Monocular, Real-Time Surface Reconstruction using Dynamic Level of Detail

Jacek Zienkiewicz

Akis Tsiotsios

Andrew Davison

Stefan Leutenegger
Imperial College London, Dyson Robotics Lab, London, UK

{j.zienkiewiczl2, c.tsiotsios, a.davison, s.leutenegger}@imperial.ac.uk

Abstract

We present a scalable, real-time capable method for ro-
bust surface reconstruction that explicitly handles multi-
ple scales. As a monocular camera browses a scene, our
algorithm processes images as they arrive and incremen-
tally builds a detailed surface model. While most of the
existing reconstruction approaches rely on volumetric or
point-cloud representations of the environment, we perform
depth-map and colour fusion directly into a multi-resolution
triangular mesh that can be adaptively tessellated using
the concept of Dynamic Level of Detail. Our method re-
lies on least-squares optimisation, which enables a proba-
bilistically sound and principled formulation of the fusion
algorithm. We demonstrate that our method is capable of
obtaining high quality, close-up reconstruction, as well as
capturing overall scene geometry, while being memory and
computationally efficient.

1. Introduction

A 3D reconstruction system based on a moving monocular
camera is effectively a variable-baseline multi-view-stereo
system, and unlike a depth camera or stereo rig, does not
have a fixed minimum or maximum range. As a camera
browses a scene, we can use small baselines when the cam-
era is close to objects to capture fine details, and when the
camera is far away, we can observe the global, coarser struc-
ture. However, fusing the depth measurements with these
dramatically different scales into a single resolution rep-
resentation of the environment is problematic, and system
design decisions are often made which incur performance
or quality penalties. For example using a fine resolution
throughout will result in high memory consumption and can
lead to aliasing artifacts when the density of the measure-
ments is low relative to the resolution of the model.

In this paper we present a new real-time multi-resolution
fusion approach that naturally supports and harnesses the
superior characteristics of a monocular system, and is ro-
bust, flexible and scalable. We maintain an implicit multi-

Figure 1: Our method efficiently reconstructs a surface
model, and is capable of creating high quality details.

scale representation of the environment based on a Lapla-
cian mesh decomposition that maintains hierarchy of ap-
proximations of the surface at various resolutions. Inspired
by the Level of Detail (LOD) approach from Computer
Graphics, we dynamically determine the required scale as
each new piece of data is fused into it.

Unlike most real-time, incremental, dense reconstruc-
tion methods that either perform volumetric fusion using a
TSDF [20] or unordered dense surfel clouds [15], we fuse
the depth maps directly into a triangular mesh. Our fu-
sion approach is formulated as recursive Bayesian estima-
tion in a probabilistically sound fashion. Technically, with

every new frame, we solve a large-scale optimisation prob-
lem. Real-time performance is obtained thanks to the semi-
regular, adaptive mesh structure as well as a very efficient,
parallel Gauss-Seidel solver. Furthermore, our formulation
of fusion as an optimisation problem allows us to improve
performance by using a robust cost function (in an itera-
tively reweighted least squares framework) as well as regu-
larisation. We demonstrate high quality detailed reconstruc-
tion at the level of sum-millimetres, as well as examples of
practical applications of our approach e.g. in robotics.

2. Related work
2.1. Multi-scale reconstruction

Obtaining high-quality surface reconstruction directly from
a set of images has been a widely studied problem within the
field of computer vision and graphics, and many different
solutions for handling multiple scales have been proposed.
Among off-line methods that globally optimise a batch of
images recent examples include work by Fuhrmann and
Goesele [8, 9] and Ummenhofer and Brox [30]. These ap-
proaches have shown remarkable results but are highly pro-
hibitive for real-time applications where processing should
be fast and the reconstruction should be updated incremen-
tally.

In the field of real-time SLAM approaches that operate in
an incremental fashion, the main emphasis is usually put on
scaling-up the reconstruction, rather than obtaining very ac-
curate and detailed models. This is because, although there
exist methods that use passive cameras only [21, 23], most
successful real-time systems rely on depth cameras which
have quite limited depth range, e.g. [20, 15]. When de-
signing large scale, real-time dense reconstruction systems,
much effort has been focused on reducing the amount of
memory and resources spent on processing “empty”’ space
and therefore these methods are rarely particularly good
at dealing with scale changes. Notable examples of scal-
able, real-time 3D reconstruction systems include Kintinu-
ous [32], multi-scale octree representation for TSDF [4, 26],
voxel hashing [22], and multi-resolution surfel maps [27].

