
IMPERIAL COLLEGE OF SCIENCE,
TECHNOLOGY
AND MEDICINE

University of London

IDENTIFICATION OF THE DYNAMIC
CHARACTERISTICS

OF STRUCTURAL JOINTS

bY

Ali Salehzadeh Nobari

A thesis submitted to the University of London for

the degree of Doctor of Philosophy and for the

Diploma of Imperial College

Dynamics Section

Department of Mechanical Engineering

Imperial College of Science, Technology and Medicine

London SW7, U.K.

December 199 1

L ,



II

ABSTRACT

With the advent of delicate and high speed structures like guided missiles, aircraft and

rotating machines, researchers have been discovering the importance of joint effects on

the structural dynamic response. In order to be able to analyse joint effects and to

incorporate them in calculations, it is necessary first to identify the joint dynamic

characteristics.

There are several different methods for identifying a joint’s dynamic characteristics but

almost all of them are restrictated to some particular applications and cannot easily be

generalized This thesis seeks to develop a uniform approach to the identification of linear

dynamic parameters of joints.

It is shown in this thesis that although most of the existing model updating techniques are

applicable to the joint identification problem, these subjects, i.e model updating and joint

identification, constitute two completely different problems from a computational point of

view and the joint identification problem is more complicated in this respect. Also, it has

been argued that joint identification and model updating problems cannot effectively be

solved simultaneously and within one problem.

Thus, the computational aspects of identification problem in general, and joint

identification problem in particular, have been discussed thoroughly and the methods of

dealing with these complications have been investigated.

Having classified the different joint identification methods and divided them into FRF-

based and modal-based techniques, the performance of different joint identification

methods has been investigated and their advantages and drawbacks have been discussed.

Furthermore, a new modal-based identification method has been developed for which a

similar assessment is shown to prove its efficiency.

It has been found that almost all joint identification methods are sensitive to measurement

noise and the reason for this sensitivity and ways of coping with it are investigated.

The ultimate goal of this thesis is to provide the best approach to the joint identification

problem for each particular case and to enable the analyst to identify the best possible
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linear mathematical model for a joint which can subsequently be incorporated into an F.E.

model of a structure.
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A substructure’s symbol

Analytical structure symbol

B substructure’s symbol

Assembled structure’s symbol

Analytically coupled structure’s symbol

Noise induced error matrix in Chapters. 4 & 9

Contribution of higher neglected terms in expansion equation

(7.10)
Elemental stiffness matrix

Elemental mass matrix

joint damping matrix

Relative error of coefficient matrix of a LS problem (chapter 4)

Relative error of solution vector of a LS problem (chapter 4)
ith modification factor of damping matrix (chapter 8)

Residual vector of a LS problem (chapter 4)

Mode index

Vector of unknowns
Mass matrix of analytical model with modelling error

Stiffness matrix of analytical model with modelling error

Error in mass matrix of element i

Error in stiffness matrix of element i

Eigenvector  of analytical model with mass & stiffness

error

Eigenvalue of analytical model with mass & stiffness

error
Element ij of stiffness matrix

Element ij of mass matrix

Number of modes involved in calculations (chapter 8)

Number of coords  involved in calculations (chapter 8)

Number of elements of mass & stiffness matrices

being corrected (chapter 8)

Number of rigid body modes

Number of mass related unknowns after imposing symmetry &
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connectivity conditionds  (chapter 6)
Rigid body modes residual

higher modes residual

Element of sensitivity matrix representing &Uarn

Element of sensitivity man-ix representing %_.@k

Element of sensitivity matrix representing &$/am

Element of sensitivity man-ix representing &$/ak

Error multiplier for eigenvalues

Error multiplier for eigenvectors

Dummy structure

Slave coordinates receptances

Transfer receptances between slave and interface

coordinates

Inter-face coordinatess  receptances

Force vet tor

Vector of the interface forces

Vector of the slave or applied forces

Unity matrix

Index for correction structure (chapter 6)

Young’s modulus

Physical generalized coordinates

symbol of real structure.
rth mode modal vector of real structure

rth mode modal vector of analytical structure

rth eigenvalue of real structure

kth kept eigenvalue of analytical model

eth eliminated eigenvalue of analytical model

Number of kept modes and index for kept modes

Number of eliminated higher modes and index for

eliminated higher modes.

Number of coordinates.

Number of stiffness related unknowns after imposing

symmetry and connectivity conditions

Principal coordinate

Number of constraint equations (chapter 4)
number of stiffness related unknowns after imposing

symmetry and connectivity conditions and

considering localized  error(s) or macro-elements
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number of mass related unknowns after imposing

symmeuy  and connectivity conditions and

considering localized error(s) or macro-elements

Stiffness matrix

Mass matrix
Total number of interface coordinates

Number of coordinates which should be corrected in

chapter 6
Number of analytical model’s coordinates used in transformation

equation (6.2),  equal to the number of measured coordinates of

real structure
Number of coordinates of analytical model which are assumed

that have been modelledcorrectly  (chapter 6)

Number of slave coordinates of substructure A (chapter 10).

Number of measured modes of real structure (chapter 6)

Number of measured modes of substructure B (chapter 10)

Analytical and experimental model stiffness

difference matrix, [Rx]-[ICI], error matrix

Analytical and experimental models mass

difference matrix

Analytical and experimental models damping

difference matrix

Analytical and experimental models impedance

difference matrix

Stiffness matrix of analytical model

Stiffness matrix of substructure A
Stiffness matrix of real structure

Eigenvector difference vector

Eigenvalue difference vector

Sensitivity matrix

The square coefficient matrix of a normal equation derived from

an over-determined set of equations
Real part of sensitivity matrix

Imaginary part of sensitivity matrix

Receptance matrix of analytical model

Receptance matrix of substructure A
Measured receptance matrix of real structure

Length of base element
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Length  of joint in real structure

Length of joint in analytical structure or trial joint

Index for analytical model

Index for substructure A

Mass density

Typical variable (chapter 8)
ith mass modification factor in regular updating

practice
ith stiffness modification factor in regular updating

practice
ith modification factor in equations (3.8.1) and (3.8.2)

Norm of initial (before any updating) difference

between eigenvectors
Norm of initial (before any updating) difference

between eigenvalues
Norm of residual (after updating) difference

between eigenvectors
Norm of residual (after updating) difference

between eigenvalues

The matrix which contains the unknown mass and stiffness

modifications which are necessary to update the analytical model
Coefficient matrix of algebraic version of matrix equation (4.1) at

frequency O3i  before separation of variables

Matrix on the r.h.s of the matrix equation (4.1)

Vector on the r.h.s of the algebraic version of matrix equation

(4.1)
As for [Cl(Oi)] after separation of variables

ij element of viscous damping matrix

The coefficient matrix of the final set of algebraic equations

obtained by combining equations of different frequencies
Initial value for stiffness element $ in Fig. 4.3

Variation in particle 1 impedance due to variation in stiffness

element .
!I

Variation in rth right singular vector

rth right singular vector

rth left singular vector

rth right eigenvector

rth left eigenvector
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Modification to joint impedance matrix

Number of frequency points used for averaging in

LS solution

Number of interfacing stations

Dummy structure index (Chapters 2,9 and 10)
Number of interface coordinates involved in

interfacing station r
Trial joint stiffness matrix

Trial joint mass matrix

rth natural frequency of test structures Rad/Sec

Mean stiffness matrix of joint calculated by neglecting joint mass

in identification calculations
Joint impedance matrix

Receptance matrix of assembled structure

Joint receptance matrix

Slave coordinates

Index for coordinates which are modelled correctly (chapter 6)

Interface coordinates

Index for coordinates which should be updated
joint stiffness matrix

Joint mass matrix

Resudual effect of higher neglected modes of

substructures

Residual effect of higher neglected modes of

substructures without any joint at interface

Circular frequency Rad/Sec
rth eigenvalue of assembled structure

Frequency Hz
The angle between rth left & right eigenvectors

Least squares
p norm of a matrix and/or vector

Condition number of a matrix
ith singular value

Standard deviation

Statistical expected value

Mean square value

Absolute value

Slave coordinates’ superscript
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CHAPTER m

INTRODUCTION

I1.1 THE JOINT IDENTIFICATION PROBLEM

With the advent of delicate and high speed structures like guided missiles, aircraft and

rotating machinery, researchers have been discovering the increasingly important role of

structural stiffness in structural design. This important role can be due to a variety of

system design considerations. For example, considering the case of guided missiles, the

airframe stiffness has a significant effect on the characteristics such as airframe aeroelastic

coupling with guidance and control systems, structural dynamic loads and the response

induced by flight enviroment ,.......etc. An other example is in the field of machine tool

design where the stiffness of the structure plays a crucial role in the precision of the metal

forming process.

Experience has shown [ 1,2] that many of the joints commonly employed in structures to

serve design requirements can result in substantial and often unpredictable reductions in

the stiffness of the primary structure. In the absence of reliable analysis methods for

estimating joint effects on structural stiffness, a common practice is to rely on

experimental data for definition of the joint properties. The shortcoming of this approach,

however, is that data obtained for a particular joint design on a given structure often

cannot be extrapolated with any confidence to a different structure design or even, in

many cases, to a different location on the same structure.

Ewins, Silva and Maleci [2] pointed out the deteriorating effects of neglecting the joint in

a coupling analysis of a helicopter structure.

The significant effect of the joint on a structure’s stiffness and, the consequent dynamic

behaviour on the one hand, and the need to identify joint characteristics and incorporate
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Note that although equations (3.3) and (3.4) look similar, there are two significant

differences between them, namely: equation (3.3) is approximate while equation (3.4) is
exact and the first matrix in r.h.s. of equation (3.4) is [H,] while it is [Ha] for equation

(3.3).

Now, if a complete coordinate set is used, the updating analysis using equation (3.4)
does not require any iteration and there should be no limit for the II [Ha] - [H,] II but, since

it is practically impossible to achieve a complete measured coordinate set, in order to be
able to perform [H,]([AZ])[H,]  in (3.4), Lin proposes to fill the unmeasured FRFs  in H,

with their analytically-derived counterparts. This assumption, plus the application of an

incomplete coordinate set, makes iteration necessary in application of Lin’s method. Also,
if II [Ha] - [H,] II is greater than a certain limit, then the above-mentioned assumption, i.e

using the analytical FRF to fill H, , will not be valid and the calculations will not

converge. Thus, Lin’s method is one which originally is derived from a direct approach

but which, due to practical limitations, has to adopt certain assumptions which imply a

need for iteration and a limit on the extent of the differences which can be determined.

Apart from differences in formulation, all updating methods share certain shortcomings.

The most important of these comes from the fact that the experimental data are always

incomplete and, compared with the analytical model, comprise a very small amount of

information. To get around the computational difficulties associated with this

incompleteness, different methods use different assumptions and techniques but, due to

the nature of the problem (expecting a large amount of information from a relatively small

amount of available experimental information), the results of all methods suffer from this

problem in one way or another. For example, some methods like EMM use expansion or

condensation techniques to resolve the incompleteness problem, which spreads the error

in the analytical model all over the matrices, On the other hand, some other methods like

the modal or FRF perturbation-based methods or Lin’s method do not use expansion or

condensation techniques but, due to other assumptions, their abilities are limited to a

certain amount of difference between two consistent models of structure.

I3 . 3

3.3.1

JOINT IDENTIFICATION METHODS

GENERAL CONSIDERATIONS

All the classifications and methods introduced in section 3.2 are completely applicable to

joint identification methods as well. The only, but very important, difference between the

two cases is a difference in the way of applying the methods, as will be discussed
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shortly. In addition to the methods of section 3.2, there is another family of direct

methods which are especially useful for joint identification purposes. These methods are

refered to here as “Decoupling Methods”, DM.

The essential difference in the application of updating methods for joint identification is

that in this case we can assume that the only source of error (causing the difference

between consistent models of structure) is the joint and this not only makes the

incompleteness problem discussed in section 3.2 less serious but also reduces the number

of unknowns significantly, compared with the true updating case.

It should be noted that, in using any of the updating method for joint identification, it is

necessary to consider the joint explicitly in an analytical model. This can be done by

considering extra elements at the joint location in the FE model to represent the joint.

To validate an assumption of localized  error, one has to make sure that there is no source

of error apart from that in the joint and there are two ways of doing this as, follows:

(9 - by updating the analytical models of the substructures which constitute the

assembled structure one by one beforehand, so that one can assume the only

remaining source(s) of error in assembled structure is(are) due to the joint(s); or

(ii) - by using experimental models for the substructures which constitute the

assembled structure in order to generate an analytical model involved in the

analysis.

Option (ii) means that instead of comparing the analytical model of the structure with its

experimental counterpart, one can use the experimental models of, say, two substructures

of the assembled structure and then, assuming a model for joint, couple the two

substructures through that joint. Then, one can compare the generated structure- which is

called the “analytically-coupled structure”- with the real structure.

To avoid the coupling of substructures -which is inevitable in case of option (ii)- the so-

called “decoupling method” has been developed [ 10,l l] (see also chapters 9 & lo), as

discussed next
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3.3.2 DECOUPLING METHOD

In this approach, instead of using the difference(s) between the consistent models of the

assembled structure (which makes coupling necessary, in case of option (ii) of previous

section) to identify the joint, the joint model is extracted by decoupling the assembled

structure so as to expose its constitutent substructures, which include the joint. Then,

having the individual substructure models, one can identify the joint model. Since the

substructure models are used directly in this method, there is no need for coupling or for

prescribing a model for the joint, Categories similar to those in section 3.2 can be defined

for decoupling methods as well, i.e. the FRF decoupling method and modal decoupling

method.

Dealing with the decoupling method, two points should be noted as follows:

(4 - usually, the decoupling method is used for the identification of a single typical

joint between two substructures but the method developed in chapters 9 & 10

can easily be generalised to identify n joints of an assembled structure

simultaneously. This generalisation requires an experimental model of each of

the substructures involved in the assembled structure;

(b> - the decoupling method is sensitive to noise (chapter 9). This means that it can be

potentially advantageous to use analytical models of substructures (instead of

their experimental models) along with experimental data from the assembled

structure in a decoupling process. This substitution will eliminate from the

decoupling process the noise typical of experimental models. It should be noted,

though, that using FE models of substructures again introduces the possibility of

mis-modeled regions which will affect the results of the identified joint.

It is convenient at this stage to restate the major differences between model updating and

joint identification methods.

(4 - In joint identification, the joint is the only unknown element and this fact reduces

the number of unknowns significantly compared with the number of unknowns

in a model updating problem.

00 - Using certain identification techniques, there is no problem due to

incompleteness involved in joint identification
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El3.4 IS JOINT IDENTIFICATION A SPECIAL CASE OF MODEL

UPDATING?

The main purpose of posing the above question is to establish the possible redundancy of

developing joint identification methods distinct from those used for model updating.

Considering the discussions in sections 3.2 and 3.3, an answer to the above-mentioned

question is proposed:

” strictly, one can consider joint identification as a special case of model updating but this

does not imply that joint identification can be considered as part of a model updating

procedure since this is not a well-conditioned process itself and adding the joint(s) as

further unknown(s) will worsen the situation, as will be shown later. Thus, although

similar mathematical techniques can broadly be used to tackle both model updating and

joint identification problems, the considerations which are necessary for each case are

quite diRerent and one cannot solve both problems in one solution process so they should

be dealt with separately.”

To explain this statement, we consider the three following questions.

(9 - Considering joints as extra elements in an FE model of a structure, and as mis-

modeled elements along with other mis-modeled elements, is it possible to

identify the joint in an updating process?;

(ii) - Is it possible to spot the location of the joint in an FE model?;

(iii) - Can we update an FE model ignoring the joints altogether?.

As will be shown below, questions (ii) and (iii) are natural extensions of question (i).

The answer to question (i) is that, theoretically, it is possible to identify a joint as a part

of a model updating problem but, computationally and practically, it may result in some

difficulties. These difficulties arise from the nature of the joint, which is a complicated

element, and of the updating problem, and are as follows:

(a) - since the number of joints in an assembled structure is usually large, adding the

joints to an FE model as extra unknowns can increase the size of the model

. .I
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dramatically which, in turn, will cause poorer condition for the updating

computations and will increase computation time significantly [29];

(b) - considering the joint(s) in an FE model requires a prescribed model for each joint

which must be accurate: this can be quite difficult to achieve in practice;

cc> - considering the fact that some of the joints in an assembled structure can be very

stiff in some directions, inclusion of the joint identification task in an updating

process can make the calculations very ill-conditioned. For example, if, in the

limit, one of the joints is rigid in one direction, then the updating problem will

become singular. It should be noted that in the updating case, even for direct

methods, there is a limit to the difference between the models of the structure

which can be accommodated, and this might well be exceeded in the case of

certain types of joint.

Generally speaking, treating joint identification as a part of model updating may simply

result in adding more difficulties to a problem which is not very well-conditioned to begin

with. Thus, it is not recommended to seek to undertake a joint identification exercise at

the same time as a general model updating process. Rather, it is possible to use updating

methods for direct joint identification since, in this case, the number of unknowns is

much smaller and the incompleteness problem is less severe. Note that even in this case

there is a high risk of ill-conditioned calculations. For example, using the FRF-based

direct method for joint identification, one has (see chapter 5) :

(3.5)

where equation (3.5) has been derived from equation (3.4) with notations “s” and ‘7”

designating slave and interface coordinates, respectively. Now, if the joint is stiff in some
direction(s), then the columns of [H]$ related to that direction(s), say rotation, will be

linearly dependent (or near linearly dependent) which will make the calculations ill-

conditioned or even rank-deficient.

Considering the answer to the first question, the 2nd and 3rd questions follow naturally.

The second question arises because one can ask “is it not possible to spot the location of

significant joints (i.e. those joints in an assembled structure which are reasonably

flexible) and then to consider only these in the FE model of the assembled structure?“. Of

course, by doing this one will be able to avoid the additional ill-conditioning of the

-_
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problem signalled above by not introducing stiff joints into the FE model and by not

increasing the number of unknowns.

The nature of the third question is different from the second one and it raises the

possibility of ignoring the existence of the joint(s) in a structure altogether. This question

will be irrelevant if the objective of joint identification is something apart from updating a

model but, for the time being, we confine ourselves here to the common objective of

model updating.

In order to demonstrate the problems associated with identifying a joint as a part of model

updating, and to be able to answer the 2nd and 3rd questions above, the case studies

described in the next section have been undertaken.

13.51  CASE STUDIES

The first set of case studies is aimed at the answering the first question posed in section

3.4, i.e.

” considering joints as extra elements in an FE model of a structure, and as mis-modeled

elements along with other mis-modeled elements, is it possible to identify the joint(s) in

an updating process?”

The following points will be explored during this set of case studies,

(a) - what problems may be introduced by considering joint identification as a part of

an updating process?; and

O-9 - how can updating methods be used for direct  joint identification?

The test structure used for this set of case studies is the beam shown in Fig. 3.1.

In all case studies of this series, structure X, which simulates the “real” structure, is a 6-

element FE model of a simply-supported beam where element 4 is designated as the joint

element. The base element of X has the geometrical and mechanical properties shown in

Fig. 3.2.
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” L
jx

Structure X

Structure A

Fig. 3.1 Model of real structure X & analytical model A

lg.3 [ml , be=,012  [m] , ae=.05  [m]

p = 7547 [kg&] , E= 207E9 [N/G]

Fig. 3.2 The geometrical and mechanical
properties of base element

The joint element in this “real” structure has the following properties:

Ljx = 5% Le 9 Ejx = 10% Ee 9 pjx =O (3.5)

Thus, the joint model is a short element which is more flexible than it would be if it were

composed of the beam material.

Structure A, which simulates the analytical model of the real structure, is a 6-element FE

model of a simply supported beam with element 4 again acting as a joint. The geometrical

and mechanical properties of base element of model A are exactly the same as those of X

and are shown in Fig. 2. The joint element in structure A has the following properties for

the different case studies in this series as follows:
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Lja = 20% Lj~ = 1% Le

Lja = 60% Ljx  = 3% Le

Lja = 200% Ljx = 10% Le

Lja = 300% Lj~ = 15% Le

Lja = 2000% Lj~ = 100% Le

E.Ja = Ej~

E. = Ejx

~J~ = Ejx

E.
Ja

= Ej~

E.
Ja

= Ej~

Pja = o (3.6.1)

Pja = O (3.6.2)

Pja = O (3.6.3)

Pja = O (3.6.4)

Pja = O (3.6.5)

Thus, in all cases the joint model of structure A has the same material flexibility (Young’s

modulus) as structure X: both joint models in X and A are massless, and the only

difference between the two models comes from the difference between the length of the

joint models in X and A.

Now, using the inverse e&en-sensitivity  analysis method [24] we will try to update

model A to match model X for the different cases in equations (3.6.1) to (3.6.5). Note

that in all the case studies only slave coordinates or off-joint coordinates have been

considered in { A$}.

Fig. 3.3 shows the variation of II A$ Ilo and II Ak Ilo as a function of variation of (LjdLjx).

As is evident from Fig. 3.3, both II A$ II, and II Ah II, increase as the joint model in

structure A becomes shorter or longer relative to joint model in X.

6.008+6

- 5.OOe+6

-3.OOe+6  4-

0 5 10 15 20

(Lj/Le)% of structure A
Fig.3.3 Variation of the norm of modal -  IlA@ll.

param. differences with Lja/Le - IlAh  I I

Fig. 3.3 also reveals that the rate of variation of II A+ II, and II Ak II, is higher for a shorter

joint than for a longer one, compared with Ljx. Table 3.1 shows the results of updating

attempts for different cases in (3.6.1) to (3.6.5).

t ,
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(L&ix)%

20

60

200

(IIA~llmin/  I&#,)% (IlMll,id  llA~ll~%

1600 3e7

24 15

34 15

300 38 15

2000

Table 3.1 The results of attempts made to update structure

A to structure X for cases (3.6.1) to (3.6.5).

As is evident from Table 3.1, calculations diverge for cases where the joint length in

model A is less than about 20% of the true joint length. For all other cases, although II A@

II and II Ah II reduce, absolute convergence is not achieved and there are always some

residual values for II A$ II, and II Ah IIR .These  residuals increase as the (Lj,/Lj,)  ratio

increases.

The reasons for the divergence in the case of (Lj,/Lj,,  <= 20%, and for the presence of

residuals in other cases, can be explained as follows. Fig. 3.4 shows the stiffness

modification factors for structure A achieved after the first run for the case of equation

(3.6.1).

0.5 -
joint location

0

-0.5 -

-1.5 - (Lja/Ljx)  =20%

-2.5 ! I
1 2 3 4 5 6

Element number
Fig. 3.4 Results with (Lj/Le)% equals to 1

and 5 for structures A & X,
respectively, 1st run

It is evident from Fig. 3.4 that the results of the fiit run correctly spot the mis-modeled

element, i.e. the joint element, and also indicate that the flexibility of this element should

be increased. The modification factor for the joint element is about -1.9, which makes the

stiffness matrix negative-definite and causes divergence of calculations in this case.
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Different techniques (like introducing the mass modification factors to the analysis or

dividing the modification factors by an amount so as to prevent the negative definiteness
of stiffness matrix) have been tried to see if it is possible to reduce II A@ Ilo and II Ak II,  for

this case, but all attempts failed in this respect.

To explain the existence of II A$ II, and II Ah II, in the cases (3.6.2) to (3.6.5),  consider

the following elemental mass and stiffness matrices for a simple beam element:

IKeI = W L,3>

12 6L -12 6L 1

[M,] = (pAL$420)

4L2 -6L 2L2

12 -6L

4L2

- 156 22L 54 -13L

4L2 13L -3L2

156 -22L

_ 4L2

(3.7.1)

(3.7.2)

It can be seen from (3.7.1) and (3.7.2) that all the stiffness matrix elements are linearly

proportional to E and, also, that all the mass matrix elements are linearly proportional to

p. On the other hand, for both mass and stiffness matrices, the elements related to

different degrees of freedom present in [ K 1” and [ M 1” are themselves quite different
functions of Le, the length of the element. For example, translational elements in the

stiffness and mass matrices are proportional to (l/L:)  and L, ,respectively,  while

rotational elements in these matrices are proportional to (l/L,)  and Li, respectively. This

means that changing E and p does not affect the proportionality ratio between different

degrees of freedom but changing Le will affect it.

On the other hand, almost all the updating methods are based on elemental modification
factors aik and ai,, for [K]: and [M]f and modifying elemental mass and stiffness

matrices of an element by multiplying them with CQ and aim just modifies EeI and pei but

not Lei.  Thus, if the differences between elemental mass and stiffness matrices of the real

structure and its analytical model are caused by length differences or simply, if the

proportionality between elements of the mass and stiffness matrices of the real joint,

related to different degrees of freedom, is not similar to that assumed in analytical model
base element, it will not be possible to make II A$ II, and II fi II, zero just by adjusting E

and p of the mis-modeled analytical elements, as has been proposed in [7].
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It should be noted that a joint is a very complicated mechanical or structural element and

that it can easily deviate from the analytical pattern which is assumed when modelling the

joint as a simple FE element.

To deal with this problem, one has to consider a separate modification factor for each

group of degrees of freedom involved in the joint model (degrees of freedom involved in

interfacing). For example, to model the joint in Fig.3.1, one has to consider three
modification factors for the stiffness matrix, al to c+, and three modification factors for

the mass matrix, a4 to @6. The details are:

al a2 -al a2

IKlj =
2a3 -a2 a3

[ 1al -a2

2a3

al 0 -al 0

IKlj ! 0 0 0
= al a1 0 1 +a2

0

and similarly,

r 156a4 0 54a4 0

[Mlj = a4
0 0 0

156a4  0

leading to

‘Oa20 a2

I[
0 0 0 0

0 -a2 0 2a3 O

a3
() _a2 +a3 0 0

0 2a3 1 (3.8.1)

+a5

'0 22a, 0  -13as’

0 13ag 0

0  -22a,

0 jI [+a6

‘0 0 0 0
4as 0 -3ag

0 0

4a6 1
(3.8.2 j

It should be noted that using modification factors a1 to a6 in equations (3.8.1) and

(3.8.2) in an updating process, will seriously affect the condition of the updating

calculations. This effect has been examined in the following case study.

Considering two models A and X in Fig. 3.1 for this case study, the mis-modeled

element in A, i.e. element 4, has the same length as element 4 of structure X but its

Young’s modulus and density are reduced by 50% compared with the mechanical
properties of the pertinent element in X. This means that elements of the mass and

stiffness matrices of the mis-modeled element are equal to 50% of those belonging to

element 4 of structure X. The mass and stiffness matrices of element 4 in models A and X

are then as follows:

* Note that  def~inglKlj  & Mlj as in equations (3.8.1)  & (3.8.2)  may cause inconsistency  b cdcuIat4
mecha&aI  & physical  properties. Another way of defining [AK]; & [AM]:  is a~ follow:

8Ke aK, aK
[AKlj=aL’L+ ~~ AE+ CAP

J J
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644000 96600 -644000 96600 1

and* ,

M,la =

WA1 a =

19320 -96600 9660

644000 -96600

19320 J

. .252 .Ol .087 -.006

.00058  .006 -.00044 1

.252 -.Ol

.00058

322000 48300 -322000 48300

9660 -48300 4830

322000 -48300

9660

(3.9.1)

(3.9.2)

(3.9.3)

(3.9.4)

The updating task has been undertaken using two different approaches. In the first

approach the regular updating technique, i.e. using one modification factor for each one

of the mass and stiffness matrices of all elements involved in the model, has been

adopted. hence, for this case there are 6x2=12 modification factors involved in the

calculation.

In the second approach, the modification factors in equations (3.8.1) and (3.8.2) have

been used and only for the mis-modeled element. This means that for this case there are 6
modification factors, al to a& For both cases modes 1 to 5 have been used in the

calculation and, thus, the dimensions of the sensitivity matrices for two cases are 20x12

and 20x6, respectively.

Table 3.2 shows the biggest and smallest singular values and condition number of the

sensitivity matrix as well as the number of iterations necessary to achieve the solution.

* A 12 digit accuracy computer is used in calculations
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results for first run 01 On K(S)= q/0* No. of iteration

first approach 1.74 .002 870 3

second approach 12.26 6.4E-5 2E5 3

Table 3.2. Results for two approaches to update model A to model X

It is evident from Table 3.2 that in the case of the second approach, even though the

number of unknowns is as half that of the first approach, the condition number of the

sensitivity matrix is much higher than that in the fust approach.

The reason for the poorer condition in the case of the second approach can be explained

by exploring the elements of sensitivity matrices for the two cases. Table 3.3 shows the

typical eigenvalues related elements of the sensitivity matrix forthree  modes, for two

cases.

aim a2m a3m a4m a5m a6m

aAlla% -.03 -.17 -. 3 -. 3 -.17 -.03

ah2iaai _.I -. 3 -. 1 -. 1 -. 3 -. 1

ah,iaq -.17 -.17 -.17 -.17 -.17 -.17

Table 3.3.1. Typical sensitivity matrix elements for the first approach

alk a2k a3k a4k a5k a6k

ahI I i3ai .029 .167 .3 .3 .167 .03

ah2 I aai .098 .3 .098 .l .3 .l

ah, I aai .167 .166 .167 .17 .17 .17

Table 3.3.2. Typical sensitivity matrix elements for the first approach

a1 a2 a3 a4 a5 a6

ahI I aai .53 -1 .94 -.18 -.012 -.00026

ah21aq 1.4 -2.34 1.05 -.065 -.0062 .0008

ah3jaq .4 -.51 .29 -. 1 -.033 -.0064

Table 3.3.3. Typical sensitivity matrix elements for the second approach
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Comparing Tables 3.3.1 and 3.3.2 with 3.3.3, it is evident that, for the first two of these,

the elements of the sensitivity matrix related to mass and stiffness variations are of the

same order of magnitude but, for the Table 3.3.2 this is not the case and, especially, the

elements related to cross and rotary inertia have markedly smaller orders of magnitude

than the other elements.

It should be noted that the following matrices have been used in calculating the sensitivity

matrix for the case of the second approach :

322000 0 -322000 0 0 48300 0 48300

0 - 4 8 3 0 0  0
EAKI,  = al 0

1
-48300 +

L OJ L 0

[

0 0 0 0
9660 0 4830

a3
0 0

9660 1

and,

J

(3.10.1)

r .252 0 .087 0 -j j-0 .Ol 0 -.0061 r0 0 0 O 1

[AN4 = a‘1
(3.10.2)

and the sensitivity matrices corresponding to two approaches are balanced* using similar

techniques.

Takingthevery SITItiVaheS  OfelemeUtSOfCOeffiCieUtmatriCeS  Of a5 anda6ineqUatiOn

(3.10.2) into consideration, the reason for the small order of magnitude of the elements of

the sensitivity matrix related to cross and rotary inertia becomes clear.

Examining Tables 3.3.1 and 3.3.2 reveals that in the case of the first approach, i.e.

regular updating, the stiffness-related sensitivity elements for eigenvalues are positive for

all modes and those related to mass are negative. This means that, as expected, increasing

elements stiffness or decreasing their mass will increase the natural frequencies of

* Balancing is a technique which is used to reduce the large differences in order of magnitude of elements
of a matrix. For more explanation see Chapter 4.
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structure. On the other hand, Table 3.3.3 shows that in the case of second approach the

cross stiffness-related elements of the sensitivity matrix behave in a reverse manner, i.e.

increasing cross stiffness will decrease natural frequencies of all modes. Also, for the

second mode, rotary inertia-related element acts in a reverse way. This observation shows

that updating the stiffness matrix of an element as a whole, as is a common practice in

model updating, the positive sensitivity of eigenvalues relative to translational and

rotational stiffness variation will compensate for negative sensitivity of eigenvalues

relative to cross stiffness and thus the outcome will always be positive sensitivity of

eigenvalues relative to stiffness variations.

Thus, trying to identify the joints of the structure during a model updating process, one is

faced with (at least) the following problems :

(9 - the number of modification factors for the joint elements is significantly larger

than for other elements. This will affect the condition of the matrices involved in

calculations and will tend to make them ill-conditioned 1291;

(ii) - there is a high risk of divergence when a soft joint has been modelled by a stiff

joint, as in the case of relation (3.6.1).

If, on the other hand, one of the updating methods is going to be used for the direct joint

identification application, then the number of modification factors should be defined

according to equations (3.8.1) and (3.8.2) which, in this case, results in a manageable

number of unknowns because it is much smaller compared with the updating application.

From this point on, a second set of case studies will be considered in which the 2nd and

3rd questions posed in section 3.4 will be addressed. These questions are:

(a) - is it possible to spot the location of joints in an analytical model of the structure

and, if so, can we decide which of the joints are rigid enough to be ignored?;

and

03 - is it possible to update the analytical model of a structure ignoring its joints

altogether?.

The test structures for this series of case studies are shown in Fig. 3.5.

.
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I joint element

structure X

structure A

Fig. 3.5 The test structures of second series of case studies

Structure X, which simulates the real structure, is exactly the same as structure X in

Fig.3.1 with its 4th element acting as a massless joint. The elemental mechanical and

geometrical properties are identical to those in Fig. 3.2. Structure A, which simulates the

analytical model of structure X, is similar to that structure except that it does not contain

the joint element, i.e. A has only 5 elements. The analysis is based on an attempt to

update model A to match model X, using the inverse eigen-sensitivity analysis method,

and to examine the effect of various different parameters on the analysis. It should be

noted, again, that only slave or off-joint coordinates have been included in { A$}.

The following parameters have been considered in the case studies:

Ej ~10%  E, 9 Lj =Oql% Le * Lj =l% Le 9  Lj =lO% L, ,

Lj =lOO% Le (3.11)

Lj = 5% Le ,Ej =.Ol% Ee ,Ej =.l% Ee ,Ej =l% Ee ,Ej =lO% Ee, Ej =lOO% E,

(3.12)

Each of the cases in equations (3.11) and (3.12) has been considered both with and

without mass modification factors included in the analysis.

Tables 3.4 and 3.5 and Figs. 3.6 and 3.7 show the results of the analysis of cases (3.10)

and (3.11) when only the stiffness modification factors are involved in the analysis.

Examining Figs. 3.6 and 3.7 reveals that, as the joint becomes stiffer, the modification

factors become smaller and location of the joint becomes more accurate. On the other

hand, if the joint flexibility goes beyond a certain limit, the location ability of modification

factors is badly reduced.
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w -2

z.II
3; Element number H Ej=.Ol  %Ee

I Ej=.lEe
Fig. 3.6 Results for the first run of analysis Ej=l  %Ee

for the cases in (3.12) q Ej=lO%Ee
q Ej=l  OO%Ee

% 0.2
s
cz! -0.0

s.m -0.2
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2 -0.4
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E

-0.6
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z Element number
2 H Lj=.l%Le

Fig. 3.7 Results of the first run of the Lj=l  %Le

analysis for the cases in (3.11) Lj=l  O%Le
0 Lj=l  OO%Le

Lj=5%Le llA~llti,,/llA~llo Il~ll~~~ll~ll~ IlA~ll, llAq)

Ej=.Ol%Ee 211% 40% .998 2.24e7

Ej=. 1 %Ee 82.6 53% -646 1.32e7

Ej=l %Ee 63% 42% S61 8.37e6

Ej=lO%Ee 71% 5% .22 4.96e6

Ej=lOO%Ee 97% 26% .084 2.74e6

Table 3.4 Results for the cases in (3.12),mass  modification factors not involved

b
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Ej=lO% Ee

Lj=.l% Le

Lj=l% Le

Li=lO% Le

llA~ll,i~l~~ll~

78.9%

78%

63%

IlMll~~~llMll~

10.5%

9%

6%

IlA~ll, lItill,

.007 135596

.0615 1.27e6

.32 8.le6

I=lOO% Le I 104% I 24% 1 1.252 1 2.26e7 1

Table 3.5 Results for the cases in (3.1 l), mass modification factors not involved

It is evident from Tables 3.4 and 3.5 that IIA~II, and IlAhll,  become smaller as the joint

becomes stiffer but this is not the case for llA~ll,.&llA~ll,  and llMll,~llAhllg,  and there is

an optimum flexibility which yields minimum llA~ll~~~llA~ll~  and llA~ll~~~llA~ll~~  Also,

Tables 3.4 and 3.5 reveal that if the joint flexibility exceeds a certain limit, the updating
attempt will fail. It should be noted that although llA~ll~~~/llA~ll~  and IlAhll~~~/lIAhll~

increase with joint stiffness, nevertheless, since for very stiff joints (stiff in a certain
direction sense) llA~l10  and IlAhllo  become very small, one can ignore their effects (in the

direction(s) in which the joint is stiff).

