
IMPERIALCOLLEGEOFSCIENCE,
TECHNOLOGY
ANDMEDICINE

University of London

SENSITIVITY ANALYSIS OF
MECHANICAL STRUCTURES USING

EXPERIMENTAL DATA

bY

Wai Ming TO

A thesis submitted to the University of London for
the degree of Doctor of Philosophy and for theI

Diploma of Imperial College.

Dynamics Section
Department of Mechanical Engineering
Imperial College of Science, Technology and Medicine
London SW7, U.K.

October 1990



ABSTRACT

This thesis presents the development and application of linear and non-linear

sensitivity analysis techniques for determining the revised modal properties in a

structural modification analysis using analytical or experimentally-derived modal data.

Since the quality of experimentally-derived modal models is dependent on the accuracy

and the reliability of measurement and structural identification techniques, the

associated methods for frequency response function (FRF) measurement and structural

identification are also presented.

The traditional model for a FRF measurement using either single-shaker or multi-

shaker modal testing is an open-loop form. However, inevitable physical constraints

in practical implementation cause such FRF measurements to be inherently of a closed-

loop form. By modelling the structure-shaker(s) interaction in proper detail, a closed-

loop model for single- or multi-shaker modal testing has been developed from which it

is shown that the previously hidden feedback paths introduce noise and leakage

problems on current FRF estimators. The complexity of multi-shaker modal testing is

illustrated by using a multi-input multi-output model from which a new frequency

domain technique has been developed to give noise-free estimates of the FRFs.

Despite the highly sophisticated development of finite element (FE) methods, a

comparison of the experimental and the analytical models for a structure’s dynamic

behaviour often reveals quite considerable discrepancies between the test structure and

its FE model. The orthogonal constraint and the eigendynamic constraint methods for

localizing the structural modification sites using modal data have been developed and

shown to be successfully applicable the validation or updating of the FE model when a

sufficient number of measured modes is available and when the measured coordinates
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or degrees of freedom (DoFs) are complete. The effects of coordinate incompleteness

and of simulated measurement errors on these methods are presented.

In recent years, first- and/or higher-order sensitivity analyses have been used to predict

the dynamic characteristics of modified mechanical structures. However, the

applicability of these techniques is in general limited to small modifications and by the

complexity in computing the higher-order eigenvahte and eigenvectors derivatives. In

this thesis, some inherent limitations to such sensitivity analysis methods are discussed

and an alternative structural modification method based on Rayleigh  quotient iteration

is proposed. By retaining the nonlinear terms not accounted for in a first- or higher-

order sensitivity analysis, a new computation procedure for determining the modified

structure’s modal properties has been developed. A comprehensive case study of an

aluminium casing is presented which demonstrates the applicability of error

localization and non-linear sensitivity analysis techniques. By combining the first-

order eigenvalue sensitivity and one of these structural reanalysis techniques, it is

possible to enhance the efficiency and the accuracy of structural optimization

techniques for determining the optimum condition of a mechanical structure specified

by an analyst.
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NOMENCLATURE

The following list gives the principal use of the symbols in this thesis. However, a

given symbol might be used to denote different quantities under special situations.

The interpretation to be given to a symbol will be clear from the context in which it is

A

aij
A..1 ?1
[Al

Coefficient defined in equation 2.39
ijth element of matrix [A]
Modal constant of rth mode for receptance Hij(CO)
Coefficient matrix defined in equation 4.14 (Chapter 4)
System matrix of a generalised eigenvalue problem
[A] (x) =h[B]  (x) (Chapter 5)

[All, [A21 -

[AAl
B

Ib]
PI

C

Coefficient matrices defined in equation 7.7
Finite change in matrix [A]
Coefficient defined in equation 2.39
Coefficient vector defined in equation 4.14
System matrix of a general&d eigenvalue problem
[AlbI=~[BlIx~
Coefficient defined in equation 2.39
A constant dependent upon the time-window shape
(Chapter 2 : eqns. 2.47 and 2.48)

GS

(2
CNXN

[Cl

WI

e

WV)
lEMJ
f(t)
f(t)

Mode participation factors

Static flexibility at point j
Complex space with dimensions NXN
Viscous damping matrix of the original structure
Viscous damping modification matrix
Number of mass/stiffness error coordinates
Error vector defined in equation 7.14
Error matrix defined in equation 7.11
Applied force in the time-domain
Measured force signal in the time domain
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F(o)
VI
VW)  1
(F’(o) 1
G(m)
hj (t)
H(o)
M@,2W@

3WN

.Wo)

&ln(~)

Hij(OJ) or Hij -

H,(o)
{HA(~)) -

Wx(W -
CMo>l -
b.dOl -

[h,(t)1 -

VW1 -
VW.N -
mow1 -
P-L(~)1  -

[HXF(a)l

[II

(Jl

k

ke
ki
k,

Rfs
Akij

Applied force in the frequency-domain
Applied force vector
Applied force vector in the frequency domain
Measured force signals in the frequency domain
Frequency domain function defined in equation 2.29
Impulse response function between points i and j
Frquency response function
Conventional FRF estimators
Instrumental FRF estimator
Geometric mean FRF estimator
FRF representing the electro-mechanical properties of the
shakers
Receptance between points i and j
FRF representing the mechanical properties of the shakers
A complete column of the receptance matrix of the analytical
model
A complete column of the measured receptance matrix
Impulse response function matrix of the structure
Diagonal matrix describing the electro-mechanical properties
of shakers in the time-domain
Diagonal matrix describing the mechanical properties of
shakers in the time-domain
Receptance matrix of the original structure
Receptance matrix of the modified structure

Gpen loop FRF matrix
Diagonal matrix describing the mechanical properties of
shakers
FRF matrix for test structure
Unit matrix
Coefficient matrix defined in equation 4.19
Stiffness of a SDoF system
Effective stiffness of the test structure at resonance
Stiffness value of ith spring elements
Suspension stiffness of shaker
Stiffness of force gauge
Change in stiffness between points i and j



WI

[AK1  11

Ii&21

[AK221

[AK1

WBARUCHI

[NPSEUDOl

Kd

IQ1

{L(s) I

IL1

m

mi

m(t)
m,
ms
M(m)
OWN

MCOH(i)(o)

WI

L&M

LAM121

Id4221

[AMI

[MBERMANl

[mil

System stiffness matrix of the original structure
Stiffness matrix of the analytical model corresponding to
measured (master) DoFs
Stiffness matrix of the analytical model corresponding to
measured (master) and unmeasured(slave) DoFs
Stiffness matrix of the analytical model corresponding to
unmeasured (slave) DoFs
Stiffness error matrix (Chapter 4)
Stiffness modification matrix (Chapters 5 & 6)

Baruch’s stiffness error matrix
Pseudo-stiffness error matrix
System stiffness matrix of the analytical model
Diagonal matrix describing the properties of force gauges
Displacement vector defmed in equation 6.18
Coefficient matrix defined in equation 4.19
Number of averages (Chapter 2 : eqns 2.19-2.21)
Mass of a SDoF system (Chapter 2 : eqns 2.24-2.48)
Number of measured modes (Chapters 4-7)
ith mass elements where i = 1, . . . . N
Measurement noise in applied force signal
Effective mass of the test structure at resonance
Moving mass of excitation mechanism
Magnitude of FRF
Measurement noise vector of the applied-force signals in the
frequency-domain
Multiple coherence functions of ith output
Rotation matrix defined in equation 4.6 (ody for eqn.4.6)
System mass matrix of the original structure
Mass matrix of the analytical model corresponding to
measured (master) DoFs
Mass matrix of the analytical model corresponding to
measured (master) and unmeasured(slave) DoFs
Mass matrix of the analytical model corresponding to
unmeasured (slave) DoFs
Mass error matrix (Chapter 4 )
Mass modification matrix (Chapters 5 & 6)
Berman’s mass error matrix
Matrix defined in equation 4.10
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l-mil
n

n(t)
N

W(W  -

P

IPI

9

r

rA

r(t)
RO
R(o)
SfdO)

Sffwo, SXYW  -

&tun(~)~  Ll(~)  -

[SF’F’(~)I -
bx@oI -
KG~~di)Wl  -
T

TI(@, T2(@  -

WI
Iv)
WI
W(o)
[WI
x(t)
x’(t)
X(0>
b)

System mass matrix of the analytical model

Number of measured(master) coordinate

Measurement noise of response signal

Number of degrees-of-freedom

Measurement noise vector of the response signals in the
frequency-domain
Number of mass elements

Coefficient vector defmed in equation 4.19

Electric charge (Chapter 2 only for Fig.2.3)
Number of spring elements (Chapters 4-7)
Structural parameter of the test structure

Structural parameter of the analytical model

External input signal in the time domain

Constant external input signal in the frequency domain

External input signal in the frequency domain

Cross-spectrum between measured input f and measured
output x’
Auto-spectra of measured input f and measured output x’

Auto-spectra of measurement noise

Cross-spectrum matrix of {F’(o)}

Cross-spectrum matrix of {F’(o)} and {X’(O))

Augmented cross-spectrum matrix of the ith input

Sample duration

Frequency response functions defined in Figure 2.6

Matrix formed of left singular vectors

A set of data points defined in equation 4.6

Matrix formed of right singular vectors

Windowing function

A matrix defined in equation 6.21

Displacement function in the time-domain

Measured displacement signal in the time-domain

Measured displacement signal in the frequency-domain

Coefficient vector defined in equation 4.14 (only for 4.14)
Displacement vector of the original structure (Chapters 5 & 6)
Acceleration vector of the original structure

L ,
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Displacement vector of the modified structure
Displacement vector contains only the DoF’s affected by the
modification
Measured displacement vector in the frequency domain
Measurement noise vector defined in equation 3.35
Dynamic stiffness matrix of structural changes
Design parameter
Fractional change to element i (where i = 1, . . . . N)
Incremental change of design parameter
kth zero for Hi
Norm of a matrix defined in equation 5.37
Ordinary coherence function
A function defined in equation 2.48
Norm of a matrix defined in equation 5.37
Kronecker delta
Coefficient defined in equation 5.46

Damping loss factor of a SDoF system
Damping loss factor of the test structure at resonance
rth eigenvalue of the analytical model
Measured eigenvalue of rth mode (Chapter 4)
rth eigenvalue of the original structure (Chapters 5 & 6)
Rayleigh quotient
rth eigenvalue of the modified structure
Finite change of rth eigenvalue
Norm of a matrix defined in equation 5.37
the angle between rth left- and right-hand eigenvectors
rth normalised right-hand eigenvector for viscously-damped
system
rth normalised left-hand eigenvector for viscously-damped
system
least-squares norm of a matrix
Coefficient defined in equation 5.27
Coefficient  defined in equation 5.28
Rectangular matrix of singular values

Arbitrary constant
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[@I

bv)r

WL

Norm of a matrix defined in equation 5.37
jr/z element of ith mode
Argument of FRF
Measured eigenvector of rth mode (Chapter 4)
rth mass-normalised right-hand eigenvector of the original
structure (Chapters 5 & 6)
rth mass-normalised right-hand eigenvector of the modified
structure
rth eigenvector of the analytical model
rth eigenvector corresponding to measured(master) DoFs
rth eigenvector corresponding to unmeasured(slave) DoFs
rrh normalised left-hand eigenvector of the original structure
rth normalised left-hand eigenvector of the modified structure
rth expanded mode shape vector of the modified structure
rth measured mode shape vector of the modified structure
rth expanded mode shape vector of the modified structure
corresponding to unmeasured DoFs
Measured mode shape matrix (Chapter 4)
Mass-normalised eigenvector matrix of the original structure
(Chapters 5 & 6)
Mode shape matrix of the analytical model
Estimate of rfh eigenvector
Arbitrarily scaled rth right-hand eigenvector of the original
structure
Arbitrarily scaled rth right-hand eigenvector of the modified
structure
Arbitrarily scaled rth left-hand eigenvector of the original
structure
Arbitrarily scaled rfh left-hand eigenvector of the modified
structure
rth natural frequency of the original structure
rrh natural frequency of the analytical model
Measured natural frequency of rth mode
Finite change of natural frequency
Measured natural frequency squared matrix (Chapter 4)
Natural frequency squared matrix of the original structure
(Chapters 5 & 6)

.I.
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Operators

adj{[ II
arg
det [ 1
E[ 1
d[ 1
t=d 1
v=[ 1
Aij
*

I I

1 I-’
[ I’
[ IT
NH
IN 1112

111 1llF

Adjoint of a matrix
Argument@hase)
Determinant of a matrix
Expected value of [ ]
Rank of a matrix
Trace of a matrix
Variance of [ ]
(i,j)th cofactor of a matrix
Complex conjugate
Mcdulus(magnitude)
Inverse of a matrix
Generalised inverse of a matrix
Transpose of a matrix
Complex-conjugate transpose of a matrix
2-norm of a matrix
Frobenius norm of a matrix

Diacritical

Derivative with respect to frequency
Derivative with respect to time
Averaged sample

Abbreviations

Auto-regression moving average

CGMAC - Coordinate modal assurance criterion

DoF(s) Degree(s) of freedom
Eigensystem realisation

FE Finite element
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FFT
FRF
IRF
MAC
MDoF
MIMO
SDoF
SIMO
SISO
SVD

Fast Fourier transform
Frequency response function
Impulse response function
Modal assurance criterion
Multi-degree-of-freedom
Multi-input multi-output
Single degree-of-freedom
Single-input multi-output
Single-input single-output
Singular value decomposition
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cl1 INTRODUCTION

Gauss’s dictum, ” When a building is completed no one
should be able to see any trace of the scaffolding,” is often
used by pure mathematicians as an excuse for neglecting the
motivation behind their work and the history of theirfield. It
is also used by practical engineers as an excuse for ignoring
the original aim of their work and the historical development
of their methods.

1.1 THE STRUCTURAL VIBRATION PROBLEM

Because of resource scarcity and the escalating costs of materials and fabrication,

structural optimization becomes an important stage in product design for many high-

capital industries, such as the ship-building and aerospace industries. In those

industries, the revenue is dependent on the payload of the vehicle so that the desire to

reduce structural weight without unduly compromising structural integrity has been a

strong driving force behind the development and application of structural optimization

methods for many years.

In past decades, structural analysts have sought to evolve the “optimum” structural

designs which normally possess pre-defined strengths with the minimum weights. In

static analysis, the optimum structural designs can be accomplished analytically by

employing some elegant mathematical techniques, such as total least-squares method

or steepest descent method. Unfortunately, sometimes what is “optimum” or “best”

design for one aspect may be a “bad” or “worst” design for another aspect.
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The use of light-weight materials, truss frameworks and components milled from solid

material makes a modem structure usually very stiff in all directions and provides an

ideal solution for the structural optimization problem under a statically-loaded

condition. However, this type of light-weight structures will have many flexural

modes in the low-frequency range and is more likely to be excited into resonance

under normal working conditions which may then cause human discomfort, fatigue

cracking and, at worst, result in catastrophic failure. To this end, the incorporation of

vibration analysis in product design has grown considerably in recent years.

1.2 THE IMPORTANCE OF MODAL TESTING IN STRUCTURAL

ANALYSIS

Many fundamental vibration problems can be investigated and minimized by the use of

theoretical vibration analysis and reanalysis techniques during the design stage of a

manufacturing process.

Due to the advances in numerical methods and the availability of powerful computing

facilities, finite element analysis (FEA) has become the most commonly-used analytical

technique in structural dynamic analysis. In FEA a complicated continuous structure is

usually represented by an assembly of well-defined discrete elements such as shell,

plate and beam elements. To overcome the intractability of the structural modelling,

various procedures and methods of discretisation have been proposed by structural

analysts from time to time. All involve an approximation which, it is to be hoped, is

of such a kind that it approaches, as closely as desired, the true characteristics of the

continuous structure as the number of discrete state variables or degrees-of-freedom

(DoFs) increases. However, many features of mechanical components and/or real

structures are difficult to model or to discretise accurately in a finite element (FE)

b
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model and, the approximations introduced during the structural modelling can lead to

wide variations in the predicted dynamic response of the structure. A survey

‘DYNAS’ [l] has been conducted to show the existence of potential hazards when

carrying out dynamic FE analyses for structures.

The use of such idealistic FE models alone should be considered to be inadequate.

Once the prototype of a component (or the whole structure) has been produced, modal

testing and analysis have to be performed in order to validate the FE model of the

component (or the whole structure) and, if possible, to update the FE model so that it

can be further used in structural analysis. It should be noted that after years of

continued improvement in measurement equipment and development of structural

identification techniques, there is a general agreement that the measured response data

or experimentally-derived modal data are reckoned as more “correct” than their

counterparts obtained from FE analysis, provided sufficient care is given to the

experimental and identification procedures. Also, it should be noted that the

experimentally-determined response and modal models can be used directly in

coupling, structural modification and optimization analyses.

1.3 HISTORICAL DEVELOPMENT OF MODAL TESTING

The theoretical and practical considerations of performing a modal test have been

investigated at length, and numerous erudite papers have been published in the

technical literature over a period of several decades. A brief historical development of

modal testing is presented here, a more thorough description of testing techniques is

provided in some later chapters when specific techniques are classified or referred to in

more detail.
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Before the 194Os, the ‘Peak-Amplitude’ method was widely-used in determining the

natural frequencies and mode shapes of mechanical structures. In 1947, Kennedy and

Pancu [2] recognized the inadequacy of the ‘Peak-Amplitude’ method and suggested

that certain characteristics of vector response plots - the real and imaginary vector

components of vibration response with respect to the applied forces - could be more

useful, and discussed their utility in the conduct and interpretation of modal testing.

Following the ‘characteristic phase lag theory’ of damped structures given by Fraeijs

de Veubeke (1956) [3], Bishop and Gladwell  [4] in 1963 provided the theoretical

background to the problem of resonance testing. In addition to Kennedy & Pancu’s

method, Bishop and Gladwell  also assessed the accuracy of several modal testing

techniques developed by Lewis and Wrisley [5] in 1950, Trasill-Nash [6] in 1958 and

Asher [7] in 1958, respectively. In the 1960s and 197Os, there were major advances

in vibration measurement equipment and different modal testing techniques which are

currently used were established.

More recently, with the availability of computer-controlled measurement equipment

and special-purpose analysis software, both the measurement time and human effort

have been reduced and the reliability and accuracy of measured response and

experimentally-derived data have also been improved significantly. The details of

practical implementation of modal testing have been fully discussed by Ewins [8].

1.4 SCOPE OF PRESENT WORK

The research work presented in this thesis is concerned with structural reanalysis

techniques using experimental data. Since the experimental data play an important role

in structural reanalysis of real mechanical structures, the research work encompasses
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many aspects of experimental modal analysis and, thus, the thesis is mainly formed of

four constituent parts as described next.

(0 - Sensitivity Analysis of Measurement Techniques is the subject of

chapter 2. In this chapter, the classification of measurement techniques is presented

and their characteristics are given. Also, the specific advantages and limitations of

each technique are discussed. The central part of chapter 2 is devoted to investigate the

sensitivity of different FRF estimators with respect to the effects of noise and leakage

for single-shaker modal testing using random excitation. Because of the advent of

computer-aided testing systems and cheap Fast Fourier Transform processors,

broadband testing techniques using random excitation are currently amongst the most

popular vibration measurement techniques. Following the presentation of chapter 2,

the classical multi-input multi-output identification techniques are presented and

examined in chapter 3. There is a general belief that multi-shaker modal testing must

provide a more consistent estimation of resonance frequencies, mode shapes and

damping loss factors than a series of single-point tests, especially when the size of test

structure is large and is assembled from a number of flexible components. However,

practical experience shows that the shaker-structure interactions introduce unwanted

internal feedbacks that cause difficulties in maintaining the orthogonality property of

measured applied forces in a sine-dwell test and in ensuring the incoherence of

measured force auto-spectra in a random excitation test. By carefully considering the

effect of shaker-structure interactions in multi-shaker modal testing, a new closed-

loop model is presented to reflect the ‘true’ or at least ‘more realistic’ physical situation

in vibration measurement. The closed-loop model reveals the hidden feedback paths

which has caused uncertainty in FRFs estimation for many years. As the classical

MIMO identification techniques cannot handle highly correlated measured force signals

in the vicinity of structural resonances, a new frequency domain technique is presented

whereby the inability to estimate the FRFs due to the rank deficiency of measured



I7 Introduction 28

force cross-spectrum matrix, is overcome by using two cross-spectrum matrices that

relate the measured response signals to the external input signals and the measured

applied-force signals to the external input signals.

(ii) - Structural Identification and Model Updating Techniques are

presented in chapter 4. Direct structural identification techniques include all traditional

parameter extraction (modal analysis) methods in the frequency-domain and the time-

domain. A concise description of commonly-used parameter extraction methods is

provided from which the advantages and limitations of each method are addressed. In

practice, only the response model is directly measurable and the mod& model can be

derived from the measured FRF using curve-fitting techniques. The spatial model,

which consists of mass, stiffness and damping properties of the structure, is neither

measurable nor obtainable without the use of an analytical model. In order to

determine the spatial properties of the structure (a good spatial model) which can

reproduce the measured and unmeasured characteristics of the test structure,

reconciliation processes including model correlation and model updating/validation

must be performed. Several commonly-used correlation techniques are presented. By

using these correlation techniques, the comparison between experimental modal data

and FE results can be quantified in terms of real- or complex-valued numbers. Direct

matrix-update methods are investigated and discussed in detail because although they

have been long used by numerous researchers and practicing engineers for updating

analytical/FE models, the reasons why these methods could not produce accurate mass

and stiffness error matrices, even though a large number of modes have been

measured, have not been well understood. Alternative model updating techniques

using the orthogonal constraints and eigendynamic constraints are proposed. The

sensitivity of these techniques with respect to the modal and coordinates

incompleteness, and to simulated random noise is also investigated.
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(iii) - Linear and Non-linear Sensitivity Analysis of Mechanical

Structures constitute the subjects of chapter 5 and 6, respectively. It has already

been stated that a good spatial model must be able to replicate the measured and

unmeasured dynamic characteristics of the test structure. However, there are many

situations where the dynamic response of the updated analytical/FE model does not

satisfy the requirements set by the structural analyst (designer). In such situations, a

practical solution is to alter the response properties by changing/redesigning the spatial

properties of the structure. In chapter 5, first-order and higher-order sensitivity

analyses are presented and their limitations in structural modification analysis are

carefully discussed. By identifying the inherent limitations of sensitivity analysis, an

alternative structural reanalysis technique using Rayleigh quotient iteration is

proposed. Also, another structural reanalysis technique using inverse iteration is

presented. It should be noted that these reanalysis techniques can be applied to some

specific cases in which the mass and stiffness matrices, some eigenvalues and the

corresponding eigenvectors of the original structure, the mass modification and

stiffness modification matrices are provided or given. Chapter 6 presents a new

computation procedure for determining the revised properties in a structural

modification analysis where only the eigenvalues and the corresponding eigenvectors

of the original structure, and the mass modification and stiffness modification matrices

are given. This method has a distinct advantage because coordinate incompleteness

will not introduce prediction errors provided the responses are available at the

modification sites. The sensitivity of this reanalysis technique with respect to modal

incompleteness and to simulated random noise is also investigated.

(iv) - An Experimental Case Study is presented in chapter 7. The physical

expansion techniques are presented to resolve the incompatibility problem between the

experimentally-derived and analytically-derived modal data sets. Central to this

chapter are the results obtained on actual modified structures. They represent the

. . I
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ultimate test of the capability of non-linear sensitivity analysis in predicting the effects

of a simple practical modification on a real structure.

Finally, chapter 8 presents the general conclusions and contributions of the current

work and suggestions for further research are also recommended.



cl2 SENSITIVITY ANALYSIS OF
MEASUREMENT TECHNIQUE FOR
SINGLE-SHAKER MODAL TESTING

2.1 INTRODUCTION

The experimental determination of the modal properties of mechanical structures is

typically a costly and technically-demanding task that requires both measurement and

analytical expertise. The reliability and accuracy of measured data are very important

as they are required to create a modal model or a spatial model of the mechanical

structure. Success in structural identification, modal updating, sensitivity analysis,

structural assembly analysis and structural optimization lies in the ability to obtain

‘good’ measured results.

The importance of the reliability of measured data was realized by the Naval Research

Laboratory (USA) which conducted the “Round Robin” survey in the early 1960s [9].

This survey invited some twenty laboratories in the USA, all of whom were actively

engaged in performing structural dynamic testing, to take part in obtaining the mobility

data of some pre-defined test structures. Their respective mobility data sets were

collated and compared, resulting in the realisation that a high degree of unreliability

existed in mobility measurement techniques at that time. Some years later, in the late

197Os, a similar survey was conducted in Europe under the codename  “SAMM’

(State-of-the-art Assessment of Mobility Measurements)[  lo]. Although this survey

indicated that there existed considerable scope of improvement in some of the testing

techniques used, it highlighted that the reliability and accuracy of measured mobility

_I  _
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data still depended on the competence of modal test practitioners and that considerable

care was required during the measurement stage.

More recently, the availability of sophisticated computer-controlled measurement

facilities makes the acquisition of frequency response functions (FRFs)  much easier,

much faster and possibly more reliable than in the past. However, the reliability and

accuracy of measured data is very difficult to justify unless a thorough understanding

of the sensitivity of measured FRFs with respect to different excitation methods and

different FRF estimators is established.

2.2 OVERVIEW OF MEASUREMENT TECHNIQUES

Over the years, measurement techniques have been developed continuously to improve

the accuracy of measured FRFs and to reduce the testing time, and therefore the cost,

of experimental modal testing. Historically, these measurement techniques have been

categorised  into two main groups; Phase-Resonance methods and Phase-Separation

methods.

2.2.1 PHASE-RESONANCE METHODS

Phase-Resonance methods consist of those procedures that attempt to establish natural

modes of vibration by direct measurement of the test structure’s forced vibration by

multi-point excitation.

In order to establish natural modes of vibration, multi-shaker excitation is used to exert

sinusoidally varying forces on the test structure. The frequency of excitation and the

relative force levels of the electrodynamic  shakers are adjusted to isolate the target
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mode response from all other modes. The modal properties are then taken from direct

measurement of the forced vibration response. A significant advantage of these

methods is that it can be used to determine the modal properties’ of a structure with

high modal density i.e. close modes. However, in tuning the shakers to excite the

mode of interest, one should have a reasonably good knowledge about the nature of

that particular mode and the tuning procedure is very cumbersome. As a result, Phase-

Resonance methods are rarely used because they are time-consuming, and therefore

costly. In addition, their success sometimes seemed to be dependent upon the

competence of the modal test practitioners.

2.2.2 PHASE-SEPARATION METHODS

Phase-Separation methods consist of those procedures that attempt to identify modal

properties of the test structure by post-processing the measured frequency response

functions or time domain free response data.

There are a number of test and analysis procedures that have been proposed and

developed by modal test practitioners to extract the modal properties by post-test

analysis of FRFs which are obtained using sine-sweep or other excitations. In the

past 20 years, the introduction of the Fast Fourier Transform (FFT) algorithm, the

availability of digital data processing equipment and powerful mini- and micro-

computers has led to the development of test procedures that make no attempt to excite

the test structure at discrete frequencies. Instead, all modes within the frequency range

of interest are simultaneously excited with either a single broadband randomly varying

force using an electrodynamic  shaker, or multiple uncorrelated broadband randomly

varying forces using multiple-shakers, or an impulsive force using an instrumented

hammer. The measured response data are then digitally processed to yield estimates of

c ,
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the FRFs, from which modal properties are extracted using any one of several modal

analysis curve-fitting techniques [8].

In addition to the frequency-domain identification procedures, other workers,

including Ibrahim et al. [ 111, have proposed analysis procedures that attempt to obtain

modal properties (natural frequencies and damping loss factors) by post-test analysis

of measured time-domain free response data. However, as noted by Ewins [8], many

of these time domain identification procedures currently lack the ability to identify the

mass-normal&d mode shapes of complex structures which play a significant role for

model updating and structural modification analysis because only free-response data

are recorded.

Although each approach has specific advantages and disadvantages, the selection of a

testing technique is usually based on the type of equipment available rather than its

suitability for a particular job. In what follows,

estimators with respect to the effects of noise and

testing will be investigated.

the sensitivity of different FRF

leakage for single-shaker modal

2.3 IDENTIFICATION OF A REALISTIC MEASUREMENT-SYSTEM

MODEL

Most FRF measurement methods require the attachment of an electrodynamic  shaker

and transducers to the structure under test. The transducers convert the force

transmitted to the structure and the response of the structure to electric signals which,

once filtered through signal conditioning equipment, are digitised and used to develop

estimates of FRF in a spectrum or frequency analyser. However, because of its very

nature, the excitation mechanism interferes with the test structure. Ewins [S] inter alia,
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has noticed that if this interference is not controlled to negligible proportions, it may

result in the acquisition of poor data, with the consequence of loss of quality in the

final model of the structure.

Shaker-structure interaction is always a concern in FRF measurement because it

introduces the problem of “force drop-out” at structural resonances. In recent years,

there have been a number of publications [ 12- 141 which document the force drop-out

phenomenon at structural resonances and give excellent models of both the mechanical

and electrical systems for an excitation mechanism. Also, there is a focus of interest in

the estimation of FRFs of mechanical structures and various alternative FRF

estimators have been introduced and investigated [ 15 171 for single-shaker modal

testing using random excitation. Unfortunately, none has attempted to investigate the

effect of shaker-structure interaction on those FRF estimates although it is obvious that

the inevitable physical constraints cause such FRF measurements to be inherently of a

closed-loop form rather than of the open-loop form usually supposed to apply. As

will subsequently be made clear, the practical importance of the analysis of a FRF

measurement system with feedback is quite significant.

Figure 2.1 shows a traditional measurement-system model used to describe the FRF

measurement when noise is present on both measured force and response signals.

This model has widely been accepted and used to determine the characteristics of

conventional FRF estimators, lH(o) and OH, which are available in most

commercially-available frequency analysers.
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f(t) x(t)
b SYSTEM

Figure 2.1 Measurement-system model

Goyder [ 181 and Mitchell et al. [ 171 have pointed out that an estimator can extract the

FRF (H(o)) with minimum errors incurred through noise by using the ratio of two

complex cross-spectral estimates. The computation scheme of Figure 2.1 can be

extended to include the external input signal r(t), broad-band white noise, generated by

a signal source generator as shown in Figure 2.2. This measurement technique was

used by Wellstead [ 19,201 for determining transfer functions in control systems with a

feedback path, and the estimator was called the “instrumental frequency response

function estimator” (OH).

P/A Force
Shaker Transducer

f(t)
SSG + F(o) e * H(o) x’(t)

&

7
r(t) m(t) n(t)

3H(o) = -
&f @a

Figure 2.2 An open-loop measurement-system model with external reference signal
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However, the models shown in Figures 2.1 and 2.2 cannot be used to explain what

causes the drop-out ‘notches’ in the input force spectrum at structural resonance

frequencies. Since a realistic model is vital in mathematical analysis, an alternative

model for the measurement-system is proposed which seeks to reflect the true physical

situation of a FRF measurement.

In order to establish a realistic measurement-system model it is necessary to

characterise in detail the components of the excitation mechanism consisting of a force

transducer and an electrodynamic shaker.

A force transducer is the simplest type of piezoelectric transducer and its configuration

is illustrated in Figure 2.3. The relative displacement of the upper and lower plates of

the cell generates a charge, q, which is proportional to the transmitted force.

;q

Fimre  2.3 Piezoelectric force transducer

The force transducer is placed between the test structure and an electrodynamic shaker

so it can be modelled as a spring with stiffness I$. By considering the

electrodynamic shaker to have a suspension stiffness k,, and an armature mass m,, a

greatly-simplified diagram of an excitation mechanism with the test structure as used

for a point FRF measurement is shown in Figure 2.4.
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- stiffness of force
transducer

k, - suspension stiffness
of shaker

Figure 2.4 Simplified diagram of a point FRF measurement

It can be seen that by transforming the above figure into a block diagram, a closed-

loop model is established for a point FRF measurement as shown in Figure 2.5. The

signal-source generator (SSG) provides a driving signal r(t), assumed constant, to a

power amplifier. The dynamic response of the power amplifier is assumed to be linear

and thus to produce constant driving force p(t) on the armature of the shaker . The

measured force f(t) is an internal force across the force transducer with uncorrelated

measurement noise, m(t), and the measured acceleration is xl’(t) which is

contaminated by uncorrelated measurement noise, n(t).

where H,(o) = ’
k, - m,w2

Figure 2.5 Block diagram of a point FRF measurement with noise
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The use of a reference test signal r(t) for an estimate of FRF OH has been

established for many years in control engineering and the associated basic statistical

properties have been described by Wellstead [19,20] for a single feedback control

system. However, there are two interrelated feedback paths existing in a point FRF

measurement, as shown in Figure 2.5, and the following sections reveal the effect of

noise and the bias error due to leakage on FRF estimators.

2.3.1 THE EFFECI OF NOISE ON FRF ESTIMATORS

With reference to Figure 2.5, one can simplify the block diagram to produce an

equivalent single-input/two-output system as illustrated in Figure 2.6. It is noted that

the measured force signal is one of the output signals for a point FRF measurement.

Figure 2.6 shows that only the driving signal r(t) generated from the signal-source

generator is not influenced by the excitation mechanism and hence is the only input

signal for a point FRF measurement. Here one can readily observe that f(t) contains

the characteristics of the test structure as well as of the excitation mechanism itself.

1where

r(t)

f(t)
TIW ) f(t)

n(t)
Xl(t)

T2(w) ’ ) x1 ‘0)

Tr(o) =
Hem(~)Hs(~)Kfg

1 + Kfs(Hs(@+H11(@)

T2W  =
K,,(~)Hs(~)KfgH1  I(~)

1 + Kf,U-bW+HdW)

Figure 2.6 An alternative model of a point FRF measurement



q Sensitivity Analysis of Measurement Technique 40

It is reasonable to assume that the noise terms m(t) and n(t) are uncorrelated with each

other and with the input r(t), and therefore, the following frequency domain equations

apply to this model.

