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Abstract 

The thesis presents different strategies to detect, characterize, and identify localized 

and distributed non-linearities in practical engineering structures. The formulations 

presented in the thesis work in the frequency domain and based on first-order 

describing functions to express the non-linearities. 

 The novel idea of ‘non-linear force footprints’ is proposed to characterize the 

type of non-linearity. A library containing footprints of different non-linearities like 

cubic stiffness, clearance, and friction is compiled. This library can be used as a 

look-up chart to subjectively identify the type of non-linearity in a structure. A shape-

matching algorithm is proposed to numerically compare the extracted non-linear 

restoring force with the footprints from the library. This provides an automatic 

identification of the non-linearity type. 

  Three different methods are proposed for the parametric identification of 

non-linear systems. All these methods extract the non-linear restoring force, identify 

the location of non-linearity, and finally estimate the non-linear parameters via a 

genetic algorithm optimization. The first method uses an FE model of the underlying 

linear system; while the second and the third methods use a modal model and a 

response model of the underlying linear system respectively. The performance of 

the three methods for a range of criteria is evaluated on common ground by using 

simulated data for a representative engineering structure with localized non-

linearities. 

  An experimental study is undertaken on the so-called MACE structure sub-

assembly with the aim to identify non-linearities in an actual industrial structure. 

Different methods proposed in this thesis, and also from the literature, are used to 

detect the presence of non-linearity, and identify its type. The response of the 

structure at different excitation amplitudes is measured using step-sine excitation 

with constant force. An attempt is made to estimate the non-linear parameters using 

the methods proposed in the thesis. It has been found that the methods accurately 

detect, locate and characterize the non-linearities. 

A three-stage strategy is presented for the identification of non-linear 

parameters, for base-excited structures. The method is illustrated on a pyramid-like 

structure by using simulated measurement data. It has been found that if the non-

linearities in the system are independent of the mass matrix; the non-linear 

parameters can be accurately identified using the proposed method. 
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Nomenclature 

Latin symbols 

ai   Binary multiplier corresponding to the ith non-linearity 

c   Artificial noise percentage in data 

[C]   Viscous damping matrix 

[D]   Proportional damping matrix 

{F}   Excitation force vector 

{Fd}   Excitation force vector for base-excited systems 

{ g }   Non-linear restoring force vector in time-domain 

cubg    Non-linear force related to cubic stiffness non-linearity 

cleg    Non-linear force related to clearance non-linearity 

frig    Non-linear force corresponding to friction non-linearity 

{G}   Non-linear restoring force vector in frequency-domain 

[K]   Stiffness matrix 

Kd   Tangential stiffness for stick friction 

Kz   Clearance stiffness 

m   Number of measured degrees of freedom 

[M]   Mass matrix 

np   Number of non-linear parameters 

nf   Number of frequency lines in measurement 

N   Total number of degrees of freedom 

Nr   Reduced number of degrees of freedom 

{Pd}   Pseudo excitation force vector 

r   Index representing mode number 

R   Residual quantity to be minimized in optimization 

{ }esR~    Vector containing non-linear residual 

t   Time 

u   Number of un-measured degrees of freedom 

{U}   Vector of relative displacement amplitude 

YB   Y-coordinate of benchmark curve 

YE   Y-coordinate of extracted non-linear force curve 

{y}   Displacement vector in time-domain 

yc   Clearance gap distance 

{Y}   Displacement amplitude vector 
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Greek letters 

 [ ]α    Receptance matrix 

[ ]Z    Dynamic stiffness matrix 

 β   Coefficient for cubic stiffness non-linearity 

 ε   Error in estimation 

 η   Modal damping ratio 

 [ ]λ    Complex eigenvalues matrix 

 µ   Coefficient of friction 

 iφ    Vector containing ith column from mode shape matrix 

 [ ]Φ    Mode shape matrix 

 ω   Excitation Frequency 

 ωr   Resonance frequency of the rth mode 

 { }χ    Non-linear modal vector 

Subscripts 

c Index representing the measurement location close to 

non-linear degree of freedom. 

e   Index representing excitation degree of freedom 

m   Index representing measured degrees of freedom 

 max   Index representing the maximum value of a variable 

 Mr   Index representing the identified modes 

 nl   Index representing non-linear degree of freedom 

 u   Index representing un-measured degrees of freedom 

 Ur   Index representing the un-identified modes 

  

Superscripts 

 T   Transpose of a matrix 

 -1   Inverse of a square matrix 

 +   Pseudo-inverse of a rectangular matrix 
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Abbreviations 

1D, 2D,..  One dimensional, two dimensional,... 

CFD   Computational fluid dynamics 

DOF   Degree of freedom 

DFM   Describing function method 

FEA   Finite element analysis 

FEM   Finite element method 

FFT   Fast Fourier transform 

FRF   Frequency response function 

GA   Genetic algorithm 

HBM   Harmonic balance method 

HMT   Hybrid modal technique 

I-HMT   Improved hybrid modal technique 

LMA   Linear modal analysis 

MDOFs  Multi-degrees of freedom 

NMG   Non-linear modal grade 

NMV   Non-linear modal vector 

POD   Proper orthogonal decomposition 

SDOF   Single-degree of freedom 

SSD   Sum of squared distance 
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Chapter 1  

Introduction 
This chapter presents a brief introduction to the subject of non-linear structural 

dynamics. The importance of the research in this area and its relevance to industry 

are stated. The terminologies specific to non-linear structural dynamics, which are 

frequently used in the thesis, are discussed to facilitate the reading of the thesis. 

The statement of the problem, as addressed in this thesis, is presented. In the last 

section, the structure of the thesis and the relationships between different chapters 

are presented in order to give an overview of the thesis. 

1.1 Background of the problem 

In recent years, continuous attempts have been made to shorten the product design 

cycle. To survive in a competitive market, it is of paramount interest to 

manufacturers to reduce the cost and the time associated with the experimental 

validation of prototypes. This need, coupled with the availability of computational 

resources and numerical tools like FEA and CFD, has increased the use of 

computer simulations to predict structural behaviour. For linear systems, the 

dynamic behaviour of a system can be accurately predicted using numerical tools 

like FEA. But in the real world, non-linearity is omnipresent and linear behaviour is 

the exception. As engineers are seeking to design lighter, flexible, faster, and more 

efficient products, the designs are shifting more in the non-linear regime. On the 

other hand, there are very few established and validated methods for predicting the 

response of non-linear systems. 

What is non-linearity? 
Non-linearity is quite a broad term which may possess different meanings in 

contexts of different engineering disciplines. From structural dynamicist’s 

perspective, non-linearity is something which causes the system to violate the 

principle of homogeneity. Mathematically, non-linear systems can be represented by 
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a set of differential equations with non-linear terms. The resonance frequencies and 

mode shapes of such systems are functions of the operating conditions [1]. 

Various domains of engineering, like aerospace, automobile, machine tool 

industry, spacecraft technology, civil and structural engineering, encounter non-

linear systems in one form or the other. Some common occurrences of non-

linearities in engineering are: (i) friction induced non-linearities in bolted joints, (ii) 

backlash and clearance non-linearities in control surfaces of aero-structures, (iii) 

polynomial stiffness non-linearities observed in the engine-wing connection of an 

airplane, (iv) non-linearities demonstrated by engineering materials like composites, 

plastics, and viscoelastic materials. 

As discussed in [2], non-linearities arising from various sources can easily 

invalidate the results of simulations based on linearity. It has been shown in [3-5], 

either experimentally or through simulations, that the dynamic behaviour of strongly 

non-linear systems can be significantly different than that of their linear 

counterparts. Thus, it has become important to accurately predict the behaviour of 

non-linear systems. 

To predict the behaviour of non-linear systems, it is necessary to include the 

corresponding non-linear elements into the numerical/mathematical models which 

describe those systems. The parameters of such non-linear elements are case 

specific, and must usually be identified through experimental route for the case of 

interest. The process of identifying the parameters of the mathematical model of a 

system is known as system identification 

1.2 Non-linear system identification 

Linear system identification, which attempts to determine mathematical models of 

linear dynamic systems from vibration measurements, is an established area of 

study. The tools like modal testing and analysis [6, 7] are available off-the-shelf for 

linear system identification. For linear systems, the transfer function, relating the 

input of the system to its output, remains constant at all excitation levels. Thus, the 

mathematic model obtained through the identification at one operating point can 

later be used for prediction at some other operating point. For non-linear systems, it 

is difficult to obtain a universal mathematical model of the system by performing the 

system identification only at a single excitation level. A model obtained at a given 

operating condition can, at best, provide the equivalent linear system at that point. 

Figure 1.1 depicts the difference between linear and non-linear systems seen from a 
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system identification perspective. It can be seen from the figure that for non-linear 

systems, the transfer function is not independent of the input. 

 

Figure 1.1 Difference between linear and non-linear systems 

Thus, the identification of non-linear systems differs from the conventional linear 

system identification. The scope of non-linear system identification in this thesis is 

confined to detecting the non-linear behaviour, identifying its location and type, and 

estimating its parameters as inputs to the models which describe the non-linear 

system. 

1.3 The describing function method  

The describing function method (DFM), which finds its origin in control systems 

engineering [8], is a very popular method to predict the response of non-linear 

systems. The method seeks to find an input-output relationship for non-linear 

systems by assuming approximate functions, called describing functions, to 

describe the behaviour of non-linear elements in the system. The coefficients of 

these describing functions are obtained by matching the restoring force in the 

system. 

 For systems with sinusoidal input, the coefficients of describing functions 

can be derived by using a method which is popularly known as the harmonic 

balance method (HBM). In this case, the non-linear part of the restoring force is 

assumed to be periodic, so that it can be expressed as a Fourier series. The Fourier 

series may be truncated to include only the fundamental harmonics, leading to a 

technique called single-harmonic balance method. As the number of harmonics in 

the analysis is increased, a better approximation can be achieved. In the harmonic 

balance method, the Fourier coefficients are obtained by computing the area under 

the non-linear force curve for one complete cycle. Figure 1.2 shows, for clearance 

non-linearity, a comparison of actual non-linear force and the approximated non-

linear force with single harmonic balance method.  
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Figure 1.2 Single HBM approximation of clearance non-linearity 

The describing function method, or the harmonic balance method, provides a fast 

and efficient way to calculate the response of a non-linear system under harmonic 

excitation. The HBM with fundamental harmonics only, fails to predict complex 

phenomena like internal resonances, sub-harmonic and super-harmonic 

components in the response. These phenomena are typical of non-linear systems. 

Another reason for the popularity of this method amongst structural dynamists is 

because it mimics step-sine vibration tests performed with conventional spectral 

analysers. The describing functions for different non-linearities encountered in 

engineering structures, can be found in [2, 9]. 

 The research in this thesis uses the describing function method as the basic 

engine. All identification methods presented in this thesis essentially use the 

describing functions for different non-linearities. The simulated data used to 

illustrate the identification methods are generated using single-harmonic balance 

method. 

1.4 Objectives of the thesis 

Non-linear structural dynamics is a wide area of research which includes, predicting 

the behaviour of non-linear systems, non-linear system identification, stability 

studies for non-linear system etc. The scope of the research presented in this thesis 

is restricted to the area of non-linear system identification. The entire work in the 
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thesis is based on the already established theory of describing functions (DFM). The 

statement of the problem, which is attempted in this thesis, is given as follows: 

“To propose and illustrate different strategies for non-linear system identification 

which suit complex and realistic engineering systems. The realm of non-linear 

system identification would encompass different sub-activities like detection of non-

linearities in the system, identification of the type of non-linearity, and estimation of 

the non-linear parameters.”  

1.5 Organization of the thesis 

The chart shown in Figure 1.3 summarizes the contents of the thesis. 

 

Figure 1.3 Thesis contents 

The material in the thesis is arranged logically, starting with a survey of the literature 

in the area of non-linear structural dynamics, which is presented in Chapter 2. 

 A novel method for the identification of non-linearity type, based on footprints 

of non-linear restoring force, is proposed in Chapter 3. A footprint library, consisting 

non-linear restoring forces for different types of non-linearities commonly 

encountered in engineering structures, is presented. A method based on shape-
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matching algorithm for quantitative matching of non-linear force curves is also 

presented. 

 After the non-linearity type identification, the next stage is the non-linear 

parameter estimation. A method for non-linear parameter estimation, which uses the 

FE model of the underlying linear structure, is proposed in Chapter 4. The method 

extracts the non-linear parameters via genetic algorithm optimization. The method is 

illustrated on a simple cantilever beam case. 

 An accurate FE model might not be available in some practical cases. The 

methods which bypass the requirement of the updated FE model are presented in 

Chapter 5. Two proposed methods use the modal model and the response model of 

the underlying linear structure respectively. The methods are exemplified using 

simulated data for a cantilever plate. 

 The methods presented in earlier chapters have their own advantages and 

disadvantages. These are compared on common ground by using simulated data 

for a relatively complex and realistic engineering structure, the so-called 1203 

structure. The results of the comparison are presented in Chapter 6. 

 Chapter 7 presents an experimental investigation of non-linearities in the so-

called MACE structure, the structure with different joints and connections 

contributing towards non-linear behaviour. A complete process of non-linear 

identification is attempted on this structure with experimental data. 

Many times, for large structures, vibration tests are performed with the 

structure mounted on a shaker table, and controlling the acceleration input to the 

structure. Since the force input is not measured in such cases, conventional non-

linearity identification methods cannot be applied. Chapter 8 presents a novel 

strategy of non-linear parameter estimation for the case of base-excited structures. 

 In the last chapter of the thesis, Chapter 9, the main contributions of the 

research are summarized. Some concluding remarks on the research and 

suggestions for future work on this topic are presented. 
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Chapter 2 

Literature Survey 
This chapter presents a survey of the literature in the area of non-linear structural 

dynamics. The survey presented is not all-encompassing but more specific to the 

topics related to the thesis. The literature which helped the author to define the 

research problem, and which is closely related to the research presented in the 

thesis is dealt with in detail. For an exhaustive survey of the literature, the reader is 

directed to the excellent review articles [10-13] published on this topic. For an 

introduction to non-linear structural dynamics in general, the books by Nayfeh and 

Mook [14] and Worden and Tomlinson [2] serve as a good starting point. The review 

in this chapter is organized methodologically, and within the methodologies, the 

work is arranged in chronological order. 

2.1 Introduction 

From a structural dynamicist’s perspective, non-linearity can be defined as the 

deviation of a structure from linear behaviour. The non-linearity is manifested in the 

form of amplitude-dependent vibration properties, complex phenomena like mode 

localization, bifurcations, internal resonances, presence of sub-harmonic and super-

harmonic components in the response, jump phenomenon etc.  

The research in the area of non-linear structural dynamics started more than 

four decades ago. The research later gained the popularity and wide acceptance 

when it was understood that all engineering structures are non-linear to some 

extent. The research progressed in two fundamental branches: (i) non-linear system 

identification and, (ii) prediction of non-linear response under different operating 

conditions. Different methodologies emerged within these two fundamental 

branches. A chart showing the span of the research in this area is presented in 

Figure 2.1. The different methods proposed for identification and modelling of non-
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linearities are presented in separate sections. The last section presents the 

literature on application of these methods to complex engineering structures. 

 

 

Figure 2.1 Research in non-linear structural dynamics 

2.2 Non-linear system identification 

The main goal of any system identification method is to find parameters of a 

mathematical model representing a physical system, by making use of the input and 

output data describing the excitation and response of the system. For linear 

structural dynamics, there are three popular representations to describe the physical 

system: (i) the spatial model, (ii) the modal model, and (iii) the response model. The 

modal model is the most compact form which is easily obtainable through 

experimental route [6]. Thus, most of the linear system identification methods 

extract the parameters of the modal model of the system, a process which is 

popularly known as linear modal analysis (LMA). 

For a non-linear system, the properties like linear modal superposition, 

reciprocity, homogeneity which form the back-bone of LMA theory are not valid. 

Thus, non-linear system identification is more involved than just to extract the 

parameters for the modal model of the system. Some basic treatment and practical 
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advice on handling the non-linear system is presented in a primer on modal analysis 

published by Dynamic Testing Agency [15].  

There are three stages of non-linear system identification, (i) Non-linearity 

detection, (ii) Non-linearity characterization, and (iii) Non-linear parameter 

extraction. In the first stage, the presence of the non-linearity is detected from the 

experimental measurements. In the second stage, the type and form of non-linearity 

is identified and in the last stage, the corresponding non-linear parameters are 

identified [11]. 

There are several ways to classify the literature on non-linear system 

identification. One way of classification is based on how the non-linear system 

identification problem is perceived. It can be perceived merely as a parameter 

estimation problem in which the non-linear parameters are extracted making use of 

the model of the underlying linear system1. It can also be perceived as non-linear 

modal analysis problem in which the linear modal analysis theory is extended to the 

non-linear systems. In this approach, the non-linearities are either described in 

modal coordinates, or they are presented as a variation in modal properties like 

natural frequency, mode shapes, and damping. Another way of perceiving non-

linear system identification is as a problem of model updating. In this approach, the 

linear model of the structure is refined/ corrected in order to match the experimental 

measurements. This is achieved either by modifying the system properties or by 

adding some special elements which may or may not have physical significance. 

Another classification of the parameter estimation methods is based on the 

nature of model that is fitted in the data. The methods can be classified into: (i) 

parametric and (ii) non-parametric methods. In parametric methods, the model has 

some physical meaning. For example, to describe a clearance non-linearity, the 

parameters identified are the clearance distance and the normal stiffness. Naturally, 

the parametric methods give insight into the nature and the physics of non-linear 

behaviour, but the highly individualistic nature of non-linearities makes it difficult to 

find a parametric model to suit different non-linearities observed in engineering 

structures. In non-parametric identification, the extracted parameters do not 

necessarily have any physical meaning. 

It is relatively easy to extract a non-parametric model to fit into the data, but 

the extrapolation capacity of non-parametric models cannot be guaranteed. The 

non-parametric models, being non-physical, are not universal. In many cases they 

yield poor predictions when stretched outside their working range. Black box 

                                                            
1 Most of the times, for practical structures, it’s the FE model 
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methods form a significant group in non-parametric methods. These methods 

sometimes use non-conventional techniques like neural networks, fuzzy logic etc. to 

model the input-output relationship for the non-linear systems. It is not intended to 

discuss these methods, and a detailed review of black box methods can be found in 

[16, 17]. 

The literature associated with non-linearity detection, characterization and 

different approaches for non-linear parameter estimation is presented separately in 

the following sections. 

2.2.1 Non-linearity detection  

The first stage in non-linear system identification is to detect if there is any non-

linearity in the system. Non-linearity detection is a mature area of research with 

many established methods available in the literature. A summary of non-linearity 

detection techniques and their comparison is presented in [12, 18, 19]. The methods 

are compared on the basis of different criteria like measurement time, computation 

time, range of application, subjectivity involved etc.  

Mostly, the presence of non-linearity is detected by verifying the fundamental 

principles of linear systems like linear superposition or reciprocity. The distortion of 

Nyquist plot and frequency response functions (FRFs) also indicate the presence of 

non-linearity as explained in [2, 6]. The first-order FRFs obtained using the 

conventional vibration testing are primarily used to validate these properties.  

He and Ewins [20] suggested the use of inverse FRF to detect the presence 

of non-linearity. For a non-linear system, real and imaginary parts of FRF, plotted 

against frequency-squared and frequency respectively, deviate from a straight line 

indicating the presence of non-linearity. A similar method based on mapping of 

stiffness and damping at each frequency value is suggested by Mertens et al. [21]. 

This method, which is limited to single degree of freedom (SDOF) systems, detects 

the presence of non-linearity in the system if any variation in stiffness or damping is 

observed. Tomlinson [22] proposed the use of Hilbert transform to detect the non-

linearity. Hilbert transform of a complex FRF of a linear system is same as the 

original FRF. For non-linear system the transform deviates from the original FRF, 

the deviation being utilized to detect the presence of non-linearity. 

For linear systems with single harmonic excitation, the response is harmonic 

with the same frequency. For non-linear systems, the response is expected to 

contain higher harmonics. The higher harmonics in the response can be used to 

detect the non-linearity. Wyckaert [23] proposed a term called harmonic detection 
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function (HDF) to quantify the presence of higher harmonics at each frequency. The 

HDF is defined as the ratio of the energy associated with higher harmonics at a 

frequency to the total energy in the response at that frequency. Chong and Imregun 

[24] showed that a lack of orthogonality between the mode shape vectors and the 

reciprocal modal vectors (RMV), obtained from measured frequency response 

functions, can also indicate the non-linear behaviour.  

To decide on whether to use a linearized model or to build a non-linear 

model of a system, it is essential to know the extent of non-linearity in the system. 

Though the above methods work well to detect the presence of non-linearity, they 

provide little information about the extent of non-linearity. Surprisingly, there are 

very few attempts to quantify the level of non-linearity in the structure. 

Kim and Park [25] proposed a term called ‘non-casual power ratio’ (NPR) to 

gauge the extent of non-linear contamination. They used inverse Fourier transform 

on the FRF to get a time-domain signal. NPR is defined as the ratio of non-casual 

power to the total power in the signal. It is claimed that as the non-linear effects 

dominate, the non-causal power in the signal increases. NPR varies from 0 to 1 with 

increasing non-linear contribution. 

Elizalde [26] coined a term called non-linear modal grade to quantify the 

non-linear contamination of each mode. He used thresholds based on engineering 

judgments to define 3 ranges: weakly non-linear, moderately non-linear and strongly 

non-linear for each mode. Depending on the non-linear grade for a mode, it can be 

decided whether to include that mode in non-linear analysis. 

2.2.2 Non-linearity characterization 

Non-linearity characterization, as defined in [11], is to find the location, the type, and 

the functional form of all non-linearities in the system. Non-linearity characterization 

is an important step in a bigger goal of non-linear system identification. Many non-

linear parameter extraction methods in the literature assume that the 

characterization is completed in advance.  

For simple structures with few joints and connections, the spatial location of 

non-linearity can be guessed merely by looking at the structure. For complex 

structures with many connections, it becomes necessary to locate the connections 

which are contributing towards the non-linear behaviour of the structure. Al-Hadid 

and Wright [27] proposed a method based on force-state mapping to locate the non-

linear DOF. The method is developed for lumped-parameter system and it is difficult 

to implement for a continuous system. Elizalde [26] and Ozer et al. [28] used non-
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linear restoring force at each DOF as an indication of non-linearity. A non-zero value 

of non-linear restoring force at any DOF signifies the non-linearity at that DOF. The 

methods are potentially applicable for engineering structures and work well with FE 

models. 

Some of the methods stated for non-linearity detection in the earlier section 

can be extended to find the type of non-linearity. The inverse FRF method proposed 

by He and Ewins [20] classifies the non-linearity broadly into stiffness type and 

damping type. A deviation of Hilbert transform of an FRF from the original FRF is 

characteristic of the type of non-linearity as shown by Tomlinson [22]. He presented 

Hilbert transform of simulated FRFs for different types on non-linearities. A restoring 

force surface technique (RFS), proposed by Masri and Caughey [29] can be used to 

characterize the non-linearity type. In this method, the restoring force due to 

stiffness and damping is plotted against the system variables to form a surface. The 

restoring surface thus formed is unique to the type of non-linearity in the system. 

The subjective observation of the distortions in FRF is often used to 

characterize the type of non-linearity. Adams and Allemang [30] proposed a method 

for characterization based on the distortions in the FRF. They modelled the non-

linear system as a closed loop linear system with non-linear elements providing 

internal feedback. The modulation of the FRF due to this feedback is used to 

characterize the non-linearity type. Tanrikulu and Ozguven [31] used the non-

linearity matrix to characterize the type of non-linearity. The non-linear restoring 

force is separated into a matrix and a non-linear response vector. The matrix 

contains non-linearities in the form of describing functions. Later, a similar approach 

is implemented by Elizalde [26].  

Even though the non-linearity characterization forms an important and 

sometimes rather essential step in non-linear system identification, there is lack of 

well established methods to handle complex engineering structures. Still, most of 

the times, a subjective judgment is made about the location and type of non-

linearity. 

2.2.3 Non-linear parameter extraction: Spatial methods 

Non-linear system modelling techniques use mathematical models to describe the 

physical phenomena. Non-linear parameter extraction methods essentially extract 

the values of the parameters used in these models using experimental 

measurements. 
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 Amongst the non-parametric spatial methods, which are mostly in time-

domain, a pioneering work is done by Marsi and Caughey [29]. They proposed a 

method called restoring force surface (RFS) in which the restoring force is plotted 

against instantaneous values of displacement and velocity in phase plane. The 

surface is then approximated by the double Chebyshev polynomials to identify the 

non-linear parameters. The original method, which was developed for an SDOF 

system, was later extended by different researchers to suit the multi degrees of 

freedom (MDOFs) systems [11]. Leontaritis and Billings [32] proposed another 

method in time domain non-parametric class called non-linear auto regressive 

moving average with exogenous inputs (NARMAX). This is an extension of ARMAX 

method [33] used in the linear system identification. The method is versatile in its 

use, but for complex engineering structures, the computational burden of the 

method can be significant. 

In frequency domain, most of the methods use first-order frequency 

response functions. There are some methods as listed in [11] which make use of 

higher order FRFs and Volterra series, but their use is restricted due to difficulties in 

measuring the higher order FRFs for engineering structures. The use of harmonic 

balance method [34, 35] and describing functions is popular for parametric 

description of non-linearities. The basic assumption in this approach is that for 

harmonic excitation, the non-linear restoring force is periodic, and it can be 

represented as a summation of different harmonics. Single and multi-harmonic 

describing functions for different non-linearities can be formulated and parametric 

identification can be performed by fitting the extracted non-linear restoring force in 

the describing functions. A list of describing functions for common structural non-

linear elements is presented by Tomlinson and Worden [2]. A more specific list for 

the non-linear elements relevant to aerospace industry is published by Goge et al. in 

[9]. 

 Tanrikulu and Ozguven [31] proposed a method which separates the non-

linear restoring force into a non-linear response vector and a non-linearity matrix. 

This non-linearity matrix is formulated using the describing functions. The method, 

originally restricted to grounded non-linearities, is extended for more general use by 

Ozer et al. [28]. A similar approach is followed by Elizalde [36] to propose a method 

called explicit formulation (EF). The method, which is originally developed for non-

linear response prediction, can be used in reverse path for non-linear identification. 

The method is tested on simulated data for a plate with cubic stiffness non-

linearities at multiple locations.  
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The above methods make use of an accurate underlying linear spatial 

model, which is not easy to obtain for a complex engineering structure. Elizalde [26] 

addressed this difficulty partially by proposing a hybrid method for identification 

called reverse hybrid modal technique (R-HMT). This method uses the modal 

description for the underlying linear structure and spatial description for the non-

linear elements. 