Further examination of Figs. 3.6 and 3.7 reveals the interesting fact that for the range of

moderately flexible joints for which it is possible to spot their location on the analytical

model accurately (according to Figs. 3.6 and 3.7), it is also possible to see their relative

flexibility by comparing their modification factors. Thus, the stiffer the joint is (in certain

direction(s)), the smaller become the stiffness modification factors (for those

direction(s)). As a result of the joint’s complicated nature, it is quite possible that a joint is

stiff in some directions and flexible in others and, thus, in order to be able to distinguish

between the rigidity of the joint in different directions involved in interfacing, it is

necessary that for different directions one has to define separate modification factors for

the joint adjacent elements, similar to those in equations (3.8.1) and (3.8.2).

Another point, deduced from Tables 3.4 and 3.5, is that the reduction in IIAhl10  is much

greater than the reduction of llA~l10  and IlAhlI, is much smaller than llA$ll,.  So, it seems

that eigenvectors are much more sensitive to the presence of a joint than are the

eigenvakes.

Tables 3.6 and 3.7 and Figs. 3.8 to 3.11 show the results of the analysis for cases in

(3.11) and (3.12). this time with mass modification factors also involved in analysis.

It is seen from Figs. 3.8 to 3.11 that by introducing mass modification factors into the

analysis, the joint location performance of the modification factors has become very poor.



m Model Updating 8z Joint Identification ,............ 47

-2 !
1 2 3 4

Element number
Fig. 3.8 Results of the first run for the
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Examining Tables 3.6 and 3.7 reveals that, generally speaking, introduction of the mass
modification factors into the analysis has reduced IIAQII, and IIANI, and, in some cases,

this reduction is significant.

Table 3.6 Results for the cases in (3.12),  mass modification factors involved

Ej=lO% Ee llA~#$,_JllA~ll, llMll,~~ll~ll~ IIA~II, IIMII,

Lj=.l% Le 69.5% 11.5% .007 135596

Lj=l% Le 67.5% 10.6% .0615 1.27e6

Lj=lO% Le 48% 3% .32 8.le6

Lj=lOO%  Le 89% 24% 1.252 2.26e7

Table 3.7 Results for the cases in (3.1 l), mass modification factors are involved in

calculations.

The reason for a reduction in llA$l1,  and IIMII, is that by letting mass become involved in

the analysis, more parameters are available for adjustment to make the two models A and

X closer.

On the other hand, the same effect is responsible for the worsening of the joint location

spotting capability because part of the flexibility which is required to update model A is

produced by mass modifications and the distribution of this mass modification is quite

different from the distribution of stiffness modification factors. (Stiffness modification

affects lower modes more significantly while mass modification affects higher modes

more significantly.)

In order to see if attribution of mass to joint makes any difference in the above-mentioned
deduction, the case of Lj=5%  Le and Ej=lO%  Ee has been repeated, this time with pj = pe

and both with and without mass modification factors being involved. The results of this

case study confii the above-mentioned deductions, i.e. introducing mass modification
factors into the analysis reduces IIA~II, and IIAUI,  and damages the location capability.

The interesting fact is that even for this case, where the joint mass is not zero, one is able
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to spot the joint location and to assess its relative flexibility using only stiffness

modification factors in the analysis.

El3.6 CONCLUDING REMARKS

From what has been reported so far, the answer to the question posed in section 3.4 :

“is joint identification a special case of model  upa’uting ?”

is as follows:

“Similar mathematical techniques can be used for both problems but the nature of the two

problems is different and due to this different nature  the two problems cannot be tackled

simultaneously in an updating process, at once, Thus they are two separate problems” ’

The following conclusions can also be deduced,

G-4 -

@I -

(c) -

Adding joint identification to a model updating problem increases the number of

unknowns dramatically and affects the condition of the calculations. In some

cases, if the joint model has not been selected carefully, the calculation diverges.

Considering only stiffness modification factors, it seems that for joints with

moderate flexibility it is possible to spot joint locations in an analytical model and

to assess their relative flexibility. In order to be able to assess the relative

flexibility of a joint in the different directions which are involved in interfacing,

one has to introduce separate modification factors for each direction and this,

again, will increase the number of unknowns.

Very stiff joints can be ignored in an updating analysis. The question here is

how can we recognize a “stiff” joint? As has been shown, a stiff joint has two

characteristics which are, first, the stiffness modification factors of the joint
adjacent elements would be very small and, second, 116~11,  and IIMII, are very

small. Since, even without any joint-related problems, there are many mis-

modeled regions in an analytical model, in order to be able to use either of the

above-mentioned criteria one has to go through the updating process first and

then, after updating mis-modeled regions, one can decide on the degree of

rigidity of the joint(s).
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(d) - For a wide range of moderately flexible joints, it is not possible to update the

analytical model ignoring the joint.

Cd - It seems that the only practical approach to the updating problem for complex

structures is to update separate substructures without any joints (or with

obviously rigid joints) and then to assemble them together, making sure that the

only sources of difference between the analytical model and the real structure

come from the joints. Naturally, the next step will be to identify the joints and to

incorporate them into the analytical model.

4



CHAPTER H

COMPUTATIONAL ASPECTS OF THE GENERAL SYSTEM
IDENTIFICATION PROBLEM

I4.1 PRELIMINARIES:

The objective of structural identification is to determine the physical properties such as
mass, stiffness and damping of a structure, or a part of a structure, using a set of given
(often measured) information. The information which is used to identify the structure’s
dynamic characteristics is either in a modal parameters format or in a response model
format. Identification techniques have been broadly categorized  in chapter 1 into direct*

and adaptive techniques. In a direct identification approach, the information set is related

only to the structure under identification and calculations will result in a mass and
stiffness and damping matrix attributed to the structure. In an adaptive approach, on the
other hand, the data are related to an assumed analytical model of the structure and to the
structure itself and, using the difference between two models and a cause-and-effect
principle to formulate a governing equation, the difference between the characteristics of
the real structure and the assumed analytical model will be calculated. The adaptive
identification technique, or as it is usually called “model updating technique**” , is more
popular as it is expected to provide more information than the direct technique can (due to

the fact that more information is available).

Mathematically, the identification problem falls into the category of inverse problems.
Basically, a direct problem is shaped physically first and is then tackled mathematically
while an inverse problem is shaped mathematically first and then the solution to it may or
may not gain any physical meaning. Generally speaking, having a set of properties

(information) about a structure, there can be no physically meaningful system (existence

* Not to be confused with direct model updating technique, explained in chapter 3.
** As mentioned in chapter 1, model updating is an application of adaptive identification technique.
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question), a unique system (uniqueness question) or many systems having these
properties [30]. The existence and uniqueness problems are mainly dependent on the
amount of the data which is available for identification.

From the above definition of direct and inverse problems, it is clear that, for example,
coupling is a direct problem while the model updating is an inverse problem and some
problems like structural modification analysis can be considered in either category,

depending on the definition of the problem.

Since, the physical properties of the structure are known in a direct problem, using
Newton’s second law, the governing equation of the problem will be of the “differential
equation” type. Depending on the type of mathematical model used for the structure, i.e.

continuous or discrete, the governing differential equations of a direct problem can be
partial or ordinary, respectively. On the other hand, the nature of the governing equation
of an inverse problem is algebraic and this is why the theories of linear (or even non-

linear) algebra and matrix computations are at the heart of identification analysis.

In what follows, some essential theories related to the computational aspects of the
identification problem in general, and the joint identification problem in particular, will be

presented. It should be noted that unless otherwise stated, by the “general identification

problem” we mean model updating which, as explained above, is an adaptive
identification technique.

I4.2 THE ESSENCE OF A LEAST-SQUARES (LS) FORMULATION IN

AN IDENTIFICATION ANALYSIS

The governing equation of an identification problem is usually formulated in a matrix

equation format. (The exception is the inverse eigen-sensitivity technique where the

governing equation is in the form of a set of linear algebraic equations). The governing
equation can generally be considered as follows:

(4.1)

where the matrices [A], [B] and [L] are known and elements of matrix [AX] contain the
unknown modifications which are necessary to update the mass and stiffness matrices of
the analytical model to those of the real structure.
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All the matrices in equation (4.1) are either frequency- or eigenparameter-dependent. The
data required to construct [A], [B] and [L] can be acquired in 3 different ways as follows:

(a> - from a pure theoretical analysis;

(b) - from a hybrid analysis. In this case part of the data comes from theoretical

analysis and the other part from experimental analysis; and

cc> - from a pure experimental analysis.

The first case, is of no interest to us here and will not be discussed. Further, there are two

problems associated with cases (b) and (c), namely:

l- incompleteness of experimental data; and

2- measurement noise in the experimental data.

The effect of the two above problems on the matrix equation (4.1) will be discussed in the
following sections.

4.2.1 EFFECTS OF INCOMPLETENESS OF EXPERIMENTAL DATA ON
EQUATION (4.1).

Experimental data always suffer from spatial and modal incompleteness.
. “Incompleteness” means that we are able to measure only a limited number of
coordinates and modes of a real structure which has an infinite number of coordinates and
modes. The questions of existence and uniqueness posed in section 4.1 are closely

connected with incompleteness of the experimental data.

The incompleteness of these data has two important effects on a general identification
problem, as follows:

(a> - if the identification method being used is a direct* one (as explained in chapter

3), then data incompleteness will introduce an approximation to equation (4.1)
which is due to incompatibility between the dimensions of the experimental and

analytical data and will lead to an iterative solution of equation (4.1). Also,

* By “direct” we mean direct  model updating method and not direct  identification method explained in
section 4.1

b
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(b> - due to the large number of unknowns in matrix [X] and, again, a smaller amount
of data, i.e. a< ni in equation (4.1), there is no unique solution for equation

(4.1). The non-uniqueness of the solution is quite expected as it is impossible to

extract a large amount of information, uniquely, from a relatively small amount

of data.

As will be shown in later chapters, using proper identification techniques, the first

problem in (a) may be avoided for the joint identification problem but, for a general

identification problem, it is computationally impossible to solve equation
(4.1) without approximation, (unless of course, using a direct updating method, the

amount of data is equivalent to amount of unknowns).

Considering the second problem, in (b), i.e. the non-uniqueness problem, the amount of

data can be magnified by constructing equation (4.1) for each individual frequency or

mode and combining them Having done this, the amount of data will be magnified by the

number of measured frequencies (or modes) while the number of unknowns remains

constant.

Since the elements of matrix [AX] in equation (4.1) are frequency-dependent (from here

on we will only use the term frequency-dependent but every conclusion is true also for

the case of a modal parameter-dependent [AX]), then in order to be able to combine

equations from different frequencies, it is necessary first to transform the matrix equation

(4.1) to a set of algebraic equations and, second, to separate the mass, stiffness and

damping parameters in [AXJ For the first step, one has:

[ ‘l((%) ](axb)x(  nix(ni+i)E) { ‘x(0$  }nix(ni+I)E  = { L(Oi) }(axb)xl (4.2)

where matrix [ C,(oi) ] is generated from [A] and [B] at frequency Oi. Note that the

symmetry of matrix [AXI has been already taken into account in equation (4.2).

For the second step, i.e. separating mass, stiffness and damping parameters, considering
the following equation for each element ~ij of [AXI :

“lj =Aklj - CO: Amu + (OiACu)  i (4.3)

equation (4.2) can be rewritten as:
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(4.4)

Combining equation (4.4) for different frequencies leads to the following over-
determined set of algebraic equations:

3lljx(ni+1)/2 =  { 9 }(axb)xl (4.5)

where nf is the number of frequency points used in the calculation. The over-determined

set of equations in (4.5) can be efficiently solved by a least-squares technique. Although

it is possible to construct equation (4.5) as a square system, for the following reasons,
this equation must always be overdetermined in a general identification problem (even
when noise-free data are considered, as here):

(a> - a square coefficient matrix has a high risk of being ill-conditioned or even rank-
deficient due to modelling and/or computational reasons. For example,

considering the inverse eigen-sensitivity identification method, the sensitivity
matrix (i.e. [P] in equation (4.5)) can be ill-conditioned due to the existence of
linearly dependent rows related to eigenvectors. The rows are linearly dependent
due to improper modelling of the analytical system, whereby some coordinates
may be redundant. Computational reasons for ill-conditioning of matrix [P] will

be discussed in more detail later in this chapter and

@> - inconsistency in the data. The matter of inconsistency in data requires more
detailed explanation which will be given in following section.

4.2.1.1 THE SOURCE OF INCONSISTENCY IN NOISE-FREE DATA

Taking symmetry into consideration, a general undamped n degree-of-freedom system
has a maximum of n(n+l) mass and stiffness elements which could be identified and,

theoretically, there are n(n+l) modal parameters of the system which can be used for
identification. For example, considering a three degree-of-freedom system in Fig.4.1,
there are 12 mass and stiffness elements which must be identified and the number of



m Computational Aspects of The System Identification Problem 56

known modal parameters equals to 12 as well. Thus, having a complete modal model,

one will be able to construct the physical system model uniquely.

Fig. 4.1 Three degrees of freedom system

Now let us consider the case where only part of the modal data is available, say, 9

parameters out of the total of 12. Since we have incomplete data, it is not possible to

identify the true physical system directly. So, the analyst chooses to use an adaptive

identification method, such as the inverse eigen-sensitivity method. If the analyst has a

priori knowledge about the connectivity properties of the real system in Fig.4.1, then by

imposing connectivity constraints onto the analytical model, the number of unknowns,

i.e. mass and stiffness differences between two models, can be reduced to 7. The

question here is “can we identify the real system using only 7 items of known modal

data?” and if the answer is yes, then what would be the role of the 2 extra modal data

items available. To answer this question, having assumed that the inverse eigen-

sensitivity method is to be used for identification, consider the governing equation for the

above problem as:

“’ =

I

s11 * * * s17

. . . . .

s71 - * * s77
--e-e
‘81 * - * ‘87

(4.6)

Assuming that the 7x7 square matrix partitioned in [S] is not rank-deficient, then it can be

shown that it is always possible to express the 8th and 9th rows of [S] as linear

combinations of the other rows, as follows:

(‘81 ,.,.,.,s*7) = c+I 1 ,.JI7) + a&I,.,.,.,S27)  + . . . . + a7(S71W.,.,S77) (4.7)
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or

(4.8)

Since the matrix [S] in equation (4.8) is assumed not to be singular, one can always

calculate the coefficients vector {a}. Equation (4.8) means that introduction of
connectivity constraints will make the sensitivity of the modal parameters linearly
dependent so that only the number of sensitivity elements equal to the number of

unknowns are independent.

It should be noted that the same conclusion will be true for the 1.h.s of equation (4.6)
related to the 8th and 9th rows, i.e. the differences in modal parameters related to the 8th

row will be a linear combination of { A$} and {Ah} related to rows 1 to 7. This can
easily be proved as follows:

, one obtains:

Substituting for T[ S ]& from equation (4.6) in equation (4.9) yields:

I:7{s8}7xl =  {::!;}1:7 {@7x1

or

lT7 (a}7xl

(4.9)

(4.10)

(4.11)

So, generally speaking, having a priori knowledge about a system’s connectivity and an
incomplete set of data, one is able to identify the physical system uniquely and
exactly without using redundant data, i.e. the square system of equations in (4.5) is
adequate.

Now consider the more realistic case where the analyst has no or little a priori knowledge

about the connectivity of the system but assumes a prescribed connectivity pattern for it,
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Fig.4.2. (note that in practice the analyst has no alternative but to keep a sort of
connectivity which has been assumed in forming the analytical model, otherwise the
number of unknowns will increase dramatically)

Fig.4.2 The analytical model considered for system in figure 4.1

Assuming again that 9 modal data items out of 12 are available, although here the number
of unknowns is 6 for the analytical model in Fig. 4.2, all the available modal data must be
used to identify the unknowns in equation (4.6). The reason why all the modal data must
be used here is that, although according to equations (4.7) and (4.8) the 7th, 8th and 9th
rows of [S] can be expressed as combinations of the other 6 rows, equation (4.11) is not
true for this case, i.e. the {A$} or {Ah} related to rows>6 cannot be expressed as a
linear combination of those related to other rows, as the effect of the missing spring in the
analytical model is not reflected in [S] (but is reflected in AQ8 or Ah). Thus, due to the

lack of information about the system’s connectivity, the system of equations in (4.6) is
inconsistent and in order to find the closest system to the real one (in a least-squares
sense) one must use all the information available. For this case, using all available data,
one will identify a unique, but inexact, model for the physical system.

In addition to the above-mentioned reason for inconsistency, i.e. lack of information
about connectivity, approximation(s) made in deriving equation (4.5) will be another
cause of inconsistency. The approximation in equation (4.5),  as explained in chapter 3
and section 4.2.1, is either due to the nature of the identification method, i.e.

perturbation-based method, or due to incompleteness of data, but in any event is
inevitable. Now, the vector {q} on the r.h.s of equation (4.5) which represents the
differences between either modal parameters or FRFs of the real and analytical systems is
exact while the elements of [P] are approximate and thus, even if the analyst has a
complete knowledge of the connectivity of the real system, the set of over-determined
equations in (4.5) is inconsistent.

So, generally speaking, the source of inconsistency in equation (4.5) is an insufficiency
and incompleteness of the data, and since this is inevitable in practice, in order to obtain
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the best results in a least-squares sense, one has to use as many as equations as possible.

Note that sometimes adding extra equations to an over-determined set of equations

increases the error level in the results. This can be either due to significant noise effect in

equations added to the original set for with-noise case, or due to.invalidity of the first

order perturbation approximation for perturbation-based identification techniques (see

section 7.6.2.1 )

4.2.2 EFFECT ON EQUATION (4.1) OF MEASUREMENT NOISE IN

EXPERIMENTAL DATA

There is a special class of identification problem where only a part of a structure, e.g. a

joint, needs to be identified. For this class of problem, it is possible to solve equation

(4.1) uniquely at each individual frequency point, using certain identification methods.

This possibility depends, again, on the number of unknowns and available data and since

the amount of data which is desired is usually small in this case, the incomplete measured

data may be sufficient to provide the desired information.

Although it is computationally possible to solve equation (4.1) uniquely in such a cases, it

is still necessary to construct the over-determined set of equations in (4.5) in order to

reduce the measurement noise effect in the calculations.

4.2.2.1 NOISE AVERAGING PROPERTY OF LS FORMULATION.

If a random nature is assumed for the measurement noise, then its mean value will tend to

zero. Although the nature of measurement errors is complicated, and is not restricted to

random noise, the main contribution to measurement error is due to random noise,

neglecting the systematic errors* .

As mentioned above, the mean value of a random noise signal is supposed to be zero, but

this is true if and only if one takes an infinite number of samples of the signal which, in

turn, means an infinite number of measurements. In a real case, where only a finite

number of measurements are available, the effect of noise is expected to be reduced by

using as many equations in the calculations as possible.

It is important to note that if the error effect dominates any of the matrices [A], [B] or [L]

in equation (4.1), for each individual frequency, then using a LS solution may not make

* It should be noted that in any case LS has no improving effect over systematic errors.
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any improvement effect on the result. To clarify this matter, consider the following

example.

4.2.2.2 SENSITIVE NATURE OF AN IDENTIFICATION PROBLEM

EXAMPLE 1

In some identification techniques, such as the decoupling method, the matrix [A] in

equation (4.1) is composed of some submatrices as follows:

[A]=[I-B+[A1-H,]C+] (4.12)

The submatrices in equation (4.12) are frequency-dependent and will be defined in
chapter 9*. Equations (4.13) and (4.14) define the matrices [A1 - HJ and

B+[A, - Hc]C+,  respectively at f = 100 Hz. Equation (4.15) shows the matrix

B+[A, - H,]C+ again, this time with 5% random noise, proportional to H,, added to [H,]

(Al, B+ and C+ are unchanged). Comparing equations (4.14) with (4.15), it is evident

that the effect of added noise has dominated the matrix B+[A, - H,]cc and, consequently,

matrix [A].

[Al-H,1 =

-8.3337E-6 4 .1  lE-6 1.57E-6 -3.17E-6 1.6OE-6

-2.028E-6 -7.738E-7  1.607E-6  -8.115E-7

-2.9E-7  7.91E-7 -3.87E-7

2.85E-6 - l.O47E-6

3.61E-7L

B+[A,  - H,]C+ =

-23853 -12299 10049 7702

-1891 16248 -2611

-47988 -7947

4910 I

1
(4.13)

(4.14)

* Note that there is no connection between [B] and [C] in equation (4.12) and those in equations (4.1) and
(4.4)

. . .
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B+[A; - H,]C+ =

I

124138 -34989 42061 12543

-34549 1464 11858 -3398

4288 19790 -132616 -29537

. 5667 -1805 -26099 181

(4.15)

Having defined [E] as the error matrix to be added to [Hc]  and II[E]IIc< II[H,]II,  one has:

B+[A, - H, + E]C? = B+[A, - H, ]C+ + B+[E]C+ (4.16)

The dominant error effect in equation (4.15) means that ;

llB+[E]C+II  > II B+[A, - H, ]C+II (4.17)

in equation (4.16). Physically, the quantity on the r.h.s of inequality (4.17) represents the

effect of the joint on the structure’s behaviour and, thus, inequality (4.17) means that

joint effect is so insignificant that the noise effect dominates. The same explanation

applies to the general identification or updating problems. For example, in the case of

model updating, the effect of some mass or stiffness parameters of a structure may be so

insignificant on the response of the structure, within a specific frequency range, that their

effect can be easily become dominated by noise.

It is convinient  here to demonstrate the sensitive nature of the identification problem

through a simple example as follow.

EXAMPLE 2

Consider the two degrees of freedom system in Fig. 4.3

Fig. 4.3 Typical two degrees of freedom system
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Both particles in Fig. 4.3 have identical mass, m, and the spring, Kj’  can be considered

either as a joint, in a joint identification analysis, or a typical component of the structure,
in a general identification problem. It is desired to examine the significance of Kj’S

variation on the impedance of particle 1, zl, and to examine the effect of this significance

on the sensitivity of the process of identification of Kj, to noise.

For the impedance of particle 1, one can write:

dZl K

q= (-ma2 + K + Kj)2
(4.18)

It is evident from equation  (4.18) that stiffer Kj is, the less significant its effect on the zl

becomes. To demonstrate the effect of this insignificance of Kj on the identification

process, the variation of z1 due to finite  variations in Kj can be formulated as:

K2 AK.
AZ,=

[(K-mw2)  + Kjo] AKj + [(K-mo2)  + Kjo12

and

d(4) K2_

d(AKj) [AK~  + (K-mo2)  + Kj012

(4.19)

(4.20)

where Kjo is the initial value of Kj and AKj shows its finite variation. The following

information can be deduced from equations (4.19) and (4.20):

AK.
dW1) K2

J
____>  0 => ~q____>o  and  - ----->

d( AKj)

K2

[(K-mo2)  + Kja12

AKj ----> +oo ==> A+---> dW1)

[(K-mw2) + Kjo]
and d(fij) ----->+O

K2~j ----> -00 => AZl----> ](K_mw2)  + Kjo] dWI)
and d(AKj)  ----->+O

AK.
J

----> -[(K-ma2)  + Kjd ==> UI----> += and
d&Q)
d(a ) ----->+m (4.21)

j
For a very flexible joint (relative to the impedances of the substructures at the interface

coordinates), one has:

dW1)
KjO<< (K-mo2)  ==> - K2 >l

d(AKj)‘AICja  = (K_m,2)2  =
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and

=ll
K2

fij___>+ca ----’ (K-mo2)
(4.22)

For a very stiff joint :

Kjo >> (K-mo2)
d@Z1)

==> flak =. >= 0  and ~ll*K ___,+oo  ---> 0 (4.23)

J j j

Using these data, the variation of AZ, relative to ~j, for high and low frequency ranges

and for flexible and stiff K,,, is shown in Fig. 4.4. As is evident from this figure, the
.I-

dW7asymptotic value of AZ as well as -
d(AKj)  ‘“~j”

are very small for a very stiff joint. Note

that both parameters are frequency-dependent but, for stiff joints, both of them are small

to a reasonably high frequency range (as will be shown with a numerical  example).

F3
a

0

-12000
-100000 AKj 0 W stiff kjo lower w

F&.(4.4)  Variations of Zl versus variations
+ stiff kjo higher w
.

of KJ for different initial values of
soft  kjo ,ower w

KjO and frequency
. soft kjo higher w

These small values for the slope at ~j=O and for a limiting value of AZ, as AKj-->c16

reveal that very small changes in AZ, will result in very large changes in AKj and vice-

versa, i.e., very large variations in AKj may cause negligible changes in AZ.
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As KjO decreases or as frequency increases (effect of the inertia term), the situation

becomes better. For flexible joints, for example, where the slope at AKj=O  is almost 1,

any small changes in AZ will cause changes in AKj of the same order of magnitude.

The following numerical example will demonstrate the effect of joint flexibility on

sensitivity to error. Considering Fig. 4.3, let

K=662,400 N/m m=O.55  k g Kj0=662,4000  N/m (4.24)

For the above-mentioned values for joint properties at frequency f=300 Hz one has:

Zl= (K-mo2)  - K2 (KjO + K-mw2)-’  = -1372057 N/m

and the asymptotic value of AZ,= 56662 N/m (4.25)

Taking +5% of 2, in equation (4.25) as error yields,

+5% Z,= AZ,= -68603 N/m

Using equation (4.19) one has:

AKj = -2425833 N/m (4.26)

This value represents a 37% variation from the true joint’s stiffness value. If one now
uses -5% 2, error, one has:

~j=26786048 N/m (4.27)

which is an error of about 400% in the joint’s stiffness. Using data similar to those in
equation (22) but here taking KjO = 198720, i.e. a more flexible joint relative to the

previous one, yields,

AZ,= 332827.9 N/m

Z,= 282546 N/m

5% Z,= 14127 N/m

~j = 202 N/m (4.28)

which is about 0.1% error in joint stiffness and for AZ, = -5% 2, the error becomes
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AKj = -201 N/m (4.29)

which is again 0.1% error in joint stiffness. Equal absolute values for AKj were expected

in this case, considering Fig. 4.4 for the case of the flexible joint.

It is worth mentioning that in the first case, i.e. a relatively stiff joint, if AZ, becomes
equal to 82257, which is equal to 6% Z,, then AKj will be infinity and if AZ exceeds this

value very slightly, AKj will be very large negative value. Also, Fig. 4.4 reveals that for

a stiff joint, AKj  is positive over a very narrow band of AZ variations, but otherwise is

always negative.

It will be shown in later chapters, related to analysis of the performance of different
identification techniques, that almost all identification techniques, either joint identification
or general identification, are sensitive to noise in the above mentioned respect and that the

noise effect may dominate the matrices involved in calculations for each individual

frequency. In such cases, where the noise effect is dominant at each individual frequency,
questions concerning the condition number of [A] or application of the S.V.D technique
to invert it or using LS technique to reduce the noise effect, are irrelevant These concepts
are only useful when the noise acts as a perturbation and does not dominate the matrix.

Using data from different frequencies, the only way to reduce the noise effect on the
matrix [A] in equation (4.12) is to average the error at source, i.e. [AI - H,], before

multiplying this matrix with matrices B+ and C?, which process magnifies the error. For

the case of [A] in equation (4.12),  due to the pattern of equation (4.12),  it is not possible
to put [AI - He] from different frequencies together (before multiplying it with B+ and

C+) and, thus, application of a least-squares technique in this case is not associated with
any error averaging advantage. As will be discussed in chapter 9, the dominant error
effect is an inherent issue and depends on the nature of the identificatin  problem and for
these cases the error effect can only be reduced using special techniques.

An important conclusion deduced from example 1 is that governing equations like (4.1)

(in which matrices [A] and [B] are simple matrices, i.e. not composed from other
frequency dependent submatrices as in equation (4.12)),  are the most suitable ones for LS
formulation from an error averaging point of view.

L i
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El4.3 COMPUTATIONAL ASPECTS OF THE LS PROBLEM

As was discussed in section 4.2, the least-squares formulation is an essential part of any

identification problem, due to the incompleteness of data and/or noise effects. In this

section, theorems related to the solution of a LS problem and the effect of noise on it will

be discussed.

It is convenient, first, to consider the perturbation bounds for the solution of the least-

squares problem. This matter has been discussed thoroughly by Lawson and Hanson in

[29] and we shall only present the principal conclusions here.

4 .3 .1  PERTURBATION BOUNDS FOR THE SOLUTION OF LS

PROBLEM

Consider equation (4.5) as:

[ ’ lmxn 1 “1’ 1 nxl = { q }rnxl (4.5)

where

For convenience in stating results in term of relative perturbations we define the following

relative parameters:

II E II- -
a  -11 P I I

II q II <  Ilqll
y=Il P II II x, II - II PX, II

II r II II r II
p = II P II II x, II < II PX, II WPX~)

K = II P II II P+ II = condition number([P]) (4.32)

(4.30)

(4.31)
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A K II P II II P+ II
K=l-K.a=  l- II E II II P II (4.33)

THEOREM 1

Let Xl be the minimum-length solution to the least-squares problem PXl=q with residual

vector r-q-PXl. Assume IlEll IIPII 5 1 and Rank &Rank(P), and let Xl=Xl+dXl be

the minimum length solution to the least-squares problem

Then

P(Xl+dXl) = (P + E)(Xl + dX$ = q + dq

Rank(P)=Rank(P)
and

II dX, II
II x, II 5 b~it+By~+Kkp~t+K~~

5 iif [(2 + K 0) CC + y p]

THEOREM 2

Assume mx=k = Rank(P) and II E II II P+ II < 1. Then

II dX, II
II x, II 5 @ [(I + K p> a. + y PI

(4.34)

(4.35)

(4.36)

Equation (4.36) indicates that the upper bound of the relative error for solution of the LS

problem is proportional to the relative errors in [P] and {q} as well as the condition
number of [P] and the relative norm of the residual. Thus, reducing a, p and K may

improve the results.

4.3.2 IMPOSING CONSTRAINTS ON THE LS PROBLEM AND
REDUCING THE NUMBER OF UNKNOWNS

The subject of imposing constraints on the LS problem and/or reducing the number of

unknowns has important practical applications. A set of constraints can be imposed on the
solution of a LS problem by changing equation (4.5) to following equation [29]:

(4.37)
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where [F] is a pxn matrix, {D} is a p dimensional vector and [Fj {X}= {D} expresses

the set of desired constraints. For example, suppose one requires that the solution vector

{X} should be close to a known vector { <}. Setting [F]=[I] and {D}= {r} in equation

(4.37) expresses this requirement.

Constraints can be imposed on equations (4.5) using one of the following methods:

(a> - imposing constraints as a preference by adding rows to equation (4.5) as is

shown in equation (4.37). In this case the constraints will be satisfied as close as

possible (in a least-squares sense). The order of [P] in this case is (m+p)x(n); or

09 - imposing constraints explicitly by modifying [P] and deleting an appropriate
number of unknowns in {X1 }. In this case [P] will be mx(n-p).

Generally speaking, deleting some of the unknowns in any LS problem increases the

residual norm llrll  (note that this does not necessarily means worse results) and at the same

time reduces the condition number of [PI, according to the following theorem [29]

THEOREM  3

Let [P] be an mxn matrix. Let k be an integer, 15 k 5 n. Let [B] be the mx(n-1) matrix

resulting from the deletion of column k from [PI. Then the ordered singular values of [B]

oih  interlace with those of [PI, (Tip  as follows:

case 1 m>n

fflP ‘Olb =2p ‘O2b ’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .=(,,_l)b xnp > 0 (4.38)

case 2 m<n

OlP “lb ‘O2p  =2b ’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .>d
mp

>b,b > 0 (4.39)

Thus, considering the definition of condition number, it is clear that cond([B]) 5

cond([P]).

So, using method (b) above, one decreases, or at least does not increase, the condition

number of coefficient matrix [A] at the expense of increasing, or at least not decreasing,

the norm of the residual vector {r}.
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4.3.3 PERTURBATION THEOREM FOR SINGULAR VALUES OF A

MATRIX

THEOREM 4

Let [B], [P] and [E] be men matrices with [B]-[P]=[E]. Denote their respective singular
values by pi, ai, and Ei, i=l ,..........,  k; k=min(m,n),  each set labled in nonincreasing

order. Then

1 pi - ai 1 < ~~ Y Ii E 11 i=l ,. . . . . . . . . , k (4.40)

According to equation (4.40),  if the noise added to a matrix has a small norm, i.e. it is a

perturbation, then provided the original matrix is not ill-conditioned, the singular values

of original matrix can be considered unchanged.

4.3.4 SOLUTION TECHNIQUES FOR A LS PROBLEM.

The solution to the LS problem in equation (4.5) can be generally presented as:

m>n (4.41)

where {X, } is the minimum second norm solution to the LS problem and [ P ]&,, is the

pseudo- or generalized inverse of the rectangular matrix [P].[29,32,33,34].  The main

difference between these different methods of solving equation (4.5) lies in the method

used to calculate [ P lnm.

The two popular techniques for calculation of [ P Ink are as follows:

l- application of the normal equation; and

2- application of the S.V.D technique

4.3.4.1 APPLICATION OF NORMAL EQUATION

Premultiplying both sides of equation (4.5) with [PIT, it can be rewritten as:

[ ’ lnlm[ p lm)(nIX,l  = 1 p In& t 9 lmxr (4.42)
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The nxn square system of equation (4.42) is called the system of normal equations for the

linear least-squares problem. If [P] is a full-rank matrix, i.e. its columns are linearly
independent, then [PITIP] is nonsingular and the solution {Xl } can be written in the

form:

{Xl 1 = wlTFwrplTIq~ (4.43)

Where the matrix

] p In& = mTPl>-‘rplT (4.44)

is the pseudo-inverse of [PI. Although the normal equation method is simple and easy to
implement, it has a computational drawback which is due to squaring of matrix [P] in

equation (4.42). Due to premultiplication of [P] with [PIT,  the condition number of
matrix [PITIP] can be much greater than that of the original matrix, [PI. The relationship

between the condition numbers of [PITIP]  and [P] is as follows:

K([P]T[P])  = II ([P]T[P])  Ii II ([P]T[P])-’  II 5 IIIP]TII II[P]II IIIP]-TII  II[P]-‘II  = l?([P])

(4.45)

or if a second norm is used to define condition number of [PITIP] as tc([PITIP]) = crl/on,

then one obtains:

PITPI = w s UH) w s VI-9 = v g vH => K([P]T[P]) = Bl/CJn  = ( 0; / 042

= K*([P]) (4.46)

Thus, the condition number of matrix [PITIP]  can be as large as the square of that of [P]
and this may cause serious computational errors in subsequent calculations.