2.2. Surface rendering using dynamic LOD

Multi-scale and level of detail object representations play
an important role in Computer Graphics for rendering of
complex geometric models and there is a plethora of differ-
ent methods and approaches. In his seminal work, Hoppe
[12] introduced the progressive mesh scheme, a continuous-
resolution representation of arbitrary triangle meshes. Pro-
gressive Meshes allow for a smooth choice of detail level
depending on the current view, and were used for high-
quality, continuous level of detail rendering in various sce-
narios [13, 14]. The method produces compelling results,
and is designed for arbitrary meshes, but it requires rather

complex preprocessing that is not suitable for an incremen-
tally reconstructed mesh.

More relevant and similar to our level of detail approach
are methods based on regularly sampled, hierarchical struc-
tures such as grid quad-trees, e.g. Lindstrom et al. [16]
or Real-time Optimally Adapting Meshes (ROAM) as pro-
posed by Duchaineau et al. [5]. A basic building block of
these methods is a patch that represents a small area of the
terrain/landscape. Each triangle within a patch can be re-
cursively tessellated by binary subdividing its edges until
the desired level of detail is reached. The methods based
on partitioning of the mesh into patches are very simple and
efficient. Another notable example of a LOD method that
was specifically designed for large-scale terrain rendering is
geometry clipmaps [17], which caches the terrain in a set of
nested regular grids centred about the viewer, in a similar
way to how texture clipmapping works.

3. Overview

We follow a rather standard monocular 3D reconstruction
pipeline that consists of three distinct stages: camera track-
ing, depth estimation, and depth map and colour fusion.
Given camera poses obtained from camera tracking, for
each frame we employ a multi-view stereo algorithm to es-
timate dense depth maps. Noisy depth maps (together with
the colour images) are then fused into a consistent model.
The main novelty of our approach is in the fusion algorithm
and we will only briefly describe our approaches to camera
tracking and depth estimation.

Note that our fusion approach is independent of the cam-
era tracking and the depth estimation techniques, and in
fact it could be also used e.g. with a depth camera. How-
ever, it is monocular systems that can excel with his kind
of multi-resolution fusion as they are capable of obtaining
depth maps from scales of millimetres to metres.

3.1. Camera tracking and depth estimation

Our fusion method assumes that the camera poses are given.
In our implementation we use ORB-SLAM [19] with its
standard settings, but other monocular tracking systems are
suitable as well, e.g. SVO [7] or LSD-SLAM [6]. Robust
performance of the ORB-SLAM and drift-free poses thanks
to the bundle-adjustment helps us obtaining consistent re-
constructions. We also use the estimated depths of the fea-
tures detected by ORB-SLAM in the current frame to limit
the disparity range searched during the stereo matching.

To estimate a depth map for each new image we run a
simple multi-view stereo method. We maintain a fixed-size
buffer of recent frames that are candidates for matching and
a new frame is added to this buffer when the camera has
moved sufficiently far from the most recent keyframe. Note
that this is entirely independent of the keyframes selected
and maintained by ORB-SLAM.

Figure 2: Multi-scale mesh based on Laplace pyramid.

We utilise the concept of plane sweeping and cost vol-
ume aggregation as it is a flexible way for performing multi-
view stereo matching. Unlike DTAM [21], which used
multiple small baseline frames, we are more restrictive in
the way we select images for stereo matching: we use few
frames (4-7) but with different baselines. This relies on the
observation that images with short baseline help to avoid
local minima, whereas larger baselines improve accuracy.

The Census transform [33] of a 9 X 7 image patch cen-
tred around a pixel together with Hamming distance is used
for calculating matching cost. Scores from multiple frames
that are accumulated in the cost volume are subsequently
aggregated [24] using the guided image filtering technique
(CLMF) proposed by Lu et al. [18]. This approach runs in
constant time thanks to the use of orthogonal integral im-
ages [34], and it avoids the computational complexity of
the global optimisation used in DTAM, while still offering
good regularisation properties in low-texture areas and pre-
serving sharp edges.