Amongst the other frequency domain methods, Richard and Singh [37] 

proposed a method for non-linear identification based on first order FRFs. The 

method is called conditioned reverse path (CRP) with a central theme to separate 

the non-linear distortions from the measured FRFs using spectral conditioning. The 

underlying linear model and non-linearities are then identified independently. The 

method has a potential to identify complex MDOFs systems excited using Gaussian 

random excitations. The method assumes that the location and the type of non-

linearity are known a priori, and measurements are available at all non-linear DOFs 

This puts considerable limitation on its use for real-life engineering structures. 

Another frequency domain method, similar to CRP is non-linear identification 

through feedback of the output (NIFO) proposed by Adams and Allemang [38]. The 

identification for underlying linear system and non-linear components is carried out 

simultaneously. In this method, non-linear forces are modelled as an internal 

feedback into a closed loop linear system. This method does not guarantee 

conditioning as CRP, but its compact formulation makes it simpler to implement. 

Most of the parametric methods in spatial domain suffer from some common 

limitations like: the need to measure the response at all non-linear DOFs and the 

need to know in advance the location and the types of non-linearities present in the 

structure. The modal approach, which is discussed in next section, can sometimes 

be used to overcome these limitations. 

2.2.4 Non-linear parameters extraction: Modal methods 

For a linear system, a modal model is very compact way of representing a system 

for accurate response predictions. The fundamental properties like natural 

frequencies, damping ratios, and mode shapes, for linear systems, are independent 

of the excitation amplitude. The modal model is easily obtainable through 

experimental route using modal testing and modal analysis [6, 7] which is an 

established area of study. 

Rosenberg [39] in 1960s proposed a concept of normal modes for non-linear 

systems. He defined non-linear normal modes (NNMs) as a motion in which all 
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points of the system vibrate with same phase. This is purely an extension of the 

definition of normal modes used for linear system. There was not much research in 

this area until Vakakis [40, 41], Shaw and Pierre [42, 43] independently started to 

work on it. Shaw and Pierre generalized Rosenberg’s definition by proposing a 

concept of invariant manifold. They represented NNMs as surfaces in a phase 

plane. NNMs theory is based on a thorough mathematical framework and it 

successfully explains distinctive non-linear phenomena like internal resonance, 

localization of mode shapes, mode bifurcations, frequency-energy dependence etc. 

The very mathematics that enables the theory to describe all complex physics 

makes it difficult to use in everyday engineering applications. Recently, Gilbert [44] 

proposed a method to synthesize measured non-linear FRFs using a concept of 

non-linear normal modes. Peeters et al. [45, 46] proposed numerical techniques for 

computation of NNMs based on continuation of periodic solutions. The method 

makes use of system matrices to obtain NNMs for the system and it is potentially 

suitable for complex engineering structures. It would be interesting to see if the 

NNMs theory establishes itself a place in practical engineering applications in the 

near future. 

Without sticking strictly to the NNMs, many researchers attempted to 

express non-linear identification problem in modal domain. He and Ewins [20, 47] 

proposed a method based on inverse receptance to find the variation of natural 

frequency2 and damping factor for each mode. The method is based on SDOF 

assumption and neglects the contribution from the other modes. The method also 

assumes that mode shapes of non-linear system are same as the mode shapes of 

the underlying linear system. 

For free vibration response, Feldman [48] developed a method called 

FREEVIB based on Hilbert transform in time domain to obtain the variation of 

natural frequency and damping with respect to the amplitude of vibration. He 

observed that the dissipative (damping) and elastic (stiffness) non-linearities have 

an effect on the instantaneous natural frequency and damping parameters. From 

the free vibration response for different non-linearities, he obtained variation of 

natural frequencies and damping with amplitude of vibration. He proposed another 

method, FORCEVIB [49] based on similar principle to analyze the systems with 

forced vibrations under narrow and wide band random excitations and slow and fast 

sweep sine tests. 

                                                            
2 Or shall we say the resonance frequency 



33 
 

 Setio et al. [50] proposed a method to extract the non-linear modal 

parameters from frequency response tests. They further used the extracted modal 

parameters to predict the response of the system at different force levels using non-

linear modal superposition. Chong and Imregun [51] extended the work of Setio et 

al. to large MDOF systems. They considered the amplitude dependence of mode 

shapes which some of the other researchers had neglected in the past. The method 

was checked for the robustness by evaluating the effect of measurement noise and 

the sensitivity of the method to inaccurate underlying linear model. In the second 

part of the paper [52], they successfully implemented the technique on experimental 

data obtained for a laboratory structure with polynomial stiffness characteristics. 

Platten et al. [53, 54] proposed the non-linear resonant decay method (NL-

RDM) to identify the non-linearities in modal domain. The method represents 

system equations in modal coordinates with the non-linear modal force to 

incorporate non-linearities. The force appropriation technique with burst sine 

excitation is used to excite a single mode at a time. The extracted non-linear modal 

force at each mode is plotted against modal displacement and modal velocity for 

form a non-linear restoring surface in modal domain. The surface is fitted to 

polynomial to identify the coefficients of the polynomial. 

Ozge and Ozguven [55] presented a method to find the variation of modal 

properties of non-linear system. They proposed an equivalent linearization of the 

system by keeping a constant value of response at the non-linear DOF. A series of 

such constant-amplitude tests yields variation of modal properties as a function of 

displacement amplitude. 

 Recently, Elizalde et al. [56] presented a semi-analytical and approximate 

approach to determine the variation in modal parameters (natural frequencies and 

mode shapes) of a large MDOF system. They used an iterative procedure to extract 

the non-linear modal parameters, using the modal model for the underlying linear 

system as an initial guess. 

2.2.4 Model updating for non-linear systems 

The main theme of model updating is to compare the measured and predicted data 

for a system, and to refine the model of the system in order to obtain a better 

agreement between the two sets of data. Model updating for linear systems 

received a good deal of attention for more than last three decades. Different 

techniques emerged essentially to update the FE model of the system in light of the 

experimental measurements. The reviews of different techniques on this topic can 
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be found in [57, 58]. Friswell and Mottershead [59] wrote a book dedicated to finite 

element model updating.  

For linear systems, the results from numerical models deviate from the 

experimental results mainly because of the uncertainties in boundary conditions, 

material properties, and to some extent, the physical dimensions. These parameters 

are generally chosen for updating the numerical model. As a basis of comparison, 

different quantities can be used. The most popular are either the modal properties 

like natural frequencies and mode shapes, or the response of the system either in 

frequency domain (FRFs) or time domain. 

For a non-linear system, modal properties are not constant. The resonance 

frequencies and mode shapes are dependent on the response amplitude at non-

linear DOFs, and, indirectly on the excitation level. If the modal properties 

determined at some excitation level are used as a basis of comparison in model 

updating; then the updated model would result in a linearized model of the system 

at that excitation level. This model can seldom be used to accurately predict the 

response of the system at some other excitation level. If the type of the excitation 

and its range remains more or less constant for the application, the linearized 

updated model can be sufficient. 

The linearized updated model is popular for connections and joints as it 

gives fairly accurate and compact description of the joints. Mottershead et al. [60] 

used a sensitivity based method to update the model for welded joint. They chose 

the physical parameters like offset distances and joint mass as the updating 

parameters. Moon et al. [61] proposed an analytical joint modelling strategy for 

automobile joints. They used sensitivity based method to later update the 

parameters of the joints. Ratcliffe and Lieven [62] presented a method to update the 

properties of joints in a structure. They used an FRF based comparison to find the 

stiffness, mass and damping matrix for a lap joint element. Ahmadian et al. [63] 

used the natural frequencies and mode shapes as a basis for comparison to get an 

updated model for the MACE structure containing large surface-to-surface joints. 

They used a thin layer of connection elements to depict the joint, and updated the 

properties of these elements to obtain a linearized model for the structure. 

Palmonella et al. [64] reviewed the updating strategies for spot welds. They 

compared six different models and investigated the effectiveness of the models from 

model updating perspective. 

The literature discussed earlier used the modal properties as a basis of 

comparison for updating. Schmidt [65] used time series based correlation to update 

FE models with localized non-linearities like friction, gap and local plasticity. He 
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used the concept of ‘state observers’ from control theory to compare the time 

histories. This method is closer to the traditional non-linear identification methods 

described in previous section. 

Hemez and Doebling [66] assessed different available model updating 

methods from the non-linearity perspective. They presented different test-beds, 

some numerical and the others experimental to compare these methods. After 

studying their performance, they argued that the conventional modal-based 

updating techniques update the model of a non-linear structure by alterations, which 

sometimes can be non-physical. Alternatively, the use of time series as a basis for 

comparison results in the updated model with some physical interpretation. Schultze 

et al. [67] proposed a feature-based iterative method to update the parameters of 

so-called meta models. A feature can be anything that describes the output state of 

the system. For example, for conventional modal-based methods, the eigen values 

can qualify as one of the features. The objective function for the optimization 

problem is defined as the difference between experimentally observed features and 

numerically predicted features.  

 Lenaerts et al. [68, 69] used proper orthogonal decomposition (POD) to 

update the non-linear system. They used an optimization routine with an objective 

function defined as the difference between POD matrices for the experimental and 

numerical time series data. The use of POD essentially reduces the size of the 

model while retaining the required accuracy. In this particular case, they included 

the proper orthogonal modes (POMs) contributing towards 90% of the system’s 

energy for the analysis. 

As discussed above, the conventional modal-based updating methods yield 

a linearized updated model, which is generally not useful for strong non-linear 

systems. The time-series based methods are better suitable for the strong non-

linear system. The research in this area sometimes tends to overlap with the 

research in conventional non-linear identification described in earlier sections. 

2.3 Non-linear response prediction 

Predicting the system behaviour is the ultimate goal for which the system 

identification acts as the first step. Because of the cost and time associated with the 

experiments, coupled with the availability of relatively inexpensive computational 

power, the route of computer simulations to predict the system behaviour has 

gained popularity. The results from computer simulations are widely used in the 

design and performance optimization of systems. 



36 
 

From structural dynamicist’s view point, the prediction of system behaviour 

essentially translates to predicting the response of a system at different excitation 

levels. For a linear system, the commercially available FE codes can predict the 

response with good accuracy but for non-linear systems, such predictions are still a 

research area. For non-linear systems, the values of parameters used in the models 

are extracted from experimental measurements. There is always a natural variation 

in the extracted values, and the non-linear model should be robust enough to 

compensate for these variations. Thus, it is necessary to find the sensitivity of the 

solution to the uncertainly in the input parameters [70]. A review of the literature on 

uncertainties in bolted and other fasteners is presented by Ibrahim and Pettit [71]. In 

the current review, only the methods using a deterministic approach are considered. 

 The research in this topic deals with: (i) mathematical models which can 

describe different phenomenon like friction, clearance, impact, plasticity, geometric 

non-linearity etc., (ii) numerical methods to solve the non-linear system, and (iii) the 

approaches like model reduction, domain-decomposition, sub-structuring to reduce 

the problem size.  

Amongst the common types of non-linearities observed in the engineering 

structures, geometric non-linearities can generally be expressed in polynomial form 

as is shown for a clamped beam in [2]. Material non-linearity arises when the 

material disobeys the Hook’s law. It can either be plasticity, creep, or viscoelastic/ 

viscoplastic behaviour of the material. The literature on material non-linearity is not 

discussed here and basic treatment on this topic can be found in a text book on by 

Zienkiewicz and Taylor [72]. The widely used mathematical models for clearance, 

bi-linear stiffness, saturation type non-linearity etc are given by Tomlinson and 

Worden in [2]. 

Friction constitutes a major phenomenon in non-linear structural dynamics. 

Friction modelling is a separate research area in itself. Berger [73] wrote a review 

on the use of different friction models for dynamic simulation. He broadly classified 

the models into high-order continuous models and low-order lumped models. He 

argued that the high-order models are accurate and physically more appealing, but 

the low-order models are often used in structural dynamic simulations, as they are 

computationally less expensive and easy to implement numerically. 

Iwan [74] suggested lumped models to represent 1D micro-slip and macro-

slip phenomenon. These models are found very effective for dynamic studies, and 

are now popularly known as Iwan models. Menq and Griffin [75] incorporated similar 

models in frequency domain using a single harmonic balance method to predict the 

forced response of frictionally damped structures. Menq et al. [76] extended the 
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earlier method for 2D friction contact. Sanliturk and Ewins [77] proposed a 2D 

macro slip model using single harmonic balance method. Sanliturk et al. [78] later 

used macro and micro slip models to predict the forced response of 3D idealized 

turbine blade with multiple friction dampers. All the above methods assume a 

constant value for contact force in the normal direction, which may not be the case 

in real contacts. 

Petrov and Ewins [79, 80] proposed an analytical frequency domain 

formulation for multi-harmonic analysis of frictional contacts. They derived analytical 

expressions for contact force vectors and stiffness matrix taking into account the 

influence of variable normal loads including the extreme case of separation. The 

analytical formulation provides an accurate and computationally inexpensive means 

to obtain the forced response in the presence of frictional contact. A time domain 

version of generic friction models is proposed in [81]. These models take into 

account the time variations of friction contact parameters (coefficient of friction and 

contact stiffness coefficient) and arbitrary variation in normal force. 

The joints and fasteners are of common occurrence in engineering 

structures. Many researchers attempted to model the frictional contact at a joint. 

Gaul and Lenz [82] studied an isolated bolted lap joint for two of its vibration modes 

(longitudinal and torsional). A lumped parameter model is proposed to simulate 

macro and micro-slip behaviour. The Valanis model known from plasticity is fitted 

into the experimentally obtained hysteresis loop to identify its parameters. A 

simplified 2D space structure with 15 such joints is modelled in FE code to verify the 

method. Oldfield et al. [83] used a similar approach to isolate a bolted joint and 

extract the lumped parameter model for the joint. They generated the hysteresis 

loop using a detailed FE model of the joint and used this to identify the parameters 

of Jenkins model3 and Bouc-Wen model. They compared the results from the two 

models and found that the Jenkins model is effective when the hysteresis loop is bi-

linear. Genzo et al. [84] investigated the performance of a 1D friction model to 

predict the forced response of an assembled structure with several bolts. They 

compared the numerical results with the experiments and found a good correlation 

in frequency space for the first two modes. 

Coming to the numerical solution of non-linear systems, the time-domain 

methods using numerical integration algorithms are direct and more accurate. 

These methods are well suited for the transient solution of non-linear systems. For 

frequency response calculations, where a steady-state solution is sought at each 

                                                            
3similar to Iwan parallel‐series models [77]  
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frequency step within a wide frequency range, the time-domain methods become 

computationally very expensive. The frequency-domain methods using harmonic 

balance technique are widely used for steady-state frequency response prediction 

of non-linear systems. Sanliturk et al. [78] implemented the single harmonic balance 

method for friction problems. Petrov and Ewins [79, 80, 85, 86] proposed 

analytically derived friction elements using multi-harmonic balance method for fast 

and accurate prediction of turbine blade friction dampers. Budak and Ozguven [87, 

88] proposed an iterative receptance method based on first order describing 

functions to predict the response of multi DOFs system with symmetric non-

linearities. This was the first of its kind effort where they used the receptance matrix 

of the underlying linear system combined with the non-linearity matrix to obtain a 

quasi-linear receptance matrix for the non-linear system. Singh et al. [89, 90] used 

the multi-harmonic balance method for clearance/backlash non-linearities observed 

in gearing problems. A summary of describing functions for different non-linear 

elements frequently encountered in aerospace industry is given by Goge et al. [9]. 

Another way of reducing the computational effort is via model reduction. For 

linear systems, model reduction is straight-forward and different static and dynamic 

spatial model reduction techniques are already established [91-93]. In addition, the 

use of modal models [6, 7] presents another way of having an accurate reduced-

order model. For non-linear systems, the modal model in its conventional sense 

does not exist. To obtain a spatial reduced-order model, it is necessary to include all 

non-linear DOFs as master coordinates in the model reduction.  

Kerschen et al. [94] presented an overview of the use of POD as a technique 

for model order reduction for non-linear systems. Segalman [95] proposed a 

technique for development of reduced-order models for localized non-linear 

systems. He used a combination of the conventional basis functions with the 

functions possessing local discontinuity at the joint for model reduction. Petrov [86] 

used FRF matrices of underlying linear structures to exclude linear DOFs from the 

set of equations to be solved iteratively. This reduces the size of the problem to the 

number of non-linear DOFs without forfeiting the accuracy. The method is effective 

in case of localized non-linearities. Avitabile and O’Callahan [96] presented three 

methods for efficient calculation of frequency response for the linear structures 

connected with discrete non-linear elements using the reduced order models. They 

compared effective reduced model technique (ERMT), modal modification response 

technique (MMRT), and component element method (CEM). It is claimed that the 

methods require 2-3 orders of magnitude less computation than the full models. 
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2.4 Non-linear structural dynamics: Real life structures 

There are numerous methods for the identification and modelling of non-linear 

systems, some of those are mentioned in earlier sections. Most of the methods are 

tested with simulated data for lumped mass systems with few DOFs or simple 

continuous systems like cantilever beam. These academic structures act as a good 

starting point to evaluate newly proposed methods, but the current need is to go 

beyond this and apply the methods to complex engineering structures. This section 

reviews the literature in which the identification or modelling methods are applied to 

the relatively complex structures of industrial interest. 

There are different groups working independently or in collaboration towards 

achieving this goal. The AWE (UK) started a modal coupling research program to 

study the non-linear behaviour of mechanical couplings. They designed a 

benchmark structure called MACE [97] for the study. In another program called 

‘European COST F3’ researchers studied the behaviour of structures exhibiting 

localized non-linearity. Two test structures, as shown in Figure 2.2 were proposed 

as the benchmark structures. The VTT benchmark is a helical wire rope isolator 

exhibiting unknown type of non-linearity. The ECL benchmark is a beam with a very 

thin section attached at one end exhibiting geometric non-linearity. Golinval et al. [3] 

discussed the outcome of the exercise comparing the results when using different 

methods for identification. Kerschen et al. [98] used the measurements on VTT 

benchmark to compare the results for a time domain method (CRP) and a frequency 

domain method (restoring force surface). 

 

 

Figure 2.2 Benchmark structures for European COST F3 [3] 

A group from Sandia National Laboratories is working towards the development of 

methodologies for joint modelling. Dohner in the report [99] summarized the work 
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carried out in this program. They proposed 3 test-beds consisting of different joints 

to carry out the benchmark experiments. Segalman et al. [100] reviewed the status 

of joint modelling and proposed an integrated roadmap for the future research. 

Ferreira [101] during his PhD work built a laboratory structure with 3 beams 

to exhibit polynomial stiffness non-linearity. Chong and Imregun [52, 102, 102] used 

experimental results obtained using the same structure to test the variable modal 

parameter identification method. Elizalde [26] again used the structure to verify the 

explicit formulation method for prediction of non-linear response in frequency 

domain. The experimental setup used for the exercise is shown in Figure 2.3. 

 

Figure 2.3 Experimental setup used by Ferreira [101] and Elizalde [26] 

Platten et al. [53] experimentally verified the non-linear resonant decay method (NL-

RDM) on a fully clamped plate with integral edges exhibiting geometric non-linearity. 

Platten et al. [54], in another study, implemented the NL-RDM on a laboratory 

structure depicting a ‘wing-store’ model. They excited the first four modes with 

increasing level of excitation force to extract the variation of natural frequency and 

modal damping. Later each mode is identified separately by plotting the restoring 

modal force surface for each mode.  

Adams et al. [103, 104] used the restoring force method (RFS) and NIFO 

method to characterize the non-linearities and identify the non-linear parameters in 

a tire-vehicle suspension system in absence of input measurement. Worden et al. 

[105] attempted the identification of non-linearity in an automobile damper using 

three different methods available in the literature. They used both time domain 

approach (restoring force surface, and neural network) and frequency domain 

approach (NIFO method) for identification. Garibaldi et al. [106] successfully used 

NIFO method to extract the non-linearities from the experimental data for a scaled 

model of a building. 
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Aerospace industry is a challenging sector from non-linear structural 

dynamics perspective. There are various attempts to analyze the non-linear aero 

structures. Perinpanayagam et al. [107] performed controlled level vibration tests on 

an aero-engine casing to detect the non-linear behaviour of the structure. They 

extracted the variable modal parameters for the first bending mode of the structure 

using SDOF non-linear method. Gloth and Sinapius [108] proposed a method to 

extract the amplitude dependency of the modal parameters using sweep sine tests. 

The method is implemented on large aircraft structure. Kerschen and Golinval [109] 

used a plane-like laboratory structure with non-linear components for the study. 

They employed the CRP method in the first stage to extract the underlying linear 

model of the structure and the non-linear components. In the second stage, the 

underlying linear model obtained from the experiments is used to update the FE 

model of the structure. Da Silva and Voroto [110] designed and fabricated a scaled 

model of a wing-engine assembly to study the parametrically excited internal 

resonance, a phenomenon specific to non-linear structures. Goege [5] proposed a 

two-stage methodology to characterize and identify the non-linearity in a ground 

vibration test for an aircraft. In the first stage he used different methods to quickly 

detect the non-linear modes. In the second stage, he used modal restoring force 

surface method to identify the non-linear parameters for each mode. The method is 

applied to an actual aircraft in a ground vibration test. 

2.5 Summary of the literature review 

Non-linear structural dynamics has been of interest to the researchers for more than 

four decades. There is an increasing need for accurate prediction methods in order 

to reduce the time and the cost involved with the experimentation. This need 

coupled with easy availability of computational power acted as a stimulus to the 

research in this area. 

 The ultimate aim of the research in this area is to predict the dynamic 

behaviour of a system under different excitation conditions using a computer-based 

model of the system. The research progressed in two fundamental branches. The 

first branch deals with proposing mathematical models to explain the non-linear 

phenomenon. The second branch deals with the identification of the parameters 

used in the non-linear models. 

 The non-linear identification is an inverse problem. It attempts to identify the 

system in its mathematical form. The non-linear identification has three steps viz. 

non-linearity detection, non-linearity characterization and non-linear parameter 
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extraction. The methods for non-linearity detection are well established and are 

widely used in the aerospace and automobile industries. The methods for the 

characterization of non-linearity types are still not industrially usable. An experience 

based subjective judgement is widely used in the industry for non-linearity 

characterization. Extraction of non-linear parameters poses even bigger challenge. 

Most of the methods available in the literature are presented for few DOF lumped-

mass systems or simple continuous systems of academic interest. There are some 

potential issues when applying these methods to real-life engineering structures. 

Recently some attempts have been made to use the identification methods on 

complex engineering structures. 

 Because of the individualistic nature of non-linearities, it is difficult to 

propose a universal method for identification to suit all cases. The methods 

discussed in the literature have their application region within which they succeed. 

Even today, the industry is waiting for a method for non-linear identification which 

can be used alongside the main-stream tools like linear modal analysis and FEA 

and which is applicable to complex real-life structures. 

  



43 
 

 
 
 
Chapter 3  

Non-linearity type identification 
using a ‘footprint library’ 
This chapter presents the concept of a ‘footprint library’ to identify the type of non-

linearity in the system. It is observed that the shape of non-linear restoring force 

curve is unique to the type of non-linearity. A library of non-linear restoring force 

curves, generated using a simple 2-DOF system with different types of non-

linearities is presented. Two methods are proposed for non-linearity type 

characterization. In the first method, the footprint library is used as a look-up chart to 

identify the type of non-linearity in the system by visual comparison. In the second 

method, a shape-matching algorithm is proposed to quantify the match between the 

shape of a non-linear restoring force curve obtained for any non-linear structure and 

the shape of the curves from the footprint library. The methods are validated on 

simulated data for a cantilever beam with different non-linearities. 

3.1 Introduction 

Non-linearity characterization is an important step in non-linear system 

identification. It encompasses the task of locating non-linear DOFs and of finding 

the type and the form of non-linearities in the system. After non-linearities are 

characterized successfully, the non-linear parameters are identified by posing non-

linear parameter extraction as an optimization problem, which is solved by using the 

available methods for optimization. Different methods for non-linearity 

characterization are proposed in the literature [9, 20, 22, 29, 30, 111]. Almost all of 

these methods are based on some subjective judgement. 

Elizalde [26] observed that the variation of non-linear restoring force with 

excitation frequency produces a unique ‘footprint’ for each type of non-linearity. This 

idea is extended in the current research to present a collection of footprints for 
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different non-linearities. For a better comparison, the non-linear restoring force is 

represented in different formats like Bode plot, Nyquist plot etc.  

For a multi degrees of freedom (MDOFs) non-linear system, undergoing 

harmonic excitation, the equation of motion can be written as: 

[ ]{ } [ ]{ } [ ]{ } { } { } )sin(),( tFyygyKyCyM ω=+++ &&&&     (3.1) 

where, [M], [C], and [K] are mass, damping, and stiffness matrices, { }F  is the 

excitation force vector, and { }),( yyg &  is the non-linear restoring force. Equation (3.1) 

can be converted into frequency domain by considering only the first harmonic, and 

can be written in a compressed form as: 

[ ]{ } { }{ { }{
force  Excitation

force restoring
linear -Non

force inertia
and  restoringLinear 

FGY =+Λ 321    (3.2) 

where [ ]Λ  is the dynamic stiffness matrix of the underlying linear system, { }Y  is 

the displacement amplitude vector, and { }G  is the vector containing the non-linear 

restoring force. The non-linear restoring force at the non-linear DOF can be 

extracted using (3.2) if the mathematical model for the underlying linear system is 

known4. In the thesis, the terms ‘non-linear restoring force’ and ‘non-linear force’ are 

used interchangeably. 

As stated in [26, 28, 31], the extracted non-linear force is a function of the 

type of non-linearity and the non-linear parameters. The magnitude of the non-linear 

force varies with the values of non-linear parameters, dynamic properties of the 

system and the excitation force, but the shape of the non-linear force curve is 

observed to be independent of all these parameters [26]. Thus, a set of non-linear 

force curves obtained for any simplified system with arbitrary non-linear parameters 

can be used as a universal look-up library to identify the type of non-linearity in 

engineering structures. 

3.2 Generation of non-linear force curves  

The 2-DOF system, shown in Figure 3.1, was used as a benchmark system to 

generate the library of non-linear restoring force curves. As seen in the figure, a 

grounded non-linear element is attached to the DOF-1. A detailed description of the 

system is given in Appendix A. The type of non-linearity was varied to simulate 

                                                            
4 More on this in Chapter 4 
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Figure 3.2 A typical frequency response curve for cubic stiffness non-linearity 

3.3 Footprints of different non-linearities 

A total of ten different types of non-linear forces are included in the footprint library. 

The cases considered are as follows: 

(1) Cubic stiffness with hardening behaviour 

(2) Cubic stiffness with softening behaviour 

(3) Clearance  

(4) Friction dominated with stick phenomenon  

(5) Friction dominated with slip phenomenon  

(6) Stick-slip type friction  

(7) Combined cubic stiffness and clearance 

(8) Combined cubic stiffness and friction  

(9) Combined clearance and friction 

(10) Combined cubic stiffness, clearance, and friction. 