4.3.4.2 APPLICATION OF S.V.D TECHNIQUE TO CALCULATE THE
PSEUDO-INVERSE

Application of the S.V.D technique to calculate [ P ]+ in equation (4.41) does not have the
increased condition number problem which the normal equation has. Furthermore, the
S.V.D technique has the advantage of calculating the singular values of [P] and this
enables the analyst to assess the condition of this matrix and, if it is poor, to use

appropriate techniques to improve the results [31].
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The S.V.D technique has two disadvantages which are (i) the lengthy calculations and (ii)

the large dimensions which are involved in it. For example, if the matrix [P] is generated
using nf frequency points, as in equation (4.5),  then for a=10 and b=lO and nf=lOO  the

dimension of matrix [P] will be lOOOOX(3ni(ni+l)/2).  Usually, a and b and nf are much

larger than the above values, and thus, the dimension of matrix [P] will be very large.

The large dimension of [P] not only increases computation time but also reduces the

accuracy of the calculations.

On the other hand, the normal equation technique is not faced with the dimension

problem, as matrix [PITIP] can be generated using equation (4.4) at each individual

frequency, as follows:
n

[pITPI = 2 [CT(Wi) c(wi>l
i=l

Thus, using the normal equation technique, one avoids the memory size and time

(4.47)

consumption problems but the method will be useful if and only if the condition of matrix

[P] is not high and a computer with sufficient floating point accuracy is being used.

So, it is now clear that the condition of matrix [P] is a crucial issue and in subsequent

sections, the computational causes of ill-conditioning of matrix [PI, and consequently

[PITIP] , will be discussed and the methods to cope with these causes will be presented.

I4.4 ILL-CONDITIONING PROBLEM OF A LS FORMULATION

It was mentioned earlier in section 4.2.1 that poor modelling of the analytical model used

in an adaptive identification approach is one reason for the ill-condition (or even rank

deficiency) of matrix [PI, in equation (4.5). In this section, the computational factors

which may result in an ill-conditioned [P] are discussed.

Refering back to section 4.2.1, formulation of the LS problem in equation (4.5), from

matrix equation in (4. l), requires two following steps:

l- transforming matrix equation (4.1) to an set of algebraic equations in equation

(4.2); and then

2- separating mass, stiffness and damping parameters in {X} and generating

equation (4.4) at each frequency point.
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Each of the above steps introduces certain computational difficulties to the solution of a
LS problem, and these will be discussed below.

4.4.1 ILL-CONDITIONING ARISING FROM TRANSFORMING A
MATRIX EQUATION TO A SET OF LINEAR ALGEBRAIC

EQUATIONS.

Consider equations (4.1) and (4.2).

(4.1)

(4.2)

Each element c lpq related to Axij can be calculated from the following equation

(assuming symmetry):

cl((t-l)xa+g  , (i-l)x(ni-i/2)+j)  = a(t,i) x b&g) + a(t,j) x b(i,g)
i , j = l . . . . . . . ni and j>i t = l...... a and g = l...... b

If i=j then

(4.48)

c((t-l)xa+g  , (i-l)x(ni-fl)+j)  = a(t,i)  x b&g) (4.49)

Examining equation (4.48) reveals that the summation on the right hand side of this
equation may lead to a poorly conditioned matrix, [Cl], because the summation on the

r.h.s may generate elements with large differences in order of magnitude and sometimes
can lead to a sparse matrix. Also, in cases where noise is present, the summation on the
r.h.s of equation (4.48) may cause the noise effect in some elements to be larger than the
correct value itself.

4.4.2 ILL-CONDITIONING ARISING FROM SEPARATION OF
VARIABLES IN ALGEBRAIC EQUATION (4.2)

Having transformed equation (4.1) to a set of algebraic equations for each frequency O,
and having imposed a symmetry constraint on [AK],[AM],  one obtains:

= { L(68 }(a)@)(1

where the matrix [C(U)] is partitioned as follows:

(4.4)
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elements
related to
(AI0

elements
related to
IAM1

(4.50)

Each element cw related to Akij CCIII  be calculated from equations (4.48) and (4.49) and
elements of Cpq related to mass are exactly equal to those related to stiffness multiplied

by -02.

The matrix [C(o)] in the 1.h.s  of equation (4.4) has been generated from the r.h.s of
equation (4.1), i.e.

[Al WI PI leadhs to [Wdl (4.51)

Now, two cases are possible for the relative dimensions of matrices [A], [B] and [Xl,
i.e. either a.xb  < ni(ni+l)  which means an under-determined set of equations in (4.4) and

happens in the case of a general identification problem (model updating), or axb >
ni(ni+l) which usually happens in the case of the joint identification problem. For the

first  case, i.e. a.xb < ni(ni+l), it is obvious that equation (4.4) is rank deficient. In what

follows it will be shown that even for the second case, i.e. axb > ni(ni+l),  equation

(4.4) is still rank deficient.

Let aXb > ni(ni+l) and

[T(@l,b = L’W~l[W (4.52)

Considering the maximum possible rank of the constituent matrices of [Tl in equation

(4.52), and the following inequality:

rank Wl.[W f tin b=WAl or WI)
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it becomes clear that matrix [Tj is rank-deficient and its maximum rank cannot exceed
(ni). This rank-deficiency means that there are only ni rows (or columns) of [T] which

are independent of each other and these constitute (ni)2  independent linear equations in

[C(o)] in equation (4.4). On the other hand, the number of unknowns in equation (4.4)
is ni( ni+l), which is greater than maximum possible number of independent equations in

equation (4.4). It should be noted that in cases where any one of the constituent matrices

of matrix [T] in equation (4.52) is rank deficient, the rank of matrix m will decrease and

so will the number of independent equations in equation (4.4).

Let us now to demonstrate how using a LS formulation as mentioned in section 4.2.1 can

improve the rank deficiency problem of individual equations like (4.4). Using the normal

equation technique in equations (4.42) and (4.47) to solve the least-squares problem

defined in equation (4.5),  one obtains the following equation:

[[C(a~)IT{ L(Ol) }+[C(02)lTIL(02>+,...+[c(~n~)lT1  L(wnf)  I]

or

[PITIPl

=

(4.53)

(4.30)

Examining equation (4.53) shows that although each of the matrices added together in the

1.h.s  of this equation is itself rank deficient, one expects that, adding them together, the

resultant matrix will be of full rank. It should be noted that there is no mathematical proof
‘to support this expectation but, combining sufficient equations, nf, the coefficient matrix

on the 1.h.s of equation (4.53) turns out to be well-conditioned (with further

considerations which will be explained shortly). In order to be able to decide how large
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nf must be, the simplest way is to check the rank of the coefficient matrix on the 1.h.s of

equation (4.53) each time after adding a new set of equations like (4.4) to it.

In addition to the “increasing number of unknowns” problem caused by the separation of

parameters, there is another problem associated with separating mass, stiffness and

damping parameters in {AK}. In order to explain this problem, we return to equations

(4.4) and (4.50). Considering the nature of matrix [C(o)], which is explained in
equation (4.50), the columns of [C(c1>,)] related to M for each frequency Wi are exactly

equal to the columns related to K multiplied by -o$ and, if a viscous damping model is in

use, the columns related to D are exactly similar to those related to K multiplied by iOi.

The difference in order of magnitude caused by multiplying mass-related elements by -

CO:, especially at higher frequencies, makes matrix [C(Oi)]  ill-conditioned at each

individual frequency and also makes the resultant set of equations in equation (4.5), and

consequently in equation (4.42),  ill-conditioned. This ill-condition has a significant effect

on results and should be dealt with through balancing of the matrix [P] in equation (4.5).

4.4.3 BALANCING TECHNIQUES AND REDUCTION OF THE
NUMBER OF THE UNKNOWN PARAMETERS

It was shown in section 4.4.2 that separation of the parameters in {AK} leads to an ill-
conditioned [P] due mainly to the increased number of unknowns (rank deficient [C(o+)]

in equation (4.4)) and to the difference in the order of magnitude of the elements related

to different parameters. In this section we will show that both the above causes of ill-

conditioning can be dealt with by balancing [P] through a reference analytical model.

Generally speaking, a typical model updating problem does not require any balancing, as

the above-mentioned difference of order of magnitude between elements of [P] do not

exist in this case. The matrix [P] in a model updating analysis is automatically balanced,

because of the following model used for [AK],[AM] and [AD].

[AMI = Tame  Me
e=l

(4.54)
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where n is the number of elements and [Ml, and [K], are the elemental matrices used to

generate the analytical counterpart of the real structure.

Using equation (4.54) to generate matrix [C(Oi)] from [A][AX][B] will automatically

balance matrices [C(Oi)] and [P] because the order of magnitude of [Ml, is very small

compared with that of [K], and, thus, multiplying it with of will not cause an ill-

conditioning problem.

For joint identification applications, where one may not have an FE-generated analytical

model available, one of the following techniques can be used for balancing matrix [PI:

(a> - balancing can be performed by multiplying the columns of [P] related to mass

and damping by suitable scaling factors to make these columns’ order of

magnitude comparable with that of columns related to stiffness.

The scaling of mass- and damping-related columns must be performed on the final

coefficient matrix [P] in equation (4.5) and one cannot balance matrices at each

individual frequency unless a similar scaling factor is used for all frequencies.

Although improving the condition of [P] significantly, the method of balancing described

above sometimes still yields a large condition number of [PI, especially when

identification is carried out over a wide frequency range. Also, finding a proper scaling

factor is analyst-dependent and sometimes difficult;

(b) - a more efficient way of balancing the matrix [PI, inspired by equation (4.54), is

to choose a prescribed model for [AK],[AM] and [AD] as a reference joint

model and, then, to consider [AK],[AM] as follows (damping is ignored from

here on as it is straightforward to extend any result to the damped case):

[AKlj  = 2a,d [AKl,d,
d=l

and

[AMlj = Tam, [AM12
&l

(4.55)
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where mi is the number of interface stations in joint identification applications where each

interface station consists of a set of interface coordinates. Note that always

ltli < lli (4.56)

Each matrix [M]$. ( or [K&d, ) in equation (4.55) is an niXni  matrix with non-zero

elements in locations related to constituent interface coordinates of interface station d, and
ni is the number of total interface coordinates.

As noted earlier, using an adaptive identification technique, one requires an analytical

model* for comparison with the real structure. In the case of joint identification, in order

to be able to generate the analytical model, one has to consider a trial joint model.

Principally, the quality of a reference joint model is dictated by the model assumed for the

trial joint (i.e. features like number of interface coordinates at each interface station or

connectivity assumed between different interface coordinates) but quantitatively the trial

joint model and the reference joint model can be completely different.

Using equation (4.55) in generating matrix [C(o)] from matrix [A][AX][B] will
automatically balance matrices [C(o)] and [P] because the order of magnitude of [M]$ is

very small compared with [K]$ and thus multiplying it with CO: will not cause an ill-

condition problem.

Apart from the automatic balancing feature associated with technique using equation

(4.55), another advantage of this balancing is that in this case the number of unknowns is
reduced to 2mi, i.e. amr, akr r =1,2  ,.....mi, (or 3mi in the case of viscous damping

where one extra coefficient must be considered for damping ) and thus there will be no

problem of rank deficiency associated with matrix [C(o)] in equation (4.4) if the

following inequality is satisfied:

3m <n*. .
l- 1 (4.57)

Considering (4.56),  it is clear that inequality (4.57) is always satisfied. In order to clarify

further the matter of unknown reduction property of reference model, consider the

following example. Fig. 4.5 shows the “real” structure for this example and, as is

* Note that the analytical model can be entirely generated by F.E. method or can be generated from
composing experimental data acquired from structure itself and a prescribed model assumed for the
unknown part of structure, e.g. a joint. The analytical model generated using the latter technique is called
by author: “the analytically coupled structure”. (see chapter 3)
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evident from this figure, there is one interfacing station with 4 interfacing coordinates in
it** , i.e. n+=l and ni=4.

1 interfacing station

Fig. 4.5 The example structure with one interfacing station
comm-ising  of 4 interface coordinates

Now, considering the reference model in equation (4.55) for the joint in Fig. 4.5, the

number of unknowns in equation (4.4) is reduced from 30, in the general case, to 3, i.e.
three unknowns a,, ak and ac, while the number of independent equations available in

equation (4.4) is 16.

The model adopted for modifications [AK]j and [~]j to the trial joint model in equation

(4.55) is exactly similar to the mass and stiffness modification models which are used in

model updating practice. In spite of all the advantages associated with taking modification

factors as in equation (4.55) (stated above), it is not applicable to joint identification

problem directly and must be modified. The reason for this impracticality has been

explained in chapter 3 and, briefly, is due to the fact that assigning only one modification
factor for the whole set of degrees of freedom involved in an interface station d in [Ml:

(or [K]$ ) only reflects the need to change the density (or Young’s modules) of the

reference joint model at that station and does not take into account the essence of any

variation of the geometrical characteristics of the reference joint. Keeping the geometrical

features of the reference joint model unchanged means that the geometrical characteristics

assumed for the reference joint model are a correct representation of the geometrical

characteristics of the real joint, which is not true.

Considering a beam element model for the joint in Fig. 4.5, in order to give necessary

flexibility to parameters Ct in equation (4.55) to change the geometry (in this case length)

** It is relatively easy to decide about the number of interfacing stations but it is not so easy to decide
about the proper number of interfacing coordinates within each interfacing station. As a general rule, the
number of interface coordinates in each interfacing station is equaI to the minimum number of coordinates
required to couple substructures across that interfacing station.
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of reference joint model, as well as E and p, (at least) the following model must be

adopted for mass and stiffness modifications:

[AKlj = al

and similarly,

156a4 0 54a4 0

[AM]j 0 0 0= ~~
156a4 0

0 -a2 0

0 -a2 + a3

0 i

+a5

‘0 0 0 0

2a3 0 a3

0 0

2a3 1L

0 22% 0 -13ag

0 13a, 0

0 -22a5

0 1 +
(4.58)

Equation (4.58) means that there will be 6 modification factors (9 if viscous damping is

involved) at each interfacing station, for reference joints with a beam element model ( i.e.

with 4 degrees of freedom involved in interfacing) and, thus, the necessary (but not

sufficient) condition for a full rank matrix [C(U)] in equation (4.4) is:

(4.59)

In the general case where nid interface coordinates are involved at each interfacing station

d, the number of modification factors at each station depends on the connectivity model

between the different interfacing degrees of freedom;

(4 - in real engineering applications there are cases where it is very difficult, if not

impossible, to assign any prescribed model to a real joint, and consequently to

trial and reference joints. In such cases, the reference model described by

equation (4.58) is not applicable and a completely general pattern must be

considered for the reference (and trial) joint models. For example, considering

the joint in Fig. 4.5 as a joint with 4 degrees of freedom, i.e. four interface

coordinates, and without considering any pattern for the joint mass and stiffness

matrices, apart from symmetry, the reference model is:

b ,
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alal %!a2  a3a3 a4a4

[AK]j  = %a5 a6a6 v7

[ 1aga8 %%

%Oa10

r _
alla11  a12a12  a13a13  a14a14

[AM]j =

I

(4.60)

As equation (4.59) indicates, using the general balancing approach for a joint with 4
degrees of freedom, there will be 10 modification factors ai for each of the mass and

stiffness (and damping if it is viscous) parameters at each interfacing station, each of
which must be calculated. It is clear from equation (4.60) that a general reference joint

model in this equation balances the matrix [P] but does not reduce the number of
unknowns.

In the general case where nid interface coordinates are involved at each interfacing station
d,the number  of IIIOdifkatiOn  factors ateach station iSe4Ip.d t0 nid(nid+l  )/2fOreach of

the mass or stiffness or damping parameters and thus the full rank condition for equation
(4.4) will be:

< 23mjnid(  nid+l )/2 = ni

Note that: n.1 = NliIlid

To demonstrate how balancing can affect the condition of matrix [PI, Table 4.1 shows the

condition number of matrix [PITIP],  in equation (4.47),  for a typical joint identification
calculation, using different balancing techniques. Note that in all cases the number of
unknowns is the same.

No balancing Simple scaling Balancing using ref.

balancing in ta) joint model in (4.58)

aPITm 7E22 9E8 4E8

Table 4.1 Condition number of matrix [PITIP] using different balancing methods
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I4.5 A DISCUSSION OF THE CONCEPT OF ILL-CONDITIONING AND

SENSITIVITY OF A MATRIX

The question which will be addressed in this section is: “is the condition number of a

matrix a necessary and sufficient criterion for determining its sensitivity to small

perturbation?“. The answer to the question, as it will be shown shortly, is “condition

number is not a sufficient (defined below) condition and is not necessary. In other words,

there may be cases where the condition number is reasonably low but the matrix is very

sensitive to perturbations”.

Consider the set of equations in (4.5) as a general algebraic equation:

[ ’ ImXn 1 “1’ }ml= 19 lmxl (4.5)

The upper bound for errors in solution of matrix equation (4.9, induced by errors added

to the coefficient matrix [PI, is given in equation (4.36) and is:

II dX, II
II x, II 5 l? [(l + K p) a + y p] (4.36)

where parameters in equation (4.36) have been defined in section 4.3.1. According to

equation (4.36),  the condition number of matrix [PI, K, is an upper bound for errors and

having large values for this upper bound does not necessarily means that error value is

high. So, condition number is not a sufficient criterion, i.e. if the condition number of a

matrix is large it does not necessarily imply that the matrix is ill-conditioned but, in most

cases that condition number of a matrix is large enough, there is a substantial  chance of

that matrix being sensitive. So, here we make a distinction between matrix sensitivity and

ill-conditioned, i.e. a matrix is ill-conditioned whenever its condition number is high but

not every ill-conditioned matrix is sensitive to perturbations.

In what follows, we will demonstrate the non-necessity of condition number for

sensitivity assessment of a matrix and, having comprehensively discussed the various

aspects of sensitivity of a matrix, we will present a sufficient (but not necessary)

condition for a matrix to be ill-conditioned.

Let us first demonstrate the non-necessity of condition number, as a sensitivity

assessment criterion, through an example.

. . _
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(4.62) and (4.63) show the inverse of [H] before and

proportional to elements of [Hj, to it, respectively.

Consider the receptance matrix, [HI, of a structure in expression (4.61). Expressions

after adding 5% random noise,

WI =

6.157E-8 l.l56E-7  -6.63E-9 -5.418E-8

1.58E-8 -3.639E-9 -2.568E-8

-3.757E-8  1.676E-8

- 1.677E-7

-2.4E-8

-l.l4E-8

7.45E-9 1 (4.61)

1.2E-8

-3.36E-8

F

[HI-l = I
-1.4E6 9.1E6 -1.29E6  -1.08E6 -2.44E6 -

-7.34E6  -2.19E6  -2.lE6  -4.7E6

- 2 . 7  17E7 -2.18E6 -4.9E6

-5.24E6 -680700

-2.6887 _

-1.07E8 -1.7E8 -3E9 -3.lE8 -9.58E7

-9.72E7 1.23E23 1.07E24  1.2E23 lE23

[HI-l = -1.15E9 4.8E23 -1.4E24 -6.2E22 2.7E24

-1.17E8 6.4E22 1.8E22  1.12E22  2.8E23

-5E8 3.3E23  5.18E24 5.5E23  -6.9E23

(4.62)

(4.63)

Comparing expressions (4.62) and (4.63) reveals the high sensitivity of matrix [H] to

perturbation. On the other hand, the condition number of [H] is equal to 6. Now, the

question is: “what is the underlying factor which makes matrix [H] in equation (4.61)

sensitive to noise?“. To answer this question, let us first consider just what is meant by

the sensitivity of a matrix.

Consider a general complex matrix [A] and its singular value decomposition as:

[Almm = Wlmxm  Plmxn  [VIHnxn (4.64)

where [U] and [V] are unitary matrices and their columns are the left and right singular

vectors of [A] respectively. Mathematically, [V] and [U] are eigen-matrices of [AIHIA]

and [A] [AIH, respectively.

. _
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The diagonal matrix [X] contains the singular values Oi of matrix [A] so that, if rank [A]

is r g min(m,n), the matrix [X] will only have r non-zero diagonal elements. Equation

(4.64) can be rewritten as:

[Alm;n = {u},{vp,+ . . . . . . . . + (u},{v};cJr (4.65)

Although the inverse of a rank-deficient matrix does not exist, one can define the pseudo-

inverse of the matrix, for this case [32,33,34].  Using the pseudo-inverse of a matrix, the

minimum 2 norm least-squares solution of [A] {x}={ b} can be calculated. The pseudo-

inverse is defined as:

[AIn&, = Iv~lw~.l/ol+ . . . . . . . . + {v},{ u};.l/o, (4.66)

It can be shown [33] that the smallest singular value of [A] is the 2-norm distance of [A]
to the set of all rank-deficient matrices. This means that if [A]k is a member of the set of

matrices with its rank k 5 r = rank [A], then:

min II [A] - [Alk II = II [A] - [A], 1 II = CI; (4.67)

Matrix [A] of equation (4.64) is called sensitive if, after adding a small amount of noise to

it, some or all of its singular parameters, i.e. singular vectors and singular values in

equations (4.65) and (4.66),  change dramatically.

Note that in the case of equation (4.65),  in spite of major changes in some of the singular

parameters, the elements of the matrix itself show only very small variations (as small

noise has been added to matrix) but, for [Al-l in equation (4.64), changes in singular

parameters of [A] are associated with dramatic variations in [Al-l itself.

The Taylor series expansions of Or and { v }r, the rth singular value and right singular

vector of matrix [A], in terms of variable ei are:

Or = 6,() + E aorz Aei + . . . . . . . . . . .
i=l 1

{V}, = (V},o + ~ a~Aei ‘....
i=l i

(4.68)

(4.69)

where in a first-order approximation the higher-order terms are neglected. For this case
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(4.70)

*{V}, = f: a+*ei
Sl 1

(4.7 1)

Equations (4.70) and (4.71) indicate that variation of singular parameters depends on

both the magnitude of error and sensitivity of singular parameters themselves. Since, as

mentioned earlier in this section, {v} and {u} are right and left modal vectors of [AIHIA]

and [A][AIH,  respectively, study of the following section is necessary, in order to be able

to investigate singular parameters’ sensitivity to perturbation.[28,35]

4.5.1 SENSITIVITY OF MODAL PARAMETERS OF A MATRIX TO

SMALL PERTURBATIONS.

This problem has been efficiently explained in [28] (and [35])  which can be summerized

as follows:

Suppose hr is a simple eigenvalue of a real matrix [B] and { I$}r and { R$}r are the

corresponding left-hand and right-hand eigenvectors . Then as [AB] tends to the null
matrix, [B+AB] has an eigenvalue hr + Mr in accordance with the stationary property of

eigenvalues (Rayleigh principle), or by using first-order eigenvalue sensitivity, such that

the change of the rth eigenvalue can be calculated from:

From equation (4.72),  the absolute value of Ahr can be expressed as:

(4.72)

(4.73)

and l{+}T{  R$ }rl is the cosine of the angle Br between the left and right-hand

eigenvectors. When coser is very small, the corresponding eigenvalue is very sensitive to

perturbations in the elements of [B]. Wilkinson [35] suggested that I { ,$ }T{ R$ Jr1 is a

condition number for a nonrepeated eigenvalue. When the matrix [B] is symmetric and
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er=O, since {14d~{R~lr is normal&d  to unity, the condition number for a nonrepeated

eigenvalue is dependent on the norm of modification matrix [AB].
For a general matrix with distinct eigenvalues, the eigenvector {,@I}, of [B+AB]

corresponding to {,Q}, is such that (II[AB]II  --> 0)

Again, it can be seen that the quantity case, is important, however, the sensitivity of the

eigenvector is also dependent on the proximity of hr to the other eigenvalues. From

equation (4.74), the smallest value (hr-3cs), indicating the separation of eigenvalue hr

from its neighbours, is usually defined as a condition number for the corresponding
eigenvector { R$}r  .

Denoting [AB] in equations (4.73) and (4.74) as perturbation to matrix [AIHIA]*  , let us

now consider the sensitivity of singular values of matrix [A], rewriting equation (4.73)

as:

iAql 5
II{v}TII Il[~B]ll  II{V}~I

WT{vI,l
(4.75)

Since I{v}T{v};l  = 1 then, according to equation (4.75),  IAcrrl can only be large if II[AB]II

is large. In this case since;

crl = lI[A]II, and assuming that Il[~B]ll  cc II[A]II, ===>  Il[~B]ll  CC crl (4.76)

IAcrrl  may be relatively large for smaller singular values and, thus, the smallest singular

value is the likeliest one to be affected most. As a matter of fact, the sensitivity of the

smallest singular value of a matrix, just explained, is measured by the condition number

of the matrix, i.e. if the smallest singular value of a matrix is very small comparing to the

norm of the matrix (or its biggest singular values), it is very likely that a relatively
moderate II[AB]II will affect on dramatically. On the other hand, if on is not very small

relative to crl, then, according to inequality (4.76),  on will not be affected too much.

* Note that in this case [B] f [AIHIA], then { R$} f Iv) and {,$I Iv] for singular parameter applications
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It is convenient now to examine the possibility of having sensitive right and left singular

vectors. Actually, the possibility of having sensitive singular vectors is usually dismissed

in a routine sensitivity analysis and the author found it to be a quite an important matter.

Consider equation (4.74) as* :

IN,- E Iv~s{vl~kW1

s=l se
Iv1;tv)&-~s)

(4.77)

From equation (4.77) it is clear that a singular vector whose pertinent singular value is

close to a neighbouring singular value is a sensitive singular vector. Sensitive singular

vectors can lead to a sensitive matrix and, as a matter of fact, the reason that matrix [H] in

equation (4.61) is sensitive to noise, in spite of having a small condition number, is that
its singular values are very close to each other. To demonstrate how close the singular

values of [H] are, Table 4.2 shows the values with and without noise effect.

0l X lE-7 cY2 X lE-7 03 x lE-8 04x lE-8 05 x lE-8

- noise +noise - noise +noise - noise +noise - noise +noise - noise +noise

Oi 1.816 1.789 1.710 1.715 7.848 7.700 4.330 4.302 2.911 2.854

Oi/Oi+ 1.06 1.04 2.18 2.22 1.81 1.79 1.487 1.5

1

Table 4.2 Singular values of matrix [H]

As is evident from Table 4.2, the 1st and 2nd singular values are very close to each other

and, also, the 4th and 5th singular values are relatively close. Figs 4.4 to 4.8 show the

singular vectors of matrix [H] before and after adding 5% noise.

Examining Figs. 4.4 through 4.8, it is evident that variation in 1st and 2nd singular

vectors, which have very close singular values, is much greater than corresponding

variations in other singular vectors.

* Same argument applies to {Au }r with [B] 5 [A][AIH
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Elements of vector n L -noise

Fig. 4.6 The 1st right & left sing. vectors of q L +noise
R -noise

[H] with & without noise q R +noise
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Fig. 4.7 The 2nd right & left sing. vectors of q L +noise
[H] with & without noise

R -noise
0 R +noise
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Fig. 4.8 The 3rd right & left sing. vectors of

n L -noise
W L +noise

R -noise

[H] with & without noise. q R +noise
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Fig. 4.9 The 4th right & left sing. vectors of R -noise

[H] with & without noise q R +noi.se
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Fig. 4.10 The 5th right & left sing. vectors L + noise

of [H] with & without noise R -noise
0 R +noise

I4.6 CONCLUDING REMARKS

Some formulation and computational aspects of the general identification problem have
been discussed in this chapter. It seems that the nature of the identification problem is
generally ill-posed mainly due to the small amount of available information. The

identification problem may also be ill-conditioned which can be due to poor modelling of
the analytical model and/or ill-condition of the matrices which are used to construct the
governing equations and are related to the real structure. Also, it has been argued that the
solution procedure itself can be responsible for poor conditioning of the calculations and,
in this case, using as much data as possible and a proper balancing technique, that the

condition of calculations can be improved.
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In order to reduce the number of unknowns in an identification problem, it is a common

practice to preserve the connectivity pattern of the analytical model as additional

constraints. It has been shown that, by preserving connectivity pattern, one may identify

the closest possible analytical model to the real structure, in a least-squares sense, but it is

not possible to identify the real structure exactly (unless one knows the real connectivity

pattern of the real structure).

It has also been shown that, even for a noise-free data case, a least-squares formulation is

a necessary part of any identification problem, due to the inevitable incompleteness of the

data being used

Assuming that the condition of a particular identification calculation is acceptable, most

identification methods (in fact almost all of them) are still very sensitive to measurement

noise. It has been argued here that the sensitive nature of identification calculations is

inherent and this matter will therefore need to be further discussed in the chapters related

to each particular identification technique.

Having discussed the concept of ill-conditioning of a matrix, it has been shown that the

closer the singular values of a matrix are to each other, the more sensitive becomes the

matrix and this is true regardless of the condition number of the matrix.(Note that the

theory essentially holds for matrices with distinct eigenvalues and thus singular values)



CHAPTER (5)

APPLICATION OF AN FRF-BASED DIRECT METHOD TO
THE JOINT IDENTIFICATION PROBLEM.

I5.1 INTRODUCTION

In the present chapter, the performance of an FRF-based direct identification procedure,

for dealing with the joint identification problem will be examined. Generally speaking,

FRF- based methods are usually preferred to modal-based methods, due to the

advantages associated with them, including;

relative ease in handling the damping problem;

simplicity of FRF-based coupling techniques, especially, when a joint is

present&ee  chapter 2)

in the case of a pure experimental analysis, there is no need for modal analysis

when using an FRF-based identification method;

having measured FRFs for a limited frequency range, the effect of out-of-range

modes is aheady reflected in the measured data; and

usually, the amount of information measured in the frequency domain is large

and this provides the flexibility of selecting proper data points for an

identification analysis.

As mentioned in chapter 3, the FRF-based direct method was originally developed by

Lin* [27] for model updating applications and locating non-linearities in structures and

here the method will be modified to make it suitable for joint identification applications.

*Thesametechniqueisusedin  [13]& [14]  Par jctm ~ens;~;cc~;or\



m Application of FRF-Based Direct Method . . . . . 91

15.21 GENERAL FORMULATION

5.2.1 FORMULATION OF THE FRF-BASED DIRECT METHOD

Consider the following mathematical identity,[27]:

[[A]+[B]]-I= [Al-l- [[A]+[B]]-~[B][A]-~ (5.1)

where [A] and [B] are general matrices satisfying the condition that both [A] and [A+B]

are nonsingular.

Designating suffices a and x to the analytical and experimental models of the structure,
respectively, and assuming that [A] and [A+B] in equation (5.1) are the impedances of
the analytical and experimental models of structure, respectively, one has:

or, from (5.2)

[Ha(m)1 - [H,(m)1  = [H,(m)1 [Wa)l [Ha(w)1

(5.2)

(5.3)

where [AZ(o)] is the impedance error matrix defined as

Although equation (5.3) is quite general, due to incompatibility between dimensions of
[H,(o)] and [AZ(o)] caused by coordinate incompleteness of measured data, it is

difficult  to use equation (5.3) for general identification and model updating problems (see

chapter 3). On the other hand, if one can localize the error between the two models, then
the dimension of [AZ(o)] can be reduced and the “incompatibility of dimensions”

problem, stated above, does not exsist. Thus, from an implementation point of view,
equation (5.3) is very suitable for joint identification applications as the source of the
error between two models is localized  to the interfaces.

‘/.
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5.2.2 MODIFYING EQUATION (5.3) TO MAKE IT SUITABLE FOR
JOINT IDENTIFICATION APPLICATIONS

Assuming that a real structure consists of a number of substructures and, furthermore,

that the difference between two models A and X, [AZ], is concentrated at the interfaces

between the substructures, equation (5.3) can be rewritten as follows:

Equation (5.4) can be resolved into 4 sub-matrix equations from which the following is

selected as the most suitable for joint identification:

In the following section, the reason for choosing equation (5.5) out of the 4 possible

equations derivable from (5.4), and the practical difficulties associated with equation

(5.5), are discussed.

I5.3 DIFFICULTIES ASSOCIATED WITH USING EQUATION (5.5)

Refering back to the equation (5.4), the four equations deducible from this equation are:

[AH(w)lSi  = WWIS;’ WMOI W@dl; 09

[AH(o)lii  = [H(o)]; [AZ(w)][H(w)]; (d) (5.6)

Of these, (c) and (d) are not suitable due to the presence of [H(w)]: on the r.h.s of the

equations which, in most cases, is very difficult to measure. Having defined ns and ni as

the numbers of slave and interface coordinates, respectively, the reason for choosing

equation (a) in (5.6) is that by transforming this equation to a set of algebraic equations,
one obtains nSxnS equations for each frequency, while the corresponding number of

equations achievable from (b) equals to n,xni. Now, while the number of interface
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coordinates, ni, is constant, one can increase the number of slave coordinates as much as

possible and, having n,>ni, equation (a) always yields a larger number of algebraic

equations.

On the other hand, as discussed in chapter 4, the maximum number of independent
equations at each frequency point is constant and equal to niXni,  regardless of the number

of equations achievable from equation (5.5). Thus, it seems that for the noise-free case,

equation (5.6.a), or (5.5).  does not have any advantage over equation (5.6.b) (because

the numbers of independent equations are identical in the two cases). However, if

measurement noise is present in the calculations, the algebraic equations achievable either

from (5.5) or from (5.6.b) become inconsistent and it is better to use equation (5.5) in

this case as it provides more equations (and thus more information).

The question which may arise here is “what is lost by using only one possible equation,

out of the 4 available &t equation (5.6)?“.  The answer to this question is that,

qualitatively, there is no difference between the 4 equations in (5.6) and, indeed, the

effects of the joints are reflected on the 1.h.s  of each of them but, quantitatively, the

effects of joints may be reflected more significantly in one than the others. From this

point of view, it is case-dependent and difficult to decide which equation is superior.

Having chosen equation (5.5) for joint identification, there are 2 problems associated

with using this equation, as follows:

(a> - the elements of matrix [H(cn)]s;’ on the r.h.s of equation (5.5) are difficult, if not

impossible, to measure; and

@I - if the joint is stiff in some directions, then the columns (or rows) of [H(o)]$

related to those directions will be linearly dependent, or almost linearly

dependent, which deteriorates the results.

I5.4 SOLUTION TECHNIQUES FOR EQUATION (5.5) AND THE

EFFECT OF VARIOUS PARAMETERS ON RESULTS

As equation (5.5) is frequency-dependent, it can be solved by one of two different

techniques, as follows:

solution technique l- solving matrix equation (5.5) at each individual frequency over

the frequency range of interest; or
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solution technique 2- transforming equation (5.5) into a set of algebraic equations

and then combining the equations from different frequencies together and solving them

simultaneously as a “least-squares” problem. In this case, equation (5.5) becomes:

[PI (5.7)

c {AD} J

As is evident from equation (5.7),  [AZ] has been decomposed to its constituent variables

and [AK],[AM],[AD]  are explicitly present in the governing equation (5.7).

If the first technique is used for solving equation (5.5), then in order to be able to have

meaningful inversions of [HIS’ and [HI’,  the following inequality must be satisfied:

ns 2 ni (5.8)

As explained in section (5.3), the bigger ns is, the more accurate becomes the result, in

cases where noise is involved in the data.

If the second technique is applied, it is not necessary to satisfy (5.8) provided that
sufficient frequency points are used in setting up equation (5.7). It should be noted that,
again, the bigger ns is, the more accurate becomes the result.

One other important issue in the identification procedure based on equation (5.5) is the
method used for setting up the analytical model. In practice, depending on the type of

approach, there are 2 ways of constructing an analytical model, as follows:

(a> - if the analysis is based on the application of purely experimental data, i.e. if no
FE model is used, then the analytical model can be set up by coupling the
constituent substructures of the real structure through a trial joint model, using
their experimental FRFs  (model A-C);

co> - if a hybrid approach is used, some of the data related to model X are derived
from experiment and the rest related to the analytical model are generated using
the finite element models of the substructures, again coupled to each other
through a trial joint model using the spatial model of substructures and the trial
joint
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In the case of using approach (a), there is a coupling process necessary to set up the

model A-C.

