Figure 3.

2) Placement pose (end waypoint): As the end waypoint
for placement, we simply use the goal pose of a target object
given as a task specification.

VI. MOTION TRAJECTORY GENERATION

We introduce another learned model to select waypoints
for efficient motion planning and exectuion.

A. Learning to select motion waypoints

Motion planning runs fast with a few pairs of start and
end waypoints (0.1–1.0 seconds) and can generate a collision-
free trajectory while evaluating and filtering unusable pairs.
However, when the number of pairs becomes large (>100), the
planning time becomes untenable for real-time use (10–100
seconds). We tackle this problem by introducing a learning-
based model that predicts the validity of the waypoint pairs
(i.e., the probability that the motion planner finds a collision-
free path given those pairs). The low-scored pairs are filtered
before feeding them into motion planning (Figure 4).

With the two motions in the task (pick-and-reorient and
pick-and-place), we apply learning-based waypoint selection
only to pick-and-reorient. This design choice is because the
possible motions for pick-and-place are well constrained by
the end waypoint (placement pose), which is unique and given
as the task goal (whereas numerous possible reorientation
poses must be evaluated for pick-and-reorient), therefore it
is not necessary to use a learned model for efficient motion
generation. It is also likely that placement configurations vary
at test time with different object poses or environments (e.g.,
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shelf storing; box packing), where it would be difficult for a
learned model to adapt without retraining.

1) Metrics for selection: The model predicts 3 validities:
grasp pose, reorientation pose, and trajectory, each represent-
ing the existence of the robot’s collision-free state. Although
a single validity could cover the entirety of the grasp and
reorientation pose (start and end states) and the trajectory
(middle states), we separated these to help the model to reason
about why the whole trajectory might be invalid (e.g., which
of the start/end/middle states are invalid).

After filtered by validity, several waypoints could remain
as candidates with similar predicted validity scores. Therefore,
we have introduced another metric: efficiency, which is often
regarded as the secondary metric of robotic tasks [3]. We use
joint-space trajectory length as the efficiency metric, which
highly correlates with execution time.

After taking the highest-scored 10 waypoints with the
trajectory validity scores, we sort them with efficiency before
feeding them into motion planning. Despite the randomness in
the planning algorithm while finding collision-free trajectories,
we observe a strong correlation between the given waypoints
and the generated trajectory (i.e., they are consistent). With
this correlation, the learned model predicts meaningful scores
to select waypoints that generate the best motion trajectory.

2) Model training: For the waypoint selection, we use a
similar model architecture as the reorientation pose selection
(right of Figure 4). Given the start and end waypoints (grasp
pose, initial object pose, reorientation pose), this model
predicts the validity and efficiency of the trajectory that will
be generated by the motion planner, taking the collisions with
other objects into account using the heightmap. We train this
model with binary cross-entropy loss for the validities and
L1 loss for the trajectory length.

B. Collision-free trajectory generation

Given the selected waypoints, we generate motion trajec-
tories with collision-based motion planning, which uses the
scene reconstruction to check feasible states of the robot.

VII. EXPERIMENT

We evaluate our system, ReorientBot, via a set of pick-and-
place tasks that require appropriate object reorientation and
grasp selection before placing in a specified goal pose. We

use 6 large/medium-sized objects (drill, cracker box, sugar
box, mustard bottle, pitcher, detergent) in the YCB objects [5]
to evaluate the system in both simulation and the real world.

A. Implementation detail

We use PyTorch [22] to implement the learned models,
training with Adam optimizer [15] with a learning rate of
1e-3. We stop training as the learning curve converges. For
training data collection, we use a physics engine, PyBullet [8],
to simulate the behavior of objects after being released
in unstable reorientation poses for the reorientation pose
selection (§V-B), and stable object pile generation and
trajectory evaluation for the waypoints selection (§VI). For the
motion planner to generate a collision-free trajectory, we use
RRT-Connect [16] implemented with OMPL [27] integrating
with the collision checking on the physics engine.

B. Evaluating in simulation

We evaluate the system in 200 unseen piles. As the goal
state, we randomly assign an object pose in the shelf where
the same objects are tightly aligned as shown in Figure 5.

We use two types of suction grippers in this experiment:
• I-shape (Figure 5), used in previous work [36], which

has a thin vaccum hose aligned with the gripper;
• L-shape, also used in our real-world experiments, where

the cup axis is translated from the gripper palm;
to show the generality and performance variation of our
system. Note that the learned components are trained for
each gripper as they are specific to a robot configuration.