%I@) =

Sff(O)  =

Sxrk@) =

SrfW =

SC&N =

SfqW =

Sf,(O> = S,(o) = S,,,(o) = S,(o) = 0 (2.1)

SfftN  + snm(o) = I Tl(o) 12 S ,.‘r (CO) + S-(o) (2.2)

Sx&N + SnI@) = I TV 12 S lr (C O) + S,(o) (2 .3

SrfW = Tl(o) S&9 (2.4)

Sr,,(N = 7’2W S,(o) (2.5)

Sfx,W  = TlW*T2W  &r(o) (2.6)

The conventional frequency response function estimator of Hrr(o) is described by

d--h&O =
sfx,wo TdN*T2WSr(@ Hd@

Sffw = IT1(w)12S,(o)+S,,(o)  = l+&,,(w)

Sffm)

(2.7)

Mitchell [ 151 has shown the same result by using the model given in Figure 2.1 and

has pointed out that the input force spectrum drops drastically near resonance, but

without mathematical explanation because the model gave no information on the

structure-shaker interaction. In contrast, the closed-loop model reveals that the

measured force signal contains the characteristics of the test structure as well as of the

excitation measurement. The auto-spectrum of the measured force is expressed by :

Sfr-(o) = lTl(o)12S,(o)  = 1 Hem(o)Hs(o)Kfg
l+Kf,(Hs(N+Hll(N)

12SxT(@ (2.8)

.
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By representing the receptance of the test structure in terms of an effective stiffness

(k,) and an effective mass (m,) at a structural resonance, equation (2.8) can be

rewritten as:

When the excitation frequency (0) approaches the structural resonance frequency (q),

Shl(o) is noise-free but the noise-to-signal ratio decreases due to the peak response of

force spectrum &f(o), if the structural resonance frequency is greater than the

combined structure-shaker resonance frequency in equation (2.9). There is a drastic

change in the small frequency range around the structure’s resonance. The force

drops to a minimum so that the noise-to-signal ratio increases from a minimum to a

maximum, and when the excitation frequency is increased beyond the structural

resonance frequency, the noise-to-signal ratio decreases again.

An alternative frequency response function estimator of Htt(o) is described by

S
2H11(0) =

xl+“)  = ~T2W2S,(~)+%nW  = Hllcl i- S,n(~)

SXlX@)
) (2.10)

SXl’f  (0) T2W*TlW%W

One can readily observe that this estimator is contaminated only by the noise-to-signal

ratio of the measured response. In the closed-loop model, it can be shown that the

auto-spectrum of the measured response is given by

SXlXlW = IT2(o)l%,(o) = 1 h&OWWG,H1  d@ 12s,cw>

1 + &,(H,(W+Ht  r(W)
(2.11)

. , .I
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When the excitation frequency approaches a structural anti-resonance frequency, the

noise-to-signal ratio increases to a maximum as the response auto-spectrum SXIXl(o)

becomes a minimum. Equation (2.11) shows a drop in the response auto-spectrum

resulting from the nature of Hrr(o) at a structural anti-resonance. When the excitation

frequency is increased beyond the structural anti-resonance frequency, the noise-to-

signal ratio decreases. At resonance one recalls that Smm, the input noise, can become

significant. However, OH is insensitive to such effect, and, moreover, the

response at resonance is still large compared to S, thus allowing equation (2.10) to

provide a better estimate of Hlr(o) than equation (2.7).

Since tH(o) is a lower bound estimator and OH is an upper bound estimator, one

can calculate the average or the geometric mean of lH(o) and 2H(o) to obtain another

FRF estimate. The expression for the FRF estimator, “H(o), which is the geometric

mean of lH(o) and zH(c0) and lies between the upper and lower bound of the FRF

estimate, is given as :

vHld@ = dM@ 2Hd6-G = WIN-Q (1:

(2.12)

This estimator has taken the contamination in measured force and response auto-

spectra into consideration. In the case when the noise-to-signal ratios for measured

force and response signals are ‘small’ and approximately the same, .Hrr(o) should

provide the better picture of the true FRF. However, practical experience and the

afore-mentioned analytical analysis show that those noise-to-signal ratios vary with the

excitation frequency and their magnitude depends on the structure’s properties as well

as the excitation mechanism, hence, this FRF estimator is unlikely to provide a

meaningful result from a mathematical point of view.
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The normal frequency response function estimators of Hrr(o) based upon equations

(2.7) and (2.10) are systematically in error when the measured signals f(t) and x’(t)

are contaminated by noise, m(t) and n(t). This difficulty can be avoided by

introducing the independent external input signal r(t), as shown in Figure 2.5, where

r(t) is a zero-mean random signal. Because r(t) is independent of m(t) and n(t), and is

statistically orthogonal to the disturbances m(t) and n(t), the cross-spectra S,(o) and

S,(o) are identically zero. Hence, the instrumental frequency response estimator is

given by:

3H11(~) =
SrxlW Srx,@)  = T2@&(~)

Srf (0) =  Srf@) WJ~S,(~)
= Hll(o) (2.13)

Equations (2.7) and (2.10) show that rH(o) and 2H(o) give biassed results in the

presence of measurement noise. On the other hand, the instrumental frequency

response function estimator OH does not suffer from this limitation and yields gain

and phase estimates which are well-behaved, provided that due attention is paid to the

statistical error caused by windowing for a finite amount of data. This is discussed in

more detail in Section 2.3.3 below.

2.3.1.1 ORDINARY COHERENCE FUNCTION

Figures (2.5) and (2.6) show that the measured force and response signals, f(t) and

x’(t), are jointly related, but they do not quantify the degree of correlation. Such

information is provided by the ordinary coherence function yfXl(o)2 defined by

“IfXlW2  =
1 Sfx,*W I2 I sf,l*(o) 12

=  SffW SXl’Xl’W
=

SffW &lklW
‘yrf w2 %x1’W2

(2.14)
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which is the result following from the fact that

~SfqW2 = ITr(o)*T~(o)S,  (@I2 = (ITl(N2 S,(~))(ITI(~Y~ S,(N)

= sfftwx,x,w (2.15)

YrfW2 = I&da2 = I’MWd~)12  = G-t@
sr@JGff (0) &r(~)SffW SffW

(2.16)

“Irq’(N2  =
IS,,,@o)l2 ~T2(WMo)12  Sxlxl(@

w~)sx,~x,w  =  hT~~)sx,~x,w  =  Sq’x@-Q
(2.17)

One can visualise the ordinary coherence function as being a normalised coefficient of

correlation between the measured force and response signals evaluated at each

frequency. In practice, the ordinary coherence function is always greater than zero but

less than unity. When the ordinay coherence function is less than unity, one or more

of the following four main conditions exist.

1. Extraneous noise is present in the FRF measurements.

2. Resolution bias errors are present in the spectral estimates.

3. The system relating f(t) and x’(t) is not linear.

4. The measured response x’(t) is due to other external inputs besides r(t).

The ordinary coherence function shown in equation (2.14) can be rewritten as :

Yfxl’W2 =
I Sfx,W I2

Sff(W  sx~?q’(w
(2.18)

This formulation can be used to determine the OH estimate from the rH(o) estimate

in the spectrum analyzer. Hence if the coherence is unity, the three estimates, OH,

zH(c0) and “H(o), for calculating the frequency response function are identical.

b /’
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2.3.2 VARIANCE ERROR ON FRF ESTIMATORS

When analysing the measured force and response signals for random excitation, it is

not sufficient to compute Fourier Transforms because the signals are not deterministic

in nature. Additional consideration must be drawn to the statistical reliability and

accuracy of FRF estimates. Generally, it is necessary to perform an averaging of

several individual time records, or samples, to reduce the random fluctuation in the

estimation of FRFs.

These time records are normally independent, so that if m time records are averaged,

the variability of the estimates will decrease inversely with m and will depend on the

degree to which f(t) and x(t) are correlated. The variability of the magnitude and phase

of the rH(o) estimate is given approximately by

(2.19)

where the circumflex indicates an estimated quantity.

The variability of the instrumental FRF estimator can, to a first approximation, be

assessed by taking a Taylor series expansion about the expected values of HI l(o). In

this manner it can be shown that :

around resonance;

v~u&w1 = Vmq&dW)l = 1, smmw
lH&012 2m S,(o)lTl(o)l

)

and around anti-resonance :

v~u&d~N = vam~d~>l = &$ MN
~I-M02 WUT2W

>

(2.20)

(2.21)

L ,
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Here, the functions Tr(o) and T2(0) are the equivalent closed-loop transfer functions

used in Figure (2.6). The desirable feature of the 3H(cu) estimate is that the variance

of its magnitude and phase is inversely proportional to the number of averages (m )

and the spectral power associated with r(t).

2.3.3 BIAS ERROR DUE TO THE EFFECT OF LEAKAGE ON FRF

ESTIMATORS

As mentioned in the preceding section, noise is not the only source of error in FRF

measurement. The frequency resolution obtained from an FFI’-based spectrum

analyzer is l/T Hz, where T is the record length employed. The process is not

equivalent to a frequency sweep using sinusoidal excitation where readings are taken

at discrete frequencies. The spectral components obtained from an FFT-based

analyzer are average values across the band of the FFI’ “filter”. Therefore, maxima

(resonances) in the FRF tend to be underestimated while minima (anti-resonances)

tend to be overestimated. This inaccuracy is a bias error and is known as ‘leakage’.

A model for the measurement of a noise-free point FRF measurement is presented in

Figure 2.7 in which a single-degree-of-freedom (SDoF) system comprising a mass

(m), spring (k), with hysteretic loss factor (q), and its natural frequency (or) is excited

with a force generated by a reference random signal of constant spectral power, R(o).
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where Hll(@ =
1

k(l+iq) - mm2

I Figure 2.7. A noise-free point FRF measurement

The relationship between the displacement signal and the input signal produced by the

random signal generator is shown as follows :

Xl@3 _ &.rn(~)Hs(~)H~  dW$,
R(m) 1 +Kf,WsW+Hl  l(N)

The relationship between the force signal and the input signal is :

F(w)= K&JNU~)H~  I(O)
R(N 1 +Kf,G&W+Hl  l(6~))

(2.22)

(2.23)

For a SDoF system employing the symbols used in Figure 2.4, equations (2.22) and

(2.23) can be rewritten as:

Xl(@) Hem(a)_

R(a) ~k-m&+i~k)(k,-m~~o2)+(k-mc$+iqk)+(k,-m&)
%

F(o)= &&) m(%2-d+irl%2)

R(a) 4k-mo2+iqk)(k,-m,02)+(k-m&+iqk)+(k,-m@)
%

(2.24)

(2.25)
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As the stiffness of the force transducer approaches infinity, the following approximate

expression is derived :

F(w)= I-L&O m(w2-d+irlw2)
R(o) Ii

(2.26)
ct&++i~c$)+(;;;ks - m*,l

This last expression is similar to the equation derived by Cawley [21].

The estimates of the spectra produced by an FFT-based  analysis are derived as

follows:

sqfm = ‘yGgi2 (k-m@+iqk)R,W(Q-o)dQ

(2.27)

(2.28)

where W is a function of the window,eg. Boxcar or Hanning and

G(Q) = +k-mR2+iqk)(k,-m,@)+(k-m@+iqk)+(k,-m&2)R fs (2.29)

Substituting the estimates of the auto- and cross-spectra shown in equations (2.27)

and (2.28) into equation (2.10),  the expression of OH for a point FRF

measurement is derived,

2H11(~))  =
Sxrx@) m

IG(R)12
(2.30)

i~~~~~2 (k-m@+iqk)R,W(R-o)  dQ
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0

Setting A =
I

lILn(~)12
IG(R)l*

ROW@o)dn

B = lH,,(a)l* (Q)* kw(n o)dn
IG(Q)l*

gives

2H11W  = A = 1
m(Aq*-B+iAq&*) m(o,*- : +iTlo,*)

While the true frequency response function is given by

H&n) =
1

m(o,*- o*+iq cc,*)

(2.3 1)

(2.32)

(2.33)

(2.34)

Comparison of equations (2.33) and (2.34) reveals that the expressions for the FRF

estimate, 2Hlr(o), and the true value, Hll(o), are of the same form and are identical

if B/A = c$. This condition is only satisfied at a very high frequency resolution. In

general, the estimate 2H11(0)  lies on the true modal circle but at different positions

around the circle.

By using a similar analysis, one can derive the FRF estimate rHll(o) based on the

cross-spectrum and the measured force auto-spectrum which are defined as follows :

Sfx,W =
‘II::* (k-mR*-iqk)R,W(Q-o)dQ (2.35)

SfftO)  =
‘~~~~112 [(k-mR*)*+(?lk)*]R,W(R-o)dQ (2.36)

L,
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Using the estimates of the cross- and auto-spectra derived in equations (2.35) and

(2.36), the estimate of rHll(o) is expressed by :

00

(k-m@-iqk)&W(n-o)dQ

1HllW = (2.37)

[(k-m@)2+(r\k)2]R0W(Q-o)dQ

now setting
00

c= I ‘Hem(*)‘2 Q4RoW(i2-o)dQ
IG(Q)P

gives

lHll(N =
Ac$-B-iA?lo,2

m(Aq4-2B%2+C+Aq2&4)

wp-29+(32+q26&4
=

~4-2Sg+$~pwp
2H11W

A

(2.38)

(2.39)

Hence, the estimates of rHll(o) have the same phase as those of 2H11(0) but in

general the magnitudes are smaller and, as a result, the estimate lHll(o) always lies

inside the true model circle. If the frequency resolution is increased, so reducing the

leakage error, lHrl(o) tends towards zHrt(0) which tends to the true FRF and all

three FRF estimates (rHll(o), 2H11(0) and “Hll(o)) give the correct magnitude and

phase of the frequency response data.

The formulation of the instrumental FRF estimator, 3H11(0), is different and requires

the derivation of the estimates of two cross-spectra shown as follows :

L
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srx,w = J H;;) &W(SLo)dQ

G-w = J “;,;h:’ (k-m@+i?lk)&W(R-o)ti

(2.40)

(2.41)

Using these estimates of the cross-spectra, the estimate of 3H1 l(o) is expressed by :

-=&n(n)J IG(Ql2
G*(R)R,W(Q-o)dR

3H11W  =
S,X,(@ a
S&3) =  O”

(2.42)

J KxdW
IG(R)12

G*(Q)(k-mQ2+i~k)R,W(R-o)dR

where G*(Q) is the complex conjugate of G(R)

It is very difficult to express this complicated equation in terms of functions of Q. No

simple or enlightening relation between 3H11(0) and the true Hll(o) exists, and so

computer simulation is employed to explore the bias error of the 3H11(0) FRF

estimator.

Two special cases are considered to illustrate the relationships between 3Hr1(0) and

~Hrr(c0)  and between 3Htt(0) and rHll(o).  First, it is important to assume that the

relationship between the generator signal r(t) and the force applied to the armature of

the shaker p(t) is simple and linear so that the transfer function I&,(o) is constant.

(i) When the stiffness of the force transducer (I$) and the suspension stiffness of the

electrodynamic  shaker (k,) are much greater than that of the SDoF system, (k), the

following approximations can be made :
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R,W(S2-o)dR (2.43)

Srf(co) = Hem (k-mQ*+i?jk)&W(R-o)dR
IG(R)l*

(2.44)

Hence in this case, 3Hrr(0) is approximately equal to 2Ht1(0).

(ii) When the stiffness of the force gauge (Kfs) is finite, and the mass (m,) and

suspension stiffness (k,) of the armature for the electrodynamic  shaker are very small,

a (k-mR*+iqk)&W(R-o)dQ (2.45)

- [(k-mR*)*+(~k)*]R,W(R-o)dQ (2.46)

Here sHll(0) is approximately equal to lHll(o).

Jenkins and Watts [22] have shown that the effect of windowing upon a frequency

response function estimator is to introduce a phase-dependent bias error. One can

follow the procedure provided in [22] and use the Taylor series expansion about the

expected value of l&11(0)1 to obtain the approximate expressions shown below :

Bias [ I&ll(o)l ] = EL ~3fhN  - IHllON 1

- Wo)[iW2 - &4b> 1

(2.47)

Bias [arg&ll(o)] = J%rg&ll(~) - wHdN1

(2.48)
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where the dash notation denotes derivatives with respect to angular frequency and

T = the sample duration

M(o) =  IHrr(o)l

W0 =  argHll(@

T(m) = arg Srx,(@) + arg SrfW

C = a constant dependent upon the time-window shape

It is noted that the gain estimate has a bias term which is proportional to the square of

the rate of change of arg Hit(o) with frequency. This implies that the bias error will

become significant in a small range around a structural resonance.

2.3.3.1 COMPUTER SIMULATION RESULTS

Generally speaking, the external reference signal generated by the signal source

generator, r(t), is uniform over a wide frequency range. When the electro-mechanical

response of the shaker armature is simple and linear a constant force, p(t), is generated

and applied to the armature of the shaker. Therefore the maximum response occurs at

the resonance frequency of the combined shaker-structure system while at the

resonance frequency of the structure itself the force input to the structure is reduced

considerably since most of the available force is used to accelerate the armature of the

shaker.

Consider a single-degree-of-freedom system with mass m, and stiffness k, and

hysteretic loss factor q, excited through a force gauge with stiffness Kf, and a shaker

with effective mass m,, and effective suspension stiffness k,. The predicted variations

of the FRF estimators for different armature suspension stiffness of the shaker are

shown in Figure 2.8. It should be noted that the value of H&o) is unity so that the

external input signal has a uniform frequency spectrum R,. The integration of
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equations (2.30),  (2.37) and (2.42) was carried out numerically in which the

bandwidth of true spectra was limited. A Hanning window was chosen in all cases.

The three curves in Figure 2.8 show how the estimates lH(o), 2H(o) and &I(o) vary

as the ratio of the armature suspension stiffness for the shaker to the stiffness of SDoF

system varies. When this stiffness ratio was small, fi(o) was close to lH(o). When

the ratio was large, 3H(c0) was close to OH. These results confiied the predictions

given in the preceding section. The FRF data were then analysed by using a SDoF

curve-fitting algorithm [8] and the bias errors for the resulting modal properties of the

SDoF system are shown in Figures 2.9(a)-(d).

Figure 2.9(a) shows a graph of the bias error on natural frequency estimate against the

stiffness ratio. The natural frequency of the SDoF system is overestimated when the

stiffness ratio is below 0.1% for rH(o), 0.1% for OH and 1% for OH FRF

estimates, respectively. The natural frequency is underestimated when the stiffness

ratio increases. All estimates of natural frequency approach the correct analytical

solution when the stiffness ratio is equal to or greater than 10. Figure 2.9(b) shows a

graph of the radius of the modal circle against the stiffness ratio from which it can be

seen that only zH(0.1) always lies on the true modal circle. Both the curves lH(6.1) and

sH(0.1) lie inside the true modal circle in most cases. Figure 2.9(c) shows a graph of

the bias error on the damping loss factor against the stiffness ratio. The damping loss

factor is overestimated for all lH(o) FRF estimates. When the stiffness ratio is equal

to or greater than 10, the zH(o)and  OH FRF estimates give accurate results for the

identified damping loss factor. The bias error on the modal constant against the

stiffness ratio is shown in Figure 2.9(d) from which it can be seen that those estimates

produce accurate results when the stiffness ratio is equal to or larger than 10.
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Figure 2.8 Predicted variations of the FRF estimators for different armature
suspension stiffnesses of the shaker (MS = 1 %)
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3gure 2.9(a)-(d) The effect of the armature suspension stiffness of the shaker on the
estimations of the modal properties (M, = 1 %)
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Figure 2.10 Predicted variations of the FRF estimators for different armature
suspension stiffnesses of the shaker (M, = 10 %)
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Figure 2.11 (a)-(d) The effect of the armature suspension stiffness of the shaker on
the estimations of the madal properties (M, = 10 %)
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Figures 2.10 and 2.11 (a)-(d) show the computational and analytical results of different

FF@ estimators when the mass of the armature for the shaker increased from 1 percent

to 10 percent of the effective mass of the SDoF system. The trends of identified

modal properties shown in Figures 2.1 l(a)-(d) are similar to the ones mentioned

earlier.

Analogue Computer Tests

The predictions of the previous section have been checked using an analogue computer

and a Solartron 1202 analyzer. The analogue computer was set up as a SDoF system

with a natural frequency of about 16 Hz and a Q factor of 20 (q-.05). The properties

of the excitation mechanism were varied and a uniform power spectrum was applied to

the armature of the shaker (m,). The frequency resolution was adjusted to 1.25 Hz

and a Hanning window was used in all the measurements.

The results of this simulation are shown in Figures 2.12 and 2.13. Good agreement is

indicated between these results and the analytical results being calculated numerically.

RECEPTANCE (Mel%) EAL380

- 6 .0  .- - 4 .0 -2.0 0.0 2 . 0 4.0 6.0

REAL

Figure 2.12 Analogue computer simulation results (M, = 1 %)

. . . . .
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Figure 2.13 Analogue computer simulation results (M, = 10 %)

2.4 CONCLUDING REMARKS

In this chapter, a closed-loop model for a single-shaker FRF measurement scheme

with the potential of uncorrelated measurement noise is developed. This model

explains the variation in the input force spectrum near structural resonances . It also

reveals the relationships between the measured force and acceleration signals to the

properties of a test structure and the excitation mechanism.

In Section 2.3 it is proved that even if a specified amount of uncorrelated noise exists

in the measured force and acceleration, the overall percentage of the noise-to-signal

ratio for tH(o) and OH FRF estimators is no longer a constant because of the

frequency-dependent characteristics of the auto-spectra. Therefore, the reliability of

both conventional FRF estimators is greatly influenced by measurement noise,

especially in the vicinity of structural resonances and anti-resonances. In contrast, the
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instrumental FRF estimator $I(o) is a noise-free estimator whose variance is directly

reduced by increasing the number of averages. Nevertheless, the instrumental FRF

estimator OH has a phase-dependent bias error due to leakage (windowing effect).

Bias errors for the different FRF estimators have been studied analytically and

numerically. The computer-simulation results show that the only estimate which will

lie on the true modal circle is OH. When the ratio of the armature suspension

stiffness for the shaker to the effective stiffness of the structure is large, both OH

and 3H(o) FRF estimators give very accurate results for the modal properties using a

SDoF circle-fitting technique.

Unlike rH(o) and OH, 3H(o) requires another channel of data acquisition, and thus

requires more expensive equipment. It should also be noted that the damping of the

structure will affect the time delays between the reference source signal and measured

force signal, and any large time delays in F(o) will cause rapidly changing phase

characteristics in S&o) and S,,(o) and thus increases bias in the gain estimates.



m A CLOSED-LOOP MODEL FOR
MULTI-SHAKER MODAL TESTING

3.1 INTRODUCTION

The preceding chapter was devoted to a proper understanding and description of the

effect of feedback paths on currently-used FRF estimators for single-shaker modal

testing. In some cases, a single shaker is unable to accomplish the requirements of a

particular test, such as a need for application of large forces and linearization of non-

linear structures. In such situations, one solution to these problems is to use two or

more shakers acting together. There are various forms of excitation signal for multi-

shaker modal testing amongst which the sine-dwell and random excitations are the

most common forms employed by modal test practitioners.

For a multi-shaker sine dwell test, the phase difference of the input signals applied to

electrodynamic  shakers is controlled in order to maintain the orthogonality property of

shaker-applied forces. However, test experience indicates that interaction between the

test structure and the shakers introduces phase distortions between the shaker-applied

forces even though the input signals to the shakers are well controlled. This problem

was reported to be overcome by introducing a time delay for one shaker force signal

relative to the others, thereby adjusting for any phase distortions [23]. However, this

task is time-consuming and requires considerable operator input. For multi-shaker

random excitation tests, uncorrelated signals are introduced to the shakers but the

correlation of the shaker-applied forces (by the structure itself) not only varies from
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shaker to shaker, but also as a function of frequency at each shaker. This makes it

considerably more difficult (than for sinusoidal excitation) to maintain the required

incoherence of the shaker-applied forces.

3.2 MOTIVATIONS FOR MULTI-SHAKER MODEL TESTING

In the aerospace industry, a large complicated flexible structure is normally assembled

from a number of components through numerous joints and inherently has a significant

amount of damping. During single-point excitation testing of this structure, there may

exist large differences in the response amplitudes at various locations because of the

dissipation of the excitation energy within the structure. When such a situation occurs,

the use of multi-shaker modal testing may be preferable to a series of single-point tests

as two or more shakers acting together are able to provide a better energy distribution

in a test structure, resulting in a more consistent estimation of resonance frequencies,

mode shapes and damping loss factors.

Another advantage of multi-shaker modal testing is the ability to excite all modes in a

frequency range of interest. This is in contrast to single-shaker modal testing where (i)

some modes cannot be observed if the force is applied to a location close to the node

point for some particular modes, and (ii) inconsistencies may occur in the measured

FRFs as the set of force and response transducers are moved to all the required

locations on the structure.

Another deficiency of single-point excitation is that, in an effort to excite remote

regions in a large structure, the single point forcing level is sometimes increased to

excessive levels, thereby inducing non-linear behaviour, especially in the region of the

excitation point. With multiple-input excitation, the response amplitudes across the
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structure will be more uniform, with a consequent decrease in the effect of non-

linearities.

3.3 CLASSICAL MULTI-INPUT MULTI-OUTPUT SYSTEM

IDENTIFICATION THEORY

For multi-shaker modal testing, the theoretical basis of existing FRF analysis is well

documented in a number of publications [24-261. The existing theories have been

developed based on the general case of n inputs and m outputs measured during a

modal test as shown in Figure 2.1 from which an open-loop multi-input multi-output

(MIMO) system is identified.

Figure 3.1 Traditional multi-input multi-output (FRF Measurement) Model

By considering the test structure to be a linear and time-invariant system, a measured

output (response) signal X’(o) which is contaminated by an output noise is expressed

as :

Xi'(O) = 2 Hij(CO)  Fj(O) + Ni(OI)
j=l

(3.1)
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Using matrix notation, the measured output vector of a MIMO system is written as :

{X’(o)) = t&F@)] UTW + (NW (3.2)

The complex conjugate of (X’(0)) is :

(X’(o))* = [HxF(~)I* IF(O))* + (N(~)I* (3.3)

Post-multiplying both sides of equation (3.3) by {F(o))T and taking expected values

give the following matrix equation in terms of output/input and input cross-spectrum

matrices as the measured output noise vector and input vector are not correlated.

[SX’F (011 = [HxF(~J)I* [SFF(~)I (3.4)

As a result, the least-squares estimate of the FRF matrix can be computed by :

IHxF(~)I  = [bd~)I [SFF(~)I-~ (3.5)

Although most of the literature considers the effect of noise in measured output signals

only, in practice, both the measured input and measured output signals are

contaminated by uncorrelated random noise. The measured input (force) vector can be

considered as a summation of the input vector (F(o)) and a measurement noise vector

{M(o)) as :

Substituting equation (3.6) into equation (3.3) gives

(3.6)
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{X’(o))* = [HXF(a)l* ((F’(@) - UWN)*  + WWl* (3.7)

Post-multiply both sides of equation (3.6) by (F’(o)) and take expected values to

obtain

[SX’F(@l = [HXF(@l* [ [SFF@)l  - hM(~)l 1 (3.8)

where [SW(O)] is a diagonal matrix whose elements represent noise auto-spectra at

each transducer. Since it is not feasible to separate the input noise auto-spectrum

matrix from the measured input (force) cross-spectrum, the estimate of FRF matrix is

written as :

M-Ix F(u)] = [sF'X'(@l [SF’F(m)l-’ (3.9)

It is noted that the measured input cross-spectrum matrix must be inverted at every

frequency in the frequency range of interest. Equation (3.9) is valid when all the

measured input signals are not fully correlated. However, practical experience shows

that there are a number of situations where the input cross-spectrum matrix [SFF(O)] is

singular at specific frequencies or over specific frequency intervals. When this

happens, the inverse of [SFF(O)] will not exist and thus equation (3.9) cannot be used

to determine the estimate of FRFs.

As there is no indication for the interrelationships between various measured input

signals in a open-loop model, the concept of the coherence function needs to be

expanded to include the variety of relationships among the various measured input

signals.
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3.3.1 ORDINARY COHERENCE FUNCITON

An ordinary coherence function is defined as the correlation coefficient describing the

possible causal relationship between an output and an input for a single-input single-

output (SISO) system. Mathematically, the ordinary coherence function rxr;! between

an output (f) and an input (x) can be computed from equation (2.14) in Section

2.3.1.1.

For the multi-input single-output case, there may be relationships between the various

inputs as well as those between inputs and output. When all inputs are uncorrelated

with each other, the ordinary coherence function between each pair of inputs is zero,

hence Sfirj(w) = 0 for i#j. The input cross-spectrum matrix, [SF’F(O)], is diagonal so

that the system reduces to a set of single-input single-output systems. In this case, the

ordinary coherence function analysis can be used to determine the contribution of each

input to the output. However, in the general case the ordinary coherence function

between each pair of inputs will not be equal to zero. In other words, the inputs will

be partially coherent. The summation shown in equation (3.1) will not be one of

independent quantities but one with interference among the summed inputs, so that the

ordinary coherence function becomes difficult to interpret. The situation is further

complicated when there are multiple outputs since the various interfering power

sources at each output may themselves be related.

3.3.2 PARTIAL COHERENCE FUNCTION

In order to deal with the complicated multi-input multi-output situation, a partial

coherence function - defined as the ordinary coherence function between two

conditioned signals - was developed [27,28]. Practically, the output and input signals

are conditioned by removing the potential contributions to the output and input from
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other inputs consecutively. The removal of the effects of the other inputs is formulated

on a linear least-squares basis and there will be a partial coherence function for every

input/output combination for all permutations of coherence. However, the order of

removal has a definite effect upon the partial coherence if some of the inputs are

mutually correlated and, hence, there may exist many solutions of the FRFs

estimation. As a result, the main function of partial coherence with respect to the

estimation of FRFs is to explore the correlation(s) between the various input signals.

In this case, a low value of partial coherence is desirable.

3.3.3 MULTIPLE COHERENCE FUNCTION

Multiple coherence is defined as the correlation coefficient describing the possible

causal relationship between an output and all known inputs. There will be a multiple

coherence function for every output. The formulation of multiple coherence functions

can be expressed in a concise form by using the input cross-spectrum matrix [Sxx(o)]

and the output cross-spectrum matrix [SF&O)] to construct an augmented input cross-

spectrum matrix. For the ith output, the augmented input cross-spectrum matrix is

written as :

[Sx~F’F’(i)(~)l =

- [sXiXi(0)l  [SXifl(ce)l [sXif*(o)l [sXif3(o)1 *“” *“”

[sXrfi(0)l [sftft(0)l  [sfrf~(0)l . . . . . . . . . . . . . . .

[SX,f@)l [Sf,f,(@l . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
i I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(3.10)

Therefore, as a check on the determination of the FRF matrix, the multiple coherence

functions can be computed from the following equation :
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MCOH(i)(o)  =  l- DET[%F(i)(@l
ylIS~~~i(~)l  DE’USFF*(~)I

(3.11)

When the multiple coherence of the ith output is near unity then, in most cases, the ith

output can be well predicted from the set of inputs using the least-squares estimate of

the FRFs. A multiple coherence function less than unity can indicate that there is/are

(i) extraneous noise on the output, (ii) non-linear effects in the system, (iii) additional

system inputs that have not been included in the calculation or (iv) a severe problem -

interrelationship between various inputs. In general, the multiple coherent output

spectrum indicates the part of the output that is linearly related to all of the measured

inputs.

3.4 A NEW CLOSED-LOOP MODEL FOR MULTI-SHAKER

MODAL TESTING

There are a variety of situations that can cause difficulties in the computation of the

FRFs using equation (3.9). One of the most troublesome arises in the case of coherent

inputs because if two of the measured inputs are highly coherent, there is no unique

estimate of the FRFs associated with those inputs. This can be confirmed by

computing the ordinary coherence function between each pair of inputs.

In practice, the external signals used as inputs to the electrodynamic  shakers are

independent, band-limited white noise with constant amplitude and random phases.

However, due to the inability to isolate the excitation mechanism from the test structure

completely, an ordinary coherence function between each pair of measured forces with

values other than zero is observed, particularly at the structural resonances.
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Following the methodology presented in Chapter 2, a new closed-loop model for

multi-shaker modal testing can be devised to explain the correlation between measured

force signals in a multi-shaker modal test that has caused uncertainty in structural

identification for many years.

3.4.1 TWO-SHAKER SINE-DWELL TESTS

For the purpose of investigating the potential of a closed-loop approach to multi-shaker

excitation, the natural place to begin is with two-shaker excitation. A two-shaker sine-

dwell test is shown in Figure 3.2.

p,sin(ot+90’)

shaker 2

Figure 3.2. Two-shaker FRF measurement

Following the methodology shown in Section 2.3, an equivalent block diagram for the

two-shaker sine-dwell test is constructed and shown schematically in Figure 3.3.
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Figure 3.3 A block diagram of a two-shaker sine-dwell test

where q(t) and rz(t) are the external input signals provided by the signal source

generators; pi(t) and p2(t) are the forces generated at the armature of electrodynamic

shakers 1 and 2 respectively; Kfgl and Kf,, are the stiffnesses of force transducers 1

and 2 respectively; fl(t) and f2(t) are the measured applied forces; and xl(t) and x2(t)

are the associated responses where the shaker-applied forces act on the structure.

As a sinusoidal excitation test always produces high signal-to-noise ratios in measured

applied forces as well as the associated responses, a noise-free condition for the

closed-loop model is assumed in this case. The relationships between the shaker-

applied forces, fr(t) and fz(t), and the responses xl(t) and x2(t), are described by

t t

Xl@> = dh(Wi(t-W~  + dh2WMWd~ (3.12)

t t

x2(0 = + hz(Qf2(t-QdT (3.13)

Applying the Fourier transform, equations (3.12) and (3.13) can be rewritten :

Xl(O)  = HII FlW +  H12W F2(m) (3.14)
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force signal, F2(0). When the excitation frequency is not close to a structural

resonance frequency, or to a combined shaker-structure resonance frequency, RI(~)

and Ft(o) are in phase with each other because the cross-coupling term, HQ(o)F~(c~),

is relatively insignificant when compared with H,,(o)I&,,(o)Ri(o). It should be

noted that Ht2(0) represents a cross receptance, X,(o) is in phase with F2(0) for a

lightly damped structure except at the resonance frequencies where the phase of

H12(0) changes significantly. A similar phenomenon is observed in F2(0), as shown

in equation (3.19). This implies that the measured force signals Fi(o) and F2(0)

affect each other in a small range around each resonance. Another factor that affects

the phase distortion at the structural resonances is the relative magnitude of two driving

forces.

It is noted that if the position of one of the shakers, for example shaker 2, is located at

a node point of a particular mode, H12(0)F2(0) will give a zero magnitude even at

resonance so that Fi(o) and F~(o) are uncorrelated for this particular mode.

As mentioned earlier, phase distortion of the input force signals in a small range

around each structural resonance for a two-shaker sine-dwell test can be overcome by

adjusting the phase difference between two generator signals until Fi(o) and F2(0) are

900 out of phase, using the information given in equations (3.18) and (3.19).