The trial joint model, which is used to set up the analytical model, can be considered to

be either damped or undamped*. If a damped trial model is used for the joint, then it is

necessary to use a prescribed damping model for the trial joint. Since joint elements show

different damping mechanisms for different frequency ranges (usually hysteretic damping

is dominant at lower to moderate frequencies and viscous damping is more appropriate at

higher frequencies), the prescribed damping model can be a combination of both

hysteretic and viscous damping and, at least theoretically, the result will show which

damping mechanism is dominant within a particular frequency range.

It should be noted that the configurational model of the trial joint is dictated by the

interface coordinates of the real structure.

I5.5 CASE STUDIES

To study the performance of the solution based on equation (5.5) and to examine its

sensitivity to measurement noise, a series of case studies have been undertaken.

The test structures for all case studies are shown in Fig. 5.1

Joint

Structure X

structure  A-C

I Fig. 5.1 Models of real & analytical structures

Structure X, which simulates the real (i.e. experimental) structure, is a 6-element FE

model of a free-free beam where element 4 is designated as the joint element. In order to

be able to simulate practice as closely as possible, only translational slave coordinates are

* Note that since equation (5.5) is based on a direct identification approach, at least for the present
i~gpL;c,r;,fi  I’s.e: i . . . - . .

..;1? r~ercr~~%s~G~~  ) 9rL; ,s’nLl ,,iT ls,i,, ;n ChL \\h\Oi\
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considered in the calculations and, thus, the numbers of slave coordinates, ns, and of

interface coordinates, ni, for all case studies are equal to 5 and 4, respectively.

The base element of structure X has the geometrical and mechanical properties shown in

Fig.3.2.

The joint element of the real structure has the following properties:

Ljx =lOO%Le  , Ejx = 1000% Ee , pjx = 10% pe (5.10)

Thus, the joint element is 10 times stiffer and 10 times lighter than the base element.

The specification in equation (5.10) yields the following mass and stiffness matrices for

the real joint (i.e. experimental) model:

’ .05 .0021 .01746 -.00126

.OOO 11 .00126  -.000087

.05 -.002  1

. .OOOll 1
‘6440000 966000 -6440000 966000

193200 -966000 96600

6440000 -966000

193200 1 (5.11)

Structure A-C, which simulates the analytical model of the structure, is also a 6-element

FE model of a free-free beam with element 4 again representing the joint. The geometrical

and mechanical properties of the base element of model A-C are exactly the same as those

of X (shown in Fig. 3.2.), except for element 4 which represents the trial joint. Since the

process of coupling may induce more errors into the calculations, so, in all the case

studies, we will simulate approach (a) of section 5.4, i.e. model A-C is set up by

coupling substructures through a trial joint, using substructures’ FRFs.

5.5.1 CASE STUDIES USING SOLUTION TECHNIQUE 1

In this series of case studies, equation (5.5) will be solved as a matrix equation and at

each individual frequency.
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CASE STUDY 1

Fig. 5.2 shows typical results for the joint identified using equation (5.5). The trial joint

for this case study (and subsequent case studies unless otherwise stated) has the

following specifications:

which yields the following mass and stiffness matrices

q =

[K]; =

‘-025 .00105  .00873  -.00063

.000055  .00063  -.0000435

.025 -.00105

I .000055 1
-3220000 483000 -3220000 483000

96600 -483000 48300

3220000 -483000

. 96600 1

(5.12)

(5.13)

As Fig. 5.2 shows, the results are satisfactory over whole range of frequency of interest.

To examine the performance of equation (5.5) in the presence of measurement noise,

“5% random noise”* has been added to both real and imaginary parts of all FRFs

involved in the calculations.

* The n% random noise effect has been simulated using random number generator command FWD  as
follows

eij = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
where RND generates random numbers between 0 and 1 and INT command is used to take integer part of a
real number. eij is the error added to Hij. Note that eij is calculated ~epa.ratly  for real and imaginary parts
nfU nnrl nlw.  ;to .Gn..  ;o ,.hr\n.-nn  mnAr\ml..
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150 r
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;;
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120
kaOO.OO ’ I 1

Frequency Hz.
’ 1 0 0 0 . 0 0

Fig. 5.2 Typical result of identified joint impedance using solution
technique 1

Typical results of the analysis, with noise, are shown in Fig 5.3 . Examining Fig 5.3, it
is evident that the results are very poor and thus this method is very sensitive to noise.

m
z

5_ ?h
L t

128
5 0 0 . 0 0  ’

I I
Frequency Hz.

’ 1000.0~

Fig. 5.3 Typical result of identified joint impedance with 5% noise and
usim solution techniaue 1. correct value

As discussed in section 4.2.2.2, the reason for this high sensitivity to noise lies in the
nature of the identification problem and is not a computational issue. For example,

having defined [E] as the noise effect matrix, equation (5.3) can be rewritten :(for the
sake of simplicity, it has been assumed that matrices [H,] and [Ha] on the r.h.s of

equation (5.3) are not affected by noise) as:

[HJl[H,  - H, + E] [Hal-l  = [AZ] ==> [HJl[AH] [Hal-l  + [HJ-l[E] [Hal-l  = [AZ]

The first term on the 1.h.s  of the above equation yields the correct value for [AZ] and,
physically, this term contains the receptance difference matrix, [AH], resulting from the

effect of mass and stiffness errors between models X and A. Now, if the effect of large
variations in some of the mass and/or stiffness elements of the structure is insignificant
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on its response, then small changes in [AH] due to noise in [H,] will cause very marked

changes, in the identified [AZ] which, in this case, the effect of second term on the r.h.s

of above equation has dominated the effect of the first term.

So, for joint identification applications, if the joint in the real structure is stiff enough

(even if in some directions), very large variations in joint stiffness will cause insignificant

changes in structural response, so that 1000% variation in joint stiffness may cause only

a 1% variation in the eigenvalues. This means that, when solving the inverse problem,

very small variations in system response may cause very remarkable changes in identified

joint parameters. The nature of this type of inherent sensitivity to noise will be further

examined in chapter 9.

Thus, generally speaking, the FRF-based method based on equation (5.5) is not as

efficient using solution technique 1. In what follows the application of solution technique

2 to the joint identification problem will be examined.

5.5.2 CASE STUDIES USING SOLUTION TECHNIQUE 2

In this section we shall examine the application of solution technique 2, i.e. transforming

equation (5.5) to a set of linear algebraic equations by separating joint mass and stiffness

parameters in [AZ] and then, combining the set of equations relating to different

frequencies together, solving the resulting over-determined set of algebraic equations

using a least-squares method.

Having assumed a random distribution for the measurement noise, its effect on each

equation will be averaged out by adding the equations for different frequencies together

and, thus, a reduced sensitivity to noise is expected. (Note that as explained in chapter 4,

random noise effects can theoretically be eliminated completely if one can add an

infinite number of independent equations together.)

552.1 COMPUTATIONAL ASPECTS OF SOLUTION TECHNIQUE 2

As mentioned before, using solution technique 2, the following two steps are necessary:

(a> - transforming matrix equation (5.5) into a set of algebraic equations at each

frequency o.; and

@> - separating the mass and stiffness (and damping) parameters in [AZ]

b
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Computational problems caused by the above steps have been discussed in chapter 4 (see

section 4.4).

Considering matrix [AZ(o)] as:

[AZ(o)] = [AK] - [AM]co*  + i [AD] (5.14)

equation (5.5) can be transformed into a set of algebraic equations for each frequency o,

and having imposed a symmetry constraint on [AK],[AM] and [AD], one obtains:

[C(w)l(nsXns)X3/2(ni(ni+l)) 3/2(ni(ni+l))xl = { L(0) }(n,xn,)x 1 (5.15)

I {AD})

where the matrix [C(o)] is partitioned as follows:

nql)/Z
I

elements
related to
{AK)

.

elements
related to
{AMI

elements
related to
IA CI

(5.16)

Each element cw related to ~j can be calculated from the following equation (assuming

symmetry):

C((t-l)xns+g  , (i-l)x(ni-  Z)+j)  = h,(t,i) x h,(j,g) + h&j) x h,(Lg)

i,j= 1 . . . . . . . ni and j>i t, g = l.............. ns

If i=jthen

C((t-l)xns+g  , (i-l)x(ni-  ti)+j) = h&i) x ha(jvg)

(5.17)

(5.18)
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Having combined equations (5.15) for each of nf frequency points together, let us set up

the final over-determined set of equations as follows:

3/2(lli(ni+  1))Xl = {qJ(n,xn,xnf)xl (5.19)

Using the normal equation technique (explained in section 4.3) to solve the least-squares

problem defined in equation (5.19), one obtains the following determined set of

equations:

PI (5.20)

The number of the unknowns in equation (5.20) depends on the type of the model which

is assumed for the joint, as described in section 4.4.3.

Here, one of the following models will be used for the joint:

joint model l- in which a “beam element type” joint model is used. The number of

unknowns for this case is equal to 6 (3 unknowns for mass and 3 unknowns for

stiffness, see equation (4.58)).

joint model 2- general joint model which does not assume any relationship between the

degrees of freedom involved in interfacing. The number of unknowns for this case is

equal to 20 (see equation (4.60)).

5.5.2.2 E F F E C T  O F  N A T U R A L  F R E Q U E N C I E S  O F  T E S T
STRUCTURES ON CALCULATIONS

It is convenient at this stage to examine the effect of the natural frequencies of models X

and A-C on the calculations. As explained in sec. 4.4, if any of the matrices involved in
the r.h.s of equation (5.5),  i.e. [H]$,  and [HI:, are ill-conditioned, then according to

following inequality:
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K Wl.[Bl) f min (WV or [BI) (5.21)

the coefficient matrix [C(o)] in equation (5.15) will be ill-conditioned, leading to an ill-

conditioned matrix [P] in equation (5.19). Now, at natural frequencies of the real
structure model X and the analytical model A-C, the matrices [HI?  and [H]‘,s,

respectively become ill-conditioned and this will affect the result of solving equation

(5.19) using a least-squares technique.

CASE STUDY 2

To illustrate the above-mentioned problem, equation (5.19) has been solved using the

normal equation technique leading to equation (5.20),  for the, (a)-500 - 1000 Hz, (b)-

405-981 Hz and (c)-549-981 Hz frequency ranges and with 100 Hz, 144 Hz and 72 Hz

frequency increment steps, respectively.

Considering the natural frequencies of structures X and A-C within the 400-1000 Hz

frequency range shown in Table 5.1, it is clear that 2 out of the 4 frequency points used

in the joint identification in case (b) coincide with natural frequencies of the structure X.

Also, for case (c), 2 out of the 6 frequency points coincide with natural frequencies of

structure X, but, for this case the frequency points within the following band are

excluded from the calculations:

CI+ - 60 (rad/s)< Oi < cur + 60 (rad/s)

which leaves 4 non-coincident frequency points in the calculations.

+
Natural Freqs fg I%? frj I-IL 40 Hz

Strllcture x 549 693 981

Structure A 546 688 974

Table 5.1. Natural frequencies of test structures in the range of interest.

Table 5.2 shows the errors in typical parameters of identified joint parameters for the

different cases.

Examining Table 5.2 the following conclusions can be drawn from this case study:
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(a> - using frequencies close to or equal to the natural frequencies of the structures

involved in calculations deteriorates the results;

(b) - error values for mass parameters are larger than those for stiffness and this is

especially true for rotary inertia.

Trans  K Cross K Rotary K Trans  M Cross M Rotary M

Error% Brror% Error % Error % Error % Error %

Case a 1 point close 2.2 1.9 0.5 1.6 2.8 13.7

to resonance.

Case b 2 points 1200 1300 1500 6700 22700 6oooo

coincide

Case c no close or .Ol .022 .017 .013 .02 .04

coincid.points

Table 5.2 Typical error percentages in identified joint parameters for three cases.(a), (b)

and (c)

5.5.2.3 SENSITIVITY ANALYSIS

In this section, the effect of measurement noise on the results will be examined.

Measurement noise has been simulated by introducing 5% random error, proportional to

the receptances of the test structures. The test structures and real and trial joint models are

similar to those in Figs. 5.1 and 5.2 and expressions (5.10),  (5.1 l), (5.12) and (5.13).

Before starting to discuss the case studies, it is convenient at this stage to explain the

technique which has been used to solve equation (5.20). Consider equation (5.20) again:

[Sl = IQ1 (5.20)

where, for the sake of simplicity, damping has been neglected.

Partitioning matrix [S] in (5.20) one obtains:

(5.22)

--
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After some matrix manipulation, the unknown vectors { Ah4}  and {AK} can be calculated

from following equations:

(&I - CQ1l P,,l-’  P121 NW = {Q21 - [Q1l CSlll-‘IQ11 (5.23)

and

{AK) = [Sill-? IQ11 - P121  tAMJ > (5.24)

So, the vector { Q2} - [Szl] [S 111-l (Ql } on the r.h.s of equation (5.23) can be shown as

the contribution of joint mass to difference matrix [AH].

Note that solving equations (5.23) and (5.24) offers no advantage over solving equation

(5.20) directly, i.e. direct inversion of [S], but, as will be shown shortly, partitioning the

matrix [S] and solving equations (5.23) and (5.24) will make it easier to find an

explanation for the high sensitivity of equation (5.20) to noise and to fiid ways of coping

with this high sensitivity.

CASE STUDY 3

In this case study, equations (5.23) and (5.24) have been solved within the frequency

range of 100-1000 Hz and with 5 Hz frequency increment steps. The results of this

analysis are shown in expressions (5.25),  (5.26).

r -.36(614%) .021(890%) -.123 -.012

.0062(5000%) .0125 .0047

.036 -.0212

L -.0063 1
[Klj =

[Klj =

m -2.12E7(2300 %) -3E6(210%)  2.12E7  - 3 E 6

-571611(200%)  3E6 - 2 8 5 8 0 5

-2.12E7 3E6

. -571611

.5.265E6(18%)  783703(19%)  -5.265E6 783703

157812(18%) -783703 78906

5.265E6 -783703

. 157812

(5.25)

(5.26)
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As expression (5.25) indicates, the results of solving equations (5.23) and (5.24) are

very poor. On the other hand, the joint mean stiffness matrix [Klj in expression (5.26) is

satisfactory. The mean stiffness matrix in expression (5.26) has been calculated from

equation (5.24) by ignoring the mass in the calculations, using following equation:

{AKlj = [Sill-’  IQ11 (5.27)

The better results for calculations without mass indicate the very small

effect of the joint mass in the calculations (at least in some directions*)

which can easily become polluted by measurement noise.

Having scanned the 100-1000 Hz frequency range, the above results, i.e. significantly

better results for [Klj compared to [Klj and the deteriorating effects of joint mass on the

results when noise is present, are confirmed.

It should be noted that for all case studies the largest error in the results is always

associated with rotary inertia and this implies the insignificant effect of this parameter on

the structure’s response.

5.5.2.4 EFFECT OF FREQUENCY ELIMINATION BAND WIDTH

It was shown in case study 2 that avoidance of the natural frequencies of the test

structures can significantly improve the results for the noise-free case. In this section, the

effects of the natural frequencies, and the effect of eliminating them from the calculations,

on the results will be investigated for the with-noise case.

CASE STUDY 4

In this case study, the analysis within the 500-1000 Hz range will be repeated for 5

cases. In the first case there is no frequency elimination and for the rest of the cases the
bandwidths of elimination around resonance frequency o.+ are as follows:

Cl+ - 1 0  ( d / S )  < 6+ < Ci+ + 10 (d/S) 60

* As will be shown in later chapters, the structure’s response is insensitive to variations in joint rotary. *. ^ . . # ^ ^.
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6+ - 20 @ad/s) < Ui C Or + 20 (l&/S) 09

Q+ - 30 (Kid/S)  < Oi < 0, + 30 (rad/s) (c)

o+ - 60 (rad/s)  < Wi < or + 60 (rad/s) 00

Fig. 5.4 shows the variation of a typical element, say k(l,l), of stiffness and mean
stiffness matrices versus frequency elimination bandwidth.

4.008+7

3.008+7

2.008+7

1 .OOe+7

O.OOe+O

correct value

1 .OOe+7

9.008+6

8.008+6

7.008+6

6.008+6

5.008+6

-1.008+7  f I I I , I I ’ 4.008+6
0 20 40 60 80 100 120

Elimination band width rad/s
Y k(l,l)

Fig. 5.4 Variation of typical elements of [k] - Mf)
& [k] with elimination band width

Examining Fig. 5.4 reveals that for low to moderate elimination bandwidths, say up to

40 rad/s, frequency elimination improves the results for both [Klj and [l?lj and

increasing the elimination bandwidth beyond a certain limit, i.e. excluding all resonances
and high level responses from calculations, will reduce the level of responses of

structures involved in the calculation and thus the effect of structures in the calculations
will be similar to very stiff structures with high-frequency resonances and this will result

in over-estimation of stiffness values (as figure 5.4 indicates).

Considering Fig. 5.4 and the above deductions, it seems that it is possible to have a

reasonably accurate estimation for stiffness (and damping if it is hysteretic). This can be
achieved by repeating the calculations within the different frequency ranges and, for each
frequency range, with different elimination bandwidth and then calculating a mean of the
(mean stiffness matrix), using statistical techniques.
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5 . 5 . 2 . 5  E F F E C T  O F  I N C R E A S I N G  F R E Q U E N C Y  R A N G E  O F

-ANALYSIS

CASE STUDY 5

The main purpose of performing this case study is to examine the effect of a higher

frequency range on the results and to find out why, in spite of increasing frequency range

and consequently increased mass effect, the results for the mass and stiffness matrices of

the joint are still poor.

The test structures and real and trial joint models are similar to those in previous case

studies and are shown in Figs. 5.1 and 5.2 and expressions (5. lo), (5.1 l), (5.12) and

(5.13). The noise effect is again simulated by a 5% random noise added to the

receptances of the test structures.

Calculations have been performed for the two frequency ranges of 500-1040 Hz and

1500-2040 Hz with 90 Hz frequency increments in both cases. Table 5.3 shows the

order of magnitude of typical elements of the coefficient matrices involved in equations

(5.20), (5.23) and (5.24) for with- and without- noise cases. Note that frequency ranges

and increments have been chosen in such a way that no resonance frequency coincidence

occurs in either case.

Table 5.3. Typical values related to coefficient matrices in

equations (5.20),  (5.23) and (5.24)

It is evident from typical without-noise values in Table 5.3 that by increasing the
frequency range, the mass effect in calculations reflected in vector {Q2}  - [S21]  [Stl]-

‘{QI} has been increased (note that vector {Q} in the r.h.s of equation (5.20) has been

generated from vector {AH}  on the 1.h.s of equation (5.5)).

On the other hand, a higher frequency range has reduced the order of magnitude of the

elements of the coefficient matrices. In other words. increasing the freauencv range of
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analysis will reduce the norm of the coefficient matrices involved in calculations. This

small order of magnitude can make (real value/noise effect) ratio very small which in turn

causes poor results.

The above-mentioned observation yields this result that “increasing the frequency range

of the calculations does not yield better results, although it increases the mass effect in the

calculation”.

Table 5.3 also reveals the very large value of error in vector { Q2} - [Szl] [SII]-‘{  Q1} for

the with-noise case. As this vector represents the contribution of joint mass to difference

matrix [AH], this large error indicates the insignificance of joint mass contribution to

[AHI.

15.61  CONCLUSIONS AND REMARKS.

From what has been presented in this chapter, the following conclusions can be drawn:

(a> -

@> -

(cl -

Cd) -

there are two drawbacks associated with using the FRF-based direct method for

joint identification, namely:

(i)- it is necessary to measure transfer FRFs between the interface and

coordinates, and this may be difficult, if not impossible, in practice; and

slave

(ii)- to set up the analytical model, or the analytically-coupled structural model, a

coupling process is necessary which may induce extra errors to the identified

joint;

using the individual frequency points solution technique, i.e. technique 1 in sec.

5.4, equation (5.5) yields satisfactory results for cases without noise. If noise is

introduced into the calculations, equation (5.5) fails to give sensible results;

transforming matrix equation (5.5) to a set of algebraic equations, and using a

least-squares technique, one should be careful about the rank and condition of

the over-determined set of algebraic equations. Unless sufficient frequency

points are used, the coefficient matrix in equation (5.19) will be ill-conditioned;

for the with-noise case, the mean stiffness matrix is a reasonable approximation

to the real stiffness matrix. The satisfactory result for the mean stiffness matrix
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means that the effect of mass in the calculations is insignificant and thus can

easily be affected by noise and this, in turn, will affect the stiffness matrix (see

equations 5.23 and 5.24 and Table 5.3);

(e> - the accuracy of the mean stiffness matrix as well as the mass and stiffness

matrices depends significantly on the frequency elimination bandwidth used in

the calculations;

0 - to have a sensible approximation to the stiffness (and damping) matrix of a joint

for the with-noise case, the best way is to perform calculations within the

different frequency ranges and, for each range, with a different elimination

bandwidth. Having calculated mean stiffness matrices for each case, and using

statistical techniques, one can calculate a mean of the (mean stiffness matrix).



CHAPTER 60

A NEW MODAL-BASED DIRECT IDENTIFICATION
METHOD FOR JOINT IDENTIFICATION & MODEL

UPDATING

I6.1 INTRODUCTION

6.1.1 THE NEED FOR A NEW JOINT IDENTIFICATION AND MODEL

UPDATING METHOD

Model updating and joint identification methods have been categorized in chapters 1 and

3. As discussed in these chapters, due to certain similarities between the mathematical

techniques used in joint identification and model updating (chapter 3), one can use almost

the same classification for both fields. The usefulness of the classification of joint

identification methods is due to the fact that, following this classification, one can identify

the areas which have not yet been fully discussed or explored.

The classification proposed in chapter 1 is shown in more detail in Fig. 6.1, where it can

be seen that the various techniques used for formulating the relationship between cause

(i.e. the mis-modeled elements or joint(s)) and effect (the differences between two

consistent models of the structure) are broadly divided into two groups: perturbation- (or

sensitivity)-based and direct methods. As mentioned in chapter 3, a sort of nth  order

approximation has been used in the former group to formulate the cause and effect

relationship while in the latter group no approximation is involved in the formulation. It

should be noted that the classification in Fig.6.1  is based on the mathematical basis of the

derivation only: no computational considerations are involved at this stage.

Examination of Fig.6.1 reveals that there are at least two areas which have not yet been

investigated, i.e. spatial-based and modal-based direct methods. Thus, it is necessary to



161 Modal-Based  Direct Identification Method 111

study these areas and to explore their performance. In the present chapter the modal-based
method will be studied.

CLASSIFICATION TABLE FOR ADAPTIVE  IDENTIFICATION
TECHNIQUE ( MODEL UPDATING & JOINT lDENTlFlCATlON

METHODS)

ICAUSE & EFFECT FORMULATION  1

I DIRECTMETHOD

1 FRF-BASED 1

Fig.6.1 Classification of joint identification & model updating

methods.

The modal-based direct method, as the author calls the new method, is described below
and will be seen to be a natural extension of the component mode synthesis method

[17,19,20].  Using the same concept as for component mode synthesis and solving the
inverse problem, one should be able to identify unknown (or mis-modeled) elements.

Formulation of the method is based on the free interface component mode synthesis
method and, in what follows, the general formulation of the method which is applicable

to model updating and structural modification will be presented first followed by
application of the method to the joint identification problem.

I6.2 GENERAL FORMULATION OF MODAL-BASED DIRECT METHOD

APPLICABLE TO MODEL UPDATING

We shall use the following definitions:

X = exact (i.e. experimental and updated analytical, FE) model of a structure which
exhibits the dynamic properties observed in test;
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A = original (i.e. before updating) analytical model;

E = structural modification(s) added to model A to update it to model X

Considering complete coordinate interfacing between A and E, the equation of motion for

model A can be written as:

(6.1)

where {T} contains the reaction forces at the interface coordinates.

Considering the coordinate transformation from physical coordinates to principal
coordinates {pa}, and separating the na modes into kept (k) and eliminated (e) categories,

one has:

1 {P&l
{xa}=[~al{Pa}=[~ak’~ael 1

&fJ 1

, (6.2)

Using (6.2) and taking advantage of the orthogonality relationships between the

eigenvectors and the mass and stiffness matrices, equation (6.1) can be rewritten as

follows:

(6.3)

{P,,}  + [ w,2,1{P,I  =[ OaelTIT} (6.4)

Assuming that the smallest wae is much larger than the maximum frequency which is of

interest, i.e. 0 >> 0
ae max of investigation 3 the inertia effects of higher modes will become

much smaller than their contribution to the flexibility of the structure and, thus, one can

ignore the inertia term in equation (6.4) so that this equation can be written as:

., ,
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A = original (i.e. before updating) analytical model;

E = structural modification(s) added to model A to update it to model X

Considering complete coordinate interfacing between A and E, the equation of motion for

model A can be written as:

(6.1)

where {T} contains the reaction forces at the interface coordinates.

Considering the coordinate transformation from physical coordinates to principal
coordinates {pa}, and separating the na modes into kept (k) and eliminated (e) categories,

one has:

1 {P&l
{xa}=[9al{Pa}=[(Pak’~ael 1

b3fJ 1

. (6.2)

Using (6.2) and taking advantage of the orthogonality relationships between the

eigenvectors and the mass and stiffness matrices, equation (6.1) can be rewritten as

follows:

(6.3)

{P,,}  + 1 0,2,11P,)  =[ OaelTIT} (6.4)

Assuming that the smallest “,, is much larger than the maximum frequency which is of

interest, i.e. 0 >> 0
ae max of investigation 3 the inertia effects of higher modes will become

much smaller than their contribution to the flexibility of the structure and, thus, one can

ignore the inertia term in equation (6.4) so that this equation can be written as:

. ,
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Equation (6.5) reflects the fist-order (static) approximation to the contribution of the

higher eliminated modes to the flexibility of the structure [36] (usually referred to as the

“residual” effect)

The response model of structure E can now be expressed as

(6.6)

noting that the compatibility and equilibrium conditions have already been imposed on the

response model of E in equation (6.6).

Using equation (6.2), equation (6.6) can be written as:

{P&]
-if] =fzE] ]$&t$ae] 1

{Pae) J

> (6.7)

Calculating { pae} from equation (6.5) and substituting it into equation (6.7),  one obtains:

me term [$a J[~&l-l[$~lT on the 1.h.s of equation (6.8) represents the contribution of
the higher modes to the flexibility matrix and can be calculated as follows:

[KJ- ’ = [$&I [@:I-' [@*IT + [9aJ[m~J‘1  [$aJT (6.9)

(6.10)

Designating [R,] to the 1.h.s  of equation (6.10) reflects the fact that, as mentioned before,

the term [Ib,l[oa2,]-1[$ae]T  represents the residual flexibility due to the higher modes

which, in the case of purely experimental applications, can be determined from the

measured FRFs of structure A.

Substituting for [&e][~~]-‘[$ae]T from equation (6.10) in equation(6.8) yields:

{TI =- [ I+ [GI[RaI Iml[ZEI[$*I{P*] (6.11)
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Substituting { 7) from equation (6.11) into equation (6.3), and after some algebraic

manipulation, one has:

-A, {P,} + [ b~l+ NaklT CH, + RJ-’ [Qakl  l{pJ=o (6.12)

where in equations (6.11) and (6.12) [Z,]  and [HE] are structure E impedance and

receptance matrices, respectively.

Equation (6.12) is the main formula for this part of the analysis. Theoretically, having

measured the modal parameters of a real structure X, and having calculated the modal
parameters of analytical model A, one should be able to calculate [HE] or [Z,] from

equation (6.12), yielding the mass and stiffness correction matrices necessary to update
the FE model A. It should be noted that [HE] in equation (6.12) is frequency-dependent

and that solving equation (6.12) using the rth mode’s modal parameters yields [HE] at

W2=h xT , i.e. at the resonant frequency of the updated structure. So, equation (6.12) is

not a standard eigenvalue problem in its present form.

6.2.1 SOLUTION PROCEDURE FOR EQUATION (6.12)  HAVING

COMPLETE COORDINATES MEASURED

The solution procedure will be as follows.

Assume that n, and q are the numbers of measured coordinates and modes of model X,

respectively. Also, that na and k are the numbers of coordinates and kept modal

parameters of model A, respectively. The vector { p,} for mode r can be calculated using

the measured modal vector of mode r and

follows:

the transformation in equation (6.2), as

{%G]nxxl  = [ $ak ]nx* {pXr]kxI where 1=1,

and n,=>  k

2 ,.......... mx (6.13)

Having calculated { pm}bl for mode r and put it in equation (6.12),  one has:

[[$&IT  [HE + &l-l [4~,11 {P,] = & (P, I - h$.l  {P,

or, letting [HE + R,l‘l  = [A],

(6.14)
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[ [$&lLa fAlnama [@&In,&  I {P,]kx,I = & {p,]  - la.j$  {PU) (6.15)

Transforming matrix equation (6.15) into a set of algebraic equations with elements aij of
[A] as unknowns gives k equations with na(na+1)/2  unknowns (assuming a symmetric

[A]). In the case where a complete set of coordinates and modes of model A are involved
in the analysis, the total number of equations will be k=n, and thus the number of

equations will be less than that of unknowns. To prevent the construction of an under-
determined set of equations, it is possible to combine k (=n,) equations like (6.15) for

each mode r together and thus to increase the number of equations. To be able to do this,
since [HE] is frequency-dependent, one has to write equation (6.14) as follows (note that

for the case of complete modes and coordinates [R,] = 0):

or

EWJ namatna+

(6.16)

naX1
(6.17)

where equation (6.17) is the algebraic version of equation (6.16) with
WEI1 I{MEI

as the

vector of unknowns. Now, it is possible to put up to na sets of equations like (6.17)

together (one for each mode) and in doing this one will have up to nz equations

(depending upon how many modes are used). On the other hand, separation of the mass
and stiffness variables in equation (6.16) increases the number of unknowns to n,(n,+l).

Thus, although the number of equations has been increased, the set of equations is still

under-determined. This means that this method is not applicable to cases where structure

E has a general form and some restriction must be imposed on the mis-modelled

coordinates to reduce the number of unknowns.

One restriction which can be imposed on E is preservation of the connectivity of the

analytical model. This restriction is not only convenient but is necessary, too. Having
imposed a connectivity restriction, the numbers of unknowns for [KIE and [MIE are

assumed to be equal to p and q, respectively. Thus the necessary and sufficient condition

for equation (6.17) to be solved uniquely, for the case of complete measured modes and

coordinates, is:

pcqZn,x na (6.18)
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which is not difficult to satisfy.

6.2.2 SOLUTION PROCEDURE OF EQUATION (6.12)  BASED ON

INCOMPLETE MEASURED COORDINATES & MODES

6.2.2.1 SOLUTION PROCEDURE 1, APPROXIMATE SOLUTION

In this section, we will try to deduce the necessary and sufficient conditions under which

the method can be used for updating applications in the case of incomplete measured

modes and coordinates.

The first step in dealing with the case of data incompleteness is to modify equation

(6.14). Assuming that

II [R,] II << II [HE] II (6.19)

one can ignore [R,] in equation (6.14), thus reducing it to equation (6.16),  i.e.