The following section presents the plots of non-linear force for all ten cases. The 

non-linear force is plotted in the vicinity of the first resonance of the system. For 

each figure, the plot on the left shows the magnitude of non-linear force plotted 

against the frequency and the plot on the right is a Nyquist plot. Since only the 

shape of the plot is of primary importance, the scale is not shown on the plot axes. 
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3.3.1 Cubic stiffness non-linearity 

Figures 3.3 and 3.4 show the non-linear force for the cubic stiffness non-linearity 

with hardening and softening behaviour respectively. For hardening type non-

linearity, the non-linear force increases continuously till the resonance frequency, 

and then drops suddenly to a lower value. This drop is corresponding to the jump in 

the frequency response. In the Nyquist plot, it traces an arc in the forth quadrant. 

 
(a)                                                   (b) 

Figure 3.3 Non-linear force: Cubic stiffness non-linearity (hardening) 

 
(a)                                         (b) 

Figure 3.4 Non-linear force: Cubic stiffness non-linearity (softening) 

For the softening cubic stiffness non-linearity, the non-linear force jumps to a higher 

value at the resonance frequency, and then gradually reduces to zero as the system 

moves away from the resonance. The Nyquist plot traces an arc in the positive Y-

axis region. This observation is justified by the fact that the non-linear force for the 

softening cubic stiffness non-linearity is 180 degrees out of phase with the 

displacement. 
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3.3.2 Clearance non-linearity 

The clearance non-linearity was modelled using a bi-linear stiffness spring with the 

clearance gap (yc) and the clearance stiffness (Kz) as the non-linear parameters. 

Once the clearance gap is closed, an additional stiffness is coupled to the system. 

Figure 3.5 shows the variation of the non-linear force for clearance non-linearity. 

 
(a)                                                   (b) 

Figure 3.5 Non-linear force: Clearance non-linearity 

At first sight, the shape of the plots looks similar to that of the hardening type 

cubic stiffness non-linearity. But the close observation of the plots in the region 

away from the resonance shows that the non-linear force for clearance non-linearity 

is zero until the displacement at the non-linear DOF exceeds the gap distance, and 

increases sharply after the gap closure. For the cubic stiffness non-linearity, the 

non-linear force shows a steady increment. An enlarged view of the comparison of 

the two plots is shown in Figure 3.6. 

 
Figure 3.6 Comparison of cubic stiffness and clearance non-linearity 
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3.3.3 Friction non-linearity 

The friction non-linearity was modelled using a micro-slip element with tangential 

stiffness (Kd), coefficient of friction (µ) and normal reaction (N) as the non-linear 

parameters. Three cases are considered based on the occurrence of stick and slip 

phenomenon. In the first case, the non-linear parameters were chosen such that the 

damper is mostly in the slip region. Figure 3.7 shows the plot of non-linear force for 

this case. In the magnitude plot, it can be seen that the magnitude of non-linear 

force remains almost constant at a value close to the value of the limiting friction 

force used in the simulation. In the Nyquist plot, it traces a distinctive shape 

covering the first, second and third quadrant. 

 
(a)                                                (b) 

Figure 3.7 Non-linear force: Friction with pure slip 

In the second case, the non-linear parameters were selected such that the damper 

is always stuck. Figure 3.8 shows the non-linear force plot for this case. From 

Figure 3.8(a), it can be seen that the magnitude of the non-linear force increases 

steadily until the resonance, after which it drops steadily. In the Nyquist plot, it 

traces an arc in the negative Y-axis region, indicating that the non-linear force is in-

phase with the displacement. 

 
(a)                                                  (b) 

Figure 3.8 Non-linear force: Friction with pure stick 

Frequency

M
ag

ni
tu

de
 o

f n
on

-li
ne

ar
 fo

rc
e

0
x 10-3

0

x 10-3

Re (non-linear force) 

Im
ag

 (n
on

-li
ne

ar
 fo

rc
e)

Frequency

M
ag

ni
tu

de
 o

f n
on

-li
ne

ar
 fo

rc
e

0

0

Re (non-linear force)

Im
ag

 (n
on

-li
ne

ar
 fo

rc
e)



50 
 

In the third case, the parameters were chosen such that the damper experiences a 

stick-slip condition in the frequency range considered. Figure 3.9 shows the plot for 

the non-linear force for this case. From the magnitude plot, the regions of stick and 

slip can easily be identified. The non-linear force increases steadily till the damper 

starts slipping. In the slip region, the force remains nearly constant. In the Nyquist 

plot, two arcs of different radii, corresponding to stick and slip, can be identified. 

 
(a)                                                          (b) 

Figure 3.9 Non-linear force: Friction with stick and slip 

3.3.4 Combination of different non-linearities 

In many practical cases, two or more types of non-linearities may co-exist in the 

system. If any one type is overpowering the others, then the shape of the non-linear 

force curve remains similar to the footprint of the dominant non-linearity type. If two 

or more non-linearities are contributing in equal percentage towards the non-linear 

force, the resultant non-linear force curve can take a completely different shape. To 

identify the type of non-linearity in such cases, the footprint library is extended to 

include some combined non-linearity types. While generating the footprints of 

combined non-linearities, the non-linear parameters were selected such that each 

non-linearity type contributes in equal percentage in the total non-linear restoring 

force, when summed over the frequency range. 

 Figure 3.10 shows the footprint for combined cubic stiffness and clearance 

non-linearity. The shape of the footprint is very much similar to the individual 

clearance footprint as shown in Figure 3.5. 
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(a)                                                 (b) 

Figure 3.10 Non-linear force: cubic stiffness and clearance 

Figure 3.11 shows the footprint for combined cubic stiffness and friction non-

linearity. Figure 3.12 shows the footprint for combined clearance and friction non-

linearity. The shape of both footprints looks distinct and can be used to identify the 

non-linearity type. 

 
(a)                                                   (b) 

Figure 3.11 Non-linear force: Cubic stiffness and friction 

 
(a)                                                     (b) 

Figure 3.12 Non-linear force: Clearance and friction 
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Figure 3.13 shows the footprint for combined cubic stiffness, clearance, and friction 

non-linearity. From the magnitude plot, it is difficult to identify the type of non-

linearity. The Nyquist plot also looks similar to the footprint in Figure 3.11. 

 
(a)                                                             (b) 

Figure 3.13 Non-linear force: Cubic stiffness, clearance and friction 

The footprints of different non-linearities, as presented above, can be collected to 

form a library of curves. The library can be used as a look-up chart to qualitatively 

comment on the type of non-linearity in the structure. A combined chart with all 

types is shown in Figures 3.14 and 3.15. 
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3.4 Quantitative comparison using shape-matching algorithm 

The footprint library presented in the section 3.3 uses a subjective judgement to 

identify the type of non-linearity. It is observed that some non-linearities are difficult 

to distinguish using just the visual comparison. This section presents an objective 

way of identifying the type of non-linearity. A shape-matching algorithm is proposed 

to measure the closeness of the shape of the extracted non-linear force curve to the 

shape of different curves in the footprint library.  

The plots in the footprint library presented in the earlier section are not 

suitable to use for a quantitative comparison as the frequency axis is difficult to 

normalize. For a better quantitative comparison, the non-linear force is plotted 

against the magnitude of relative displacement between the non-linear DOFs. As 

the plot of the non-linear force is used only to identify the non-linearity type, and not 

the strength of the non-linearity or the non-linear parameters at this stage, it is 

possible to normalize both axes to unity. 

A sample plot showing the non-linear force for cubic stiffness non-linearity is 

presented in Figure 3.16. Since the non-linear force is expressed directly as a 

function of relative displacement, it completely eliminates the dependence of the 

shape of the curve on the system under consideration. 

 
Figure 3.16 Normalized footprint for cubic stiffness 

3.4.1 Generation of footprint curves 

Since this representation of non-linear force does not depend on the system, the 

footprints can be generated using the mathematical expressions for the non-

linearities. The expressions based on the harmonic balance method were used to 

generate the footprints. The non-linear force was calculated using the expressions 
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shown in Table 3.1 assuming a grounded non-linearity. The relative displacement 

amplitude, (Yi - Yj), at the non-linear DOF was varied from 0 to 1 uniformly. Later, 

the non-linear force was normalized to unity to have a library of footprints with 

normalized X and Y axes. Similar to the earlier footprints for combined non-

linearities, the parameters were chosen such that each non-linearity contributes 

equally towards the non-linear force. The library of footprints is shown in Figure 

3.17.  

Table 3.1 Expressions for non-linear restoring force [2, 75] 

Type of non-
linearity 

Magnitude of non-linear force 
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Where, Kd is the tangential stiffness in stick region, N is the 

normal reaction, and μ is the coefficient of friction. 
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non-linear force curve before the comparison. Figure 3.18 depicts the four steps on 

a typical non-linear force curve. The blue curve is for clearance non-linearity from 

the footprint library and the red curve is the extracted non-linear force curve.  

 

Figure 3.18 Comparison steps for shape-matching 

Once the extracted non-linear force curve and the curve from the footprint library 

are aligned properly for comparison, the Euclidian distance between the two curves, 

represented by the SSD, is calculated as: 

 

( )∑
=

−=
N

i
i

BE YYSSD
1

2     (3.3) 

where, EY is the Y coordinate of extracted non-linear force curve and BY is the Y 

coordinate of the benchmark curve. The curves for which the SSD value is the least 

are said to be in a close match, hence identifying the type of non-linearity for the 

extracted curve. Figure 3.19 show the flowchart for the shape-matching algorithm. 
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Figure 3.19 Flowchart for shape-matching algorithm 

3.4.3 Universal applicability of the footprint comparison 

To validate the suitability of the parameter, SSD, as a comparison criterion, and to 

check its universal applicability, a numerical experiment was undertaken. For the 

same 2-DOF system configuration shown in Figure 3.1, the parameters, both linear 

and non-linear were varied randomly to form 1000 different systems. The non-linear 

force was extracted for each system and it was compared with the footprints from 

the library to calculate an SSD value for each case. Figures 3.20-3.22 show the 

results of numerical experiments for the systems with cubic stiffness, clearance and 

friction non-linearities respectively. 
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Figure 3.20 Numerical experiments: cubic stiffness non-linearity 

 
Figure 3.21 Numerical experiments: clearance non-linearity 
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Figure 3.22 Numerical experiments: friction 

It can be seen that for all three cases, when the non-linearity type is 

matched correctly, the SSD value is the smallest irrespective of the system 

parameters. For cubic stiffness non-linearity, the SSD value is zero throughout the 

experiments when compared with the cubic stiffness non-linearity footprint. This 

suggests that after the linear transformations, the two curves lie exactly on top of 

each other. For other two non-linearities, the SSD value is not zero when compared 

with the corresponding footprint, but still it is significantly lower than the other SSD 

values so as to identify the correct non-linearity type. 

 For combined non-linearities, the footprints in the library are generated 

based on an assumption of equal contribution by each non-linearity. The 

contribution of each non-linearity in the total non-linear force is calculated over the 

entire frequency range considered 

∑
=

=
f

s

tot

i
i

G
GC

ω

ωω ω
ω

)(
)(        (3.4) 

Where, iC  is the contribution of ith type of non-linearity, iG is the non-linear force 

due to ith non-linearity type, totG  is the total non-linear force, sω and fω  are the 

start and end frequencies in the considered frequency range. In the numerical 

experiments, the equal contribution constraint was not incorporated. Thus, the 

systems with randomly generated parameters had unequal contribution of different 

non-linearities. Figure 3.23 shows the results of numerical experiments for 

combined clearance and friction non-linearity. 
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Figure 3.23 Numerical experiments: clearance and friction 

From the figure, it is observed that the SSD’s for different footprints are overlapping 

and it is difficult to clearly identify the type of non-linearity based on the SSD 

criterion. This is because the shape of non-linear force changes significantly with 

the contribution of non-linearity type. In practical structures, it is a rare situation 

when two or more non-linearities contribute equally. Thus, the footprints for 

combined non-linearities which are generated assuming an equal contribution have 

a limited application in identifying the non-linearity type in practical structures. 

 However, if more footprints of combined non-linearities with varied 

contribution are included in the library, then the SSD parameter might be used for 

conclusive determination of non-linearity type. The idea of such fine division in the 

footprints of combined non-linearities was validated with a numerical study. Three 

footprints with combined cubic stiffness and friction non-linearity were generated 

with varied contribution from each type. The contribution of each non-linearity type 

was evaluated by integrating the non-linear force versus displacement curve for 

individual non-linearities with selected non-linear parameters. In the current study, 

Footprint 1 was generated with 10% contribution of cubic stiffness non-linearity and 

90% contribution of friction non-linearity. Footprint 2 was generated with 40% 

contribution of cubic stiffness and 60% contribution of friction non-linearity and 

finally Footprint 3 was generated with 90% contribution of cubic stiffness and 10% 

contribution of friction non-linearity. 
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The footprints were compared with a set of non-linear force curves for 2-

DOF system with the combined cubic stiffness and friction non-linearity, and 

randomly chosen linear and non-linear parameters. Figure 3.24 shows the results of 

the numerical study. Each dot in the figure represents a 2-DOF system. The X axis 

shows the contribution of cubic stiffness non-linearity in the system, and the Y axis 

shows the SSD value which is normalized to the maximum SSD value obtained in 

the set.  

 
Figure 3.24 Comparison with finer footprints for cubic stiffness and friction 

It can be observed from the figure that the SSD for all three footprints vary as the 

contribution of the cubic stiffness non-linearity in the system changes. The SSD for 

a footprint is the smallest when the contribution of non-linearities in the system 

matches with the contribution of non-linearities in the footprint. For example, for 

Footprint 1, with 10% cubic stiffness non-linearity and 90% friction non-linearity, the 

SSD value is the smallest, when the contribution of cubic stiffness non-linearity in 

the system is around 10%. Similar trend is observed for the other two cases. 

 Thus, if the footprint library is expanded to include the footprints of combined 

non-linearities with un-equal contribution, then it would be, in principle, possible to 

correctly identify the type of non-linearities in the system along with the percentage 

contribution of each non-linearity.  
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3.4.4 Numerical examples 

The two methods for non-linearity characterization presented in the chapter are 

exemplified using numerically synthesized data for Validation structure-1, a 

cantilever beam with non-linearity at the free end. The details of the beam are 

presented in Appendix B. The study considers three cases with different non-

linearities, and the details of the type of non-linearity and the non-linear parameters 

used in the study are presented in Table 3.2. 

Table 3.2 Summary of non-linear parameters used for validation 

Case Type of non-linearity Non-linear parameters 

1 Cubic stiffness β =5e3 Nm-3 

2 Friction Kd = 50 N/m; µN = 1e-3 N 

3 Cubic stiffness + friction β =5e8 Nm-3 Kd = 10 N/m; µN = 3e-3 N 

 

The synthesized non-linear response data for the beam was generated using the in-

house code FORSE [4]. The non-linear restoring force at the non-linear DOF is 

extracted using the spatial method described in Chapter 4 of the thesis5. The 

extracted non-linear force for all three cases was used for visual comparison with 

the footprint library presented in Section 3.2. For validation of the second method, 

the non-linear restoring force for all three cases was numerically compared with 

different footprints to evaluate the SSD value for each footprint. The SSD values for 

all cases are summarized in Table 3.3. 

Figure 3.25 shows a plot of non-linear restoring force at the non-linear DOF 

for case 1. The shape of the plot resembles both the cubic stiffness footprint and the 

clearance footprint. Figure 3.26 shows the non-linear force for Case 1 overlaid on 

top of the footprints of different non-linearities. From the figure, it can be seen that 

the extracted non-linear force curve clearly matches with the cubic stiffness non-

linearity footprint. This observation is strengthened by the least SSD value for the 

cubic stiffness footprint shown in Table 3.3, identifying the type of non-linearity 

correctly. 

                                                            
5 Extracting the non‐linear restoring force for a MDOF system is a challenge in itself. The different methods for extraction of 
non‐linear restoring force are presented in subsequent chapters of the thesis 



65 
 

 
Figure 3.25 Non-linear force for case 1 (cubic stiffness) 

 
Figure 3.26 Quantitative comparison for Case 1 

Figure 3.27 shows the plot of the non-linear force for case 2, with friction 

non-linearity. From the visual comparison of the shape of this curve with the 

footprints, it is difficult to reach any conclusion. When the non-linear force is 

compared with the footprints to find the SSD value, the slip-dominated friction non-
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linearity is identified as the one with the least SSD value. Figure 3.28 shows the 

quantitative comparison with the footprints for Case 2. 

 
Figure 3.27 Non-linear force for Case 2 (friction) 

 
Figure 3.28 Quantitative comparison for Case 2 

In Case 3, a combined cubic stiffness and friction non-linearity was used. 

For the system with selected non-linear parameters, the cubic stiffness non-linearity 

contributes 84% towards the non-linear force. In Figure 3.29, the shape of 

magnitude versus frequency plot resembles the cubic stiffness non-linearity footprint 
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but the Nyquist plot shows a different shape. The SSD value for combined cubic 

stiffness and clearance non-linearity is found to be the least. The SSD value for the 

cubic stiffness non-linearity is the next lowest. Figure 3.30 shows the result of the 

shape-matching algorithm for Case 3. 

 
Figure 3.29 Non-linear force for Case 3 (cubic stiffness + friction) 

 
Figure 3.30 Quantitative comparison for Case 3 
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Table 3.3 Summary of the quantitative comparison 

Footprint type 
Sum of squared distance (SSD)

Case 1 Case 2 Case 3 

Cubic stiffness 9.8×10-4 5.59 0.33 
Clearance 1.50 3.41 1.23 

Friction (slip) 6.60 2.06 6.36 

Friction (stick) 2.09 3.70 1.76 

Friction (stick-slip) 6.67 2.15 6.42 

Cubic stiffness + clearance 0.45 5.32 0.29 
Cubic stiffness + friction 1.26 4.41 0.97 

Clearance + friction 2.37 3.41 2.04 

Cubic stiffness + clearance + friction 1.13 4.57 0.81 

To evaluate the effect of noise on the quantitative method of non-linearity 

characterization, data for the same three cases was polluted with 7.5% random 

noise. The non-linear force was extracted for noisy measurements, and it was 

compared with the footprints from the library. Figure 3.30 shows the comparison of 

the extracted non-linear force with the footprint library for Case 3, combined cubic 

stiffness and friction non-linearity. Table 3.4 shows presents the detailed results for 

all three cases with noise. It can be observed that owing to noisy measurements, 

the SSD values are a bit higher than the corresponding values for clean data. Still, 

the correct type of non-linearity can be identified for Case 1 and 2. 
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Figure 3.31 Quantitative comparison for Case 3 with 7.5% noise 

Table 3.4 Summary of the quantitative comparison with noise 

Footprint type 
Sum of squared distance (SSD)

Case 1 Case 2 Case 3 

Cubic stiffness 0.153 6.21 0.84 
Clearance 1.62 3.67 1.53 

Friction (slip) 5.94 2.31 5.81 

Friction (stick) 1.89 3.77 1.75 

Friction (stick-slip) 5.99 2.53 5.87 

Cubic stiffness + clearance 0.45 5.71 0.87 

Cubic stiffness + friction 1.13 4.44 0.94 

Clearance + friction 2.12 3.15 1.96 

Cubic stiffness + clearance + friction 1.02 4.63 0.96 
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3.5 Concluding remarks 

A novel idea of collecting the non-linear restoring force curves for different non-

linearities to form a ‘footprint library’ has been proposed in the chapter. This 

footprint library can be used for non-linearity characterization, which forms an 

important step in non-linear system identification. The shape of the non-linear 

restoring force curves was found to be unique to the type of non-linearity and 

independent of the system. The main developments of this chapter can be listed as 

follows: 

• A library of non-linear force footprints for different non-linearities including the 

cubic stiffness, clearance, friction, and combination of all three has been 

generated using a 2-DOF benchmark system. The library consists of magnitude 

versus frequency plots and Nyquist plots for the non-linearities. The library can 

be used as a look-up chart for making a judgement on the type of non-linearity in 

the system. 

• A shape-matching algorithm has been proposed to quantify the match between 

the shape of the extracted non-linear force curve and the footprints. The term 

SSD indicating the Euclidian distance between the two curves is used as a 

measure of closeness of the shape of the curves. 

• The proposed methods have been tested on simulated response data for a 

cantilever beam with different non-linearities. The methods worked well for the 

individual non-linearities.  

• For combined non-linearities, the shape of the non-linear force curve was 

observed to be dependent on the contribution of each type of non-linearity. With 

the current footprint library, it was found difficult to correctly identify the combined 

non-linearity type. An idea of including more footprints in the library with varying 

contribution of two or more non-linearities has been suggested as a possible 

solution to this problem. 

• The quantitative comparison has been tested for measurement data with noise. It 

has been observed that the type characterization is accurate even for data with 

7.5 percent random noise. 
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Chapter 4 

Spatial method for non-linear 
parameter identification 
This chapter presents a frequency-domain method for a parametric identification of 

non-linear systems. The method uses the finite element (FE) model of the 

underlying linear system to extract the non-linear restoring force. The magnitude of 

the non-linear restoring force at each DOF is used to find the location of the non-

linearity. A genetic algorithm based optimization method is proposed to extract the 

non-linear parameters using the non-linear restoring force at the identified non-

linear DOFs. The method allows successful extraction of non-linear parameter 

values even when the type of non-linearity is unknown. The method is illustrated on 

simulated data for a cantilever beam with cubic stiffness non-linearity. The 

robustness of the method in the presence of measurement noise is checked by 

artificially polluting the response data with random noise. 

4.1 Introduction 

Non-linear system identification is an important stage in structural analysis. Once 

the non-linear parameters are known as a function of displacement, velocity etc, the 

information can be used to predict the response at different operating conditions [4, 

79]. Non-linear system identification consists of three stages, namely the detection 

of non-linearity, the type characterization, and the non-linear parameter extraction. 

Once the non-linearity is detected and characterized, the parameter extraction can 

be posed as an optimization problem. In most of the methods, the success of non-

linear parameter extraction depends on the success of the earlier stages of non-

linearity detection and characterization. 

The method proposed in this chapter is based on the reverse explicit 

formulation proposed by Elizalde [26, 36]. The basic theme of the method is to 

recover the non-linear restoring force for a non-linear system by making use of the 
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FE model of the underlying linear system and the measured responses of the 

system. In the current research, a genetic algorithm (GA) based optimization 

method is used to identify the non-linear parameters. The use of such a method 

allows identifying simultaneously several non-linearities of unknown type. The 

method has a potential to identify large non-linear structures, which is the prime 

advantage. The theoretical formulation of the method is presented in the next 

section. 

4.2 Theoretical formulation 

For a multi DOF system, undergoing harmonic excitation, the equations of motion 

can be written as: 

[ ]{ } [ ]{ } [ ]{ } { } { } )sin()( tFygyKyCyM ω=+++ &&&   (4.1) 

where, [ ]M , [ ]C ,and [ ]K  are mass, viscous damping, and stiffness matrices, { }F  is 

the amplitude of excitation force, and { }( )g y  is the non-linear restoring force as a 

function of displacement.  

The solution to (4.1) is multi-harmonic, with significant contributions from 

higher order harmonics as shown in [79]. With single-harmonic limitation, assuming 

that the response to a harmonic force is also harmonic at the same frequency, and 

neglecting the higher order harmonics in the response, (4.1) can be converted into 

frequency domain: 

[ ] [ ] [ ]( ){ } { } { }FYGYKCiM =+++− ),(2 ωωω   (4.2) 

where, ( , )G Y ω  is the non-linear restoring force as a function of the non-linear 

response and excitation frequency. The non-linear restoring force vector can be 

written as: 

{ } { } [ ]{ }YZFYG −=),( ω           (4.3) 

where, the linear dynamic stiffness matrix, [ ]Z , can be expressed as: 

[ ] [ ] [ ] [ ]( )KCiMZ ++−= ωω 2     (4.4) 

If the measured and un-measured DOFs are indicated by subscripts m and u 

respectively, (4.3) can be expanded as follows: 
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If it is assumed that the non-linearity is confined to the measured zone, vector uG  

becomes zero, and the un-measured responses can be expressed in terms of 

known quantities as: 

{ } [ ] { } [ ]{ }( )mumuuuu YZFZY −= −1        (4.6) 

Substituting { }uY  in (4.5), { }mG  can be expressed in terms of the measured 

responses as: 

{ } { } [ ] [ ] { } [ ]{ }( )( ) [ ]{ }mmmmumuuumumm YZYZFZZFG −−−= −1      (4.7) 

The non-linear restoring force vector of (4.7) can be extracted if the excitation force 

vector and the underlying FE model are known, and if the non-linearities are 

confined to the measured DOFs. This can be a serious limitation when applied to 

practical structures, where the measurement at non-linear DOF cannot be 

guaranteed. An approximated technique to overcome this limitation is presented in 

Section 4.2.5. 

4.2.1 Non-linearity detection and characterization 

The non-linear force vector for the measured DOFs is used for the detection and 

characterization of non-linearity. Assuming that all non-linearities are confined to the 

measured zone, a non-zero value in the non-linear restoring force vector detects the 

presence and location of non-linearity. The magnitude of the non-linear force at all 

measured DOFs is summed over the measured frequency range to get the 

accumulated force vector, { }c
mG  

{ } { }( )∑
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=
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i

GABSG c
m

ω

ωω

ω)(     (4.8) 

This vector is plotted for all measured DOFs to identify the location of non-linearity. 

A similar approach to locate the non-linear DOFs is presented in [26, 28]. 

Once the non-linear DOFs are identified, the shape of the non-linear 

restoring force at the non-linear DOFs can be compared with the footprint library 

presented in Chapter 3 to characterize the type of non-linearity. 

4.2.2 Formulation of the optimization problem  
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Once the non-linear force at the non-linear DOFs is extracted, the non-linear 

parameters can be estimated by solving the optimization problem. This section 

presents the formulation of the optimization problem. 

The non-linear force at the ith DOF, and at a particular excitation frequency, 

can be written as a function of np non-linear parameters which are to be identified. 

),.........,,,,(
4444 84444 76 pn

dczi NKyKfG μβ=     (4.9) 

The above equation though formulated for cubic stiffness, clearance, and friction 

non-linearities at present, can be generalized to incorporate other types as well. The 

vibration measurements usually provide response amplitude values at a discrete set 

of frequency values. Let nf be the number of frequency lines in the measurement 

range. As the non-linear parameters are assumed independent of frequency, one 

equation can be written per frequency line. Thus, there are a total of nf equations 

with np unknowns. Generally, nf >> np, thus a highly over determined system of 

equations is usually available. 

In principle, all of the nf equations can be solved by minimizing say the 2-

norm of the error vector, but the response away from the resonance is generally 

small, the signal to noise ratio is generally low, and accuracy of modelling is less 

important for those frequencies. Thus, the data far away from the resonance can be 

ignored in most of the cases. 

Thus ns points out of total nf available, can be chosen in the range where the 

non-linear force has significant magnitude. The number of points, ns, should be 

higher than the number of unknown variables, np, and usually surpasses it 

significantly.  