4. Multi-scale surface reconstruction

We will first describe the multi-scale surface representation
used in our algorithm and explain how we dynamically gen-
erate various levels of detail. Next, we will outline the fu-
sion algorithm under the assumption that there is only a sin-
gle resolution. Finally, we will combine all elements to-
gether and present the whole multi-scale fusion framework.

4.1. Triangular Mesh

Most the surface reconstruction methods either perform vol-
umetric reconstruction using implicit functions, or simply
represent a surface using unordered surfels. Alternative
methods belonging to computational geometry [1, 2] di-
rectly create the mesh using the existing points. In our ap-
proach, rather than trying to create a triangulated surface

Figure 3: When subdiving a triangle, we use the following,
regular tessellation pattern: left is the base triangle, middle
and right are two consecutive levels of detail, level 1 and 2,
where the triangle is respectively subdivided into 4 and 16
smaller triangles.

from a point cloud, we start with a predefined, fixed topol-
ogy, triangular model of the surface and fit it to the data.
This can also be thought as surface fitting using deformable
models [29, 28]. We start with a flat surface at a predefined
distance from the camera, and allow one degree of freedom
per vertex, i.e. displacement with respect to some prede-
fined surface normal direction. Currently, we cannot change
the topology of the mesh, but we can locally refine the mesh
by recursively and systematically subdividing triangles and
introducing new vertices as more details are needed. Specif-
ically, each individual triangle in base mesh can be divided
into up to 4096 smaller triangles. Rather than explicitly
storing the mesh at multiple resolutions, we use the implicit
representation inspired by the Laplace / Burt-Adelson style
pyramid [3, 11].

We denote by B the base mesh that captures the coarsest
geometry and store it using a fixed grid of size np X np.
D represents a “detail” mesh that stores only the high-
frequency details, not captured by the coarser mesh. As
we use an oversampling factor of 2, the size of D is
(2np — 1) x (2np — 1), however in practice we only need
to store the details in sub-grids, where they are required,
which greatly reduces memory usage. In our system, we
allow up to 6 detail levels, D; for i = 1...6, each with in-
creased resolution compared to the previous level, that store
only the differences between the higher resolution and the
lower resolution meshes.

As demonstrated in Fig. 2, starting with the coarsest
mesh B = M we can generate a sequence of meshes M
at increasingly higher resolution, by adding detail coeffi-
cients:

Mi:B+ZDi. (1)

Fig. 3 shows the tessellation pattern that we use to in-
crease the resolution of the mesh. When going from one
level to another, we simply divide each edge of a triangle
in half by introducing new vertices and therefore split a tri-
angle into 4 smaller ones. This procedure can be repeated
recursively, in total 6 times, and therefore, with the base ge-
ometry we can create in total 7 levels of detail (and achieve

a 4096 fold resolution increase).

In order to calculate the position of newly introduced
vertices, we perform vertex assembly, i.e. reconstruct ver-
tex positions using multiple levels of detail. First, we pre-
dict a vertex position within the finer mesh by interpolating
the coarser mesh. Next, we displace the vertex by adding a
“detail” coefficient from the finer resolution. This is done
recursively until the required level of detail is reached.

4.2. Dynamic Level of Detail

In the previous sections, we described our parametrisation
of the model that allows us to build, on the fly, representa-
tions of the surface at different scales. However, working
with the fixed resolution all the time might not be practical,
e.g. when the camera is looking at the surface from far or
at an oblique angle, and it typically results in aliasing ar-
tifacts when the selected resolution is too high compared
to the image resolution. Dynamic LOD algorithms specif-
ically address those issues by adapting the complexity of a
3D object representation based on the expected on-screen
size or other metrics such as distance to the camera.

To determine the required level of detail and therefore
the per-pixel level we have to fuse a measurement into, we
evaluate the current estimate of the coarse geometry, the
mesh B. Given the camera pose with respect to the mesh,
and camera intrinsics, each triangle of the coarsest mesh is
projected onto the virtual camera plane and its area is cal-
culated. A parameter controlling the LOD is the desired
triangle area, which tells us how many times the triangle
should be divided, and the LOD is calculated as follows:

I - round <log2 (%‘”)) , @)

where [Ap] indicates the on-screen area of the base triangle,
and a is the desired area (we usually set it to 4 pixels). At
this stage we can also discard geometry that is clearly not
visible in the current frame (e.g. is behind the camera) to
further improve performance.