[ [qklLa [lKl~ - h, lMl~Ina~a [@*Ina*  1 ]Pxr]hl=  & {P,] - ]a,$ {P,](6*20)

TO see the effect of ignoring [R,] , expand [H, + Ra]-’ as:

~~~+~~l~‘~~~l~~~~l~~R,l  [Zl,
= WI - WI & - [Bl - WI &&,l[Kl-[Ml  &I
= [Kl-[KI[R,I[KlI  - ~~~l~~~l~~~l[Ml~~~l~~~l~~lI~~  M[RJ[Ml~

(6.21)

Note that in order to save space the index E for [M] and [K] has been omitted in equation

(6.21).

As is evident from equation (6.21),  modification terms to [M] and [K] in this equation
can be neglected, using the lower measured modes (i.e. smaller &J and as many modes

of the analytical model as possible (i.e. very small II[R,]II).

Generating equation (6.20) for each measured mode, transforming the results into a set of

algebraic equations like equation (6.17) and combining them and then solving them
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simultaneously will produce a solution for unknown vector

inequality (6.18) has the following form:

For this case the

p+q=<mxxk (6.22)

On the other hand, according to equation (6.13),  the following inequality must also be

satisfied:

kznx (6.23) l

Thus, combining (6.22) and (6.23), the single inequality which must be satisfied is

(along with (6.23)).

p+qfmxx  n
X

(6.24)

Since relatively few modes and coordinates can be measured in practice (compared with

an FE model), inequality (6.24) can constitute a serious restriction on the application of

the method. In such cases, where inequality (6.24) cannot be satisfied, there are two

ways of dealing with this shortcoming, as follows:

(a) - to decrease p and q by assuming specific locations for the error(s)

(or by considering macro-elements). In this case, the number of

erroneous degrees of freedom, i.e. the number of degrees of freedom of the
hypothetical structure E, is ne and equation (6.2) can be written as:

(6.25)

The coordinates of structure A have been divided into those which should be modified
shown with index 7” and with the total number of ne,  and those which are assumed to be

modelled correctly, shown with index “s” and a total number of ns. In this case,

equations (6.1),  (6.3) and (6.4) can be written as:

(6.26)
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{P,e}  + [~,2,lIPael =[4)aeilT{Ti)

(6.27)

(6.28)

Following the same method as for a case with complete coordinates, equations (6.11) and

(6.12) can be rewritten as :

{?i} = - [ I+ [z,l[R~l I-‘IZ~I[$~IIP*J (6.29)

and

- %r  hAx1 + [ [ail + [@*I&e lHE + RJni& [O&Ineti  l{Pm)=O (6.30)

where [R.J in equations (6.29),  and (6.30) is defined as follows:

(6.31)

This means that only the coordinates which are modified are involved in the calculation of

[&I.

Assuming, again, that II[R.JI C-C  II[H,]II, equation (6.30) reduces to:

For this case, as before, the solution procedure starts by calculating {pxr}kxl from

equation (6.25) as follows:

(6.33)

Note that although { qti} and [ Qaki  ] could be used in equation (6.33) to calculate {P,),

by using the correctly modeled coordinates’ modal parameters in { &,) and [ $aks 1, one

has the advantage that it is usually easier to measure certain correctly modeled coordinates

than those coordinates which are assumed to be wrongly modelled (for example,

coordinates across a joint). The inequalities which must be satisfied in this case are
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(b) - to increase nx in inequality (6.24) and thereby k. This can be done by

compensating for incompleteness of the measured coordinates by filling the

unmeasured coordinates of the measured eigenvectors with their analytical

counterparts. Although, for the time being, there is no justification for the

correctness of this compensation, experience shows [27] that if the errors in the

FE model are not large, then this compensation converges using iteration.

Another more logical way of increasing nx is to expand the measured eigenvectors to the

unmeasured coordinates using the FE model mass and stiffness matrices as interpolation

and extrapolation matrices [37,38].  It should be noted that the analytical modal parameters

are unique in the sense that they minimize the potential function (or Rayleigh quotient) of

the model that we have assumed for the structure and so what we get from the expansion

of experimental modal parameters is just an interpolation and does not have any functional

properties.

6.2.2.2 THE ROLE OF [R,] IN THE CALCULATION AND ITS EFFECT

ON RESULTS

In cases where incomplete modes are involved in the transformation (6.2), which is

inevitable in practice due to the incompleteness of the measured coordinates, the matrix
[R,] must be introduced into the calculations. This matrix, whose norm, II[R,]II,  depends

on the number of kept modes of the analytical model (k), represents the effect of higher

modes on the flexibility of the analytical model.

On the one hand, neglecting [R,] means that what we introduce to equation (6.12) as the

“analytical model” is stiffer than the real analytical model as defined by its mass and

stiffness matrices. This will result in a more flexible modifying structure E (as is also
evident from equation (6.12)). On the other hand, incorporating [Ra] in the calculations

will cause a problem in efforts to impose the connectivity (which is necessary to reduce

the number of unknowns). It should be noted that using a simplifying assumption in

equation (6.21), one has a problem in imposing connectivity as matrices [K]-[K][R][K]

and [M[R][K]+[K][R][M] do not have any connectivity pattern.

Now, the smaller II[R,]II is, the more valid become both approximate equations (6.20) and

(6.32). Thus, in order to be able to apply the method in the case of incomplete modes and
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coordinates while preserving connectivity, one has to increase the number of kept modes

of the analytical model, (k), as much as possible.

The other point which can improve the accuracy of the results is the proper selection of

experimental modes in the 1.h.s of equation (6.13). If one assumes that the difference

between the real structure and the analytical model is not very large, then one can

represent the lower modes of the real structure as a linear combination of a relatively large

number of the lower analytical modes with high accuracy. For example, assume that there

are 10 measured modes for the real structure and 15 kept analytical modes. In this case,

using equation (6.13),  the first mode of the real structure can be represented with high

accuracy as a linear combination of the first 15 analytical modes and, as the mode number

of the real structure on the 1.h.s of (6.13) increases, the accuracy of this approximation

(in equation (6.13)) decreases. Thus, it is recommended to use as few measured modes

as possible in equation (6.13).

6.2.2.3 SOLUTION PROCEDURE 2, EXACT SOLUTION

In this section, we shall modify equation (6.12) in order to be able to solve it without any
approximation on [R,] and we shall discuss the shortcomings of this approach.

After some matrix manipulations, equation (6.12) can be rewritten as:

[@&I&a [‘El [[@kIna& - [R,] I+*]~:&  [A~11 {P,] = [O*]kxT,, ]Qak]nsk [A’] (p,)

where

(6.34)

WI = [h,l - b$ (6.35)

Note that [hxr] is a diagonal matrix. Equation (6.34), which holds for each mode r of

structure X, has the advantage that [ZE] is explicit in it and thus no approximation is

involved in solving this equation.

The major problem in dealing with equation (6.34) is that, in order to be able to calculate
T+

[%k1kXna7 one has to satisfy the following inequality for each mode of X:

kzn, (6.36)
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Inequality (6.36) cannot be satisfied (considering inequality (6.24)) unless either a

complete set of modes are used or one of the methods described in sec. 6.2.2.1 is used to
reduce na or to increase nx and thereby to increase k. Assuming specific locations for the

error(s), as in section 6.2.2.1, equation (6.34) can be written as:

(6.37)

Now, since ne CC na, it is easy to satisfy both (6.36) and (6.23)

So, it is clear from the above discussion that equation (6.34) is not suitable for

model updating applications

I6 . 3 RELATIONSHIP

EIGENDYNAMIC

while it does seem promising for joint identification.

O F  T H E  N E W  M E T H O D  T O  T H E

CONSTRAINT METHOD.

Although the method introduced in section 6.2 was originally derived from a component

mode synthesis analysis, it is now clear that it can also be derived from eigendynamic

constraint theory [28,39,40,41].  In this context, and in contrast to conventional

eigendynamic constraint methodology, it should be noted that the advantage of the new

method is that it can be applied in cases of spatially-incomplete modal data.

The eigendynamic constraint method is essentially based on the following formula:

]lK+AKl  - &[M + WI { @,I = 0

leading to

[WI - &JLM]{$~]  = &M{$,]  - IKl{&r] (6.38)

The main problem with applying equation (6.38) is the inevitable inconsistency between
the number of measured coordinates in { Cpxr} and the dimension of the mass and

stiffness matrices of the analytical model. To resolve this problem, equation (6.38) will

be transformed to equation (6.12) as follows:

pre-multiplying equation (6.38) by [$a]kxla and post-multiplying

]+a]&,9 one obtains:
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leading to

[%J~a [[AK1 - &i.WI[$J,,~  [&J~~a(%u)nxx~ =

& [Oalkx+na(&)  - la [~alkx+na(hr)nxxl (6.39)

Now, assuming that the complete set of coordinates have been measured, the following

relation holds (see equation (6.13)):

(hX)naXl = [ @alna& (PXrjkxl

or

IP~)~l= [+al&a{hr)naxl (6.40)

where the vector

principal space,

($Xr}naxl has been transformed to a sub-space of the analytical model’s

using equation (6.40) (or, simply, the vector { &.},,, 1 has been

expressed as a linear combination of k eigenvectors of the analytical model).

Combining equations (6.39) and (6.40) yields:

[$al&[[W  - &[AMlI [$alnaxk {P~l~l =hx, {p,}bl  -)ca (Pnjbl (6.41)

Now, provided that {P,}kxl can be calculated from (6.40), equation (6.41) yields k

equations for each measured mode. Combining these together, there will be %xk

equations available.

Noting that equation (6.40) can be rewritten as:
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OT

(Pn}bl= [$l~x~%xlnxxl ‘k"X= (6.42)

equation (6.42) has been derived

coordinates from I$,;} and [Qa].

from (6.40) simply by eliminating the unmeasured

Equation (6.41) is similar to equation (6.12) except for the presence (or absence) of [R,].

1 6 . 4 1  A P P L I C A T I O N  O F  P R O P O S E D  M E T H O D  T O  T H E  J O I N T

IDENTIFICATION PROBLEM

Equations (6.32) and (6.37) could be used for joint identification purposes. For this

particular application, the erroneous coordinates are known to be those across the joint

and thus the inequality of equation (6.24) can easily be satisfied. This method is

especially useful when several joints in an assembled structure are to be identified.

The identification procedure will start with the explicit consideration of the joint(s) in the

FE model of the assembled structure and then continue using any of equations (6.32) or

(6.37). This approach has three problems associated with it, as follows:

(a> - the proper and accurate modelling of a joint is very important and sometimes

very difficult. If the joint has not been modelled properly, the identified joint will

not be correct ;

@I - the mis-modeled substructures which constitute the assembled structure will

affect the characteristics of the identified joint;

(c> - sometimes, the FE model of a structure is very difficult and expensive to

construct. Thus, in this case, if only identification of the joint(s) is (are) desired,

it may not be worthwhile developing such an FE model.

The second and third problems listed above can be avoided by using experimental models

of the substructures, assembling them through a hypothetical trial joint model and then

calculating the modal parameters of this analytically-coupled structure, A-C, using them
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along with the modal parameters of the assembled structure in equation (6.32) (or

(6.37)). This approach still has the disadvantage of requiring consideration of a

prescribed model for each joint and, besides, one has to couple experimental models of

substructures which itself is difficult and introduces some error to the problem.

In what follows, the computational aspects of the method will be discussed and its

performance and sensitivity to noise will be examined through a series of case studies.

I6.5 CASE STUDIES

The main objective of this section is to examine the performance of the proposed modal-

based direct identification method. The section has been divided into two parts, as

follows:

part l- application of the method to the joint identification problem, based on equations

(6.37) or (6.32); and

part 2- application of the method to the model updating problem, based on equation

(6.20)

It may seem that the application of equation (6.32) to joint identification is redundant,

when it is possible to solve the problem more accurately using equation (6.37). However,

if equation (6.32) turns out to have the same degree of efficiency as equation (6.37),  then

using (6.32) is, at least, associated with advantage that the higher modes’ residual matrix
[R,] is not required in this equation. This is a great advantage, especially when purely

experimental data are used to generate structure A-C.

PART 1 CASE STUDIES RELATED TO THE JOINT IDENTIFICATION
PROBLEM

6.5.1 COMPUTATIONAL ASPECTS

Solving either equation (6.32) or equation (6.37) requires certain computational

considerations which will be discussed in this section.

To clarify the concepts and conclusions which will be discussed through this and the

following sections, each conclusion will be illustrated with a numerical case study. It

should be noted that in all these case studies, in order to simulate real practice as closely
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as possible, only the translational slave coordinates of the real structure will be used in the

calculations. It should also be noted that, unless stated otherwise, deductions and

conclusions which will be discussed throughout the part 1 apply both to equation (6.32)

and to equation (6.37).

6.5.1.1 TEST STRUCTURES AND JOINT MODELS

The test structures which are used in all case studies of this part are shown in Fig. 6.2.

Structure X, which simulates the real structure, is an 16-element clamped-clamped beam

with element 9 designated as the joint element.

As mentioned in section 6.4, the analytical model (i.e. structure A-C), is generated by

coupling the constituent substructures of the assembly through a trial joint model. Since,

as mentioned before, only the translational slave coordinates of the A-C and X structures

are used in calculations, there are 13 coordinates in the eigenvectors of structures A-C and

X in the transformation equation (6.33). Also, unless stated otherwise, the modes of the

A-C structure used in the calculations will be the first 7 modes. So, the transformation

matrix in equation (6.33) is a 13x7 matrix.

Structure X

Structure A-C

Fig. 6.2 Real structure X & analytically coupled structure A-C

The base element used in developing the FE models of the various structures has the

geometrical and mechanical properties shown in Fig.3.2.

The joint element of the real structure has the following properties:
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Ljx = 800/3%  L, 9 Ejx= 5 0 0 %  E, 7 Pjx = 10% Pe (6.43)

and is thus 5 times stiffer and 10 times lighter than the base element.

The specifications in equation (6.43) yield the following mass and stiffness matrices for

the real joint model:

lIKljx =

r .05 .0021 .01746 -.00126

.OOOll .00126 -.000087

.05 -.002 1

L .ooo 11 1
3220000 483000 -3220000 483000

96600 -483000 48300

3220000 -483000

96600 1 (6.44)

The configurational model of the trial joint is dictated by the interfacing configuration of

the real structure and the trial joint specification will be given for each case study.

6.5.1.2 THE EFFECT OF THE NUMBER OF MODES INVOLVED IN

CALCULATIONS ON THE RESULTS.

In order to be able to solve equation (6.37) (or (6.32)),  it is necessary to transform it into

a set of algebraic equations. Having done this, the resultant set of algebraic equations has
the following form for each eigenvalue, h :

XI

[ClkJW(ni(ni+  1)) 1 mj(hJ I 1/2(nl(nl+l))Xl  = ‘L(hd’kxl. . (6.45)

where k is the number of kept modes of structure A-C and ni is the total number of

interface coordinates. It should be noted that the symmetry of the joint impedance matrix

has already been taken into account in equation (6.45).

Although it seems that equation (6.45) can be solved for each individual eigenvalue of

structure X, due to ill-conditioning of coefficient matrix [C] and due to the fact that the

coordinates involved in the calculations are incomplete, in order to obtain reasonable

results a minimum number of modes is usually required to make up the condition of

. . . _
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matrix [C] and to reflect sufficiently the effect of the joint in the equation. The reasons for

the ill-conditioning of matrix [C] have been explained in chapter 4 and the number of

modes required to achieve an acceptable condition number depends mainly on the degree

of ill-condition of matrix [C] which, in turn, depends on the number of unknowns in the
vector {AZj(hU)}  of equation (6.45).

Separating the variables in equation (6.45), one obtains:

(6.46)

The number of unknowns in equation (6.46) depends on the model which is considered
for the [AKj] and [AMj],  as explained in section 4.4.3. In the case studies below the

following model is used for [AKj] and [AMj]:

beam element model. In this model a “beam element type” joint model is used, as
defined in equation (4.58). The number of modification factors, ai, for this case

is 6, three for mass and three for stiffness.

So, if the real joint can be considered as a beam element, i.e. with 4 degrees of freedom

involved in interfacing and having the same connectivity properties as a beam element,

then there will be 6 modification factors at the interfacing station in Fig. 6.1 (or 9 if

damping is involved) and a necessary condition (but not sufficient) for a full rank matrix

[C(hxr)]  in equation (6.46) is:

k=>9 (6.47)

For our present applications wherethere  is only one interfacing station and no damping is

considered, inequality (6.47) becomes:

k:6 (6.48)

As is evident from (6.48), it is easy to satisfy this inequality but , as mentioned before,

the condition of matrix [C] is not the only problem and due to incompleteness of the

coordinates involved in the calculations one still needs to use several modes in order to

achieve reasonable results (as will be shown below).
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On the other hand, there is a limitation to the number of modes of a real structure which

can be used in the calculations. This limitation arises from the approximation made in the

derivation of equation (6.37). According to this approximation, the effect of the higher

neglected modes in the calculation can be approximated by a residual matrix [R] and the

higher the mode number, r, involved in the calculation, the less valid becomes this

approximation (see equation (6.28)). So, the best way of deciding whether the number of

modes considered in the calculation is adequate is to check the condition number of the

final coefficient matrix [S] in equation (6.49) and to check the results to see if they are

reasonable for each particular application.

Having calculated equation (6.46) for each mode of structure X, by combining the
equations of mx modes together using the standard approach as explained in section

4.3.4.1, the following algebraic equation is obtained:

[Sl (6.49)

t {AD} J

CASE STUDY 1.

To demonstrate the above concepts, the following case study has been undertaken. The

test structures for this case study are shown in Fig. 6.2 and according to this figure there

are 13 translational slave coordinates which are used in the calculation. Also, the total

number of modes for structure A-C is 30 from which 7 are used in the calculation as

“kept” modes.

The trial joint model has the following specifications:

Ljt = (800/3)%  Le 9 Ejt = (250)% Ee 9 Pjt = 8% Pe (6.50)

Thus, the trial joint model has the same length as the real joint but with 50% and 20%

error in stiffness and mass matrices, respectively.

Having used one mode of structure X in the calculation and using equation (6.37), Table

6.1 shows the first six singular values of matrix [S] in equation (6.49),
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oof[S] 1 9.lEll  1 7E9 1 3E8 1 lE6 1 2.8E-8 1 4E-15

Table 6.1 Singular values of matrix [S] using one mode in the calculation

As seen from Table 6.1, the rank of matrix [S] is equal to 4 which is the rank of matrix
]AZj] in equation (6.45).

Table 6.2 shows the variation of the condition number of matrix [S] with number of

modes.

m
X 1 2 3 4 5 6

K of [S] 2.2E26 lEl0 4.2E8 2.1E7 lE7 3E5

Table 6.2 Variation of condition number of matrix [S] with number of modes involved in

the calculations

As Table 6.2 indicates, adding a 2nd mode to the calculations causes the condition

number to drop dramatically. This drop at 2 modes is due to the fact that the rank of

equation (6.49) for each mode is 4 (as Table 6.1 shows) and, thus, having 6 unknowns

in this equation, i e. a 6x6 matrix, equations of at least two modes should be combined

to make up the condition of matrix [S].

It is worth mentioning here that although inequality (6.48) is satisfied by using only one

mode in the calculation, according to Tables 6.3 and 6.4, matrix [C] of equation (6.46) is

rank-deficient using only one mode (which means that inequality (6.48) is a necessary but

insufficient condition).

Based on the results of this case study, it is recommended that one should increase the

number of modes until the condition number of matrix [S] is acceptable and a dramatic

drop in condition number is evident but no further as increase in the number of modes

beyond this limit will reduce the accuracy of the results.

6.5.2 ITERATIVE SOLUTION OF EQUATIONS (6.32) & (6.37)

Experience shows that although joint mass and stiffness matrices identified using

equation (6.49) are good, the level of residual errors in these matrices are still high. In

this section the reason for this unsatisfactory result is discussed and it is shown how an

iterative solution procedure can improve the results.
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Equation (6.25) (or 6.2) can be written in a compact form as:

(6.5 1)

As explained in section 6.2.1, having used a complete modal model and coordinates, the
vectors { pxrk}  and { pxre}  can be calculated from equation (6.51) for each mode of

structure X. Substituting the calculated {p&j in equation (6.37),  and solving it, one will

obtain the desired joint mass and stiffness matrices. In the case of incomplete data in

respect of modes and coordinates, however, there are two problems which affect the

results, and these are:

(a> - the cdcuhtd  vector { pwk } is approximate, due to the neglected effects of the

higher modes in equation (6.51); and

(b) - some part of the information relating to the joint effect in the calculation is

missed, due to the incomplete set of the coordinates.

The problem in (b) can be dealt with using significant* modes in calculations.

The first problem in (a) can be explained as follows. Dividing the modes of the A-C

structure into ‘kept’ and ‘eliminated’ modes, and using only the kept modes in the

calculation, has two separate effects on the computation. The first appears either in

equation (6.37) when the effect of the higher eliminated modes is approximated by a

constant residual matrix [RI, or in equation (6.32) where the effect of higher modes is

neglected altogether.

The second effect appears in equation (6.51). As mentioned above, due to the neglected
contribution of the higher modes, the vector {pti},  whose elements are the participation

factors of each kept mode of the A-C structure in expansion of { $,} in equation (6.51),

is approximate. Now, as structures X and A-C become closer to each other, the effect of
the higher modes becomes smaller and, thus, {p.&} becomes more accurate. For

example, consider the case where X and A-C are exactly the same and r equals 1, i.e. the

first mode of the real structure is expanded in terms of the modes of the A-C structure. In

this case, only the participation factor of first mode of the A-C structure, i.e the first
element of { p.&},  is non zero and equals to 1.

The above argument suggests that an iterative solution to equation (6.37) (or 6.32) can

potentially be useful. A suitable iterative solution procedure is shown in Fig. 6.3

* A mode is a significant mode if it is markedly affected by the joint presence.

-_ _
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Fig. 6.3 The flow chart for iterative solution of equations (6.37) dz(6.32)
L

solve Eq. (6.33) & calculate { p}Uk

solve Eqs. (6.37) or (6.32) Jz
calculate { AK} & [AM}

The philosophy behind the iterative procedure in Fig. 6.3 is simply that since, at each
iteration, structures X and A-C become closer, so the vector { pxrk}  calculated after each

than that for the previous iteration, thereby yielding betteriteration is more accurate

results.

To show the performance

undertaken.

of the iterative method, the following case study has been

CASE STUDY 2

In this case study, the effect of iteration on the results will be investigated.
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The variation of the condition number of [S] of equation (6.49) can be seen in Table 6.2

and according to this table application of 5 or 6 modes in the calculation will be sufficien.

Thus, 5 modes of structure X will be used in the calculations here.

Using equations (6.32) and (6.37), Figs. 6.4 and 6.5 show the variation of IIA~II  and

IIAUI with iteration number, respectively.

0.4 -
- based on Eq. 6.32

0.3 - - based on Eq. 6.37

-

3 0 . 2 -
--

0.1 -

0 .0 , I I
0 2 4 6 8

Iteration number

Fig. 6.4 Variation of norm of difference of
eigenvectors with iteration, using
equations (6.37) & (6.32)

1 .OOe+7

8.00e+6  -

6.008+6  -

Y based on Eq. (6.32)

- based on Eq. (6.37)

- 4.008+6  --

2.008+6  -

O.OOe+O I I I
0 2 4 6 8

Iteration number

Fig. 6.5 Variation of norm of difference of
eigenvalues with iteration, using
equations (6.32) & (6.37)

Table 6.3 shows the residual errors in a typical joint parameter identified using equations

(6.32) and (6.37).
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kllError% k12Error% k22Error%  mllError% ml2Error% m22Error%

Eiq. 6.32 0.62 0.58 0.6 0.8 0.94 11

JZq. 6.37 0.6 0.4 0.4 0.4 0.5 0.9

Table 6.3 Residual errors in typical joint parameters for with-residual-effect & without-

residual-effect cases, respectively.

Examining Table 6.3, it is evident that, although the results achieved from equation

(6.37) are slightly better than those achieved from (6.32), there is no remarkable

difference between the two sets of results, except for rotary inertia. The similar results for

equations (6.32) and (6.37) show the insignificant effect of the higher modes’ residual
matrix [Ra] on the results in this case. The greater effect of [R,] on rotary inertia is due to

the fact that the effect of the latter parameter on the structure’s response is so insignificant

that any approximation (or noise) will affect the identified inertia values dramatically.

Trying to implement the iterative procedure in some case studies, the author came across

the problem of a non-positive-definite mass matrix. The reason for this was that, due to a

poorly identified joint mass matrix, attempts to update the trial mass matrix can result in a

non-positive-definite mass matrix. The way of dealing with this problem is to ignore the

mass in the calculations and to update the stiffness matrix only and to carry on the

iteration. The mass matrix should then be identified after each iteration and provided that

it does not lead to a non-positive-definite mass matrix, one can take it back to the

calculations, i.e. to update the mass matrix after each iteration.

6 . 5 . 2 . 1 GUIDE-LINES FOR ITERATIVE SOLUTION
IMPLEMENTATION

It was shown in case study 1 that in order to achieve a reasonable condition number for

matrix [S] it is necessary to use a certain number of modes in the calculations. On the

other hand, using the higher modes in the calculations will introduce more

approximations and may spoil the result. Experience shows that for large values of IIAKII

and IIAMII,  where it is difficult to converge to a solution, one can achieve better results by

using the following procedure.

The VeCtOr {pxrk }, calculated from equation (6.51) for a small number of the lower

modes of structure X, is usually accurate. The only problem with using a small number

of the lower modes in the calculation is rank deficiency of matrix [S]. Now, if one

neglects [AM] in the calculations, then the number of unknowns will be cut by half. The

smaller number of unknowns means that a smaller number of modes is required to make
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up the rank of the matrix [S]. It should be noted that, using the lower modes in the

calculation, neglecting the joint mass effect (which is very small) will not have any

detrimental effect on the accuracy of the results.

So, for the first or second iterations, it is recommended to neglect the mass in the

calculations and to update only the stiffness matrix and then, having reduced IIAKII, one

can take the mass back to the calculations and iterate again.

The other practical consideration is that, in order to calculate the vector {pxrk}  from

equation (6.33)( or 6.51) as accurately as possible, it is necessary that in expanding the

rth mode of the structure X in equation (6.33),  the r* mode of the structure A-C must be
included in the basis of the transformation matrix, [@aIJ, on the r.h.s of equation (6.33).

6.5.3 CONDITION NUMBERS OF AN EIGENVALUE & EIGENVECTOR

A N D  T H E I R  A P P L I C A T I O N  A S  C R I T E R I A  F O R  M O D E

SELECTION

As discussed in section 6.52, an important factor for the iteration procedure in Fig. 6.3
to converge to a solution, is the accuracy of vector {pxrk},  calculated from equation

(6.33). It was argued in section 6.5.2 that the closer the eigenvectors of two structures

are to each other, i.e. the smaller are llA$ll and IlAAli and the more accurate becomes the

expansion.

Since, in solving either equation (6.37) or equation (6.32), the analyst has some

flexibility in selecting which modes he wishes to use in the calculations, and if one can

identify the modes with the smallest II A@ II and II Ah II and use them, then there will be a

greater chance of achieving convergence. On the other hand, if the larger II A$ II and

II Ah II are due to a larger effect of the errors (in the trial joint) on a particular mode, then

by eliminating that mode from the calculations one may lose valuable information. So, in

order to be able to decide whether a mode with large II A$ II and II Ah II should be

eliminated or not, one must enquire whether these large norms are due to large II AK II and

II AM II or whether the mode is a sensitive one, i.e. large llA$ll  and IlAhll for small II AK II

and II AM II .

In what follows, a criterion will be developed to allow the analyst to select the best

modes, in the above sense, in calculations using the condition numbers of the eigenvalue

and eigenvector.
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It was shown in section 4.5.1 that variations in the eigenvalues and eigenvectors of a

general matrix [A], due to small perturbation [AA] in [A], can be found from the

following equations:

From equation (6.52),  the absolute value of fir is expressed as:

and

I,@‘), -

N N

]rZ (6.54)

where  { R$ 1 r and I,9 ]r are the right and left eigenvectors of [A] and I { +}T{  R$}rl  is the

(6.52)

(6.53)

cosine of the angle Or between the left and right-hand eigenvectors. From equation (6.53)

it is evident that when co&, is very small, the corresponding eigenvalue is very sensitive

to perturbations in the elements of [A]. As mentioned in section 4.5.1, Wilkinson [35]
suggested that I{ I$}:{  R$}rl  is a condition number for nonrepeated eigenvalues.

It can be seen from equation (6.54) that the quantity coser is again important. However,

the sensitivity of the eigenvector is also dependent on the proximity of hr to the other

eigenvalues. From equation (6.54), the smallest value of (Xr-ks),  indicating the separation

of the eigenvalue from its neighbours, is usually defined as a condition number for the
corresponding eigenvector { R$}r  .

So, using coser and (X,-h,) as criteria, the analyst can decide whether a mode associated

with a large llA$ll  should be eliminated from the calculations or not, i.e. if the large llA$ll is

associated with large (coser(h,-h,))-’ then that mode should be eliminated.
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I6.6 SENSITIVITY ANALYSIS.

Experiments suggest [42] that measurement noise will typically induce up to 1% errors in

eigenvalues and 10% errors in eigenvectors. The sensitivity of the present method to

measurement noise has been examined by carrying out a further series of case studies.

After spending some time trying different methods, the following error adding

mechanism has been adopted:

4 = &. + (l/r) x (el/lOO)  x & x RND

Qr =$r+(e*/lOO)x$X~ (6.55)

where, in equation (6.55), el and e2 are error multipliers and are equal to 1 and 5,

respectively. Also, the RND function generates random numbers between 0 and 1, i.e.

O<RND<l.  Note that the sign of the noise induced errors in equation (6.55) is also

determined randomly.

CASE STUDY 3

Case study 2 has been repeated here with noise added in equation (6.55), introduced to

the modal models of both structures X and A-C.

Figs. 6.6 and 6.7 show the variation of IIA$II and IlAhll  with iteration number using

equations (6.32) and (6.37).

The results in Figs. 6.6 and 6.7 were obtained using 7 modes of structure X in the

calculations and, further, the joint mass has been ignored through all iterations and this is

due to the problem that the mass results are so poor that considering them in the

calculations will result in a non-positive-definite mass matrix.

Figs. 6.6 and 6.7 indicate that, by using only stiffness in the iteration, the llA$ll and llbhll

values cannot be reduced beyond a certain limit and reasonably good results may be

achieved after the 1st run of the calculations. It is also clear from Figs. 6.6 and 6.7 that

results obtained from equation (6.32),  i.e. ignoring residual effects, are better than those

obtained from (6.37). There are two reasons for the better results achieved using equation

(6.32), namely:
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(a> - the effect of error on the higher modes’ residual matrix [R,]. Examining this

matrix for the with- and without- noise cases it is realized that the error effect on
[RJ is not dramatic ; and

(b) - as explained in section 4.2.2.2, since the coefficient matrices on the 1.h.s of

equation (6.32) are simple matrices, i.e. are not composed of other submatrices,

this equation has a better error averaging performance using a least-squares

technique.

based on Eq. (6.32)

- based on Eq. (6.37)

2 3
Iteration number

Fig. 6.6 Variation of norm of difference of
eigenvectors with iteration, noise
added.

. based on Eq. (6.32)
- based on eq. (6.37)

O.OOe+O ! I I I I I
0 1 2 3 4 5

Iteration number

Fig. 6.7 Variation of norm of difference of
eigenvalues with iteration, noise
added.

Expression (6.56) shows the identified mass and stiffness matrices after the 3rd iteration.
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r .0412(18%) .00208(2%)  .0142  -.0012

-.00039(400 %) .OO 124 .00029
[M7lj =

.0412  -.00209

L -.00039

r 1.9E6(41%)  302685(35  %) - 1.9E6  3 0 2 6 8 5

69743(35%)  -302685 3487 1
[K7lj =

1.9E6  -302685

L 69743

and

r~lj =

r 2.12E6(26 %) 344464(27  %) -2.12E6  344464 1

80875(16%)  -344464 40437

2.12E6  -344464

80875 J

(6.56)

(6.57)

Examining the results in expressions (6.56) and (6.57) shows that the mean stiffness

matrix in expression (6.57) is much more accurate than that in expression (6.56). Also,

examining the mass matrix in expression (6.56) indicates that the only element of that

matrix which is very poor is the rotary inertia term, and this is responsible for the non-

positive-definiteness of the mass matrix. Otherwise, the results for other elements are

reasonably good. This great effect of noise on the rotary inertia, once again (see chapters

5 to 10) proves that this element’s effect on the structure’s response is insignificant and,

thus, is detrimental when noise is present (see chapter 4). It should be noted that an

attempt was made to prevent the mass matrix from becoming non-positive definite by

scaling it but still no further improvement is achieved.

It is worth mentioning that case study 3 has been repeated for the case where no noise is

present in the modal parameters of structure A-C. This was done to examine the

performance of the method when using a hybrid technique, i.e. part of the data from the

FE model and part from experiment.

The result of this case study shows no improvement over the results in equations (6.56)

and (6.57) (as was expected).
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PART 2 CASE STUDIES RELATED TO MODEL UPDATING

CASE STUDY 4

I6.7 TEST STRUCTURES DESCRIPTION

Fig 6.8 shows the test structures used in the case studies related to model updating.

4 5 6

Structure X

Mis-modelled element Mis-modelled element

F&z. 6.8. Test structures for model uDdating  case studies

Structure X, which simulates the real structure, is a lo-element FE model of a simply-

supported beam. Structure A, which simulates analytical model of structure X, is also a
lo-element simply-supported beam model but with 100% error in the stiffness matrices of
elements 3 and 8.

The first 6 modes of structure X and the first 9 modes (out of 20) of model A are used in
the calculations. These start by calculating {p,} for mode r of structure X from equation

(6.13),  i.e.

(6.13)

where n,=9 in equation (6.13) (note that only translational slave coordinates of X are

used in calculations) and k=9. The next step is to set up equation (6.20) for mode r and
transform it to a set of linear algebraic equations similar to (6.46). The coefficient matrix
of this set of equations is a 9x10 matrix (under-determined), for each mode r. Combining
a set of equations for the first 6 modes of structure X, the order of coefficient matrix of
the final set of equations will be 54x10.
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Fig. 6.9 shows the stiffness modification factors calculated in the first run of calculation.

0.6

L

As is evident from Fig. 6.9, the results of this first run have correctly

located the mis-modeled elements.

-0.4 !
1 2 3 4 5 6 7 8 9 10

Element’s number

Fig. 6.9 stiffness modification factors
after first run

Fig. 6.10 shows the variation of IlA$ll  and IIMII  with iteration number. It is evident from

Fig. 6.10 that complete convergence is achieved after 6 iterations and significant

reductions in IIA~II and IIMII are obtained after 4 iterations.

d”

0.3

0.2

0.1

0.0

4.ooe+7

- IiAN
- IWI - 3.ooe+7

- 2.008+7

- 1 .ooe+7

I I I I I I I O.OOe+O
0 1 2 3 4 5 6 7 6

Iteration number

Fig. 6.10 Variation of norm of difference of
modal parameters with iteration
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6.7.1 COMPARISON OF THE MODAL-BASED DIRECT METHOD WITH

THE INVERSE EIGEN-SENSITIVITY METHOD

The performance of the proposed technique for model updating has been examined in

case study 4 and seems to be promising. Since both the proposed method and IEM are

modal-based, it is convenient to compare their relative advantages and disadvantages.

A modal-based direct updating technique has the following advantages over IEM:

(a> - since the differences of modal parameters are not directly involved in

formulation, no correlation analysis is necessary to identify related modes of the

real structure and analytical model. The only requirement in the proposed method

is that, using mode r of the structure X on the 1.h.s of transformation (6.13), the
relevant mode of analytical model must be present in matrix [Qak] on the r.h.s of

the equation. The fulfilment of this requirement does not need such detailed

correlation analysis; and

@I - the modal-based direct method does not require the effect of higher modes to be

included in formulation.

The only advantage of the IEM over the modal-based direct method introduced here is that

the former method can be implemented using only eigenvalues in the calculation,

(provided a sufficient number of these have been measured).

6.7.2 SENSITIVITY ANALYSIS

CASE STUDY 5

Case study 4 has been repeated for case 5, this time with the error mechanism in equation

(6.56) applied to the modal parameters.

The modification factors obtained after first run are shown in Fig 6.11
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Fig. 6.11 Stiffness modification factors,
error added to modal parameters

, As is evident from Fig. 6.11, having added errors to the modal

parameters, it is still possible to spot the mis-modeled elements with a reasonable degree

of certainity. Fig. 6.12 demonstrates the variation of llA$li  and IlAhll  with iteration

number.