The identification problem can be posed as an optimization problem by 

formulating the residual at the ith DOF, as: 

ii
friclecub

i GgggR −++= )(          (4.10) 

where, Gi is the non-linear force at the ith DOF obtained from (4.7), and cubg , cleg , 

and frig  are the expressions based on the harmonic balance method for cubic 

stiffness, clearance and friction non-linearities, presented earlier in Table 3.1. This is 

a more general formulation considering the presence of different non-linearities at a 

particular DOF. This formulation potentially eliminates the need of accurate type 

characterization before this step. 
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Although, only cubic stiffness, clearance and friction non-linearities are 

considered in the formulation explicitly, the formulation can be extended to 

incorporate any other type of non-linearity. The total residual to be minimized for ns 

selected points can be written as: 
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The residual given in (4.11) can be minimized to find the optimized values for np 

non-linear parameters. 

4.2.3 Search for the non-linear parameters using a genetic 
algorithm 

The parameter identification problem for non-linear systems has been attempted by 

several researchers using evolutionary techniques. To point some of the work, 

Rodriguez et al [112] used Genetic programming to identify non-linear systems 

related to control theory. Hysteretic systems are identified using evolutionary 

optimization methods as found in [113] and [114].  

In the current research, the optimization problem is solved by using a 

genetic algorithm. For the particular genetic algorithm used in the thesis, it is more 

convenient to express the problem as a maximization problem. Thus, the residual R 

can be converted into function Rm, to be maximized, as: 

RC
CRm +

=         (4.12) 

where, C is a real positive constant. This formulation makes Rm sensitive to the 

value of C. Thus, the value of C should be selected carefully depending on the 

case. In the current work, the value of C is taken as 100. If the case of R tending to 

0 can be handled effectively, the simple formulation, Rm = 1/R, can also be used. Rm 

can be used as an objective function to be maximised via the genetic algorithm to 

obtain the optimized values of all non-linear parameters. The genetic algorithm from 

[115, 116] is used with some minor modifications. The variables in the optimization 

problem are converted into their binary equivalent for better manipulation.  

In genetic algorithm terminology, a set of values of parameters to be 

optimised is called a string. A group of such sets spanning the feasible domain is 

called a population. The value of the objective function for a string is termed as the 
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fitness of the string. In the current formulation, the maximum fitness can reach unity. 

It can also be expressed as percentage value. The string with the highest objective 

function is called the fittest string. The three basic operators, namely: reproduction, 

cross-over, and mutation are used sequentially on the population. The reproduction 

operator aims at improving overall fitness of the population. The cross-over operator 

ensures a global search, whereas the mutation operator does a fine local search. 

These three operators constitute a generation. After the implementation of these 

three operators, an improved population emerges. The fitness of population and the 

number of generations are used as convergence criteria. In the current algorithm, 

the value of Rm tends to unity as the solution converges.  

Initially, the upper and lower limits of all non-linear parameters are chosen 

based on the engineering judgement. After a predefined number of generations, 

called a civilization, the range of the non-linear parameters is refined by analysing 

the values taken by the fittest string in the population. With the new range and 

increased accuracy for these variables, another civilization is completed. This 

process is continued until the convergence criteria are satisfied. Figure 4.1 shows 

the flowchart showing one civilization of the GA used.  
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Figure 4.1 Flowchart of the genetic algorithm optimization 

Since all possible non-linearities can be included in the formation 6 , the global 

optimum solution would correspond to the accurate parameters of the non-linearities 

which are actually present in the system. For example, when only one type of non-

linearity is present in the system, the converged solution will yield accurate 

parameter values for the correct type of non-linearity, and zero values for 

parameters corresponding to the other non-linearities. The genetic algorithm 

performs better at finding the global optimum, thus it is suitable for cases when the 

type of non-linearity is not known a priori. 

4.2.4 Use of binary multipliers to improve the efficiency 

When the type of non-linearity is known with certainty, or can be guessed with an 

associated probability, the method can be improved by taking into account this 
                                                            
6 In this case, cubic stiffness, clearance and friction non-linearities are considered in the formation 
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information. This is achieved by introducing binary multipliers. In this approach, 

weighted residuals are formed for each non-linear force contribution. The residual 

non-linear force is written by modifying (4.10) as: 

ii
friclecub

i GgagagaR −++= )( 321        (4.13) 

where all possible non-linear forces, cubg , cleg  and frig  are multiplied by weighing 

constants a1, a2, and a3. If the type of non-linearity is successfully identified prior to 

this stage, then the constant corresponding to the identified type takes the value 1 

and the other constants take the value 0 for the complete optimization. 

If the type of non-linearity can be guessed with an associated probability, 

then during each generation of genetic algorithm, these constants take a value 

either 0 or 1, which is selected probabilistically. The probability of such value 

selection is provided by the user. If the probability of, say clearance non-linearity 

(gcle) is the highest, then a2 takes the value 1 more often than a1 and a3. Such a 

technique creates more instances in the population which are solved for the most 

probable non-linearity; ensuring a faster convergence. The rest of the procedure 

remains same with (4.12) giving the total residual to be maximised. 

4.2.5 Non-linear parameter identification without full measurement 
set at non-linear DOFs 

Most of the non-linear identification methods in the literature, including the methods 

proposed in [26, 37, 38], require the measurement at all non-linear DOFs. It is 

sometimes difficult to measure at all non-linear DOFs due to their inaccessible 

locations. A slight modification in the equations presented in Section 4.2, along with 

the use of spatial reduction methods, enables the extraction of the non-linear 

restoring force at the non-linear DOFs when measurements are not taken at these 

DOFs. 

 If it is ensured that the non-linear DOFs are restricted to the un-measured 

zone, the vector { }mG becomes zero, and using (4.5), the un-measured response 

vector can be represented in terms of known quantities as: 

{ } [ ] { } [ ]{ }( )mmmmmuu YZFZY −= +    (4.14) 

Equation (4.14) involves the inversion of a rectangular matrix, which puts the 

mathematical condition of m ≥ u, to be satisfied. Generally, the number of un-

measured DOFs is much higher than the number of measured DOFs (u >> m). 
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Thus, the condition required for the solution of (4.14) is seldom satisfied in practical 

cases. 

The condition can be satisfied artificially, by reducing the system to Nr DOFs, 

such that m ≥ Nr/2, while retaining all non-linear DOFs during the reduction. In the 

current research, the improved reduced system (IRS) method of [93] is used for the 

system reduction. This method is an extension of the Guyan reduction technique 

[91], with inclusion of an extra term to incorporate the inertial effects. The use of 

static reduction method results in system matrices which are independent of the 

frequency, thus saving a huge computational effort.  

Once the reduced model for the system is achieved, (4.14) can be solved by 

calculating the pseudo inverse of [ ]muZ . The non-linear force vector, uG , can be 

extracted by substituting (4.14) in (4.7): 

{ } [ ]{ } [ ] [ ] { } [ ]{ }( )( )( )mmmmmuuumumu YZFZZYZG −+−= +      (4.15) 

Equation (4.15) gives the non-linear restoring force vector containing non-linear 

DOFs. The above technique can be used to extract the non-linear force at the non-

linear DOFs when the location of the non-linearity is known, but no measurements 

could be taken at those locations. 

The non-linear restoring force at the non-linear DOFs can be used to extract 

the non-linear parameters as explained in Sections 4.2.2 and 4.2.3.  

4.3 Numerical examples 

The proposed method was tested on ‘Validation structure-1’, a cantilever beam with 

cubic stiffness non-linearity at the free end. The details of the structure are shown in 

Appendix B. Numerically-synthesized data were used to validate the proposed 

method. A cubic stiffness non-linearity with non-linear coefficient, β = 5×106 Nm-3 

was used for the validation. The response was predicted using the in-house code 

FORSE [4]. Figure 4.2 shows the comparison of linear and non-linear responses of 

the beam at the non-linear DOF. It is observed that the response is multi-valued in 

the frequency range of 32-55 rad/sec. The truncated response, corresponding to 

stable branch 1, as explained in Chapter 3 was used for the identification. 
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Figure 4.2 Comparison of linear and non-linear responses 

4.3.1 Effect of the number of measurements on parameter 
estimation 

For practical MDOF non-linear structures, it is not feasible to take measurements at 

all DOFs. Equation (4.7) gives the non-linear force vector at measured DOFs using 

an exact reduction of system equations. Thus, in principle, it is possible to extract 

the non-linear force vector using (4.7) if: (a) measurements are available at all non-

linear DOFs, and (b) measurements are available at all excitation DOFs. 

This section studies the effect of the number of measurements on the 

accuracy of parameter estimation. Three cases were considered for the analysis. In 

the first case (Case A), all DOFs of the FE model were assumed to be measured. In 

the second case (Case B), only the translational DOFs along Y-axis were assumed 

to be measured. In the last case (Case C), only the non-linear DOF and the 

excitation DOF were measured. This case satisfies only the minimum requirement 

for the use of (4.7). The summary of measured and un-measured DOFs, excitation 

force, and non-linear DOFs for all three cases is given in Table 4.1. 
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Table 4.1 Description of measured DOFs 

Case Measured DOFs Un-measured DOFs 
Excitation 

DOF 
Non-linear 

DOF 

A {1, 2, 3, ....,20} Nil 

19 19 B {1, 3, 5, 7,....,19} {2, 4, 6, 8, …., 20} 

C {19} {1, 2, 3, 4,…,18 and 20} 

 

For all three cases, the non-linear force was extracted at all measured DOFs using 

(4.7). The accumulated non-linear force for the measured DOFs was used to 

identify the location of non-linearity. Figure 4.3 shows the plot of the accumulated 

non-linear force at measured DOFs for Case A. It can be seen that the accumulated 

non-linear force at DOF#19 is maximum. The non-linear force at other DOFs is 

close to zero. Thus, the location of non-linearity at DOF#19 is correctly identified. 

 
Figure 4.3 Identification of non-linearity location (Case A) 

The non-linear force at the identified non-linear DOF, plotted against the frequency 

and as a Nyquist plot, was used for non-linearity characterization. Figure 4.4 shows 

the plot of non-linear force at DOF#19 for Case A. If the shape of the non-linear 

force is visually compared with the footprint library presented in Chapter 3, the cubic 

stiffness non-linearity can be deduced. This was confirmed when the non-linear 

force was numerically compared with the footprints to find the values of SSDs for 

different non-linearities. The SSD, when compared with cubic stiffness non-linearity, 

was found to have the least value (SSD=0.001), thus identifying the type of non-

linearity. 
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Figure 4.4 Non-linearity characterization (Case A) 

In the next stage of non-linear parameter identification, the genetic algorithm (GA) 

presented earlier was used to extract the non-linear parameter values for all three 

cases. The parameters used in the GA are summarized in Table 4.2. In this case, 

since the type of non-linearity was correctly identified, the binary multipliers were 

used with a1 = 1, and a2 = a3 = 0. The optimization problem was solved considering 

the presence of cubic stiffness non-linearity only in the objective function 

formulation. 

Table 4.2 Parameters used in the GA 

Parameter Value 

Probability of crossover operator (Pc) 0.8 

Probability of mutation operator (Pm) 0.05 

Population size (N) 700 

Number of generations in a civilization 1000 

Initial number of bits per variable 12 

 

To keep a uniform basis for comparison, the initial range of the non-linear coefficient 

was kept the same (0-1×1010 Nm-3) for all three cases. The identified parameters 

after the end of the first civilization are presented in Table 4.3. 
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Table 4.3 Summary of results for parameter estimation  

Case (DOFs)m: (DOFs)u 
Identified β value

(N-m-3) 
Fitness value 

(%) 
Error in 

estimation (%) 
A 20:0 4.9751×106 95.07 0.49 
B 10:10 4.9735×106 94.93 0.53 
C 1:19 4.9747×106 94.62 0.51 

 

It can be seen that the error in the estimation of the non-linear parameter is almost 

constant at around 0.5%, which is within acceptable limits. Thus, it can be 

concluded that the estimation of non-linear parameters is not a function of the 

number of measurements. This is owing to the exact reduction of the system 

equations achieved in (4.7). 

4.3.2 Effect of measurement noise on parameter estimation 

This section checks the robustness of the method in presence of measurement 

noise. The simulated response data were polluted with white noise of varying 

strength. The response vector polluted with white noise was obtained using the 

following expression: 

{ } { } { }upupp yrcyy max)100()()( ×+= ωω           (4.16) 

where, 0 < ω < ωmax 

             r is a random parameter (-1 ≤ r ≤ 1) 

             c is the maximum percentage of the noise to be added 

            { }py )(ω  is the response vector polluted with noise 

            { }upy )(ω  is the un-polluted response vector 

            { }upymax  is the vector containing peak response values 

The identification was carried out with increasing level of noise, with the value of c 

ranging from 1.5 to 5. Figure 4.5 shows the distorted response at the non-linear 

DOF with 5% added noise. For Case A, the non-linear parameters could not be 

extracted because of the presence of unacceptable level of noise in the system. For 

the other two cases (Cases B and C) the non-linear parameters were successfully 

extracted. Table 4.4 summarizes the results of parameter estimation for the two 

cases in the presence of varying noise level. 
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Figure 4.5 Displacement response with 5% random noise 

Table 4.4 Results of parameter estimation in presence of noise 

Case 
Noise 
level 

Identified β value 
(N-m-3) 

Error in estimation 
(%) 

Fitness value (%) 

B 

c = 1.5 5.353×106 7.1 18.2 

c = 3 5.823×106 16.5 9.5 

c = 5 3.569×106 28.6 6.1 

C 

c = 1.5 4.888×106 2.2 92.7 

c = 3 4.805×106 3.9 91.1 

c = 5 4.725×106 5.5 85.9 

 

It is seen for both cases that the error in parameter estimation increases with the 

increase in the noise level. The maximum error in parameter estimation is around 

29% for Case B with 5% random noise. It is an interesting observation that the error 

is consistently higher in Case B, the case in which a higher number of 

measurements was available. This might look counter intuitive, but it is related to 

the fact that a highly over-deterministic system of equations is being solved in the 

optimization process, and each additional measurement is contributing towards 

additional noise in the system. 

For Case B, with 1.5% noise, the accuracy of parameter estimation is better; 

but the fitness value of the fittest string obtained by the GA is quite low at 18.2%. 

This suggests that that there is a scatter in data points of the extracted non-linear 
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force. Figure 4.6 shows the comparison of the extracted and the regenerated non-

linear force curve for this case. 

 
Figure 4.6 Comparison of the extracted and regenerated non-linear force 

From the study of the effect of measurement noise on the parameter estimation, it is 

observed that the method is robust in the presence of measurement noise for Case 

B and Case C. The effect of noise becomes severe as the number of 

measurements in the analysis increases. 

4.3.3 Effect of binary multipliers on computational efficiency 

Binary multipliers are proposed to enhance the computational efficiency of the GA 

when the type of non-linearity can be guessed with some associative probability. 

This section studies the effect the use of binary multipliers in the GA.  

A new set of three cases was considered for the study. In the first case, the 

binary multipliers were not used. In the second case, the binary multipliers were 

used with a high value of probability assigned to the correct type of non-linearity and 

a relatively low value of probability is assigned to the other types. In the third case, 

the binary multipliers were used with an equal value of probability assigned to all 

non-linearity types. This case corresponds to a situation when the type 

characterization fails, and the non-linearity type is not known in advance. The 

results for the three cases are compared with the benchmark case where only cubic 

stiffness non-linearity is included in the formulation of optimization problem. 

The simulated data for the beam without any addition of noise was used for 

the analysis. The GA code was terminated after 5000 generations and the results 

were recorded. Table 4.5 summarizes the results for the exercise. In the table, Pcub, 
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Pcle, and Pfri denote the probability of the presence of cubic stiffness, clearance and 

friction non-linearity. The values correlate to the probabilities with which the binary 

multipliers, a1, a2, and a3 take the value of 1 in the simulation. Gcon denotes the 

number of generations at which the fittest string was found. It is observed that the 

error in parameter estimation is the least when the binary multipliers are used with a 

high probability assigned to the correct non-linearity type. The error in the other two 

cases is comparable, but the use of the binary multipliers is found to speed-up the 

convergence.  

Table 4.5 Performance of binary multipliers 

Case (Pcub, Pcle, Pfri) 
Identified β 

value (N-m-3)
Error 
(%) 

Gcon 

Benchmark - 4.9812×106 0.38 45 

1 (1,1,1) 4.8818×106 2.36 2932 

2 (0.9,0.2,0.2) 4.9781×106 0.44 96 

3 (0.5,0.5,0.5) 4.8930×106 2.14 293 

 

Figure 4.7 shows the plot of the fitness of the fittest string in the population at each 

generation for the first 500 generations. It is seen that in the absence of binary 

multipliers, the fitness of the fittest string in the population is lower than the fitness 

when the binary multipliers are used. The fluctuation in the fitness value is also 

more when the binary multipliers are not used.  

 
Figure 4.7 Performance of binary multipliers: fittest string fitness 
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Figure 4.8 shows the plot of the average fitness of the population for each 

generation. It is observed that the average fitness is consistently higher in the case 

when the binary multipliers are used with the correct type of non-linearity. The 

average fitness of the population is the least when binary multipliers are used with 

equal probability. 

 
Figure 4.8 Performance of binary multipliers: Average fitness 

4.3.4 Effect of the error in the FE model on parameter estimation 

It is very difficult to obtain an accurate finite element model for practical structures, 

even in case of a linear structure. After correlating the model with the experimental 

data and updating it, the error in the FE model may be reduced. For a complex 

mechanical structure like the MACE structure, an error of around 5-7% in the natural 

frequencies of the first few modes is considered acceptable after the model 

updating [63]. The damping values inputted into the FE model are extracted using 

modal testing. This is another source of error in the underlying FE model. It is 

necessary to evaluate the sensitivity of the estimated non-linear parameters to the 

errors in the underlying FE model. This section studies the effect of the errors in the 

underlying FE model on the parameter estimation. 

 The physical properties of the beam were altered by a small amount so that 

the change is reflected in the natural frequencies of the beam. The damping ratio for 

the first mode was altered to evaluate the effect of the error in damping estimation. 

The non-linear identification was carried out with the erroneous FE model of the 

beam to extract the non-linear parameters. Table 4.6 shows a summary of the 

results. As the identification was carried out with the data covering only the first 
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mode of the beam, the deviation in the first natural frequency of the beam is 

recorded in the table. In the table, ωn1 denotes the first natural frequency and η1 

denotes the damping ratio for the first mode. 

Table 4.6 Effects of the erroneous FE model 

Error in the physical properties of the 
FE model 

Error in the damping estimate 

Deviation in ωn1 

(%) 

Identified β 

(Nm-3) 

Error 

(%) 

Error in η1 estimation 

(%) 

Identified 

β (Nm-3) 

Error 

(%) 

-5 4.41×106 11.8 -10 4.98 0.4 

-7 4.19×106 16.2 20 4.98 0.4 

-10 3.87×106 22.6 50 5.07 1.4 

 

It is seen that the effect of the error in damping estimation is negligible. Even with 

50% error in the estimation of the damping ratio for the first mode, the error in the 

identified non-linear parameter is less than 2%. The effect of the deviation in natural 

frequencies on parameter estimation is seen to be significant. Figure 4.9 shows the 

plot of the accumulated non-linear force for all DOFs. It is observed that, with an 

increase in the error in the underlying FE model, the non-linear force contribution at 

the linear DOFs is increasing.  

 
Figure 4.9 Accumulated non-linear force plot 

For an erroneous FE model with 5-7% deviation in the first natural frequency value, 

which may be acceptable in some cases, the error in parameter estimation is more 

than 15%. Thus, it is necessary to obtain an accurate FE model of the structure 

before proceeding to the stage of non-linear parameter estimation. 
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4.3.5 Non-linear parameter identification in absence of 
measurements at non-linear DOFs 

This section presents a numerical validation of the technique presented in Section 

4.2.5 for non-linear identification in absence of the measurement at the non-linear 

DOFs. The details of the measured and un-measured DOFs are given in Table 4.7. 

Table 4.7 Case description for non-linear parameter identification in absence of the 

measurement at non-linear DOFs 

Measured region: (DOFs)m {3, 7, 9, 11, 13, 17} 

Un-measured region: (DOFs)u {1, 5, 15, 19, and 2, 4, 6, ..18, 20} 

Excitation DOF {19} 

Non-linear DOF {19} 

 

From the table, it is observed that the non-linear DOF, DOF#19, is in the un-

measured region. The number of measured DOFs is, m = 6, and the number of un-

measured DOFs is, u = 14. Since the number of measured DOFs is less than the 

number of un-measured DOFs, system reduction needs to be performed to satisfy 

the constraint, m ≥ u.  

The IRS technique was applied to perform a static reduction of system 

matrices removing all rotation DOFs. The non-linear DOFs, along with the other 

translational DOFs were retained during the reduction. For the reduced system, Nr = 

10, and the condition, m ≥ Nr/2 is satisfied. The non-linear force was extracted at the 

un-measured DOFs. Figure 4.10 shows a plot of non-linear force against frequency 

and the accumulated non-linear force at the un-measured DOFs. 

 
Figure 4.10 Non-linear force at un-measured DOFs 

From the plot, it is observed that the non-linear force at the non-linear DOF is 

significantly higher in magnitude than that at the other DOFs. The non-linear force at 
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the non-linear DOF is used to extract the non-linear coefficient, β. The value of β is 

identified with less than 1% error (β = 4.96×106 N-m-3). Thus, the technique 

explained in Section 4.2.5 for the identification of non-linear parameters in the 

absence of the measurement at the non-linear DOF works well if the non-linearity 

location is correctly identified and retained as master coordinate during the process 

of model reduction. 

4.4 Concluding remarks 

A method for non-linearity detection and non-linear parameter identification has 

been proposed in the chapter. The method uses the FE model of the underlying 

linear system to extract the non-linear restoring force at non-linear DOFs. A genetic 

algorithm based optimization procedure is used to extract the non-linear 

parameters. The concept of binary multipliers is introduced to enhance the 

computational efficiency of the method. The method is validated on numerically 

simulated data for a cantilever beam. The proposed method has the potential to be 

used for practical engineering structures with localized non-linearities. The main 

developments of the chapter can be listed as follows: 

 

• The proposed method recovers the non-linear restoring force. The accumulated 

value of the non-linear force at each DOF is used to locate the non-linearity. It 

has been seen that the magnitude of the non-linear force at the non-linear DOF 

is significantly higher than that at the linear DOFs. 

• The variation of the non-linear force can be used to identify the type of non-

linearity. It has been found that even if the non-linearity type is not known, the 

genetic algorithm based optimization accurately extracts the parameter 

corresponding to the correct non-linearity type. 

• The concept of binary multipliers has been found to be effective in increasing 

the computational efficiency of the method if the type of non-linearity can be 

guessed with an associative probability. 

• The performance of the method has been found satisfactory in the presence of 

measurement noise. It has been observed that, in the presence of noise, the 

parameter estimation is more accurate when fewer measurements are used. 

• The effect of errors in the FE model on parameter estimation is studied. It has 

been seen that errors in the mass and stiffness matrices of the FE model has a 

significant effect on the accuracy of parameter estimation. 
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• A technique, which uses model reduction, is proposed to identify the non-linear 

parameters when the response at non-linear DOFs is not measured. The 

technique works accurately on the system when non-linear DOFs are retained 

during the model reduction. 

  



92 
 

 
 
 
Chapter 5  

Non-linear identification using 
modal models and response 
models 
This chapter presents two methods for non-linear parameter identification, with the 

distinctive feature that the methods do not use the FE model of the underlying linear 

system. The first method, called improved hybrid modal technique (I-HMT), uses a 

hybrid spatial-modal formulation. The non-linearities are described in spatial 

coordinates whereas the underlying linear system is represented using a modal 

model. The non-linear modal vector (NMV), containing the information about the 

non-linear restoring force, is extracted for the modes in the measured frequency 

range. Later, the NMV is used to extract non-linear parameters via a genetic 

algorithm optimization. The second method, called the FRF-based identification 

method, uses the response model of the underlying linear system to extract the non-

linear restoring force vector. The response model is constructed using FRF 

measurements captured at low excitation amplitude. Once the non-linear restoring 

force is extracted, the non-linear parameters are identified using the genetic 

algorithm optimization of Chapter 4. The methods are illustrated with simulated 

response data for a cantilever plate with different localized non-linearities. 

5.1 Introduction 

The method presented in Chapter 4 for non-linear system identification requires an 

accurate FE model of the underlying linear system. The high sensitivity of the 

method to errors in the underlying FE model is seen as the major limitation when 

applied to practical structures. Moreover, during the product design stage, a full FE 

model of the product is seldom available. For complex structures like a gas turbine 

assembly, obtaining an accurate FE model even at later stages of design is a tough 
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task. Thus, there is a need for a method which can identify non-linear parameters 

without an FE model. 

 For a linear system, vibration measurement data can be arranged into an 

FRF matrix to constitute the response model of the system. This model can be used 

to predict the response of the system at different excitation levels. An even more 

compact description of the system can be found out via modal analysis [6, 7]. In 

modal analysis, the system is described using its dynamic properties viz. the natural 

frequencies, mode shapes and damping ratios. The mathematical model so 

obtained is called the modal model of the system. 

 For many non-linear systems (except friction and backlash), the system’s 

behaviour is close to linear at a very low excitation force. If modal testing is carried 

out at such a low excitation force, the FRF matrix thus obtained would represent the 

FRF matrix of the underlying linear system. Similarly, the modal model obtained 

from the FRF matrix would represent the modal model of the underlying linear 

system. If these alternative models are used along with non-linear measurements 

for identifying the non-linear parameters, the approach presents two distinct 

advantages: (i) the need for an FE model is completely eliminated; (ii) the modal 

model and the response model are much more compact than the equivalent FE 

model, thus reducing the computational burden. 

 The following sections describe two identification methods based on the use 

of modal and response models of the underlying linear system respectively. 

5.2 Improved hybrid modal technique (I-HMT) 

Elizalde [26] proposed a method called hybrid modal technique (HMT), which 

describes the underlying linear system in modal domain, while keeping the non-

linearities in spatial domain. The so-called non-linear modal vector is extracted as a 

result of the method. This vector contains the information about the non-linear 

parameters in an implicit form. In I-HMT, developed here, the non-linear modal 

vector is decoupled using genetic algorithm optimization to extract the non-linear 

parameters explicitly.  

5.2.1 Theoretical formulation 
This section presents the theoretical formulation of the improved hybrid modal 

technique (I-HMT). The detailed description of the hybrid modal technique (HMT), 

on which the method is based, is presented by Elizalde in [26]. The formulation 

presented in this chapter uses the same basic idea as the HMT, but the derivation 
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of the equations is novel and more concise. The extension of the HMT to decouple 

the non-linear modal vector using a GA optimization is the original contribution of 

the author. 