Thanks to its simplicity, the proposed method achieves
extremely high rendering (and therefore prediction) rates
even for complex models. Fig. 4 shows the difference be-
tween rendering rates for the dynamic and static LOD mod-
els. One limitation of our approach is the fact that the multi-
scale representation on a regular grid is usually suboptimal,
as triangle boundaries are unlikely to correspond to natural
features of the surface. Furthermore, when adjacent trian-
gles are rendered at different resolutions, we have to adjust
the LOD in order to address the problem of cracks.

4.3. Fusion
4.3.1 Single level fusion

We will first explain our fusion algorithm under the assump-
tion that there is only a single resolution mesh. We formu-

(b) High resolution: 120 fps.

(c) Dynamic res.: 1300 fps.

(d) Underlying mesh.

Figure 4: Rendering using different mesh resolutions: (a)
coarse mesh, (frame-rate approx. 2400 fps); (b) high reso-
lution mesh, (120 fps); (c) rendering using dynamic level of
detail (different colour indicates different LOD) and corre-
sponding mesh (d).

late the surface reconstruction as an optimisation problem,
in which we fit the observed data into a predefined surface
model, with one degree of freedom per vertex. In this work
we assume that the surface model is a simple height field
but more generic models are also feasible.

Let d; be a depth measurement for the pixel location
(u;,v;). First we back-project the depth measurement into
3D space and associate it with the triangle is falls onto. Us-
ing the camera intrinsics matrix K and camera pose T"°,
we transform the depth measurement into a height measure-
ment in the global frame of reference as follows:

P =T"dK 'p;,)

where P = (z;,y;, 2;) and p; = (u;,v;, 1). If there is an
uncertainty measure o¢ associated with the depth measure-
ment d;, we can also calculate uncertainty in the elevation
o7 using the rules of error propagation.

Let us assume that the surface has a form z = f(z,y),
which in our case is a triangular mesh controlled by a set of
height variables h € R™, where m = n x n and n is the
(rectangular) grid dimension. A 3D point P = (z;, v, 2;),
can be associated with a triangle of the surface, and we can
predict the height at (x;,y;) by using barycentric coordi-
nates within this triangle v; = (a;, 8;,7;) ', in the follow-
ing way:

2 = ;i + Bihg + ihs)

(b) Associated J ' J matrix.

(a) Example of a mesh.

(d) Variables for an element-
wise Gauss-Seidel iteration.

(c) 3" J stored on a grid.

Figure 5: We use a regular grid structure to represent the mesh and the elements of the J " Jh = J "z equation. a) An example
of a5 x 5 grid with used triangulation. Each vertex is connected to only 6 adjacent vertices. b) Structure of the J " J matrix

associated with the mesh. ¢) The matrix J T J can be stored efficiently using a grid of size (2n — 1) x

(2n — 1). Dots indicate

the diagonal entries of the matrix; squares represent the off-diagonal entries. A single height measurement updates J'J
locally, as shown by the example blue triangle. d) During an element-wise Gauss-Seidel iteration, we access only a small
subset of entries in the J T J matrix; here the red area indicates the support for the h;, j+1 Vertex.

where hlAi , h2A ‘ thi represent the heights of the trian-
gle associated with the point (z;,y;, z;). The conversion
from grid coordinates to barycentric coordinates, (x;,y;) —
(v, Bi, Vi), is straightforward and will be omitted.

A set of k height measurements gives rise to the follow-
ing set of equations:

Oélhfl +51h2A1 +’71h3A1 =
ozghlAQ + ﬁghfz + 72h3A2 =2z

&)
RhE* 4 BRhSt 4 yphy s =

)

where /\; indicates the triangle a particular height measure-
ment is projected onto. Multiple measurements can be asso-
ciated with the same triangle, and the set of /inear equations
in Eq. 5 can be written as:

Jh=1z, (6)

where J € RF*™ h € R™ and z € R*. Note that the
matrix J has only 3 non-zero entries per row.