3.4.2 TWO-SHARER RANDOM EXCITATION TESTS

The same closed-loop model as used above in two-shaker sine-dwell testing is

applicable to a modal test with broad-band random excitation. First assume that there

is no measurement noise contaminating the measured force and response signals at

location 1 and 2, then the input force signals are given by :
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h@) = KfizI
1 + Kf,, Hs,W

(Hs,OW%n,(~)Rl(~)  - Xl(m))

(3.20)

Fz(a) = Kfg2

1 + Kf,,  Hs2W
(Hs2W-bm2@9R2(~)  - X2@>>

(3.21)

For stationary and ergodic random data, the input force power spectra can be written

as:

Sf,f,W =
Kk12

1+IKf,,Hs,Wl
2 (IH,,(o)H,,,(w)12Srlrl(~)  - Hsl*(o>H,,*(o)S,,,,(o)

-H,l(o)Heml(~)S,lrl(~) + sx,x,(N) (3.22)

Sf2f2W =
Kg2W2

1+IKfg2H,,W2
(IHs2(w)H,,,(o)12S,,,(w)  - Hs2*(o)~,2*(o)Sr2x2(o)

-Hs2(0)H,2(0)Sx2r2(0)  + sx2x2W (3.23)

where

Sx&N = W~W2Sflfl(~)  + H11*(W)H12(W)Sf,f2(W)  + H12*(w)H11(w)Sf2f1(w)

+ IWU2S,,(N (3.24)

Sqx2@) = IH2~W2Sflf1(W + H21*(w)H22(w)Sf,f2(w) + H22*(W)H21(W)Sf2f1(0)

+ IH2W~2S~2,(~) (3.25)

Substituting Sxlxl (0) and Sx2x2(o) into equations (3.22) and (3.23),  one can derive :

K 2
Sf,f,(N  =

fe1
l+Kf,,2(lrZ,(o)12-IH,,(o)12)

[IH,,(w>H,,(~)l~s,,,,(o)  - HII*(~)H”I*(~)S’I*I(0)

- H,,WI-Lr@S,,,,W + H,,*(o)H,z(o)S,,,(w)
+ Hlz*(o)Hlr(o)Sf,(o) + bW%2~2Wl

(3.26)
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The coherence function between two measured force signals fr and f2 is defined [29]

as :

Yflf20N2  = Isf,f+012
sf,f,wsf2f2(a

(3.28)

In most cases, the auto-power spectra Sf,f,(o) and Sf2f2(o) are partially correlated and

the cross-spectrum Sf1f2(a) is not zero, so that the coherence function yflf2(o) is not

zero. When the cross receptance Hr2(0) is zero, the coherence function approaches

zero because RI(~) and R2(0) are uncorrelated.

Unlike the two-shaker sine-dwell test, there is no way of obtaining two uncorrelated

shaker-applied force signals for a two-shaker random excitation test unless adaptive

control methodology is employed.

3.4.3 MULTI-SHAKER MODAL TESTS

Based on the traditional open-loop FRF measurement model, Leuridan [26] has noted

that a unique solution for the MIMO problem can be worked out for the case where the

measured inputs are not correlated and has pointed out also that most solution

techniques applied to the MIMO situation can handle the case of some correlation

between the measured inputs but fail if the measured inputs become highly correlated.

This condition implies that the spectrum matrices are rank deficient and is unavoidable
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due to shaker-structure interactions. However, as will subsequently be shown, it is

possible to determine the dynamic characteristics of a test structure by using the cross-

spectrum matrices even though, the measured force signals are highly correlated. A

new FRF technique is developed below which can give noise-free estimates of FRFs

and requires minimum post-processing calculation.

The closed-loop model used above for simple two-exciter systems can be generalized

to produce a model for multi-shaker modal testing as illustrated in the simplified block

diagram in Figure 3.4. For simplicity, a special case with II measured shaker-applied

forces and n corresponding output signals is considered.

Figure 3.4 A closed-loop model for multi-shaker modal testing

The dynamic response for all components is assumed to be linear and time-invariant so

that the measured output signals can be expressed by the linear vector difference

equation as :

(3.29)
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Figure 3.5 illustrates an equivalent open-loop system model for the multi-shaker modal

test system with measurement noise in the frequency domain. (R(o)),1 is an nxl

external input vector. The output vector (Y(o))z~~ , is subdivided into two parts,

(F’(o)),1 and (X’(o)),l, where (F’(o)),l and (X’(o)),l are the measured

force and measured response vectors respectively. The equivalent open-loop FRF

matrix Wo(W~nxn, is partitioned into two square matrices [HF(co)],,, and

lMx@maxn~ where  [HF(o)I- and lHxWm are the equivalent open-loop FRFs for

the measured forces and measured responses respectively. The contaminating noise

vector (Z(0))2~~, is also subdivided into two parts, {M(o)),1 and (N(o)},l, and

is defined to be incoherent with (R(w)),l,  as expressed by :

E [W~>l*UWOlT12nm =  0 (3.35)

The output (Y(c0)}2~~ can be written as follows :

Equation (3.36) can be rewritten as :

(3.36)

____-----
2nxl

(3.37)

Post-multiplying both sides of the complex conjugate of equation (3.36) by

( R(o)}~IT and taking expected values, we get

E[(Y(o))*(R(o))?12,=  IH,(o)l*2,E[(R(o))*(R(w))Tl,+E[(Z(o))*(R(w))1z,

(3.38)
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Equation (3.38) can be expressed in terms of the auto- and cross-spectra, therefore,

[sYR(@12m = BL(~)l*2~ [SRR(O)~-

from which, the FRF matrix [HJo)]~~ is obtained.

[Ho(O)lzn~r = [SRY(~)]~WZ  [SRR(O)I-‘~X~

(3.39)

(3.40)

(3.41)

A necessary and sufficient condition for the inverse of [Sm(o)] to exist is that none of

the external input signals are completely coherent with any other so that [SRR(O)] is

nonsingular.

After the equivalent open-loop FRF matrix [H~(c.IJ)]~~~ has been obtained, the FRFs

of the system are derived :

[HxF(o)L = [Hx(~)lmn [HF(o)I-L~

= Wtx~(~)lnm [SRR(~)I-L~ ([SRF(O)~-  P~~(~)l-lmn  )-’

= [sRx’(~)lmn  [SRF(@l-lnxn (3.42)

From equations (3.41) and (3.42), the uniqueness of the estimate of [HxF(co)]~~  is

seen to be determined by the rank of the matrix [SRR(O)]~~  . If this matrix has full

rank then equation (3.42) provides a unique least-squares solution. Otherwise, any

solution will be an arbitrary point in the kernel of [HxF(o)]- . It can be concluded

that the effect of measurement noise in the estimation of the FRFs for a multi-shaker

random excitation test can be minimized by using equation (3.42). A requirement of
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this method is that the point FRF measurements associated with the coordinates at

which the shaker-applied forces act on the structure should be obtained.

As mentioned in the preceding section, classical techniques for MIMO analysis are

based on either ordinary and partial coherence functions or principal inputs calculation

[24-271  because there are a number of situations where the cross-spectrum matrix of

measured force signals is singular at specific frequencies or frequency intervals.

Bendat  [28] presented a frequency-domain technique based on the calculation of

coherence and partial coherence functions to evaluate the correlation between signals.

The operations involved with the calculation of the coherence and partial-coherence

functions are identical to the operations that are used to an LU decomposition of the

following matrix, using Gauss eliminations :

[SF’F’(~hxn  [SF’X’(~)l,n

[SX~F~(~)lnxn  [sX~X~(~)lnxn 1znxzn

More recently, Leuridan [26] suggested an alternative technique based on the

calculation of a set of principal inputs. The operation involved with the calculation of

the minimum set of uncorrelated signals, or a set of principal inputs, is basically

equivalent to the spectral decomposition of the afore-mentioned matrix. Estimates of

the FRFs can be obtained once the ordinary and partial coherence functions, or

principal inputs are determined. Both techniques involve a lot of post-processing

calculations and, moreover, the estimate of [HxF(cII)]~~ is contaminated by the

measurement noise existing either in the measured force signals or in the measured

response signals because the auto-spectra are used. The [lH(o)lnm estimator will

converge to a biassed, lower-bound estimate of the true [HxF(o)]~~ since the cross-

spectrum matrix [SFF(CJI)]~~ is used. On the other hand, the [~H(o)]~ estimator
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will give a biassed, upper-bound estimate of the true [HxF(o)]~~ since the cross-

spectrum matrix [Sx~(o)]- is used.

However, it should be noted that when the technique proposed in this section is

applied to the estimation of FRFs in multi-shaker modal testing with n measured force

signals and it measured response signals, 3n processing channels are needed because

an additional 2n2 cross-spectrum terms are needed for the [SR&O)] and [S=(O)]

matrices respectively.

3.4.4 EXPERIMENTAL VERIFICATION

In the preceding sections, only the pure theoretically aspects of the closed-loop model

have been discussed. However, as a realistic mathematical model, the applicability of

the closed-loop model for a multi-shaker modal testing must be checked on an actual

mechanical structure.

A circular disk was chosen to validate the application of the closed-loop model in a

two-shaker sine-dwell test. The disk was excited at two locations simultaneously,

with two point response signals measured. Sinusoidal excitation signals were

generated by a Solartron 1254 frequency response analyser and were arranged to be

900 out of phase. The measured force signals were orthogonal when the frequency of

the excitation signals is well below or above the structural resonance frequencies.

However, it was observed that the phase difference between two measured force

signals, Fl(o) and F~(o), approached zero at most structural resonance frequencies.

An experiment was then carried out by disconnecting the power from one of the

electrodynamic shakers, while all four signals (two force signals and two response

signals) were still measured. Figure 3.6 shows the resulting FRFs. A zoom
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measurement for the response (acceleration) at location 1 divided by the applied force

at location 1 in the frequency range from 5 to 139 Hertz is shown in Figure 3.7 in

which a dominant mode was identified at 72.1 Hz.

With reference to Figure 3.3, one can observe that even though one of the external

input signals, for example RI(~), is set to zero, there will still be a response xl(o)

and a force signal Fr(o) because of the existence of the interrelated feedback paths. It

can easily be shown that, under these conditions, xr(o)/Fi(o) contains the dynamic

characteristics of electrodynamic shaker 1.

The predicted results were checked by exciting electrodynamic shaker 1 by another

shaker via an impedance head. The measured FRF data are shown in Figures 3.8 and

3.9. Good agreement is indicated between these two set of experimental FRF results.
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Figure 3.6 The FRFs of a a two-shaker sine dwell test
(the power for shaker 1 was disconnected)
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Figure 3.7 A zoom measurement of xl(o)/F,(o)  (the power for shaker 1 was
disconnected and the frequency range was set to 5- 139 Hz)
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Figure 3.8 The FRF of the electrodynamic shaker with a push rod
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Figure 3.9 A zoom measurement of the FRF (the frequency range
was set to 5-200 Hz)



m A Closed-loop Model for Multi-shaker Modal Testing 83

3.5 CONCLUDING REMARKS

Classical FRF estimation techniques based on the ordinary, partial and multiple

coherence function calculations have been reviewed. These techniques are able to

handle cases where there is some correlation between the measured inputs, but they fail

when the measured inputs become highly correlated. Unfortunately, the measured

inputs (force signals) in most practical cases are highly correlated in the vicinity of each

of the structural resonances even though (i) the orthogonality property of the external

input signals to the shakers is well maintained in a multi-shaker sine-dwell test ; or (ii)

the external input signals are uncorrelated in a multi-shaker random excitation test. The

difficulty arising in controlling the measured force signals is mainly due to the fact that

it is physically impossible for the shakers to excite the test structure without interfering

with it.

Since the traditional open-loop FRF measurement model cannot be used to explain the

correlation between the various input signals in a multi-shaker modal test, the closed-

loop model developed in Chapter 2 has been generalised to explore the complexity of

shaker-structure interactions for multi-shaker modal testing. The generalised model

can be used to explain what causes the difficulties arising in maintaining the

orthogonality condition in a sine dwell test and

shaker-applied forces in a random excitation

in ensuring the incoherence of the

test. After identifying the inter-

relationships between the excitation mechanism and the test structure, a frequency

domain technique is developed to give a unique estimate of the FRFs in a multi-shaker

random excitation test. The proposed technique is superior to classical FRF estimation

techniques since it can be applied to all frequencies of interest, even if the shaker-

applied forces are highly correlated at specific frequencies or over specific frequency

intervals. In addition, the effect of measurement noise on the FRF estimation is
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minim&d because the proposed technique only requires the computation of the cross-

spectra between the measured response signals and the external input signals, and

between the measured force signals and the external input signals. Experimental

results have verified the applicability of the closed-loop model in a two-shaker sine

dwell test.



cl4 IDENTIFICATION AND
MATHEMATICAL MODELLING
OF LINEAR STRUCTURES

4.1 INTRODUCTION

Structural identification problems can be divided into two categories. One is the “black

box” problem where the physical description of a structure is totally unknown : the

widely-used modal testing or experimental modal analysis approach for determining

response models and modal models of mechanical structures are such black box

identification methods. Various modal testing techniques have been discussed in the

preceding sections and different experimental modal analysis techniques in the

frequency and time domain methods will be given in Section 4.2.

The second category of problem is that where some knowledge of the structure, such

as its total mass/inertia or its physical connectivity, is known or given a priori. Thus

this problem can be that of determining some unknown parameters or parameter

changes within a finite element (FE) or analytical model of this structure in accordance

with a stated correlation function. The most recent methods of structural identification

and model updating are based on the philosophy depicted in Figure 4.1. An

appropriate correlation function must be judiciously chosen which can be optimized in

order to accomplish the goal of structural identification or model updating - deriving a

good representation model. In general, this function determines how good will be the

fit of the model response to that of the test structure. In recent years many techniques
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for adjustment of the unknown parameter changes and different correlation functions

have been developed.

Measurement
error

Figure 4.1 General block diagram for structural identification and model updating

However, the accuracy of structural identification and model updating results is

impaired - sometimes severely - by a combination of measurement error, numerical

error in the computations, modelling error and the modal and coordinate

incompleteness of the measured data. In the preceding chapters, the subject of

measurement errors has been studied in some detail. Here, the numerical error in the

computations is discussed below. The error existing in FE/analytical structural

modelling will be fully discussed in Section 4.3. The problems caused by the modal

and coordinate incompleteness in measured data will be investigated in the subsequent

sections where the problem of reconciliation between the theoretical and

experimentally-derived models is addressed.

The continued technical improvements in the design of mainframe, mini- and micro-

computers are coupled with an ever-increasing variety of numerical techniques to solve

.



m Identification and Mathematical Modelling of Linear Structures 87

mathematical problems. Some numerical methods work effectively for numerically-

stable problems but may be inadequate for certain types of ill-conditioned problem,

especially for some experimental engineering and physical problems. It should be

emphasized that it is meaningless to assert that a matrix is ill-conditioned without

stating which type of calculation to be performed. For example, a matrix may be ill-

conditioned with respect to the calculation of its inverse or the calculation of its

eigenvalues or eigenvectors but ill-condition with respect to one of these will not in

general imply ill-condition with respect to any other. For structural identification

problems, it can be shown that the ratio of the extreme eigenvalues is a dominant factor

in determining condition. The stiffness matrix of a mechanical structure depends

largely on the high-frequency modes and the mass matrix of the structure depends

largely on the low-frequency modes. For a structural parameter extraction problem,

“physical noise” caused by the inevitable errors of the measurement equipment cannot

be reduced beyond a specific level which depends on the refinement of the physical

measurement devices. However, “arithmetical noise”, introduced by the finite

accuracy of numerical computations, can be reduced to an arbitrarily low level by

increased computer capacity and by more circumspect coding using more reliable and

numerical stable techniques. A good example is the recent wide use of singular value

decomposition (SVD) in modal-parameter estimation [30] and coupling of sub-

structures [31].

4.2 DIRECT STRUCTURAL IDENTIFICATION TECHNIQUES

The purpose of direct structural identification techniques is to extract or to determine

the structural parameters from experimental FRFs or time response data. Since the

early 197Os, a wide variety of methods have been developed. The bases of many of

the parameter extraction methods commonly used nowadays have been developed and
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presented in works by Brown, Allemang, Zimmerman and Mergeay [32], Ewins [8],

Stroud [33] and Fiillekrug [34].

4.2.1 THEORETICAL AND EXPERIMENTAL ROUTES TO VIBRATION

ANALYSIS

Three main categories of system model are identified in Figure 4.2, these being the

Spatial Model (consisting of mass, stiffness and damping properties), the Modal

Model (comprising the natural frequencies and mode shapes) and the Response Model

(consisting of a set of frequency response functions or a set of time response data).

For a theoretical analysis, such as an FE analysis, it is a normal practice for a structural

analyst to create the spatial model of a structure and then subsequently to derive the

modal model and response model of the structure. In contrast, practical experience

shows that only the response model of the structure is directly measurable, so the

relative sequence of mathematical models is Response-Modal-(Spatial ) for an

experimental study. However, neither the experimentally-derived modal model nor the

response model of the structure is complete in terms of the number of modes and/or

the number of degrees-of-freedom (DoFs). As a result, the direct derivation of a

representative spatial model from experimental data is very difficult to achieve

successfully.
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Modal summation

THEORETICALROUTE

r-----

l- -----_

EXPERIMENTAL ROUTE

Figure 4.2 Theoretical and experimental routes to vibration analysis

4.2.2 PARAMETER EXTRACTION METHODS IN THE FREQUENCY

DOMAIN

In the frequency domain, some modal parameter extraction (or modal analysis)

methods are applied to a single FRF at a time. These are called “single-reference” or

“local” single degree-of-freedom (SDoF) and multi-degree-of-freedom (MDoF) SISO

methods. The basic assumption of the SDoF methods is that the response of a

structure in the vicinity of a structural resonance is dominated by one single mode. It

is well known that for the general SDoF system a Nyquist plot of FRF produces
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circle-like curves and, it has been proved by Ewins [8] that if the appropriate type of

damping model is chosen, this Nyquist plot will produce an exact circle. Based on

this assumption, the modal parameters of the structure can be determined by circle-

fitting the Nyquist plot of the FRF data around each of the structural resonances.

There are alternative procedures available which work within the same assumption of

the SDoF circle-fit method, such as the SDoF inverse method. Here, by plotting the

reciprocal of the FRF around a structural resonance, the modal parameters can be

determined by least-squares straight line-fits through the measured data points. The

MDoF methods can be seen as an extension of SDoF method. They relax the

restrictive assumption that the effect of all the other modes shall be represented by a

constant (for every mode in a SDoF analysis), and so are likely to produce more

precise modal parameters from a set of FRF data

Some methods allow for several FRFs to be analysed simultaneously, with responses

taken at various points on the structure, but using one excitation point only. These are

called “global” or single-input multi-output (SIMO) methods. The philosophy behind

these methods is that the natural frequencies and damping loss factors do not vary

(theoretically) from point to point on the structure, and thus it should be possible to

obtain a consistent and unique set of modal properties by processing several FRFs at

the same time. One of the main advantages of these methods is that any variation of

the identified modal properties (such as is often found with repeated SISO analysis)

will be removed by the parameter extraction procedure.

Finally, there are other methods that can process all the available FRFs

simultaneously, from various excitation and response locations. These methods are

usually called “polyreference” or multi-input multi-output (MIMO) methods.
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4.2.3 PARAMETEREXTRACI’ION METHODS IN THE TIME DOMAIN

In the frequency domain there are SDoF and MDoF analysis methods, while in the

time domain only MDoF analysis is applicable. The normal starting point of the time

domain methods is based on the following equation :

hij(t) = 2 rAijebt
r=l

(4.1)

where hij(t) is the impulse response function (IRF) at particular time and rAij is the

modal constant which contains the initial conditions implicitly. The response data do

not require the free decay vibrations to be measured in reality: they can be obtained by

taking the inverse Fourier Transform of the measured receptances in the frequency

domain.

The complex exponential method is a local approach for SISO analysis, because the

natural frequencies and the damping loss factors are determined from the time history

of one single measurement point. This method is based on describing equation (4.1)

at a number of equally-spaced time intervals and taking a number of samples which is

equal to or larger than the number of time intervals in order to obtain an exactly- or

over-determined system of equations from which the complex eigenvalues - natural

frequencies and damping loss factors - are determined using the Prony method.

Afterwards, the eigenvectors can be determined by employing the time histories of

other measurement points.

The polyreference complex exponential method is an extension of the basis complex

exponential method which uses the time history of several measurement points and

excitation points simultaneously. In contrast to the complex-exponential method, the

polyreference method is a global approach. It is capable of producing consistent

b
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modal data, of separating closely-spaced (or even identical-frequency) modes and of

handling the heavily damped responses obtained from a complex structure.

The Ibrahim time domain method (ITD) is likewise a global approach. With this

method, a unique set of modal parameters - natural frequencies, damping loss factors

and mode shapes - are obtained from a set of free vibration measurements in a single

analysis. This method is based on constructing an equation relating a matrix which

contains sets of free response measurements with matrices which contain mode shape

vectors, complex eigenvalues and the response measurement times. By using a

second set of measured response data with a time shift At and then constructing

another matrix equation, the desired modal parameters are calculated from a

transformation matrix that relates the first set of data to the second set.

Other time domain methods are the eigensystem realization (ERA) and the ARMA

methods, the former one being similar to the Ibrahim time domain method and the

latter being based on finite difference equations.

4.3 STRUCTURAL MODELLING

Modelling errors inevitable arise when a continuous structure is represented by a

discrete FE mesh. In general the accuracy and reliability of the FE solution is

dependent on the shape function of the chosen elements and thus on the elements used

in the dynamic analysis. There exist many types of elements in FE packages, e.g. bar,

beam, shell, plate, block etc., and each is described by different shape functions. The

choice of elements depends to a great extent on the geometry of the structure and to

some extent on individual preference, as there is more than one element that can be

I
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used to create the FE model. For most complex structures a combination of several

types of elements is necessary for an (efficient and) accurate analysis.

A complex structure is usually assembled from different components through a

number of joints. Unfortunately, the modelling of structural joints is still an under-

developed area in structural dynamics and their idealisation normally assumes the

elements/nodes between joints to be perfectly connected through fixed-fixed interfaces.

Some FE analysts suggest that the nodes between joints may not be directly connected

and some forms of joint stiffnesses must be defined. However, this immediately

increases the number of degrees of freedom in the model and usually the spring values

of a joint are not well-defined in all rotational directions.

Nothing has yet been said regarding the modelling of damping. For most engineering

structures the damping values are both small and ill-defined so that the damping matrix

cannot be modelled in the same detail as the mass and stiffness matrices of the

structure. Finally, the boundary conditions of a test structure and an FE model cannot

be matched exactly as it is very difficult either (i) to achieve a free-free or perfect

clamped conditions in practice or (ii) to model the elastic boundaries of the

measurement stage in detail.

4.4 THE USEFULNESS AND LIMITATION OF CORRELATION

TECHNIQUES

There are several techniques available for correlating the modal data obtained from FE

analysis and from experimental modal analysis which can be used to quantify the

comparison between two sets of modal data and to represent the correlation of modal

data in terms of real- or complex-valued numbers. In order to explore the
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characteristics of these correlation techniques in a broader sense, the formulae given

below assume that the mode shape vectors are complex.

1. Cross Orthogonality Method (COM)

t~OW&WI = PhlH P&d [@xl

2. Mixed Orthogonality Check (MOC)

IMWNOI = WxIH WI N’xl

3. Modal Assurance Criterion (MAC)

(4.2)

(4.3)

(4.4)

Both the cross orthogonality method and the mixed orthogonality check [35] include

the analytical mass matrix in their formulation and will produce meaningful results

only when the number of coordinates for the experimentally-derived mode shape

vectors is equivalent to the number of DoFs in the analytical model.

In contrast, the modal assurance criterion (MAC) [36] requires only the eigenvectors

and is therefore ideally suited to quantifying the correlation of two incomplete sets of

mode shape vectors. However, the MAC values do not present the whole picture of

correlation because these values cannot identify whether random scatter or systematic

error is responsible for the deviations. It can be seen that the MAC values vary

between zero and unity, the former limit indicating no correlation and the latter

complete correlation. An alternative correlation technique called COMAC (coordinate

modal assurance criterion) was proposed by Lieven and Ewins [37] to identify the

coordinates at which the test/model do not agree. The COMAC for coordinate i is

defined as :



m Identification and Mathematical Modelling of Linear Structures 95

COMAC(i) =
( i I(iWAr)(iVXr*)l 1 2

(4.5)

i (ivAr)?$  (iWXr*12
r=l r=l

(@ilH [Ml ($1 = 6ij (4.6)

where L is the total number of well-correlated modes as indicated by the MAC. Again

a value close to 1 suggests good correlation.

For the case of proportional damping and no repeated modes, each mode shape vector

of a structure is orthogonal to all other mode shape vectors of the structure when

weighted by the mass, stiffness, or damping matrices. In addition, the mode shape

vectors obtained either from the FE analysis or from experimental results are mass-

normalised and this orthogonality relationship is stated as :

where &j is Kronecker delta and should be equal to 1 when i=j.

When the structure has a diagonal mass matrix with identical elements, the mode shape

vectors are orthogonal to each other directly, and so in comparison the MAC value of

the mode shape vectors with themselves is unity. However, the mass matrix for

mechanical structures does not in general possess this diagonal property and the mass

elements are seldom identical. As a result, the mode shape vectors are not orthogonal

to each other directly. Therefore, even though the value of all diagonal terms is unity,

the MAC matrix obtained by comparing the mode shape vectors with themselves is no

longer unity because some off-diagonal terms are nonzero.

In general, a MAC value close to unity indicates that the mode shape vectors concerned

are consistent. This does not necessarily mean that they are correct because the mode

shape vectors can be consistent for a number of reasons, including :
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1. the mode shape vectors have been incompletely measured. This situation can

occur whenever incomplete response coordinates have been included in the

experimental determination of the mode shape vector. This is analogous to the

aliassing problem associated with digital spectral analysis for which the existence

of very high frequencies in the original signal may well be misinterpreted if the

sampling rate is too slow; and,

2. the mode shape vectors represent the same mode shape vector with a different

arbitrary scaling factor.

In conclusion, it is very important to notice that the modal assurance criterion can only

indicate consistency, not validity.

4.5 MODEL UPDATING

Due to the sophisticated developments in measurement and modal parameter extraction

techniques, it is usually assumed that the experimental F’RFs or experimentally-derived

modal data are correct or at least close to the true representation of a test structure. On

the other hand, there inevitably exist idealisations in structural modelling, and the

properties of joints and damping have not been fully explored and, thus, the dynamic

responses obtained from the FE analysis are reckoned to be less correct. However,

the FE model does contain the spatial properties of the structure which are required for

structural sensitivity, modification and optimization analysis. Therefore, model

updating is one of the most active research topics in current structural dynamics

research.
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4.5.1 DIRECT-MATRIX UPDATE METHOD

In 1965, there was an interesting problem [38] titled “A Least Squares Estimate of

Satellite Attitude” given in SIAM (Society of Industrial and Applied Mathematics)

Review. The mathematical problem was that if two sets of N data points, [V] and

[VI*, are given, can we find the rotation matrix [M] which brings the first set into the

best least squares coincidence with the second set. That is, find [Ml which minimizes
.

i II Iv},* - [M](v), It2
r=l

(4.7)

The solution was given by Farrell et.aZ. [39] in SIAM Review, one year later. In

1968, Brock presented a paper [40] named “Optimal Matrices Describing Linear

Systems” in which the method of determination of optimal symmetric positive-definite

compliance matrices for structural elements was developed based on the theory given

in [39]. In 1976, Bar-Itzhack, Mayer & Fuhermann [41] and Bar-Itzhack & Meyer

[42] presented a computation procedure for determining the Direction Cosine Matrix

which plays a key role in strapdown attitude determination, especially in navigation,

control and simulation of aerospace vehicles. Based on the work done in navigation

[38-421, Baruch and Bar-Itzhack [43] presented the direct-matrix update method

(DMU) to correct the analytical stiffness matrix using experimental data through a

minimisation process. Since then, different formulations to correct the mass and

stiffness matrix using modal data have been developed and investigated by Berman

[44], Wei [45] and Caeser [46] . In general, the DMU method uses mass and stiffness

matrices [MA] and [KA] from the FE analysis (assumed to be incorrect) and

experimentally-derived modal data (assumed to be correct). The mathematical

techniques employed are elegant. In Berman’s paper, a high rank matrix was obtained

L” ,
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by post- and pre-multiplying a low rank matrix by the analytical mass matrix [MA].

The analysis given in his paper is quoted below :

“[MA] is an (NxN ) analytical mass matrix and [a] is an (N#n ) measured
modal matrix. m is the number of modes and N is the number of degrees
of freedom which must correspond to the measurement points on the
structure and m CN . The measured individual modes have been
normalized so that ($i)T[MA] ($i)=Ie [AM] represents changes in the
mass matrix required to satisfy the orthogonality relationship :

[@,lTIM~+~lPl = Dl
or

PIT[~lPl = I?1 - hd (1)
where [mA] is the nondiagonal [<DITIMJICD] having unit diagonal
elements. Since [<D] is rectangular (and has no inverse) there are an
infinite number of [AM] matrices which will satisfy equation (1). It is
possible to find that [AM] which has some minimum weighted Euclidean
norm within the constraint of equation (1).
It is physically reasonable and mathematically convenient to minimize the
function

E = II [N-j-‘[AM][Nl-’ II (2)
where [NJ = [M~]rfl as in [43]. Note that it is not necessary to compute
[Nj since only [N-j* = [MA] appears in the final result.
Defining a Lagrangian multiplier h;j for each element in equation (l), the
following Lagrangian function may be rewritten :

w = E + 2 f hij ([QITIAMl [@I - [II + [mAI> (3)
i=r i=l

Differentiating equation (3) with respect to each element of [AM] and
setting these results equal to zero will satisfy the minimisation of equation
(2) if the constraint of equation (1) is also satisfied. This process results in
the matrix equation

2[M,&‘[AM][M,# + [O][A]T[@]T = [0]
or

[AM] = - ; [MAI WI WITW’lTWhl (4)

where [A] is a square (mxm ) matrix of h;j.
Substituting equation (4) into equation (1) allows the solution for [A]

[Al = - 2 [mAI_’ ([fl - b&d) [mAl_’ (3
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which is then substituted into equation (4) to obtain
WEI = [Md[~l Dul)-l ([II - bd> (bml)-l PWTBhl (6)”

However, it must be noted that, in general, it is not physically reasonable to minimise

the function E defined in [44] because in doing so, the problem in determining the

exact mass error matrix is changed to finding a mass modification matrix which can

reproduce the measured properties of the structure without considering the banded

nature of the system mass matrix. In most cases the connectivity of the structure will

not be preserved as the only constraint imposed is to minimize the summation of all

elements of [Nl-l[AM][Nj-1  .

For a modal incomplete case (i.e. not all modes included, but all coordinates included),

the eigenvector matrix [a] is rectangular and there exists a pseudo-inverse (Moore-

Penrose generalised inverse) which satisfies the following relationship :

[@I+ [@I = [II (4.8)

The pseudo-inverse [@I+ can be obtained by calculating the singular value

decomposition (SVD) of [O] (=[U][Z][V]T)  and the product of [V][X]+[U]T . This

pseudo-inverse is a least-squares solution that minimizes a Frobenius norm of the

problem : l-b ii[<o][@]+  - [I],IIF.
[a]~ Rmm

There also exists a pseudo-inverse ([@IT)+ which is a right-inverse of [@IT and which

satisfies :

[@IT wm’ = r II (4.9)

This pseudo-inverse has a similar characteristic to the pseudo-inverse of [@I that

minimizes a Frobenius norm of the problem : min II([@lT>+[@IT - bxnIIF.
([Q]~)‘ER”~

‘,_
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The orthogonahty  relationship of the test structure can be written in the following form

.

PITPW PI = [II - bd

where

[mAI = PITWl[~l

(4.10)

(4.11)

Rx-e-multiplying both sides of equation (4.10) by ([@IT)+  and post-multiplying both

sides of equation (4.10) by [a]+ gives :

W’lT)+WIT[~l PIP’I’ = W’lT>+U II - Md>V’l+ (4.12)

At this juncture, it is advantageous to examine what has been done in [44]. By

substituting [mp;l = [@]T[MAJ[Q]  into equation (6) of Ref.[44] we obtain

[AMBERmNl  i Fr,lWl (WITIMAl[W-l ([II - hl) WITFIdPW-l [@lTIM~l (4.13)

Pre-multiplying equation (4.13) by [@IT and post-multiplying it by [a] gives equation

(4.10), but equation (4.13) is mathematically inaccurate. It can be shown that

MdV’lW’lTbGIPW-l is a right-inverse of [<D]T and ([@]T[MJ[@])-* [<D]T[Md is a

left-inverse of [a]. They are equivalent to the pseudo-inverse of [0]T and the pseudo-

inverse of [@I when [MA] is a unit mass matrix. This explains why, in most cases,

numerical results obtained from the R.H.S. of equation (6) of Ref.[44], do not give

the correct mass error matrix [AM] and do not preserve the model connectivity.
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In conclusion, it is found that equation (6) of Ref.[44] is mathematically incorrect

unless a complete modal vector matrix is used (trivial solution) so that alternative

model updating methods must be developed.

4.5.2 ORTHOGONALIN CONSTRAINT METHOD

It has been shown that it is impossible to determine the mass error matrix by pre-

multiplying and post-multiplying the orthogonality relationship of the mass matrix by

rectangular matrices. In practice, it is reasonable to assume that the mass and stiffness

matrices should be updated/changed in such a fashion that the connectivity and

physical characteristics of an FE/analytical model are preserved. This implies that the

mass and stiffness elements of the original FE/analytical model are only scaled by

arbitrary factors. In such a case, the orthogonality relationship can be transformed to a

set of simultaneous equations. For a structure with diagonal mass matrix, for

example, the following set of equations can be derived :

4wm4u + $12a2m2@12  + . . . + $lNaNmN@lN  = 1

4wlml~2l  + $12a2m2@22 + . . . + $lNaNmN@2N  = 0

. .

.

. .

hdalml~m-l  1 + $m2a2m2$m-12  + . . . + (hNaNmN(hl  N  =  0

hdwwh  + 4h2a2m2fh  + . . . + hd@NmN$mN  =  1

(4.14)

Here, there are m 2 equations but some of them are identical pairs because of the

symmetrical property of the orthogonality relationship. Hence, there are (m+l)m/2

equations in N unknowns so that this system of equations is overdetermined if
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(m+I)m/2 is greater than N. As a result, the mathematical problem of model

updating is simplified to that of determining the least-squares (LS) solution of a system

of equations, ie., the minimisation of II [A] { x -{b} 112 where

[Al =

fhl011  012012 -. .  ~lN$lN

.