 For a harmonically-excited MDOF non-linear system with proportional 

structural damping, the system of equations can be written as: 

[ ]{ } [ ] [ ]( ){ } { } { } )sin(),( tFyygyDiKyM ω=+++ &&&   (5.1) 

where, [ ]M , [ ]K  and [ ]D  represent the mass, stiffness and damping matrices, { }F  

is the excitation force vector, { }y  is the displacement vector, and { }g is the non-

linear restoring force vector. The proportional damping matrix can be written as: 

[ ] [ ]KD η=      (5.2) 

The above equation, though not used in the subsequent derivation, is used while 

generating simulated data. With the single harmonic assumption, the equation can 

be transformed into the frequency domain: 

[ ] [ ] [ ]( ){ } { } { }FYGYDiKM =+++− ),(2 ωω    (5.3) 

Let [ ]Φ  be the eigenvector matrix and [ ]2λ  be a diagonal matrix containing the 

complex eigenvalues of the underlying linear system. Pre-multiplying (5.3) by [ ]TΦ  

on both sides and inserting [ ][ ] 1−ΦΦ  on the left hand side we get 

[ ] [ ] [ ] [ ]( ) [ ][ ]( ){ } [ ] { } { }( )GFYDiKM TT −Φ=ΦΦ++−Φ −12ω   (5.4) 

Recalling the orthogonal properties of a system [6] we can write,  

[ ] [ ][ ] [ ]IMT =ΦΦ     (5.5a) 

[ ] [ ] [ ]( )[ ] [ ]2λ=Φ+Φ DiKT     (5.5b) 

Substituting (5.5) into (5.4) we get: 

[ ][ ] { } [ ] { } { }( )GFY T −Φ=Φ− −122 ωλ     (5.6) 

Re-arranging the terms in (5.6), the response vector can be written by as: 

{ } [ ][ ] [ ] { } { }( )GFY T −Φ−Φ=
−122 ωλ     (5.7) 
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Alternatively, the non-linear modal vector can be extracted from (5.6) 

{ } [ ] { } [ ] { } [ ][ ] { }YFG TT 122 −Φ−−Φ=Φ= ωλχ   (5.8) 

Equation (5.8) presents the non-linear modal vector in terms of the modal model of 

the underlying linear system, and the non-linear response amplitude vector. 

Equation (5.8) can be used only when the full modal model, i.e. the responses at all 

DOFs and all modes, is available. For making use of (5.8) in practical cases, there 

are two major difficulties: (i) non-linear measurements at all DOFs are seldom 

available; (ii) the modal model obtained via an experimental route is not complete. It 

only contains the identified modes within the measured frequency range and the 

measured DOFs. 

 If the subscripts m and u represent the measured and un-measured DOFs, 

and subscripts Mr and Ur represent the identified and un-identified modes 

respectively, then (5.7) can be partitioned as: 
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                  (5.9) 

Thus, the response at the measured DOFs can be written as: 

{ } [ ][ ] [ ]{ } [ ][ ] [ ]{ }
444444 3444444 21444444 3444444 21

Bterm

mmmUUmU

Aterm

mmmMMmMm GFGFY
rrrrrr

−Φ−Φ+−Φ−Φ=
−− 122122 ωλωλ  

                (5.10) 

The second term in (5.10), term B, represents the contribution of the un-identified 

modes in the measured response. This is called the non-linear residual, represented 

by{ }m
esR~ . Equation (5.10) can be expressed in a compact form 

{ } [ ][ ] [ ]{ } { }m
es

mmmMMmMm RGFY
rrr

~122 +−Φ−Φ=
−ωλ   (5.11) 

The non-linear modal vector for a system with m measured DOFs and Mr identified 

modes can be written as: 

{ } [ ]{ } [ ] [ ] { } { }( )m
es

mmMMmmMM RYF
rrrr

~122 −Φ−−Φ= −ωλχ        (5.12) 

Equation (5.12) involves an inversion of a possible rectangular matrix; 
rmMΦ . A 

unique solution to (5.12) exists only when the mathematical condition, m ≥ Mr, is 

met. This condition is easy to meet in practical cases where the number of 
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measured DOFs is generally greater than the number of identified modes. The non-

linear modal vector can be extracted using (5.12) if the non-linearity is confined to 

the measured zone, and if the non-linear residual can be approximated. It is 

proposed in [26] that the non-linear residual can be approximated as the linear 

residual if the number of identified modes is sufficiently high. The different methods 

to express linear residual are given in [6, 7]. The study of the effects of such an 

approximation on the accuracy of the method is presented later in the chapter. 

5.2.2 Quantification of the level of non-linearity 

The effects of non-linearity are not the same in all modes of a structure. Some 

modes can be severely affected by non-linearity while the others can behave almost 

linearly. For a particular mode, the severity depends on the location of the non-

linearity, the mode shape vector, and the resonance amplitude for the mode. 

Elizalde [26] proposed a term called ‘non-linear modal grade’ to quantify the level of 

non-linearity at a particular mode. The definition he proposed is based on the 

maximum value of non-linear modal vector in the vicinity of the resonance of the 

concerned mode. For example, the non-linear modal grade for the rth mode is 

defined as{ } { }FG TT ΦΦ max , where { }maxGTΦ  is the maximum value of { }GTΦ  in 

the vicinity of the rth resonance. 

 It has been observed in Chapter 3 that the shape of the non-linear force 

vector G in the vicinity of a resonance is different for different non-linearities. For 

some non-linearities like friction, the non-linear force possesses the maximum 

magnitude for a wider frequency range. In another case, for clearance non-linearity, 

the non-linear force attains its highest magnitude at resonance and drops steeply 

thereafter. Thus, the use of the maximum non-linear force value only, to detect the 

level of non-linearity can be misleading. Instead, it is more appropriate to use the 

average value of non-linear modal force in the vicinity of the resonance while 

calculating the non-linear modal grade for the mode of interest. 

 An alternative definition of non-linear modal grade, proposed here, 

acknowledges the different shapes of non-linear force by calculating its average 

value over a frequency range. The frequency range is decided using the half power 

method as depicted in Figure 5.1. 
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Figure 5.1 Half power method to calculate the average NMV 

For the rth mode, if there are n frequency lines between the frequencies ω1 

and ω2, covering the half power region, the non-linear modal grade (NMG) for this 

mode is expressed as: 

{ } { }
n

FG
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TT
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   (5.13) 

Theoretically, any row of { }GTΦ  can be used to evaluate the NMG. In the 

current definition, the first row, corresponding to the first mode is used to reduce the 

effects of the non-linear residual. The value of { }FTΦ  is independent of frequency, 

and it can be considered as the linear threshold as it gives the modal force for the 

underlying linear system. The modes for which the value of NMG is comparatively 

lower can be treated as linear modes and can be omitted from further analysis. The 

modes with higher values of NMG should be considered in further analysis for the 

extraction of non-linear parameters. 

5.2.3 Decoupling the non-linear modal vector 

The non-linear modal vector (NMV), presented in (5.12), holds the information about 

the non-linear restoring force at the measured DOFs in a coupled form. There are 

two approaches to extract the non-linear parameters from the NMV. In the first 

approach, the non-linear force vector { }mG can be recovered from the NMV, and 

then the method presented in Chapter 4 can be used to extract the non-linear 

parameters. This needs an inversion of a possible rectangular matrix, [ ]TmMr
Φ , 

putting the mathematical condition of m ≤ Mr for the solution. This condition conflicts 

with the condition required for solving (5.12). The two conditions can be met 
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simultaneously only if the number of measurements is equal to the number of 

identified modes.  

The current work follows the second approach, where the non-linear 

parameters are directly extracted from the NMV using an optimization technique. 

The extracted non-linear modal vector can be written in an expanded form as 

follows: 
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  (5.14) 

If the non-linearity is not located a-priori, which means it can be anywhere in the 

measured zone, there are m possible locations for it. At each location, if there are np 

non-linear parameters corresponding to different non-linearities, then the NMV can 

be written as a function of (m×np) non-linear parameters. 

{ } ( )
444444 8444444 76

K

pnm

mm
ddcz NKNKyKf

×

= μμβχ ,,,,, 11111    (5.15) 

Since the non-linear parameters are independent of frequency, Mr independent 

equations are available at each frequency value. It has been observed that some 

modes in the analysis behave linearly, and the value of the NMV around such 

linearly-behaving modes is comparatively lower than that for the non-linear modes. 

The linearly behaving modes can be identified using the NLMG value and can be 

omitted from the analysis. Thus, ns points in the vicinity of the resonance of the non-

linear modes are chosen to form the system of equations. To obtain a unique 

solution to the system of equations, the minimum number of selected points must 

meet the following condition 

ps nmn ×≥         (5.16) 

The error residual at any frequency value, ωi, can be written using the describing 

functions for the different non-linearities previously explained in Chapter 3  

{ } { }ifriclecub
i gggR χχ −= ),,(     (5.17) 

where, ),,( friclecub gggχ  represents the non-linear modal vector formed using 

describing functions, and { }iχ  represents the non-linear modal vector extracted 
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using (5.12). For ns points, the total error residual to be minimized can be expressed 

as: 
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=         (5.18) 

Since it is sometimes more suitable to solve a maximization problem using the 

genetic algorithm, the above quantity can be converted to an expression to be 

maximized as: 

RC
CRm +

=      (5.19) 

where C is a real positive number (C = 100).  

The residual in (5.19) can be maximized using a genetic algorithm to find out 

the non-linear parameters at all measured locations. If the non-linearity location is 

identified prior to this stage, then the optimization problem can be formed using only 

the identified non-linear DOFs. This reduces the size of the problem by reducing the 

number of parameters to be optimized to np from (m× np). Figure 5.2 shows the 

flowchart for the proposed method. 

5.2.4 Comments on the non-linear residual 

Even for linear systems, practically it is not possible to obtain a complete modal 

model through an experimental route. We generally restrict the measured frequency 

range, depending on the application and some modes falling beyond this range 

remain un-identified. The contribution of these un-identified modes is represented 

by the residual term (linear residual). There are established approaches to take into 

account the effect of residuals, the details of which are given in [6]. An equivalent 

term for a non-linear system, which represents the contribution of the un-identified 

modes in the non-linear response, is called the non-linear residual. 

This section studies the nature of the non-linear residual and how it differs 

from the linear residual. For an N-DOF non-linear system with Mr identified modes, 

using (5.10), the expression for non-linear residual at the ith DOF can be written as: 
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It can be seen that the value of the denominator of (5.20) is very high for the modes 

for which ωr >> ω. The variation of numerator comes only from the non-linear 

restoring force vector G, which varies with frequency, while the excitation forces are 

assumed to be constant. 

 

Figure 5.2 Flow chart for the improved hybrid modal method 

The expression for linear residual can be obtained by putting G = 0 in (5.20). 

It has been observed in the earlier chapters that the non-linear force vector G, has 

an insignificant magnitude in the region away from the system’s resonances. Thus, 

in these regions, G ≈ 0, and the non-linear residual can be safely replaced by its 

linear counterpart without a significant loss of accuracy. In the region in the vicinity 

of any system resonance, the magnitude of the non-linear restoring force is 
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significant, and hence the non-linear residual is expected to deviate from its linear 

counterpart. Figure 5.3 shows, for a typical case, the comparison of linear and non-

linear residuals. For the case considered, the non-linear resonance frequency of the 

first mode of the system is at 30.7 rad/sec. 

 
Figure 5.3 Comparison of linear and non-linear residual for a typical case 

It is observed from Figure 5.3 that in the vicinity of the first resonance, there is a 

significant difference between the linear and non-linear residuals. The magnitude of 

the residual is higher when the number of modes identified in the modal analysis, 

Mr, is low. Figure 5.4 shows the variation of the non-linear residual with the number 

of identified modes. 

 
Figure 5.4 Non-linear residuals with different number of modes in the range 
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With an assumption that the non-linear residual behaves in a similar way to the 

linear residual, the value of the non-linear residual is expected to decrease with the 

number of modes identified. This assumption is found valid in the region away from 

the resonance. An interesting anomaly is observed in the vicinity of the resonance. 

The magnitude of non-linear residual for the case, Mr = 3, is found higher than the 

magnitude for the case, Mr = 2. Though the observation may be specific to this 

case, and cannot be generalized, care should be taken while neglecting the effect of 

non-linear residuals in the identification process. 

It is also observed that if a sufficient number of modes is considered in the 

analysis, (Mr = 10), the magnitude of the non-linear residual is almost constant over 

the frequency range, and the magnitude is same as for the linear residual. Thus if a 

sufficient number of modes are identified during the modal analysis, the non-linear 

residual can be safely replaced by the linear residual throughout the frequency 

range. 

5.2.5 Numerical validation of I-HMT method 

The method presented above is illustrated using simulated data for ‘Validation 

Structure-2’, a cantilever plate. The details of the plate are documented in Appendix 

B. An element with clearance non-linearity parameters, yc = 5×10-5 m and kz = 200 

N/m was used for the validation analysis. The simulated non-linear response was 

obtained using the in-house code FORSE [4]. Figure 5.5 shows a comparison of the 

linear and non-linear response at the non-linear DOF. 

 

Figure 5.5 Comparison of linear and non-linear response for clearance non-linearity 



103 
 

It is seen from Figure 5.5 that the first two modes are affected most by the non-

linearity and the rest of the modes behave almost linearly. 

Pre-processing stage 
The underlying linear modal model was obtained by performing modal analysis on 

the structure to extract the modal properties for the first nine modes (Mr = 9). The 

displacement responses were captured at 16 locations uniformly distributed over the 

plate (m = 16). As it is difficult to measure the rotational DOFs in practical cases, all 

16 responses are the translational displacements along Z axis. The details of the 

available modal model and the non-linear response measurements are given below. 

The numbers below indicate the node number followed by a letter indicating the 

DOF at the node, X for the rotation about X axis, Y for the rotation about Y axis and 

Z for the translation along Z axis. The information is also depicted in Figure 5.6 for a 

better illustration of the process. 

 

Measured DOFs (Z translational): {1, 3, 5, 7, 11, 13, 15, 17, 21, 23, 25, 27, 29, 32, 

37, 42} 
Un-measured DOFs: {1X-42X; 1Y-42Y; 2Z, 4Z, 6Z, 8Z-10Z, 12Z, 14Z, 16Z, 18Z-

20Z, 22Z, 24Z, 26Z, 28Z, 30Z, 31Z, 33Z-36Z, 38Z-41Z} 

Excitation force applied at: {37Z}  Excitation force amplitude = 0.01N 

Non-linear element incorporated at: {42Z} 

Identified modes from linear modal analysis: {1, 2, 3..., 9} 

 
Figure 5.6 Details of the measured locations 
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Extraction of the non-linear modal vector (NMV) 

The non-linear modal vector was extracted using (5.12). Out of the first nine modes 

which were identified in the modal analysis, only the first two modes behave non-

linearly. Owing to this, the non-linear residual value around the non-linear 

resonances was assumed to be small. Thus the non-linear residual was replaced by 

the linear residual. Figure 5.7 shows the plot of the amplitude of non-linear modal 

vector for the first mode. The top part of the figure shows the non-linear response at 

the non-linear DOF, and the bottom part of the figure shows the amplitude of non-

liner modal vector for the first mode plotted in the same frequency range as the non-

linear response. The dashed line in the bottom plot shows the linear threshold for 

the first mode. It can be observed from the plot that the NMV crosses the linear 

threshold for the first two resonances. Figure 5.8 shows a zoomed-in view of the 

NMV in the vicinity of the first resonance. 

 

Figure 5.7 Extracted non-linear modal vector for the first mode 

Once the NMVs were extracted for the identified modes, the non-linear modal grade 

(NMG) was calculated for each mode using (5.13) to decide on the modes to be 

retained in further analysis. Figure 5.9 shows a bar chart for NMGs for the first five 

modes. It is seen that the NMGs for the first two modes are greater than that for the 

other modes. Thus, the first two modes are classified as the non-linear modes, and 

the points in the vicinity of the first two resonances are selected while formulating 

the optimization problem. 
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Figure 5.8 Zoomed-in view of NMV near the first resonance 

 
Figure 5.9 Non-linear modal grades for the modes in the measurement range 

Estimation of the non-linear parameters  

The optimization problem was solved using a GA to extract the non-linear 

parameters. The values of the control parameters, like the population size, the 

number of generations, and the probability of cross-over operator were kept same 

as those in Table 4.1. The range for the non-linear parameters used in the first 

civilization is as follows: 

Gap distance, yc,: (1×10-7-1×10-4) m. 

Clearance stiffness, Kz: (0-400) N/m  

Initially (Case A), the optimization problem was formulated with all measured 

DOFs, simulating the case where the non-linear location is not identified a-priori. 

The total number of non-linear parameters to be identified is 80. For this case, the 
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algorithm did not converge, and the location of non-linearity and the correct values 

of the non-linear parameters could not be identified. 

In the second case (Case B), probability-based binary multipliers 7  were 

used. More weight was given to the correct location of the non-linearity (p = 0.9) and 

lesser weight to the other locations (p = 0.5). For Case B, the solution converged to 

reasonably accurate values of non-linear parameters at the non-linear DOF, but a 

spurious non-linearity at DOF#1Z was also identified. Since this node is very close 

to the fixed edge of the plate, the displacement amplitude at this DOF is expected to 

be low. Thus, the non-linear element wrongly put at this location would not 

contribute much to the non-linear response prediction. 

In the third case (Case C), the location of the non-linearity was assumed to 

be known, and the optimization problem was formulated with only the non-linear 

DOF, reducing the number parameters to be optimized to np = 5. The solution 

converged giving accurate values for the non-linear parameters. 

The effect of the deviation of non-linear residual from its linear counterpart 

on the estimated parameters is examined by reducing the number of identified 

modes in the analysis. It is observed that the estimated parameters are fairly 

accurate even with only the first mode included in the analysis. Table 5.1 

summarizes the results of the numerical study. 

Table 5.1 Results of parameter estimation for different cases using I-HMT method 

Case Mr 
Location of 

non-linearity 
Estimated parameters 

{Kz (N/m), yc (m)} 
(Fitness)max

A 9 Algorithm did not converge 

B 9 
1Z 

42Z 

{2.34×10-6, 50} 

  {7.18×10-5, 200} 
7.91 

C 

9 

42Z 

{5.21×10-5, 200} 35.31 

5 {4.91×10-5, 200} 35.30 

3 {4.82×10-5, 200} 35.30 

1 {5.61×10-5, 200} 34.48 

 
 
 

                                                            
7 Similar to the binary multipliers described in Chapter 4 
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5.3 FRF-based method 

The I-HMT method presented in Section 5.2 uses the modal model of the underlying 

linear system, which can be obtained by performing modal analysis on the raw FRF 

measurements. There are two limitations of the I-HMT method: 

(i) The non-linearity must be correctly located and the non-linear DOF must 

be measured for efficient working of the optimization algorithm. 

(ii) The modal analysis of measured data can introduce additional errors if it 

is not performed carefully. 

 The method proposed in this section uses the raw FRF measurements 

directly to extract the non-linear restoring force. On the one hand, if the non-linear 

DOFs are located and measured, the method extracts the non-linear force at these 

non-linear DOFs. On the other hand, if there is a localized non-linearity at a single 

point, which is located but not measured, the method uses a technique to 

approximate the non-linear restoring force at the non-linear DOF. 

As the FRF matrix for a linear system is symmetric, it is not necessary to 

obtain the complete FRF matrix through experiments, thus reducing the costs 

related to the experimentation. The method completely relies on measured data, 

making it useful when the accurate FE model and sophisticated modal analysis 

tools are not available. 

5.3.1 Theoretical formulation 

In the frequency domain, the equations of motion for an MDOF non-linear system 

under harmonic excitation are written as: 

[ ] [ ] [ ]( ){ } { } { }FYGYDiKM =+++− ),(2 ωω    (5.21) 

The quantity inside the curved brackets on the left-hand side of (5.21) is defined as 

the dynamic stiffness matrix of the system, denoted by[ ]Z . The FRF matrix for a 

system, [ ]α , is defined as the inverse of the dynamic stiffness matrix. Pre-multiplying 

(5.21) by the FRF matrix we get 

{ } [ ]{ } [ ]{ }FGY αα =+      (5.22) 

If subscript m denotes the measured DOFs and subscript u denotes the un-

measured DOFs of the system, (5.22) can be partitioned as: 
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If the displacements at the measured DOFs are considered, the system of 

equations can be written as: 

{ } [ ]{ } [ ]{ } [ ]{ } [ ]{ }umummmumummmm FFGGY αααα +=++   (5.24) 

If it is assumed that all excitation DOFs are measured, a condition which can be 

easily achieved during controlled experimentation, the vector {Fu} becomes zero. 

Substituting {Fu} = 0 in (5.24), and multiplying by [ ] 1−
mmα ,  

{ } { } [ ] { }
{ }

[ ] [ ]{ }( )umumm

G

mmmmm GYFG ααα 11

0

−− −−=
444 3444 21        (5.25) 

Rearranging (5.25) we get 

{ } { } [ ] [ ]{ }( )umummm GGG αα 10 −+=          (5.26) 

where, { }0G  denotes the term in (5.25) which can be extracted using available 

measurements. In a special case where all non-linear DOFs are measured, 

{ } 0=uG , and { }0G  gives the non-linear restoring force vector at the measured 

DOFs: 

{ } { } { } [ ] { }mmmmm YFGG 10 −−== α        (5.27) 

Equation (5.27) gives the expression for the non-linear restoring force at the 

measured DOFs when all excitation DOFs and all non-linear DOFs are measured. 

This is an exact equation with no approximations or truncations if it is used within 

the above constraints. 

 In many practical cases, the location of non-linearity is physically 

inaccessible, and a measurement cannot be made at that location. However, if there 

is a location close to the non-linearity location where the measurement can be 

taken, the non-linear restoring force at the non-linear DOF can be extracted 

indirectly. Let subscript c denotes the location close to the non-linear DOF at 

which the measurement is taken, subscript e denotes the excitation DOF, and 

subscript nl denotes the non-linear DOF, which is not measured. If all measured 
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DOF are linear,{ } 0=mG . If the FRF matrix is constructed using the excitation DOF 

and the DOF close to the non-linearity location only, (5.26) can be expanded as: 
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=    (5.28) 

For a localized non-linearity at the nl th DOF, only the corresponding value in the 

vector {Gu} would be non-zero. Thus, rewriting (5.28) 
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The two entries in vector G0 can be explicitly written as: 
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If the measured location c is sufficiently close to the non-linear location, then for 

lower modes where the structural deformation is not localized, location c can be 

replaced by the non-linear location nl in the FRF matrix. Thus, replacing enlα by ecα

, and cnlα by ccα  in (5.30a) and (5.30b) and adding the two equations we get: 

( )0
2

0
1 GGGnl +≈     (5.31) 

Thus, an approximate expression for the non-linear force at the non-linear DOF can 

be obtained using the measurement closest to the non-linearity location. This 

expression is only valid in the case of single point excitation and a single localized 

non-linearity in the system.  

5.3.2 Conditioning of the FRF matrix 

The condition number of a matrix is mathematically expressed as the ratio of its 

largest singular value to its smallest non-zero singular value [7]. A high value of the 

condition number represents an ill-conditioned matrix. The inversion of an ill-

conditioned matrix can be inaccurate, thus it should be avoided.  

The expression for the non-linear force vector in (5.25) involves an inversion 

of the part of the FRF matrix containing the measured DOFs. The value of condition 

number of the FRF matrix is a function of different parameters like the excitation 

frequency, damping in the system, the number of measurements, and locations of 

measurements. Figure 5.10 shows the variation of the condition number of an FRF 

matrix in a typical case. It is observed that the condition number varies with the 
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excitation frequency, and attains a maximum value near the resonance frequency of 

the system. The maximum value of the condition number is higher for lightly 

damped systems. The maximum value also increases with the size of the FRF 

matrix. 

 
Figure 5.10 Variation of the condition number of the FRF matrix 

The condition number of the FRF matrix is also dependent on the selection of the 

measured DOFs. For a fixed number of measurements, it is observed that if only the 

translational measurements are distributed uniformly over the structure, the 

condition number is the lowest. On the other side if the translational and rotational 

DOFs are combined in the FRF matrix, the condition number is highest. Figure 5.11 

shows the effect of the location of the measurements on the condition number of the 

FRF matrix. 

 
Figure 5.11 Effect of measurement locations on the condition number 
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Thus, for an accurate extraction of the non-linear force vector using (5.25), it is 

advisable to keep the number of measurements to the minimum required, distribute 

the measurements uniformly over the structure, and avoid combining the 

measurements in different directions which are of different orders of magnitude. In 

cases where it is required to use measurements which differ by orders of 

magnitude, the inverse of the matrix can be calculated by special techniques like 

SVD as explained in [7]. 

5.3.3 Numerical validation of the FRF based method 

The method presented in Section 5.3.1 is illustrated using simulated data for 

Validation Structure-2, a cantilever plate. A case with combined cubic stiffness and 

clearance non-linearity was used for the validation. The non-linear parameters used 

in the simulation are as follows: 

- For cubic stiffness non-linearity, the non-linear coefficient, β = 1×108 N-m-3. 

- For clearance non-linearity, the gap distance, yc = 5×10-5 m, and clearance 

stiffness, Kz = 200 N/m.  

The non-linear response of the structure was obtained using the in-house code 

FORSE [4]. Figure 5.12 compares the displacement responses for the non-linear 

and the underlying linear system for the first two modes. 

 
Figure 5.12 Linear and non-linear response at the excitation DOF 

Pre-processing stage 

To ensure a low condition number for the FRF matrix, the measurements were 

distributed uniformly over the plate. Only the translational DOFs along the Z axis 

were included. Three cases were considered for the validation of the method. In the 

first case, Case A, a total of 10 measurements, including the measurement at the 
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non-linear DOF were used. In the second case, Case B, only the measurements at 

the excitation DOF and the non-linear DOF were used. In the third case, Case C, to 

verify the technique in the absence of measurement at the non-linear DOF, the 

measurements at the excitation DOF and at a DOF close to the non-linearity 

location were used. The details for all three cases are given below, and the 

measurement locations are also depicted Figure 5.13. 

 

Excitation force location: {37Z}  Excitation force amplitude = 0.01N 

Non-linear element location: {42Z} 

Measured DOFs 
Case A: {1Z, 6Z, 10Z, 16Z, 20Z, 25Z, 33Z, 37Z, 41Z, 42Z} 

Case B: {37Z, 42Z} 

Case C: {37Z, 41Z} 

 
Figure 5.13 Details of the measurement locations for three cases 

For Cases A and B, where the measurement at the non-linear DOF was available, 

the non-linear restoring force at the non-linear DOF was extracted using (5.27). 

Figure 5.14 shows the non-linear force for both cases plotted on a logarithmic scale. 

It is seen that the extracted non-linear forces are very similar for both cases. 

 
Figure 5.14 Non-linear force for Cases A and B 



113 
 

For Case C, since the non-linear DOF was not measured, (5.30) was used to 

extract the non-linear force components, G0
1 and G0

2, at the measured DOFs. 