We solve Eq. 5 in the least squares sense by formulating
the normal equation:

JTIh=171"z. (7

The matrix J'J on the left-hand side is symmetric and
sparse and has a regular structure that reflects the topology
of the mesh used, as shown in Fig. 5. In our case, a single
vertex can be connected to only up to 6 neighbouring ver-
tices, so J ' J contains per row a diagonal entry and only up
to 6 non-zero off-diagonal entries. As a result, rather than

storing J T J using an arbitrary sparse matrix data structure
like e.g. CSR or COO, we can represent J ' J conveniently
also on a regular grid: for a mesh of size n X n we need a
grid of the size (2n — 1) x (2n — 1). This is best visualised
by the example in Fig. 5 (note that we exploit the symmetry
of the matrix). Consequently, we also store the vectors h
and J "z using n x n grids.

Instead of first calculating J and then explicitly perform-
ing matrix multiplication, we need only to store J'J and
J "z and can update them directly, with coefficients that are
straightforward to compute. Each height measurement h;
updates J ' J at 6 locations (3 diagonal and 3 off-diagonal
entries) associated with its triangle, using the coefficient ob-
tained by taking the outer product (weighted when we take
the uncertainty into account) of the barycentric coordinates
(Eq. 4):

Oég ol oy
vivi = | aBli B By | - (®)
oy Bivi %2

4.3.2 Gauss-Seidel solver

In order to solve Eq. 7 we rely on the Gauss-Seidel method,
an iterative solver, which uses an element-wise formula to
update the components of the solution vector, h. Compared
e.g. to the Conjugate Gradient algorithm, the computations
are simpler and local, and it is not required to perform a dot
product (needing reduction on a GPU), which sometimes
might be costly. Methods based on Gauss-Seidel are quite
popular for solving large scale partial differential equations
on discrete grids or meshes.

Gauss-Seidel’s element-wise formula for a system of

equations of the form Ah = b is as follows:

i—1 n

1 .
B = poll Z%‘j%‘kﬂ) - Y aghf | . ©
i j=1 j=it1

The computation of update value hEkH) within iteration
k 4+ 1 uses only a small subset of the entries in matrix A and
vector b, as well as values from the solution vector that have
already been updated h(*+1) and values from the previous
iteration 2*. This means that for each vertex we only need
to access its six surrounding neighbours within the vector h
and the associated off-diagonal entries of the matrix J' J.
The local form of the update rule makes it straightforward
to execute, but the dependency between variables means
that in a standard form, Gauss-Seidel is a serial algorithm
and the computations for each of the height elements can-
not be done in parallel. Fortunately, we can apply variable
ordering (four-colour reordering [25, p. 95]) and divide the
grid in 4 sets of independent variables, where computations
within a set can be executed completely in parallel.

4.3.3 Incremental reconstruction

In our fusion framework we can process each depth map as
it arrives. With every new frame, we update J' J and J ' z
and run only a few iterations of the Gauss-Seidel solver as
it typically converges very fast. Since we are solving the
linear least squares problem iteratively, we can always stop
the solver and add new data (i.e. update the J'J and J 'z
according to Eq. 8), and then resume the optimisation. Note
that all previous measurements are summarised in the J ' J
and J "z, and that the computations and memory require-
ments are bounded. From the estimation perspective, this
approach corresponds to an Information Filter, with matrix
JTJ being the inverse covariance matrix and vector J' z
the information vector. Note, that this is in contrast to the
method proposed by [36] who cast the depth map fusion
as a nonlinear least squares problem and therefore formu-
lated the fusion as an Extended Information Filter. There,
the data association and linearisation point can change from
iteration to iteration, one has to make sure that the solver
converges before a new data/depth map can be processed.

4.3.4 Multi-scale fusion

Our multi-scale fusion approach combines Laplacian-based
surface decomposition, dynamic tessellation and level of
detail, and optimisation-based surface reconstruction within
a single framework.

Given the current estimate of the surface model and cam-
era pose, we first perform dynamic level of detail rendering
to tessellate each part of the mesh up to the required resolu-
tion. We then proceed with fusion in a coarse-to-fine fash-
ion. Starting from the coarsest level a depth measurement

is fused into all the levels up to the selected finest one. Our
Laplacian surface parametrisation assumes that the levels
are independent, and only contain the details/frequencies
that were not captured by the previous level. This means
that after a height measurement h; has been fused into a
level k, we first make a prediction of the height at this level,
izf and in the subsequent level, k+ 1, we only fuse the resid-
ual between the predicted height and the measured height:

rEtl =y — hE (10)
This is repeated recursively for each measurement, until the
required level of detail has been reached. Before fusing into
the next finest level, we make sure that the optimisation has
converged, and only proceed into the next resolution level
after the vertices in the preceding level have reached cer-
tain stability. Here we simply look at the magnitude of the
diagonal entries of J' J associated with the triangle, which
are good proxies for the stability, i.e. it is the per vertex
sum of squared barycentric coordinates from all the mea-
surement thus far. This procedure locks the gauge freedom
that would be present if we solved for all heights at different
resolutions simultaneously.