.

-4hl4hl 4h2h2 . . . ~~IN&~IN~

LaNmN

and(b) =

(4.15)

If [A] is rank-deficient, then the LS problem has an infinite number of solutions, but

there is just one possessing a minimal 2-norm. We denote this unique solution by

{x}~s and the minimum sum of squares by p& : p& = II [A](x)Ls-{b) 1122. The

best available technique to solve this problem employs the Moore-Penrose generalised

inverse with SVD.

Following a similar analysis a stiffness error matrix can be determined. The stiffness

matrix of an analytical model satisfies the following orthogonality relationship :

[Q>]T[&+AK] [a] = [‘02.] (4.16)

Again, the stiffness error matrix cannot be determined by pre-multiplying and post-

multiplying this equation by square or rectangular matrices. A tridiagonal stiffness

matrix is shown below to illustrate that it is possible to transform this unsolved

problem into a set of simultaneous equations that may have a unique solution. For this

particular case, equation (4.16) is rewritten as follows :

.
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Lo . -a&N %h+%+lh+l

. . 1 =i [

.

w? .

(4.17)

Analogous to the preceding paragraph, the above orthogonality relationship can be

transformed into a set of (m+l)m/2  simultaneous equations in (N+I) unknowns. This

system of equations is overdetermined when (m+I)m/2 is greater than (N+I) .

For most structural dynamics problems, the mass and stiffness matices of an

FE/analytical model are generally sparse because “many” of their elements are equal to

zero. Assuming that the NXN mass(or stiffness) matrix has p mass (or Q spring)

elements. For a well-defined FE model, it is generally true that the connectivity is

correct even though the mass and spring elements may not be assigned the right

values. As a result, it can be shown that m specified normal modes are required to

determine mass and stiffness error matrices where (m+l)m/2 is greater than or equal

to max(p,q ) by using the orthogonality property of the mass and stiffness matrices.

4.5.3 EIGENDYNAMIC CONSTRAINT METHOD

The orthogonality constraint method can recover the values of mass and spring

elements for the FE model of a mechanical structure. However, Lin [47] has shown

that the formulation based on the orthogonality relationships is mathematically

incomplete in the sense that some information of the measured modes has been lost

during the formulation of the problem. In 1985, Gladwell  and Gbadeyan [48]

presented a stripping procedure for constructing the mass and stiffness parameters of
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the discrete model from a knowledge of some of the measured modes. Their analysis

concentrated on a specific fixed-free mass-spring chain system. After developing the

stripping procedure, Gladwell  [49] established the necessary and sufficient conditions

for a given vector to be one of the eigenvectors of the system and proved that it is

possible to reconstruct the simple chain system by using two modes which satisfy

certain conditions, although the thus-reconstructed system is not unique in the sense

that it can be scaled by an arbitrary factor. The eigendynamic constraint method

generalises Gladwell’s theory for structural identification and model updating of

general mechanical structures. This method is based on the information of measured

modal data, eigenvalues and eigenvectors, and by making use of the mass

normalisation property of measured modes, the problem of non-uniqueness of the

identified system is resolved.

The eigendynamic constraint method is formulated based on the following the equation

for free motion for a mechanical structure and mass normalisation relationships :

-Oi2[MA+AMI{@Ii + IKA+AKII$Ii = (01 (4.18)

f$IiTIMA+~I(QIi = 1 (4.19)

As mentioned before, the physical connectivity of the FE/analytical model is usually

preserved for model updating problems, and so it can be assumed that the updated

model should have the same connectivity as that of the original FE/analytical model.

When the connectivity information is employed, equations (4.18) and (4.19) can be

combined and, after some mathematical manipulation, turned into a system of linear

algebraic equations :

(4.20)

. .
I.
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. . .-.
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where {P) is a vector containing the unknown total design variables in the mass and

stiffness matrices; [L] and {J} are the coefficient matrix and vector formed using the

modal data of mode i .

To illustrate how EL] and (J j are constructed, a simple mass-spring chain model with

fixed-fixed boundary condition is used. For this specific model, when the first mode

is used, equations (4.18) and (4.19) can be written as :

-~12@ll~,ml  + @llaN+,kl  + (+ll-@12)aN+2k2 = o

. . . .

. . .

-q2$lNaNmN + (-@lN_l+@lN>a2NkN  + +lN%N+ikN+i  = ’

@ll~llqml  + 4Q12a2m2 + ~~~~~~  + @l~fhNaN~N = l (4.21)

Therefore, the matrix &] and the vectors (P) and [J} are

PI =

L

wq
.
.

aN%

aN+lkl
.
.

a2N+lkN+1

& {V} = (4.22)
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When there are m modes available, the total number of linear algebraic equations

becomes (N+I)m and, again, if (N+I)m is greater than the number of unknowns in

{P), the problem becomes overdetermined and generalised inverse techniques (least-

squares) can be used to solve for {P) .

Minimum number of measured modes in modal updating :-

For an FE model, the following two conditions can be considered:

(m+ I)m/2 2 max(p,q) for orthogonality constraint method

(N+l)m 2 (p+cl) for eigendynamic constraint method

where m is the number of measured modes, N is the number of DoFs and

p,q are the numbers of mass and spring elements for the system respectively.

It is not unusual for the number of measured modes required to determine the mass

error and stiffness error matrices to be reduced by using the eigendynamic constraint

method. A unique solution for the mass and stiffness error matrices can be obtained

provided that the second inequality shown above is satisfied.

4.5.4 NUMERICAL EXAMPLES

(a) Direct-matrix update method (Berman - mass updating)

A numerical example of the 10 DoF spring-mass model shown in Figure 4.3 is used to

demonstrate the application of DMU method. This model has a diagonal unit mass

matrix. Suppose that the mass-spring model was incorrectly constructed and that the

mass errors lay at points 2, 5 and 8. Berman’s “AM” matrix obtained from equation

(6) of Ref.[44] using six modes of the incorrect model is plotted in Figure 4.4 from
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which it is shown that this solution does not preserve the physical characteristics of the

mass-spring model although the peaks in these figures do contain valuable information

for mismodelling sites. Figure 4.5 shows the product of left-hand side for equation

(4.12). Comparing Figure 4.4 with Figure 4.5 and checking the numerical data show

these matrices to be identical. Figure 4.6 shows the actual mass error matrix for this

updating problem.

K, = lE4 N/m
K2 = 2E4 N/m
K3 = 3E4 N/m

Figure 4.3 A lumped mass-spring model with 10 degrees-of-freedom

Figure 4.4 Berman “AM” matrix Figure 4.5 The product of right-hand
side for eouation (4.12)
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Figure 4.6 Exact mass error matrix

A second 10 DoF spring-mass model shown in Figure 4.7 was used to check the

DMU method for a more general mass matrix. Three mass errors were introduced at

points 1,4 and 8 to simulate the mismodelling problem. Berman’s “AM” matrix and

the product of the left-hand side of equation (4.12) using six modes of the “measured”

modes are plotted in Figures 4.8 and 4.9 respectively. The exact mass error matrix for

this problem is shown in Figure 4.10. Neither Figures 4.8 nor 4.9 shows a solution

with realistic physical characteristics of the mass-spring model. Berman’s “AM”

matrix was able to provide a better correlation with the expected solution shown in

Figure 4.10 because the left-inverse of [@IT and the right-inverse of [@I were

calculated using a weighted function [MA.
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M, = 1.0 kg K 1 = lE4 N/m
M, = 0.2 kg K2 = 2E4 N/m
M3 = 0.1 kg K3 = 3E4 N/m

/

/

/

/

/

Figure 4.7 A lumped mass-spring model with 10 degrees-of-freedom

Figure 4.8 Berman “AM” matrix Figure 4.9 The product of right-hand
side for equation (4.12)

Figure 4.10 Exact mass error matrix
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(b) Orthogonality Constraint Method

The spring-mass model shown in Figure 4.3 was next used to evaluate the

orthogonality constraint method (OCM). Mass errors at points 2, 3, 5 and 8 and

stiffness errors between points 2&3, 58~6 and 68~7 were introduced to the original

model. It can be seen that five “measured” modes have satisfied the criterion that

(m+l)m/2 is greater than max(p,q ) where 111, p and q have been defined in Section

4.5.3. Berman’s “AM” matrix, Baruch’s “AK” matrix (using analytical stiffness

and correct mass matrices), and mass and stiffness error matrices using the OCM are

plotted in Figures 4.11-4.14. As expected, Berman’s “AM” and Baruch’s “AK”

matrices could not exactly locate the mismodelling sites. Comparing Figures 4.13 and

4.14 with the exact mass and stiffness error matrix shown in Figures 4.15 and 4.16, it

can be seen that both error matrices were accurately determined by the OCM. Figures

4.17 and 4.18 show the mass and stiffness error matrices obtained when the

“measured” five eigenvalues and the corresponding eigenvectors were contaminated by

1 percent and 5 percent Gaussian random noise respectively. It can be seen that those

identified matrices are different from the true solution. However, the thus updated

model is an optimized model in the sense that it preserves the connectivity of the

system and can reproduce the measured modal properties quite accurately.

Figure 4.11 Berman “AM” matrix Figure 4.12 Baruch “AK” matrix

d...
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Figure 4.13 Predicted mass error
matrix using the OCM

Figure 4.15 Exact mass error matrix

Figure 4.17 Predicted mass error
matrix using the OCM

Eigenvalues:?l%  Eigenvectors:?S% ) &

Figure 4.14 Predicted stiffness error
matrix using the OCM

F

i

15000

10000

t: 5000
e
t 0
G 1 0

Figure 4.16 Exact stiffness error matrix

Figure 4.18 Predicted stiffness error
matrix using the OCM

Eigenvalues:?l%  Eigenvectors:?5% )
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L

Figure 4.13 Predicted mass error
matrix using the OCM
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YI 01
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% 0
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Figure 4.15 Exact mass error matrix
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Figure 4.17 Predicted mass error
matrix using the OCM

Eigenvalues:?l%  Eigenvectors:?S% )

Figure 4.14 Predicted stiffness error
matrix using the OCM
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13000
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Figure 4.16 Exact stiffness error matrix

Figure 4.18 Predicted stiffness error
matrix using the OCM

Eigenvalues:?l%  Eigenvectors:?S% )
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(c) Eigendynamic constraint method

The mass-spring model shown in Figure 4.7 was used to verify the eigendynamic

constraint method (ECM) for a model with complicated connectivity. Mass errors at

points 1, 4, 7 and 10 and stiffness errors between points 28~3, 5&7 and lo-ground

were introduced to provide “measured” dynamic characteristics. In this case three

modes satisfy the criterion that (N+l)m is greater than (p+qJ where m, p and Q have

been defined in Section 4.5.3. Mass and stiffness error matrices predicted using the

ECM are plotted in Figures 4.19 and 4.20. Comparing these figures with the exact

mass and stiffness error matrices shown in Figures 4.21 and 4.22, it can be seen that

the mass error and stiffness matrices were accurately determined. Figures 4.23 and

4.24 show the mass and stiffness error matrices obtained when the measured three

eigenvalues and the corresponding eigenvectors were contaminated by 0.1 percent and

0.2 percent Gaussian random errors respectively. From these figures, it can be seen

that the solutions are very sensitive with respect to the simulated random errors

because the coefficient matrix [L] in equation (4.19) is very ill-conditioned with

respect to the calculation of its pseudo-inverse. The conditioning for the calculation of

its pseudo-inverse could be significantly improved when more modes were used.

Figure 4.19 Predicted mass error
matrix using the ECM

Figure 4.20 Predicted stiffness error
matrix using the ECM
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Figure 4.21 Exact mass error matrix Figure 4.22 Exact stiffness error matrix

Figure 4.23 Predicted mass error
matrix using the ECM

(Eigenvalues:+O.  1%
Eigenvectors:?O.2%  >

Figure 4.24 Predicted mass error
matrix using the ECM

(Eigenvalues:?O.  1%
Eigenvectors:?0.2% )

45.5 THE EFFECT OF COORDINATE INCOMPLETENESS IN MODEL

UPDATING

The method for updating the mass and stiffness matrices for a mechanical structure

based on the orthogonality relationships of the mass and stiffness matrices has been

investigated in Section 4.5.2. In Section 4.5.3, it was noticed that the number of

modes required to update or to improve the FE model could be greatly reduced by

using the ECM. This section extends the ECM to investigate the effect of coordinate

incompleteness in model updating. The numerical results show that if the connectivity

of an FE model has been given, there are many identified systems which can

reproduce the measured modal properties quite accurately when only a few natural
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frequencies and responses at a few coordinates of the structure have been measured.

Thus-identified systems would be optimum from a mathematical point of view.

In order to assess the effect of coordinate incompleteness in model updating, some

numerical calculations have been carried out using the 10 DoF spring-mass systems

shown in the preceding section.

The simple mass-spring system shown in Figure 4.3 consists of ten masses and eleven

springs. Two special cases were investigated in which only the first two modes,

specified for only half of the coordinates, were available. Since the ECM requires all

the coordinates in the formulation of the updating problem, the unmeasured

coordinates were therefore expanded using the analytical model itself based on

Kidder’s [50] method. Only two stiffness errors were introduced - between points

3&4 and 6&7 - and no mass error was added to the original model. The exact

stiffness error matrix is shown in Figure 4.25. For the first case, coordinates x3, x4,

x6, x7 and x9 have been measured, which included the stiffness errors introduced

between coordinates x3-x4 and x6-x7. The identified stiffness error matrix was

accurately determined as shown in Figure 4.26 and zero mass error was also

identified. For the second case, only coordinates x1, x3, x5, x7 and x9 have been

measured. The predicted stiffness error and mass error matrices are shown in Figures

4.27 and 4.28. Clearly these matrices are different from the true solution. However,

they can produce an optimized model in the sense that the updated model is able to

reproduce the measured modal properties quite accurately.
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@ire 4.25 Exact stiffness error matrix

Tigure 4.27 Predicted mass error matrix
(some unmeasured
coordinates contain errors)

Figure 4.26 Predicted stiffness error
matrix (only measured
coordinates contain errors)

ia

Figure 4.28 Predicted stiffness error
matrix (some unmeasured
coordinates contain errors)

The second mass-spring system shown in Figure 4.7 consists of ten masses and

fourteen springs with complicated connectivity. As before, mass errors at points 1,4,

7 and 10 and stiffness errors between 2&3,5&7 and lo-ground were introduced. The

first three eigenvalues and the corresponding eigenvectors having the first eight out of

the ten response coordinates from the modified system were “measured”. By filling

the last two rows of these three eigenvectors with the last two rows of the eigenvectors

for the original system, the ECM could be applied. The results of the mass error

matrix and stiffness error matrix prediction are plotted in Figures 4.29 and 4.30. It

can be seen that the identified system was different from the actual mass error and

actual stiffness error matrices shown in Figures 4.21 and 4.22. However, there was

significant improvement for the error location as shown in Figures 4.3 1 and 4.32 and

.,i
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a better agreement between the identified error matrices and the exact solution was

obtained when a weighted least-squares method (see Appendix A) was employed.

This was because, in general, the last two rows of those eigenvectors which had been

filled by the last two rows of the eigenvectors for the original system were incorrect,

therefore the columns of the coefficient matrix containing the information of the last

two rows of those eigenvectors should be differently weighted/scaled. In this

example, a scaling factor of (l/1000) was chosen in order to obtain the results in

Figures 4.31 and 4.32. It should be noted that sometimes the selection of scaling

factor can be based on an a priori knowledge of the uncertainties in the coefficient

matrix. Again, the updated system either using the least-squares or weighted least-

squares method is able to reproduce the measured modal properties quite accurately.

Figure 4.29 Predicted mass error
matrix (least-squares method)

Figure 4.30 Predicted stiffness error
matrix (least-squares method)
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Figure 4.3 1 Predicted mass error
natrix (weighted least-squares method)

Figure 4.32 Predicted stiffness error
matrix (weighted least-squares method)

4.5.6 CHARACI’ERISTICS  OF DIRECT MATRIX-UPDATE METHODS

Although Berman’s “AM” matrix is not the actual mass error matrix, there is a close

relationship between them. It is sometimes necessary in practice to understand the

relationship between these two matrices or two NxN subspaces. How close are they

? Do they intersect ? Can one be “rotated”/“projected”  into the other ? and so on. In

the following paragraphs it will be shown how questions like these can be answered

using the SVD.

The updated mass matrix satisfies the orthogonality relationship :

(4.23)

Post-multiplying equation (4.13) by [Q>]T and pre-multiplying equation (4.13) by [0]

gives

PIT[~~~~l[~l  = [II - [md (4.24)
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It can be seen from equation (4.24) that Berman’s “AM” matrix may be described as a

projection of the actual mass error matrix in an NXN subspace.

From equation (4.24),  the rank of [AMBERMAN] is seen to be smaller than or equal to

the minimum value of (rank[O], rank[MA], rank([I]-[mAI)). In all cases, this

minimum value is either equal to rat&[@] or equal to ra.nk([lr]-[md) that is smaller than

or equal to the minimum value of (rank[O], rank[AM]) from equation (4.12). Hence,

when the number of measured modes M is smaller than the number of mass error

sites, e , the rank of Berman’s “AM” matrix is smaller than or equal to the number of

measured modes, m. When the number of measured modes m is equal to or greater

than the number of mass error sites, e, the rank of Berman’s “AM” matrix is smaller

than or equal to the number of mass error sites, e. Mathematically speaking, it can be

stated that :

for 172 c e, -[AMBERMAN] 5 m (4.25)

m 2 e, (4.26)

Alternatively, a comparison of equations (4.24) and (4.23) gives

[@lTIAM [@I = [@lT[m~~~~~l [@I (4.27)

This implies that the ranks of [O]T[AM][cD]  and [(D]T[AMBERM~][O]  are the same

and hence the conditions shown in (4.25) and (4.26) are justified.

In practice it is more useful to consider the case when the number of measured modes

m is equal to or greater than the number of mass error sites e. From equation (4.27),

it is shown that

I ,
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~G~lTwu PI 1 = r~@lT[~BERMANl  [al) (4.28)

and Berman’s “AM” matrix can be factor&d by the SVD as :

[AMBERMAN] = 13Jl[~lWlT (4.29)

where [v] is an NxN orthogonal matrix, [V] is an NxN orthogonal matrix, and [Z] is

a diagonal matrix of rank [AMBERMAN] whose non-negative diagonal elements are the

singular values of [AMBERMAN].

As a result, in general the rank of [AMBERMAN]  is equal to the number of mass error

sites when the number of measured modes m is equal or greater than the number of

mass error sites e.

Furthermore, conditions given in (4.25) and (4.26) will not be affected by the number

of stiffness error sites because equation (4.13) has been derived without using the

information of system stiffness matrix [44].

Berman’s “AM” matrix is one of the projections of the actual mass error matrix in an

NxN space. An NxN matrix obtained using the left hand side of equation (4.12) in

Section 4.5.1 is another projection of the actual mass error matrix since pre-

multiplying both sides of equation (4.12) by the transpose of the mode shapes matrix

and post-multiplying both sides of equation (4.12) by the mode shapes matrix the

orthogonality relationship is satisfied in most cases. Hence, we can state that :

for ~fl c e, ~kW’lT)+ Wl - V’lTDhl PI) WI>+1 5 m (4.30)

m 2 e, ~kK[@lT)+ (III - PITklP1) VW+1 s e (4.3 1)
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In contrast, Baruch’s “AK” matrix is able to determine the rank of an actual stiffness

error matrix only when sufficient modes are available and the correct mass matrix is

used. It is because Baruch [43] derived his formula using a known symmetric positive

definite mass matrix so inherently the correct mass matrix was used to obtain the

Baruch”s “AK” matrix. His formula for a stiffness error matrix is given as follows :

A
[AKBARUCHI  = -l-UWIW’lTIM~l - M,lW’ll~lTl?U  + [MAI~~~I[~~~[K~~~~I~~~~~~~~

+ Mil [@I [ti W’lTIX,J (4.32)

In order to determine the rank of the stiffness error matrix without using the system

mass matrix, the application of pseudo-inverse would be advantageous. We can

define a pseudo-stiffness error matrix as :

[~PSEUDOI  = WWT>+ ([&I - PIThlPl) WV)+ (4.33)

Pre-multiplying both sides by [@IT and post-multiplying both sides by [<D] gives

[@‘lT[~PSEUDOl  101 =  [&I - [@,lTIKd[@,l

=  PITWl PI (4.34)

It can be seen that in general the pseudo-stiffness error matrix is a projection of the

actual stiffness error matrix in an ZVXN space. Once again, we can state that :

f o r  112<e, ~[~PSEUDOI s m (4.35)

m 2 e, ~[~PSEUDOI 5 e (4.36)

A 10 degree-of-freedom spring-mass model shown in Figure 4.3 was used to check

the above analysis for a general mass matrix. Three mass errors have been introduced
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at points 1, 4 and 8 to obtain the modified mode shape matrix. Berman’s “AM ”

matrices were calculated using 1 to 10 modes for the modified system. The ranks of

Berman’s “AM” matrices were determined by the SVD and are plotted in Figure 4.33,

it can be seen that the rank of Berman’s “AM” matrix was 3 when three or more

measured modes were available. The singular values of Berman’s “AM” matrices are

tabulated in Table 4. I.

7

Figure 4.33 The rank of Berman’s “AM” man-ix against the number of measured
modes

.
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1 2 3 4 5 6
0.061 0.123 0.208 0.208 0.208 0.222
0.000 0.046 0.047 0.050 0.099 0.099
O.OCXI 0.000 0.018 0.044 0.050 0.050
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 O.ooO
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000

The number of measured 1 xles (n

7
0.223
0.100
0.050
0.000
0.000
0.000
0.000
0.000
0.000
0.000

8 9 10
0.223 0.224 0.250
0.100 0.100 0.100
0.050 0.050 0.050
OSXKI 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000

1

Table 4.1 The singular values of Berman’s “AM” matrices for the first case

The second case study was carried out on the same analytical model. In this case mass

errors at points 2, 3, 5 and 8 and stiffness errors between points 2&3 5&6 and 6&7

have been added to the original model. Berman’s “AM” matrices were calculated

using 1 to 10 modes for the modified system and their ranks were determined by the

SVD as shown in Figure 4.34. Again, the rank of Berman’s “AM” matrix was equal

to the number of mass error sites when sufficient measured modes were available, and

was not affected by the number of stiffness errors made on the structure. The singular

values of Berman’s “AM” matrices are tabulated in Table 4.2. Table 4.3 shows the

singular values of Berman’s “AM” matrices when the measured mode shape vectors

were contaminated by 2 percent Gaussian random noise, and it can be seen that the

numerical rank was 4 when four or more measured modes were available. A careful

definition of numerical rank has been given in a paper by Golub et al. [51]. The

essential idea is briefly described as follows. In order to look at the “nonzero singular

values” of Berman’s “AM” matrices, a number 6 must be chosen as a “zero

threshold”. The choice of 6 was based on measurement errors (information about the

uncertainty of the measured data) incurred in estimating the coefficients of those

Berman’s “AM” matrices. In this case, two percent random noise was applied to the
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measured mode shape vectors so that by considering the round off and the

measurement errors in the matrix computation the value of 6 was set to 0.02 time the

spectral norm of Berman’s “AM” matrix.

0 ! I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 10
Number  of measured modes

Figure 4.34 The rank of Berman’s “AM” matrix against the number of measured
modes

1
0.022
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

2
0.039
0.009
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

3
0.074
0.014
0.004
0.000
0.000
0.000
0.000
0.000
0.000
0.000

le num
4

0.100
0.014
0.004
0.002
0.000
0.000
0.000
0.000
0.000
0.000

x of ml
5

0.100
0.014
0.004
0.002
0.000
0.000
0.000
0.000
0.000
0.000

6
0.100
0.025
0.006
0.003
0.000
0.000
0.000
0.000
0.000
0.000

sured modes (n
7

0.100
0.025
0.008
0.004
0.000
0.000
0.000
0.000
0.000
0.000

8 9 10
0.100 0.100 0.100
0.025 0.025 0.025
0.010 0.020 0.020
0.004 0.010 0.010
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000

Table 4.2 The singular values of Berman’s “AM” matrices for the second case
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1 2 3
D.0219 1.0390 0.0739

0.000 I.0085 D.0134

0.000 0.000 0.0029

0.000 0.000 0.000

0.000 0.000 0.000

0.000 0.000 0.000

0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000

0.000 0.000 0.000

ie num
4

I.1001
I.0133
I.0030
1.0024
o.oooo
o.oooo
o.oooo
o.oooo
o.oooo
o.oooo

:rofm
5

D.lOO1
D.0134
D.0036
D.0025
o.ooo2
0.0000
o.oooo
o.oooo
o.oooo
o.oooo

sured 1

6
).lOOl
I.0250
I.0058
I.0032
0.0003
0.0001

0.0000

0.0000

0.0000

0.0000

xies  (n

7
IJ.1001
B.0249
D.0074
D.0032
0.0005
o.ooo2
0.0001

0.0000

0.0000

0.0000

8

~.lOOl
I.0250
).OlOO
I.0036
0.0006
0.0005
o.ooo2
0.0001

0.0000

0.0000

9

D.lOO1
D.0250
D.0198
D.0099
o.ooo7
o.ooo7
O.ooo6
o.ooo3
0.0001

O.OOOQ

10
I.1001
I.0250
I.0199
).OlOl
o.ooo!J
0.0007
0.0006
0.0003
0.0001

0.0000

1

Table 4.3 The singular values of Berman’s “AM” matrices for the second case
(noisy data)

4.5.7 ITERATIVE MODAL UPDATING TECHNIQUES USING MODAL

DATA

So far, only non-iterative model updating methods have been presented. The main

advantage of those methods is the fast computation time, and thus the implementation

cost can be minimized. As a drawback, it should be noted that coordinate

incompleteness causes the failure of non-iterative methods in obtaining the exact error

matrices in many cases unless a reliable mode shape expansion technique is developed.

By calculating first-order sensitivities of natural frequencies (or eigenvalues) and mode

shape vectors (eigenvectors) of the E/analytical  model, a relationship between modal

parameters and structural elements for a particular mode can be expressed in the

following form :
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(4.37)

where @A - hx) and ($A - +x) are the differences between experimental and adytkd

natural frequencies and mode shape vectors respectively; [&&],[a (+A )/&I are

matrices with the partial derivatives of the analytical natural frequency and mode shape

vectors with respect to the structural parameters; and (r - rA) is a column vector with

the difference between the structural parameters (mass, stiffness and damping loss

factors) corresponding to the refined model and the original analytical model.

As a first step, the changes of structural parameters {r - rA) are determined by solving

equation (4.37) when the system of equations is overdetermined. In a second step, the

structural changes are then added to the original model and the generalised eigenvalue

problem defined by the modified system matrices is solved. The modal parameters of

the refined model are compared with the measured modal data in the third step. These

three steps are repeated until a good agreement is indicated between measured and

analytical modal data. The main advantage of this iterative method is that the

coefficient vector and matrix can be constructed even if the mode shape vectors are

incomplete in terms of the number of DoFs. The drawback of the method is the

necessity to solve a generalised eigenvalue problem in each iteration.

For an algebraic eigenvalue problem (mass matrix is unity), Kublanovskaja [52] gave

a convergence analysis of this method in 1970, assuming the existence of a solution.

It is possible to extend his analysis to the generalised eigenvalue problem - for a

system without an unit mass matrix - as long as the structural changes do not exceed a

mathematical bound so that the convergence of solution can be achieved. Details of

sensitivity analysis of mechanical structures will be given in Chapter 5.
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4.5.8 MODEL UPDATING USING FREQUENCY RESPONSE FUNCTIONS

The afore-mentioned methods for updating the physical parameters of an FE/analytical

model use experimentally-derived modal data. It should be noted that for a undamped

mechanical structure, the information of out-of-range modes (residuals) was

completely eliminated from the dynamic response at resonances. At the other

frequency points, the well-known spectral decomposition of the FRF is written as :

N

Hi&a> = C r$i rQj

r=l 6$-02+i?J,o,2
(4.38)

This implies that the FRF contains all information of the system matrices at any

frequency point other than structural resonances. Based on this idea, Lin [53] has

developed a model updating method using FRF data directly. His method uses a

complete column/row of the receptance matrices at a particular frequency point and is

derived as follows :

WxWT = WA(O) IT - WA(~)  )TIAz(@>l Wx(m>  I (4.39)

where (Hx(o)) consists of the receptances of the test structure, (HA(O)) consists of

the receptances of the original analytical model and [AZ(o)] is the matrix of structural

changes. Collecting equation (4.39) for several measured frequency points yields a

system of equations which can be solved by a least-squares method, provided that the

system of equations is overdetermined. It should be noted that the measured FRF set

is generally coordinate- incomplete. In such a situation, an iterative procedure can be

used whereby the unmeasured FRFs are predicted from the original or updated system

matrices and are used in equation (4.39) in lieu of measurements.

,,.
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4.6 CONCLUDING REMARKS

An attempt has been made to survey the structural identification methods which are

widely used in the modal analysis community. Direct parameter extraction methods

are classified with respect to the types of measurement data - frequency domain and

time domain. Within these groups, a distinction is made between local and global

approaches. The special features of each method are briefly described.

It may be fairly accurate to state that working methods to identify the physical mass,

stiffness and damping distribution directly for mechanical structures are very scarce.

As a result, the reconciliation of an FE/analytical model and modal test information is a

feasible approach to derive a mathematical model which reproduces the measured data

and is capable of predicting the response of a modified structure.

Although direct matrix-update methods have been developed and investigated by

numerous researchers, the reason why these methods could not produce accurate mass

or stiffness error matrices, even if a large number of modes have been measured, has

not been well understood. Besides, the connectivity of the original analytical model is

not preserved when these methods are used to determine the system error matrices.

This undesirable effect can lead to physically unrealistic changes being introduced in

the analytical system matrices. In Section 4.5.1, it was noted that Baruch & Bar-

I&hack [43] borrowed the idea from the research work from navigation to develop the

direct matrix-update method. However, the bases of these two disciplines are so

different that the mapping technique in navigation should not be used in model

updating. It is shown that the formula given in Berman’s paper is mathematically

incorrect unless the complete set of measured modes (as well as coordinate-complete)

are given.
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After identifying the inherent difficulties in obtaining mass error and stiffness error

matrices by matrix manipulation, the orthogonality constraint method which is based

on transforming the orthogonality relationships of the mass and stiffness matrices to

sets of simultaneous equations is developed. The mass error and stiffness error

matrices are then obtained in a least-squares sense by calculating the Moore-Penrose

generalised inverses when the system of equations is overdetermined. The

eigendynamic constraint method is also presented. This method is based on the simple

modal equations and mass normalisation relationships of measured modes. By

considering the state of the system of equations, a criterion for model updating using

the minimum modal data is suggested from which the eigendynamic constraint method

generally requires fewer measured modes than the method based on the orthogonality

relationships of the mass and stiffness matrices of a mechanical structure. Numerical

examples verify that if the criterion is satisfied, it is possible to determine the system

error matrices and to produce an accurate updated analytical model.

The effect of modal and coordinate incompleteness is also investigated. Numerical

examples show that there exist different identified systems when the modes available

from measurement are incomplete in terms of the number of modes as well as the

response coordinates. The values of mass and stiffness elements obtained depend on

the method used to determine the response of the unmeasured coordinates. It can be

concluded that when only a limited number of modes and response coordinates are

measured, different identified systems can be obtained by using the eigendynamic

constraint method with different approximations for the response at the unmeasured

coordinates. All these systems reproduce quite accurately the measured modal

properties and some of them preserve the physical characteristics of the structure, such

as positive mass and stiffness elements, and the same connectivity. But only one of

them is the true representation of the structure and will have the capability of
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reproducing the measured modal properties exactly and of predicting the effects of

changes in physical parameters.

A separate subsection is devoted to the characteristic of direct matrix-update method.

It is proved that in general Berman’s “AM” matrix is a projection of the actual mass

error matrix in an AWV subspace when sufficient modes are available. Also, the

number of mass mismodelling sites can be determined when Berman’s “AM” matrix is

factorized using the SVD. This technique is not affected by the number of stiffness

errors for any system. By following Berman’s method, a pseudo “AK” matrix can be

constructed based on measured modal data. Again, the number of stiffness

mismodelling sites are determined when the pseudo “AK” matrix is factorized using

the SVD.

The least two subsections in model updating present the iterative methods based on

inverse sensitivity analysis and the latest model updating techniques using FRFs.

Both of them relax the strict restriction that the measured coordinates should be

complete in order to work effectively. However, the main drawback of iterative

methods is the necessity of solving an generalised eigenvalue problem in each

iteration.



EJ SENSITIVITY ANALYSIS OF
MECHANICAL STRUCTURES

5.1 INTRODUCTION

A good finite element (FE) or analytical model of a mechanical structure is important

for structural integrity analysis. In practice, a high degree of confidence can be placed

on such a FE/analytical model when the dynamic response of that model closely

resembles experimental data. However, updating the FE model or identifying the

analytical model directly is usually not the main objective of structural vibration

analysis because there are many situations when the dynamic response of the

mechanical structure does not satisfy the requirement set by the structural analyst

(designer). In such situations, the dynamic response of the mechanical structure has to

be altered either (i) by controlling the forcing inputs to the structure, or (ii) by

changing the dynamic characteristics of the structure. The forcing inputs often result

from interaction with the structure’s environment and so cannot easily be controlled at

will. When this is the case, it is important to be able to alter the structural response by

redesigning the dynamic characteristics of the structure. To this end, the use of

structural reanalysis techniques to obtain the optimum condition of an FE model of a

mechanical structure has grown considerably in recent years.

A number of techniques exist that can be applied to the dynamic reanalysis of

mechanical structures. One of the most popular of these is sensitivity analysis which

has been developed and applied by several workers to the general eigenvalue problem
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[54-701 and, more specifically, to applications of structural dynamic modification

analysis in references [7 l-741. In this area, both first- and higher-order eigenvalue

and eigenvector sensitivities have been investigated with a view to predicting the

dynamic response of a modified structure from knowledge of its spatial and modal

properties in the original, or unmodified, state. As the sensitivity analysis of a

mechanical structure is based on a Taylor expansion of eigenvalues and eigenvectors

of the unmodified structure, and the computation of the higher-order terms of this

series is difficult and time consuming, the effectiveness of this method is limited to

small modifications. However, it is not easy to determine what constitutes “small”. In

this chapter, a condition number is presented to indicate how sensitive the eigenvalues

and eigenvectors of a mechanical structure are to small modifications. The value of

this condition number can be used to determine a limit of applicability for first-order

eigenvalue and eigenvector sensitivities.