Finally the two components were summed up to find the approximate value of non-

linear force at the non-linear DOF. In Figure 5.15, the plot on the left shows the non-

linear forces at the measured DOFs, and the plot on the right compares the 

summed non-linear force with the non-linear force for Case A. It is seen that 

approximated non-linear force for Case C is in close agreement with the actual non-

linear force. 

 
Figure 5.15 Extraction of the non-linear force for Case C 

For Cases A and B, the extracted non-linear force was expressed as a 

function of the displacement at the non-linear DOF. For Case C, the approximated 

non-linear force was expressed as a function of the displacement at the DOF close 

to the non-linear DOF. The non-linear parameters were identified using the genetic 

algorithm optimization presented in Chapter 4. For the initial civilization, the range 

for β was kept as (0-1×1010) Nm-3, for yc, was kept as (0-5×10-4) m and for Kz, was 

kept as (0-800) N/m. Later, the range was narrowed down to increase the accuracy 

of parameter estimation. The final values of the estimated non-linear parameters are 

summarised in Table 5.2. 

Table 5.2 Summary of the parameter identification results using FRF-based method  

Case 
Max. Cond. 

number 
Identified parameters

{β (Nm-3), yc (m), Kz (N/m)} 
Error (%) 

{εβ, εyc, εkz} 
Fitness 

A 2.78×105 {1.002×108, 5.36×10-5, 200} {0.2, 7.2, 0} 99.36 

B 550.7 {1.003×108, 5.23×10-5, 200} {0.3, 4.6, 0} 98.73 

C 841.6 {7.212×107, 9.62×10-5, 225} {27.9, 92.4, 12.5} 95.31 
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5.4 Concluding remarks 

Two non-linear identification methods which do not require an FE model of the 

underlying linear system have been presented. The methods use the modal model 

and the response model of the underlying linear system respectively. The methods 

have been tested on simulated data for a cantilever plate with localized non-

linearities. The observations and comments on both methods are listed below. 

5.4.1 Comments on the I-HMT method 

The method uses the modal model of the underlying linear system to extract the 

non-linear modal vector (NMV) which contains the non-linear restoring force in a 

coupled form. The extracted NMV is de-coupled using the GA optimization to 

identify the non-linear parameters. The method has been successfully implemented 

on simulated data for a cantilever plate with localized clearance non-linearity. Some 

remarks on the usefulness of the method are listed below: 

• The method provides a useful alternative to the spatial method non-linear 

identification method in the absence of an underlying FE model of the system. 

• If a sufficient number of modes are identified through the linear modal 

analysis, the non-linear residual, which is difficult to obtain otherwise, can be 

replaced by the linear residual. 

• The newly-introduced term “non-linear modal grade” acknowledges the 

difference in the shapes of the non-linear restoring force for different non-

linearities. The proposed definition is more general than the earlier definition but it 

needs to be validated on different engineering structures. 

• Though theoretically it is possible to obtain a unique solution to the 

optimization problem when the non-linearity is not located a priori, it has been 

observed that the solution takes a very long time to converge, and may not even 

converge in some cases. If the non-linearity is located, or the location is guessed 

with an associative probability, the algorithm has been found to be reasonably 

stable and accurate. 

5.4.2 Comments on the FRF-based method 

The method uses the FRF matrix (response model) of the underlying linear structure 

to extract the non-linear restoring force at the measured DOFs. The non-linear 

restoring force at the non-linear DOF is then used to extract the non-linear 

parameters via genetic algorithm optimization. 
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• It has been observed that the measurements at the non-linear DOFs and the 

excitation DOF are sufficient to accurately identify the non-linear parameters. 

This significantly reduces the size of the problem for practical cases.  

• If the response at the non-linear DOF is not available, a technique has been 

presented to approximate the non-linear restoring force at the non-linear DOF 

using the measurement at a location close to the non-linearity location. This 

technique has reduced accuracy in comparison to the original technique. 

The method has been successfully validated on simulated data for a cantilever plate 

with combined cubic stiffness and clearance non-linearity. 
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Chapter 6 

Comparison of non-linear 
parameter identification methods 
 

This chapter presents a comparative study of three methods for non-linear system 

identification, presented in Chapters 4 and 5. The study is carried out on the so-

called ‘1203 structure’, which can be considered as a representative engineering 

structure. Simulated non-linear response data and numerical models of the 

underlying linear structure are used as input to the parameter identification. Two 

cases of increasing complexity are considered: (i) an idealized cubic stiffness non-

linearity and (ii) a realistic clearance non-linearity. The methods are compared on 

the basis of different evaluation criteria like: accuracy of parameter estimation, 

sensitivity to measurement noise, sensitivity to errors in the input model, ability to 

locate the non-linearity, performance with partial measurement set, and 

computational efficiency. 

6.1 Introduction 

The methods presented in Chapters 4 and 5, for non-linear system identification, 

can potentially be used to tackle large multi-degrees of freedom (MDOFs) systems 

of practical interest. Each method requires different input, and it has its own 

advantages and limitations. Table 6.1 gives the summary of input requirements for 

the three methods. The methods have been illustrated on simple structures before, 

but it is necessary to compare their performance on common grounds, using data 

obtained for a representative engineering structure. 
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Table 6.1 Details of the three methods compared 

Method name 
Method 
number

Input requirement 

Spatial method 1 
Updated FE model of the 

underlying linear system 

Improved hybrid modal 

technique (I-HMT) 
2 

Modal model of the 

underlying linear system 

FRF-based method 3 
Response model of the 

underlying linear system 

 

It can be argued that actual experimental data obtained for a practical non-linear 

structure should be used for comparing the identification methods. However, in case 

of non-linear structures, the use of experimental data poses many additional 

difficulties, some of which are as follows: 

(i) Obtaining consistent and repeatable vibration measurements on a non-linear 

structure is a challenging task. 

(ii) In practical non-linear structures, the non-linearities may not behave as per 

their idealized mathematical formulation. 

(iii) The actual values of the non-linear parameters are unknown in practical 

cases, making the comparison of different methods difficult because of a lack 

of reference data. 

The methods presented in the earlier chapters work within certain assumptions like 

the idealized mathematical formulation for different non-linear elements, the use of 

first-order describing functions to represent the non-linear force etc. The objective of 

the work presented in this chapter is to compare the three identification methods 

based on their accuracy and robustness within these assumptions. Thus, it is more 

appropriate to use simulated data for the comparison. 

 The so-called ‘1203 structure’ is used for the comparison. This structure, 

based on the outer cover geometry of an electrical component, was used as the 

benchmark structure for validating linear modal analysis algorithms in the MODENT 

software in ICATS [117]. The same structure, with some alterations to the 

dimensions, is used. The detailed engineering drawings of the 1203 structure, as 

used in this study, are given in Appendix C.  

The underlying linear structure was modelled in ANSYS using shell elements 

(SHELL63) to mesh the surfaces and 3D beam elements (BEAM4) to mesh the two 

stiffening beams. All elements used possess 6 DOFs per node. The structure was 
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assumed to be bolted to a fairly rigid structure, which could be treated as ground, at 

the locations of two holes. The excitation force of amplitude 0.1N was applied at one 

corner of the structure acting in positive X direction. Figure 6.1 shows the computer 

model, and the meshed model with boundary conditions for the structure. 

 
Figure 6.1 CAD and FE models ‘1203 structure’ 

6.2 Test cases for the comparison 

Two test cases of increasing complexity are considered in this chapter for the 

comparison of the methods. The first case, Case A, uses a grounded cubic stiffness 

non-linearity at one end of the lower beam. This is an idealized case used to 

evaluate the performance of the methods with a complex structure. The second 

case, Case B, implements a realistic clearance non-linearity. A rubber block, 4×4 

cm in cross-section and 5cm thick, is placed adjacent to the structure with a small 

clearance between the block and the structure. During the vibration of the structure, 

the structure will hit the rubber block, thus producing clearance non-linearity. In the 

simulation, this condition was approximated by using four clearance elements 

distributed over the patch spanning the rubber block. Figure 6.2 shows, in front 

view, the location of non-linearities in both cases. The details of non-linearity 

locations and the parameters used to simulate the non-linearities are given in Table 

6.2. 
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Figure 6.2 Depiction of two test cases used for comparison study 

Table 6.2 Summary of non-linear parameters used for the two cases 

Case Non-linearity location Non-linear parameters 

A 473X-grounded β = 5×1010 Nm-3 

B 

255X-grounded 

Kz = 20 KN/m 

yc = 0.4mm 

260X-grounded 

264X-grounded 

273X-grounded 

6.3 Pre-processing of the input data 

Before presenting the results for the comparison, the input requirements for the 

methods are discussed. All three methods essentially use two inputs: (i) non-linear 

displacement measurements at various locations on the structure, (ii) a numerical 

model of the underlying linear structure. 

6.3.1 Non-linear displacement measurements on the structure 

Simulated response data for the two cases, described in Section 6.2, were obtained 

using an in-house non-linear response prediction code, FORSE [4]. The 

displacement responses were captured at 14 locations, uniformly distributed over 

the structure. The frequency range was selected to be 0-200Hz which covers the 

first 10 natural frequencies of the underlying linear structure. A constant, frequency 
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independent modal damping of 1% (η = 0.01) was used for simulations. Figure 6.3 

shows the locations of displacement measurements, the location of the excitation 

force, and the corresponding node numbers used in the FE model. The translational 

displacements were captured at these locations in the X direction. 

 
Figure 6.3 Measurement locations on the 1203 structure 

The displacement responses at the excitation DOF, in the captured frequency 

range, for Cases A and B, are shown in Figures 6.4 and 6.5 respectively. It can be 

observed that, for both cases, the effects of the non-linearity are insignificant after 

the first 3 modes. 

 
Figure 6.4 Non-linear response for Case A (cubic stiffness non-linearity) 
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Figure 6.5 Non-linear response for Case B (clearance non-linearity) 

Later in the analysis, to evaluate the effects of measurement noise on the accuracy 

of parameter estimation, the responses were polluted with 5% random noise using 

(4.15) from Chapter 4. 

6.3.2 Input models for different methods 

The three methods which are compared in this chapter require a numerical model of 

the underlying linear structure in different forms. The extent of possible errors in the 

input models of these methods may also differ in practice. For example, an FE 

model which is used in one method may be more prone to errors than a response 

model which is required for the other method. The following section discusses 

different numerical models which are used as the input for the three methods. It also 

states the sources and the extent of errors in these models. The levels of errors, at 

which the methods are to be tested, are decided based on the engineering 

judgement so as to make a fair comparison. 

The spatial method for non-linear parameter identification, presented in 

Chapter 4, is referred to as ‘Method 1’ in further discussion for the purpose of 

brevity. The finite element matrices of the underlying linear structure are used as the 

input to this method. The errors in FE models can come from the uncertainties in 

material properties and joint stiffness, or the tolerances on physical dimensions. To 

evaluate the effect of errors in the input data, it was decided to change the material 

properties. The Young’s modulus of elasticity and the density of the material in the 

FE model were increased by 4.5% and 3.5% respectively. This resulted in 
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approximately 1-2% change in the first few natural frequencies. This level of 

accuracy in FE models can arguably be attained in the updated FE models. 

The improved hybrid modal technique (I-HMT), presented in Chapter 5, is 

referred to as ‘Method 2’ in further discussion. The modal model of the underlying 

linear structure serves as the input model for this method. Modal models, which are 

extracted via an experimental route, are usually incomplete. For the current study, a 

modal model with the first ten modes (Mr = 10), and measurements at 14 locations 

on the structure (m = 14) was used. The condition, m ≥ Mr, required for extracting 

the non-linear modal vector was met while selecting the modal model. Though the 

modal analysis tools are well established, only the first few modes are generally 

identified with good accuracy. Thus, errors in a modal model may arise from the 

errors in the estimation of modal properties of higher modes of the system. To study 

the effects of errors in the input model, the natural frequencies and mode shape 

vectors for identified modes were polluted with a random error of up to 3%. The 

lower modes, which are generally identified with good accuracy, were polluted with 

less error. 

The FRF based method, presented in Chapter 5, is referred to as ‘Method 3’ 

in further discussion. The measured FRF matrix of the underlying linear structure is 

used as the input to this method. To evaluate the effects of errors in the input model 

on parameter estimation, the FRF measurements were polluted with 5% random 

noise. The polluted FRF matrix at each frequency line was calculated using (6.1) 

)()100/1()( ωαωα ij
p

ij cr ×±=    (6.1) 

where,  r is a random number (0 ≤ r ≤1), 

 c is the maximum level of noise in percentage, 

 p
ijα and  ijα  are the components of FRF matrix with and without noise 

respectively. 

6.4 Results of non-linear parameter identification for Case A 

The three methods were used successively to identify the non-linear parameters for 

Case A, with cubic stiffness non-linearity. As, the response beyond 50Hz was 

consistently linear, the frequency range was restricted to 50Hz. Firstly, a clean non-

linear displacement response and accurate input models for the three methods were 

used to identify the non-linear parameters. Methods 1 and 3 were used extract the 

non-linear force vector, which helps to identify the location of the non-linearity. 
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Method 2 was used to extract the values of non-linear parameters directly. For 

Methods 1 and 3, the accumulated non-linear force at the measured DOFs was 

calculated to locate the non-linearity.  

Figure 6.6 shows a plot of the accumulated non-linear force. It is observed 

that the non-linearity location is correctly identified at node#473 using both methods. 

Figure 6.7 shows the comparison of the magnitude of non-linear force at the non-

linear DOF for Methods 1 and 3. 

 

 
Figure 6.6 Identification of the location of non-linearity for Case A 

 
Figure 6.7 Non-linear force at the non-linear DOF for Case A 

It can be observed that the values of non-linear force extracted using the two 

methods differ significantly at the anti-resonances. The values match closely in the 

vicinity of the resonances. As explained in Chapters 4 and 5, the points in the 
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vicinity of resonances are to be selected to form the optimization problem. Thus, the 

difference in the values at anti-resonances will not affect the identification results. 

 For Method 2, the non-linear modal vector was extracted for the measured 

modes. This vector implicitly stores the information about non-linear parameters. 

Figure 6.8 shows the plot of non-linear modal vector for the second mode and the 

corresponding linear-threshold. 

 
Figure 6.8 Non-linear modal vector plotted for Case A 

It is observed that, in the vicinity of the second and the third resonances, the NMV 

exceeds the linear threshold value. In the vicinity of the first mode, the NMV is 

consistently below the linear threshold. This indicates that the first mode is behaving 

linearly while the effect of non-linearity is dominant in the second and the third 

modes.  

 
Figure 6.9 Non-linear modal grade (NMG) plot for Case A 
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This is confirmed by the non-linear modal grade (NMG) plotted in Figure 6.9 for the 

first three modes. It is observed that Mode 2 is the strongest non-linear mode for 

this case.  

The non-linear parameters were identified using a genetic algorithm 

optimization. The initial range for the non-linear coefficient, β, was selected to be (0-

5×1012) Nm-3, and it was kept the same for all three methods. Table 6.3 shows the 

summary of the results for clean data and accurate input model.  

Table 6.3 Results of parameter estimation for clean measurement data with 

accurate input models 

Method 
Identified value 

of β (Nm-3) 
Error 
(%) 

Fitness 
value (%) 

Computation 
time (min) 

1 4.986×1010 0.28 98.3 540 

2 5.30×1010 6.0 64.6 2.5 

3 4.986×1010 0.28 98.3 17 

 

It is observed that the non-linear coefficient is identified very accurately using 

Methods 1 and 3. For Method 2, the error is the highest at 6%. The computation 

time required for Method 2 is the lowest amongst the three methods. 

 To evaluate the sensitivity of the methods to measurement noise, the non-

linear response data were polluted with 5% random noise. The identification was 

performed with noisy data using the three methods. Figure 6.10 shows the extracted 

non-linear force at the non-linear DOF for Methods 1 and 3. 

 
Figure 6.10 Non-linear force plot with 5% measurement noise for Case A 
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It can be observed that the extracted non-linear force plot is extremely noisy in the 

region away from the resonances. The non-linear force values in the vicinity of 

resonances, indicated by the rectangular boxes in Figure 6.10, were used to identify 

the non-linear parameters. The non-linear modal vector (NMV) was extracted using 

Method 2. Figure 6.11 shows the plot of the NMV for the 2nd mode in the vicinity of 

the 2nd resonance. The summary of parameter estimation is given in Table 6.4. 

 
Figure 6.11 NMV for the 2nd mode plotted for Case A with noise 

Table 6.4 Estimated non-linear parameter with noise for Case A 

Method 
Identified value of β

(Nm-3) 
Error (%) 

Fitness value 
(%) 

1 5.242×1010 4.84 6.5 

2 5.738×1010 14.76 20.3 

3 5.197×1010 3.94 7.7 

 

It is observed that the errors in the estimated parameter using Methods 1 and 3 are 

comparable, and are less than 5%. The error in the estimated parameter using 

Method 2 is the highest. The fitness value of the objective function used in the 

optimization process is consistently low for all three methods when compared to the 

fitness value in case of noise-free identification (Table 6.2). The low fitness value is 

consistent with the fact that the parameters are identified from noisy data. 

 To access the performance of the methods with erroneous input models, the 

corresponding input models for the three methods were polluted with artificial errors 

as explained in Section 6.3.2. The noise-free responses were used in this case. 
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Table 6.5 summarizes the estimated parameters for the case of erroneous input 

models. 

Table 6.5 Estimated non-linear parameter with erroneous input models for Case A 

Method 
Identified value of β

(Nm-3) 
Error (%) 

Fitness value 
(%) 

1 5.195×1010 3.90 83.9 

2 4.353×1010 12.93 55.6 

3 4.819×1010 3.62 7.8 

 

It is observed that Methods 1 and 3 yield accurate values of non-linear parameter 

even with inaccurate input models. Method 2 identifies the non-linear parameter 

with around 13% error. 

6.4 Results of non-linear parameter identification for Case B 

In the second part of the comparison, a more practical case with distributed 

clearance non-linearity is considered. It is seen from Figure 6.5 that the non-linearity 

is affecting the response up to 50Hz only. Thus, the frequency range was restricted 

to 0-50 Hz, covering the first three modes, for the identification exercise. 

The displacement response for this case was simulated using four clearance 

non-linearity elements distributed over the contact area. For the identification of 

non-linear parameters, the non-linear responses were captured at the same 14 

locations as described in Section 6.3.1. It is interesting to note that the 

measurement was taken at only one out of the four nodes (Node 273), at which the 

non-linear elements were incorporated. Since all non-linear DOFs were not 

measured, it was not possible to identify the actual values of parameters which were 

used to simulate the displacement response. Instead, the equivalent non-linear 

parameters at the measured DOF were identified. This made it difficult to evaluate 

the accuracy of the methods, which was done earlier by direct comparison of the 

identified and actual non-linear parameters.  

In this case, the accuracy of different methods was evaluated from the 

predicted non-linear displacement response using identified equivalent parameters. 

The error was specified in terms of deviation in the resonant response and the 

resonance frequency of the strongest non-linear mode. 
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 Accurate input models and noise-free measurements were used firstly to 

identify the non-linear parameters. The non-linear restoring force vector was 

extracted independently using Methods 1 and 3. Figure 6.12 shows the 

accumulated non-linear forces at all measured DOFs. The values of the 

accumulated non-linear force are mapped on to the corresponding measurement 

locations on the structure, as shown in Figure 6.13. It is observed that, for the 

measurement locations which are close to the rubber block region, the values of the 

accumulated non-linear force are higher. The highest value of the non-linear force is 

observed at Node 273, one of the nodes at which clearance non-linear elements 

were placed while simulating the non-linear displacement response. 

 For Method 2, the non-linear modal vector was extracted for the modes 

within the measured frequency range. The level of non-linearity in each mode was 

calculated using the non-linear modal grade for the identified modes. Figure 6.14 

shows the plot of the non-linear modal vector for the second mode, as well as the 

plot showing non-linear modal grades for the first four modes. 

 
Figure 6.12 Accumulated non-linear force at measured DOFs for Case B 
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Figure 6.13 Accumulated non-linear force mapped on measurement locations 

 
Figure 6.14 NMV and NMG plots for Case B 

It is observed that the second mode is highly non-linear with NMG value reaching 

200, whereas the other identified modes behave almost linearly. This information is 

useful while selecting the frequency lines to formulate the optimization problem in 

the later stage of the non-linear parameter identification process. 

The non-linear parameters were identified using the non-linear force at the 

non-linear DOF for Methods 1 and 3, and using the non-linear modal vector for 

Method 2. The initial parameter ranges for the genetic algorithm were kept the same 

for all three methods. The initial range for the clearance gap was selected to be 0-1 
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mm, and it was selected to be 0-200 KN/m for the stiffness. Table 6.6 summarizes 

the results of the parameter estimation. 

Table 6.6 Estimated parameters with accurate input models and without 

measurement noise for Case B 

Method 
Identified parameters Fitness value 

(%) 
Computation 

time (min) yc (mm) Kz (KN/m) 

1 0.4296 85.156 24.06 600 

2 0.4531 103.52 54.50 5.5 

3 0.4375 87.5 38.85 25 

 

To evaluate the effects of noise in measurement data, the responses were polluted 

with 5% random noise. The identification was carried out in the presence of noisy 

data. Similarly, to evaluate the effects of erroneous input models, artificial deviations 

were introduced in the inputs models as described in Section 6.3.2. Figures 6.15 

and 6.16 show the extracted non-linear force at Node 273 plotted against the 

displacement amplitude at the same node for Methods 1 and 3 respectively.  

It is observed that, between the two methods, there is small difference in the 

values of extracted non-linear force. This difference will eventually lead to the 

differences in the identified non-linear parameters. It is noticeable in both figures 

that the values of non-linear force are close to zero until the amplitude of 

displacement reaches 0.4mm, identifying the value of clearance distance, yc. Table 

6.7 summarizes the estimated non-linear parameters for these cases for all three 

methods. 

 
Figure 6.15 Comparison of non-linear force for Method 1 
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Figure 6.16 Comparison of non-linear force for Method 3 

Table 6.7 Summary of estimated non-linear parameters for cases of noisy data and 

erroneous input models for Case B 

Method 

Noise in measured data Errors in input model 

Estimated parameters 

{yc(mm), Kz (KN/m)} 

Estimated parameters 

{yc(mm), Kz (KN/m)} 

1 {0.414, 74.218} {0.437, 90.625} 

2 {0.453, 105.86} {0.484, 100} 

3 {0.469, 87.11} {0.438, 79.69} 

As discussed earlier, in this case of distributed clearance non-linearity, the values of 

the identified parameters for different cases give no conclusive information about 

the accuracy of parameter estimation. The accuracy of all three methods is to be 

evaluated by comparing the deviations in resonance frequency and resonance 

amplitude at a particular location on the structure, and for the strongest non-linear 

mode. The deviations were compared at Node 114 (the excitation location), and for 

the second mode, which is strongly non-linear. Figure 6.17 depicts the calculation of 

errors. The errors in prediction of resonance frequency and resonance amplitude 

are recorded in Table 6.8. 
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Figure 6.17 Depiction of calculation of errors for Case B 

Table 6.8 Summary of errors in resonant response and resonance frequency 

Method No noise and 
accurate input models

Noise in displacement 
measurements 

Errors in input 
models 

εy (%) εω (%) εy (%) εω (%) εy (%) εω (%)

1 3.78 6.68 1.71 7.54 4.55 6.36 

2 6.08 5.72 6.45 5.57 3.71 6.71 

3 3.45 6.82 2.01 7.42 1.94 7.44 

 

It is observed from Table 6.7 that there is no trend in the error propagation due to 

either noisy measurements or erroneous input model. The error in the prediction of 

response is consistently higher for Method 2. It is also observed that the resonance 

frequency is predicted less accurately than the resonance amplitude for this case. 

The average value of errors in resonance frequency and resonance amplitude are 

3.7% and 6.7% respectively, which are within acceptable limits for practical cases. 
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6.5 Discussion and concluding remarks 

The three methods for non-linear parameter identification, presented earlier in the 

thesis, have been compared on common ground using different criteria. Simulated 

data obtained for the ‘1203 structure’, modelled using FEM with around two 

thousand DOFs are used. Two cases with increasing complexity have been used for 

the comparison. In the first case, an idealized grounded cubic stiffness non-linearity 

is used, while in the second case, a more realistic clearance non-linearity over an 

area of the structure is implemented. The identification of the non-linear parameters 

has been carried out for both cases using the three methods to compare the 

accuracy of parameter estimation. The conclusions of the comparison study are 

listed below: 

• It has been observed that, for all three methods, errors in the estimated 

parameters are low when noise-free data along with an accurate input model of 

the underlying linear structure are used. The effects of measurement noise and 

erroneous input models are similar, to increase the error in parameter 

estimation. It has been observed that the error increases by 5-9% depending on 

the method. 

• For all cases considered in this exercise, errors in the estimation of parameters 

using Method 2 are found to be higher than when using the other two methods. 

Method 1 has been found to identify the non-linear parameters accurately, even 

with an erroneous FE model. It should be noted though; that the amount of 

error in the underlying FE model, for which the method is tested, is very low. 

This can only be achieved after successfully updating the FE model.  

• It has been observed that Methods 1 and 3 possess the ability to locate the 

non-linearity in the structure. Method 2 fails to locate the non-linearity, if the 

location is unknown beforehand. This can sometimes put limitations on the use 

of the method. On the positive side, Method 2 has successfully quantified the 

level of non-linearity in each mode within the measured frequency range. This 

information is useful at the later stage of parameter identification, for selecting 

frequency lines to form the optimization problem. 

• The computation times taken by the three methods are an order of magnitude 

apart. Method 2 is the fastest of the three taking 2-orders of magnitude less 

time than Method 1. Method 1 involves the inversion of a matrix of the size of 

the number of un-measured DOFs, at each frequency line. For practical 

structures where only few percent of the total number of DOFs are measured, 

the matrix may become very large, making the computation inefficient. Method 
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3 consumes slightly more computation time than Method 2, but the order of 

magnitude is comparable. For Method 3, the computation time is directly 

proportional to the number of measured DOFs. Thus, the time can be reduced 

by using fewer measurements. 

• It has been noted that the deviation in the predicted response, as a result of 

errors in non-linear parameters, is a function of the sensitivity of the structure to 

those errors. For a less sensitive or a more robust structure, large errors in non-

linear parameters will probably yield a small deviation in the predicted 

response. Thus, the errors in the parameter estimation should be viewed 

keeping in perspective the robustness of the structure. Methods for calculating 

the sensitivity and robustness of forced response for non-linear structures are 

proposed in [118]. 

 

Based on the importance of different criteria for an engineer in his day to day 

applications, a weighing factor can be assigned for each criterion. For example, 

since having clean data and accurate input models may be a rare event in practice, 

it can be given less weighing factor as against the performance of the methods with 

noisy data and inaccurate input models. This approach of assigning the weighing 

factor for each comparison criteria is subjective, and depends on what user wants 

from the identification method. 

