
Transferring End-to-End Visuomotor Control from
Simulation to Real World for a Multi-Stage Task

Stephen James
slj12@imperial.ac.uk

Andrew J. Davison
a.davison@imperial.ac.uk

Edward Johns
e.johns@imperial.ac.uk

Dyson Robotics Lab, Imperial College London

Abstract: End-to-end control for robot manipulation and grasping is emerging as
an attractive alternative to traditional pipelined approaches. However, end-to-end
methods tend to be either slow to train, exhibit little or no generalisability, or lack
the ability to accomplish long-horizon or multi-stage tasks. In this paper, we show
how two simple techniques can lead to end-to-end (image to velocity) execution
of a multi-stage task that is analogous to a simple tidying routine, without having
seen a single real image. This involves locating, reaching for, and grasping a cube,
then locating a basket to drop the cube in. The first technique is to utilise the full
state from a simulator to collect a series of control velocities which accomplish
the task. The second technique is to utilise domain randomisation to allow the
controller to generalise to the real world. Our results show that we are able to
successfully accomplish the task in the real world with the ability to generalise to
novel environments, including those with novel lighting conditions and distractor
objects, and the ability to deal with moving objects, including the basket itself.
We believe our approach to be simple, highly scalable and capable of learning
long-horizon tasks that have so far not been shown with the state-of-the-art in
end-to-end robot control.

Keywords: Manipulation, End-to-End Control, Domain Randomisation

1 Introduction

An emerging trend for robot manipulation and grasping is to learn controllers directly from raw sen-
sor data in an end-to-end manner. This is an alternative to traditional pipelined approaches which
often suffer from propagation of errors between each stage of the pipeline. These end-to-end ap-
proaches have had success in both real world [10, 14, 13] and in simulated worlds [3]. Learning
end-to-end controllers in simulation is an attractive alternative to using physical robots due to the
prospect of scalable, rapid, and low-cost data collection. However, these simulation approaches are
of little benefit if we are unable to transfer the knowledge to the real world. What we strive towards
are robust, end-to-end controllers that are trained in simulation and can run on the real world without
having seen a single real world image.

In this paper, we accomplish the goal of transferring end-to-end controllers to the real world and
demonstrate this by learning a long-horizon multi-stage task that is analogous to a simple tidying
task, and involves locating a cube, reaching, grasping, and locating a basket to drop the cube in.
This is accomplished by using linear paths constructed via inverse kinematics (IK) in the Cartesian
space to construct a dataset that can then be used to train a reactive neural network controller that
continuously accepts images along with joint angles and outputs motor velocities. We show that with
the addition of auxiliary outputs (inspired by [4]) for positions of both the cube and gripper improves
task performance. Transfer is made possible by simply using domain randomisation, such that
through a large amount of variability in the appearance of the world, the model is likely to generalise
to real world environments. Figure 1 summarises the approach, whist the video demonstrates the
success of the final controller in the real world 1.

1Video: https://youtu.be/X3SD56hporc

ar
X

iv
:1

70
7.

02
26

7v
1 

 [
cs

.R
O

] 
 7

 J
ul

 2
01

7



Figure 1: Our approach uses simulation to collect a series of control velocities to solve a multi-stage
task. This is used to train a reactive neural network controller that continuously accepts images and
outputs motor velocities. By using domain randomisation, the controller is able to run in the real
world without having seen a single real image.

Our final model is not only able to run on the real world, but can accomplish the task with variations
in the position of the cube, basket, camera, and initial joint angles. Moreover, the model is invariant
to clutter, lighting conditions, changes in the scene, and moving objects (including people).