5.2 THE ORIGINAL PURPOSE OF DEVELOPING THE FIRST-

ORDER PERTURBATION

First-order perturbation estimates (eigenvalue and eigenvector sensitivities) have long

been used by numerical analysts and scientists to investigate the stability of the

eigenvalue problem, [A] (9) =h ($1. These estimates have the advantage that they

provide a quick, nonrigorous look at how eigenvalues and eigenvectors change when

the elements of matrix [A] vary within the limits of permissible error. Faddeev and

Faddeeva [54] stated that the results obtained from perturbation theory are based on

differentials but not finite increments. Perturbation theory has also been used for

improving the accuracy of the complete eigenvalue problem. In most matrix

computational textbooks, first-order perturbation theory is used to obtain the error

bounds in computing eigenvalues and eigenvectors on a digital computer.
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By translating the above-mentioned feature to suit structural analysts, a first-order

sensitivity analysis is used to determine the “order of importance” ranking of a

structure’s degrees of freedom for structural modification, for each mode of vibration.

To the greatest extent in an engineering application, it has been stated in a paper written

by Fox and Kapoor [55] that the concept of introducing first-order eigenvalue and

eigenvector derivatives is used to approximate the analysis of modified designs.

5.3 HISTORICAL DEVELOPMENT OF FIRST- (AND HIGHER-)

ORDER SENSITIVITY

The basic sensitivity analysis is to compute partial derivatives of eigenvalues and

eigenvectors with respect to the elements of two Nfl system matrices [A] and [B] in

a generalised eigenvalue problem. For reference purposes, the most general case

considered is the following eigenvalue problem :

where h, is an eigenvalue (generally complex); and { 1$ ) r and {+ ) r are the

corresponding normalised left-hand and right-hand eigenvectors of the matrix

pencil (A,B).

In 1846, Jacobi [56] published a result on first-order eigenvalue sensitivities for an

eigenvalue problem [A] (Q) = h(9) for the special case [B] = [II :

(5.4)
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Van de Vooren [57] used sensitivity analysis (perturbation) in investigating the effects

of small changes in a parameter on the flutter characteristics of an aircraft. The

problem in which nearly equal natural frequencies arise is approached via that of

exactly equal natural frequencies. In 1948, Jahn [58] derived first-order eigenvalue

and eigenvector sensitivities in order to improve an approximate set of eigenvalues and

eigenvectors of a symmetric matrix. In Jahn’s paper, he extended his method to a

Lagrange frequency equation of the form :

[ -WI+ Kl lb) = (01 (5.5)

The case of coincident eigenvalues of the unmodified system and the extension of the

calculations to the second-order eigenvalue sensitivities can be found in Courant and

Hilbert [59] where perturbation theory has been applied to the problem of self-adjoint

linear differential equations.

Lancaster [60] developed a rigorous treatment of eigenvalue sensitivities and, in

particular, showed that for multiple eigenvalues the sensitivities are themselves

solutions of an eigenvalue problem. Wilkinson [61] presented clear derivations for the

first-order sensitivity equation of an eigenvalue in terms of the left-hand and right-hand

eigenvectors. The equation presented in references [60] and [61] is

ah,aa= (lW,T wr (5.6)

where (1~)~ and {w}r are the left-hand and right-hand eigenvectors of the matrix {A]

with arbitrary scaling.
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In the 196Os, some methods which are notable for their nonreliance on eigenvectors in

the eigenvahre sensitivity formula were developed for sensitivity analysis of electronic

networks. Rosenbrock [62], Morgan [63] and Reddy [64] developed a formula for

eigenvalue sensitivities in terms of the matrix [A] and its eigenvalues :

a3c,
tface WjWl - ~r[W[a~l 1

aa= trace WjWl - h[IlN
(5.7)

Frazer et al. [75] showed that if 3c, is a simple eigenvalue of the matrix A, then adj([A]-

&[I]) can be expressed in terms of the corresponding left-hand and right-hand

eigenvectors of h, :

adj([Al  - &PI) = ~AYMP+&~

where z, is a constant. Therefore,

(5.8)

Bodewig [76] showed that if [Q] is square and rank [Q] = 1, so that [Q] is a simple

product of a column (w]r and a row (1~)~~  (i.e. [Q] = zr(~)r(l~),‘), and if @ADal

is arbitrary, but square, then

(5.10)

t
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By substituting equations (5.9) and (5.10) in equation (5.7),  equation (5.6) is

obtained. Thus, in the computation of adj([A] - &[I]), both left-hand and right-hand

eigenvectors are implicitly computed, in view of equation (5.8).

Frame [77] established that the trace of the adj([A] - &[I]) is equal to the derivative of

the characteristic polynomial, det([A] - &[I’l).

t r a c e  WjWl  - WCl>l = fi (As - hr)
r rfs

Now, consider the trace of the product of the following two matrices.

(5.11)

‘h&) A21&) . . . ANl&)-

&2&I  A22&) . . . ANY&)

. .

. .

.&N&) &N&) . . . ANN&)-

(5.12)

where Aij is the (i,j)th cofactor of ([A] - &[I]).

In structural analysis [A] is related to the stiffness matrix (usually written as [K]) and

[I] is the unit mass matrix. If a point Single Degree of Freedom (SDoF) stiffness

modification is made at location j, the numerator of equation (5.7) can be written as :
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tract

= trace:

= Ajj&)

-h&> A21&) . . . h(L)-

A1204 A22&) ... ANZ&)

. .

. .

-&N&)  ALZN&)  ... AN N& ) -
.
0.. 0.. Ajt(&) s-0 s-0

. .

. A&> .

. .

0.. 0.. AjN(&) a.0 s-0
.

= the (jj) cofactor of ([A] - &[Il)

The equation of motion for a linear system is :

-0 0 . . .

0 0 . . .

. 1W

.

-0 0 . . .

(5.13)

([Al - UIlNx)  = VI (5.14)

It has been shown in several references [e.g.78,79] that any frequency response

function (FRF) of a grounded undamped structure can be described completely in

terms of its poles or eigenvalues (squares of natural frequencies), its zeros (squares of

anti-resonance frequencies), and a constant (Ci).

N-l
cjjn (1 -h-)

Hi(h) = ;=’ jpk

IIt 1 h- -
s=l h)s

where Hi(h) = receptance of point measurement at location j

Gj = static flexibility

(5.15)

. . .
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1s = sth pole

Wk = kfh zero for Hi(h)

The FRF Hi(h) can also be obtained from equation (5.14).

Hjj&) = !$A) = the (jj) cofactor of ([A] - &[I])
det (WI - &[Il)

since

det([A]-h[TJ)  = fi(h-h,) =
s=l

(5.16)

(5.17)

Using equations (5.15), (5.16) and (5.17), the (j,j)th cofactor of ([A] - h [I]) can be

expressed as :

the (jj) cofactor of ([A] - &[I]) =

s=l k=l=
N-l

I-Djj k
k=l

Substituting equations (5.11) and (5.18) in equation (5.7) gives :

ah,
cjj fi hs ff (jjpk - hr)

s=l k=l-=
aa N-l

n jjpk fi (hs - hr)
k=l r rfs

(5.18)

(5.19)
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and this is the equation for a point SDoF stiffness modification obtained independently

by Skingle and Ewins [71].

The formula shown above for calculating the sensitivity of an eigenvalue to changes in

the matrix (equation (5.19)) is implicitly the same as those shown in equations (5.6) &

(5.7). This is to be expected if one begins with equation [A] ($1 = h($). As the

system properties do not vary under a harmonic excitation, the difference between

equation (5.19) and equations (5.6) & (5.7) is the number of design parameters used

to calculate the first-order eigenvalue sensitivity.

Fox and Kapoor [55], apparently being unaware of earlier work such as that of Jahn

[58], rediscovered the eigenvalue and eigenvector sensitivities by considering the

special case of symmetric stiffness [K] and mass [M] matrices. For eigenvalues their

formula is :

in which it is assumed that the eigenvectors are normalised such that

(5.20)

(5.21)

The first-order eigenvector sensitivity of the rth mode is :

(5.22)
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Rogers [65] derived sensitivity formulae for the eigenvalues and eigenvectors of a

general problem and stated the need for two sets of normalisation conditions for a non-

self-adjoint system. These conditions have been largely ignored in subsequent work,

resulting in some confusion in the literature on eigenvector sensitivities. Lim et al.

[72] reviewed the development of eigenvalue and eigenvector sensitivities and

highlighted the need for two independent sets of normalisations to define uniquely the

left-hand and right-hand eigenvector sets. The first-order eigenvalue sensitivity for a

general system is :

(5.23)

with biorthogonality and normalisations relationships as :

bNsT  [Ml Wr = 6,s r,s = 1, 2, . . . . N

WrT WI Wr = 1 r = 1, 2, . . . . N

(5.24)

(5.25)

The left-hand and right-hand eigenvector sensitivities are :

where

rfs

rfs

(5.26)

(5.27)

(5.28)

Vanhonacker [66] derived some formulae calculating the sensitivities of a mechanical

structure subjected to parameter changes. The formulae obtained were based on an
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nDoF system under a sinusoidal excitation. Comparing his derivations with the

equations shown above, it can be observed that the sensitivity is a special case in the

classical methods of sensitivity analysis.

Many papers [67-701 have presented higher-order eigenvalue and eigenvector

sensitivities. Wang et al. [73] have investigated the accuracy of structural modification

analyses by calculating the first- and second-order eigenvalue and eigenvector

sensitivities and showed the divergence phenomenon for large structural modification.

The second-order eigenvalue sensitivity of a structure with symmetric system matrices

is obtained by differentiating equation (5.20) :

+ 2(Q) T([%] - +M] @])*
r aa aa - aa &.

(5.29)

From this equation, it can be seen that the second-order eigenvalue sensitivity is

dependent on the first-order eigenvalue and the first-order eigenvector sensitivities.

Using the relationships shown in equations (5.20) and (5.21), equation (5.29) can be

rewritten as :

(5.30)

Noor and Whitworth [74] have calculated the first four orders of eigenvalue

sensitivities in order to predict the modified eigenvalues for a large beamlike lattice
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structure following a large modification. The results predicted by truncated Taylor’s

expansions shown below were far from satisfactory.

h: ah 1 a2h, 1 a3h 1 a%= k, + %Aa + 5 +Aa)2  + 5 p(Aa)'  + r m(Aa)4 (5.31)

and
1 aY@)($‘)r=(+)I+ $.A, + z-&.(Aa)2  + - -

i! a~($hW3  + 4! ad
1 ‘!?.(Au)4 (5.32)

In fact, the limited success of sensitivity analysis in large modification prediction is

inevitable because the value of higher-order sensitivity coefficients increase drastically

when the size of structural modification is increased. Unfortunately, some structural

analysts still believe that including some higher-order terms will produce a more

accurate prediction for large modifications. Such thoughts contradict the original

purpose of developing the sensitivity analysis/perturbation technique in numerical

analysis as mentioned in the preceding section; namely, to investigate the stability of

the eigenvalue problem .

5.4 CONDITION NUMBERS OF AN EIGENVALUE,

EIGENVECTOR AND THE LIMITED BOUND OF

FIRST ORDER SENSITIVITY ANALYSIS

Perturbation theory is based on Taylor’s series expansions of the eigenvalues and

eigenvectors of an unmodified system. Although these two Taylor’s series converge

for small structural modifications, it is not easy to specify what constitutes “small”. In

this section, condition numbers of an eigenvalue and eigenvectors of an eigenvalue

problem are presented. A condition number to determine the limit of applicability for

the first-order eigenvalue and eigenvector sensitivities is also given.
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Suppose h, is a simple eigenvalue of a general real matrix [A] and { 1~)~ and (w}~ are

the corresponding left-hand and right-hand eigenvectors. Then as [AA] tends to the

null matrix, [A+AA] has an eigenvalue &+A& in accordance with the stationary

property of eigenvalue (Rayleigh principal) or, by using first-order eigenvalue

sensitivity such that the change of the rth eigenvalue can be calculated by :

(5.33)

From equation (5.33), the absolute value of A& is expressed as :

5

11 WM2 MAAl Wrh
IhwLTWM

Walsh  I%wM2  WW2

~hv)rTb.lfM
(5.34)

and I {l~}~r{ IJI)~I is the cosine of the angle 0, between the left- and right-hand

eigenvectors, (1~)~ and (~1~. When co& is very small, the corresponding

eigenvalue is very sensitive to perturbations in the elements of [A]. Wilkinson [61]

suggested that l{~~)rT{~)rl-~  is a condition number for a nonrepeated eigenvalue.

When the matrix [A] is symmetric and {lw]r is equal to (~1~.  Since (~w)~~(w]~ is

normalised to unity, the condition number for a nonrepeated eigenvalue is dependent

on the spectral norm of modification matrix [AA].

For a general matrix with distinct eigenvalues, the eigenvector (w’)~ of [A+AA]

corresponding to (w}~ is such that as II[AA]II + 0

N ~wls~~w)s~bWI~lswr- wr s c
s=l sfr (l~IsTIWIs(L - L)

= 5 hMw~sTWWv)s

s=l sfr COS6s(hr  - hs)
(5.35)
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Again, it can be seen that the quantity cost& is important, however, the sensitivity of

the eigenvector is also dependent on the proximity of h, to other eigenvalues. From

equation (5.35),  the smallest value of & - &), indicating the separation of eigenvalue

h, from its neighbours, is usually defined as a condition number for the corresponding

eigenvector 1: yf)r.

The condition numbers for eigenvalues and eigenvectors have been presented and

discussed in Wilkinson’s classical monograph [61]. However, the limited bound of

application for the first-order eigenvalue and eigenvector sensitivities was not fully

discussed until Stewart published two papers concerning sensitivity of the generalised

eigenvalue problem [80] in 1972 and error and perturbation bounds for subspaces

associated with certain eigenvalue problems [81] in 1973. In Stewart’s book [82], the

following theorem is given :

THEOREM . Let h be a simple eigenvalue of [A@ @‘fl with right-hand
eigenvector ( IJI}~ and left hand eigenvector (my),. Suppose (y~)~ has been
scaled so that II (w)r II, =l and (1~)~ has been scaled so that (~w)~H(w}~
=l. Let [U]E CNdN-1) be chosen so that (( w)JI!]) is unitary and set

((~)~,[~l)~[AI((~),,[yll)  = 1, (V)rHIAlvl 1 (5.36)

Let [AA& CNfi be given and let
6 = II [AA] II, , V = II [‘I’]HIA]H(W)r 11,) y = II 13’lH[AAl(~Ir 11,

and p= II &[I] - [‘y]H[A][Y])-’ II,’
Then if

y(v + 6) 1
(I.t - S)2 < a

there exists an eigenvalue htr of [A+AA] with eigenvector
be predicted accurately by first-order perturbation theory.

(5.37)

(5.38)

( w’)~ which can
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This theorem can be modified to deal with the generalised eigenvalue problem

[K+AK] ( $‘}r = h’,[M+AM] (@‘)r. The system matrix [A] is substituted by the matrix

[Ml-l&] if [M] is invertible, the perturbation matrix [AA] is approximated by

[M+AM]-‘([AK] - h,[AM]) if [M+AM] is invertible. It should be noted that the

approximate inequality (5.38) bounds the applicable range for first-order perturbation

theory.

5.5 RELATIONSHIP BETWEEN RAYLEIGH QUOTIENT AND

FIRST-ORDER SENSITIVITY ANALYSIS

The Rayleigh  quotient provides an approximation of the eigenvalues based on trial

vectors which are often the approximated eigenvectors of a self-adjoint system

(Rayleigh [83] and Lancaster [84]) or the approximated left-hand and right-hand

eigenvectors of a non-self-adjoint system (Lancaster [84]). So if the eigenvector of a

modified system (@‘Jr is approximated by the eigenvector of the original system (@Jr,

then for a self-adjoint system :

where hR is called the Rayleigh quotient.

Normally, the unperturbed eigenvector

(5.39)

( $)r is a reasonable estimate for the

eigenvector of the modified system, and in that case, equation (5.39) gives an

approximation of the modified eigenvalue.

For a stiffness modification, the Rayleigh quotient is expressed as :
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Comparing the results obtained by Rayleigh quotient (equation (5.40)) with the results

(5.40)

obtained by perturbation theory (equation (5.20)), it is found that when there is no

mass perturbation ([AM]=[O]), the Rayleigh  quotient and first-order perturbation

theory yield identical results for a self-adjoint system.

For a mass modification, the Rayleigh quotient is expressed as :

hR =
WrTIKIWr

(@)rT[M](Q}r (1 + ‘O1rTIAM1”‘r)
IQ)rTIMII@)r

(5.41)

Expanding the above Rayleigh quotient to a power series, we have

hR = hT +  -&{~)rTIAMltQlr + 2_((@IrT[AMI(OIr)2

{QlrTIMl{Q)r ‘1 ({Q)rTlMl($)d2

_ h, ({+)rTEAMl  (@)r13

((OlrTIMl  191A3
+ . . . (5.42)

Hence, the first-order term in the Rayleigh  quotient is the first-order eigenvalue

perturbation ((&/aa)Aa ). The second-order term is one of the mass perturbation

terms which appear in the second-order eigenvalue sensitivity as shown in equation

(5.30). Some higher-order mass perturbations terms are present because mass terms

appear in the denominator of the Rayleigh  quotient. However, most of the mass

perturbation terms for the second-order eigenvalue sensitivity are not accounted for in

the Rayleigh quotient expression. As a result one should not conclude that Rayleigh

quotient is equivalent to a second-order eigenvalue perturbation procedure for mass

perturbations. This can be seen from equation (5.30) of &/da, the other mass
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perturbation terms are not accounted for in equation (5.42). Therefore, even though it

keeps some higher-order mass perturbation terms, the Rayleigh quotient is in essence a

first-order approximation.

It is fair to state that the Rayleigh quotient is almost equivalent to first-order

perturbation theory, provided the trial vectors chosen in the Rayleigh quotient are the

unperturbed eigenvectors.

5.6 STRUCTURAL MODIFICATION ANALYSIS USING

RAYLEIGH QUOTIENT ITERATION

As mentioned before, when ( +)r is an approximate eigenvector for the modified

system, hi (as defined in equation (5.40)) is a reasonable estimate for the

corresponding eigenvalue. On the other hand, if hi is an approximate eigenvalue,

inverse iteration theory shows that the solution to ([K+AK] - XR[M+AM])(+‘),  =

[M+AM] ( $)r will almost always provide a good approximate vector in a least-squares

sense.

Combining these two ideas gives rise to Rayleigh quotient iteration. For a self-adjoint

system [K+AK] is symmetric and [M+AM] is symmetric and positive definite, and the

Rayleigh quotient iteration is expressed as follows [85]:

Assign (w’)Q = ($), and h’y = h, Ii (w’)P II, = 1

For k = 0, 1, . . .

h’k;’ = Iyfll:T W+AKl (~‘1’:
Iv’)~:~ W+AMl WI!:

Solve ([K+AK] - h’k-fl[M+AM])( @}k$l = [M+AM] (v’)$ for (cp’ lk;l
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A criterion should be set in order to terminate the iterative procedure after a finite

number of steps. The appropriate criterion is to compare the difference between

successive estimates of eigenvalues h‘ktl and h’j such that when the ratio of these

two estimates is smaller than a prescribed value, say l+lE-6, h’k$l  is taken as the

eigenvalue of the modified structure and (+‘)F is the associated eigenvector. After the

iterative procedure has been terminated, the eigenvector (w’}f is normalised with

respect to the mass matrix of the modified structure by using the following equation :

The mathematical basis for the Rayleigh quotient iteration method is that :

(5.43)

(5.44)

minimises

f(h’,) = 11 K+AKl @‘)r - h’r [M+AMl b$‘)r +M+AM]
where II . IIiM+m] is defined by II { cp) llIM+m12 = {(pjT[M+AM]-‘{  cp}

(5.45)

So far, the algorithm and mathematical basis of Rayleigh quotient iteration have been

given. However, the speed of convergence for this iterative process has not been

studied. To study the speed of convergence, the estimate of rth eigenvector is

expressed as :
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Wf = (5.46)
s=l S#T

Then, from the well-known property of the Rayleigh quotient, the estimate of the rth

eigenvalue is :

h’k;l =
hr+s &s2

=

l+ 5 Es2
s=l szr

and hence

(5.47)

(5.48)

Apart from a normalizing factor the estimate of rth eigenvector after k+l number of

iterations is:

2 @d&S2  N

2 @‘jr +s=l s** N c
l+ c Es2 s=l szr (~‘s-~‘k~l)

(5.48)

s=l Sfl

and all coefficients other than that of ($‘)r are cubic in Ed. Therefore, it can be

concluded that the process is cubically convergent in the vicinity of each eigenvector.
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There is an analogous process for unsymmetric matrices in which approximate left-

hand and right-hand eigenvectors are found at each stage. The process is given as

follows :

For k = 0, 1, . . .

h’ktl = hyW T W+AKl W)!
Ilw’)‘: T W+AMl N’l’:

Solve ([K+AK] - h’k$l[M+AM])(@)k$l  = [M+AM](yf’}‘: for {cp’jk:l

Solve ([K+AK] - X’k:l[M+AM])T(@)k:l = [M+AMIT(ly’}‘: for (~cp’)~t]

(y’)k;’ = I cp’lkZ’

II {q’}k;’ II,

hW’)kt’ =
{ lcp’ lkZ1

II (lcp‘}k$’ 112

This process is again ultimately cubically convergent. The left-hand and right-hand

eigenvectors can be re-normalised with respect to the mass matrix of the modified

structure by using equations (5.24) and (5.25).

5.7 NUMERICAL EXAMPLES

In order to evaluate the effectiveness of the first-order sensitivity and the Rayleigh

quotient iteration methods, a modification study was made on the lumped spring-mass

model with 7DoF shown in Figure 5.1. Figure 5.2 shows the point frequency

response function for this model when the excitation was applied on point 4

(proportional damping loss factors of 0.001 were used to produce the FRFs). For

several parameter changes at different locations of the model the first-order sensitivity

and the Rayleigh quotient iteration methods have been applied to the original data to

predict the consequent changes to the system’s natural frequencies. The results are

compared with the exact solution obtained by complete reanalysis.
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In Figures 5.3 - 5.5, the shifts of eigenvalues are plotted with respect to a mass change

at point 6. From these figures, it is noticed that the Rayleigh quotient iteration method

gives accurate results for modes 1 to 6 although some numerical difficulties are

‘observed for modes 7. Figure 55 shows that mode 7 converges to mode 6 if the mass

change is greater than 60%. The first-order sensitivity method is a linear

approximation based on an infinitesimal change of a parameter, and it is seen that the

accuracy of prediction based on this parameter decreases with increasing magnitude of

the mass change. Figure 5.6 shows the condition number (LHS of inequality Q.36’))

against the percentage of mass change. Modes 3 and 4 are close modes and for these

the first-order sensitivity is applicable only for small mass changes (~2.5 %). Modes

5,6 and 7 are also ill-conditioned for the mass perturbation at point 6.

The accuracy of the mode shapes predicted by the two techniques is assessed by using

the Modal Assurance Criterion (MAC). Tables 5.1 and 5.2 contain the MAC values

between eigenvectors from the first-order sensitivity analysis and the exact solution

and between the Rayleigh quotient iteration and the exact solution. Examining the

tables, it is seen that the Rayleigh quotient iteration yields consistently better

correlation with the exact solution except when the mass change is greater than 60%,

in this case mode 7 converges to mode 6.
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Mi = 1 kg i= 1,2, . ...7
Kl =  lEaN/m
K2 = 2E4 N/m

Figure 5.1 A lumped mass-spring model with 7 degrees-of-freedom
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Figure 5.3 1st and 2nd eigenvalues shift with mass change at point 6
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Figure 5.4 3rd and 4th eigenvalues shift with mass change at point 6
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60 % Perturbation
predicted (lst-order  sensitivity)

Exact
1
2
3
4
5
6
7

_.
1 2 3 -4 5 6 7

1.000 0.003 0.002 0.002 0.005 0.002 0.02 1
0.004
0.006
0.000
0.016
0.000
0.004

ubation

1.000 o.ooo 0.003 0.001 0.001 0.011
0.003 0.959 0.035 0.000 0.004 0.018
0.000 0.03 1 0.964 0.000 0.000 0.001
0.007 0.019 0.003 0.812 0.094 0.061
0.000 0.000 0.000 0.157 0.834 0.000
0.002 0.004 0.000 0.012 0.082 0.938

100 % Pel
predicted  (Is&order  sensitivity)

1.000 0.008 0.004 0.005 0.007 0.003 0.037
0.012 0.999 0.001 0.009 0.000 0.003 0.022
0.016 0.007 0.855 0.097 0.001 0.008 0.035
0.001 0.000 0.111 0.879 0.000 0.000 0.001
0.034 0.016 0.049 0.025 0.625 0.130 0.101
0.000 0.000 0.000 0.000 0.312 0.667 0.000
0.005 0.003 0.005 0.001 0.009 0.203 0.821

Table 5.1 MAC values for the modified eigenvectors between the 1 St-order sensitivity
analysis and the exact solution for the mass modification at point 6

60 % Perturbation
predicted (Rayleigh quotient iteration)

Exact 1 2 3 4 5 6 7
1 1.000 0.004 0.006 0.000 0.016 0.000 0.004
2 0.004 1.000 0.002 0.000 0.007 0.000 0.002
3 0.006 0.002 1.000 0.000 0.010 0.000 0.003
4 0.000 0.000 0.000 1.000 0.001 0.000 0.000
5 0.016 0.007 0.007 0.001 1.000 0.000 0.006
6 0.000 0.000 0.000 0.000 0.000 1.000 0.000
7 0.004 0.002 0.003 0.000 0.006 0.000 1.000

100 % Pei :urbation

Exact
1
2
3
4
5
6
7

Predicted (Rayleigh quotient iteration)

1.000 0.014 0.017 0.001 0.034 0.000 0.000
0.014 1.000 0.007 0.000 0.014 0.000 0.000
0.017 0.007 1.000 0.000 0.017 0.000 0.000
0.001 0.000 0.000 1.000 0.001 0.000 0.000
0.034 0.014 0.017 0.001 1.000 o.ooo 0.000
o.ooo o.ooo 0.000 0.000 0.000 1.000 1.000
0.005 0.002 0.003 0.000 0.005 0.000 0.000

Table 5.2 MAC values for the modified eigenvectors between the Rayleigh quotient
iteration and the exact solution for the mass modification at point 6
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In Figures 5.7-5.9, the shifts of eigenvalues are plotted for the case of a stiffness

change made between points 3 and 4. It is seen that the Rayleigh quotient iteration

method gives accurate prediction for all modes. The condition number against the

percentage of stiffness modification change is shown in Figure 5.10. From this

figure, it is noticed that modes 2, 3, 5 and 6 are ill-conditioned for this stiffness

modification. The limit of application for the fust-order perturbation theory for all

modes is approximately equal to 4%. The MAC values between eigenvectors from

those two techniques and those from the exact solution are shown in Tables 5.3 and

5.4. From the results, it is observed that the Rayleigh quotient iteration yields better

results even when the magnitude of stiffness modification is large.

.., - - I ‘. 1 * - 1 . .
0 20 40 60 80 100

%  OF STIFFNESS CHANGE

EXl
SE 1

RI 1
Ex2
SE2
RI 2

1 Figure 5.7 1st and 2nd eigenvalues shift with stiffness change between points 3 and 4

.
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100 % Perturbation
Predicted (M-order sensitivity)_.

Exact 1 2 3 -4 5 6 7
1 I 0.979 0.017 0.000 0.000 0.001 0.001 0.000
2
3
4
5
6
7 I 0.004 0.035 0.005 0.005 0.192 0.161 0.483

0.014 0.909 0.001 0.023 0.016 0.014 0.005
0.000 0.001 0.994 0.005 0.000 0.000 0.000
0.001 0.017 0.004 0 . 9 6 4  0 . 0 0 4 0.003 0.001
0.000 0.001 0.000 0.000 0.255 0.697 0.004
0.002 0.020 0.000 0.003 0.532 0.125 0.506

Table 5.3 MAC values for the modified eigenvectors between the 1 St-order
sensitivity analysis and the exact solution for the stiffness modification
between points 3 and 4

100 % Perturbation
Predicted (Rayleigh quotient iteration)

Exact 1 2 3 4 5 6 7
1 1.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 1.000 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 1.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 1.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 1.000 0.000 0.000
6 0.000 0.000 0.000 0.000 0.000 1.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 1.000

Table 5.4 MAC values for the modified eigenvectors between the Rayleigh quotient
iteration and the exact solution for the stiffness modification between
points 3 and 4

5.8 ALTERNATIVE STRUCTURAL REANALYSIS TECHNIQUE

In the preceding section the Rayleigh quotient and the inverse iteration are combined to

yield the Rayleigh  quotient iteration. However, it should be noted that the inverse

iteration is an alternative technique which is applicable in structural modification

analysis when the baseline information, the modal properties of the unmodified

structure, provide reasonably good approximations to the modified eigenproperties.

The inverse iteration method is expressed as follows:
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Assign Iv’)! = Wr
For k = 0, 1, . . .

II {yf’)p II, = 1

Solve ([K+AK] - h, [M+AM])(cp’}k$l  = [M+AM](v’}‘: for (cp’)kfl

{y’)k$’ = WlkF
II (cp’)q’ II,

The first equation is the basis of a direct iteration method

of the modified structure. By using equation (5.46), the

{ cp’}, after k number of iterations is derived:

Then, apart from a normalizing factor, the estimate of rth

structure is :

for finding the eigenvectors

following explicit form for

(5.49)

eigenvector of the modified

(v’)k:’ = (h, : >k

r- r
(5.50)

The characteristic of this procedure is clearly illustrated by equation (5.50). It can be

seen that as k gets large, (~‘)k;l approaches a multiple of the mode (W’}r. The

convergence is geometric, i.e. like terms of the geometric progression 6, 62, s3, . . . .

The speed of convergence depends essentially on how near & is taken to h’r.

As a practical structural reanalysis algorithm, the inverse iteration method has some

attractive features and some severe limitations. Its strongest point is the simplicity of

the recursion. For example, only one matrix inversion is required during the whole

iterative procedure. In addition, no ill-conditioning problems will be encountered in

the matrix inversion because the matrix ([K+AK]-XL,  [M+AM]) is in general
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nonsingular as it is very rare for the original and modified structure having the same

eigenvalue(s). A drawback to the method is that it will converge slowly when h’, is

not strongly dominant. This method produces an approximation for the eigenvector,

(w’]~, but no information is given directly about the eigenvalue. An auxiliary

computation - using the Rayleigh quotient in determining the corresponding eigenvalue

- would be necessary.

5.9 POSSIBLE USE OF THESE MODIFICATION TOOLS

The FE or analytical model of a complex structure normally has a large number of

degrees-of-freedom and design variables. The primary analysis yields some of the

eigenvalues in a given frequency range, together with the corresponding eigenvectors.

Usually, the model needs to be progressively modified during an automated optimum

design process. The first-order eigenvalue sensitivity approach ranks possible

structural modification sites in their order of effectiveness at influencing each particular

mode. The Rayleigh  quotient iteration and inverse iteration methods can be used in

combination in the following way : Rayleigh quotient iteration is used until a

reasonably good value of h’r is obtained, say (h’k$l/h’b) equals to lf lE-2 and,

incidentally, quite a good approximation of corresponding eigenvector. Rayleigh

quotient iteration is then replaced by inverse iteration with the value of h’t being fixed,

starting with the final vector obtained from the Rayleigh quotient iteration. Finally,

when the eigenvector has been determined, the refined eigenvalue is determined using

Rayleigh quotient. The condition number monitors the behaviour of the modes in the

structural modification analysis. By combining these modification tools, an iterative

program can be written to calculate the optimum condition for a structure specified by

the user.
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If damping is included and is assumed to be viscous, its inclusion will lead to a

quadratic generalised eigenvalue problem such that the matrix equation for free motion

is:

h’,*[M+AM]  ( $‘)r + h’,[C+ACl(O’lr + K+AKl WL = (0) (5.5 1)

where [Ml, [C] and [K] are NxN mass, viscous damping and stiffness matrices of

the original structure; and [AM], [AC], [AK] are the mass modification,

damping modification and stiffness modification matrices respectively.

It can be shown that if the eigenvalue-eigenvector pair (h’,, ($‘)r) satisfy equation

(5.51), they also satisfy :

Equation (5.52) is a generalised eigenvalue problem which is described by [[A]-

h’,[B]]{8},=(0). The Rayleigh  quotient iteration and inverse iteration are also

applicable in solving this problem - to find an eigensolution in a 2N -dimensional

space.

The Rayleigh quotient is determined by :

hf( = (+J)rTIAl (e)r

{le)rTIBlteJr

where {le), is an approximate left-hand eigenvector.

(5.53)
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Lancaster [84] has rewritten (5.53) in terms of an equation equivalent to equation

(5.51) to produce a generalisation of the Rayleigh quotient for h-matrices of arbitrary

order. For quadratic h-matrices this generalisation states that given an approximate

left-hand eigenvector { $ } r, an approximate right-hand eigenvector {@}r and an

approximate eigenvalue hr, the “best” estimate of the eigenvalue of the modified

structure is given by

hR = h, - ( 10 1 rT[b2W+AMl  + UC+ACl  + W+AKlI I $1 r
h40rTPhrW+AMl  + [C+ACll IO)r

(5.54)

5.10 CONCLUDING REMARKS

This chapter highlights the application of the sensitivity analysis methods to structural

dynamics developed by numerical analysts as well as structural analysts and presents a

historical development of first- and higher-order eigenvalue and eigenvector

sensitivities. It can be concluded that first-order eigenvalue sensitivities are very

useful to rank the order of importance for the sites during structural modification.

First-order eigenvector sensitivities are sometimes impossible to compute because to

do so requires the complete sets of left-hand and right-hand eigenvectors for a

mechanical structure. Calculation of higher-order eigenvalue and eigenvector

sensitivities is difficult and expensive. Summation of a truncated eigensystem

sensitivities series does not guarantee a more accurate prediction and, even if the

Taylor’s series converges the speed of convergence, may be too slow to give

satisfactory results in a finite summation.

Condition numbers are presented to provide information about the sensitivities of the

eigenvalues and eigenvectors of the eigenvalue problem [A] ( +}r = &( $lr  to small

perturbations of [A]. A condition number is presented which gives the limited bound

L,
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of the application of fast-order sensitivity analysis. It is generalised to deal with the

generalised eigenvalue problem [K] ( @)r = &[M] ( Cp)r for small perturbations of [K]

and/or [Ml.