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Fig. 6.12 Variation of the norm of
difference of modal parameters
with iteration, error added

It is clear from Fig.6.12 that a reasonably good reduction in IlAkll is achieved after 1 run

of the calculations but no improvement is obtained on IIAQII.

In an attempt to improve the results in Fig. 6.12, the calculation was repeated, this time

considering only the modification factors with local maximum values. Examining Fig.

6.11, it is evident that modification factors related to elements 3 and 8 are local maxima of

modification factors, considering absolute values of modification factors. So, forcing
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modification factors other than those related to elements 3 and 8 to be zero, Fig. 6.13

shows the variation of modal  parameters with iteration number.
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Fig. 6.13 Variation of the norm of
difference of modal parameters
with iteration, error added

Results in Fig.6.13 demonstrate a marked improvement over those in Fig.6.12.

I6.8 CONCLUSIONS & REMARKS

A new modal-based direct method has been proposed for joint identification and model

updating. The performance of the proposed method when applied to joint identification

and model updating problems has been investigated both with and without measurement

noise included.

An important conclusion, deduced from case studies 2 through 5, is that although the

proposed identification (and updating) technique is a direct modal-based technique, one

has to use an iterative technique to achieve satisfactory results because of data

incompleteness, as all other identification techniques. Also, for the same reason, i.e.

incompleteness, there is a limitation to II AK II and II AM II for the calculations to converge

to a solution. Experience shows that the calculations converge for error levels as much as

100% in mass and stiffness.

In the case of model updating, the similarity and advantages of the proposed method with

the eigendynamic constraint method and inverse eigen-sensitivity method has been

discussed.
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The new method developed for joint identification has the advantage that for structure X

only the measurement of slave coordinates is required in the identification process. Also,

it is possible to identify a joint using only one measured mode of the assembled structure.

The method could be generalized to a damped case but, since complex eigenvector

extraction from measured data is generally associated with large errors, the application of

any modal-based method is not recommended for damped systems and the best method to

be used in such a case is one of the FRF-based methods described in (chapters 5 & 9).

It has been shown that iterative application of equations (6.32) and (6.37) to the joint

identification problem, and equation (6.20) to the model updating problem, yields good

results. Also, guidelines have been given for practical implementation of iteration and for

proper selection of the A-C structure’s modes involved in the calculation. According to

these guidelines, sensitive modes can be identified, and distinguished from significant

modes, and excluded from the calculations

When noise is present in the calculations, the identified mass matrix is most affected by

the noise and since using few lower modes, the mass effect on the calculation is fairly

insignificant, it is recommended that the mass be ignored in the calculations. Also, it has

been shown that, for the model updating case, using only local maxima of modification

factors yields satisfactory results.

For the joint model and test structures used in part 1 of the case studies in this chapter,

i.e. beam element type joint at approximately the middle of a clamped-clamped beam, the

effect of rotary inertia of: the joint on the structure’s response is very insignificant and,

thus, noise can dominate its effect. This is responsible for a poor identified mass matrix

in general and a very poor identified rotary inertia in particular. As is shown in chapter 5,

and for test structures with different boundary conditions, the rotary inertia of a joint has

the same insignificant and, when noise is present, detrimental effect on the results.



CHAPTER 70

APPLICATION OF FRF-BASED PERTURBATION
ANALYSIS TO THE JOINT IDENTIFICATION PROBLEM.

I7.1 INTRODUCTION

The application of an FRF-based direct method to the joint identification problem has

been discussed in chapter 5. It was mentioned in that chapter that one of the drawbacks

of an FRF-based direct method is that it requires transfer FRFs between interface and

slave coordinates, and these may be difficult to measure in practice.

The FRF-based perturbation analysis which will be presented in this chapter is not

faced with the above problem in that it is not necessary to measure transfer FRFs. Also,

since the technique is FRF-based, it has all the advantages associated with FRF-based

techniques mentioned in section 5.1, such as a large amount of data available which

provides the flexibility of selecting proper data points or, relative ease in handling the

damping problem.

On the other hand, as discussed in chapter 3 and will be shown here, since the technique

is perturbation-based, thus a number of iterations are necessary to achieve a solution and,

for the same reason, there is a limitation to the amount of error between the structure and

its analytical model which can be identified  using this type of technique.

In this chapter the performance of an FRF-based perturbation analysis to deal with the

joint identification problem will be examined. If this method turns out to be efficient (at

least comparable to the associated FRF-based direct technique), then it will be more

convenient to use the perturbation method from the above problem point of view.
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El7.2 GENERAL FORMULATION OF AN FRF-BASED PERTURBATION

TECHNIQUE

In this section the FRF-based perturbation method will be formulated first in a general

manner (as in reference [25])  and then a version of the method suitable for joint

identification will be derived.

Designating suffices A and X to the analytical and experimental models of the structure,

respectively, one has:

[H,(o>l=[~~(~)+~(~>l-l (7.1)

Expanding equation (7.1) using the binomial expansion yields:

[H,(U)]= [HA(O)] - [HA(o)][AZ(CO)][HA(O)]  + . . . . . . . . . . . . . . . . . . . . (7.2)

Assuming that II[AZ(o)]ll CC II[ZA(O)]II  and ignoring orders of [AZ] higher than one,

equation (7.2) can be approximated to:

WA(~)]  - [H,(~)l  E [HA( [AG~)l  [HA(

or.. CAHWI 5 [HA( [Wa)l [HA( (7.3)

The matrix equation (7.3) is the general governing equation of FRF-based perturbation

analysis.

17.3)  MODIFYING EQUATION (7.3) TO MAKE

JOINT IDENTIFICATION APPLICATIONS

IT SUITABLE FOR

Assuming that a real structure consists of some substructures and, furthermore, that the

difference [AZ] between two models A and X is concentrated at the interfaces of the

substructures (a reasonable assumption for joint identification problem), equation (7.3)

can be rewritten i

[AHIss [AHISi *

follows:

(7.4)
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where suffices 3” and “i” relate to slave and interface coordinates, respectively.

Equation (7.4) can be resolved into 4 sub-matrix equations from which the following is

selected as the most suitable one for joint identification:

[AH(o)]~~  = [H(w)]$Z(w)][H(w)]$ (7.5)

The reasons for choosing equation (7.5) out of the 4 possible equations deducible from

(7.4), and the consequences of ignoring the other 3 equations, have been thoroughly

discussed in section 5.3. Briefly, the obvious advantage of equation (7.5) is that only

FRFs relating to the slave coordinates are involved in the difference matrix [AHISS, on

the 1.h.s of equation (7.5), and this is a great advantage from the measurement point of

view.

Note that if we rewrite the earlier equation (5.5), i.e. the basic formula for FRF-based

direct joint identification technique, we obtain:

The advantage of the current method’s equation (7.5) over equation (7.6), as mentioned

in the introduction, is that, using the former equation, one does not have to measure
transfer FRFs [H(w)]$, but instead to generate [H(o)]:, which seems to be more

practical and an easier task.

Trying to set up model A-C, i.e. generating the analytical model using only experimental

data in the analysis, a coupling process is necessary as explained in section 5.4. Since

equation (7.5) is a perturbation-based technique, a number of iterations will be necessary

in order to achieve a solution. After each iteration, the trial joint model must be updated

and model A must be generated again which means that a coupling process will be

required after each iteration. Requiring a series of repeated couplings is a drawback of the

FRF-based perturbation technique using only experimental data, as it may induce more

errors to the results and make the calculations time-consuming.

On the other hand, if the analytical model is setup by using FE models of the constituent

substructures of the structure X, one is not faced with above problem but there is the

possibility of having mis-modeled FE models of constituent substructures.



m Application of FRF-Based Perturbation Analysis . . . . . . . 148

The other details concerning the generation of the model A-C, such as the damping model

and the configurational model of trial joint, have already been discussed in section 5.4.

I7.4 CONVERGENCE BOUND FOR EQUATION (7.5)

Since equation (7.3) is a first-order approximation to equation (7. l), it will be valid only

up to a certain value of ll[AZ(o)]]].  In other words, writing equation (7.2) as:

IH,(o)I  = [HA( - [HA( [U~Il [HA(
+ [HA(~)I[W~)I[HA(~)I  [A3011 [HA(~)I (7.7)

then, in order to have equation (7.3) converge to a solution, it is necessary to satisfy the

following inequality:

lLi2rth order element of equation (7.7)11< ll[H,][AZ][H,]II (7.8)

From chapter 5, the directly-formulated version of equation (7.3) is:

[HA( - W,(~)l = CH,(~)I[W~)IWA(~)I (7.9)

Now, comparing equations (7.9) and (7.3), the difference between the matrices [AH(o)]

on the 1.h.s of the two equations, a difference which is due to the elimination of the

higher order elements in (7.7), can be deduced as:

[E(o)] = contribution of higher order elements in the r.h.s of equation (7.7)

= [AH(~)1 lYU~)l  CW~)IAI (7.10)

Using equation (7.10),  inequality (7.8),  which is necessary and sufficient condition for

equation (7.3) to converge to a solution, can be written as:

Examining inequality (7.1 l), it is evident that if II[AH(o)]ll becomes large, then there will

be a high risk of inequality (7.11) not being satisfied and, thus, that the calculations

based on equation (7.3) will diverge. So, natural frequencies of the structure X, at which

ll[AH(o)]ll  becomes large, are potentially high-risk points. The same argument applies to

natural frequencies of the analytical model, i.e. at the natural frequencies of A, ll[AH(~~)]ll



m Application of FRF-Based Perturbation Analysis . . . . . . . 149

becomes large, but, since at these points Il[H(o~)]A)]ii  itself becomes large, thus it is likely

that inequality (7.11) will be satisfied at the natural frequencies of the analytical model.

The above argument is similarly true for the case of joint identification for which equation

(7.10) and inequality (7.11) can be written as:

[E] = contribution of the higher order elements in the r.h.s of equation (7.5)
= [AH”(o)]  [AZ(o)] [H(w)]$ (7.12)

and:

IIIAHsi(o>][AZ(w)][H(~)]~]ll  < II[H(w)]$[AZ(w)][H(w)]$ll (7.13)

I7.5 SOLUTION TECHNIQUES FOR EQUATION (7.5) & THE EFFECT

OF VARIOUS PARAMETERS ON THE RESULTS

Similar to the approach used in section 5.4, since equation (7.5) is frequency-dependent,

it can be solved with two different techniques, as follows:

solution technique l- solving matrix equation (7.5) at each individual frequency over

the frequency range of interest; or

solution technique 2- transforming equation (7.5) into a set of algebraic equations

and then putting equations from different frequencies together and solving them

simultaneously as a “least squares” problem.

III7.6 CASE STUDIES

To study the performance of the solutions based on equation (7.5) and to examine their

sensitivity to measurement noise, a series of case studies has been undertaken. In order

to be able to compare the performance of FRF-based perturbation and direct techniques,

i.e. equations (7.5) and (5.5), the test structures and the joint models have been chosen

to be exactly the same as those in chapter 5 and can be seen in Fig. 5.1 and expressions

(5.10) and (5.11). Briefly, the joint in structure X, i.e. real joint, has the following

specifications:

Ljx= 100%  Le 9 Ejx= 1 0 0 0 %  E, 9 Pj,= 1 0 %  pe (7.14)

‘l  .
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where Le, E,, and pe are the mechanical and geometrical properties of the base element

shown in Fig. 3.2

7.6.1 CASE STUDIES USING SOLUTION TECHNIQUE 1

In this series of case studies, equation (7.5) will be solved as a matrix equation and at

each individual frequency.

CASE STUDY 1

Fig. 7.1 shows typical results for the joint identified using equation (7.5) after 3

iterations at each frequency. The trial joint for this case study (and subsequent case

studies unless otherwise stated) is the same as that in expressions (5.12) and (5.13) and

has the following specifications:

Ljt =Ljx 9 Ejt  = 50% Ej~  ) Pjt = 50% pjx (7.15)

As is evident from Fig. 7.1, the results are satisfactory except for a few frequency

points. Examining a typical FRF of the assembled structure, X, in Fig. 7.2 reveals that

frequencies associated with poor results coincide with natural frequencies of structure X.

Having poor results at or near the natural frequencies of X, as explained in section 7.4, is

due to the fact that at these frequencies II[AH]II  exceeds the limit which is necessary for

the first order perturbation assumption used in equation (7.5) to be valid.

Comparing the similar results in Fig. 5.3, achieved by using direct FRF-based method in

chapter 5, with those in Fig. 7.1, it is evident that, as was expected, the results in Fig.

5.3 are better at the natural frequencies of X which is due to the direct nature of method

used in chapter 5.

CASE STUDY 2

To examine the performance of equation (7.5) in the presence of measurement noise,

“5% random noise” has been added to both real and imaginary parts of all FF@s involved

in calculations.

Typical results of the analysis for this case are shown in Fig (7.3).
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Fig. 7.3 Typical result of identified joint impedance with 5% noise using
solution technique 1 , _ correct value

Examining Fig (7.3), it is evident that the results are very poor and thus that the method
is very sensitive to noise. In addition to the reason for this high sensitivity to noise given
in section 5.5.1 (i.e. the insignificant effect of joint on the structures response so that this
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effect can be easily polluted by noise), the other factor responsible for the high sensitivity

of equation (7.5) is the approximate nature of this equation.

Consider equation (7.12) as:

[E] = contribution of higher order elements in the r.h.s of equation (7.5)

= [AHsiWl WWW(~)l~l (7.12)

If the noise effects dominate [AH(a)liS in equation (7.12) (see section 5.5.1), then the

matrix [E] in equation (7.12) changes dramatically and this induces an extra large error

on the results. Comparing Fig. 7.3 with Fig. 5.4 (achieved using FRF-based direct

analysis), it is evident that, due to noise effect on [E] explained above, the result in Fig.

7.3 is very much poorer than that in Fig. 5.4.

7.6.2 CASE STUDIES USING SOLUTION TECHNIQUE 2

In this section the application of solution technique 2 will be examined, i.e. transforming

equation (7.5) to a set of linear algebraic equations by separating the joint mass and

stiffness parameters in [AZ] and then combining the set of equations related to different

frequencies together, solving the resulting over-determined set of algebraic equations

using a least-squares method.

7.6.2.1 COMPUTATIONAL ASPECTS OF SOLUTION TECHNIQUE 2

Following the method used in section 5.5.2.1, considering matrix [AZ(o)] as:

[AZ(o)] = [AK] - [AMlo* + i [AD] (7.16)

equation (7.5) can be transformed into a set of algebraic equations for each frequency or,

and having imposed a symmetry constraint on [AK],[AM] and [AD], one obtains:

[C(o)1(nsXns)X3/2(ni(ni+l)) 3/2(ni(ni+l))Xl = {L(u)}(nsXns)Xl (7.17)

Further details about transforming equation (7.5) to equation (7.17) can be found in

section 5.5.2.1.

b ,
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Having combined equation (7.10) for each of nf frequency points together, let us set up

the final over-determined set of equations as follows:

3/2(ili(tli+  1))X 1 = {q](nsxnsxnf)xl (7.18)

Using the normal equation technique (explained in section 4.3) to solve the least-squares

problem defined in equation (7.18),  one obtains the following square set of equations:

(AK)

[ [C(ol)lT[C(WI)I+[C(o2)lqC(OZ)I+...+[C(~n~IT[C(~n~II  (AM} =

- i)(AD)
[ [C(“l)lTI  L(Ol) l+[C(~)IT(  L(02>+****+[C(oqJlTI  L(anfJ 11

or

PI (7.19)

In order to balance matrix [Cl, the reference joint model based on a beam element model

described in section 4.4.3, is used.

Having used equation (7.5) as the basic matrix equation to develop equations (7.17) and

(7.18),  the question is now “if the first-order approximation in equation (7.2) is valid for

each individual frequency point used in developing equation (7.18),  then would equation

(7.18) always converge to a solution for sure?“.

In order to be able to answer the above question, consider the convergence bound for

equation (7.5) in equation (7.13) as:
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IIIAHSi(o)][AZ(~)][H(~)]~]ll < II[H(o)]$[AZ(o)][H(w)]~]ll (7.13)

which, written in terms of equation (7.17) yields:

11 [c@)l (7.20)

where [C,(O)] is produced by transforming the matrix of the contributions of the higher

neglected terms in equation (7.12), [El, to a set of linear algebraic equations.

Now, consider the case where inequality (7.20) holds for each individual frequency

point, i.e.

. . . . . . . . . .

11 [C(6+qJI (7.21)

But, having inequalities (7.21) satisfied does not necessarily mean that the following

inequality, which is necessary for equation (7.18) to converge to a solution, is satisfied

as well:
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(7.22)

Thus, the answer to above question is: “using equation (7.5) to set up equation (7.18),

although the first order approximation is valid at each individual frequency point, the

resultant equation, i.e. equation (7.18),  may not converge to any solution”.

CASE STUDY 3

To illustrate the above-mentioned problem, two case studies have been undertaken based

on the test structures in Fig. 5.1 and a joint model as in equation (7.14). The trial joint

model for first case study is the same as that in equation (7.15) and is:

Ljt=Ljx  , Ejt= 5 0 %  Ejx , pjx ~50%  pjx (7.15)

For the second case study, the trial joint has been chosen to be much closer to the joint

model and its specifications are:

Ljt=Ljx  , Ejt=90%Ejx  9 pj,=90% pjx (7.23)

The frequency range of interest for both cases is 700 to 800 Hz calculated at 5 Hz
increments so that nf=20. It should be noted that according to Fig.7.1 the first-order

approximation assumption is valid for equation (7.5), and consequently (7.17), in all

frequency points within the range of 700-800 Hz. Thus, inequalities (7.20) and (7.21)

are satisfied at each frequency point

Table 7.1 shows errors in typical identified joint parameters for two cases.
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Trans K Cross K Rotary K Trans M Cross M Rotary M

Error % Error % Error % Error % Error % Error %

1 st case 110 36 127 200 1200 480

2nd case 1.4 0.3 1.2 0.2 7.6 18

Table 7.1 Error values in the typical identified joint parameters for two cases in equations

(7.15) Zk(7.23)

Examining the error values in Table 7.1 reveals that the results for the first case, i.e.

where there is 50% difference between the real and the trial joint mass and stiffness

matrices, are very poor while the results for second case, i.e. 10% difference between the

two models mass and stiffness matrices, are very good. This means that in the first case,

although the first-order approximation is valid at each individual frequency point, it is not

valid for the resultant final equation (7.18) and so the calculation diverges. On the other

hand, reducing the difference between two models in the second case, reduces the effect

of the higher neglected terms in equation (7.5) (see equation (7.12)) so that inequality

(7.22) is satisfied and calculation converges.

The other important result deduced from Table 7.1 is that, similar to the case studies in

section 5.5.2.3, the error percentage related to rotary inertia is much larger than the other

elements. This, once again, shows the insignificant effect of rotary inertia of the joint on

the response of the structure.

I7.7 CONCLUSIONS AND REMARKS.

From what has been presented in this chapter, the following conclusions can be drawn:

(4 - the only, and the very important, advantage of the FRF-based perturbation

technique over the FRF-based direct method introduced in chapter 5, is that, in

current technique, the measurement of the transfer FRFs between interface and

slave coordinates is not required

@I - drawbacks of the technique are:

(i)- a series of repetitive couplings are required to implement this technique;

(ii)- there is a limitation to the amount of error between the real joint and the trial

joint which can be accommodated. Solving equation (7.5) as a matrix equation,

the calculation diverges at natural frequencies of the structure for the noise-free
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case. For a with-noise case, unless noise level is reasonably low, the calculation

does not converge.

(iii)- (on the other hand), solving equation (7.23) as a least-squares problem and

for the noise-free case, there is no guarantee that the calculations will converge

unless the error between the real and the trial joints is small.

So, for cases where the measurement noise level is low, say about OS%, the application

of equation (7.5) as a matrix equation is recommended.



CHAPTER (8)

INVERSE EIGEN-SENSITIVITY ANALYSIS METHOD (IEM)
APPLIED TO JOINT IDENTIFICATION

I8.1 INTRODUCTION:

In chapter 7, application of an FRF-based perturbation analysis to joint identification was

investigated and it was found that, in spite of practical advantages associated with the

method, it is not very efficient.

In this chapter, the modal-based version of the method of the chapter 7, i.e. the Inverse

E&en-Sensitivity method (IEM),  will be discussed and its applicability to joint

identification problems will be investigated. Similar to the FRF-based perturbation

method, the IEM technique for joint identification requires no measurement related to the

interface coordinates of the assembled structure, i.e. the real structure, to be made.

Similar to other adaptive identification techniques, application of IEM requires an

analytical model of the structure. In model updating practice, the required analytical model

is generated by the finite element technique. In a joint identification analysis, on the other

hand, the analytical model can be generated using one of the following methods:

method l- generating the analytical model (A-C model) by coupling the constituent

substructures of the assembled structure through a trial joint model, using

experimentally-measured FRFs  of the substructures; or

method 2- generating the analytical model by coupling the constituent substructures of the

assembled structure through a trial joint model, using FE models of the

substructures.
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The study in this chapter is based on comparing the real structure, as an assembly, and its

analytically-coupled model A-C, assumed to be generated using experimental FRFs  of the

substructures rather than their FE models, i.e method 1 above. Thus, the assumption that

the mis-matched regions between the two models to be the interface coordinates can be

strongly justified. On the other hand, using purely experimental data, some changes to the

original IEM method used for model updating are necessary in order to consider the effect

of the higher and lower truncated modes. These changes will be discussed in this chapter.

I8.2 FORMULATION OF METHOD

8.2.1 UNDAMPED SYSTEM:

Consider [M J and [I$,] as the mass and stiffness matrices of the A-C model and [M]

and [K] as those of the assembled structure. The following relations hold:

[Ml = &I + DW and WI = [$,I + WI (8.1)

where matrices [AM] and [AK] consist of mass and stiffness differences which, for joint

identification applications, are concentrated at the interfaces of the assembled structure.

There are various ways of defining [AM] and [AK]. In a model updating problem these

matrices are considered as being composed either of corrections in each individual

element or of corrections in super or macro-elements of the FE model (each super-element

consists of a combination of elements and covers a sub-domain of the structure).

In any case, one can define [AM] and [AK] as follows,

[AMI = d+,,,d [AM], a n d  [ A K ] =  2~
= d=l kd rAK1d

where, depending on the method, n is either the number of elements or the number of
super-elements of the model and amd and akd are the element’s correction factors.

Matrices [AMId  and [AK], are of the same order as [AK], but except for the relevant

coordinates to element d of the model, all other elements are zero. Taking derivatives of
[K] and [M] in (8.1) with respect to am, and akd, one obtains:

-+!- = [m]d
aamd

and X = [AK],
a%d

(8.2)
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Thus, using the element or superelement-based definition of [AK] and [AM], the

element’s mass and stiffness matrices should be known in order to be able to calculate
aM &

%nd and actld*
- In the case of joint identification using experimental data only, there are

two ways to define [AK] and [AM] at the interfaces, as explained in section 4.4.3,

namely:

(a) - by considering [AKId and [AMId, the mass and stiffness modifications to trial

joint model at interfacing station “d”, to be general symmetric matrices, as

shown in equation (4.60). In this case each element is a variable parameter, and
so if the number of interface coordinates at each junction is nid,  then the total

number of variables of each matrix is equal to nid(nid  + 1)/2; or

(b) - by defining  [AM]d and [AKId using an assumed model for the joints. This model

can be either FE-based or a lumped parameter model. As mentioned in section

3.5, for joint identification applications, one has to consider different correction

factors for the consistent groups of degrees of freedom involved in the joint

model (interfacing). For example, if one considers a beam element as the model

of a joint between two beams, the correction factors for this joint model are as

follow(see  equation (4.58)):

[AK]i =

[AK], = a,

- [Ol

[Ol

.

and similarly

[Ol

a1 a2 -a1 a2

2a3 -a2 a3

a1 -a2

2a3

WI

al 0 -al 0

0 0 0

al O
0

101
I_

11 nlixni 1
1+ a2

0000

a3 O a3
0 0

%3

.
0

0

.

leading to

0

[

Oa,O a2
0 -a2 0

0 -a2
0 I_ +

(8.3)
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_
PI

WI

I

WI

WI

Ku

’ 156a4 0 54a4 0

0 0 0
156a4 0

0

0000
4as 0 -3ag

0 0

4a6 11
II + a5

L

WI

[Ol

'0 22a,

0

1
COI

0 -13a,

13a, 0

0  -22a,

0 11

(8.4)

where a, to a6 are modification factors for the mass and stiffness submatrices of the

joint. Parameters ai in equations (8.3) and (8.4) can be considered as unity but, from a

balancing and condition of calculation point of view, it is better to use a prescribed
reference joint model to define the parameters ai (see section 4.4.3).

Thus, according to equations (8.3) and (8.4), corrections to the mass and stiffness
matrices can be calculated using the six correction factors, a, to a6.

In either case (a) or (b), it follows from (8.2) that:

p = [Ill
ij

p = [II]
ij

and

9 = [I21
i

F = [Iz]
i

for case (a)

for case (b) (8.6)

(8.5)

where [Ill is a matrix with 1 as its ijth  element and zero for all other elements and [I$ is a

matrix with parameters ai in specified stations depending on suffi (i) (see equations (8.3)

and (8.4)). Since the general formulation is similar for both (a) and (b), the following

discussions are based on the more general case of (a)

Considering the eigensolutions of [M] and [M J to be ({ $},h) and ({ (p}‘,hp  respectively,

and using the Taylor series expansion of the eigenparameters, one can write :
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(8.7)

where r is the mode subscript and ni is the total number of interface coordinates in the

joint identification problem. A similar equation can be written for the eigenvalues, as

follows:

&=X:+2 2 $Amij+  2 2 gAkij
i=t  j=l ?1 i=l j=l

(8.8)

For equations (8.7) and (8.8) to be correct it is necessary that IIAKII/IIKII  and IIAMII/IIMII

should not be greater than a certain limit, otherwise the first order approximation of the

Taylor series in (8.7) and (8.8) will not be met and convergence will not be achieved [28]

. The matter of convergence of these equations will be further discussed later in this

chapter.

Considering the limits of the summations in equations (8.7) and (8.8), it is seen that there
are nf terms in each summation but, as mentioned before, considering the symmetry of

[AK] and [AM] (which is a necessary assumption to preserve the self-adjoint of the
structure), the number of terms in each summation reduces to ni(ni+1)/2.  Using equations

(8.7) and (8.8), and noting that in writing ni the suffix ‘5” has been ignored, one can

.

m(L+l)xn(n+l)

Akl l

Ak12
.
.

Aknn

Am11

Am12
.
.

Amnn -
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{AEI c PI UPI (8.9)

Where [S] is the so-called “modal sensitivity” matrix of the A-C model and m and L are

the number of modes involved in the calculations and the number of coordinates which

are considered in the calculation of differences in eigenvectors of each mode at the left

hand side of (8.9), respectively. For example, for the joint identification case, it is

possible that the vector on the 1.h.s  of equation (8.9) contains only the differences of

modal vector elements related to slave coordinates and the differences vector on the r.h.s

is due only to changes of mass and stiffness at the interface coordinates, i.e. changes in

the slave coordinates modal parameters due to the joint at the interface coordinates.

Equation. (8.9) is a set of algebraic equations which, depending on the values of L,m,

and n, could be over- or under - determined. To be able to solve equation (8.9) one

requires that:

m(L+l)  2 ni (ni + 1)

if L = ni, i.e.the number of slave coordinates = the number of interface coordinates, then

m 2 Ill (8.10)

For a small number of joints, satisfying (8.10) does not cause any problem but for a large
number of joints, not only it is difficult to satisfy (8.10),  but ni(ni+l)  will be a large value

and the computation time will be considerable. To avoid this problem, one can assume a

prescribed model for the joint (as explained in (8.3) and (8.4)) and thereby reduce the

number of the correction factors to be determined.

Now, by choosing the correct number of coordinates and modes, one can solve (8.9) to

find the differences in stiffness and mass which are responsible for the discrepancies in

the modal models of the two systems which are believed to be due to joints. Apart from

comparison between two cases of one structure to identify the joint characteristics, the

method and concept can also be used for structural modification purposes i.e. to define

the desired changes for the eigenvalues(s) and / or eigenvectors(s)  and then, by solving

(8.10),  to find the necessary modifications to the structure.

It only remains to calculate the elements of matrix [S]. This can be done by taking partial

derivatives of the following equations:

(8.11)
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which leads to [24,43]:

Where

r rk - for r f k

r = k

(8.12)

(8.13)

(8.14)

The derivatives aM and aK can be easily determined using equations (8.5) and (8.6).
ap aP

8.2.2 COMPENSATING FOR THE EFFECTS OF THE RIGID BODY &

HIGHER MODES

In the experimental case, when only a few of the lower modes are identified and

identification of rigid body modes is not easy, no problem arises in dealing with (8.12)

but calculating expressions (8.13) and (8.14) will not be very accurate as they require the
calculation of all eigenvalues and eigenvectors. Since ( h, - hk) appears in the

denominator of (8.14), so for the first few modes where h, << h, (where h, is the

biggest measured eigenvalues) the omission of the higher modes in calculating (8.14)

does not cause any problem but as r approaches m, the effects of these modes may

become significant. The same is true for the effect of rigid body modes on the higher
modes’ sensitivity calculations, i.e., the higher h, is, the less significant the effects of the

rigid body modes on the calculation become, but for lower modes, the effects of rigid

body modes are significant
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Compensating for the effect of the higher modes has been discussed for the FE updating

problem in [43] and here the method will be modified for experimental applications and

will also be extended for compensating for the effect of rigid body modes, as follows:

Consider equation (8.13) as:

(8.15)

where

or

IZrl  =

I  $i I’  IF,)  1 q_  1

h,- hj

+

J

E

I  Qi 1’ lF,} 1 q. 1 +

J

J=9+1
h,- hj

1 @i ]’ {Fr]

hr - %

{ Oj 1 (8.16)

where q is the number of rigid body modes or, more generally, the number of lower

modes which have not been measured, and

(8.17)

and q < r 5 m. If one assumes that h, << h, << IL,+~  (which means assuming a large

frequency gap between the measured and unmeasured modes, which is not always true)

thenforj>mandj_<qonecanwrite:

hr- hj = - hj

Xr-xj= Ar

j>m

j<q

(8.18)

Substitution of (8.18) into (8.16) gives :
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(8.19)
Considering the nature of (F,) from (8.17),the first and third summations in (8.19) can

be written as :

and

’ % ! ;.Oi I’ ) (F,)
J

Using equation (8.20),  equation (8.19) can be rewritten as:

Gy =
1 Qi I’ IF,) (

hr- hj

’ ‘i 1: ‘i )’ )(F,)_

j

@j) +

> IF,) (8.21)

or

q =
( $i ‘: (+i )’  (F,j +

r

[ K I-’ U$J -

(8.20)

(8.22)

Thus, in order to be able to compensate for the effect of the higher modes, it is necessary

to have the flexibility matrix of the structure. Note that most eigen-solution routines use

[K]-’ so this matrix has already been calculated and does not consume any extra time.

Since, when using only experimental data, the stiffness matrix is not available in a

practical joint identification, the compensation technique described above needs to be
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modified. Also, a method should be developed to compensate for the effect of rigid body

modes in the first summation.

Following equation (8.20),  and taking the modal expansion of the FRF matrix as :

[HI=
{ @i 1 { $i I’

hj- O*

(8.23)

and considering hs<< h, << h,+r , one has :

[RMI C-l/ O2)+ C + U&l
(8.24)

where [RM]  and [Rk] are the so-called “residual matrices” which can be determined

directly from the measured FRFs.  Note that [RM] approximates the effect of rigid body

modes (lower modes) by an inertia term while [Rk] approximates the effect of the higher

modes with a static deformation. Comparing equations (8.20) and (8.24) and using

(8.19) one obtains:

I $j I - [RkI (Frl + y {Fr} (8.25)
r

Equation (8.25) is a modified version of (8.19) and is suitable for experimental

applications.

It should be noted that, in order to determine the [R] matrices in (8.25),  it is not necessary

to have the full FRF matrix of the A-C model. For example, assume that the variable p in

equation (8.15) is kij.  This means that g consists of a unit element in position ij and
ij

zero everywhere else. Calculating F, in equation (8.17) yields:
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and calculating [R] Fl, gives:

[RI @,I =’

\

r Rli

R2i

R3i

L RLi L h@j

As before, L is the number of coordinates used in the 1.h.s of (8.9) (the slave
coordinates). So, the number of elements of [R] which should be determined depends on

the number of interface (modification) and slave coordinates.

If the stiffness matrix of the analytical model is singular in model updating, then,
according to equation (8.22),  the effect of the higher neglected modes cannot be
compensated for. On the other hand, equation (8.25) is always applicable for the higher

modes’ contribution to the calculation and, thus, can be used in model updating
applications with a singular [IQ.

8.2.3 FORMULATION OF THE METHOD FOR DAMPED SYSTEMS:

The extension of equation (8.9) to the case of a damped assembled structure will be
discussed in this section. The structural damping mechanism will be considered for the

damping model.
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To extend the ideas in equations (8.5) and (8.6) to damped systems, equation (8.1) can

be written as:

[Ml = [Ml, + [AMI and [K] =[K

and similarly for equation (8.5)

f)+wl [D = [D], + [AD] (8.26)

g = [Ill
ij

F
ij

= &I $
ij

= iI11 (8.27)

where in equation (8.26) [D] represents the damping matrix. On the other hand, if a joint
model is used to define [AMId  and [AK],, as in equations (8.3) and (8.4),  then [ADId can

be defined as:

[mid = (8.28)

where “g” in equation (8.28) is designated as the number of sub-matrices which the

stiffness matrix of interfacing station d has been decomposed to. For example, the

stiffness matrix of a beam element type joint model in equation (8.3) has been

decomposed into 3 submatrices, i.e. g=3 (also see section 4.4.3)

Using equations (8.3) and (8.28) for a beam element type joint model, one obtains:

[ADli  = p1

P3

PI

WI

.
Ku

ro1

PI

al 0 -al 0

0 0 0

al o
0

WI

_

I_ + P2I
11

‘0 0 0 0
2a3 0 a3

0 0

2a3

ro1

ro1

NJ
‘Oa,O a2

0 -3 0

0  -a2
0 I_ +

(8.29)

There are two important points related to equation (8.28) as follows:

(a) - as equation (8.29) demonstrates, using the damping model in equation (8.28)

does not imply that proportional damping has been considered for the joint; and

-
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To extend the ideas in equations (8.5) and (8.6) to damped systems, equation (8.1) can

be written as:

WI = WI, + [AMI and WI= Kl, + [ml [D] = [D], + [AD] (8.26)

and similarly for equation (8.5)

g = [Ill F (8.27)
ij ij

= [I11 g
ij

= iI11

where in equation (8.26) [D] represents the damping matrix. On the other hand, if a joint
model is used to define [AMId  and [AK],, as in equations (8.3) and (8.4),  then [AD], can

be defined as:

[AD]d = i=l pi LAK]dif. (8.28)

where “g” in equation (8.28) is designated as the number of sub-matrices which the

stiffness matrix of interfacing station d has been decomposed to. For example, the

stiffness matrix of a beam element type joint model in equation (8.3) has been

decomposed into 3 submatrices, i.e. g=3 (also see section 4.4.3)

Using equations (8.3) and (8.28) for a beam element type joint model, one obtains:

[ADli  = PI

L;

P3

_
[Ol

[Ol

o Ku

[Ol

al 0 -al 0

0 0 0

al o 10 _i

[

WI

0000
2a3 0 a3

0 0

2a3

PI -

+ P2

I

[Ol

VI

.

[Ol

‘Oa, 0 a2’

0 -3 0

0 -a2
0 I_ +

(8.29)

There are two important points related to equation (8.28) as follows:

(a) - as equation (8.29) demonstrates, using the damping model in equation (8.28)

does not imply that proportional damping has been considered for the joint; and

-



cl8 Application of IEM to Joint Identification 170

(b) - introducing damping to the analysis makes the sensitivity matrix [S] in equation

(8.9) a complex matrix. However, using a damping model either in equation

(8.27) or in equation (8.28),  no extra effort is required to calculate the complex
part of [S], i.e. the complex parts of elements like Sij related to mass

modifications are zero and those related to (complex) stiffness modification

elements are exactly equal to their real part, or

WI = [[Slk9 [Sl,l + i NSlk9  WI1 (8.30)

The same remarks as were made for the undamped case also apply here when one is

dealing with truncated higher modes.

8.2.4 CONCLUDING REMARKS:

(4 - A modified version of the sensitivity matrix analysis method has been developed

which can be applied to purely experimental data. This not only seems to be very

useful for identification of a joint’s dynamic characteristics, but also seems

promising for general experimental structural modification purposes.

@I - Since the method is based on experimental data only, it does not need the

development of an FE model and the dimension of the sensitivity matrix can be

kept quite low as compared with the FE updating case. This is particularly true in

structural modification applications where only localized  modifications are

required.

cc> - Compared with FRF-based identification methods, this method requires a very

small amount of data storage.

Cd> - The formulation has been modified so that the effects of neglected higher and

lower modes could be accounted for. This, as will be shown in the case studies,

will enable the analyst to use a selected number of modes.