5. Experiments

We run a series of experiments on both synthetic and real
datasets to demonstrate the practicality and evaluate the per-
formance of our method. We present comparisons with
MVE [10], a state-of-the-art off-line, batch-optimisation
type method for multi-scale reconstruction, as well as a real-
time, point-based method [3 1] based on the algorithm pro-
posed by Keller et al. [15]. We show that our framework
can achieve high quality detailed reconstructions but at a
runtime comparable with Point-based Fusion (Table 2).

The fusion is implemented entirely on a GPU: the LOD
computations and dynamic tessellation (Section 4.2) utilise
the tessellation unit of a modern rendering pipeline, intro-
duced in OpenGL 4.0, whereas the computations involving
fusion and the solver were implemented in CUDA. When-
ever data has to be shared between CUDA and OpenGL
we use the OpenGL / CUDA inter-operation feature of
the NVidia graphics card. Our implementation (including
tracking and depth estimation) achieves real-time perfor-
mance of 20-25 frames per second on a GTX 680 (most
of the time is spent on tracking and depth estimation).

5.1. Synthetic data

To demonstrate the correctness of our incremental recon-
struction method we first run an experiment using synthetic
data. Fig. 6 shows the results of reconstructing a moon-like
surface together with surface error obtained using Cloud-
Compare. As a benchmark, we compare the results with
the global optimisation method, MVE. We can see that our

Ground truth

0.030000
0.022500
0.015000

0.007500
0.000000

Proposed

as

Figure 6: Reconstruction of a synthetic moon surface. Left) Ground truth; Middle) Multi-View-Environment (MVE) [10];
Right) Our method. The heat maps below show reconstruction error.

method is capable of obtaining a good quality surface re-
construction while running two orders of magnitude faster.

| | Run time | Avg. error | Std. deviation |

Proposed | 39 sec. 0.0057 0.034%
MVE 47 min. 0.0037 0.015%
Table 1: Run-time and reconstruction accuracy of our

method compared to the off-line, batch optimisation method
(MVE [10]).

5.2. Real data

In the Fig. 1 on the first page, we have already shown recon-
struction of a real desk-like environment, where within the
same framework we can obtain reconstruction of the whole
surface as well as of tiny details like coins and paper clips.
Fig. 7 presents additional results and compares our
method with the model obtained using Point-based Fusion
[15] (in both cases we used ORB-SLAM and our depth esti-
mation method). At the overall scale we obtain qualitatively
good results using both approaches, but Point-based Fusion
tends to over-smooth the model and cannot handle correctly
the significant changes in scale. On the other hand, our
method is capable of capturing the overall structure of the
scene (although it struggles with sharp vertical edges and

| Processing time | 8.9 ms (111 fps) |

Proposed | Point-based Fusion |

11.1 ms (90 fps) |

Table 2: Run-time comparison against Point-based Fusion.

Figure 7: Comparison of our proposed method (bottom
row) against Point-based Fusion (top row).

cannot handle overhangs properly) while being able to re-
construct tiny details including elements on a circuit board.

An additional advantage of our approach is that it can
provide a user with direct feedback about reconstruction
quality. In Fig. 8 different colours indicate the reconstructed
level of details for every element of the scene. Yellow
means that this part of the scene has been captured with a
high level of detail, whereas blue represents only the coars-

Figure 8: We can obtain feedback about the quality of re-
construction during the scanning process. Here, different
colours represent the resolution that the surface element has
been reconstructed to (yellow = high, blue=low).

est geometry. In total, to store the model using our adaptive
resolution representation, we only need 5.3% of the mem-
ory compared to using the full, high resolution mesh.

5.3. Exemplar applications
5.3.1 Mobile robot height map fusion

One of the immediate applications of the proposed method
is in the field of mobile robotics. A small robot, e.g. a
robotic vacuum cleaner, can use forward or downward look-
ing camera to perceive the obstacles [35], and create a map
of its environment in form of a height map as for example
demonstrated in [36]. Fig. 9 shows an example of results
obtained in such a setup. Multi-resolution is strongly ad-
vantageous for oblique camera angles, because it allows us
to use high resolution directly in front of the robot and low
resolution towards the horizon.