2 Related Work

End-to-end methods for robot control are generally trained using Reinforcement Learning (RL) or
Guided Policy Search (GPS). In the past few years, classic RL algorithms have been fused with
function approximators, such as neural networks, to spawn a deep reinforcement learning domain,
that is capable of playing games such as Go [20] and Atari [12] to a super-human level. There have
been advances in applying these techniques to both simulated robotic platforms [17, 5], and real
world platforms [3], but fundamental challenges remain, such as sample inefficiency, slow conver-
gence, and the algorithms sensitivity to hyperparameters. There have been attempts at transferring
trained polices from the real world following training in simulation, but these attempts have either
failed [5], or required additional training in the real world [18]. Although applying RL can work
well for computer games and simulations, the same cannot be said for real world robots, where the
ability to explore randomly can grow intractable as the complexity of the task increases. Our method
uses the full state of the simulation to produce paths for supervision without the need for exploration,
and as a result converges in far less time in comparison to RL methods which often take millions of
iterations. Moreover, our method is able to generalise to new environments which is currently one
of the challenges of RL.

A slightly different approach is guided policy search (GPS) [9, 8], which in addition to classic
control benchmarks, has achieved success in flight [24, 7], and robot manipulation [10, 14, 13].
GPS provides a means to optimise non linear policies, such as neural networks [8], without the need
to compute policy gradients. GPS uses guiding samples produced by a teacher algorithm, such
as trajectory optimisers or trajectory-centric reinforcement learning methods, to train policies in a
supervised manner. In addition to this, GPS adapts the guiding samples produced by the teacher so
that they are more suited for training the final policy. Unlike most RL methods, these approaches
can be trained on real world robotic platforms, but therefore have relied on human involvement
which limits their scalability. To overcome human involvement, GPS has been used with domain
adaptation of both simulated and real world images to map to a common feature space for putting a
rope around a hook [22]; though this still requires images from the real world. Unlike GPS methods,
our method has never seen a real world image before, but instead learns its task in simulation which
we transfer over to the real robot. Moreover, our generated dataset can be reused to train a number
of models in parallel which is not possible with GPS as the training data provided by the locally
optimised trajectories are altered with respect to the global policy, and vice versa.

2



Figure 2: A collection of generated environments as part of our domain randomisation method.

An alternative approach for getting data from simulation is to instead use a large number of real
world robots [11, 2, 16]. This was the case for [11], where 14 robots were run for a period of 2
months and collected 800, 000 grasp attempts by randomly performing grasps. A similar approach
was used to learn a predictive model in order to push objects to desired locations [2]. Although the
results are impressive, their is some doubt in its scalability with the high purchase cost of robots,
in addition to the question of how you would get data for more complex and long-horizon tasks.
Moreover, these solutions cannot generalise to new environments without also training them in that
same environment.

There exists a number of works that do not specifically learn end-to-end control, but do in fact use
simulation to learn behaviours with the intention to use the learned controller in the real world. Such
works include [6], which uses the depth images from simulated 3D objects to train a CNN to predict
a score for every possible grasp pose. This can then be used to locate a grasp point on novel objects
in the real world. Another example is [1], where deep inverse models are used on the simulated
control policy to decide on suitable actions to take in the real world for a back-and-forth swing of
an arm using position control.

Another approach is to use transfer learning to explicitly adapt from simulated data to real world
data. In [19], the focus is on learning collision-free flight in simulated indoor environments using
realistic textures sampled from a dataset. They show that the trained policy can then be directly
applied to the real world. Their task differs to ours in that they do not require hand-eye coordination
and do not need to deal with a structured multi-stage task. Moreover, rather than sampling from a
dataset of images, ours are procedurally generated, which allows for much more diversity. During
development of this work, a paper emerged that also used domain randomisation [21], except that
the focus was on pose estimation rather than end-to-end control. We operate at the lower level
velocity control to accomplish a multi-stage task that requires not only pose estimation, but also
target reaching, grasping, and control. In addition, we show that our learned controller can work in
a series of stress tests, including that of human presence.