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I8.3 CASE STUDIES

8.3.1 TEST STRUCTURES & JOINT MODELS

To study the performance of the IEM and its sensitivity to error, a number of case studies

have been undertaken. The model X which simulates the real structure in all case studies,

Fig. 8.1.(a), consists of two substructures coupled through a joint. Model A-C, or the

“analytical” model, is generated using substructures similar to those of structure X plus a

trial joint model, Fig. 8.1.(b).  The FE models of the substructures are developed using a

base element identical to that shown in Fig. 3.2.

Substructure A joint Substructure. B (a)

Structure X

Substructure A
Trial joint

Substructure B (b)

Structure A-C

Fig. 8.1 Test structures for case studies

The substructures in Fig. 8.1 are represented by FE models of two beams with 3 and 2

elements so that the structure X and model A-C each have 14 degrees of freedom. In

order to simulate a real test case from the rigid-body modes point of view, the

substructures are supported on two soft springs. Note that in all case studies the rotational

degrees of freedom related to the slave coordinates have been eliminated and, thus, { A$}

in equation (8.9) includes only the differences between translational slave coordinates of

the structure X and those of the model A-C. Considering the total number of degrees of

freedom for each structure and the number of interface coordinates (which is 4), the

number of translational slave coordinates will be 5, i.e. {A$} contains 5 elements for

each mode.
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The joint element of structure X has the following properties:

Ljx= 100% Le , Ejx= 1000% Ee , pj,= lO%pe (8.31)

Thus, the joint element is 10 times stiffer and 10 times lighter than the base element

(shown in Fig.3.2).

The specification in equation (8.3 1) yields the following mass and stiffness matrices for

real joint model:

6440000 966000 -6440000 966000
193200 -966000 96600

[Kljx = 6440000 -966000193200 1 (8.32)

All case studies are based on the application of a beam element model for the trial (and
reference) joint and calculation of six modification factors, al to 01~ in equations (8.3)

and (8.4) and thereby updating the trial joint model.

8.3.2 COMPUTATIONAL ASPECTS OF SENSITIVITY ANALYSIS

Two points should be considered and dealt with during the sensitivity analysis

calculations as follows:

(4 - modal vector scaling; and

@I - balancing of the sensitivity matrix

These will now be examined.

(a)-Modal vectors scaling:

As has been discussed in section 8.2, the modal vectors used in the sensitivity analysis

should be mass-normalized, i.e. they should satisfy the following relation:
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{ 4+ It [Ml { Or I= 1 (8.33)

Depending on the particular eigen-solver used and the normalizing factor it uses during

the solution of the eigenvalue problem, some of the eigenvectors may be determined with

a 180°  phase shift relative to their experimental counterpart. This does not violate relation

(8.33) but affects both the sensitivity matrix and {AE} in equation (8.9). This effect on

the sensitivity matrix is restricted to the eigenvector-related elements and the rows of the

sensitivity matrix related to the phase-shifted modes will be multiplied by (-1). In cases

where a truncated modal model is used in the calculation, residual terms representing the

lower and higher modes in equation (8.25) will be affected in the same way, i.e., will be

multiplied by (-1).

This error in the phase of some of the eigen-vectors, which alters the nature of equation

(8.9), may lead to divergence in the calculations and should be identified and dealt with.

One other similar problem is the detection of related modes of the two models X and A-C.

Sometimes, due to the complicated nature of the joint and significant differences between

joint stiffness in different directions, it is difficult to pair the modes of the real structure

with their counterpart in the analytical model, in which the complexity of joint is not

properly considered. For example, it is quite possible that the first mode of the real

structure is a torsional mode while that of the analytical model is a bending one. So, in

order to be able to calculate the difference vector on the 1.h.s of equation (8.9) correctly, it

is essential that a form of correlation assessment must be used to pair the relevent modes

of the real structure and the analytical model. The correlation assessment can be

performed using MAC and/or COMAC values [44,45].

(b)-Balancing of the sensitivity matrix:

Table 8.1 shows some typical elements of the sensitivity matrix before any balancing. As

is evident from this table, the sensitivity matrix contains elements with very different

orders of magnitude and this can make the matrix ill-conditioned.

trans.stiffness rotary stiffness translational mass rotary inertia

related related related related

a Q/a p 4Se- 11 -1.89e-8 .0558 -.354

a3c/ap 3.25e-6 .0025 -5043 -23457

Table 8.1 Typical elements of sensitivity matrix for lower modes
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It is clear from Table 8.1 that the order of s,l* elements of [S] is much higher than the

others. Examining equations (8.12) and (8.14), the reason for the large order of

magnitude difference becomes clear, i.e. the multiplication of SE elements by h in

equation (8.12) and dividing s$, and s$ elements by h in equation (8.14).

So, an unbalanced sensitivity matrix will look like:

(8.34)

Since equation (8.9) represents an over-determined set of equations, using a least-squares

method for solving it, one has:

[SITISl  = @I ~S~IT+ . . . . . . . . . . . . . . . . . . . . +{ St} {s;}T + . . . . . . . . . (8.35)

= c {S?}  {S?}T+
1 1 x

i=l j=l
{$I (Sp

where {St}’ and [ Si}T  are the i* and jth rows of the sensitivity matrix related to the

eigenvectors and eigenvalues, respectively. From equation (8.35) it is clear that [SITIS]  is

dominated by the second summation and so is its rank. On the other hand, the rank of the

second summation itself depends on the number of mass modification parameters, i.e. the

rank of submatrix 22 in (8.34), and, thus, [SITIS]  is rank-deficient. So, it is not possible

to obtain a full-rank sensitivity matrix without any balancing.

Using a reference joint model to define parameters ai in equations (8.3) and (8.4) will

automatically balance the order of the mass- and stiffness-related elements of the

sensitivity matrix, [S], as explained in section 4.4.3. Also, in order to balance the relative

order of the eigenvalue- and eigenvector-related elements, each row of the sensitivity
matrix related to j* eigenvalue should be divided by ~j.

8.3.3 PERFORMANCE OF THE METHOD

Performance of the method for either complete or truncated modal models can be broadly

categorized  into the two following aspects:

(a) - performance with just a stiffness error;

* sE = element of sensitivity matrix representing %&r,,
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(b) - performance with both mass and stiffness errors.

The reason for this classification is that with just a stiffness error introduced the

identification calculation converges very rapidly and this is true even for large errors. On

the other hand, when a mass error is involved in the calculations as well, convergence is

poor and is restricted to relatively smaller error magnitudes. The following table, 8.2,

better reveals this situation:

error % IIAQII,  llAhllo llA$ll,  IIANI, convergence K

90% [Klj  & 582 4.07E6 .006 3 3 8 7 0  c o n v e r g e s  a f t e r lE3
0% [Mli 3 iterations

90% [K]j & 5 5 2 3  3.92E6 .17 1.39E6 [Mlj not P-D. lE5
10% [M]i 3rd iteration

Table 8.2. Results of calculation for with and without mass cases, modes 3-9 involved in

calculations

As is evident from Table 8.2, there is no significant difference between IlA$-, and llA$l10

for the two cases and the condition numbers are reasonable. It should be noted that for the

case where mass error was involved modification factors were scaled after each iteration

in order to prevent the mass matrix from becoming non-positive-definite.

Table 8.2 suggests that a two stage calculation process is potentially useful, i.e.

(3 - keep the mass error constant and iterate with m=constant for k and then, when

the stiffness error is small enough;

(ii) - include m in the calculation and iterate until the desired results are achieved.

This method has been successfully applied to the second case in Table 8.2, i.e. 90%

stiffness and 10% mass error, and results are shown in Figs. 8.2 and 8.3.

It is evident from Figs. 8.2 and 8.3 that the stiffness error has been reduced to less than

2% after 2 iterations and there is no significant change in the modal parameters’

differences after the third iteration, using only stiffness in calculations. Once mass is

included in the calculation and the stiffness error is small, the calculation converges to the

correct values of m and k in one more iteration
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It is worth mentioning here that for model updating applications, the IEM method

converges to a solution even for large values of error in the both mass and stiffness

matrices of analytical model. The reason for the deficiency in the joint identification case

lies in the fact that each correction factor of an elemental mass or stiffness matrix in the

updating case is divided into three modification factors for joint identification

applications, as shown in equations (8.3) and (8.4). Decomposing the mass and stiffness

matrices of an element (which is representing the joint) to submatrices and assigning a

separate modification factor to each submatrix is inevitable in joint identification

applications, (see chapter 3), and will have the following effects on the calculations:
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(a> -

@I -

8.3.4

an increase in the number of unknowns which affects condition of the

calculations; and

an effect of some of the submatrices on the calculations which is so insignificant

as to make the calculations diverge.

PERFORMANCE

MODAL MODEL

OF THE IEM METHOD WITH TRUNCATED

As mentioned before, the main objective of the present chapter is to study the applicability

of the sensitivity-based joint identification method using experimental data. Since, when

using experimental data, only a limited number of modes are available, study of the

performance of the method with a truncated modal model comprises the major part of

present chapter.

8.3.4.1 GENERAL CONSIDERATIONS

Consider a symmetric and positive-definite n-degree-of-freedom system. Writing the

sensitivity equation (8.9) for this system, using the complete coordinate set and the modal

model, one will obtain a unique set of solutions for the mass and stiffness corrections

provided that the first order approximation is valid. In such a case, for each spatial

parameter on the r.h.s of equation (8.9), one has:

Aki = ail A$11  + ai A$12 + . . . . . . . . . . + bil Aht + . . . . . . . ...*.....b. A h ,In

(8.36)

where aii and bij  are elements of the inverse of the sensitivity matrix. If some of the

coordinates and/or modes are not present in the analysis, the related terms in equation

(8.36) will be eliminated. This means that Aki will be under- or over-estimated. The

magnitude of this mis-determination depends on the coordinates and/or modes which are

eliminated.

It is clear that variations of each of the spatial parameters of the structure will affect some

of the modes more than others. For example, if a beam is modified with a mass

modification, Am, near to its mid-span, this modification will affect odd modes more than

even ones and, of course, higher modes will be more affected. Now, if one neglects odd

modes when calculating Am, its value cannot be correctly determined.
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From the above discussion, it is concluded that in truncating the modal model one should

try to include as many significant modes as possible (i.e. those modes significantly

affected by the presence of the joint) in the calculation.

The question here is that “how can the significant modes be identified?“. The answer to

this question has been given in section 4.5.1, where the sensitivity of the modal

parameters of a matrix to small perturbations has been discussed. Rewriting the equations

derived in that section, one obtains:

and

(8.37)

(8.38)

As equations (8.37) and (8.38) indicate, quantities I( ,+}F( @},I and (hr-hs)  can be used to

assess the sensitivity of the eigenvalue and eigenvector respectively of mode r. If for
mode r, a large IAhrl and/or ($‘},  - { $}, is associated with large I( l$ }F( $},I-’ and/or

(Xr-hs)-‘, then that mode is not a significant mode but an ill-conditioned* one and should

not be considered in calculations.

It should be noted that sometimes using a significant mode as the fiit or last mode of a

truncated set of modes make the calculation diverge. This is due to the fact that using a

truncated modal model, elements of the sensitivity matrix related to eigenvectors are not

calculated accurately and this inaccuracy is more marked for the first and last modes of the

truncated set of modes. Now, if this first or last mode is a significant one (in the above-

mentioned sense) then the effect of this inaccuracy will be more marked on the

calculation. For example, in one of the case studies, reasonable results were obtained

using modes 3 to 6 (out of the 12 modes) in the calculations while no convergence was

achieved using modes 3 to 8! Examining IIA~II  for the two cases reveals that the

contribution of modes 3 to 7 to llA$ll  is equal to 0.0137 while the contribution of mode 8

* As mentioned in section 4.5.1, Wilkinson proposes to consider (I{ 10 }T ( $ },I)-’  and (hr-hs)-’ as

condition numbers of modaI  parameters. This proposition is reasonable as large values for any of these
quantities result in large value for l&rl and/or (Q’}, - ($},  , even when ll[AAlII  is small.
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alone is 0.0307. This means that mode 8 is a significant mode and thus has a large effect

on the calculations. On the other hand, mode 8 is the last of the truncated set of modes

used in the calculations and, thus, it is very likely that the sensitivity elements related to

mode 8 are not calculated precisely. In order to investigate the order of precision of the

sensitivity matrix elements related to mode 8, typical exact and approximate sensitivity

elements related to various modes are plotted in Fig. 8.4

As is evident from Fig. 8.4, exact and approximate

agreement for all modes except mode 8 and this explains

calculations.

sensitivity values show good

the reason for divergence of the

To demonstrate the performance of the method using a truncated modal model, a number

of case studies have been carried out. The details of the models being used can be found

in section 8.3.1.
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Fig. 8.4 Exact & approximate values of typical sensitivity matrix’s
elements

CASE STUDY 1

The test structures and joint model for this case study are shown in Fig 8.1. The trial joint

model is similar to the real joint model with a 20% error in its mass and stiffness

matrices. Two modes, 3 and 4, have been used in the calculations and so the sensitivity

matrix is a 12x6 matrix (see 8.3.1). Note that mode 3 is the first elastic mode of the

system. Table 8.3 shows the first seven eigenvalues of the real and trial structures.
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Xl h2 x3 hq h5 X6 x7

real str. 531 839 27263 161320 606005 2.31E6 3.56E6

trial str 532 841 27129 161008 605727 2.3E6 3.57E6

Table 8.3 Typical eigenvalues of real and trial structures

To demonstrate the effect of the lower and higher truncated modes, Table 8.4 shows

typical elements of the sensitivity matrix where each row shows the sensitivity elements

related to a specified spatial parameter. For example, the sensitivity parameters in the first

row relate to translational stiffness.

Table 8.4 shows the significant effect of the truncated modes. This effect is particularly

marked for rigid body modes.

Exact value - rigid body & Rigid body Higher modes +rigid  body &

E(S) higher modes modes effect effect higher modes

effect effect

Transl. l.l637E-6 3.792E-7 9.253E-7 1.581E-7 l.l46E-6

stiffness 32% lE(S)I 79% lE(S)I 13.6% lE(S)I 98% lE(S)I

Cross stiffness - 1.543E-5 -4.978E-6 -1.229E-5 -2.064E-6 -1.52E-5

32% lE(S)I 79.7% IE(S)I 13.4% lE(S)I 98.5% IE(S)I

Rotary s t i ffness 7.665E-5 2.44E-5 6.122E-5 l.O13E-5 7.549E-5

31.8% lE(S)I 79.8% IE(S)I 13.2% lE(S)I 98.5% IE(S)I

Transl. mass 20.72 32 -12.9 -1.6 20.697

154% lE(S)I 62.7% IE(S)I 7.72% lE(S)I 99.9 %IE(S)I

Cross mass 3.242 2.23 1.05 .0775 3.203

68.8% lE(S)I 32.4% IE(S)I 2.4% IE(S)I 98.8% IE(S)I

Rotary inertia -.235 .23 1 -.554 -.0969 -.225

_ 98.3% lE(S)I  . 235% lE(S)I  . 41.2% lE(S)I . 95.7% IE(S)I

Table 8.4. Typical elements of sensitivity matrix with and without

rigid body and higher modes effect(without  balancing)

The results of the identification calculations are shown in Table 8.5. An important

deduction which can be drawn from this and the following case studies is that very

reasonable correction values are achieved for stiffness and translational mass in the first

run. This implies that stiffness correction values may be reasonably calculated without

iteration.
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Table 8.5 Mass and stiffness identification resultscalculations with 2 modes

To demonstrate the effect of increasing the number of modes involved in the calculations

on the rate of convergence, Table 8.6 shows the results of this case study but here with

modes 3 to 6 used in the calculations.

Table 8.6 Mass and stiffness identification results calculations with 4 modes

Considering Tables 8.5 and 8.6 and comparing them with each other reveals the

following points:

(a) - increasing the number of modes has no significant  effect on the stiffness error

reduction in the first run but has a remarkable effect on the mass error reduction,

particularly for cross and rotary inertia terms;

@I - although both Tables 8.5 and 8.6 show that after the first run the errors of

stiffness and translational mass have been decreased significantly, the

magnitudes of IlA$ll and IlAhll have not been reduced by the same proportion,

due to an increase in the cross and rotary inertia errors. The ratio between error

values in cross and rotary inertia on the one hand and IIAQII and IlAhll on the

other hand, once again illustrates the fact that cross and rotary inertia of the joint

model in fig. 8.1 do not have a significant effect on the structure’s response and,

as will be shown shortly, their effect can easily be polluted by noise effects. For

example, from Table 8.5, it is evident that after the first run, errors in the cross

and rotary inertia terms have been increased by 165% and 1600% respectively
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but, despite this increase, IIA~II shows no increase and IlAhlI  increases only by

10%.

Apart from improving the rate of convergence, increasing the number of modes involved

in the calculations allows for the identification of larger error in the joint mass and

stiffness matrices. To illustrate this point, case study 1 has been repeated, this time with 6

modes involved in the calculation and 70% error in stiffness and 70% error in mass

matrices and for this case the calculation converges after 4 iterations.

Generally speaking, increasing the number of modes involved in the calculations can

improve the rate of convergence and allow for larger errors to be considered (although

this is not always the case).

CASE STUDY 2

Everything in this case study is similar to case study 1 except that here only stiffness

errors will be assumed.

Fig. 8.5 shows the calculation results for 80% error in the stiffness matrix and with two

modes, 3 and 4, involved in the calculations.

0.10

0.08

0.06

1 2 3 4 5

Iteration number

Fig. 8.5 Variation of differences of madal
parameters with iteration

20000

10000

0

As is evident from Fig. 8.5, the calculation converges after 1 or 2 iterations. The same

calculations with 50% error for stiffness matrix converge in the first run.
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El8.4  PERFORMANCE OF THE METHOD USING JUST EIGENVALUES

Sensitivity analysis using just eigenvalues in equation (8.9) seems to be very promising.

This is due to the fact that the eigenvalue-related sensitivity elements can be calculated for

each mode individually (equation (8.12)) and, thus, using a truncated set of modes does

not affect the results. On the other hand, using eigenvalues only, more modes should be

measured to prevent equation (8.10) becoming under-determined

Another advantage associated with the eigenvalues is that, at least for a reasonable

number of lower modes, they can be measured with high accuracy while this is not the

case for the eigenvectors (note that even for the first mode of a structure there could be a

significant error in the eigenvector elements for points near to nodes). Although the

measured eigenvalues are generally accurate, examination of equation (8.12) reveals that

eigenvectors are involved in eigenvalue-related sensitivity element calculation and, thus,

inaccurate eigenvectors can affect the accuracy of the sensitivity matrix.

To examine the performance of the method using just eigenvalues, the following case

study has been carried out.

CASE STUDY 3

As before, the test structures and joint model for this case study are shown in Fig. 8.1

Table 8.7 shows the results of a case study with 20% error in joint mass and stiffness

matrices, using modes 3 to 9 in the calculations. Here, 7 modes have been used for six
unknowns (al to al in equations 8.3 and 8.4) which makes the order of the sensitivity

matrix 7x6.

Iteration Transl K Cross K Rotary K Transl M Cross M Rotary M IlMll

number error % error % error % error % error % error %

Init. Val. 20 20 20 20 20 20 55086

2 7 7 7 6 1.3 94 5

Table 8.7 Mass and stiffness identification results using only eigenvalues, calculation

with 7 modes

Table 8.7 indicates that after 2 iterations the stiffness and mass errors, apart from the

error in the rotary inertia, have been reduced reasonably but the rotary inertia related error

has been increased dramatically and IlAhll  is virtually zero. This means that there is
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another structure with slightly different mass and stiffness matrices and exactly the same

eigenvalues. Note that for this case, further iteration has no effect on the results and this

is the structure to which the calculations converge. The large error in rotary inertia again

indicates that eigenvalues of the structure are not sensitive to this parameter.

The same calculation has been repeated using a complete modal model and this converges

to the true joint mass and stiffness matrix after only one iteration.

So, generally speaking, the application of eigenvalues only is not recommended for a

truncated modal model unless either a reasonably large number of modes are involved to

make the calculation converge to the real joint, or an accurate mass matrix is not desired.

El8.5 IMPORTANCE OF USING THE CORRECT JOINT MODEL

An important question which should be considered is: ” how important is the application

of the correct joint model from the connectivity point of view?” In other words, can we

use a lumped parameter model for a joint which is FE -based in reality and, if we do so,

does the calculation correct this mis-modelling? After carrying out many case studies the

answer to this question is “NO”. This was not unexpected since using a lumped

parameter model for an FE-based model means 100% errors in cross elements of mass

and stiffness matrices of the joint and in this case the calculation is very unlikely to

converge.

So, when using the sensitivity method for joint identification, one must use engineering

judgement about the nature of the joint and then choose the right joint model.

I8.6. SENSITIVITY OF IEM TO. MEASUREMENT NOISE

As mentioned in section 6.6, measurement noise can induce typically 1% error in

eigenvalues and 10% error in eigenvectors. Sensitivity of the method to measurement

noise has been examined by carrying out a series of case studies. The error-adding

mechanism adopted here is the same as that shown in equation (6.56),  i.e.

hi = Xi f (l/i) x (e1/100)  x RND x h

$i = $i + ( e#o(l)  x R N D  X $i (8.39)
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where el and e2 are 1 and 5 respectively, and RND is a random number generator such

that 0 <RND< 1. The signs of noise-induced errors in equation (8.39) are also

determined by a random function.

CASE STUDY 4

Using the test structures and joint model in Fig. 8.1 and with 20% error in the mass and

stiffness matrices of the trial joint, Table 8.8 demonstrates the difference between the

modal parameters with and without noise.

Mode No. 1 2 3 4 5 6 7

- Noise -1.4 -1.6 134 312 278 3000 1200

+ Noise -3 -1 20 243 309 7100 8600

Table 8.8 Differences of modal parameters with and without noise

8 9 10 11 12 13 14 I I A$ I I llA?Lll

19723 51325 115075 1.24E6 1 8 9 2 1 2  6.74E6 1.77E8 .0834 1.78E8

16000 72000 108000 1.2E6 7 0 0 0 0  6.7E6 1.76E8 .4 1.8E8

Table 8.8 continued

Case study 1 has been repeated with noise added to the modal model and modes 3 to 9

involved. The results of this case are shown in Table 8.9 .

Iteration

number

Init. Val.

10

Transl K Cross K Rotary  K Transl M Cross M Rotary  M  IlAhll,llA~$ll

error % error % errOr % error % error % error %

20 20 20 20 20 20 73730,. 1

29 33 37 40 203 773 1 SE5,

.097

Table 8.9 Mass and stiffness identification results with 7 modes

From Table 8.9, it is evident that the calculation has not converged after 10 iterations and

no improvement is achieved with further iteration. As was noticed in case studies in

previous sections, the structure’s response is insensitive to the joint’s rotary and cross

inertia variations and this, in turn, will cause the calculations to be sensitive to noise. For

example, Table 8.9 illustrates that a small amount of noise added to the structure’s modal

parameters has resulted in a large amount of error in the identified rotary and cross inertia

and this large error will affect the whole calculation.
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The above argument suggests that the noise effect may be reduced by ignoring the mass

modifications in the calculations altogether.

In what follows, the above idea will be examined.

CASE STUDY 5

Having repeated case study 4 with the mass removed from the calculations, Table 8.10

shows the results for this case.

Iteration Transl K Cross K Rotary K Transl M Cross M Rotary M llA~ll,llA@ll

number error % error % error % error % error % error %

Init. Val. 20 20 20 20 20 20 73730,. 1

1 17 18 19 20 20 20 34282,

.093

Table 8.10 Stiffness identification results without mass being involved, calculation with 7

modes

As is evident from Table 8.10, ignoring the mass, stiffness errors have been reduced

slightly and IlAklI  has been reduced remarkably.

So, when noise is present in the calculation, ignoring mass modification factors in the

calculations proves to be useful.

CASE STUDY 6

Case study 3 is repeated here, i.e. using only eigenvalues in the calculations, with noise

effect added to modal parameters. The results of this case study are shown in Table 8.11

Iteration Transl K Cross K Rotary K Transl M Cross M Rotary M IlAkll

number error % error % error % error % error % error %

Init. Val. 20 20 20 20 20 20 73730

2 2 3 3 6.5 2.2 120 30252

Table 8.11 Mass and stiffness identification results with 7 modes

As Table 8.11 indicates, using just eigenvalues in the calculations, a great reduction in

mass and stiffness error values have been achieved in just 2 iterations. This shows that

identification is more sensitive to noise in eigenvectors than noise in eigenvalues.



181 Application of IEM to Joint Identification 187

Thus, generally speaking, using just eigenvalues in calculations gives better results,

(which was expected as explained before), provided enough modes are used to prevent an

under-determined set of equations.

cl8.7 CONCLUSIONS AND REMARKS.

Application of the inverse eigensensitivity method to the joint identification problem has

been investigated in this chapter. The method has been modified to be applicable to the

pure experimental data case. The following general conclusions can be drawn from the

discussions throughout this chapter:

(a> - the method gives good results for the stiffness of the joint almost without any

iteration required, but for the mass parameters this is not the case and a number

of iterations are necessary to obtain a reasonable result for the mass;

69 - for the joint model used in the case studies of this chapter, the structure’s

response turns out to be insensitive to the joint’s cross and rotary inertia

variations. This insensitivity leads to a large errors in the results when noise is

present in the measured data;

cc> - when noise is involved in the data, the method fails to give reasonable results

unless one of the following methods is used:

(i)- to ignore mass modifications in the calculation altogether; or

(ii)- to use just eigenvalues in the calculations. This option gives reasonable

results Provided sufficient number of modes are available (measured); and

Cd) - the major setback of the method for experimental applications is its iterative

nature which makes repetitive couplings necessary. If couplings are performed

using FRF models of the substructures, then there is a modal analysis necessary

after each coupling. On the other hand, if a component mode synthesis technique

is used for the coupling analysis, then one is faced with the difficulties in solving

the eigenvalue problem as explained in chapter 2. Using FE models of

substructures in the coupling analysis problem is not serious and the method can

be used efficiently for this case.
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FRF-BASED DECOUPLING METHOD

El9.1 INTRODUCTION:

Adaptive joint identification techniques were discussed in chapters 5 through 8. As
mentioned in chapter 1, and observed in all chapters, an essential feature of any adaptive
technique is that it needs an analytical model of the structure and, in most cases, this
model must be generated by coupling the constituent substructures of the assembled

structure through a trial joint model.

On the other hand, for all other adaptive joint identification techniques except the FRF-

based direct identification method discussed in chapter 5, iteration is necessary to achieve

the solution (see chapters 6 to 8). Thus, for almost all adaptive techniques, repeated
coupling analyses are necessary which not only makes the identification calculations
lengthy but also increases error levels in the results.

In the present chapter, an independent family of joint identification techniques called
“structural decoupling techniques” by the author will be developed and their performance
and sensitivity to measurement noise will be discussed. Since the method studied in this
chapter is FRF-based, they exhibit all the advantages associated with FRF-based
techniques described in section 5.1. Also, as will be seen, application of this new
approach does not require any coupling analysis and, mathematically, is very simple to
implement.

I9.2 STRUCTURAL DECOUPLING METHODS

The basic idea of these methods is to extend the coupling formulation between two (or
more) substructures, considering the joint explicitly as an intermediate substructure and
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then solving the inverse problem, i.e, decoupling an assembled structure to its component

and, using either experimental or analytical models of substructures, identifying the joint.

This extension to the coupling formulation could be applied either to the FRF coupling or

Component Mode Synthesis methods and, thus, decoupling methods can be categorized

accordingly as follows:

(a) -
(b) -

modal-based decoupling method; and

FRF-based decoupling method

Investigation of the performance of modal-based decoupling method is the subject of the

next chapter and we will concentrate here on the FRF-based decoupling method.

El9.3 FRF-BASED DECOUPLING METHOD

As the name implies, this method is based on the use of the FRFs of the substructures

and the coupled structure to extract the dynamic properties of the joints. Depending on the

application cases and their feasibility, the following categories will be considered:

(a> -
(b) -

two elastic substructures decoupling;

one elastic substructure and ground decoupling.

It should be noted that the above-mentioned categories can be combined into a single

general formulation, i.e, by considering case 2 as a special case of case 1. However, it

will be shown later that this kind of general formulation is not suitable for experimental

studies and from this aspect it is better to consider these two cases separately.

9.3.1 DECOUPLING OF AN ASSEMBLED STRUCTURE CONSISTING
OF TWO ELASTIC SUBSTRUCTURES & JOINT ELEMENT

Consider two substructures A and B and the joint J as shown in Fig.2.1.

It is required to find the dynamic characteristics of joint J using FRFs of A and B and the

coupled structure, C. Having Combined A and B to form a dummy structure, D, and

recalling from chapter 2 the coupling equation relating FRFs of assembled structure, C,

and dummy structure, D, and joint element, J, is :

CASE (1) slave coordinates only involved in [HI,
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[HI, = [Al - @I[ Pl+Pll-l  [Cl

where

[Al =

PI =

- CHls,s 101

LOI WI;

1
1

PI =

Wlj = [Jl

(9.1)

(9.2)

where [B]([JI+[D])-l[C]  is the effect of coupling and joint flexibility on the substructures’

slave coordinates, transformed from the interface coordinates by matrices [B] and [Cl.

CASE (2) complete coordinate set of structure C involved in [Hj,

For this case:

[HI,  = [id] [r&d + [I$j _ [ HIj [il [&]-l [“lj

or

(9.3)

@I, = [%Ij + Ii], - @I

where

and subscripts sd and sj designate the number of slave coordinates of structures D and J,

respectively.

If there are no slave coordinates on structure J, then :

[H&-l  = [H&j and [I] =

1 [Ol Ku J
(9.5)
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For case (l), i.e. slave coordinates only involved in [HI,, the joint FRF can be extracted

from equation (9.1) as follows:

[J] = [ ~~l+~~~l-~~lc~~~l+]-l  - [Dl (9.6)

or

[ ~rl~~~~l’~~~l~~H3~>~~1~~~~1  ][zlj = [ [Bl+([Al-[Hl,)[Cl+ ] (9.7)

The quantity [A]-[HI, in equation (9.7) represents the joint effect on slave coordinates

and [B]+ & [Cl’ transfer this effect to the interface coordinates.

A similar formula to (9.6) can be derived using impedances of the substructures. For this

case, the definitions of matrices [A],[B],[C],.....[J] remain essentially as before but with

impedances being used instead of receptances. Thus, one has:

[Zlj = [ P1’([A1-I?l~~[Cl’]~’  - [Dl (9.8)

Either (9.6) or (9.7) represent the essential formula for this method and define the

receptance or impedance of the joint, respectively.

For case (2), i.e. all coordinates of C involved in [HI,, the joint parameters are identified

from equation (9.3) as:

[fi]j = [id] [ [lid - [WC +Wlc [II [Bd]-’ LHcI (9.9)

or

EIj = EIc - [%d + [il (9.10)

Either one of equations (9.9) or (9.10) represent the essential formula for this part of this

method.

9.3.1.1 REMARKS AND COMPARISON OF THE TWO METHODS

BASED ON EQUATIONS (9.7) & (9.9):

Comparison of the two methods which are based on equations (9.7) and (9.9) (or (9.6)

and (9.10)) yields the following observations
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(a> - By using equation (9.7) , one does not have to measure the FRFs  at the interface

coordinates of the coupled structure C. Since this is always difficult, and in

some cases impossible, this feature represents a considerable advantage for this

method,

@I - Application of equation (2.7) requires calculation of the pseudo-inverse of some
matrices , i.e [B] and [C] in (9.6), unless (sa+st,)  = (ia++,) which means that the

number of slave coordinates of dummy structure D is equal to the number of

interface coordinates. This assumption puts some constraints on the

measurement.( Note that using the pseudo-inverse could be advantageous in an

experimental analysis because it will serve to average the measurement errors

and spread them over a greater number of data points.)

In performing these pseudo-inverses, it is necessary that (sa+sh) > (ia+&) and that neither

s, nor sh be zero. Using equation (9.9) none of these problems exists and no

considerations are required about choosing the correct number of coordinates. This is

why both cases in section 9.2 can be handled by equation (9.9) but not by equation (9.7).

Thus, using equation (9.7) is generally better than using equation (9.9) and from an

experimental point of view the most important advantage is that stated in (a).

Using equation (9.7), it is still sometimes very difficult to measure the interface

coordinates’ point FRFs on one of the substructures, and for such a case the method

described below is proposed.

9.3.1.2 A METHOD TO DEAL WITH SUBSTRUCTURES WITH

UNMEASURED INTERFACE COORDINATES

Reconsider equation (9.6) or (9.8) :

151  = [ ~~1+~~~1-~~1,~~~1+]-’  - [Dl

[Zlj = [ [Bl+([Al-KlJECl+  1-l - [Dl

where for (9.6) :

(9.6)

(9.8)
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WI: @I
WI =

[ 1WI [HI;

and for (9.8)

[a; WI
PI =

[ 1[Ol VI;

(9.11)

(9.12)

In what follows, equation (9.6) will be used for the analysis but every conclusion is valid

for (9.8) as well.

Equations  (9.6) can be written as :

(9.13)

where [J]ih is the joint’s transfer FRFs  between the interface coordinates of the joint

related to substructures A and B and

[~;1 = [ ~~1+~~~1-~~1,~~~1+]-1 (9.14)

and from (9.13) :

[Jl; = [fp and [J$ = [f12’ (9.15)

This means that [J]ab and [Jlt’, could be easily determined without any need to measure

the substructures point FRFs at the interface coordinates!

Using a prescribed joint model, e.g. an FE-based or lumped parameter model, it is a
straight forward matter to calculate the complete joint model having [J1fb and [J]& For a

lumped parameter joint model, for example, a simple joint can be modeled  as :

. .



m W-Based Decoupling Method 194

while for n such joints (either rotational or translational) the model is:

.

Kl O -KI 0

O K2 0 -K2

-K, 0 K1 O

0
-K2 O K2

.

From this it is easily seen that, in equation (9.13),  [J]:: = - [J]:: and [J]:: can be

determined from (9.15) and thus that one has [Jli and [J]ib in hand without measuring

FRFs at the interface coordinates of either substructure.

For a more general type of joint model, considering (9.15),  equation (9.13) could be

written as :

i

rJl~ WI

WI [Jlk

Fll l WI

PI PI22

[a iiqjll _ ]H]ii
aa a

[~3 ii qq22
bb

_ p_.qii
b

Usually, it is not a difficult task to measure the transfer FRFs between the interface

(9.16)

(9.17)

(9.18)

* coordinates of either A or B, i.e, the off-diagonal terms in [HI: and [HI:, but the main

difficulty lies in measuring the point FRFs of the interface coordinates. Let us assume that
the point FRFs for B have been measured and thus that [J]hh can be calculated from

(9.18).

If one assumes that [H]i  in equation (9.17) is an i x i matrix then there are i diagonal

terms which have not been measured and also i unknowns related to the diagonal terms of
[JI,. So, the system of equations (9.17) is an underdetermined set and there is no exact

solution for it. One reasonable assumption is to consider the diagonal terms of [Jlii  as

being equal to the diagonal terms of [J’&,  . This can easily be justified if one considers an

FE or simple lumped mass-spring-damper models for the joint.
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Having [a.$ one can easily calculate [HI: and then assess these results by comparing

them with the FRFs measured at adjacent points of the interface coordinates of A. If the

results of this assessment are satisfactory, then the model found for J would be reliable
and one could use it as well as [HI: for further analysis.

9.3.2 DECOUPLING OF AN ASSEMBLED STRUCTURE CONSISTING
OF ONE ELASTIC SUBSTRUCTURE

As its name implies, one of the substructures in this case is ground ( relative to the other

substructure ), Fig.9.1.

Substructure A

Ground

I Fig. 9.1 Grounded assembled structure

For this case, the impedance model of the joint can be written as :

,{ ;;} =[ e::l::]w
(9.19)

where g is a suffix for ground and notations ” _ ” designates interface coordinates.

Since g is ground, (j;}jg = 0 [Zl~ {j;}ja  = {“FJja (9.20)

and, using a proper FRF model for substructure A along with the following compatibility

and equilibrium equations we have:

and (9.21)
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From equations (9.20) and (9.21) it follows:

D-UC= [ [H]s,s  - [HIS,’  ([HI: + ([Z];jljl[H];]

which can be solved for [Z];  .

([Z$ = [([HI;)+ ([HI; - [H]c ) ([H]‘,s)+]-’  - [Hl’g

or

[z];= [ 1 - [Ll [HI;]-‘[L] (9.24)

(9.22)

(9.23)

where

PI = WI;)+ Wls,s - [WC > Wl’gs)+

I9.4 CONCLUDING REMARKS

From what has been said so far for frequency response decoupling methods, the
following conclusions can be drawn :

G-4 -

04 -

cc> -

(4 -

neither of the methods discussed above uses a prescribed model for damping,
i.e, hysteretic or viscous, and so the appropriate model should be selected after