5.3.2 Relief/face scanning

The fact that we perform reconstruction using a predefined
mesh can allow an easy and robust way to create 3D mod-
els of some common structures (e.g. face scanning). This
is particularly helpful for 3D printing, where a predefined
mesh will compensate for missing data and will guarantee
that the final model does not contain holes and is directly
printable without any additional processing. Fig. 10 shows
an example of a real face reconstructed using our algorithm.

6. Conclusions

We have presented a method for incremental surface recon-
struction from a moving camera that can handle scenes with

Figure 9: Multi-scale fusion is well suited to height-
mapping from an obliquely angled camera. Top row: a typ-
ical input image and depth map. Bottom row: reconstructed
scene and the tessellation used for the current frame.

Figure 10: Face reconstruction.

multiple scales. Using the concept of dynamic level of de-
tail we adaptively select the best resolution of the model and
fuse measurements in an efficient multi-scale mesh repre-
sentation.

An obvious limitation of our approach lies in the use
of height map. In the future we are looking into ways of
extending our framework to more general 3D settings and
developing a more flexible multi-scale fusion method. An
interesting improvement would be an adaptive mesh refine-
ment based on data and quality of reconstruction that takes
into account the complexity of the geometry and would for
example represent flat but textured regions with large coarse
triangles but high resolution texture.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]
[13]

(14]

[15]

[16]

[17]

(18]

N. Amenta, M. Bern, and M. Kamvysselis. A New Voronoi-
based Surface Reconstruction Algorithm. In Proceedings of
SIGGRAPH, 1998. 3

N. Amenta, S. Choi, and R. K. Kolluri. The Power Crust. In
ACM Symposium on Solid Modeling and Applications, 2001.
3

P. Burt and E. Adelson. The Laplacian Pyramid as a Com-
pact Image Code. IEEE Transactions on Communications,
31(4):532-540, 1983. 3

J. Chen, D. Bautembach, and S. Izadi. Scalable real-time
volumetric surface reconstruction. In Proceedings of SIG-
GRAPH, 2013. 2

M. Duchaineau, M. Wolinsky, D. Sigeti, M. Miller,
C. Aldrich, and M. Mineev-Weinstein. ROAMing Terrain:
Real-time Optimally Adapting Meshes. In IEEE Conference
on Visualization, 1997. 2

J. Engel, T. Schoeps, and D. Cremers. LSD-SLAM: Large-
scale direct monocular SLAM. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), 2014. 2

C. Forster, M. Pizzoli, and D. Scaramuzza. SVO: Fast Semi-
Direct Monocular Visual Odometry. In Proceedings of the
IEEE International Conference on Robotics and Automation
(ICRA), 2014. 2

S. Fuhrmann and M. Goesele. Fusion of depth maps with
multiple scales. In SIGGRAPH Asia, 2011. 2

S. Fuhrmann and M. Goesele. Floating Scale Surface Re-
construction. In Proceedings of SSIGGRAPH, 2014. 2

S. Fuhrmann, F. Langguth, and M. Goesele. MVE — A
Multi-View Reconstruction Environment. In EUROGRAPH-
ICS Workshops on Graphics and Cultural Heritage, 2014. 6,
7

I. Guskov, W. Sweldens, and P. Schroder. Multiresolu-
tion Signal Processing for Meshes. In Proceedings of SIG-
GRAPH, 1999. 3

H. Hoppe. Progressive Meshes. In Proceedings of SIG-
GRAPH, 1996. 2
H. Hoppe. View-Dependent Refinement of Progressive

Meshes. In Proceedings of SIGGRAPH, 1997. 2

H. Hoppe. Smooth view-dependent level-of-detail control
and its application to terrain rendering. In IEEE Conference
on Visualization, 1998. 2

M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich, and
A. Kolb. Real-time 3D Reconstruction in Dynamic Scenes
using Point-based Fusion. In Proc. of Joint 3DIM/3DPVT
Conference (3DV), 2013. 1,2,6,7

P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust,
and G. Turner. Real-Time, Continuous Level of Detail Ren-
dering of Height Fields. In Proceedings of SIGGRAPH,
1996. 2