3 Approach
Our aim is to create an end-to-end reactive controller that does not require real world data to train,
and is able to learn complex behaviours in a short period of time. To achieve this, we generate a
large number of shortest path trajectories in simulation, which we then use to train a controller to
output motor velocities, which are then mapped to torques through a PID controller to complete a
multi-stage task. Through the use of domain randomisation during the data generation phase, we are
able to run the controller in the real world without having seen a single real image. We now describe
in detail the dataset generation and training method.

3.1 Data Collection

The success of this work comes down to the way in which we generate the training data (Figure 2).
Our approach uses a series of linear paths constructed in the Cartesian space via inverse kinematics

3



Figure 3: Variations in the positioning of the cube, basket, and camera. The yellow area represents
the possible locations of the cube, the green areas represents the locations of the basket, and the
orange cuboid represents possible locations of the camera. The objects are positioned such that
the whole object is within the highlighted area. Both (a) and (b) are from simulation, where (a)
shows the variations of the controllers camera, and (b) shows the variations of the scene from the
perspective of the controllers camera. (c) shows these variations visualised in the real world.

(IK) in order to construct the task sequence. At each simulation step, we record motor velocities,
joint angles, gripper actions (open or close command), cube position, gripper position, and camera
images. For the task of tidying, we split it into 5 stages, and henceforth, we refer to the sequence of
stages as an episode. At the start of each episode, the cube and basket is placed randomly within an
area that is shown in Figure 3.

In the first stage of the task, we place a waypoint above the cube and plan a linear path which we
then translate to motor velocities to execute. Once this waypoint has been reached, we execute the
second stage by performing a close action on the gripper. The third stage sets a waypoint a few
inches above the cube, and we plan and execute a linear path in order to lift the cube. The fourth
stage places a waypoint above the basket, where we plan and execute a final linear path to take the
grasped cube above the basket. Finally, the fifth stage simply performs a command that opens the
gripper to allow the cube to fall into the basket. A check is then carried out to ensure that the location
of the cube is within the basket; if this is the case, then we save the episode. The data generation
method can be run on multiple threads, which allows enough data to train a successful model to be
collected within a matter of hours, though increasing the number of threads would further reduce
this time.

Using this approach, it is already possible to train a suitable neural network to learn visuomotor
control of the arm and perform the task to succeed 100% of the time when tested in simulation.
However, we are concerned with applying this knowledge to the real world so that it is able to
perform equally as well as it did in simulation. By using domain randomisation, we are able to
overcome the reality-gap that is present when trying to transfer from the synthetic domain to the real
world domain. For each episode, we list the environment characteristics that are varied, followed by
an explanation of why we vary them:

• The colour of the cube, basket, and arm components are sampled from a normal distribution
with the mean set as close to the estimated real world equivalent; though these could also
be sampled uniformly.

• The position of the camera, light source (shadows), basket, and cube are sampled uniformly.

• The height of the arm is sampled uniformly from a small range.

• The starting joint angles are sampled from a normal distribution with the mean set such that
the arm starts in a position similar to Figure 3.

• We make use of Perlin noise [15] composed with functions (such as sine waves) to generate
textures that are applied to the table and background of the scene.

• We add random primitive shapes as clutter with random colours, positions, and sizes sam-
pled from a uniform distribution.

A selection of these generated environments from the perspective of the network can be seen in
Figure 2. We chose to vary the colours and positions of the objects in the scene as part of a basic
domain randomisation process. Slightly less obvious is varying the height of the arm, as we cannot
be sure that the position within the simulation is accurate. In order to successfully run these trained
models in the real world, we also must account for non visual issues, such as the error in the starting

4



Figure 4: Our network architecture continuously maps sequences of the past 4 images to motor
velocities and gripper actions, in addition to 2 axillary outputs: the 3D cube position and 3D gripper
position. These axillary outputs are not used during testing, but are instead present to help the
network learn informative features.

position of the joints when run on the real world. Although we could send the real world arm to
the same starting position as the synthetic arm, in practice the joint angles will be slightly off, and
this could be enough to put the network in states that are unfamiliar and lead to compounding errors
along its trajectory. It is therefore important that the position of the robot at the start of the task is
perturbed during data generation. This leads to controllers that are robust to compounding errors
during execution, since a small mistake on the part of the learned controller would otherwise put
it into states that are outside the distribution of the training data. This method can also be applied
to the generated waypoints, but in practice this was not needed. We use procedural textures rather
than plain uniform textures, as background colours in the real world are more complex than uniform
textures.