As the baseline for single-step object reorientation, we
designed heuristic reorientation poses that are stable on a
plane and make target grasp points accessible. For simplicity
and generality among objects, we use the upright orientation
and Z-axis rotation. To make target grasp points accessible
after placement, we choose Z-axis orientations where the
target grasp points face to -X direction (direction to the robot).
Figure 5b shows the examples of this heuristic reorientation
pose for the goal state shown in Figure 5a.

(a) Task configuration (b) Heuristic reorientation poses

Fig. 5: Evaluation setup in simulation, tasking the robot to
rearrange a target object from an initial state to a goal state.

1) Task completion: Table I shows the comparison of the
success rate, whose criteria is with the geometric distance
between the placed state and the goal state, and with 10
seconds time limit for planning. We use the area under the
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curve (AUC) of the point-to-point distance with a threshold
between 0 and 10cm, considering AUC>90% as success (a
common metric in pose estimation [31], [35]). The results in
Table I show that, compared to the baseline, ReorientBot
gives relative improvements of 23-36% in reorientation
success, 17-47% in placement success, and 60-81% in overall
success. The success rate with the L-shape gripper is lower,
especially in placement because of the more extensive gripper
base, which restricts collision-free joint configurations. These
improvements in reorientation and placement show that the
introduced learned model plays a vital role in both stages of
waypoint selection for motion planning.

TABLE I: Task completion, comparing the baseline (Heuris-
tic) with our method (ReorientBot) in simulation. We use goal
configurations that are not achievable without reorientation (146
tasks).

Gripper Method Success%
(reorient)↑

Success%
(place)↑

Success%
(overall)↑

I-shape Heuristic 71.9 81.0 58.2
ReorientBot 97.9 95.1 93.2

L-shape Heuristic 74.0 58.3 43.2
ReorientBot 91.1 85.7 78.1

2) Timing: Table II shows the comparison of the planning
and execution time in reorientation. We measure the planning
time with the wall clock and execution time with the
simulation clock. We send the motion trajectory (a list of joint
positions) to the position controller with a constant speed of
∼1.2 rad/s (=70 deg/s). As this execution speed can vary in
the real world, we also report the trajectory length, which is
highly correlated. ReorientBot gives improvements of 24-30%
in planning time and 20-22% in execution time compared to
the baseline. This result shows that the learned filters allow
the motion planner to evaluate only the promising waypoints,
which are likely to provide a valid and efficient trajectory.

C. Real-world evaluation
We evaluate our system in the real world integrating a

Franka Emika Panda robot with the Robotic Operation System
framework [24]. To capture short-range depths (∼0.1m), we
use a Realsense D435 [14] as the onboard RGB-D camera.
Qualitative results are best seen via supplementary videos.

TABLE II: Timing, comparing the baseline (Heuristic) with our
method (ReorientBot) in simulation. Reporting only when both
methods succeeded to complete task; 38 tasks out of 146 in Table I.

Gripper Method Planning
time [s]↓

Execution
time [s]↓

Trajectory
length [rad]↓

I-shape Heuristic 3.3 4.0 4.2
ReorientBot 2.5 3.2 3.3

L-shape Heuristic 3.0 3.6 3.6
ReorientBot 2.0 2.8 2.7

Figure 6 shows the sequences of the pick and place motions
of the robot for the specified goal configuration in a shelf and
box. These examples show the capability of our system to
reorient objects both successfully and efficiently (with a short
arm trajectory), including a dynamic reorientation of objects.
They also demonstrate precise placement (e.g., inserting the
yellow box into the narrow gap of the drill) and generality
in various goal configurations (side, top-down placement).

VIII. CONCLUSION

We have presented a robotic system that can rearrange
objects to a specific goal state, including reorientation and
regrasping for final placement. Our system integrates learned
waypoint selection and traditional motion planning to maintain
capability by learning (efficient selection of motion waypoints)
and generality by planning (flexible motion generation based
on a goal state and constraints at test time). The resulting
system improves on a baseline in both efficiency and success
rate, and has shown capable, dynamic reorientation for
significant rotation (e.g., flipping) and precise placement in
various target configurations (shelf storing; box packing).

We believe there are still various possibilities in combining
learning models with traditional motion planning. In this
work, the learned models evaluate only two waypoints
(start, end) to optimize the reorientation motion. However,
the optimization of longer-horizon tasks such as a whole
rearrangement pipeline (grasp, reorient, regrasp, place) and
tasks with navigation and multiple robots would require a
more fine-grained indication by learning to the motion planner.
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