A Rayleigh quotient iteration method is presented to compute the modified eigenvalues

and their associated eigenvectors of a large analytical model. It has been proved that if

the first prediction of an eigenvalue by using the unperturbed eigenvector is closer to

the modified one than to its neighbouring eigenvalues, this iteration method converges

globally and the convergence is ultimately cubic. The inverse iteration method and its

convergence analysis are also presented to provide an insight into this alternative

structural reanalysis technique. The advantages and drawbacks for both methods are

fully discussed. It is demonstrated that it is always possible to generalise those

iterative procedures in order to deal with unsymmetric quadratic general&i eigenvalue

problem - the inclusion of gyroscopic force and viscous damping etc.



l!!l NON-LINEAR SENSITIVITY ANALYSIS
OF MECHANICAL STRUCTURES

6.1 INTRODUCTION

In practice, when the modal properties of an FE model of a structure have been

computed, it is useful to have some procedure which will enable us to determine the

corresponding modal properties of the modified structure as it is progressively changed

during a design optimization process. Since the determination of those modal

properties will almost inevitably demand further computation, it is not unreasonable to

require that the structural modification analysis (or reanalysis ) technique should lead

directly to the modal properties of the modified structure and that it should keep the

computation cost to a minimum. In Chapter 5, some structural reanalysis techniques

were presented in the case that. the mass and stiffness matrices were given, together

with some eigenvalues and the corresponding eigenvectors of the original structure,

and the mass modification and stiffness modification matrices.

This chapter presents a new computation procedure for determining the revised modal

properties (eigenvalues and mass-normalised eigenvectors) in a structural modification

analysis where only the eigenvalues and the corresponding eigenvectors of the original

structure, and the mass modification and stiffness modification matrices are given.

This situation may arise whenever the structural modification is directly made on a

practical structure whose spatial properties, the original mass and the stiffness matrices,

cannot be determined precisely. The new procedure is based on expressing the
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eigenvectors of the modified sticture as a linear combination of the eigenvectors of the

original structure and employs the stationary property of the Rayleigh  quotient to

determine the modified structure’s eigenvalues. It has the same theoretical basis as

first- and second-order sensitivity analysis, but here the nonlinear effects contributed

by all high-order terms (generally assumed to be small relative to the effect contributed

by first- and second-order terms [55,67-70,861) are preserved in full. Hence, the usual

shortcoming of sensitivity analysis - that it is limited to small modifications - is

overcome.

The proposed procedure is inspired by following Jahn’s method [58,87] for the

improvement of approximate eigenvalues and eigenvectors of an algebraic eigenvalue

problem. In Jahn’s paper, he suggested that a perturbation method can be used to

improve the accuracy of the eigensolutions when the complete sets of approximate

eigenvalues and eigenvectors of a Lagrange frequency matrix equation for an

mechanical structure are given. However, the mathematical formulation of structural

modification analysis is different from refining the eigensolutions of a matrix pencil

([K], [MI) and so, the nonlinear terms not accounted for in a first-order sensitivity

analysis, or in truncated Taylor’s expansion approximations, have to be retained.

6.2 THEORETICAL BASIS OF NONLINEAR SENSITIVITY

ANALYSIS

The matrix equation of free motion of an undamped mechanical structure which is

characterized by an NxN mass matrix [M] and an NXN stiffness matrix [K], is

(6.1)
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This equation has N eigenvalues and N mass-normalised eigenvectors, all of which

are nonlinear functions of the elements of [M] and [K]. In structural dynamics,

equation (6.1) is conveniently rewritten in terms of the modal properties as follows :

IKIPI - ~uwI[~l = uv (6.2)

where [h] is an NxN diagonal eigenvalue matrix and [<D] is an NxN mass-normalised

eigenvector matrix.

Suppose that the mass modification and stiffness modification matrices are defined as

[AM] and [AK] respectively. The rth eigenvalue and rth eigenvector for the modified

structure are expressed as :

h’r = h,+ A h , (6.3)

{w’]r =  {Q], +  2 cr,]$], (6.4)
s=l S#T

The algebraic eigenvalue properties of the modified structure are governed by :

L-&r + &)[M+AMl + W+AKlI{ 0L+s~&r.i4&~ = WI 6.5)

Expanding the kft -hand side of equation (6.5) yields

kh,+ &,>M - & + &NAM1 + WI + WI] i c&Is +
s=l S#T

[- &[Ml - & + &,)VMl+ CAKII 1 I$&) = to) (6.6)
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In order to determine the coefficients crs, the mode participation factors which

determine the change in the eigenvectors, equation (6.5) is post-multiplied by the

transpose of ($)s (sicr). This gives

(6.7)

Hence,

(6.8)

where & and & are eigenvalues of the original structure.

The modal kinetic energy term ({$)sT[M] (Q) J is equal to unity because the

eigenvectors of the original structure are mass-normalised. The terms

({ $)sT[AM]  ( $lr),  ({+)sT[AK]  ($]& etc. can be calculated without knowing all

elements of the eigenvectors { @)s and ( @}r because only those elements of the

eigenvectors used to pre-multiply or post-multiply the non-zero elements of [AM] and

[AK] are required (i.e. those corresponding to modification sites).

Once the eigenvectors of the modified structure are determined using equation (6.4),

they can be re-normalised in order to produce the mass-normal&d eigenvectors of the

modified structure by using the following equation :
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(6.9)

or
1

($‘A= U+ i c,~+($),T[AMI($)~+~~_~~(O)~[~I($)~+ i
r=l se

l_l ~~~:_~“-(O):~AMl(~),P (‘$1~

(6.10)

The rth eigenvalue of the modified structure, h’r, is determined using the Rayleigh

quotient as shown below:

{ N)r+ &rsWs)T [K+AKl{  Wr+ $crsWs}
h’, = s=l sfr s=l sfr

{{@jr+ kCrst$lsIT [M+AMI{  I@)r+ iCrs($)sI
s=l sfr s=l sfr

(6.11)

The numerator of the right-hand side of the above equation can be expanded in the

following form:

Similarly, the denominator of the right-hand side of equation (6.11) can be expanded in

a series form, as for the numerator, with the difference that the stiffness modification

and stiffness matrices are replaced by the mass modification and mass matrices

respectively. The eigenvectors of the original structure are mass normalised  and so

equation (6.11) can be rewritten in terms of the modal properties of the original

structure, the mass modification and stiffness modification matrices as:
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It can be seen that the eigenvalue of each mode of the modified structure is determined

by knowing the change of modal kinetic energy ({ +}r*[AM] ($ JJ, the change of modal

potential energy (($)r*[AK]( $)r) and the coupling terms including the mass

modification and stiffness modification matrices (( $},*[AM] { @}s), (( $)rT[AK] { $1 J

etc.

6.3 COMPUTATION PROCEDURE

In what follows the general formulation derived in the previous section is used to

develop a computation procedure (an algorithm).

Suppose that the baseline information (some of the modal properties of the original

structure) are given and that the mass modification and stiffness modification matrices

are specified. The first approximations for the eigenvalues of the modified structure

(A”,) can be determined by setting the initial modal participation factors (c :J and the

initial eigenvalue changes (ai) to be zero, so that

(6.14)

Subtracting 1’: from Xl:, a first approximation for the change of the rth eigenvalue is

obtained. Hence, the first approximations for the mode participation factors are

determined by :
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(6.15)

After calculating the first approximations to the mode participation factors, the

eigenvalues of the modified structure are approximated using the Rayleigh quotient as

shown in equation (6.13). Improved estimates of the mode participation factors can

then be calculated by taking into consideration the first approximations, c is, and the

changes of the eigenvalues, AL:. The Rayleigh  quotients are calculated again to

provide better estimates of the eigenvalues of the modified structure. Thus, equations

(6.8) and (6.13) are used recursively when the number of iterations is equal to or

greater than two. This process is continued until convergence of the Rayleigh quotients

is achieved. The eigenvectors of the modified structure can then be mass-normalised as

described in equation (6.10). It is noted that if the first prediction of a modified

eigenvalue, using the eigenvectors of the original structure, is closer to a neighbouring

eigenvalue than to the modified one, the rth mode may converge to the neighbouring

mode. This can be confirmed by observing the mode participation factor relating the

rth mode and its neighbouring mode becoming greater than unity after two or three

iterations

In order to clarify the above description, the iteration loop with mass-normalization

procedure for the eigenvectors of the modified structure is written below in a program-

like format that is precise enough to convey the important algorithm concepts, but

informal enough to permit the suppression of cumbersome details.
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FOR k=2, . . . .

FOR s=l, . . . . n and s#r

-(~,+AhL;1)(9);T[AhIl(~),+(~)~[lU<I(0)i(~+~k;1)  ~c:;b$)s%h’tl($)t+  &th;TrhK1(@
k t=1  t*r s t=1  IfI s

C .=t%’
(k,+A~k~l)-~+(~+A~k~;‘)(~)~[~(g)s-(g).T[bKl(~)s

NEXT s

NEXT r

IF (ABS(Ah’: - Ahk;l) < TOLERANCE) THEN TERMINATE

FOR r=l, . . . . n

NEXT r

The symbol “:=” denotes arithmetic assignment. A statement of the form “u := b ”

should be interpreted as “a becomes b ‘I.

6.4 NUMERICAL EXAMPLES

6.4.1 THE FINITE ELEMENT MODEL OF A STEEL FRAME STRUCTURE

The model of a steel frame structure shown in Figure 6.1 was used to demonstrate the

accuracy and the superconvergence characteristic of the proposed computation
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procedure. The structure is composed of a rectangular frame and diagonal bar, all

components having the same cross-sectional area, and is modelled as beam elements

such that only out-of-plane flexural motion (z&,e,) is considered. The geometry of

the steel frame and the node numbers of the finite element model are shown in Figure

6.2.

Figure 6.1 A steel supporting frame (all dimensions are in mm)

Figure 6.2 The geometry of the steel frame
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The first case considered is the effect of introducing a mass change at node 4. A mass

of 0.2 kg was attached to node 4 at which point the nodal mass of the original structure

is 0.2856 kg. This added mass could represent an additional unbalance weight added

to the structure after the structural analysis has been performed and will be taken to

have three translational degrees of freedom, although only one of these will be

accounted for in this structural modification analysis (in-plane motion not being

considered here). The modal properties of the modified structure were computed using

the computation procedure described above. The natural frequency estimates of the

first twenty modes (3 rigid body modes and 17 non-rigid body modes) through a

succession of iterations are listed in Table 6.1 along with the exact solution. It can be

seen that the natural frequencies computed using the proposed procedure are in very

good agreement with the exact solution after a small number of iterations. The

accuracy of the eigenvectors predicted by the proposed procedure was assessed by

using the Modal Assurance Criterion(MAC). The results show that the first twenty

diagonal MAC values which were used to compare the eigenvectors from the proposed

procedure after six iterations and the exact solution converged to 1.000 in every case.

The modified structure’s natural frequencies and eigenvectors were also predicted by

using 1st order sensitivity analysis, resulting in the last two columns shown in Table

6.1 from which it can be seen that two of the diagonal MAC values are equal to or

smaller than 0.76 and some natural frequency estimates were far from satisfactory .
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I
Mode

Nat1
original

II Frequ
!nd iter.

1 0.00 0.00
2 0.00 0.00
3 0.00 0.00
4 45.31 44.82
5 54.99 52.97
6 70.50 69.87
7 91.50 89.77
8 153.59 151.04
9 181.41 179.86
10 219.33 215.17
11 263.61 263.11
12 348.75 333.95
13 351.82 341.26
14 405.96 403.86
15 444.01 430.27
16 578.41 564.54
17 647.56 646.22
18 679.37 666.60
19 869.59 865.16
20 949.61 941.41

ties (Hz
6th iter.
/Exact

0.00
0.00
0.00

44.82
52.97
69.83
89.79

151.04
179.85
215.22
263.10
330.47
350.42
402.80
434.44
566.29
645.11
67 1.78
864.50
937.10

Change (abs.)
AU(%)

0.00
0.00
0.00
0.49 (1.1)
2.02 (3.7)
0.67 (1.0)
1.71 (1.9)
2.55 (1.7)
1.56 (0.9)
4.11 (1.9)
0.51 (0.2)

18.28 (5.2)
1.40 (0.4)
3.16 (0.8)
9.57 (2.1)

12.12 (2.1)
2.45 (0.4)
7.59 (1.1)
5.09 (0.6)

12.51 (1.3)

1st (
Nat.
Freq.

0.00
0.00
0.00

44.84
52.47
69.59
89.14

150.36
179.33
213.58
262.95
334.50
338.05
400.90
424.70
556.92
643.63
663.35
862.48
933.48

der Sen. ina.
iff. in freq MAC
lift(%) (0 liag.val.

0.0 1.000
0.0 .856
0.0 .998
4.1 .983

24.8 .990
35.8 .983
38.0 .993
26.7 .993
32.7 .980
39.9 .969
29.4 .999
22.0 .428

883.6 .756
60.1 .943

101.8 .978
77.3 .921
60.4 .973

111.1 .970
39.7 .992
28.9 .909

.

Table 6.1 Comparison between the modal properties obtained from the proposed
technique and the exact solution
Case 1 : Added mass at node 4

Note (i) Diff.in (%) = absolute value of (Amexact - Ampred
Aaexact

‘)

As a second example, the width of the diagonal bar was reduced by a factor of 40%

and three 0.15 kg masses were attached to nodes 4, 10 and 17 respectively so that,

here, changes in both stiffness and mass matrices were required to correct the model.

Since the structural modification was localized and affected only a limited number of

nodal co-ordinates, the eigenvector properties at the unmodified co-ordinates were

ignored. Again, the modal properties obtained using the proposed procedure are very
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accurate when compared with the exact solution of the modified structure obtained by a

full reanalysis as shown in Table 6.2.

Mode original
1 0.00
2 0.00
3 0.00

4 45.31
5 54.99
6 70.50

7 91.50
8 153.59
9 181.41
10 219.33
11 263.61
12 348.75
13 351.82
14 405.96
15 444.01
16 578.41

17 647.56
18 679.37
19 869.59
20 949.61

Natural Frequencies (Hz)
2nd iter. 6th iter. Exact

0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00

43.78 43.76 43.76
48.46 48.80 48.80
63.22 63.23 63.23

88.74 88.73 88.73
146.62 146.45 146.45
172.04 172.96 172.96
211.68 211.66 211.66
257.20 257.22 257.22
326.50 326.64 326.64
335.28 335.68 335.69
400.24 399.82 399.74
418.47 420.07 420.2 1
509.45 513.57 513.57

640.14 640.03 640.03
653.87 654.42 654.43
864.73 864.88 864.88
934.47 958.82 928.92

Ao (%)
0.00
0.00
0.00

1.55 (3.4)
6.19 (12.3)
7.27 (10.3)

2.77 (3.0)
7.14 (4.6)
8.45 (4.7)
7.67 (3.5)
6.39 (2.4)

22.11 (6.3)
16.13 (4.5)
6.22 (1.5)

23.80 (5.4)
64.84 (11.2)

7.53 (1.2)
24.94 (3.7)

4.71 (0.5)
***** *****

Table 6.2 Comparison between the natural frequencies obtained from the proposed
technique and the exact solution
Case 2 : The width of the diagonal bar was reduced by a factor of 40% and
three 0.15kg masses were attached to nodes 4, 10 and 17 respectively.

However, numerical results show that some high frequency modes (eg. 20th mode) did

not converge because the predictions of those modes exceeded the limited bound of

Rayleigh quotient which could be observed while the cross mode participation factors

were greater than unity. In this case the effect of mode incompleteness was studied by

limiting the first 18 modes to be used in the structural modification prediction. The

numerical results are given in Table 6.3 from which it can be seen that although some
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relative errors of the natural frequency predictions are large (of the order of 13%), the

diagonal MAC values show that the modified structure’s eigenvectors were well

determined by the proposed technique. Random errors of up to 1% in the eigenvalues

of the original system and up to 5% in its eigenvectors were then introduced, resulting

in the values as shown in Table 6.4.

r
Mode original

r
6th iter.

tural Fret
Exact

1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.00 0.00 0.00
4 45.31 44.08 43.76
5 54.99 48.82 48.80
6 70.50 63.79 63.23
7 91.50 88.88 88.73
8 153.59 146.54 146.45
9 181.41 174.17 172.96
10 219.33 212.30 211.66
11 263.61 257.66 257.22
12 348.75 327.81 326.64
13 351.82 337.09 335.69
14 405.96 400.02 399.74
15 444.01 425.27 420.21
16 578.4 1 516.90 513.57
17 647.56 641.49 640.03
18 679.37 661.63 654.42

Table 6.3

encies (H
A0

exact
0.00
0.00
0.00
1.55
6.19
7.27
2.77
7.14
8.45
7.67
6.39

23.11
16.13
6.22

23.80
64.84

7.53
24.94

A0 Diff. MAC
predict. in % diag. val.

0.00 0.0 1 .oOO
0.00 0.0 1.000
0.00 0.0 1.000
1.23 20.7 .998
6.17 0.3 1.000
6.71 7.7 .997
2.62 5.4 1.000
7.05 1.3 1 .oOO
7.24 14.3 .993
7.03 8.3 .994
5.95 6.9 .999

20.94 9.4 .997
14.73 8.7 .995
5.94 4.5 .988

18.74 21.3 .986
61.51 5.1 .975
6.07 19.4 .982

17.74 29.0 .938

Comparison between the modal properties obtained from the proposed
technique and the exact solution
Case 2 : The width of the diagonal bar was reduced by a factor of 40% and
three 0.15kg masses were attached to nodes 4, 10 and 17 respectively.
(18 modes of the original system have been used)

1
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relative errors of the natural frequency predictions are large (of the order of 13%), the

diagonal MAC values show that the modified structure’s eigenvectors were well

determined by the proposed technique. Random errors of up to 1% in the eigenvalues

of the original system and up to 5% in its eigenvectors were then introduced, resulting

in the values as shown in Table 6.4.

r
Mode original

r
6th iter.

tural Fret
Exact

1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.00 0.00 0.00
4 45.31 44.08 43.76
5 54.99 48.82 48.80
6 70.50 63.79 63.23
7 91.50 88.88 88.73
8 153.59 146.54 146.45
9 181.41 174.17 172.96
10 219.33 212.30 211.66
11 263.61 257.66 257.22
12 348.75 327.81 326.64
13 351.82 337.09 335.69
14 405.96 400.02 399.74
15 444.01 425.27 420.21
16 578.4 1 516.90 513.57
17 647.56 641.49 640.03
18 679.37 661.63 654.42

Table 6.3

encies (H
A0

exact
0.00
0.00
0.00
1.55
6.19
7.27
2.77
7.14
8.45
7.67
6.39

23.11
16.13
6.22

23.80
64.84

7.53
24.94

A0 Diff. MAC
predict. in % diag. val.

0.00 0.0 1 .oOO
0.00 0.0 1.000
0.00 0.0 1.000
1.23 20.7 .998
6.17 0.3 1.000
6.71 7.7 .997
2.62 5.4 1.000
7.05 1.3 1 .oOO
7.24 14.3 .993
7.03 8.3 .994
5.95 6.9 .999

20.94 9.4 .997
14.73 8.7 .995
5.94 4.5 .988

18.74 21.3 .986
61.51 5.1 .975
6.07 19.4 .982

17.74 29.0 .938

Comparison between the modal properties obtained from the proposed
technique and the exact solution
Case 2 : The width of the diagonal bar was reduced by a factor of 40% and
three 0.15kg masses were attached to nodes 4, 10 and 17 respectively.
(18 modes of the original system have been used)
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r
Mode original

Ni
6th iter.

u-alF r e q c
Exact

1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.00 0.00 0.00
4 45.31 43.99 43.76
5 54.99 48.76 48.80
6 70.50 63.89 63.23
7 91.50 88.91 88.73
8 153.59 146.61 146.45
9 181.41 173.88 172.96
10 219.33 212.28 211.66
11 263.61 257.45 257.22
12 348.75 327.02 326.64
13 351.82 336.96 335.69
14 405.96 399.98 399.74
15 444.01 425.46 420.21
16 578.41 516.63 513.57
17 647.56 641.55 640.03
18 679.37 661.93 654.42

Table 6.4 Comparison between the modal properties obtained from the proposed
technique and the exact solution
Case 2 : The width of the diagonal bar was reduced by a factor of 40%
and three 0.15kg masses were attached to nodes 4, 10 and 17 respectively.
(Eigenvalues _: + 1 % and Eigenvectors : ? 5 % ;

18 modes of the original system have been used)

6.4.2 AN ANALYTICAL MASS-SPRING MODEL

Icies (Hi
A.0

exact
0.00
0.00
0.00
1.55
6.19
7.27
2.77
7.14
8.45
7.67
6.39

23.11
16.13
6.22

23.80
64.84

7.53
24.94

A0 Diff. MAC
predict. in % diag. val

0.00 0.0 1.000
0.00 0.0 1.000
0.00 0.0 1.000
1.32 14.8 .997
6.23 6.5 .999
6.61 9.1 .996
2.59 6.5 .999
6.98 2.2 1.000
7.53 10.8 .993
7.05 8.1 .993
6.16 3.6 .999

21.73 1.7 .994
14.86 7.9 .993
5.98 3.9 .981

18.55 22.1 .984
61.78 4.7 .974

6.01 20.2 .983
17.74 30.1 .938

1

A mass-spring system with 10 degrees-of-freedom shown in Figure 6.3 was used to

investigate the effect of mode incompleteness and the sensitivity of the technique to

simulated measurement errors for a simple system.
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MI = l.Okg K1 =  lE4N/m
M2 = 0.2 kg K2 = 2E4 N/m
MS= O.lkg K3 =  3E4N/m

Figure 6.2 A mass-spring system with 10 degrees-of-freedom

Mass modifications at points 1, 3, 6, 9 and stiffness modifications between the

coordinates 28~5 and 58~7 have been made simultaneously. In this case, 50% changes

in the original mass values were introduced and two springs with stiffness Kr as

shown in Figure 6.3 were added between the aforementioned coordinate pairs. The

modal properties of the modified system were solved by the proposed technique using

(i) all modes and (ii) the first five modes of the original system, respectively. The

resulting eigenvalues are clearly satisfactory when compared with the exact solution of

the modified system as shown in Table 6.5. A correlation between the eigenvectors

obtained using the proposed technique with the first five modes available and the exact

solution were again assessed using the MAC, resulting in the values as shown in Table

6.6. The diagonal elements of MAC matrix give a quantitative measure of the

correlation while the off-diagonal elements are difficult to interpret because they are

dependent on the form of the system mass matrix. From Table 6.6, it can be seen that

all diagonal elements of the MAC matrix are greater than 0.997.
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MI = l.Okg K1 =  lE4N/m
M2 = 0.2 kg K2 = 2E4 N/m
MS= O.lkg K3 =  3E4N/m

Figure 6.2 A mass-spring system with 10 degrees-of-freedom

Mass modifications at points 1, 3, 6, 9 and stiffness modifications between the

coordinates 2&S and 58~7 have been made simultaneously. In this case, 50% changes

in the original mass values were introduced and two springs with stiffness Kr as

shown in Figure 6.3 were added between the aforementioned coordinate pairs. The

modal properties of the modified system were solved by the proposed technique using

(i) all modes and (ii) the first five modes of the original system, respectively. The

resulting eigenvalues are clearly satisfactory when compared with the exact solution of

the modified system as shown in Table 6.5. A correlation between the eigenvectors

obtained using the proposed technique with the first five modes available and the exact

solution were again assessed using the MAC, resulting in the values as shown in Table

6.6. The diagonal elements of MAC matrix give a quantitative measure of the

correlation while the off-diagonal elements are difficult to interpret because they are

dependent on the form of the system mass matrix. From Table 6.6, it can be seen that

all diagonal elements of the MAC matrix are greater than 0.997.
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Natural Frequencies (
Mode Original Modified Ao (%)

1

1 12.22 12.03 0.19 (1.6)
2 26.79 29.20 2.41 (9.0)
3 38.75 40.06 1.31 (3.4)
4 51.83 45.25 6.58 (12.7)
5 80.94 66.80 14.14 (17.5)

:z>
Vonlin Se. (5th iter.) Diff. in
lOmodes 5 modes %

12.03 12.05 10.5
29.20 29.23 1.2
40.06 40.10 3.0
45.25 45.30 0.8
66.80 66.82 .l

Table 6.5 Comparison between the eigenvalues obtained from the completed
reanalysis and the proposed technique
(noise-free data ; 10 and 5 modes of the original system have been used)

1 Exact
Predicted 1 2 3 4 5

1 .9999 BOO3 .oOOl .0189 .0012
2 BOO6 .9990 .0265 .0175 .0114
3 .OOOO .0235 .9984 .1621 .OllO
4 .0200 .0216 .1463 .9978 .0077
5 a009 .0113 .0122 .0081 ,998s

Table 6.6 MAC comparison between the eigenvectors obtained from the completed
reanalysis and the proposed technique
(noise-free data ; 5 modes of the original system have been used)

Random errors of up to 1% in the eigenvalues of the original system and up to 5% in

its eigenvectors were then introduced. The modal properties of the modified system

were again obtained by the proposed technique using the first five modes of the original

system. As before, the solutions are quite accurate when compared with the exact

solution of the modified system as shown in Tables 6.7 and 6.8.
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Natural Frequencies (Hz)
Mode original Modified Ao (%) Nonlin. Sen Diff. in

5 modes (5 ite.) %

1 12.22 12.03 0.19 (1.6) 12.03 0.0
2 26.79 29.20 2.41 (9.0) 29.27 2.9
3 38.75 40.06 1.31 (3.4) 40.05 0.8
4 51.83 45.25 6.58 (12.7) 45.16 1.4
5 80.94 66.80 14.14 (17.5) 66.83 0.2

Table 6.7 Comparison between the eigenvalues obtained from the completed
reanalysis and the proposed technique
(Eigenvalues : + _ 1 % and Eigenvectors : ? 5 % ;

5 modes of the original system have been used)

1 2
.9997 .0004
mO7 .9985
BOO0 .0238
.0207 .0221
a009 .Olll

Exact
3

.0002

.0261

.9983

.1433

.0121

4 5
.0178 .OOll
.0169 .0120
.1675 .0106
.9979 .0077
.0080 ,998s

Table 6.8 MAC comparison between the eigenvectors obtained from the completed
reanalysis and the proposed technique
(Eigenvalues _: + 1 % and Eigenvectors : ? 5 % ;
5 modes of the original system have been used)

6.5 PRACTICAL CONSIDERATIONS

An analytical or FE model of a mechanical structure normally has a large number of

degrees-of-freedom. The primary analysis of such a model yields the same number as

the number of DoFs sets of eigenvalues and eigenvectors. However, not all modal

properties of the original structure are useful for structural modification analysis: for

example, a solid structure represented by a finite element model having perhaps

thousands of nodes, most of which are internal and therefore inaccessible for
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modifications. In this case the elements of the eigenvectors of the original structure

representing the structure’s behaviour at the internal nodes can be deleted (or ignored)

in order to minimize the computation cost and to enhance the efficiency of the proposed

procedure. From equations (6.8) and (6.13), it can be seen that deleting the modal

properties corresponding to unmodified sites will not affect the accuracy of the

procedure because even if they were retained those data would be pre-multiplied or

post-multiplied by zeros (elements of [AM] and [AK]).

Although all the eigenvalues and the retained elements of the eigenvectors of the

original structure are sufficient to yield the exact modal properties of the modified

structure, it is appropriate to investigate the accuracy of the proposed procedure when,

as in practice, the eigenvalues corresponding to high frequency modes are not

available. The numerical examples above show that the eigenvalues of the modified

structure obtained using the proposed technique are the same as the solutions obtained

using a Newton-Ruphson method proposed by Wang and Chu [88] and, moreover,

the retained elements of the eigenvectors of the modified structure are determined.

6.6 OTHER REANALYSIS TECHNIQUE USING MODAL DATA

It may be advantageous to understand what has been established in Wang and Chu’s

paper[88]. By replacing the original mass and stiffness matrices in equation (6.1) by

the modified mass and stiffness matrices, the matrix equation of free motion of the

modified structure is expressed as :

[-02 [M+AM] + [K+AK]] (x’) = (0)

or

[-o2 [M] + [K]] (x’) = [-a2 [AM] + [AK]] (x’)

(6.16)

(6.17)



B Non-linear Sensitivity Analysis of Mechanical Structures 180

When the structural modification is known, equation (6.17) can be written as :

1-02 [Ml + WI] (~‘1 = U&r’) 1 (6.18)

where ( xr’) contains only the DoF’s affected by the modification made on the structure

and each element L&‘) of the vector (L(x,‘)) is a linear function of (xr’}. Equation

(6.18) can be rewritten as :

br’l = WWI P&r’) 1

where [H(o)] is the receptance matrix of the original structure.

(6.19)

When the modal superposition approach is used for a harmonic response analysis, the

ijth element of the receptance matrix is expressed as :

Now, a subset of equations can be extracted from equation (6.19) such that

(Xr’) = W(O)1  I Xr' 1

(6.20)

(6.21)

where the element wij of the matrix [W(O)] is a function of elements of the receptance

matrix of the original structure, the mass modification and stiffness modification

matrices as well as the unknown value of o. From equation (6.19), the condition of

c ,
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the nontrivial solution leads to the frequency equation for the modified system, which

is :

det ([II - IWWI) = 0 (6.22)

The general formulation described above can be applied effectively to local

modification. Assume that a massless spring, Akij, is added between DoF i and DoF

j. For this particular case,

IU~r’ll = [AK] (i,‘) (6.23)

Substituting equation (6.23) into (6.19) and extracting the simultaneous equations

corresponding to coordinates i andj , the following set of equations is obtained :

Xi = Hii (-Akijxi+Akijxj,) + Hij (Akijxi-Akijxj)) (6.24)

xj = Hji (-Akijxi+Akijxj,) + Hi (Akijxi-Akijxj)) (6.25)

Comparing equations (6.24) and (6.25) with equation (6.21), one can identify :

[W(O)1 = bj
-Hii+Hij  Hii-Hij
_H +H,, H _Hji JJ ji jj 1 (6.26)

Substituting equation (6.26) into equation (6.21) and simplifying the frequency

equation of the modified structure gives :

1 + Akij(Hii  + Hi - 2Hij) = 0 (6.27)
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By expressing Hii and Hij in terms of modal properties of the original structure,

equation (6.27) can be written as a nonlinear algebraic equation as :

(6.28)

The natural frequencies of the modified structure are then obtained by solving this

equation using either the Newton-Raphson’s iteration method or the bisection method.

Wang er al. [88] successfully applied this technique to a few special cases of local

modification, such the change of a beam element and a plate element. Since no

approximation has been made in deriving Wang and Chu’s technique or the proposed

technique developed in the preceding section, both of these reanalysis techniques give

identical results and the same as the exact solution obtained from complete reanalysis.

6.7 STRUCTURAL REANALYSIS TECHNIQUE USING FRF DATA

It has long been known that for an internally coupled system, the FRF properties of the

original structure and of the modified structure can be related by [89]:

W(~W’ = [H(o)]-’ + [AH(o)]-’ (6.29)

where [H’(o)]-1  and [H(o)]-’ are the receptance matrices of the modified structure and

of the original structure respectively.

The dimension of the matrices in this equation is determined by the number of

coordinates used in the connection process. By considering that a massless-spring is
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added between two coordinates i andj , and expressing the dynamic stiffness matrix of

the original structure as

[H@)l-’ = HiiHjj ! HijHji 1 (6.30)

the dynamic stiffness matrix of the modified structure is given as:

Hii

W’(o)]-1 =
HiiHjj..HijHji +Akij HiiH;;HijHji -Akij

-Hji
HiiHjj_HijHji -* kij HiiH;HijHji  +Akij 1 (6.3 1)

The FRFs of the modified structure are obtained by calculating the inverse of matrix on

the right hand side of equation (6.31). It should be noted that the determinant of this

matrix is expressed as :

det  I [H’(o)]-1 I = 1 + Akij(Hii + Hjj - 2Hij) (6.32)

This equation shows that the matrix on the right hand side of equation (6.31) is

invertible only if its determinant is nonsingular. A comparison of equations (6.27) and

(6.32) shows that there is a close relationship between modal reanalysis technique and

receptance coupling technique. In fact, they are identical in the sense that a FRF is an

N -degree polynomial equation and the natural frequencies are the poles of this specific

equation.
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6.8 CONCLUDING REMARKS

The computation procedure for determining the modal properties of a modified

structure presented above is more efficient than solving the generalised eigenvalue

problem for the modified structure, since the equations employed (equations (6.8) and

(6.13)) are mathematically simple. Moreover, it is more accurate than other sensitivity

techniques when a large modification is considered, since the approximations for the

modal properties of the modified structure are improved through an iterative process.

This procedure has a useful rate of convergence owing to the quadratic convergence

characteristic of the Rayleigh quotient which was presented in Chapter 5.

The rapid convergence of the proposed procedure was illustrated in the results of the

numerical examples in the preceding section from which it can be seen that the exact

modal properties of the modified structure were produced in five or six steps. The FE

model of a steel frame structure showed that the exact modal properties of a modified

structure could be obtained even when the size of structural modification was relatively

large. A simple analytica.l  mass-spring model illustrated that the modal properties of the

modified structure obtained using the truncated modal properties of the original

structure were quite accurate while the out-of-range modes - the residuals - did not have

great influence on the frequency range of interest in this particular case.

However, it should be noted that when the first approximation for a modified

structure’s eigenvalue based on the original eigenvector is closer to a neighbouring

eigenvalue than to the modified one, this iteration method may not converge as the

prediction goes beyond the limited bound of Rayleigh quotient.

Alternative structural reanalysis techniques using either (i) modal data or, (ii) FRF data

have been briefly reviewed. Although different formulae which relate the natural
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frequencies of the modified structure in terms of the modal properties of the original

structure and the structural modification made on the structure have been derived, it can

be stated that they are simply related to each other by some kind of mathematical

transformation.



07 ERROR LOCALIZATION AND
STRUCTURAL MODIFICATION
PREDICTION ON A MECHANICAL
STRUCTURE

7.1 INTRODUCTION

The numerical examples presented in Chapter 6 demonstrated the applicability of non-

linear sensitivity analysis to the structural modification analysis of finite element (FE)

and analytical mass-spring models. However, as a practical algorithm, it must be able

to produce an accurate response prediction when the chosen modification is introduced

to a real mechanical structure.