3.2 Training

The network, summarised in Figure 4, consists of 8 convolutional layers each with a kernel size of
3× 3, excluding the last, which has a size of 2× 2. Dimensionality reduction is performed at each
convolutional layer by using a stride of 2. Following the convolutional layers, the output is con-
catenated with the joint angles and then fed into an LSTM module (we will discuss the importance
of this in the results). Finally, the data goes through a fully connected layer of 128 neurons before
heading to the output layer.

The network outputs 6 motor velocities, 3 gripper actions, and 2 auxiliary outputs: cube position and
gripper position. We treat the 3 gripper actions as a classification problem, where the outputs are
{open, close, no-op}. During testing, the auxiliary outputs are not used at any point, but are present
to aid learning and conveniently help debug the network. By rendering a small marker at the same
positions as the auxiliary outputs, we are able to observe where the controller estimates the cube is,
in addition to where it estimates its gripper is. This is helpful when it comes to determining whether
the pose estimation is inaccurate, or whether the motor actions are inaccurate.

Our loss function LTotal is a combination of the mean squared error of the velocities (V and gripper
actions (G) together with the gripper position (GP ) auxiliary and cube position (CP ) auxiliary,
giving

LTotal = LV + LG + LGP + LCP . (1)

The loss did not use weighted terms as the scales were appropriate for learning.

4 Results

In this section we present results from a series of experiments, not only to show the success of
running the trained models in different real world settings, but also to show what aspects of the
domain randomisation are most important for a successful transfer. Figure 5 shows an example of
the controller’s ability to generalise to new environements in the real world, though many more are
shown in the video2. We focused our experiments to answer the following questions:

2Video: https://youtu.be/X3SD56hporc

5



Figure 5: A sequence of images showing the networks ability to generalise. Whilst standing in the
view of the camera, it is able to grasp the cube and proceed to the basket. As the arm progresses
towards the basket, we move the basket to the other side of the arm. Despite this disruption, the
network alters its course and proceeds to the new location. The network has never seen humans,
moving baskets, or this table.

1. How does performance vary as we alter the dataset size?

2. How robust is the trained controller to new environments?

3. What is most important to randomise during domain randomisation?

4. Does the addition of auxiliary outputs improve performance?

5. Does the addition of joint angles as input to the network improve performance?

Figure 6: Controller evaluation ex-
ample. Green signifies a success,
whilst red signifies a failure. In this
case, success would be 91%.

We first define how we evaluate the controller in both the
simulation and real world. We place the cube using a grid-
based method, where we split the area in which the cube was
trained into a grid of 10cm× 10cm cells. For each cell, we
run the network twice, once with the basket on each side of
the arm. Using the grid, the cube can be in one of 16 posi-
tions, and we run a trial twice with the basket on each side
of the arm, resulting in 32 trials; therefore, all of our results
are expressed as a percentage based on 32 trials. Figure 6
summarises the testing conditions, where each square rep-
resents a position, and the two triangles represent whether
the basket was on the left or right side of the robot at that
position.

Figure 7: How dataset size effects performance in
both simulation and real world.

To answer the first question of how dataset size
effects performance, we train several instances
of the same network on datasets sizes ranging
from 100,00 to 1 million images to accomplish
the task in a non cluttered environment (such
as in Figure 3), and plot in Figure 7 the suc-
cess rates in both simulation and real world for
each set of trained weights. The graph shows
that a small dataset of 200,000 images achieves
good performance in simulation, but 4 times
more data is needed in order to achieve ap-
proximately the same success rate in the real
world. Interestingly, both simulation and real
world achieve 100% for the first time on the
same dataset size (1 million).