F. Losasso and H. Hoppe. Geometry Clipmaps: Terrain Ren-
dering using Nested Regular Grids. In Proceedings of SIG-
GRAPH, 2004. 2

J. Lu, K. Shi, D. Min, L. Lin, and M. N. Do. Cross-based lo-
cal multipoint filtering. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2012. 3

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

R. Mur-Artal, J. M. M. Montiel, and J. D. Tardés. ORB-
SLAM: a Versatile and Accurate Monocular SLAM System.
IEEE Transactions on Robotics (T-RO), 31(5):1147-1163,
2015. 2

R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,
D. Kim, A. J. Davison, P. Kohli, J. Shotton, S. Hodges,
and A. Fitzgibbon. KinectFusion: Real-Time Dense Sur-
face Mapping and Tracking. In Proceedings of the Inter-
national Symposium on Mixed and Augmented Reality (IS-
MAR), 2011. 1,2

R. A. Newcombe, S. Lovegrove, and A. J. Davison. DTAM:
Dense Tracking and Mapping in Real-Time. In Proceedings
of the International Conference on Computer Vision (ICCV),
2011. 2,3

M. NieBner, M. Zollhofer, S. Izadi, and M. Stamminger.
Real-time 3D Reconstruction at Scale using Voxel Hashing.
In Proceedings of SIGGRAPH, 2013. 2

V. Pradeep, C. Rhemann, S. Izadi, C. Zach, M. Bleyer, and
S. Bathiche. MonoFusion: Real-time 3D reconstruction of
small scenes with a single web camera. In Proceedings of the
International Symposium on Mixed and Augmented Reality
(ISMAR), pages 83-88, 2013. 2

C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and
M. Gelautz. Fast cost-volume filtering for visual correspon-
dence and beyond. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2011.
3

Y. Shapira. Matrix-based Multigrid: Theory and Applica-
tions. Springer, second edition, 2008. 6

F. Steinbriicker, C. Kerl, J. Sturm, and D. Cremers. Large-
scale multi-resolution surface reconstruction from RGB-D
sequences. In Proceedings of the International Conference
on Computer Vision (ICCV), 2013. 2

J. Stiickler and S. Behnke. Multi-resolution surfel maps for
efficient dense 3d modeling and tracking. Journal of Visual
Communication and Image Representation, 25(1):137-147,
2014. 2

D. Terzopoulos and D. Metaxas. Dynamic 3D Models with
Local and Global Deformations: Deformable Superquadrics.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (PAMI), 13(7):703-714, 1991. 3

D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically
deformable models. In Proceedings of SSIGGRAPH, 1987. 3
B. Ummenhofer and T. Brox. Global, Dense Multiscale Re-
construction for a Billion Points. In Proceedings of the In-
ternational Conference on Computer Vision (ICCV), 2015.
2

T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker,
and A. J. Davison. ElasticFusion: Dense SLAM without a
pose graph. In Proceedings of Robotics: Science and Sys-
tems (RSS), 2015. 6

T. Whelan, J. B. McDonald, M. Kaess, M. Fallon, H. Jo-
hannsson, and J. J. Leonard. Kintinuous: Spatially Extended
KinectFusion. In Workshop on RGB-D: Advanced Reasoning
with Depth Cameras, in conjunction with Robotics: Science
and Systems, 2012. 2

(33]

(34]

(35]

(36]

R. Zabih and J. Woodfill. Non-parametric Local Transforms
for Computing Visual Correspondence. In Proceedings of the
European Conference on Computer Vision (ECCV), 1994. 3
K. Zhang, J. Lu, and G. Lafruit. Cross-Based Local
Stereo Matching Using Orthogonal Integral Images. IEEE
Transactions on Circuits and Systems for Video Technology,
19(7):1073-1079, 2009. 3

J. Zienkiewicz and A. J. Davison. Extrinsics Autocalibration
for Dense Planar Visual Odometry. Journal of Field Robotics
(JFR), 32(5):803-825, 2015. 8

J. Zienkiewicz, A. J. Davison, and S. Leutenegger. Real-
Time Height-Map Fusion using Differentiable Rendering.
In Proceedings of the IEEE/RSJ Conference on Intelligent
Robots and Systems (IROS), 2016. 6, 8