A similar weighed evaluation is performed for the three methods to illustrate 

the process. Table 6.9 shows a summary of the performance of the methods 

quantified based on different evaluation criteria, weighing factor used for each 

criterion, and the total score for each method. Every method is scored on a scale of 

0-3 for each criterion. With the weighing factors assigned in the current study, the 

FRF based method (Method 3) comes on top, providing the right mix of accuracy 

and computational efficiency. The method uses all raw inputs directly obtainable 

from vibration measurements. This eliminates the need of sophisticated tools like 

FEA and modal analysis at the stage of parameter identification. 

 

 

 

 

 

 

 

 



136 
 

Table 6.9 Quantitative comparison of the three methods 

Criteria 
Weighing 

factor 

Method 

Spatial method 
(Method 1) 

Improved hybrid 
modal technique 

(Method 2) 

FRF based 
method 

(Method 3) 

Performance with 
clean data and 

accurate input models 0.05 3 2 3 

Performance with 
clean data and 
erroneous input 

models 
0.25 3 2 3 

Performance with 
noisy data and 

accurate input models 0.25 3 2 3 

Computation time 0.1 1 3 2 

Ability to locate non-
linearity 0.1 3 1 3 

Ability to quantify non-
linear modes 0.2 1 3 1 

Ability to extract non-
linear force explicitly 0.05 3 1 3 

Total Score 2.4 2.15 2.5 
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Chapter 7  

Experimental investigation of non-
linearities in MACE structure 
This chapter presents an experimental investigation of non-linearities in a complex 

mechanical structure. A sub-assembly of the so-called MACE structure is studied in 

detail. Different non-linearity detection techniques are used to detect the presence 

of non-linearity. The location and the type of non-linearity are identified using the 

non-linearity characterization techniques presented in the earlier chapters. Both 

parametric and non-parametric models are fitted into experimental data to describe 

the non-linear behaviour of the sub-assembly. The models are then used to predict 

the system response at different excitation levels. 

7.1 Introduction 

Different strategies for non-linear system identification have been proposed and 

compared in the earlier chapters of this thesis. The illustration of the methods and 

their comparison has been performed on simulated data. It has been mentioned in 

Chapter 6 that validating the proposed methods with experimental data on a realistic 

structure poses some additional challenges. This chapter attempts to tackle such 

challenges using experimentally measured vibration data. The main aim of this 

study is to improve the understanding of real-life non-linear structures and to gauge 

the scope and applicability of the proposed non-linear system identification 

strategies in such cases. 

7.1.1 Choice of the structure 

There are attempts in the literature to identify the non-linearities from vibration data 

measured on representative structures [3, 26, 101, 119]. The structures used in 

these exercises were intentionally designed to exhibit pure forms of non-linearities, 
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like polynomial stiffness, clearance etc. To meet the aim of the current study, it was 

decided to use a practical real-life structure, or at least a structure which employs 

joints and connections which are encountered in practice.  

AWE-Aldermaston UK, in their modal coupling research program (MCRP), 

designed and used a structure called MACE. This structure has been specifically 

designed to contain different interfaces, connections and joints which are found in 

real engineering applications [97]. Figure 7.1 shows an annotated view of the MACE 

structure. Different research groups have collaboratively worked on model updating 

of this structure. Most studies have been restricted to small vibration amplitudes, 

treating the structure behaviour as linear [63].  

 
Figure 7.1 Computer-generated drawing of the MACE structure 

A sub-assembly of the MACE structure, called Sub-assembly 3, is used for the 

current exercise. Sub-assembly 3 consists of four parts: body, collar, retaining nut 

and casing.  

7.1.2 Description of joints in Sub-assembly 3 

Sub-assembly 3 has four joints between different components. Figure 7.2 shows a 

schematic of Sub-assembly 3, clearly indicating the joint locations. Two of the joints 

are screw joints and the other two are surface-to-surface joints. Table 7.1 describes 

the joints in Sub-assembly 3. If the components are assembled together with the 

design torque of 28 Nm, all joints can be assumed to be locked under low-amplitude 
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excitation. At higher excitation amplitudes, the two surface-to-surface joints may 

exhibit non-linear behaviour due to clearance, or friction type of non-linearity. 

 

Figure 7.2 Schematic of Sub-assembly 3 

Table 7.1 Description of joints in Sub-assembly 3 

Joint Number Part 1 Part 2 Description 

1 Casing Body Conical surface to surface joint 

2 Casing Collar Annular surface to surface joint 

3 Collar Body Screw joint 

4 Body Retaining nut Screw joint 

 

7.1.3 Objectives of the exercise 

Based on the aim of this study mentioned in Section 7.1, the specific objectives are 

identified as follows: 

(i) To detect the presence of non-linear behaviour in the structure. 

(ii) To collect qualitative information about any non-linear behaviour. This can be 

in terms of the extent of non-linearity, the effects on the resonance 

frequencies and resonance amplitudes, the contribution of higher harmonics 

etc. 

(iii) To understand the challenges in non-linear vibration testing and to find the 

ways to perform vibration measurements on non-linear structures efficiently 

using the standard tools. 
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(iv) To attempt to locate the non-linearity, to extract the non-linear restoring force, 

and to estimate the non-linear parameters using the proposed methods. 

7.2 Validation of the FE models 

To obtain a numerical model of the underlying linear structure, the components 

were modelled using the FEM in ANSYS. The FE models of the three components, 

the casing, the collar, and the body, were meshed using 3-D, 10-noded tetrahedral 

elements (SOLID 187) with 3 DOFs per node. The retaining nut was not modelled 

separately in this analysis, as it has insignificant mass compared to the other 

components, and it would not add any significant stiffness to the system [63]. The 

mesh size for the individual components was decided after checking the 

convergence. Figure 7.3 shows a picture of three component meshes. The details of 

material properties used for the components and the mesh sizing are given in 

Appendix D. 

 

Figure 7.3 FE models of the individual components 

Modal properties for the individual components, in free-free condition, were obtained 

by performing modal analysis on the FE models. The components were also tested 

experimentally to find the modal properties using experimental modal analysis 

(EMA). The global-M method, available in MODENT-2006 [117], was used for the 

EMA. Because of axial symmetry of the components, double modes were obtained 

at each natural frequency. Only one mode from the pair was used for the 

comparison. The frequency range was restricted to 0-1000 Hz for the comparison. 

Table 7.2 shows the results of the correlation between the FE models and the EMA. 
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Table 7.2 Correlation of modal properties for individual components 

Component Mode 
Natural frequency (Hz) Discrepancy 

(%) 
MAC 

FEA EMA 

Casing 
1 584.8 585.7 0.15 0.98 

2 712.1 706.9 0.74 0.97 

3 1327.5 1328.4 0.07 0.99 

Collar 
1 515.4 513.1 0.45 0.96 

2 854.3 826.7 3.33 0.92 

3 1285.9 1301.0 1.16 0.87 

Body 
1 538.9 537.3 0.3 0.84 

2 1197.5 1174.2 1.9 0.80 

 

It is observed from Table 7.2 that the maximum discrepancy in the prediction of 

natural frequencies using the FE models is around 3%. The minimum value of 

modal assurance criteria (MAC) is 0.8. The low MAC value for some modes can be 

attributed to the presence of double modes due to symmetric nature of the structure. 

While identifying the modes via modal analysis, only one mode at a frequency was 

identified. The correlation shows that the FE models of the individual components 

are accurate enough for dynamic response predictions. 

 After obtaining the accurate FE models for the individual components, the 

components were assembled together in ANSYS. In an ideal condition, all joints are 

locked with no relative motion between the components. This condition was 

simulated by using the option of bonded-contact, available in the ANSYS software. 

The modal properties of the assembly were obtained by performing modal analysis 

on the assembled FE model. Figure 7.4 shows the first twelve modes obtained via 

FEA of the assembly. 

 To perform EMA on the assembled structure, the structure was suspended 

freely using elastic cords. The FRFs were calculated by measuring the response at 

one location and exciting the structure at several locations using an instrumented 

hammer. The FRFs acquired with the excitation location on one side of the joints 

and the response location on the other side, were found to be noisy. Because of the 

poor transmissibility of force across the joints, all measurement locations were 

selected from the Casing-side of the joints. This put a limitation on the number of 

observable modes through the EMA. The modes which are local modes of the body 

could not be identified. The modal properties were extracted using the multi-FRF 

global-M method. Figure 7.5a shows the direct FRF plot along with the phase for the 
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assembled structure to give an idea regarding the quality of measurements. The 

overlaid FRF measurements obtained via hammer testing are shown in Figure 7.5b. 

 
Figure 7.4 Mode shapes of the assembled structure via FEA 

 

Figure 7.5a Point FRF plot for the assembled structure (hammer test) 
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Figure 7.5b Overlaid FRFs for the EMA on the assembled structure 

The modal properties of the assembled structure, extracted using the FEA and the 

EMA, are compared in Table 7.3. It is observed that the difference in natural 

frequencies is much higher than the difference observed in the correlation of 

individual components. The maximum difference is around 15% for Mode 7. The 

MAC values for the correlated modes are also lower when compared to the results 

with the individual components. The high discrepancy suggests that the assumption 

of locked joints used in the FE model may not be valid.  

Table 7.3 Comparison of the modal properties of the assembled structure 

Mode 
Natural frequency (Hz) Discrepancy 

(%) 
MAC 

FEA EMA 

1 610.6 607.5 0.51 0.89 

2 976.6 1002.5 2.58 0.67 

3 1231.3 1110.4 10.89 0.75 

4 1278.0 1211.3 5.51 0.69 

5 1306.9 - - - 

6 1361.8 - - - 

7 1486.7 1292.4 15.03 0.59 

8 1504.1 - - - 

9 1578.6 - - - 

10 1593.2 - - - 

11 1615.5 - - - 

12 1725.2 1715.0 0.59 0.93 
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The results can further be improved via model updating, or by using some interface 

elements at the joint locations. The interface elements can be linear as implemented 

in [63]. If the structure happens to be non-linear, the use of linear interface elements 

will result in an equivalent linear model of the assembly at a particular excitation 

level. 

7.3 Detection of non-linear behaviour 

Inherently, all assembled structures are non-linear to some extent. If the nominal 

operating conditions are such that the structure does not exhibit any non-linear 

behaviour, it is usually safe to use an equivalent linear model of the structure for 

response predictions. It is therefore necessary to check if the structure is behaving 

non-linearly in the operating range of excitations. 

 For linear vibration testing, impulse and random excitations are popular, 

because they are less time consuming. For non-linear systems, the use of impulse 

or random excitation tends to linearize the system about the operating point. On the 

other hand, stepped-sine excitation, though time-consuming, is recommended for 

non-linear systems [2, 120]. Most of the methods for non-linearity detection do not 

make use of the mode shapes of the system. Thus, responses at only a few 

locations are sufficient for non-linearity detection. In the current study, the 

responses at the excitation location under different excitation levels are used to 

detect non-linear behaviour. 

7.3.1 Problem of force-drop near resonance 

It has been stated in the literature [6, 7] that, with a constant supply of input current 

to the exciter, the input force may vary with the excitation frequency. A drop in the 

input force is usually observed when the excitation frequency is close to any of the 

system’s resonance frequencies. For linear systems, since the ratio of response 

over force is of primary interest, the force-drop phenomena can be overlooked. On 

the other hand, for non-linear systems, if the input force is not kept constant, the 

non-linearities are not exhibited properly. This may lead to erroneous system 

identification. Figure 7.6 shows the force-drop phenomena, which was observed for 

the MACE structure sub-assembly. 
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Figure 7.6 Force drop near resonance for the MACE sub-assembly 

The direct FRF of the sub-assembly, around the first resonance, was measured at 

different excitation levels with step-sine tests without force control. Figure 7.7 shows 

the overlaid FRFs at different excitation levels. It can be seen from Figure 7.7 that 

the FRFs at different excitation levels do not overlay perfectly, indicating the 

presence of non-linearity. Thus, the non-linearity can be detected at a very early 

stage, even without maintaining a constant value of the input force. But to 

characterize the non-linearity type and  to identify the non-linear parameters, the 

step-sine tests with force control are required [2, 6, 7].  

 
Figure 7.7 Overlaid FRFs at different excitation levels without force-control 

The control algorithm used in the current research, to keep the input force constant, 

is an iterative algorithm using the Newton Raphson method [101, 107]. Figure 7.8 

shows the flowchart for the algorithm used. An in-house control system [101], 
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developed in the Lab-view software which implements this algorithm, was used to 

carry out the force-controlled step-sine tests on the MACE sub-assembly. 

 
Figure 7.8 Flow chart for the force-control algorithm  
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7.3.2 Non-linearity detection with constant-force step-sine tests 

The control algorithm discussed in Section 7.3.1 was used to perfom constant-force 

step sine tests on the MACE sub-assebmly. Figure 7.9 shows the experimental set-

up used for the experiment. 

 
Figure 7.9 Experimental setup for non-linear step-sine testing 

Since during the initial hammer testing it was observed that the first mode of 

the sub-assembly was the most dominant mode, the detection, characterization and 

parameter estimation of non-linearities were performed using the response around 

this mode.  

For the detection of non-linear behaviour, the response at the excitation 

location was measured at different levels of excitation. Figure 7.10 shows the 

overlaid FRFs at different excitation levels. It can be seen that the value of 

accelerance drops continuously with increase in the force level. This suggests a 

non-linear behaviour with energy dissipation. The resonance frequency is observed 

to be reducing slightly with the increasing force level. 
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Figure 7.10 Overlaid accelerance at different excitation levels with force-control 

The Nyquist plots for the same FRFs are overlaid in Figure 7.11. It can be observed 

from Figure 7.11 that as the excitation amplitude increases, the Nyquist plots 

become more elliptical. The presence of double modes, as discussed in Section 7.2 

can be observed from the Nyquist plots in Figure 7.11. 

 
Figure 7.11 Nyquist plots for accelerance at different excitation levels 

The presence of higher harmonics in response is also an indicator of non-linear 

behaviour of a system. In conventional vibration tests, spectral analysers calculate 

FRFs by considering the fundamental harmonics only in the time-domain response. 
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To capture higher harmonics during the tests, raw time signals of the response were 

acquired, and Fourier analysis was performed on the signals externally. 

Figure 7.12 shows the contribution of the higher harmonics in the signal 

captured at the resonance frequency for the excitation force of 10N. The presence 

of higher harmonics is clearly visible from the figure. Figure 7.13 presents a bar 

chart showing the amplitudes of the second and third harmonic components, at the 

resonance frequency, for different values of excitation force. The amplitudes are 

normalized to the fundamental harmonic component at each force level. From 

Figure 7.13, it can be seen that, at higher excitation levels, the contribution of the 

2nd and the 3rd harmonic components in the signal is significant, reaching to almost 

20% of the fundamental harmonics at 10N excitation force. The higher contribution 

of 2nd harmonic component may suggest a symmetric nature of non-linearity. 

 
Figure 7.12 Presence of higher-harmonics in the response at 10N force level 

After checking the system with different non-linearity detection techniques, it is 

concluded that the sub-assembly behaves non-linearity at higher excitation 

amplitudes. 
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Figure 7.13 Contribution of the higher harmonics at different excitation levels 

7.4 Characterization of the non-linearity 

Once it is verified that the MACE sub-assembly behaves non-linearly at high 

excitation levels, the next stage is to find the location of non-linearity and to identify 

the probable type of non-linearity. These tasks traditionally come under the realm of 

non-linearity characterization. 

 At this stage of non-linear system identification, an accurate set of response 

measurements at several locations distributed over the structure are required. 

Because of the poor transmissibility of force through the connection area, as 

discussed in Section 7.2, the measurement locations were distributed uniformly on 

the casing-side of the joints. Figure 7.14 shows a schematic of the MACE sub-

assembly, indicating the locations of measurements. Four locations along the 

length, denoted by the numbers 1 to 4, and four locations along the circumference, 

denoted by the letters A to D, were selected for measurements. Thus, a total of 16 

measurement locations were used in the analysis. 
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Figure 7.14 Measurement locations on the MACE sub-assembly 

The transducers used for the testing were calibrated before their use. The 

repeatability of the measurements was checked at different excitation levels. 

Excellent repeatability was achieved at all excitation levels. The plots showing the 

repeatability of the measurements are given in Appendix D. 

7.4.1 Identifying the location non-linearity 

The FRF-based method, described in Chapter 5, was used to the extract the 

cumulative non-linear force at all 16 measurement locations. Figure 7.15 presents a 

bar chart showing the normalized cumulative non-linear forces at 16 locations. 

 
Figure 7.15 Accumulated non-linear force at the measurement locations 

It can be observed from Figure 7.15 that the accumulated non-linear forces at the 

locations close to the joint location are significantly higher than those at other 
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locations. Thus, the location of non-linearity is identified to be within the vicinity of 

the joint. 

7.4.2 Identifying the type of non-linearity 

Before going to the last stage of actually estimating the non-linear parameters, it is 

important to gain some knowledge about non-linear behaviour trend, and the 

possible mathematical models which can be fitted into the observed behaviour. 

The analysis of the responses obtained at different excitation levels provided 

initial trends in the non-linear behaviour. The variations in the resonance amplitude 

and in resonance frequency for the first mode of the sub-assembly were studied. 

Figure 7.16 shows the variation of the resonance amplitude with the excitation level. 

 
Figure 7.16 Variation of the resonance amplitude for the first mode 

It is seen from Figure 7.16 that the resonance amplitude does not increase linearly 

with the excitation force. The curve flattens beyond the force of 3N. This suggests 

dissipative behaviour of non-linearity which might come from the frictional contacts 

between the components. 

 Figure 7.17 shows the variation of resonance frequency with the excitation 

force. It is observed that the resonance frequency drops with the excitation force, 

suggesting a softening-stiffness behaviour of non-linearity. 
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Figure 7.17 Variation of the resonance frequency of the first mode 

As explained in [6], the real and imaginary parts of inverse-accelerance can be used 

to indicate the type of non-linearity. If the real part of an accelerance, plotted against 

(frequency)2, deviates from a straight line, it indicates a stiffness type non-linearity. 

Similarly, if the imaginary part of an accelerance plotted against frequency deviates 

from a straight line, it indicates a damping type non-linearity. 

 The direct or point accelerance plots at different excitation levels were used 

to identify whether the non-linearity is of stiffness-type or damping-type. Figure 7.18 

shows the inverse-accelerance plot at the excitation force level of 5N. It can be seen 

that both the real and imaginary parts deviate from a straight line, indicating the 

presence of both stiffness and damping type of non-linearity. 

 
Figure 7.18 Inverse FRF plots at excitation force level = 5N 

Using the different techniques as above, a general idea about the non-linear 

behaviour has been obtained. At this point, the reduction in peak amplitude of 
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vibrations and reduction in the resonance frequency as the excitation is increased, 

suggests either damping type non-linearity alone, or both softening stiffness and 

damping types of non-linearity. 

Once the general characteristics of the non-linear behaviour are understood 

and the non-linearity location is identified, the non-linear force at the non-linear 

DOFs can be extracted. The FRF-based method was used to extract the non-linear 

force. When all 16 measurements were used to extract the non-linear force vector, 

the matrix became ill-conditioned giving erroneous results. Later, the measurements 

at only 2 locations, A1 and A4, were used to extract the non-linear force vector. 

Figure 7.19 show the non-linear force at these two locations plotted against 

frequency. It can be seen that the magnitude of non-linear force at the excitation 

location A1 is insignificant when compared to the magnitude of non-linear force at 

the location A4, which is close to the joint area. 

 
Figure 7.19 Non-linear force at locations A1 and A4 

Figure 7.20 shows the non-linear force at the location A4, plotted against the 

amplitude of displacement at the same location. Ideally, the non-linear force should 

be plotted against the relative displacement between the interfacing components. In 

this case, since the actual contact locations were inaccessible for measurements, 

only the measurement on the outer side of the Casing was used.  
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Figure 7.20 Non-linear force at A4 against displacement at A4 

An interesting observation is made from Figure 7.20. Before and after the 

resonance, the non-linear forces trace different paths, thus forming a loop. It can be 

argued that the non-linear parameters as used in the conventional models, 

corresponding to the friction and clearance non-linearity, change as the system 

passes through a resonance. 

The non-linear force at location A4 was extracted using two different 

methods, the I-HMT method and the FRF-based method. It was found that the two 

curves match closely. Figure 7.21 shows the comparison of non-linear force 

extracted using the two methods. 

 
Figure 7.21 Comparison of non-linear force extracted using different methods 
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To identify the type of non-linearity using the footprint library presented in 

Chapter 3, the extracted non-linear force at A4 was compared with different 

footprints in the library. The shape matching algorithm was used to find SSD values 

for each non-linearity type. Figure 7.22 shows the comparison of the extracted non-

linear force with different non-linear footprints and the corresponding SSD values. It 

is observed that the extracted non-linear force closely matches with (i) pure stick 

type friction non-linearity and (ii) combined clearance and friction non-linearity, the 

plots with a square border. 

 
Figure 7.22 Comparison of the extracted non-linear force with footprint library 

From the physics of the joints, the trend observed in the non-linear force, 

and the quantitative comparison with the footprints from the library, it may be 

concluded that the non-linearity present in the structure is of clearance and friction 

type. 

7.4.3 Estimation of non-linear parameters 

This is the last stage in non-linear system identification in which the parameters of 

the models which describe the non-linearities in the system are estimated. Since 

measurements were distributed only on the casing, the relative displacements 
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between any two points in contact were not measured. This puts a limitation on the 

parametric identification of non-linearities.  

The non-linear parameters were estimated assuming that casing is in 

contact with a component which is grounded. The non-linear parameters were 

extracted using a genetic algorithm optimization with binary-multipliers. Based on 

the results of non-linearity characterization, high probability values (p = 0.9) were 

assigned for both clearance and friction non-linearities and a low probability value (p 

= 0.3) was assigned for cubic stiffness non-linearity. Since the extracted non-linear 

forces traced different paths before and after the resonance, two sets of parameters 

were identified corresponding to the two regions.  

 A non-parametric identification was also attempted on the same data. A non-

parametric model was obtained by fitting a polynomial into the extracted non-linear 

force, using the norm-2 minimization criteria. Table 7.4 shows the estimated 

parameters for the parametric and non-parametric cases. The negative stiffness 

value identified for the clearance stiffness indicates opening of gaps.  

The non-linear force at location A4 was regenerated using the estimated 

non-linear parameters. Figure 7.23 shows the comparison of the extracted and 

regenerated non-linear force for both cases. 

Table 7.4 Estimated non-linear parameters with parametric and non-parametric 

models 

Model used Estimated parameters 

Non-parametric of form: 
a0 + a1 x + a2 x2 + a3 x3 

a0 = 0 

a1 = -7.5×109 

a2 = 5×1011 

a3 = 1.65×1023 

Parametric model with  
(clearance + friction) 

non-linearity 

Clearance stiffness: 

Kz = -1.18×1010 N/m (below resonance) 

  = -1.29×1010 N/m (above resonance) 

Clearance gap, yc = 2×10-9m 

 

Frictional force, µN = 5N 

Tangential stiffness: 

Kd = 7×108 N/m (below resonance) 

      = 1.5×108 N/m (above resonance) 
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Figure 7.23 Regenerated non-linear forces with parametric and non-parametric 

models 

The estimated non-linear parameters were substituted back into the numerical 

model to predict the system response at two different excitation levels. Figures 7.24 

and 7.25 show the comparison of the regenerated response with the experimental 

response, for the parametric and non-parametric model respectively. Table 7.5 

presents the summary of errors in prediction of the resonance frequency (εω) and 

the resonance amplitude (εy) for the parametric and non-parametric non-linear 

models, and the underlying linear model  

 
Figure 7.24 Regeneration of response using non-parametric model 
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Figure 7.25 Regeneration of response using parametric model 

Table 7.5 Comparison of errors in the regenerated response 

Model used 
Excitation force = 5N Excitation force = 1N 

εω (%) εy (%) εω (%) εy (%) 

Parametric 0.81 16.1 0.56 2.18 

Non-parametric 0.96 12.3 1.02 40.7 

Linear 0.48 76.6 0.23 3.13 

 

From Table 7.5, it is observed that if the underlying linear model of the system is 

used for the prediction, the discrepancy increase with the excitation force. This is 

reasonable as with increase in the excitation force, the system moves into the non-

linear regime.  

For non-linear models, the predictions at the excitation force of 5N, at which 

the non-linear system identification was carried out, are fairly accurate. The 

maximum error in the prediction of peak response is around 16%. When these 

same models are used to predict the dynamic behaviour at the excitation force of 

1N, out of the two models, the parametric model performs better. Still the shape of 

plots for predicted and observed response at 1N are different. This may be because 

the parametric model identified in the current study does not utilise the relative 

displacements between the two parts in contact. Thus, the clearance and friction 

models fitted are not parametric in true sense. It is necessary to investigate the 

effect of approximating relative displacement by the absolute displacement at one of 

the contributing DOF. This can be checked on a simple 3 DOF system, with non-

linearity acting between any two DOFs. 
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Since the regeneration capability of the models is checked at only two 

discrete excitation levels, it cannot be concluded that the identified models are valid 

over a wide range of operating conditions. 

 

7.5 Concluding remarks 

This chapter presents the results of an experimental investigation of non-linearities 

in the MACE structure sub-assembly. It has been observed that when the accurate 

FE models of the individual components are assembled together with the locked-

joints assumption, the predictions for the assembled structure are inaccurate. This 

suggests some relative motion between different parts of the joints, which may 

contribute towards the non-linear behaviour of the system. 

The results of different non-linearity detection techniques have been 

presented to conclude that the structure’s behaviour is significantly non-linear at 

higher excitation levels. The measurements at different excitation levels were used 

to characterize the non-linear behaviour. Softening-stiffness type behaviour along 

with dissipating mechanism has been observed in the structure. It has been 

observed that the detection of non-linear behaviour and approximate 

characterization of non-linearity type can be successfully performed with very limited 

measurement data. 

The measurement data from the constant-force step-sine vibration tests, 

performed at relatively high force amplitude, were used to extract the non-linear 

force vector at the measured locations. The accumulated non-linear force plots were 

used to locate the non-linearity. The locations close to the joint location have been 

correctly identified as the non-linearity locations. The extracted non-linear force at 

the non-linear location was compared with the curves from the footprint library for 

type identification. The SSD values corresponding to the combined clearance and 

friction non-linearity and pure-stick friction non-linearity were found to be the lowest. 

This type identification is consistent with engineering judgement. 

The results of both parametric and non-parametric identifications have been 

presented. The identified models are found to be accurate at the excitation level at 

which they were identified. The extrapolation capacity of the models and their 

universality needs to be verified. 
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Chapter 8  

Non-linear parameter identification 
for base-excited structures 
This chapter presents a method for non-linear system identification of base-excited 

structures with controlled acceleration input. The proposed method works in three 

stages to estimate the non-linear parameters in a system. The method is entirely 

based on measured data with no need for an FE model. The proposed method is 

illustrated on a pyramid-like structure using simulated data. The performance of the 

method in the presence of measurement noise is also evaluated. 