We now turn our attention to Figure 8 and Table 1 which provide a summary of our results of the
remaining research questions. First, we discuss the results in the top half of Table 1, where we
evaluate how robust the network is to changes in the testing environment. Successes are categorised
into cube vicinity (whether the arm got within ≈ 2cm of the cube), cube grasped, and full task
(whether the cube was reached, grasped and dropped into the basket). The first two results show our
solution achieving 100% when tested in both simulation and the real world. Although the network
was trained with clutter, it was not able to achieve 100% with clutter in the real world. Note that
the controller does not fail once the cube has been grasped, but rather fails during the reaching or
grasping. The majority of failures in this case where when the cube was closest to the clutter in
the scene. In the moving scene test, we place a 14-inch fan in the background that rotates back and

6



Figure 8: Images (a) to (e) are taken from the real world, whilst images (f) to (j) are taken from
simulation. The real world images shows the testing scenarios from Table 1, whilst the simulated
images shows samples from the training set from Table 1.

forth. Reaching was not affected in this case, but grasping performance was affected. The moving
camera test was performed by continuously raising and lowering the height of the tripod where the
camera was mounted within a range of 2 inches. Although never experiencing a moving scene or
camera motion during training, overall task success remained high at 81% and 75% respectively. To
test invariance to lighting conditions, we aimed a bright spotlight at the scene and then moved the
light as the arm operates. The results show that the arm was still able to recognise the cube, getting
a 84% cube vicinity success rate, but accuracy in the grasp was affected, resulting in the cube only
being grasped 56% of the time. This was also the case when we replaced the cube with one that
was twice as small as the one seen in training. The 89% vicinity success in comparison to the 41%
grasp success shows that this new object was too different to perform accurate grasp, and would
often brush the cube.

The bottom half of Table 1 focuses on the final 3 questions regarding what aspects are important to
randomise, and whether auxiliary tasks and joint angles improve performance. Firstly, we wish to
set a baseline that shows that naively simulating the real world is difficult for getting high success
in the real world. We generate a dataset based on a scene with colors close to the real world. The
baseline is unable to succeed at the overall task, but performs well at reaching. This conclusion is in
line with other work [5, 23]. It is clear that having no domain randomisation does not transfer well
for tasks that require high accuracy. Whilst observing the baseline in action, it would frequently
select actions that drive the motors to force the gripper into the table upon reaching the cube. Train-
ing a network without clutter and testing without clutter yields 100%, whilst testing with clutter
unsurprisingly performs poorly. A common characteristic of this network is to make no attempt at
reaching the cube, and instead head directly to above the basket. We test our hypothesis that using
complex textures yields better performance than using colours drawn from a uniform distribution.
Although reaching is not effected, both grasping and full task completion degrade to 69% and 44%
respectively. Moreover, swapping the table illustrated in Figure 5 leads to complete failure using
plain colours.

Without moving the camera during training, the full task is not able to be completed. Despite this,
target reaching seems to be unaffected. We cannot guarantee the position of the camera in the real
world, but the error will be small enough such that the network is able to reach the cube, but lacks
the ability to grasp. Results show that shadows play an important role following the grasping stage.
Without shadows, the network can easily become confused by the shadow of both the cube and
its arm. Once grasped, the arm frequently raises and lowers the cube, possibly due to the network
mistaking the shadow of the cube for the cube itself.