In this chapter, an experimental evaluation of the methods presented above carried out

on an aluminium structure is described. Experimental data (measurements of FRF

data) were analysed and collated in order to yield a consistent set of modal properties.

These experimentally-derived modal properties were compared with the analytical

results of an FE analysis performed on the VAX8600 machine at the Imperial College

Computer Centre. When comparing the modal model obtained from experimental

modal analysis with that of the FE model, it was found that the sizes of the

experimental and analytical modal data were incompatible from which the problem of

either (i) reducing the analytical modal data set, or (ii) expanding the measured data

set, arises. In this case study, one of the physical expansion techniques based on the

inversion of Kidder’s reduction method [50] was selected to resolve the

incompatibility problem between the measured data and the FE results. The thus-
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expanded mode shape vectors were then used to locate any mismodelled region(s) in

the FE model.

The experimentally-derived modal properties were then used to predict the dynamic

response of the modified structure using the non-linear sensitivity analysis technique

of chapter 6 when a specific structural modification was introduced analytically. The

predictions were checked using the measured responses of the modified structure after

the actual modification was made on the test structure.

7.2 COMPATIBILITY OF MEASURED AND ANALYTICAL DATA

Despite the development of finite element modelling methods, a comparison of modal

data (natural frequencies and eigenvectors) reveals quite considerable discrepancies

between the experimental results and the analytical ones. Since the FRFs were

measured at a limited number of coordinates, the experimentally-derived modal data

were incompatible with the analytical results obtained from the FE analysis and, as a

result, the validation of an FE model of the structure requires an additional step,

namely: either (i) to reduce the system matrices of the FE model to the corresponding

measured DoFs, or (ii) to expand the measured mode shape vectors so that the

dimensions of the modal models obtained from experimental modal analysis and FE

modelling are compatible.

7.2.1 REDUCTION TECHNIQUES

The most commonly-used reduction techniques are Guyan reduction and similar

methods [90,91], all of which reduce the size of mass and stiffness matrices of the FE

model and, hence, the computational time for the correlation of the FE model and the
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experimental modal model is reduced significantly. However, there are several

disadvantages when a reduction technique is employed :

(i) the modal properties are not exactly preserved in a reduced model and the

accuracy of the modal properties for the reduced model is dependent on the

expertise in choosing the Master DoFs; and,

(ii) the connectivity of the reduced system matrices does not reflect the physical

characteristics of the original FE model and, therefore, the results obtained from

the error localization technique are merely vague indicators for locating the

mismodelling region of the original model.

Since the connectivity of the system matrices is one of the main criteria to be satisfied

in order to produce a ‘good’ representative model, expansion of the measured mode

shape vectors is a better alternative to solve the compatibility problem.

7.2.2 EXPANSION TECHNIQUES

There are various methodologies for expanding the measured mode shape vectors to

fill in the responses at the unmeasured DoFs. These expansion techniques can be

categorised as:

(i) interpolation of the measured modes by applying spline functions;

(ii) considering the experimental modal matrix as a linear combination of the

corresponding analytical modal matrix;

(iii) applying a ‘physical’ expansion technique which is derived from the original

FE system matrices.

The first of these techniques involves fitting a spline function through the measured

locations and extracting the unmeasured mode shape properties from the interpolation

function [92]. It was shown in Brown’s doctoral thesis [92] that this technique can be
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successfully applied to some simple theoretical structures such as beams, plates and

shells. However, one of the limitations in applying this technique to practical

situations is that the unmeasured mode shape properties may be misinterpreted for high

frequency modes when the number of measured DoFs is too small. This is analogous

to the aliassing problem associated with digital spectral analysis. Besides, this

technique is likely to give inaccurate results when interpolating over a region with an

abrupt change in geometry or local coordinates. The second category of those

expansion techniques has been fully investigated and presented by Lieven and Ewins

[93] who showed that the mode shape expansion technique does not give accurate

results in many examples so that it will not be discussed further in here.

In what follows, the last category - physical expansion techniques, normally derived

using the connectivity of the original F.E. model of the structure - is investigated.

7.2.2.1 PHYSICAL EXPANSION TECHNIQUES

The most commonly used ‘physical’ expansion techniques are derived using an

inverse process of the dynamic reduction procedure suggested by Kidder [50], which

is based on the matrix equation for free motion for a structure in the form :

[AKI 11 [~K12l
]-Aar2[

[AW 11 [AM121

[AK211 [~K22l [~M21l  [AM221 1 l{$Ir = {i} (7-1)
where the stiffness and mass matrices are each partitioned into four submatrices

relating the measured DoFs, the measured/unmeasured DoFs and the unmeasured

DoFs respectively; Aor and (A+r,A$2)Tr are the natural frequency (square root of

eigenvalue) and the mode shape vector (eigenvector) of the rth mode of the structure.
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Equation (7.1) can be rewritten as two sets of simultaneous equations as :

[L&l - A%2[AW~11  IAh jr + [h&21 - ~~~M41211hldr  = WI

(7.2)

and

[[AK211 - AW?[AM2111  {A+ L + [[AK221 - A~~[AM2211{A+2)r  = (01

where the vector (~@2)r represents the mode shape properties at the slave

(unmeasured) DoFs for the rth mode.

(7.3)

Method A

From equation (7.3), it can be shown that by calculating the inverse of the partitioned

dynamic stiffness matrix corresponding to the unmeasured DoFs,  the vector ( *@2jr is

given by :

tA@2)r  = ([[~K221 - AY~[A&~])-’ [L&211 - AY~[AM~~] (A$1 h (7.4)

In this method the partitioned dynamic stiffness matrix corresponding to the

unmeasured DoFs is a square matrix and has a dimension (N-n)x(N-n)  where N is

the number of DoFs for the structure and n is the number of measured DoFs. By

calculating the inverse of this matrix and using equation (7.4), the vector {A@2}r is

uniquely determined.

Method B

From equation (7.3), Gysin [94] suggested that by calculating the generalised inverse

of the partitioned dynamic stiffness matrix ([[AK~~~-AW,~[AM~~I])  which has a

dimension Nx(N-n) , the following equation is obtained :
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In this method, the vector (~h)r is correctly determined by calculating the solution of

the right hand side of equation (7.5) only if the generalised inverse satisfies the

following relationship :

(k6121- ~r~*Wb21])+  ([[A&21 - ~w*W121])  - [II = [ 0 1 (7.6)

However, the number of measured DoFs is generally less than the number of

unmeasured DoFs, and so this generalised inverse is just a least-squares solution that

minimizes a Frobenius norm of the left hand side of equation (7.6). Hence, the

solution obtained from the right hand side of equation (7.5) is merely a projection of

the vector (~b)~ in a subspace with a dimension sxs , where s is equal to or smaller

than [min(N-n,n )].

Method C

From equations (7.2) and (7.3), one can define two matrices, [At] and [A& as :

[Al] : =
[[

[AKIII - AW*[AMIII

[~K211 - AQ*[AM~I~ 11
and

[AZ] : =
[[

I~&21 - AW*[AM~

[~K221 - AQ*[AM~~~ 11
and equation (7.1) can be rewritten as :

[AlI IAN jr + [A21 {~@2)r = (0)

(7.7)

(7.8)

(7.9)
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which leads to the following equation for the unmeasured mode shape properties :

= [A21+ IAII{A$I A (7.10)

In contrast to Method B, the rectangular matrix [AZ] used in (7.10) has a dimension

Nx(N-n) so that in general its generalised inverse satisfies the relationship,

[A2]+[A2]=[1]. Hence, the vector (A@2)r can be uniquely determined by using

equation (7.10).

Generally speaking, both Methods A and C reproduce the exact mode shape properties

at the unmeasured DoFs when the FE model of the structure is correctly constructed.

Method B is a mapping technique that may successfully reproduce the mode shape

properties at the unmeasured DoFs when the number of unmeasured DoFs is not

greater than the number of measured DoFs.

7.2.2.2 NUMERICAL SIMULATIONS

A 10 degree-of-freedom mass-spring model shown in Figure 7.1 was used to

demonstrate the applicability of Methods A, B and C in the case that (i) the analytical

model was correctly constructed; (ii) the analytical model was mismodelled in some

measured/unmeasured DoFs.
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MI = 1.0 kg Kl = lE4 N/m
M2 = 0.2 k g K2 = 2E4 N/m
M3 = 0.1 kg K3 = 3E4 N/m

Figure 7.1 A mass-spring system with 10 degrees-of-freedom

Case 1. Error-free model

The first numerical simulation assumed that only two responses were measured (at

locations 1 and 6) for all modes. The mode shape properties at the unmeasured DoFs

for mode 1 to 10 were calculated successively by using the formulae given in the

preceding section. The accuracy of the expanded mode shape vectors obtained from

Methods A, B and C was assessed by using the MAC, resulting in the values as

shown in Tables 7.1 and 7.2. Both Methods A and C produced the same accurate

results as shown in Table 7.1 in which the diagonal elements of the MAC matrix are

unity and the off-diagonal term are ‘small’. In contrast, Method B produced some

unacceptable results as illustrated in Table 7.2 from which it can be observed that the

diagonal MAC values are smaller than 0.2 for modes 3,5,6,7, 8 and 9.
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Predicted

1
2
3
4
5
6
7
8
9
10

Exact
1 2 3 4 5 6 7 8 9 10

.OOOO .0026 .OCM .0177 .0016 .0834 .0086 .19% JO64 .1241
XI026 1.0000 .0000 .0443 .OlOO .0464 .0681 X1008 .OOOO .1898
.0045 .oooO 1.0000 .0447 .0422 .OOOl .0082 .1138 .0352 .0176
.0177 .0443 .0447 1.0000 .OOOl .0053 .0032 BOO5 .OOOO .OOOO
.0016 .OlOO .0422 BOO1 1.0000 BOO1 .ooO2 .OOOl BOO4 .0069
.0834 .0464 .OOOl .0053 .ooOl 1.0000 .0005 .0013 .oooO BOO1
.0086 .0681 .0082 XI032 Al002 .ooO5 1.0000 .OOOO .OOOO .0002
.1996 .OOOS .1138 a005 BOO1 .0013 .OOOo 1.0000 .0005 a017
.0064 .OOOO .0352 .OOOO BOO4 .OOOO .OOOO BOO5 1.0000 .0000
.1241 .1898 .0176 BOO0 .0069 .OOOl .0002 .0017 .OOOO 1.0000

Table 7.1 MAC comparison between the exact mode shape vectors and the expanded
mode shape vectors obtained using Method A (or C) (2 measured DoFs)

Predicted

1
2
3
4
5
6
7
8
9
10

Exact
1 2 3 4 5 6 7 8 9 10

.4688 BOO5 .1332 .0708 .0058 .0018 .0003 .0236 .0254 .0937
.0029 .7416 .0034 .0826 .0067 .0003 .0045 .0160 .0344 .1271
.3976 .0161 .1571 .3632 .0031 .0009 .0002 .0136 .0153 .0583
.0337 .0623 .0578 .9835 .OOOO .0004 .0002 .OOOl .OOOO BOO1
.2089 .3804 .0375 .OOOO .O 13 0 .0002 .0051 .0564 .1081 .4650
.2063 .0527 .0347 .1079 .0008 .0041 .0007 XI089 .0054 .0247

.0161 .4183 .0030 .0211 .0085 .0004 .0079 .0416 .1134 .5312

.1614 .1732 .0311 .OOlO .0107 .0005 .0048 .0686 .1490 .7130

.0752 .1608 .0151 .OOOl .0089 .OOOl .0057 .0645 .158 5 .7866

.0553 .1186 .0115 .OOOl .0076 .OOOl .0053 Ml6 .1569 .7947

Table 7.2 MAC comparison between the exact mode shape vectors and the expanded
mode shape vectors obtained using Method B (2 measured DoFs)

The second numerical simulation assumed that the number of measured DoFs was

greater than the number of unmeasured DoFs. The unmeasured mode shape properties

for all modes were again calculated by using Methods A, B and C with (i) 6 measured

DoFs and (ii) 7 measured DoFs, respectively. In both cases, the MAC tables for

Methods A and C are the same as the one shown in Table 7.1. This confirms that the

expanded mode shape vectors obtained using Methods A and C are very accurate if the
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analytical model is error-free. When there were 6 measured DoFs available, Table 7.3

shows the correlation between the expanded mode shape vectors obtained from

Method B and the analytical solution in which the fifth and ninth diagonal MAC values

are smaller than 0.6 because the partitioned dynamic stiffness matrix ([ [~Ktz]-

~6~r~Ld41211) was rank deficient. This condition was improved by including another

DoF (i.e. 7 measured DoFs were used) for which case the resulting MAC values are

the same as the ones shown in Table 7.1.

Predicted
1
2
3
4
5
6
7
8
9
10

Exact
1 2 3 4 5 6 7 8 9 10

.OOOo A026 a-145 .0177 .0015 .0834 .0086 .1996 XI063 .1242
JO26 1.0000 .OOOO AM43 .0088 .0464 .0681 BOO8 A001 .1918
.0045 .OOOO 1.0000 AM.47 .0343 .OOOl .0083 .1138 .0420 .0196
.0177 .0443 a447 1.0000 .ooo1 .0053 .0032 BOO5 .OOOO .OOOO
.0035 .0199 .0779 BOO2 .4393 .0006 .0028 BOO6 .4848 .0319
.0834 .0464 .OOOl II053 BOO3 .9999 .0005 JO13 .OOOO .OOOl
.0086 .0681 Xl083 .0032 AI012 .0005 .9993 .OOOO .0003 .OOOl
.1996 JO08 .1137 BOO5 BOO3 .0013 .OOOO 1.0000 BOO3 .0018
.0106 .OOOl .0714 .OOOl .3619 .OOOO .0005 BOO5 .5884 .0488
.1339 ..2066 .0211 BOO0 .0151 .OOOl .OOOl XI019 .0309 .9278

Table 7.3 MAC comparison between the exact mode shape vectors and the expanded
mode shape vectors obtained using Method B (6 measured DoFs)

Case 2. Mismodelling at locations 2.7 and 8

Analytical mismodelling was simulated by changing the system matrices of the original

analytical model. In this example, a 50% increase on the original mass values at

locations 2,7 and 8 was introduced and an additional spring with stiffness K1 (10,000

N/m) was added between coordinates 7 and 8. In order to assess the validity of each

of these expansion methods in detail, three different sets of measured DoFs were

selected. The missing quantities of the elements corresponding to the unmeasured

DoFs were determined using the formulae given in the preceding section. The

. , .
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EM1 = [hl - xw,*Md] {x$h (x9LT (7.11)

expanded mode shape vectors were then tested on their capability to locate the

mismodelled region. The localization method used here is the “Error Matrix Method”

developed by He and Ewins [95]:

The error matrices of the first two modes obtained using equation (7.11) and the three

expansion methods are plotted in Figures 7.2-7.4. Figure 7.2 shows that the

mismodelled region of the analytical model was located precisely by using expansion

Method A, for this particular case. Figure 7.3 shows that Method B could not produce

any sensible results. Figure 7.4 shows that although Method C was unable to locate

the mismodelled region of the analytical model exactly, the peaks in the figure do

contain valuable information for the error localization.

Mode 1 Mode 2
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I Figure 7.3 Error matrices (using Method B)

Mode 1 Mode 2

Figure 7.4 Error matrices (using Method C)

Case 2b : measured DoFs (2.4.6.8. 101

In this case the mode shape properties at one of the mismodelled regions, location 7,

was not available during the mode shape vector expansion processes. Figure 7.5

shows the error localization predictions using expanded modes 1 and 2 obtained from

Method A. Since the odd-numbered DoFs in the expanded modes were produced by

using the original system submatrices, [&21], [~M21], [&22] and [~M22], the

modelling errors would not be expected to show up on these DoFs. This can be

proved by defining the vector {J&* )r as the mode shape properties at the unmeasured

DoFs. In Method A this vector is uniquely determined by :

b&*)r = (h~K221 -xY2[~M22ib1 [[AK211 - ~~~[~Md]~x~dr

(7.12)
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and, substituting

derive :

IEM]=
u

IA&II
IS211

the expanded mode shape vectors into equation (7.1 l), one can

[AKnI
1 [

[AWlI [A&l
- xwr2 [AMzI] [AMA

x$1
[AK221 II{ 1x&z* 1

(7.13)

Equation (7.13) shows that the row elements of the error matrix corresponding to the

unmeasured DoFs must be zero. From Figure 7.5, it can be seen that Method A

produced good results for modes 1 and 2. The error localization predictions using

expanded modes 1 and 2 obtained from Method B are shown in Figure 7.6 from

which no sensible conclusion can be drawn. Method C requires the entire system

matrices, and so, there is no inherent characteristic that some rows of the error matrix

are constrained to be zero because the expanded mode shape vectors are determined

through a minimisation (least-squares) process. Although Method C is unable to

locate the mismodelled region exactly when some modelling errors exist in the

analytical model, Figure 7.7 shows that it does have the ability to locate possible

mismodelled region in this specific case using modes 1 and 2.

Mode 1 Mode 2

Figure 7.5 Error matrices (using Method A)
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Mode 1 Mode 2

Figure 7.6 Error matrices (using Method B)

Mode 1 Mode 2

Figure 7.7 Error matrices (using Method C)

Case 2c : measured DoFs (1.3.5.7.9)

The mode shape properties corresponding to the DoFs with even numbers were

selected in this case. Again, the first two modes were expanded by the three methods

using the analytical system submatrices. The thus-expanded mode shape vectors were

then used to locate the mismodelled region in the analytical model.

Figure 7.8 shows the error localization predictions using the expanded mode shape

vectors obtained from Method A. Since the even-numbered DoFs in the expanded

mode shape vectors were expanded by the original system submatrices, therefore, the

modelling errors would not be revealed on these DoFs. From Figure 7.8, it can be

seen that Method A produced some poor results in choosing this set of measured

DoFs. The error localization predictions using the expanded mode shape vectors
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obtained from Method B are plotted in Figure 7.9. Again, Method B could not

produce any sensible results for this case. The results using Method C are plotted in

Figure 7.10 from which it can be seen that this method has an ability to locate the

mismodelled region for mode 2.

Mode 1 Mode 2

Figure 7.8 Error matrices (using Method A)

Mode 1 Mode 2

Figure 7.9 Error matrices (using Method B)
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Mode 1 Mode 2

Figure 7.10 Error matrices (using Method C)

7.2.2.3 CHARACTERISTICS OF THE PHYSICAL EXPANSION

TECHNIQUES

The following conclusions can be drawn from the numerical simulations.

a) If no error exists in the analytical model, the missing quantities of the mode

shape properties at the unmeasured DoFs can generally be reproduced by using

Methods A or C. Mathematically speaking, Method B is a mapping technique

that can reproduce those missing quantities if and only if the relationship shown

in equation (7.6) is satisfied.

generally not be used.

b) If all modelling errors lie in

perfectly.

c) If just some of the modelling

As it is usually not satisfied, this method should

the measured DoFs, then only Method A works

errors lie in the measured DoFs, Methods A and

C can produce some sensible results for the error localization. The capability of

these methods is dependent on the choice of measured DoFs and the nature of

the mode (shape) to be expanded.

If one considers the computational time and cost, Method A is superior to Method C.

This is because Method A only needs to determine the inverse of an ran matrix while



m. Error Localization and Structural Modification Prediction 202

Method C needs to determine the general&d inverse of an Nx(N-n) matrix, where in

practice N and (N-n) are much much greater than n .

7.3 AN EXPERIMENTAL CASE STUDY

In order to study the practical problems of reliable FE modelling and to verify the

applicability of non-linear sensitivity methods in real structure modification

predictions, a test structure was required which would possess a number of features -

it should be complicated to some degree for the experimental measurement as well as

the analytical modelling but without these complications being duly extensive.

7.3.1 DETAILS OF THE TEST STRUCIURE

The test structure chosen is based on the casing of an instrument which is used to

contain and to protect electronic equipment. It is made of aluminium alloy and

composed of three plates having different thickness and two solid bars with square

section. One end of the top plate and one end of the bottom plate are connected to both

edges of the side plate by socket headed screws. Two square bars are used to connect

the other edge of the top plate to the face of the bottom plate through four socket

headed screws. A photograph of this structure is given in Figure 7.11.

D ,



m Error Localization and Structural Modification Prediction 203

Figure 7.11 A photograph of the aluminium test structure

7.3.2 DETAILS OF MEASUREMENT EQUIPMENT

The structure was excited at one point by an instrumented hammer (B&K Type 8208).

It was found that for this lightly-damped structure impact testing provided a smooth,

almost flat, excitation force spectrum over the frequency range of interest (O-800 Hz).

A Line-Drive amplifier (Type 2644) was mounted directly in the hollow at the base of

the hammer handle and this allowed the instrumented hammer to be directly connected

to a dual channel signal analyser (B&K Type 2034), thus removing the need for a

separate signal conditioning unit.

The translational response of the structure was measured using an accelerometer (B&K

Type 4393). This accelerometer is very small and light, and is based on a simple

configuration that three piezoelectric slices are clamped between a seismic mass and a

triangular centre post by a preloading ring. It has a mass of just 2.4 g (the mass of the
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test structure is 9.6 kg), and hence the loading effect of it on the structure is negligible.

The accelerometer was connected to a charge amplifier (B&K Type 2653) which

amplified the response signal to a suitable level for input to the dual channel signal

analyser.

The B&K 2034 Dual Channel Signal Analyser is a 2-channel FIT analyser having all

of the standard functions. It has 801 lines of resolution in dual channel operation, and

so more modes of vibration can be identified and characterised  in a single measurement

than with a conventional 250- or 400-line analyser. However, its internal digital

processor limits the dynamic range of the equipment to 80 dB. It was found that most

of the structural resonances were captured well because the auto-range facility enabled

the processor to be used to its full capability. However, in some cases when the anti-

resonances were 3 or 4 orders of magnitude (60 or 80 dB) smaller than the resonance

peaks, the equipment failed to give reliable information at these frequencies or

frequency ranges. This could be confirmed by looking at the coherence functions

corresponding to those frequency ranges. Fortunately, the anti-resonances were not

required in performing the nonlinear sensitivity analysis of this structure.

A schematic diagram of the measurement chain is shown in Figure 7.12.

b
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IBM COMPATIBLE FFTANALYZER

INSTRUMENTED

cELERoh4ErER

Figure 7.12 A schematic diagram of the experimental set-up

7.3.3 CALIBRATION OF MEASUREMENT EQUIPMENT

Before any measurement was made on the test structure, the overall calibration of the

measurement chain was calibrated using a ratio-calibration technique [8]. The

accelerometer was attached to a freely suspended mass which was excited by the

instrumented hammer in just the same way as measurements would be made on the

structure itself. The charge amplifier gain was adjusted until the measured inertance

had values equal to (l/calibration mass) across the frequency range of interest. This

calibration technique has the distinct advantage that it is very easy to perform and the

complete measurement chain is checked and calibrated.
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7.3.4 MEASUREMENT OF TRANSLATIONAL DEGREES-OF-FREEDOM

The test structure was suspended by elastic bands at each of the four comers in order

to achieve a “free-free” boundary condition so that the six rigid body modes were well

below the lowest flexural  mode of the structure. A total of 71 points were marked on

the structure as measured DoFs,  including 37 points on the top plate, 20 points on the

bottom plate, 10 points on the side plate and 2 points each on the connecting bars. The

positions of these measured points are shown in Figure 7.13.

ENDVIEW

connecting
bars

PLAN

DESCRIPTION : VIBRATION TEST RIG MATJXJAL:
AL. AUDY

Figure 7.13 The geometry of aluminium casing
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A baseband frequency range of 800 Hz was used for all FRF measurements which

were made by exciting the structure at point 24 in the X-direction with the

instrumented hammer. The accelerometer was moved from one location to the next

location in order to collect a point FRF and 70 transfer FRFs. In each measurement, a

good quality FRF was achieved with only ten averages. Figure 7.14 shows one of the

typical FRFs measured and from it, 15 flexural modes arc clearly seen in the frequency

range of interest (O-800 Hz). The identification of the modal properties for individual

FRF was conducted using “MODENT” [96] in an IBM compatible 386 machine. 71

sets of analysed modal properties were then collated by using “MODESH” [97],

resulting in mean values of the natural frequencies and damping loss factors as

tabulated in Table 7.4. It should be noted that the tolerance was set to 3.6 per cent

when collating the modal properties because for different FRFs there existed slight

discrepancies between the identified natural frequencies and the corresponding

damping loss factors.

16.0--

FJWUENCY (Hz)

Figure 7.14 Measured Frequency Response Function (Cs/fzd)

. ..‘.. ,.
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Mode Natural Frequency (Hz) Damping Loss Factor (%)

1 155.91 .0307
2 172.08 .0373

3 203.91 .0686
4 233.07 .0432

5 249.66 .0324
6 294.05 .0408
7 370.64 .0239
8 500.15 .0167
9 546.54 .0179
10 565.39 .0218

11 661.88 .0112

12 706.39 .0168

13 746.18 .0160

14 791.09 .0201

Table 7.4 Modal properties of the test structure
(tolerance of natural frequencies = 3.6%)

7.4 FINITE ELEMENT ANALYSIS

The FE analysis of this structure was performed using the PAFEC code (whose name

stands for Program for Automatic Finite Element Calculations), this being a

comprehensive FE analysis package specially designed for static, thermal and dynamic

analyses. An interactive pre-processing program called PIGS (PAFEC Interactive

Graphics Suite) was used to create the mesh of the FE model. This program also

provides the post-processing facilities in order to display the mode shapes, both static

and animated, in a three-dimensional form.

PAFEC provides a wide range of element types for static and dynamic analyses.

However, only three different types of element were used in this investigation :

(i) Four-noded flat facet shell element.
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(iii)

This is a flat thin isotropic shell element which can carry bending and membrane

loads and which can be used to solve any thin shell problems in which either or

both of in-plane and out-of-plane effects are important. It has five degrees of

freedom (u,, uy, uz, QX, $,,) per node at the element level in a local coordinate

system but after transformation to global coordinate an extra freedom & may be

introduced.

Three-noded flat facet shell element.

This is also a flat thin isotropic shell element and has the same properties as a

four-noded flat facet shell element . However, it is generally inferior in terms of

the cost of achieving the same degree of accuracy when compared with the four-

noded flat facet shell element.

Simple beam element.

This is a straight uniform beam element with two nodes which caters for bending

in two principal directions, axial forces and twisting about its shear centre. It

has six degrees of freedom (u,, uY, uz, &, +,,, &) at each of the two nodes.

7.4.1 FINITE ELEMENT MODEL

The finite element model created was based on the afore-mentioned shell and beam

elements as shown in Figure 7.15. The shell elements used were three- and four-

noded isotopic thin facet elements, as they were recommended for thin plate structures

where the aspect ratio h/l (h =thickness, I =typical length of a plate) is smaller than

0.15. The simple beam element was used to model the square-section bars between

the top and the bottom plates, as it was recommended to model the stiffener of a box or

plate shell structure. From Figure 7.15, it can be seen that 85 nodes, which included

7 1 measurement points and some unmeasured points in the vicinity of two holes in the

top and the side plates, were used to generate the FE model.
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The analysis of this model was performed assuming totally unrestrained boundary

conditions in order to match the “free-free” boundary condition imposed at the

experimental stage, and hence no constraints had to be specified in the FE data file.

Since the sole purpose of the FE analysis was to determine the natural frequencies and

eigenvectors of the FE model, no dynamic loads would be considered. In the FE

analysis, all DoFs at each node were defined as the Master DoF so that the “complete”

system mass and stiffness matrices with 442 DoFs were generated.
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Figure 7.15 The FE model of the test structure
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7.4.2 FINITE ELEMENT RESULTS

The first six rigid body modes were less than 0.01 Hz. The natural frequencies of the

seventh to the twentieth modes are given in Table 7.5, together with the corresponding

experimental results. Figures 7.16 and 7.17 depict two of the analytical mode shapes

(eigenvectors).

T
MC& (FE)

7
8
9
10

11
12
13
14
15
16
17
18
19
20

Natural Frt
FE

145.69
165.21
195.09
209.41

_____

250.07
296.17
384.58
509.11
557.94
568.74
656.89
687.56
761.65
805.47

uency (Hz)
Exper.

_____

155.91
172.08
203.91
233.07
249.66
294.05
370.64
500.15
546.54
565.39
661.88
706.39
746.18
791.09

T
I Error

A0 (%)
_____ _____

9.30 (6.0)
23.01 (13.4)

5.50 (2.8)
_____ _____

0.41 (0.2)
2.12 (0.7)

13.94 (3.8)
8.96 (1.8)

11.40 (2.1)
3.35 (0.6)
4.99 (0.8)

18.82 (2.7)
15.47 (2.1)
14.38 (1.8)

MAC
Diag. Val.

_____

.9749

.8043

.9594
_____

.9315

.9950

.9724

.9544

.8231

.7647

.7678

.8092

.6277

.6005

Table 7.5 Comparison of natural frequencies obtained from FE analysis and
experimental modal analysis
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Figure 7.16 Deformed shape for mode 11 (250.07 Hz)

I Figure 7.17 Deformed shape for mode 19 (761.65 Hz)

7.5 CORRELATION BETWEEN EXPERIMENTAL AND FE RESULTS

As shown in Table 7.6, the natural frequencies obtained using the FE analysis are in

reasonably good agreement with the experimental results except for mode 7 and for an

unpredicted measured mode at 233.07 Hz. A correlation between the experimentally-

derived mode shapes and the mode shape vectors obtained from the FE analysis was

carried out, resulting in the MAC values given in Table 7.5 from which it can be seen

that good correlations were obtained for modes 8-14.
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Since SDoFs at each node of the shell elements and 6DoFs at each node of the beam

elements were considered in the FE analysis while, only the translational DoFs in the

X-direction were included in the FRF measurements, the measured mode shape

properties were expanded using Kidder’s method (Method A). The thus-expanded

mode shape vectors were used to locate the mismodelled region in the FE model.

Instead of calculating the error matrix by equation (7.11), an error vector for each

mode was chosen and determined by :

WI, = hl - x~*Md]  (x4& (7.14)

Equation (7.14) is analogous to equation (7.12) so that the row elements of the error

vector corresponding to the unmeasured DoFs must be zero. Therefore, only the

elements of the error vector in the X-direction would be non-zero and useful for

locating the modelling errors. The error vectors obtained using 13 measured modes

are shown in Figure 7.18 from which it can be seen that modelling errors lie

predominantly between nodes 1 to 5, nodes 34 to 37, and nodes 54 to 68. These

nodes are the Master DoFs on the side plate, the square bars and at the jointed comers

and modelling errors might well arise here due to limitations of the thin shell elements

for in-plane motion (no in-plane shear). In addition, the joint properties were not

known and the assumed fixed-fixed interface conditions at the comers might be

inappropriate.

* ,
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I ERROR LOCALIZATION

Figure 7.18 Error matrices (using Method A)

7.6 STRUCTURAL MODIFICATION PREDICTION USING

EXPERIMENTAL DATA

In order to demonstrate the applicability of a structural reanalysis technique, it is

desirable to obtain relatively large natural frequency shifts when a small structural

modification is introduced to the test structure. This can be achieved by calculating the

first-order eigenvalue sensitivity described in chapter 5 and determining the “order of

importance” ranking of the structure’s degrees-of-freedom for structural modification

for each mode of vibration.

Since the first-order sensitivity analysis only provides a guideline to effective structural

modifications, more accurate estimates of the actual shifts in natural frequencies from

prescribed modifications are sought using the non-linear sensitivity analysis when the

information at coordinates corresponding to structural modification sites is available.

Theoretically, the FRF data in three translational and three rotational directions at each

modification site ought to be measured. However, limitations imposed by currently-
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used measurement techniques and equipment make the inclusion of all six coordinates

at each point a very difficult task in practical situations. As a result, a lumped mass

modification which is only active in the measured coordinates was made in order to

minimize the discrepancies between the theoretical predictions and the experimentally-

derived modal responses.

7.6.1 FIRST-ORDER EIGENVALUE SENSITIVITIES

The natural frequency sensitivities for each coordinate are shown in Table 7.6 where

only the mass sensitivities in the X direction are given. Since the main purpose of

calculating the first-order eigenvalue sensitivities is to provide the ranking of the

degrees-of-freedom in their order of importance for modification, the values of

frequency shifts would not be used to predict the modal responses of the modified

structure (the limitations of the first-order sensitivity analysis have been fully

discussed in chapter 5).

From the sensitivity results shown in Table 7.6, it is clear that points 11 and 32 are

very sensitive to a single DoF mass modification in the X direction in general and will

in particular produce comparatively large shifts in the resonance frequency for mode

19.
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Mode
12
13
14
15
16
17
18
19
20

7.6.2 PREDICTION OF EFFECTS OF ACTUAL MODIFICATION

Nat. SDoF MASS SENSTIVITY (- Hz&g)
Freq. 11X 1 15X 1 16X 1 32X 1 37X 140X 141X 144X 1 48X 1 51X

294.0 1.6 2.0 0.5 0.0 13.8 2.3 53.8 10.2 8.3 7.9

370.6 19.3 52.3 26.9 58.5 0.0 0.1 5.3 2.3 4.2 1.7

500.1 25.1 32.5 33.3 42.1 1.0 11.4 0.5 16.4 2.5 22.9

546.5 104.1 152.9 38.7 34.6 3.3 140.9 17.7 40.4 166.8 248.9

565.4 4.6 0.9 0.5 0.7 0.1 10.3 1.0 39.6 23.4 43.8

661.9 13.1 123.3 0.4 48.3 4.6 13.8 66.5 6.3 108.0 36.7

706.4 15.0 0.5 3.7 0.0 80.7 69.3 172.8 197.9 30.0 26.4

746.2 499.6 38.1 222.6 555.6 122.7 2.7 77.1 4.3 41.0 283.1

791.1 13.7 0.0 0.2 53.4 95.4 7.1 12.3 16.4 4.4 47.1

Table 7.6 Natural frequency sensitivities for the test structure

Once a first-order sensitivity analysis has been completed satisfactorily, the next step

in the solution of a structural optimization problem is the design and selection of

structural modification sites that can alter the dynamic characteristics in order to

accomplish the desirable feature specified by the analyst. As the main aim of this

experimental case study is to illustrate the applicability of the non-linear sensitivity

analysis and so, the objective function in this excerise is to obtain maximum

downwards frequency shifts for some modes when a single DoF mass modification is

introduced. According to the variations in natural frequencies predicted using the first-

order sensitivity analysis given in Table 7.6, the natural frequency sensitivity of mode

19 to mass modification at point 11X is 499.6 Hz/kg. Therefore, to achieve a

reasonable shift in the natural frequency - say 20 Hz - the single DoF mass change

required is 0.04 kg. Using a steel bar with circular cross-section, a concentrated mass

of 0.05 kg was constructed. This mass was attached at point 11 (in the X-direction)

by means of a silver-steel pushrod 18 mm long by 1 mm in diameter and a circular

disk 2 mm thick by 10 mm in diameter, resulting in a mass modification with the total
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mass of 0.0565 kg. The geometry of the extended mass is shown in Figure 7.19.