8.1 Introduction 

The civil engineering structures like buildings, bridges, stadia and dams are often 

designed to avoid the transmissibility of ground vibrations. For laboratory testing of 

such structures, a scaled model of the structure is mounted on a shaker table, and it 

is given acceleration input at the base to simulate operating conditions. Similar tests 

are sometimes performed for military applications, spacecrafts and aircraft 

structures, to evaluate their dynamic performance under base loading. In such 

cases, the excitation forces do not act locally, but they are distributed throughout the 

structure, depending on mass distribution in the structure. 

 The traditional non-linear parameter identification techniques described in 

[28, 36-38], and the methods proposed in Chapters 4 and 5 of this thesis, require 

force and response information at all excitation DOFs for their successful 

implementation. For cases where the excitation comes from acceleration input, 

these requirements can be met only if: (i) all DOFs are measured, and (ii) the mass 

distribution in the structure is known a-priori. Thus, in practical cases it may not be 

possible to use the available identification methods directly. 

 The chapter presents a three stage strategy for non-linear system 

identification in case of base-excited structures. 
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8.2 Theoretical formulation 

A system with a moving-base configuration can be represented as an equivalent 

system with a fixed-base configuration if the displacement vector is represented as 

a vector relative to the base displacement [6]. Thus, the equations of motion for a 

non-linear MDOF system excited using acceleration input at the base can be written 

in the equivalent fixed base configuration as: 

[ ]{ } [ ] [ ]( ){ } { } [ ]{ } bylMuuguDiKuM &&&&& −=+++ ),(   (8.1) 

where, [ ]M , [ ]K ,and [ ]D  represent the mass, stiffness and proportional damping 

matrices of the system in fixed base configuration, { }g  is the non-linear restoring 

force vector, by&&  is the acceleration input at the base, { }u  is the vector of 

displacements relative to the base, and{ }l is a transformation vector ( il = cosØi, 

where, Øi is the angle between the i th DOF and the direction of base motion). The 

proportional damping matrix can be written as: 

[ ] [ ]KD α=      (8.2) 

For the underlying linear system, the set of equations can be obtained by 

substituting the non-linear restoring force to zero. If the input acceleration at the 

base is sinusoidal, the set of equations for the underlying linear system can be 

written in the frequency domain as: 

[ ]{ } [ ]{ } bYlMUZ 2ω=      (8.3) 

where, [ ]Z  is the dynamic stiffness matrix of the underlying linear system ,ω  is the 

excitation frequency, { }U  is the vector of displacement amplitudes relative to the 

base displacement, and bY  is the amplitude of base displacement.  

 The right hand side of (8.3) represents the excitation force vector, which is 

dependent on the distribution of mass in the system. If a constant-acceleration is 

maintained, the excitation force remains constant throughout the frequency range. 

On the other hand, if the base displacement is constant, the excitation force will vary 

as a quadratic function of the excitation frequency. It should be noted that the 

excitation force vector remains the same for the underlying linear system and the 

non-linear system, if the non-linearities are not mass-dependent. If the excitation 

force vector from the right hand side of (8.3) is represented by { }dF , then the 
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equations for the linear system can be written in terms of the FRF matrix of the 

system as 

{ } [ ]{ }dFU α=      (8.4) 

In practical cases, not all DOFs of the system can be measured. To deal with this, 

(8.4) is partitioned into the measured and un-measured DOFs: 
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    (8.5) 

Considering only the measured responses from (8.5), we can write: 

{ } [ ]{ } [ ]{ }d
umu

d
mmmm FFU αα +=    (8.6) 

Multiplying (8.6) by [ ] 1−
mmα , we get a pseudo excitation force vector at the measured 

DOFs as: 

{ } { } [ ] [ ]{ }d
umumm

d
m

d FFP αα 1−+=    (8.7) 

This vector can be considered as the projection of the excitation force vector of the 

entire system onto the measured DOFs. It is possible to extract this vector solely 

from the measured data as: 

{ } [ ] { }mmm
d UP 1−= α           (8.8) 

Now, for a non-linear system, the equation for harmonic amplitude can be written 

as: 

{ } [ ]{ } [ ]{ }dFGU αα =+
~          (8.9) 

where, { }U~  represents the non-linear response vector relative to the base. 

Partitioning (8.9) into measured and un-measured DOFs, the non-linear force vector 

at the measured DOFs can be extracted as: 

{ } { } [ ] [ ]{ }( ) [ ] [ ]{ }( ) [ ] { }mmmumumm
d

umumm
d

mm UGFFG ~111 −−− −−+= ααααα  (8.10) 

If non-linearities are confined to the measured zone,{ }uG  can be set to zero and 

(8.10) becomes: 
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{ } { } [ ] [ ]{ }( ) [ ] { }mmm

P

d
umumm

d
mm UFFG

d

~11 −− −+= ααα
4444 34444 21   (8.11) 

As the pseudo excitation force vector remains same for linear and non-linear 

systems if the non-linearities do not cause mass matrix variation, (8.10) can be 

written as 

{ } { } [ ] { }mmm
d

m UPG ~1−−= α     (8.12) 

Once the non-linear force vector corresponding to the measured DOFs is extracted 

using (8.12), the non-linearity location can be identified by plotting the cumulative 

non-linear force. The non-linear force at the non-linear DOF can then be used to 

extract the non-linear parameters using a genetic algorithm optimization.  

8.3 Implementation of the method 

The proposed method is applied in 3 stages: at the first stage, the pseudo excitation 

force vector at the measured DOFs is extracted using (8.8). To do this, beforehand 

the FRF matrix of the underlying linear structure is obtained via modal analysis of 

the structure in fixed base configuration at low excitation levels. The vector of 

relative displacements for the underlying linear structure is then obtained by 

performing slip-table tests with low acceleration input. 

The second stage consists of extracting the non-linear force vector at the 

measured DOFs. First the relative non-linear displacement vector is measured by 

subjecting the structure to high acceleration input at the base. The non-linear force 

is then extracted using (8.12). 

In the last stage, the non-linear force at the measured DOFs is used to 

estimate the non-linear parameters via genetic algorithm optimization. Figure 8.1 

shows the flowchart for the method. 
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Figure 8.1 Flowchart of the proposed method 

8.4 Illustration of the method  

The proposed method is illustrated on Validation structure-3; a pyramid-like 

structure made of 4 beams and mounted on a rigid platform. The slip-table tests can 

be simulated by giving the platform a constant acceleration input. Figure 8.2 shows 

the schematic of the structure with measurement locations, non-linearity location, 

and the node numbers. The detailed engineering drawing of the structure and the 

properties of materials used are documented in Appendix B. 

For the current simulation, the platform was given a constant acceleration in 

X direction. A grounded cubic stiffness non-linearity, acting in X direction was 

placed at one of the beams (Node 7). The non-linear coefficient β = 5×1012 Nm-3, 

was used for the simulation. To mimic the condition of incomplete measurements, 

displacement responses in the X direction were measured at 5 nodes including the 
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non-linear DOF. A constant modal damping of 1% (η =0.01) was used in the 

simulation.  

 
Figure 8.2 Schematic of Validation structure-3 

8.4.1 Stage 1: Extraction of pseudo excitation force vector (Pd) 

To extract the pseudo excitation force, the FRF matrix, and the relative 

displacement vector of the underlying linear structure are required. The FRF matrix 

of the structure, [ ]mmα , corresponding to the measured DOFs, in the fixed-base 

configuration, was obtained by performing modal analysis on the system matrices. 

Figure 8.3 shows the overlaid FRFs. The displacement responses at the measured 

DOFs were then obtained by giving a constant acceleration of 0.09 m/s2 to the 

base. The low value of acceleration resulted in close-to-linear behaviour of the 

structure. Thus, the relative displacement vector ( U ), of the underlying linear 

structure, was calculated. 
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Figure 8.3 Overlaid FRFs of the underlying linear structure 

With the FRF matrix, and linear relative displacement vector available, (8.8) was 

used to extract the pseudo excitation force at the measured DOFs. Figure 8.4 

shows the pseudo excitation forces at the measured DOFs plotted against 

frequency, in the vicinity of the first resonance. The actual excitation force should 

remain constant throughout the frequency range, because of the constant 

acceleration input. The variation in the pseudo excitation force, seen in Figure 8.4, 

is caused by the second term in (8.7) which projects the force at un-measured 

DOFs onto the measured DOFs. 

 
Figure 8.4 Pseudo excitation force at measured DOFs 
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8.4.2 Stage 2: Obtaining the non-linear restoring force 

The non-linear displacement responses, relative to the base displacement were 

obtained by subjecting the structure to a constant acceleration of 0.9 m/s2. At this 

high acceleration level, the structure exhibited non-linear behaviour in the presence 

of the cubic stiffness non-linearity. Figure 8.5 shows the comparison of relative 

displacement at Node 7 for low (a = 0.09 m/s2) and high acceleration levels (a = 0.9 

m/s2). The non-linear restoring force vector corresponding to the measured DOFs 

was later extracted using (8.12).  

 
Figure 8.5 Comparison of linear and non-linear responses at low and high 

acceleration input 

8.4.3 Stage 3: Estimation of the non-linear parameters 

Once the non-linear force at the measured DOF was extracted, the location of non-

linearity was identified by plotting the cumulative non-linear force. Figure 8.6 shows 

the bar chart of cumulative non-linear force at the measured DOFs. 
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Figure 8.6 Identification of non-linearity location 

It can be seen from Figure 8.6 that the cumulative non-linear force is maximum at 

Node 7, and its magnitude is significantly higher than the magnitude of forces at 

other nodes. This correctly identifies the location of non-linearity. Figure 8.7 shows 

the plot of non-linear restoring force at the identified non-linear DOF. 

 
Figure 8.7 Non-linear force at the non-linear DOF 

The non-linear force at the non-linear DOF was then used to extract the non-linear 

parameters using the genetic algorithms. The initial range for the parameter in the 

GA was kept from 0 to 5×14 Nm-3. The range was narrowed in subsequent 

civilizations to gain accuracy. The value of identified parameter and the 

corresponding error is recorded in Table 8.1. 
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8.4.4 Performance in the presence of experimental noise 

Since the method relies completely on measured data, it is important to check the 

sensitivity of the method to measurement noise. There are three quantities which 

are obtained from experimental measurements: the FRF matrix, the response at low 

excitation level, and the response at high excitation level. Each of these can act as 

a source of measurement noise. Thus, four different cases were considered in order 

to analyse the effects of noise in each measured quantity independently, and the 

combined effect noise in all three. 

 In the first case, only the FRF matrix, [ ]mmα , was polluted with artificial noise 

of 3% using equation (6.1) from Chapter 6. In the second and the third case, the 

response vectors,{ }mU and { }mU~  were polluted with 3% noise respectively, using 

(4.15). Table 4.1 summarizes the results for all these cases. 

Table 8.1 Estimated parameters with and without noise 

Case 
Noise 

level (%) 
Estimated value of 

β ×1012 (Nm-3) 
Error in 

estimation (%) 

No-noise 0 5.06 1.2 

Noise in the FRFs 3 5.09 1.8 

Noise in linear responses 3 5.84 16.8 

Noise in non-linear 

responses 

3 
6.37 27.4 

Noise in all three 3 7.10 42 

 

It can be seen from Table 8.1 that the non-linear parameter is identified accurately 

with noise-free measurement data. For the cases with noise, the error is highest 

when all three measured data contain noise, which was expected. The effect of 

noise in FRF matrix is observed to be the least. Overall, it is observed that the 

method is sensitive to measurement noise, and the error of the order of 40%, which 

is reported in this study, may not be acceptable in many cases. 

8.5 Concluding remarks 

A method for the parametric identification of non-linearities for base-excited 

structures has been proposed. The formulation of the method can be used for any 

direction of base motion. The method is applicable in case of constant base 



171 
 

displacement or constant base acceleration configuration. The method uses only 

raw measurement data, eliminating the need for the FE model of a structure. 

 The method has been illustrated on a pyramid-like structure with simulated 

data. The method was found to be accurate in the absence of experimental noise. 

There are three different sources of experimental noise in this method. In the case 

where noise from all three sources is considered, the method estimated parameters 

with around 40% error, which may be un-acceptable in many cases. Thus, the 

method demands clean measurement data to identify the non-linear parameters 

accurately. 

 Though the method is presented for base-excited structures, it is generic, 

and can be extended for any case in which the excitation force is not measured. 

The extension of this method to the output-only non-linear tests can be beneficial. 
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Chapter 9  

Conclusions and future work 
This chapter concludes the thesis by presenting a summary of the research 

findings, contributions by the author, details of published research papers from this 

work, and finally the author’s view, on the scope of further research in this area. 

9.1 Conclusions of the research work 

Non-linear structural dynamics is an important research topic, relevant to different 

industries. It encompasses various sub-areas like non-linear system identification, 

stability studies for non-linear systems and the prediction of dynamic response for a 

non-linear system. The work in this thesis is restricted to parametric identification of 

non-linear systems in the frequency-domain. Different strategies for non-linear 

system identification are proposed, and they are illustrated with the use of simulated 

non-linear response data. During the research, the focus is always kept on the 

practicality of the proposed strategies, and their integration with the established 

tools like finite element analysis, modal testing and modal analysis. The detailed 

conclusions on different topics are presented below. 

9.1.1 Type characterization using footprints 

Identifying the type of non-linearity is an important step in the parametric 

identification of non-linear systems. Once the type of non-linearity is identified 

correctly, a mathematical function can be chosen to fit the identified non-linearity. It 

has been previously reported in the literature that the shape of non-linear restoring 

force in a system is unique to the type of non-linearity. Taking this observation 

further, a library of non-linear force footprints for different non-linearities, plotted in 

different formats like Bode plots and Nyquist plots, has been generated. This library 

can be used as a look-up chart for subjective identification of non-linearity type. 
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 It has been observed that, if the non-linear force for a system is plotted 

against the relative displacement amplitude at the non-linear DOFs, the shape of 

the curve is independent of the underlying linear system. Thus, the footprint library 

which is generated using a 2 DOF system can be used for identifying non-linearity 

types for any practical non-linear system. 

The type of non-linearity in a system can be identified by visual comparison 

of the extracted non-linear force with the forces from the footprint library. To avoid 

subjectivity in the visual comparison, a shape-matching algorithm has been 

proposed for numerical comparison of non-linear forces. 

For individual non-linearities, the algorithm proved to be accurate, correctly 

identifying the non-linearity type. For the case of combined non-linearities, it has 

been observed that the shape of non-linear force plot is dependent on the 

contribution of each non-linearity type in the non-linear force. As this contribution 

may vary from case to case, the correct identification of non-linearity type was found 

difficult to achieve with the current footprint library. If the library is extended to 

include footprints of combined non-linearities with unequal contributions, it may be 

possible to identify the type of non-linearity, and even the contribution of each non-

linearity type. 

9.1.2 Genetic algorithm optimization 

In the current research, the last stage in the parametric identification, that of 

estimating the non-linear parameters, has been formulated as an optimization 

problem. The optimization problem, with non-linear parameters as design variables, 

has been solved via a genetic algorithm. The method has been found to 

successfully estimate the non-linear parameters, even if the non-linearity type is not 

known a-priori. This feature is important in practical cases where the type of non-

linearity may not be identified.  

A novel concept of ‘binary-multipliers’ has been proposed to efficiently 

estimate the non-linear parameters if a user has some idea about the type of non-

linearity in a system. A significant improvement in the computational efficiency has 

been achieved with the use of the binary multipliers. 

9.1.3 On the choice of the model for the underlying linear system 

The basic formulation proposed in the thesis requires a numerical model of the 

underlying linear system. Three methods, each using different form of model for the 

underlying linear system, has been investigated and compared. 
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 It has been observed that the FRF-based method, which uses a response 

model of the underlying linear system, performs better in the weighted comparison 

against the other two methods. This method uses data directly from vibration 

measurements, thus eliminating the need for analysis tools like FEA and modal 

analysis. On the downside, the use of raw measurement data makes the method 

susceptible to random noise in measurements. 

The spatial method which uses an updated FE model of the underlying linear 

system has been found to be sensitive to errors in the FE model. Moreover, for 

practical structures with large system matrices, the method becomes 

computationally expensive. As it may be difficult to obtain an accurate FE model of 

a complex structure, this method may have a limited use in practice. 

The I-HMT method, which uses a modal model of the underlying linear 

system, has been found to be less accurate than the other two methods, but the 

fastest of all three. This method also possesses an important feature of quantifying 

the level of non-linearity in each mode, thus enabling users to select the modes 

which are to be considered in further non-linear analysis. 

Since the basic methodology for all three methods assumes frequency-

independent non-linear parameters, the number of equations available to solve the 

optimization problem is usually much higher than the number of design variables. 

Thus, a few measurements are sufficient to identify the non-linear parameters. For 

all three methods, it has been observed that if measurements at all non-linear DOFs 

and excitation DOFs are available, the non-linear parameters can be estimated 

accurately. Moreover, it has been observed that the effect of measurement noise 

increases with the number of measurements used in the analysis. Thus, it may be 

best to use only the minimum required number of measurements. 

For a successful application of all three proposed methods, measurements 

must be taken very close to the non-linearity locations. This may put limitations on 

the use of these methods in the case when the non-linearities are at several un-

accessible locations.  

9.1.4 Experimental investigation of non-linear behaviour 

To understand the difficulties faced by an engineer when dealing with 

experimentally measured vibration data on a real-life engineering structure, a study 

was undertaken on the MACE structure sub-assembly, which employs different 

joints. The structure was found to behave non-linearity under high excitation 

amplitudes. 
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 It has been observed that the methods available in the literature, and those 

proposed in this thesis allow detection, and approximate type characterization of 

non-linearities at early stage of analysis with only a few measurements. Since non-

linearities in real-life engineering structures may not behave as per their idealized 

mathematical form, a universal non-linearity identification method may not be readily 

applicable in such cases. 

From the results of the experimental study conducted in this research, the 

author would suggest that the methods proposed in this thesis, and those available 

in the literature may be used at initial stages of the analysis to get an idea about the 

non-linear behaviour of a structure. Later on, the non-linearities may be identified 

within relevant frequency and excitation ranges based on the operating conditions. 

A universal model of a non-linear system may be difficult to identify for practical 

engineering systems. A non-parametric identification may prove easier in such 

cases, but again the model obtained via non-parametric identification may not be 

accurate over a wide frequency and amplitude ranges of the input excitation. 

It has also been observed that the contribution of higher harmonics was 

significant in the response captured near the resonance frequency of the structure. 

Thus, it may be best to check the contribution of higher-order harmonics in the 

response before employing non-linear identification methods which are based on 

the first order describing functions. 

9.1.5 Identification method for base-excited structures 

In the tests, in which the excitation comes from an acceleration input at the base, 

the excitation force is distributed over the entire structure, and is usually not 

measured. Thus, the conventional non-linear system identification methods may not 

be directly applicable in such cases. To overcome this difficulty, a three-stage 

method for non-linear system identification has been proposed. The method works 

for both, acceleration controlled and displacement controlled tests. The method has 

been found to be applicable for any oblique excitation direction. Though the method 

is presented for base-excited structures, the same formulation can be extended to 

the case of output-only tests which are performed in an actual operating 

environment.  
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9.3 Contributions and publications of the thesis 

The summary of the author’s contribution to the research field is presented below: 

• A novel idea of a footprint library containing non-linear force for different 

individual and combined non-linearities. 

• A shape-matching algorithm to numerically compare the extracted non-linear 

force with the curves from the footprint library. 

• A genetic algorithm based optimization methodology to estimate the non-linear 

parameters from the non-linear force. 

• A concept of binary multipliers to improve the computational efficiency of the 

genetic algorithm by making use of partial information known to a user regarding 

the type of non-linearity in the system. 

• Validation and comparison of the proposed non-linear identification methods on a 

MDOF representative engineering structure. 

• The development of non-linear system identification method for base-excited 

structures. 

 

A part of the work presented in this thesis is published in the following conference 

and journal articles: 

(1) Gondhalekar A. C., Petrov E. P., Imregun M., “Identification of MDOF 

nonlinear system using genetic algorithm optimization”, International modal 

analysis conference (IMAC)- XXVII, Florida-2008. 

(2) Gondhalekar A., C., Petrov E. P., Imregun M, “Parameters identification for 

nonlinear dynamic systems via genetic algorithm optimization”, Journal of 

computational and nonlinear dynamics, Vol-4(4), pp 1-9, 2009. 

9.4 Suggestions for future work 

The research presented in this thesis started with the aim of developing strategies 

for parametric non-linear system identification, which can be used for practical 

engineering structures. Still at the end of this research certain questions remain 
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unanswered. The research in the area of non-linear system identification can be 

taken further in the direction of topics presented below: 

• The formulation in the thesis uses the first-order describing functions to model 

the non-linear elements. The experimental investigation on the MACE structure 

showed a significant presence of higher order harmonics in the response near 

the resonance frequency. It would highly valuable to extend the current methods 

to use higher order describing functions and compare the accuracy with the 

methods presented here. 

• The footprint library presented in this thesis has footprints of combined non-

linearities, which are prepared based on an equal contribution assumption. In 

practice, different non-linearities may not always contribute equally in the non-

linear force. This makes it difficult to identify the combined non-linearities with 

the current footprint library. The idea of banded-footprints, which is mentioned in 

Chapter 3, can be pursued further to create an extended footprint library with 

different contributions of non-linearities. 

• The methods presented in the thesis are applicable for structures with localized 

non-linearities. Moreover, the response very close to the non-linearity location 

must be measured for their successful application. It would be valuable to 

propose methods which are applicable for structures with distributed non-

linearities. 

• The quantification of non-linear behaviour is still an area of research. There 

haven’t been many methods described in the literature to quantify the level of 

non-linearity in a system. It would be a nice piece of research to propose certain 

criteria to quantify the level of non-linearity in a structure. 

• From practical point of view, non-linear system identification is only an 

intermediate task, in the bigger aim of predicting the system response. Some 

systems are more sensitive to the errors in non-linear parameters than others. 

Thus, it is necessary to calculate the sensitivity of a system to errors in the non-

linear parameters, and evaluate the performance of any identification method by 

keeping the sensitivity in perspective. A tool which integrates these two would 

be worth researching. 
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Appendix B  

Structures used for the validation  

Validation Structure-1: Cantilever beam 

A cantilever beam is used as the validation structure-1 for the validation purpose. A 

detailed drawing of the structure is shown in the Figure B1.  

 
Figure B1 Validation structure-1: Cantilever beam 

The cantilever beam is modelled using FE method with beam elements processing 

2 DOFs per node: a translational DOF along Y axis and a rotational DOF about the 

Z axis. The excitation force of sinusoidal nature with amplitude 0.001N is applied at 

the free end of the beam. The non-linear element is placed at the free end of the 

beam. 

Validation Structure-2 Cantilever plate 

A cantilever plate is used as validation structure-2 for the validation of the 

algorithms in the thesis. Figure B2 shows the detail drawing of the structure. The 

plate is modelled in FEM using Kirchhoff’s plate elements with 3 DOF per node: a 

translational DOF along Z axis and rotations about X and Y axes. The excitation 

force of 0.05N is applied to the edge of the plate as shown. The non-linear element 

is placed at the corner of the plate. The type of non-linearity is varied during the 

validation of different algorithms. 
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Figure B2 Validation structure-2: cantilever plate 

The plate is meshed with 36 elements. After imposing the boundary conditions, the 

total number of nodes in the model equals 42, with 3 DOFs per node. Table B1 lists 

the linear natural frequencies for the first 9 modes. 

 

Table B1 Linear natural frequencies for validation structure-2 

Mode Number 
Natural frequency 

(rad/sec) 

1 87.2 

2 213.8 

3 537.8 

4 680.9 

5 777.8 

6 1345.9 

7 1548.7 

8 1613.9 

9 1782.1 

Figure B3 shows the mode shapes of the first 9 modes of the structure. 
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Figure B3 Mode shapes of validation structure-2 

Validation Structure-3 Pyramid 

A pyramid-like structure is used as Validation structure-3 for the validation of the 

identification method proposed for base-excited structure in Chapter 8. It consists of 

4 beams joined at the top to form a tower. The beams are grounded at the base on 

a rigid platform. Figure B4 shows the engineering drawing of the structure. The 

material properties for the beams in the structure are listed in Table B2. 

 

Table B2 Material properties for the beams in Validation Structure-3 

Material property Value 

Density (ρ) 7800 kg/m3 

Poisson’s ratio (ν) 0.28 

Young’s modulus of elasticity (E) 2.1×1011 N/m2 



189 
 

 

Figure B4 Engineering drawing of Validation structure-3 

The structure was modelled using the FEM in ANSYS with 3-D beam elements. 

Each of the beams in the structure was meshed with 10 beam elements making a 

total of 222 DOFs after applying the boundary conditions. 

  



190 
 

Appendix C  

Details of ‘1203 structure’ 
The engineering drawings of ‘1203 structure’ are shown below in Figure C1. The 

properties of Aluminum alloy used in the simulation are as follow: 

Young’s modulus of elasticity, E = 71×109 N/m2 

Density of the material, ρ = 2800 Kg/m3 

Poisson’s ratio, ν = 0.3 

 

Figure C1 Engineering drawing of 1203 structure 

The natural frequencies for the underlying linear structure are presented in Table 
C1. 

Table C1 Natural frequencies of the underlying linear structure 

Mode No Natural frequency 
(Hz) Mode No Natural 

frequency (Hz) 
1 8.905 8 137.94 
2 10.711 9 166.34 
3 38.166 10 187.12 
4 41.236 11 188.71 
5 62.209 12 198.33 
6 119.10 13 210.06 
7 131.70 14 249.41 
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Appendix D  

MACE structure details and 
repeatability test results 

D.1. Material properties and the FE model mesh information 

The following table gives the details of the material properties for different 

components of the MACE sub-assembly and the mesh-sizes used in the FE models 

of the sub-assembly. 

Table D1 Details of the material properties and FE model mesh 

Component Material 

Material properties Maximum 
element edge 
length (mm) 

E 

(N/m2) 

ρ 

(Kg/m3) 
ν 

Case Aluminum alloy 7×1010 2724.7 0.33 40 

Collar Aluminum alloy 7×1010 2800 0.33 20 

Body Aluminum alloy 7×1010 2747.3 0.33 40 

Retaining nut Stainless steel 1.95×1011 7272.1 0.29 3 

D.2. Repeatability tests for non-linear measurements 

For non-linear systems, sometimes it is difficult to get repeatable measurements. In 

order to perform proper system identification, it is necessary to have measurement 

data which is consistent and repeatable. For the data used in thesis, repeatability 

tests were performed to check the consistency of the experimental setup. The 

repeatability tests were performed at three excitation levels. At each level, the 

measurements were taken by disassembling the structure completely and again 

assembling it with the designated torque. Figure D1, D2 and D3 show the results of 

the repeatability tests performed at 0.5N, 3N, and 5N excitation force respectively. 
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Figure D1 Repeatability test results at force level 0.5N 

 

Figure D2 Repeatability test results at force level of 3N 

 

Figure D3 repeatability test results at force level of 5N 
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