We now observe what aspects of the network contribute to success when transferring the controllers.
We alter the network in 3 distinct ways (no LSTM, no auxiliary output, and no joint angles) and
evaluate how performance differs. Excluding the LSTM unit from the network causes the network

7



Scenario Successes
Train Test Cube vicinity Cube grasped Full task

Sim (full) Sim (full) 100% 100% 100%
Sim (full) Reality 100% 100% 100%
Sim (full) Reality (clutter) 88% 75% 75%
Sim (full) Reality (moving scene) 100% 81% 81%
Sim (full) Reality (moving camera) 97% 88% 75%
Sim (full) Reality (spotlight) 84% 56% 56%
Sim (full) Reality (small cube) 89% 41% 41%

Sim (baseline) Reality 72% 0% 0%
Sim (no clutter) Reality 100% 100% 100%
Sim (no clutter) Reality (with clutter) 53% 0% 0%

Sim (no textures) Reality 100% 69% 44%
Sim (no moving cam) Reality 100% 9% 3%

Sim (no shadows) Reality 81% 46% 19%
Sim (no LSTM) Reality 100% 56% 0%

Sim (no auxiliary) Reality 100% 84% 84%
Sim (no joint angles) Reality 100% 44% 25%

Table 1: Results based on 32 trials from a dataset size of 1 million images (≈ 4000 episodes) run
on a square table in the real world. Successes are categorised into cube vicinity (whether the arm
got within ≈ 2cm of the cube, based on human judgement), cube grasped, and full task (whether
the cube was reached, grasped and dropped into the basket). The top half of the table focuses on
testing the robustness of the full method whilst the bottom half focuses on identifying what are the
key aspects that contribute to transfer. A sample of the scenarios can be seen in Figure 8.

to fail at the full task. Our reasoning for including recurrence in the architecture was to ensure that
state was captured. As this is a multi-stage task, we felt it important for the network to know what
stage of the task it was in, especially if it is unclear from the image whether the gripper is closed
or not (which is often the case). Typical behaviour includes hovering above the cube which then
causes the arm to drift into unfamiliar states, or repeatedly calling the close gripper action even
after the cube has been grasped. Overall, the LSTM seems fundamental in this multi-stage task.
The next component we removed was the auxiliary outputs. The task was able to achieve good
performance without the auxiliaries, but not as high as with the auxiliaries. This suggests that the
auxiliaries improve the network’s grasping accuracy. Finally, the last modification we tested was to
exclude joint angles. We found that the joint angles helped significantly in keeping the gripper in the
orientation that was seen during training. Excluding the joint angles often led to the angles drifting
and causing the orientation of the gripper to be very different to what was seen during training.

5 Conclusions

In this work, we have shown transfer of end-to-end controllers from simulation to the real world,
where images and joint angles are continuously mapped directly to motor velocities, through a deep
neural network. The capabilities of our method are demonstrated by learning a long-horizon multi-
stage task that is analogous to a simple tidying task, and involves locating a cube, reaching the cube,
grasping the cube, locating a basket, and finally dropping the cube into the basket. We expect the
method to work well for other multi-stage tasks, such as tidying rigid objects, stacking a dishwasher,
and retrieving items from shelves, where we are less concerned with dexterous manipulation. How-
ever, we expect that the method as is, will not work in instances where tasks cannot be easily split
into stages, or when the objects require more complex grasps. Despite the simplicity of the method,
we are able to achieve very promising results, and we are keen to explore the limits of this method
in more complex tasks.

8



Acknowledgments

Research presented in this paper has been supported by Dyson Technology Ltd.

References
[1] P. Christiano, Z. Shah, I. Mordatch, J. Schneider, T. Blackwell, J. Tobin, P. Abbeel, and

W. Zaremba. Transfer from simulation to real world through learning deep inverse dynam-
ics model. arXiv preprint arXiv:1610.03518, 2016.

[2] C. Finn and S. Levine. Deep visual foresight for planning robot motion. arXiv preprint
arXiv:1610.00696, 2016.

[3] S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep reinforcement learning for robotic manipu-
lation with asynchronous off-policy updates. arXiv preprint arXiv:1610.00633, 2016.