The use of a pushrod ensured that the concentrated mass had negligible effect in any

coordinate other than 11X and would act as a single DoF modification. The natural

frequencies of the modified structure were predicted using the non-linear sensitivity

analysis. They are given in Table 7.7 from which it can be seen that the actual mass

modification of 0.056 kg should produce a shift of - 16.4 Hz for mode 19.

attached to the structure

Figure 7.19 The geometry of the extended mass

The modified structure was excited in the X-direction at point 24 and a translational

response measurement was made in the X direction at point 5. The transfer FRF

curves of the modified and unmodified structures are shown in Figure 7.19 from

which it can be seen that there was indeed a marked shift (17.7 Hz) in the natural

frequency for mode 19. However, it should be noted that there was another large shift

(12.2 Hz) in the natural frequency for mode 15 which was not predicted using the

non-linear sensitivity analysis. The natural frequencies have been extracted using

“MODENT” and are given in Table 7.7 along with the predicted natural frequencies of

the modified structure.
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Figure 7.20 Transfer FRFs of the modified and unmodified structure

Nat. Freq. of Nat. Freq. of the modified structure

Mode the original structure Predicted (Non-Lin. Sen. ) Measured

8 155.91 155.90 (-0.01) 155.90 (-0.01)

9 172.08 172.07 (-0.01) 172.07 (-0.0 1)

10 203.91 203.90 (-0.01) 203.90 (-0.01)

233.07 233.07 (-G.00) 233.07 (-0.00)

11 249.66 249.50 (-0.16) 246.30 (-3.36)

12 294.05 293.95 (-0.10) 293.52 (-0.53)

13 370.64 369.54 (-1.10) 367.34 (-3.30)

14 500.15 498.56 (-1.59) 487.92 (- 12.2)

15 546.54 541.17 (-5.37) 538.92 (-7.62)

16 565.39 565.17 (-0.22) 564.90 (-0.49)

17 661.88 661.05 (-0.83) 658.90 (-2.98)

18 706.39 705.13 (-1.26) 703.23 (-3.16)

19 746.18 729.77 (- 16.4) 728.51 (-17.7)

20 791.09 790.56 (-0.53) 789.90 (-1.19)

L

Table 7.7 Natural frequencies of the unmodified and modified structure

h ,
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7.7 CONCLUDING REMARKS

There were two main objectives for the case study on the aluminium test structure :

(9 evaluation of the effectiveness of the physical expansion technique in an error

localization analysis where the modelling error in a FE model should be located;

and,

(ii) justification of the applicability of non-linear sensitivity analysis in structural

modification prediction using experimental data.

For the computer simulation results shown in Section 7.2, it was found that when

some or all of the mismodelled sites cannot be measured directly, both Methods A and

C gave quite accurate and reliable expanded mode shape vectors which can be used to

indicate the modelling error in the FE/analytical model using the error matrix technique

developed by He and Ewins [95].

Despite the advances in measurement technique, difficulties are encountered with

attempts to measure all six DoFs - three translational and three rotational DoFs - at each

measurement point. In this case study a full measurement survey of the translational

DoF (in the X-direction) of the aluminium test structure was carried out. By analysing

the measured FRFs using “MODENT” and “MODESH”, a modal model having 16

flexural modes with 71 response coordinates was created. An FE model was set-up

using the PAFEC package and a dynamic analysis was carried out by considering all

442 DoF as Master DoF. Comparing the FE results with their experimentally-derived

counterparts gave satisfactory results. The measured mode shape properties were

expanded using Kidder’s method (Method A) and the thus-expanded mode shape

vectors were used to locate the possible mismodelled regions in the FE model. It was

concluded that the main differences between the test structure and its FE model are due

*.
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to limitations of thin shell elements for representing in-plane motion and to lack of

appropriate modelling for the jointed comers incoporated  in the FE model.

In order to minimise the effects based on a model which is deficient in rotational and

some translational information, a single DoF mass modification was achieved by

attaching the added masses to the unmodified structure through a pushrod which has

the characteristic of being stiff in one direction while at the same time being relatively

flexible in the other five directions. For this modification the actual major resonance

frequency shifts were predicted accurately using the non-linear sensitivity analysis

technique. However, some resonance frequency shifts which could not be predicted

by using the non-linear sensitivity analysis have also been measured.

The experimental case study has demonstrated that practical implementation of the

error localization and non-linear sensitivity analysis methods is not simple and

straightforward. The most serious problem is usually coordinate incompleteness. For

the error localization, a reliable expansion technique is vital because the dimensions

between experimentally-derived modal model and analytical model are almost always

incompatible. For structural modification prediction, care and attention must be given

to the actual modification in order to ensure that the structural modifications are only

imposed in the measured coordinates.



08 CONCLUSIONS

8.1 GENERAL CONCLUSIONS

The main objective of the work was to develop new structural dynamic reanalysis tools

which could be applied to both theoretical and experimental structural modification

analyses. As the validity of theoretical models and the accuracy of experimental data

are the key factors affecting the outcome of these structural modification analyses, the

relevant topics, such as techniques for the development of model updating and

sensitivity analysis of measured data, have also been included within the scope of this

research.

Throughout the thesis, detailed mathematical proofs, historical backgrounds for the

different methods and various numerical and/or experimental studies have been

presented, because without such rigorous mathematical background and information it

is difficult to ensure the applicability of the theoretical tools used in structural

dynamics, such as FRF measurement, model updating and structural modification

analysis. Although discussions and conclusions have also been given in each of the

preceding chapters, it is appropriate now to provide a general summary of those

conclusions and the important findings such that the parts of the work which constitute

new developments or attempts to new developments are highlighted.

ri.
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8.1.1 THE RELIABILITY OF FRF MEASUREMENT TECHNIQUE

At the outset of any structural identification, model updating or structural modification

exercise based on the use of measured FRF or experimentally-derived modal data, it is

important that the reliability and accuracy of measurement techniques are thoroughly

understood so that any errors incurred in the measurement process can be minimized.

Based on a traditional open-loop measurement-system model, modal test practitioners

have developed the currently-used FRF estimators rH(o), OH, “H(o) and 3H(o)

for a single-shaker random excitation or an impact test. In practice, neither the tH(o)

nor the 2H(o) FRF estimator can produce the true FRF because auto-spectra (which

are greatly influenced by measurement noise) are included in their formulations. The

former under-estimates the FRF while the latter over-estimates the FRF in the vicinity

of structural resonances. The “H(o) FRF estimator is based on the calculation of the

geometric mean of tH(o) and OH but, unfortunately, it is also unlikely to provide a

meaningful result in most cases because the noise-to-signal ratios vary with the

excitation frequency and their magnitude depends on the structure’s properties as well

as on the excitation mechanism. By incorporating the shaker-structure interaction as a

feedback path in the FRF measurement-system model, a closed-loop model for single-

shaker modal testing has been developed from which the observed variations of

measured force signal can be explained analytically. This model also reveals the

relationships between the measured force and acceleration signals and the properties of

the test structure and of the excitation mechanism from which it can be proved that

only OH is a “noise-free” FRF estimator.

However, FRF estimators derived from DFT analysis are also liable to a phase-

dependent bias error which is known as “leakage” caused by windowing for a finite

amount of data. Using the new closed-loop model, bias errors on the estimates of
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modal parameters (natural frequencies, damping loss factors and modal constants) for

the different FRF estimators have been studied analytically and numerically. It was

found that the only estimate which will lie on the true modal circle is 2H(o) under

noise-free conditions. Generally speaking, it can be concluded that both 2H(o) and

OH are likely to provide more accurate FRF estimates than other FRF estimators

around structural resonances. If the frequency resolution is high and measurement

noise is significant, sH(c0) will produce the best FRF estimates across the whole

frequency range of measurement. It is concluded that a full awareness of the

conditions under which each measurement is made in essential if accurate data data are

to be obtained.

When there is a need for application of large forces and linearization of slightly non-

linear structures, multi-point excitation should be used to obtain the FRFs of

mechanical structures. Similar to its single-shaker counterpart, the multi-shaker sine-

dwell or random excitation test was traditionally modelled as a open-loop multi-input

multi-output system. All existing structural identification techniques have been

developed based on the open-loop MIMO model. However, those techniques have a

deficiency in that they cannot be successfully applied to estimate the FRF matrix in the

vicinity of structural resonances because the input cross-spectrum matrix is very ill-

conditioned with respect to the calculation of its inverse. The closed-loop model

developed above (for the SISO case) has thus been generalised for multi-shaker modal

testing. By using the closed-loop model, a MIMO system with feedback path is

identified from which one can explain how the shaker-structure interactions cause

difficulties in controlling the orthogonality between measured force signals in a sine-

dwell test and in maintaining the required incoherence between measured force auto-

spectra in a random excitation test. A new FRF estimation technique has also been

developed using the MIMO model. This technique has a distinct advantage that it

works effectively even if the measured force signals are highly correlated.
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8.1.2 ANALYTICAL MODEL IMPROVEMENT USING MODAL DATA

The response and modal models of a mechanical structure can be obtained using the

traditional direct structural identification (parameter extraction) technique in the

frequency-domain or the time-domain. Various parameter extraction techniques have

been developed and improved by numerous researchers in the past 20 years. At the

current time, the inaccuracy of experimentally-derived response and modal models

comes mainly from measurement errors during the data acquisition process because,

with the advent of computing facilities and by using more reliable and numerical stable

mathematical techniques, the numerical errors which are introduced during the

parameter extraction process can be reduced to a relatively low level. However, there

are many situations where the spatial properties of the structure need to be known in

order to provide a good ‘representative’ mathematical model for a vibrating structure

and, as a result, the study of analytical model improvement using experimental data

becomes increasingly important and more and more popular.

Direct matrix-update methods are amongst the most commonly-used techniques in

model updating. These methods are based on the constraint minimisation method

using Lagrangian multipliers. The physical characteristics, such as the connectivity, of

the structure are generally ignored in the formulation and the updating problem is

tackled from a purely mathematical viewpoint. As a consequence, the updated model

can often be optimum in a mathematical sense, reproducing the modal properties of the

structure which are measurable, but the model itself is generally physically unrealistic.

During the literature survey of direct matrix-update method, it was found that the

forerunner of this method, Baruch & Bar&hack, adapted the idea from research work

on navigation to develop the “so-called” direct matrix-update method. Unfortunately,

the physical nature of navigation and model updating problems are different so that the
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mapping technique used in navigation is not appropriate to resolve the model updating

problem. It has been proved in this thesis that the formulae of direct-matrix update

method are mathematically incorrect unless the mode shape or/and natural frequency

matrix is complete in terms of the number of modes and the number of DoFs.

Having identified the inherent difficulties in obtaining system error matrices by direct

matrix manipulation, two other model updating methods have been formulated and

shown to be effective in analytical model updating, provided a sufficient number of

measured modes are available. The first of these methods, the orthogonaZity constraint

method, is based on transforming the orthogonality relationships of the mass and

stiffness matrices into sets of simultaneous equations. A second method, the

eigendynamic constraint method, is based on creating a system of simultaneous

equations using the simple modal equations and mass normalisation relationships of

measured modes. Both methods can produce the exact system error matrices by using

the generalised inverses with a SVD technique when the system of equations is

overdetermined. By comparing the minimum modal data required by these two

methods, it was concluded that in practice the eigendynamic constraint method is better

than the orthogonality constraint method because in general it requires fewer measured

modes. When the modes available from measurement are incomplete in terms of the

response coordinates as well as the number of modes, there are many system error

matrices which can be obtained using the OCM or ECM. The thus-updated model can

reproduce quite accurately the measured modal properties: however, the reliability of

this updated model depends on the expansion method used to determine the response

of the unmeasured coordinates.
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8.1.3 DEVELOPMENT OF STRUCTURAL REANALYSIS TECHNIQUES

BASED ON LINEAR AND NON-LINEAR SENSITIVITY ANALYSES

As mentioned above, the primary goal of the work was to develop new technique(s)

for structural modification analysis. A major reason for starting with first- and higher-

order sensitivity analyses was that these techniques had emerged as amongst the most

popular tools in structural reanalysis. The literature survey given in chapter 5 revealed

that a large number of publications were devoted to sensitivity analysis and presented

in journals under different disciplines. The sensitivity eigenproblem has been viewed

as a problem in numerical analysis (e.g. Jahn [%I, Wilkinson [61], Stewart [Sl]), as a

problem in perturbation theory (e.g. Jacobi [56], Courent and Hilbert [59], Lancaster

[60]), as a problem in linear systems theory (Rose&rock [62], Morgan [63]), and as a

problem in structural reanalysis (Fox and Kapoor [55], Wang et al. [73], Skingle and

Ewins [71], Noor and Whitworth [74] etc.). Although first-order sensitivity analysis

has been presented in different forms and refined to include such considerations as

coincident natural frequencies and rigid-body modes, the limits of applicability had not

previously been assessed in detail and no criterion had been given to determine under

what conditions the method give accurate results. For this reason, a condition number

(estimator) has been presented in this work that can be used to identify the limited

bound of the application of first-order sensitivity analysis.

In structural reanalysis, some analysts have over-estimated the capability of frost- and

higher-order sensitivity analyses and expected that for large structural modifications

the accuracy of structure modification prediction could be improved by including some

higher-order terms. However, practical experience shows that, in many cases,

prediction using higher-order sensitivity analysis is even worse than the approximated

one using first-order sensitivity analysis. The limited success of sensitivity analysis in

large modification prediction is inevitable because the the original aim of using
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sensitivities in numerical analysis was only to investigate the stability of the

genera&d eigenvalue problem, i.e. to understand how eigenvalues and eigenvectors

change when the elements of system matrices vary in an infinitesimal sense.

Having identified the inherent limitations of first- and higher-order sensitivity

analyses, a new structural reanalysis procedure based on the use of the Rayleigh

quotient with the classical inverse iteration method has been formulated. It has been

shown that this technique is very accurate in predicting the dynamic responses of a

modified structure. Because of the cubic convergence characteristic of the Rayleigh

quotient iteration, the exact solution of a structural modification problem can be

obtained in a small number of iterations. Another structural reanalysis technique based

on inverse iteration method alone is also presented and discussed. It was found that

the main advantage of the inverse iteration

However, a drawback of this method is that

slowly when the modes are closely-spaced.

method is the simplicity of recursion.

the iteration procedure converges very

In practice, not all the modal properties of the original (unmodified) structure will be

available and useful for structural modification analysis : for example, only the

coordinates at the surface of an engine are measurable and accessible for practical

modifications. In such a situation, neither the Rayleigh  quotient iteration nor the

inverse iteration method is applicable because both of them require the eigenvectors

with complete coordinates. Based on the idea given by Jahn [58], a non-linear

sensitivity analysis technique has been formulated and shown to be effective tools for

structural reanalysis under these conditions. As this technique requires only the

responses corresponding to the modification sites, it has been used to predict the

responses of the modified structure not only in an FE analysis but also in an

experimental case study.
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8.2 CONTRIBUTIONS OF THE PRESENT RESEARCH

In a final review of the research presented in this thesis, the contributions made to the

various areas of activity are listed as follows:

FRF Measurement

the development of a new closed loop model for single- or multi-shaker modal

testing based on incorporating the shaker-structure interaction(s) into the

measurement-system model;

the use of a closed-loop model for single-shaker modal testing in explanation of

the force drop-off phenomenon in the vicinity of structural resonances;

analysis and evaluation of the bias errors (leakage error) on modal parameters

that can be incurred when finite records of time signals are to be processed using

m;

the use of a closed-loop model for multi-shaker modal testing in explanation of

the correlation between various signals which cause the difficulty in controlling

the measured force signals in a sine-dwell test as well as a random excitation test;

the development of a new MIMO FRF estimation technique which works

properly even if the measured force signals are highly correlated (in which the

classical structural techniques may fail);

Model Updating

critical discussion and identification of the limitations of direct matrix-update

methods;

the development of a new model updating technique based on using the

orthogonality relationships of the system mass and stiffness matrices;
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exploitation of the capability of the orthogonality constraint and the

eigendynamic constraint methods in model updating with considering the

problems of modal and coordinate incompleteness, and of measurement noise;

a detailed assessment of different physical expansion techniques based on the

inverse procedure of Ridder’s reduction technique;

Linear and Non-linear Sensitivity Analysis for Structural Modification

critical discussion on the limitations of first- and/or high-order sensitivity

analysis in structural modification analysis;

the development of a condition estimator which can provide the limited bound of

the application of first-order sensitivity analysis;

the presentation of an alternative way of calculating the response properties of a

modified structure based on the Rayleigh  quotient iteration method;

the development of a new computation procedure (non-linear sensitivity

analysis) which can be used to determine the exact modal properties of the

modified structure in the case only the responses corresponding to the

modification sites and all natural frequencies of the original structure are given.

a detailed assessment of the truncation effects of modal incompleteness on the

nonlinear sensitivity analysis.

8.3 SIJGGESTIONS FOR FURTHER WORK

As a consequence of this work, various aspects of modal analysis have been identified

for further investigation. One obvious aspect for further study is to utilize the closed-

loop model for single- or multi-shaker modal testing in the development of a more

realistic noise model in simulated FRF measurements. Based on the closed-loop

model, a new technique used to determine the unique estimates of FRFs has been

presented: however, it would be appropriate for some experimental studies to be
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carried out in order to illustrate the capability of the proposed technique in real

measurements. In addition, parametric structural identification technique (time-

domain) needs to be updated due to recognition of the hidden feedback paths and the

Non-Gaussian (or random) nature of measurement noise.

In model updating, there is an urgent need to derive a reliable mode shape expansion

procedure so that those model updating techniques using modal data, such as the

orthogonality constraint and eigendynamic constraint methods, can be more

successfully applied to update and/or validate the analytical model using experimental

results.

For structural modification analysis, further research is required to enhance the

applicability of the non-linear sensitivity analysis technique for high-frequency modes

because, in some cases, this newly-developed technique may not converge as the

predictions go beyond the limited bounds of Rayleigh quotient, and to improve the

accuracy of this technique by incorporating the effects of low- and high-frequency

residuals. Finally, the development of a structural optimization procedure which is

capable of solving multiple natural frequency constraint problems is essential.
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APPENDIX IA/

THE GENERALISED INVERSE AND
WEIGHTED LEAST-SQUARES

A. 1 INTRODUCTION

The generalised inverse is proving to be a very useful tool in modem linear matrix

theory, in particular as a means of determining the least-squares solution of a set of

simultaneous equations which are overdetermined. However, application of the

generalised inverse in structural dynamics exercises is not completely successful and it

is found that this failure is mainly due to a lack of understanding of the fundamental

principals of the generalised inverse. The objective of this appendix is to review the

basic theory of the generalised inverse and to discuss its applicability in structural

dynamics. Also, a brief description of the weighted least-squares technique is

included. This weighted least-squares technique is very useful in providing the

optimum solution of a physical problem when a prior knowledge of the uncertainties

existed in measured data is known.

A2. HISTORICAL DEVELOPMENT OF GENERALISED INVERSE

The concept of a generalised inverse of a matrix was first introduced by E.H. Moore,

who defined a unique inverse for all matrices, rectangular as well as square. He

systematically investigated the properties of this inverse and showed that it has certain

properties analogous to those possessed by the inverse of a non-singular matrix.

Details of his work were published in 1935 as Volume 1 of the Memoirs of the
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American Philosophical Society [Al]. In 1951 Bjerhammar [A21 rediscovered

Moore’s inverse and also noted the least-squares properties (not mentioned by Moore)

of general&d inverses to solutions of linear system. Penrose [A3,A4]  sharpened and

extended Bjerhammar’s work on linear systems and showed that the generalised

inverse for a given matrix [A] is the unique matrix [A]+ satisfying the four equations

shown below:

[Al[Al+Wl =  [Al (A.1)

Wl+Wl[Al+ =  [Al+ (A.3

(Wl[Al+)* = [Al[Al+ (A.3)

([Al+[Al>* = [Al+Wl (A.4)

This discovery has been so important and fruitful that this unique inverse is commonly

called the Moore-Penrose generalised inverse. Penrose [A41 showed that the

generalised inverse possesses the following least-squares property : [A]+[B] is the

unique best approximate solution of the unknown matrix [X] in the equation

[A][X]=[B], and is of smallest Euclidean norm among all possible solutions of [Xl.

This situation arises often in least-squares fitting, linear programming and other

statistical applications. Best approximation solution is important in those areas

because it is the best way to solve an overdetermined problem with a set of

inconsistent equations in the sense of least squares, thus to minimize the effect of

noise in a system. To this end, the word “noise” has very wide implications: any

causal or random factors which should not or cannot be modelled, about which further

information is not available, which cannot be analysed, which may not recur

periodically, etc. Thus “noise” = “something which cannot be explained”. This is a

much more comprehensive category than random effects interpreted in a well-

developed probabilistic sense.

. .,._.
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Since 1955 thousands of papers on various aspects of the generalised inverse and its

applications in different engineering and science disciplines have appeared. In

structural dynamics, the generalised inverse of matrices has been widely used in

structural identification [A5], model updating [40-431, mode shape expansion [86] and

normalization of incomplete complex modes [A6]. However, it seems that not enough

attention has always been given to the basic theory of the generalised inverse when

those structural analysts used this mathematical device to

techniques. As a result, many of today’s structural identification

exercises are demonstrably prejudiced.

develop their own

and model updating

A.3 THE GENERALISED INVERSE OF MATRICES

For an NxN nonsingular square matrix [A], the general&d inverse is a left inverse

and also a right inverse of [A]. Thus it satisfies the following relationship :

CAl+CAl = [AlIAl+ = [II (A.3

For an ZVxm matrix [B] of maximum rank m (m4V ), the columns of [B] are linearly

independent and [BITIB] is positive definite and nonsingular. The general&d inverse

of [B] is defined as:

[B]+ = ([BITPI>-’ PIT (A.6)

this generalised inverse is a left inverse of [B]. There are other left inverses, but this is

the only one having rows in the row-space of [BIT.
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In a similar way, the general&d inverse of an mxN matrix [C] of rank m (N&r ),is

defined as:

[cl+ = KIT wlTm-l (A.7)

This is the only right inverse of [C] having columns in the column-space of [CIT.

In the general case of any nonzero Nxm matrix [D] whose rank r may be less than its

smaller dimension m , the generalised inverse of [D] cannot be determined using

equations (A.6) and (A.7). In such a situation, [D] can be decomposed in a form of :

PI = WI PI WIT (A.@

where [U] is an Nxm orthonormal matrix and [V] is an mxm orthonormal matrix; [E]

is an mxm diagonal matrix whose diagonal elements consists of s nonzero singular

values of [D] ([Z] = diag(ol,..., o,,O ,..., 0)).

Having calculated the singular value decomposition of w], the generalised inverse of

[D] is determined by :

PI+ = WI m+wlT

where [E] = diag(ol-I,..., o,-1,O ,..., 0).

(A.9)

b  I
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A.4 GENERAL DISCUSSIONS

The general&d inverse literature is vast, as evidenced by over 1,700 references in the

Proceedings of an Advanced Seminar on General&d Inverses and Applications edited

by M.Z. Nashed [A71 in 1976. However, the application of this mathematical tool to

practical problems, especially to structural dynamics, has failed to give sensible results

in many cases. The limited success of the generalised inverse in structure dynamics is

inevitable because when the available information for structural identification, model

updating, mode shape expansion and normalization of complex modes is limited and

incomplete, many people misinterpret the nature of those problems, resulting in

incorrect formulae from mis-using an elegant mathematical technique.

Suppose that the modal data are only incomplete in terms of the number of measured

modes and are “noise-free” - not contaminated by random noise. Structural

identification problems are ill-posed and underdetermined without additional

information and, as a result, there will exist many possible sets of system matrices that

can regenerate the (limited) measured modal data. In such a situation, using any

mathematical technique will not improve the nature of problem but will only confuse

the followers. As it can be realised that the rectangular modal matrix does not contain

set of “inconsistent” equations or noisy data but is “insufficient” to recover the original

system matrices. In model updating, the DMU method is a mapping technique

(Chapter 4.3.3) so that it can be used to determine the number of mismodelling sites

when sufficient modes are available. The general&d inverse method increases the

size of matrices but cannot increase their rank, and so, alternative methods (Chapter

4.4.1) must be used if one wants to locate the mismodelling sites correctly. For mode

shape expansion, a general&d inverse method (Method C in Chapter 7.2.2) provides

a least-squares solution but does not give an “exact” or the “best” solution when all

modelling errors lie in the measured DoFs. In normalizing complex modes, the
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transformation method suggested by Ibrahim is mathematically incomplete but the

numerical results shown on his paper were surprisingly promising.

Undoubtedly, the generalised inverse provides a unique solution to solve an

overdetermined problem with or without noise. However, understanding the nature of

problem is more important than anything such as choosing the appropriate

mathematical technique since it is impossible to obtain the right answer for a specific

problem which has been incorrectly constructed in the very beginning.

A5 WEIGHTED LEAST-SQUARES

As mentioned above, the “optimum” or “best” solution (x) to an inconsistant

(overdetermined) system of equations [A](x]=(  b) can be obtained using the

generalised inverse technique:

(xl = [Al+(bl (A. 10)

It should be noted that the formulation of equation (A.lO) has two implicit

assumptions : firstly, that all information are quantified by the same dimension, and

secondly, that all observations are trusted to the same degree. As an example of the

first assumption, if some of the response were in units of metres (for relative

displacements) and the rest in m/s2 (acceleration) the formulation of equation (A. 10)

would be untenable. The second assumption implies that even if some experimental

data were measured with high precision, equation (A.lO) would treat these

experimental data with equal weight as the other oberservations.
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The above two problems can be solved by introducing the concepts of

weighting/scaling to the least-squares formulation. If the m observations br, . . . . &

are not equally reliable, then different weights wt, . . . . w,,, which depend on the

knowlegde of uncertainties must be associated to the m equations. This can be done

by post-multplying both sides of equation [A](x)=(b) by the diagonal matix [w]

whose elements are WI, . . ..w.,,  in sequence. In addition to their unequal reliability,

the observations may not be independent in some cases. Under these situations, a

coefficient wij which measures the coupling of observation i to observationj must be

introduced. Then

Wlbl =  U-4 is changed to Wl[Alb~ = WI(b) (All)

To solve this new problem [W][A] { x )=[Wj (b), we have to look back at the normal

equations for the original problem, and make the appropriate changes : [A] is replaced

by [W][A], and {b) is replaced by [WI{ b}. By calculating the generalised inverse of

/JVj[A], the optimum solution of the new problem can be obtained.

.I_.



APPENDIX q
BACKGROUND MATRIX ALGEBRA

B 1. (LINEAR) SPACE

A linear space CN is a collection of mathematical (or physical) objects (say, {x), { y )
and ( Z)E CrJ> which is closed relative to two operations: addition, and multiplication

by all real and complex numbers; these operations satisfy the following conditions:

1. 1x1 + (YI = {y) + (x) (commutative law);

2. (lx) + {YH + 1x1 = {x) + ([y} + {z)) (associative law);

3. there exists an element “(0)” such that (x) + (0) = (x} for all {x);

4. for all {x} there exists a negative element ‘I{-,)‘I such that (x) + ((-x}) = (0);

5. 14x1 =  Ix);

6. (a + bNx1 = a{x) + b(x);

7. a((x) + (~1) = a(x) + aIy1;

8. a(b(xH =  ah(x)

The elements of a linear space are called vecfors .

A space is called real if multiplication of its vectors is defined only for real

numbers and complex if multiplication is defined for complex numbers.

A space is calledfinite-dimensional if the following axiom is satisfied:

9. There eXiStS  a finite number Of Vectors,  [Xl ), . . . (XN) such that every Vector in

the space may be represented in the form

clbl)  + -+. + ‘%bN)

The dimension of a finite-dimensional space is the least number of vectors satisfying

the condition of axiom 9.
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B2. SUBSPACE

A subspace  of a vector space CN is a subset of vectors (x) E CN such that any linear

combination of vectors in the subset is again a vector in this subset. It is obvious that

the set consisting of the null vector and also the whole space are subspaces in the sense

of this definition.

B3. LINEARLY INDEPENDENT

If all nontrivial combinations of the vectors are nonzero,

Cl(X1)  + . . . +CN{XN) = (0) unless cl = . . . = cN = 0,

then the vectors (xl), . . . . { XN) are linearly independent. Otherwise they are linearly

dependent, and one of them is a linear combination of the others.

B4. SPAN

If a vector space CN consists of all linear combinations of the particular vectors {xl},

. . . . { XN), then these vectors span the space. In other words, every vector (y) in CN

can be expressed as some combination of the (x) ‘s:

(Yl = cr(xr} + . . . + c~(x~} for some coefficients Ci.

B5. BASIS

A basis of a vector space is any ordered set of vectors of the space that

(0 is linearly independent and

(ii) spans the vector space.
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B6. DIMENSION

Let N be a positive integer. If a basis of a vector space CN has N vectors, then CN

has dimension N . A vector space consisting of the zero vector only is said to have

dimension zero.

B7. ROW(COLUMN)-SPACE

The vector space consisting of the set of all linear combinations of the rows(coZumns)

of matrix [A] is called the row(coZumn)-space of [A].

B8. PROJECTION

Let Rk be a subspace of CN (N>k) and [A] E CNxm. Then each column of [A] is a

vector with a dimension of N and may be projected onto Rk . The matrix obtained by

projecting the columns of [A] onto Rk is called the projection of [A] onto Rk .

B9. ELEMENTARY TRANSFORMATIONS

It is often convenient to perform the following operations on matrices :

1. multiplying the elements of some row by a number;

2. adding to the elements of some row numbers which are proportional to the

corresponding elements of some previous/subsequent row.

These transformations may also be performed on columns. Transformations of the

type indicated will be called elementary trunsfonnations of matrices.
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BlO. SIMILARITY TRANSFORMATIONS

A similarity transformation possesses the following properties :

1. ~~1-‘C~~1~C1+~~1-‘[~~1[~1+  . . +[WM[Cl = ~~l-l~~~~l+~~~l+...+~~nl>~~l;
2. ~~l-1~~~I~~l~~~-1~~~lI~l...~~l-1~~n3~~l  = [Cl-1([A~I[A21...[Anl)[Cl
In particular ([WWdIW’ = [C1-‘FW’[C1
where [C] is a non-singular matrix and [At],...,[ArJ  and [C] E CNxN.

The matrix p] is said to be similar to that matrix [A] when [D] = [Cl-t[A][C].  The

most importance property common to similar matrices is the fact that they all have the

same eigenvalues, for

I[A] - L[I]l = 0

implies I[C]-‘([A] - h[I])[C]l = 0

and I[C]-l[A][C] - h[I]l = 0

so that l[D] - h[I]I = 0

Thus the zeros of I[A] - h[IJ coincide with those of I[D] - h[flI and the eigenvalues of

[A] and [D] therefore coincide. However, the converse statement is not necessarily

true, ie., matrices

Wilkinson [61])

having the same eigenvalues are not necessarily similar (see

Bll. ORTHONORMAL

A basis (xl), . . . . (XN} is called orthonormal if

{XilHIxjl  =
0 whenever i f j giving the orthogonality

1 whenever i = j giving the normalisation
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B12. RANKOFAMATRIX

If [A] E CNm, rank [A] is the largest number of columns of [A] which constitute a

linearly independent set. This set of columns is not unique, but the number of

elements of this set is unique. It is a remarkable fact that rank[A]T = rank[A].

Therefore, rank may be equivalently defined in terms of linearly independent rows.

Often this is phrased as “rank[A] = row-rank of [A] = column-rank of [A].”

B13. TRACE

The roots h of the chracteristic polynomial are called the eigenvalues (or characteristic

numbers) of the matrix. The sum of the n eigenvalues equals the sum of the n

diagonal entries of [A]:

hr + h2 + . . . + hN = at1 + a22 + . . . + aNN

The sum is known as the trace (or spur) of [A] and this is one of the invariants of

characteristic polynomial (or determinant), i.e., it does not change under similarity

transformation.

B12. VECTOR NORM

The norm of a vector (x) is a non-negative number II(x) II corresponding to this vector

(and in topological sense gives the length of a vector relative to origin of space) which

has the following properties :

1. Il(x)ll > 0 for (x]#(O) and ll(O)ll =O;

2 . Ilc(x}ll = Icl.ll (x) II for any numerical multiplier c;

3. Il(x}+(y)ll  < II(x + ll(y)ll (“triangular inequality”).
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A useful class of norms are H’dder or p-norms defined by

Il(x)llp = (Ix& + . . . + Ix&y/P

of which
N

Il(X)lll = c IXil
i=l

N
II(x = II--c Xi2=d-Gi%i

i=l

and

Il{x)ll, = m~(lxil : i =l, 2, . . . . N}.

The 2-norm is also called the Euclidean norm. It is always used in determining the

solution of least-squares problem. The oo-norm is sometimes called the maximum

norm (max-norm) or the Chebyshev norm. Note that the concept of norm for infinite

dimensional spaces is restricted to the so-called Hilbert space.

B13. MATRIX NORM

The norm of a matrix [A] is a non-negative number II[A]II which satisfies the following

properties :

1. II[A]ll > 0, if [A] #[O] and ll[O]ll = 0;

2. Ilc[A]ll = Icl.ll[AJll;

3. II[A+B]II  I II[A]II  + II[B]II;

4. lI[A][B]II I II[A]II.II[B]II

It should be noticed that properties (l)-(3) are identical to the properties for a vector

norm described above. A matrix norm that satisfies (l)-(3) and not necessarily (4), is

often called a generalised matrix nom .
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The most frequently-used matrix norms are the F-norm (Frobenius norm, it is also

called Euclidean or Shur norm), for [A] E RNm

Ii[A]ll~ = $@

Other matrix norms are :
N

IIIA]II1 = XEiX(C laijl : j = 1, 2, . . . . m)
i=l

II[A]ll2 I dmaximum eigenvalue of [AIHIA]

and
m

II[A]II, = IIXUC(~ laijl : i = 1, 2, . . . . N)
j=l

The 2-norm is often called the spectral norm and is useful in determining the

sensitivity of eigenvalues and eigenvectors. The F-norm is always used to provide the

least-squares solution of an exact- or over-determined system of equations. Note that

2- and F-norms are invarient under similarity transformations.