[4] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and
K. Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. arXiv preprint
arXiv:1611.05397, 2016.

[5] S. James and E. Johns. 3d simulation for robot arm control with deep q-learning. arXiv preprint
arXiv:1609.03759, 2016.

[6] E. Johns, S. Leutenegger, and A. J. Davison. Deep learning a grasp function for grasping
under gripper pose uncertainty. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ
International Conference on, pages 4461–4468. IEEE, 2016.

[7] G. Kahn, T. Zhang, S. Levine, and P. Abbeel. Plato: Policy learning using adaptive trajectory
optimization. arXiv preprint arXiv:1603.00622, 2016.

[8] S. Levine and P. Abbeel. Learning neural network policies with guided policy search under
unknown dynamics. In Advances in Neural Information Processing Systems, pages 1071–1079,
2014.

[9] S. Levine and V. Koltun. Guided policy search. In ICML (3), pages 1–9, 2013.

[10] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
Journal of Machine Learning Research, 17(39):1–40, 2016.

[11] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen. Learning hand-eye coordination for robotic
grasping with deep learning and large-scale data collection. arXiv preprint arXiv:1603.02199,
2016.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, 2015.

[13] W. Montgomery, A. Ajay, C. Finn, P. Abbeel, and S. Levine. Reset-free guided policy
search: Efficient deep reinforcement learning with stochastic initial states. arXiv preprint
arXiv:1610.01112, 2016.

[14] W. H. Montgomery and S. Levine. Guided policy search via approximate mirror descent. In
Advances in Neural Information Processing Systems, pages 4008–4016, 2016.

[15] K. Perlin. Improving noise. In ACM Transactions on Graphics (TOG), volume 21, pages
681–682. ACM, 2002.

[16] L. Pinto and A. Gupta. Supersizing self-supervision: Learning to grasp from 50k tries and 700
robot hours. In Robotics and Automation (ICRA), 2016 IEEE International Conference on,
pages 3406–3413. IEEE, 2016.

[17] I. Popov, N. Heess, T. Lillicrap, R. Hafner, G. Barth-Maron, M. Vecerik, T. Lampe, Y. Tassa,
T. Erez, and M. Riedmiller. Data-efficient deep reinforcement learning for dexterous manipu-
lation. arXiv preprint arXiv:1704.03073, 2017.

9



[18] A. A. Rusu, M. Vecerik, T. Rothorl, N. Heess, R. Pascanu, and R. Hadsell. Sim-to-real robot
learning from pixels with progressive nets. arXiv preprint arXiv:1610.04286, 2016.

[19] F. Sadeghi and S. Levine. (cad)2rl: Real single-image flight without a single real image. arXiv
preprint arXiv:1611.04201, 2016.

[20] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep
neural networks and tree search. Nature, 529(7587):484–489, 2016.

[21] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomiza-
tion for transferring deep neural networks from simulation to the real world. arXiv preprint
arXiv:1703.06907, 2017.

[22] E. Tzeng, C. Devin, J. Hoffman, C. Finn, P. Abbeel, S. Levine, K. Saenko, and T. Darrell.
Adapting deep visuomotor representations with weak pairwise constraints. In Workshop on
the Algorithmic Foundations of Robotics (WAFR), 2016.

[23] F. Zhang, J. Leitner, M. Milford, B. Upcroft, and P. Corke. Towards vision-based deep rein-
forcement learning for robotic motion control. arXiv preprint arXiv:1511.03791, 2015.

[24] T. Zhang, G. Kahn, S. Levine, and P. Abbeel. Learning deep control policies for autonomous
aerial vehicles with mpc-guided policy search. In Robotics and Automation (ICRA), 2016 IEEE
International Conference on, pages 528–535. IEEE, 2016.

10


	1 Introduction
	2 Related Work
	3 Approach
	3.1 Data Collection
	3.2 Training

	4 Results
	5 Conclusions