examining the identified joint’s FRFs.  This is a considerable advantage when
identifying joints which reveal different damping mechanisms for different

frequency ranges;

no prescribed model for the joint is considered. However, the nature of the joint,
i.e, translational and rotational or just translational or....etc, depends on the
interface coordinates used in coupling of the substructures;

these methods could be applied to non-linear structures using appropriately-
measured FRFs;

the method proposed in 9.3.1.2 is a useful tool to deal with substructures where
interface coordinates are difficult to measure.
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I9.5 CASE STUDIES

It was noted in the previous sections that either equation (9.7) or equation (9.9) can be

used as the basic formula for a general decoupling analysis. Due to the practical

advantages associated with using equation (9.7), explained in section 9.3.1.1, the

performance and sensitivity of this equation will be investigated in this and subsequent

sections

9.5.1 TEST STRUCTURES & JOINT MODELS

The assembled structure, C, and its constituent substructures are shown in Fig. 9.2.

Substructure A Substructure B

Joint element

Fin. 9.2 Test structures used in all case studies

As is evident from Fig. 9.2, substructures A and B are FE-based beam models with 2 and

3 elements, respectively. These models are developed using a base element shown in Fig.

3.2 :

In order to simulate a practical case as much as possible, just the translational degrees of

freedom of slave coordinates for both substructures and assembled structure are used in

calculations in all case studies. It is clear that by not using rotational degrees of freedom

in the calculations, one may lose valuable information about the joint’s effect on the

structure’s response. ln spite of this fact, since accurate evaluation of rotational degrees

of freedom responses is very difficult, rotational parameters of the slave coordinates will

be eliminated from the calculations.

The joint element of the assembled structure in Fig. 9.2 has the following specifications:
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Ljc = Le , Ejc = lOOO%Ee  , Pjc = lO%pe (9.25)

Thus, the joint element is 10 times stiffer and 10 times lighter than the base element in

Fig. 3.2. The specifications in equation (9.25) yield the following mass and stiffness

matrices for the joint element:

r .05 .0021 .01746 -.00126 1
.OOO 1 .OO 126 -.000087

[Mljc =
.05 -.0021

L .OOOl _I

[Kljc = [

6440000 966000 -6440000 966000’

193200 -966000 96600

6440000 -966000

193200 .

CASE STUDY 1

(9.26)

In this case study, equation (9.7) has been set up and solved for the test structures in Fig.

9.2. Typical results of the identified joint are shown in Fig. 9.3. It should be noted that

since equation (9.7) is being solved at each individual frequency point, there is no need to
decompose [Zlj  in equation (9.7) into its constituent pararneters, i.e. mass, stiffness and

(in damped case) damping. This is why the results in Fig. 9.3 are in terms of the elements
Of joint impedance matrix [Zlj.

As is evident from Fig. 9.3, the result is satisfactory. The condition number of the

coefficient matrix on the 1.h.s  of equation (9.7) is shown in Fig. 9.4. As this figure

indicates, the condition numbers of the coefficient matrix associated with resonance

frequencies of the substructures and of the assembled structure are high, which means a

greater possibility of high sensitivity to error at these frequencies.
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Fig. 9.3 Typical identified joint impedance without noise

%I 1 I I 1
1 2 . 0 0 F r e q u e n c y  H z . 3 0 0 . 0 0

Fig. 9.4 Condition number of coefficient matrix on the 1.h.s of equation
(9.7)

To examine the effect of measurement noise on the results, 5% random noise has been

introduced to both the real and imaginary parts of the FRFs of the substructures and of
the coupled structure. Typical calculated joint impedance matrix elements, Zj(l,l) and

Zj(1,2), are shown in Fig. 9.5. As is evident from this figure, the results are very poor

and comparing calculated mean values of results with correct values, it becomes clear that
computed results are at least 20 dl3 less than the correct values, which means 10 times
under-estimated.



q W-Based  Decoupling Method 200

160

m
‘0 -

_

::fij

sdV-+hfi%g l/
50

1 2 . 0 0
1 I

Frequency Hz.
300. Q0

130-

ii_
e
N

_
N -

;5
%--
ii!--
3 0

1 2 . 0 0
Frequency Hz.

Fig. 9.5 Typical joint impedance matrix elements with 5% noise,
_ correct value

The above-mentioned results lead to the conclusion that the identification procedure is
sensitive to noise. Investigation of the reason(s) for this high sensitivity and of methods

for its reduction are the subjects of subsequent sections.

9.5.2 INVESTIGATION ON THE PARAMETERS CONTROLLING
SENSITIVITY

In this section we will examine the nature of the identification problem sensitivity to noise
and will try to identify the underlying controlling parameters.

As mentioned in section 4.2.2.2, the significance of the effect of a joint (each of its
individual parameters) on the assembled structure’s response plays a major role in the
sensitivity of the identification procedure to measurement noise. In other words, a major
reason for high sensitivity can be attributed to the insensitivity of the assembled
structure’s response to some of the joint parameters variations. The insensitivity of
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assembled structure C in Fig. 2.1 to variation of the joint parameters in expression

(9.26),  for low and moderate frequency ranges, can be seen in Fig. 9.6. This figure

shows the typical FRFs of the assembled structure, C, generated once with the joint

model in expression (9.26) and the next time with a joint model 10 times stiffer and 10

times lighter than former joint model.

- ,_

-:GB----.
12.00 Frequency Hz. 307.00

Fig. 9.6 Typical FRFs of two structures, - - -joint model in (9.26)

_ 10 times stiffer joint

As a general rule, the stiffer the joint, the less sensitive is the assembled structure is to

joint parameter variations.

CASE STUDY 2

Fig 9.7 shows the typical results of repeating case study 1 with just 5% random noise
added to [HI,. As can be seen from this figure, even without adding any noise to the

FRFs of substructures, the results are very poor.

Recalling from section 4.2.2.2, and defining [E] as the noise-induced error matrix added
to matrix [HI, (II [Elk< II[H],II), the matrix [B]+([A]-[H],)[C]+ in equation (9.7) can be

written as:

[Bl+UAl - WI, - [EWI’ = [Bl+UWIWc>ECl+ + [Bl+[EI[Cl+ (9.27)

where the first term on the r.h.s of equation (9.27) represents the correct effect of the

joint on the assembled structure’s response and the second term shows the noise effect.

Now, as Fig. 9.7 indicates,

II [B]+[E][C]+ II > II [B]+([A]-[H],)[C]+  II (9.28)

a , .,.
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i.e. the error effect has dominated the joint effect in the calculation.

I  lllll IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIII I

1 0 0 . 0 0
F r e q u e n c y  H z .

1 0 0 0 . 0 0

F r e q u e n c y  H z .

m
-u - I

N - _ --
+_/-/_L-~

E -

40 .
I ~ll~l~~~ll~~llll~ll~lIlllIIIIIIIIIIIIIlI  IIIIIIIIlIIIIIIIIIIIIllllllllllllllll~llllll

1 0 0 . 0 0
F r e q u e n c y  H z . 1 0 0 0  - 00 1 N e g a t i v e

Values

Fig. 9.7 Typical joint impedance matrix elements with 5% noise added
only to FRFs of assembled structure,_ correct value, - - - quadratic fitted curve

It is clear that the matter of the structure’s sensitivity to joint parameter variations depends
on many factors among which the interfacing configuration is one of the most important.
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To illustrate the effect of the interfacing configuration, and other factors, on the

structure’s sensitivity and, consequently, on the results, the following case study has

been carried out.

CASE STUDY 3

Fig. 9.9 shows the results of identifying the joint for an assembled structure with the
interfacing configuration shown in Fig. 9.8 and with 5% random noise added to [HI,

Substructure B

Lumped joint model

Substructure A

Fig. 9.8 Assembled structure C for case study 3

The constituent substructures of the assembled structure in Fig. 9.8 are the same as those

in Fig. 9.2 but a lumped parameter joint model has been used in Fig. 9.8 and no

rotational degrees of freedom are involved in the interfacing. The lumped parameter joint

model in Fig. 9.8 has the following mass and stiffness matrices:

.05 0 0 0

.OOOl 0 0

[Mljc = i .05 0.OOOl 1
6440000 0 -6440000 0

193200 0 -193200

[Kljc = 6440000 0193200 1 (9.29)

As expression (9.29) indicates, the joint model in Fig. 9.8 is a lumped parameter version

of the (consistent) joint model in Fig. 9.2.
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Fig. 9.9 Typical joint impedance matrix elements with 5% noise added to
FRFs of assembled structure in Fig. 9.8

Examination of Fig. 9.9 reveals that the results are satisfactory. On the other hand, using
the same interfacing configuration as in Fig. 9.2, i.e. with both translational and
rotational degrees of freedom included, together with a lumped parameter joint in
expression (9.29), again yields poor results.

The above observation indicates that, for the test structures of Fig. 9.2, the inclusion of
rotational degrees of freedom in the interface coordinates deteriorates the result. This
conclusion is in complete agreement with the conclusions drawn in chapters 5 to 8 (i.e.
insignificant effect of the joint’s rotational parameters.on  the assembled structure’s

response).

Further examination of the results in Fig. 9.7 reveals that, despite poor results in this

figure, there is a clear trend in the identified joint impedances. Using a least-squares curve

fitting technique, this trend can be well described as a quadratic function of the form:

zij = kij - qjg (9.30)
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The fitted quadratic functions in Fig. 9.7 are shown by dashed lines. Note that the spikes

on the identified impedance curves, are related to natural frequencies of the substructures

and of the assembled structure (see Fig. 9.4).

The existence of the quadratic trend in the erroneous results in Fig. 9.7 indicates that the

noise has not affected the quadratic nature of the joint impedance. So, the identification

process identifies a joint element with an impedance of quadratic nature but, since the

noise has affected the FRFs of the assembled structure and substructures, the calculations

do not converge to the real joint but under-estimate it.

In the following sections, the methods of dealing with structures with insignificant joints

will be investigated.

9.5.3 APPLICATION OF LS METHOD TO REDUCE THE NOISE
EFFECT

Recalling from section 4.2.2.2 that, due to the fact that noise-induced errors dominate the
matrix [B]+([A]-[H]c)[C]’  in equation (9.7) (both sides of the equation) at each individual

frequency point, it is not possible to reduce the noise effects on the calculation by

combining equation (9.7) from different frequencies and using a least-squares (LS)

solution. So, in contrast to the adaptive identification techniques, the LS method does not

reduce the noise effect on the results.

9.5.4 APPLICATION OF SVD TECHNIQUE TO REDUCE THE NOISE
EFFECT.

The SVD technique is usually used to invert an ill-conditioned matrix where a small

amount of noise can affect the smallest singular values of the matrix.

In this section, the SVD is not used for inversion purposes (as it is not useful because of

the dominant error effect), but rather to find the parameters which cause the dominant

error effects in equation (9.7) and thus to eliminate them from the calculations. In this
connection, we will first examine the noise effect on [A-H,] and, second, on [HI,, as the

main sources of error.

b I
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Fig. 9.10 demonstrates the ratio of the elements of the left singular vectors of matrix [A-
He]  of case study 2, before and after adding noise to [HI,, for f=200 Hz. Also, Table 9.1
demonstrates the singular values of [A-H,] with and without noise.

6

4
h
% 2.II

2
+ 0
z
5 -2

-4

-v . . . . .

1 2 3 4 5

Vector’s number n 1 st element
q 2nd element

Fig. 9.10 The ratio of the elements of
typical left singular vector with &
without noise

3rd element
q 4th element

q 5th element

01 02 03 04 %

- Noise l.l77E-5 3.7E-6 l.l5E-9 l.l3E-10 9.2E-22

+ Noise l.l77E-5 3.72E-6 4.16E-8 2SE-8 4.11E-10
Table 9.1 Singular values of [A-H,] with and without noise

Although the data in Fig. 9.10 and Table 9.1 are typical, the variation of the elements of
the right singular vectors and singular values shows the same pattern for the whole
frequency range of interest, i.e. 100-1000 Hz. Also, since only translational slave
coordinates are involved in [HI, and in [A-H,], both matrices are of order of 5x5.

Examining Fig. 9.10 and Table 9.1, two conclusions can be deduced as follows:

(a) - except for the two first column vectors of [U] and [VI, the other columns are

affected by noise dramatically; and

(b) - the 3rd, 4th and 5th singular values are very small compared with the 2nd one.
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To determine the physical implications of the two above deductions, extend the method
introduced in [31] for the case of coupling analysis and define [A]=[A-H,]  as the matrix

of the difference of FRFs of the assembled structure, C, and the dummy structure, D, at

their slave coordinates. Then using the SVD of [A], one obtains:

[A] = [A-H,] = [U][X][V]H= [G][VIH ==> [6] = [A][V] = [U][Z] (9.31)

As is evident from equation (9.31),  the columns of [6] are equal to columns of [U]

multiplied by the appropriate (T. Also, columns of [A] can be represented by linear
combinations of the columns of [6]. Now, saying that ith singular value of [A-H,] is very

small means that:

II[A]{ V}ill  is very small ===> II[A-H,] { V}ill is very small (9.32)

Expression (9.32) means that, for every small singular value, there is a certain pattern of

the slave coordinates’ response differences which has very insignificant contribution to
[A-H,], i.e. to the slave coordinates’ FRFs difference matrix, and consequently to the

calculations. This insignificant contribution can easily be dominated by the noise effects.

With the above physical explanation in mind, it is clear that the two above deductions
about the singular parameters of [A-H,], are cause and effect, i.e. the small singular

values related to the 3rd, 4th and 5th singular vectors are the cause of the dramatic noise

effect on their related singular vectors.

Therefore in order to prevent the insignificant difference patterns occuring, when noise is

present, the appropriate singular values are set to be zero.

To investigate the effect of noise on [HI,, this matrix’s singular parameters have been

calculated for the frequency range of interest.

Examining the singular values of [HI, reveals that, except at the natural frequencies of the

assembled structure, these parameters are not affected dramatically by noise. On the other
hand, exploring the left and right singular vectors of [HI, shows that the noise effect on

these vectors is significant for the two following cases:

(a> - for cases where two adjacent singular values are close (see section 4.51); and

0-9 - for the 4th right and left singular vectors.
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The first case above has been thoroughly discussed in section 4.5.1. For the second case,

closer examination shows that:

II{V}4II  << II{V}ill i= 1 t0 5 &i#4 ==>from equ. (9.31) II[H,] { V}iII = very small

(9.33)

Expression (9.33), again, means that the contribution of a certain pattern of deflection of
the slave coordinates of the assembled structure to [HI, is insignificant. Note that in this

case, in contrast to expression (9.32) for [A-H,], small II{V},II is not associated with

small 04.

So, from the above discussions on the quality of the noise effects on the singular
parameters of [HI, and [A-H,], it becomes clear that proper selection of singular

parameters of these matrices can improve the results of the identification.

CASE STUDY 4

The test structures and joint model for this case study are the same as those for case study
2, shown in Fig. 9.2 and equation (9.25). In order to reduce the noise effect on [A-H,],

this matrix has been regenerated using only the first two singular vectors and singular
values. Also, [HI, has been regenerated using averaged [U], and [VI, and either one or

two first singular values and singular vectors, i.e. if oI/02  <2 then use only (TI and if

oI/02 >2 use GI and o2 in regeneration of [HI, (see section 4.5.1).

A typical result for the identified joint can be seen in Fig. 9.11. It is evident from this

figure that the results are much better than those in Fig. 9.7. Note that the calculated mean

values in Fig. 9.11, shown by dotted lines, give a reasonable approximation to the correct

impedances.
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Fig. 9.11 Typical joint impedance matrix element with 5% noise with
SVD technique applied to reduce noise effect

Finally, numerical case studies show that increasing the number of slave coordinates
involved in the calculation improves the results. This improvement was expected because
more slave coordinates means more points are involved in the calculation of matrix
[A-H], and since, depending on their position in the structure, responses of different

points are differently affected by the joint, one has more estimates of the joint in the
calculation. This deduction is particularly true if the added slave coordinates are close to
an interfacing position. On the other hand, excessive number of slave coordinates may
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increase the error level in the calculations. For example, selecting a point which is a nodal

point (or near to a nodal point) for one or more modes in the frequency range of interest

as a slave coordinate can introduce a huge amount of measurement error to the

calculations. Thus, selection of the number of slave coordinates and selection of their

lpcation  on the substructures and assembled structure is a delicate matter.

III9.6 CONCLUSIONS & REMARKS

From the results achieved in the foregoing sections and the subsequent discussions, the

following conclusions can be drawn for the FRF-based decoupling method:

(a> - the method is sensitive to measurement noise. This sensitivity, which depends

on the interfacing configuration, is due to insignificant joint effect on the

structure’s response. So, reduction of measurement noise is crucial. At a

preliminary stage of analysis this reduction of noise can be achieved by proper

selection of the slave coordinates and by post-processing of measured FRFs,

using modal analysis. If the post-processing is used, one should be very careful

when using regenerated FRFs,  as even very slight differences between original

and regenerated FRFs can affect the results of the computed joint remarkably ;

(b) - the following factors improve the result:

(i)-increasing the number of slave coordinates and properly selecting them. The

most useful slave coordinates are those which are most affected by the joint In

other words, the most useful slave coordinates are those which do not cause any
insignificant difference pattern in [A-H], (see expression 9.32); and

(ii)- application of SVD technique to identify insignificant difference patterns and

eliminate them from calculations;

(cl - in cases where the effect of errors is dominant, the application of a LS technique

is not useful.

Y.



CHAPTER In 01

MODAL-BASED DECOUPLING METHOD

I10 1 INTRODUCTION

The FRF-based decoupling technique was discussed in chapter 9. As was noted in that

chapter, provided that the noise effect is not dominant, the FRF-based decoupling method

is very efficient. In the present chapter, the performance and sensitivity of a modal-based

version of the decoupling method will be investigated.

The basic idea in modal-based decoupling method is the same as in the FRF version, i.e.

to extend the coupling formulation between two (or more) substructures, considering the

joint explicitly as an intermediate substructure and then solving the inverse problem, i.e,

decoupling an assembled structure to its components and, using either experimental or

analytical models of substructures, identifying the joint

El10 2 FORMULATION OF MODAL-BASED DECOUPLING METHOD

Consider the assembled structure, C, shown in Fig. 9.1. This assembled structure

consists of two substructures A and B and a joint element J.

Recalling the coupling equation from chapter 2 and assuming that substructures A and B

constitute a dummy structure D, the modal-based coupling equation can be written (see

equation (2.3 1)):
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Iq:klI ]’ [ [Hjl + [Rdil 1-l [ “ril 0 {P:]

[@bki] {Pbc,]

(10.1)

where notations i, s and k are designated as interface and slave coordinates and

modes, respectively, and,

[$,lIo,2,1-1N&lT 0[R]
2-1 T 1 (10.2)

0 [@he] IWhe]  [@be]

As was described in chapter 2, [Rdi] represents the residual contribution of the eliminated

higher modes to the flexibility of substructures A and B at their interface coordinates.
Thus, [R&l can be interpreted physically as a dummy spring or, generally speaking, as an

elastic medium which connects the interface coordinates of two substructures to each

other. Also, the joint which is a real elastic medium is present at the interface coordinates

of the substructures and connects the substructures to each other and as is evident from

equation (10.1) the flexibility matrices of these dummy and real elastic media are in series

and combine to constitute the total elastic element acting between the interface coordinates

of the substructures.

In order to be able to calculate [Hj] from equation  (10. l), this equation should be solved

as an inverse eigenvalue problem. The solution procedure starts from calculation of

using expansion equation (2.21) as follows:

(10.3)

1=o

kept

where { @.&} and ($&.} are subvectors of structure C’s rth eigenvector, containing the

slave coordinates related elements. Also, [$,J and [&,ks] are eigen-matrices of

substructures A and B, respectively, containing slave coordinates related elements of the

kept modes.
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Calculation of
IPL]

i I@her]

from equation (10.3) requires measurement of the rth eigenvector

of the assembled structure C as well as a sufficient number of modal parameters of

substructures A and B. It should be noted that only the slave coordinate eigenvector

parameters of structure C are required and thus no interface coordinates need to be

measured on structure C (which may be difficult to measure in practice.) Having

calculated and putting it in equation (10. l), this can be rewritten as:

[A] = [ [Hj] + [Rdil I-’ (10.5)

Matrix [A] contains the unknown parameters of the joint which are to be found Equation

(10.5) can be converted into a set of algebraic equations with the elements of [A] as
unknowns. If ni is the number of interface coordinates, then [Hj] will be niXni and the

total number of unknowns, taking symmetry into the consideration, will be ni.x(ni  +1)/2

while the number of equations is (ma + mb) where ma and mb are the numbers of

measured modes of substructures A and B, respectively. Now, if it is desired to identify

the joint from equation (10.4) using only one measured mode, the following inequalities

must be satisfied:

for equation (10.3) (ma + “& ncs = (“as + “bs) (10.6)

for equation (10.4) ni.x(ni  +1)/2f (ma + mb) (10.7)

where n,,, nbs and ncs are the numbers of measured slave coordinates of substructures A

and B and assembled structure C, respectively.

Inequalities (10.6) and (10.7) simply mean that in order to be able to identify the joint

using a single measured mode of the assembled structure C, the number of measured

._
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slave coordinates of the substructures must at least be equal to the number of unknowns

in the joint impedance matrix.

In contrast to the FRF-based decoupling method where solving the governing equation

for each individual frequency yields good results due to the approximate nature of

equation (10.3), in which the contribution of higher modes has been ignored and

coordinate set is incomplete, i.e. part of information related to the joint effect is missed

(see equation (2.21)), solving equation (10.4) for only one mode does not yield a

satisfactory result. In order to achieve a satisfactory result it is necessary to incorporate

more modes of the assembled structure in the calculations, i.e. equation (10.4) for

different modes of the assembled structure must be combined to set up an over-

determined set of algebraic equations and, to be able to combine equations for different r,
it is necessary to separate the mass and stiffness parameters in [Hj],  which is not

possible. The only way of separating the mass and stiffness parameters of [Hj] is to

ignore the higher modes’ residual matrix [Rti] in equation (lO.l), or (10.4). Then, using

[Zj] = [Hj]-’  in equation (10.4), it will be an easy task to separate the mass and stiffness

parameters.

The other, more suitable, way of solving equation (10.1) is to write it as follows:

where

vN=[hJ-[ [y [lkl]

T+

1 1
[ A h ]  {Px,] =

(10.8)

(10.9)

Using equation (10.9), no approximation is introduced to equation (10.1) but, on the

other hand, in order to be able to calculate [[??I [q;ki]l”.*it is necessary to satisfy

inequality (10.7) for each mode. Also, inequality (10.6) must be satisfied as well.

I10 3 CASE STUDIES
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In order to study the performance of the modal-based decoupling method, a series of case

studies have been undertaken. Test structures used in all case studies are shown in Fig.

10.1. Substructure A is an 8-element FE model of a cantilever beam and substructure B is

also an FE model of a cantilever beam with 7 elements.

Substructure A

I I I I I I I 1

Substructure B

I I I I I I I

Fig. 10.1 Substructures A & B and assembled structure C

The specifications of the base element used to generate the substructures models are the

same as those in Fig. 3.2 of chapter 3. Also, the specifications of the joint model used to

generate the assembled structure are the same as those in equation (6.43) of the same

chapter, which yields following joint mass and stiffness matrices:

3220000 483000 -3220000 483000

96600 -483000 48300

[Kljx = 3220000 -48300096600 1 (10.10)
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Since, as mentioned before, only the translational slave coordinates of substructures A

and B and structure C are used in the calculations, there are 13 coordinates in the

eigenvector of structure C on the r.h.s of the equation (10.3)

In contrast to the FRF-based decoupling method, solving equation (10.9) even for a

single mode requires one to transform the matrix equation (10.8) into a set of algebraic

equations, as follows:

[ W,)  1 (ma+mb)x(njx(ni+l)) njx(ni+l) = ( L(Oi) }(ma+mb)xt

(10.11)

Thus, the introduction of a reference joint model is necessary, in order to balance the

coefficient matrix [Cl. The reference joint model used in the subsequent case studies is

the same as that in equation (4.60) of chapter 4, i.e. a 20-parameter  reference model as

follows:

(10.12)

Note that [Mj] and [Kj] have been US& in equation (10.12), and not [AMj] and [AKj], as

the decoupling technique identifies the joint parameters directly and not modifications to

them (as in the adaptive techniques). Also, since there is no trial joint model defined in the
decoupling method, the parameters ai can be defined using an arbitrary reference joint

model.

CASE STUDY 1
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Equation (10.8) is solved in this case study, using the first 7 modes and the first 6 modes

of substructures A and B respectively. Thus the transformation matrix on the r.h.s of
equation (10.3) is a 13x13 matrix. Further, the matrix [C&)] on the 1.h.s of equation

(10.11) is a 13x20 matrix, for each mode of assembled structure, r.

Expression (10.13) shows the identified joint mass and stiffness matrices, using 5 modes

of the assembled structure in the calculations.

294257(90%) 220 13(95%) -265246 47779

8816(90%)

-25105 415

IXlj = 293275 -45 12015206 1
and

.0074(85%) .00015(93%)  .003 -.00019

[Mlj =
1.7E-5(85%)  .OOOl -1.2E-6

.0074 -.00032 1 (10.13)

2.94E-5

Error values in brackets in expression (10.13) indicate the poor quality of the result. In

spite of this, the proportionality between various elements of the stiffness and mass

matrices is reasonably well preserved.

CASE STUDY 2

Case study 1 is repeated, this time using the complete set of slave coordinates of the

assembled structure in the calculations, i.e. rotational slave coordinates are involved as

well. Under these circumstances, the transformation matrix on the r.h.s of equation

(10.3) is 26x26 which means that the first 13 modes of substructures A and B are

involved in the calculations. Furthermore, the coefficient matrix [C] in equation (10.11) is

a 26x20 matrix for each mode of assembled structure.

Expression (6.14) shows the result of this case.

2.6E6(18%)  600000(24%)  -2.44E6 8 3 0 1 5

Klj 277725(186 %)

-4377 18 -42639

= 3.72E6 -216972-6414 1
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and

r .064(18%) .0042(98%) .021 -.0003

.0005(354%) .0018 .00012
.093 -.0015

-1.24E-5 1 (10.14)

Comparing results in expression (10.14) with those in expression (10.13), it is seen that

the stiffness results are slightly better in expression (10.14).

Generally speaking, the results achieved from modal-based decoupling method are not

satisfactory. It was explained in section 6.5.2 that achieving a satisfactory result from

equation (10.8) depends mainly on the accuracy of the expansion of the assembled

structure’s modes in equation (10.3). The accuracy of this expansion, in turn, depends on
the how close the mode to be expanded, i.e. {Q,“,}  is to the range space of the

transformation matrix, i.e.

Since the base vectors of the transformation matrix’s range space -i.e. the columns of the
transformation matrix- lie in the subspaces of the space which {$z} belongs to (i.e

columns of transformation matrix belong to smaller space of substructures modal

matrices), thus it is very unlikely that one obtains a reasonably accurate expansion from

equation (10.3).
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I10 4 REMARKS AND CONCLUSIONS

In this chapter, a new modal-based decoupling method is proposed for joint identification

and its performance has been examined.

Although the method is very simple and easy to implement, due to the inaccurate

expansion in equation (10.3) caused by ignoring the higher modes of substructures in the

expansion, achieving good results is very case-dependent and in general unlikely.

As the component mode synthesis method is a well-established technique which is used

for coupling purposes efficiently [ 191, the deficiency of the modal-based decoupling

method is a good example of a case where the direct problem can be solved efficiently

while the inverse problem cannot



EXPERIMENTAL CASE STUDY

CHAPTER 11 Ij

El11 1 INTRODUCTION

Various joint identification techniques have been thoroughly discussed in chapters 5 to 10

and the advantages and shortcomings associated with each technique were also

investigated.

In this chapter, the applicability of a typical joint identification technique to a practical

problem will be examined.

111.21  STATEMENT OF THE PROBLEM

As a practical engineering case, it is desired to identify the dynamic characteristics of the

soft medium which isolates a blade from its stator support ring, Fig. 11.1. The blade

itself is made from a special steel alloy and is very stiff while the soft medium, which will

be called the isolator from here on, is also made from steel but is much softer than the

blade and support ring.

The configuration of the assembled structure, Fig.1 1.1, is such that it would not allow

any access to the interface coordinates and, thus, it is not possible to measure the transfer

FRFs, Ht. Considering the fact that these FRFs are not required in the FRF-based

decoupling technique, and other practical advantages associated with the FRF-based

decoupling method, this technique is chosen to be used in this analysis.
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A

UPPER RING

SOLATOR SLOT B a
I
I

__,_________________------ ISOLATING MEDlUh

I
A-A VIEW

B:

LOWER RING

Fig 11.1 Support ring, blade and assembled structure

The two substructures are the blade and its support ring for which the slave and interface

coordinates should be measured. Due to the skewed nature of the blade and also due to

very difficult access to the support ring interface coordinates, it is very difficult to make

accurate FRF measurements on these substructures. On the other hand, the nature of the

joint and its dynamic characteristics which are going to be identified are independent of

the substructures configuration and their mechanical properties, provided that the

interfacing configuration and conditions are maintained.

Considering the above argument, it was decided to substitute the support ring by a clamp

and the skewed blade with a straight one. These “equivalent” clamp and blade are shown

in Fig. 11.2.a
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Upper clamp

Lower clamp

l-8 slave words
,T.,..  P oordsY- 1 L mlertace cImpact (hitting)

direction

Fig. 11.2 (a)-The substitutional blade & clamped structures & the slave and
interface coordinates’ position, (b)- joint model & hitting direction

The clamp and blade, especially the blade root, were designed in such a way that the

interfacing configuration of the equivalent assembled structure closely resembles those of

the real assembled structure.

The reason for choosing a clamped configuration for the equivalent assembled structure,

i.e. using the clamp instead of the support ring, is that the sensitivity of the calculations to

noise is relatively low for clamped configurations, due to the fact that the effect of a soft

joint in the root of a clamped structure has a significant effect on the assembled structure’s

response.
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Ill .31 JOINT MODEL AND MEASUREMENT POINTS SELECTION

The basic identification formula for this case study is (see section 9.3):

[Z];=  [ I - [L] [HI;]-’ [L] (11.1)

where

[Ll = (IHlsa’)+  Wls,s  - [WC  > (IHl~I+

with notations “a” and “cl’ designating the blade substructure and assembled structure,

respectively.

The slave coordinates which are measured on the blade substructure and clamped

assembled structure must be consistent with each other and with the interfacing

configuration. Also, the joint model should be selected in such a way that it represents the

connectivity and configurational features of the real joint. It should be noted that there is

no need to consider a prescribed joint model when solving equation (11.1) and the only

reason for defining such a joint model is to clarify the sort of the model which is

consistent with the slave coordinates and the interfacing configuration considered. The

joint model and measurement points on the substructures and the assembled structure are

shown in Fig. 11.2.b.

As is evident from this figure, there are 8 slave and 4 interface coordinates considered on

the blade which are selected on the geometrical symmetry axis of the blade. So, the

interfacing configuration and the slave coordinates selected are consistent, provided no
,

torsional mode is involved in the slave coordinates’ FRFs in the frequency range of

interest, O-3200 Hz. Now, since the slave coordinates are selected on the geometrical

symmetry axis, it seems that one can assume that there will be no effect from torsional

modes in the measured FRFs.  On the other hand, if, due to production imperfections, the

mass symmetry axis is not coincident with the geometrical one and/or measurements are

not perfect, then it is very likely that there will be some contributions of torsional modes

in the FRFs.

To minimize any torsional mode effects, measurements have been carried out with the

maximum possible accuracy which can be achieved by a hammer test and repeated several

times. Also, performing FE analysis of the blade for the free-free and clamped

configurations, it has been established that there is a torsional mode in frequency range of
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interest for both configurations. Table 11.1 shows the natural frequencies of the blade for

the two configurations, obtained from the FE analysis and experimental measurement.

The mode shapes of the blade achieved from the FE analysis can be seen in appendix A.

Natural frequency 1st (bending) 2nd (bending) 3rd(torsional)

Substr. Ass. Str. Substr. Ass. Str. Substr. Ass. Str.

FE prediction 815 2 2 2  1 9 7 6 1440 2102 1910

Measured 888 2 2 0  2 0 7 6 1436 2228 1964

Table 11.1 Measured and predicted natural frequencies of substructure & assembled

structure in frequency range of interest.

Although having the effects of this torsional mode in the FRFs is a problem, examining

some typical measured FRFs in Fig. 11.3 shows that, as expected, the effect of the

torsional mode is very small and localized.  This effect can either be eliminated from the

FRFs by modal analysis or the results achieved around and at the torsional mode’s

frequency can be ignored in identification.

Torsional mode

(a)

Frequenoy  Hz.
3200

Torsional mode

frequenoy  Hz.
3 2 0 8

lb)

Fig 11.3 Typical FRFs of substructure & assembled structure,
(a) substructure (b) assembled structure.
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it is evident from equation (11.1) that the necessary and sufficient condition for this

matrix equation to be solved is that:

Iii 2 ns (11.2)

where ns=8 and ni=4 are the number of the slave and interface coordinates, respectively.

The reasons for choosing ns to be twice that of ni are:

(a) - as mentioned in chapter 9, increasing the number of the slave coordinates

generally increases the information of the joint effect in the calculations and,

thus, a better estimation of the joint properties is expected, when noise is present

in the calculation;

(b) - as will be shown later, the identification process will be repeated several times

using different groups of the slave coordinates in the calculations. This not only

offers a way of taking a large number of samples and, thus, obtaining a reliable

statistical average but, can also act as a consistency check to see whether there is

any underlying trend in the different results. If there is no consistency between

the results achieved using different groups of the slave coordinates, then one can

conclude that what is identified is controlled only by noise; and

cc> - examining mode shapes of the blade in both free-free and clamped

configurations in appendixA  shows that, inevitably, some of the slave

coordinates are near the nodal points of some of the bending modes. Now,

performing the identification using different groups of the slave coordinates can

minimize the effect of such slave coordinates.

It should be noted that increasing the number of the slave coordinates beyond a limit may

result in ill-conditioned matrices in equation (11.1).

I11 4 VALIDATING THE MEASURED DATA

In order to examine the accuracy of the measured data, the blade is considered to be

coupled to ground, the analysis performed using its measured FRFs, and some typical

results of the coupled structure FRFs  are compared with the clamped blade FRFs in Fig.

11.4.
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Substructure’s natural frq.
Substructuc’s  natural freq.

- 2 0 0  ’
4 . 0 0

II II
Frequency  H z .

3 1 9 6 . 0 0

-20 -----_1

- 1 7 0  ’
4 . 0 0

I1I 3196100
F r e q u e n c y  H z .

Fig. 11.4 Typical measured and regenerated FRFs,  - - - - Measured FRFs

Regenerated FRFs

It is evident from this figure that there is good agreement between the generated and

measured FRFs. The exceptions are regions close to the natural frequencies of the

assembled structure and these are believed to be due to the joint effect. It should be noted

that with regenerated FRF we mean the FRF generated by coupling (i.e predicted),

throughout this chapter.

I11 5 DISCUSSION OF THE RESULTS

Fig. 11.5 shows some typical identified joint impedance matrix’s elements, using all of

the 8 slave coordinates and a raw measured FRFs in the calculations.
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Subsrructure’s  natural freq. SubSmxXUre’S  natural freq.
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4 . 0 0

- - t - - - - - - - ~ - - - - l - - - - - - - - - T - - - - - - i

Frequency Hz.
3196!00

Frequency Hz.

Fig. 11.5 Typical Identified joint impedances using row data,

Moving averages, . . . . . . . Total average

As can be seen from this figure, the results are very noisy especially at frequencies near to

the natural frequencies of the substructure (also see Fig. 9.4). Using statistical analysis

based on moving averages, the mean value of each z(ij) has been calculated for 15

averaging spans starting from 200 Hz, i.e. each span covers 200 Hz, as well as the total

average over whole frequency range, i.e. 200-3200 Hz, using each span’s mean value.

The details of the statistical method used can be seen in appendix B. Also, the total mean

joint impedance is given in Fig. 11.5.

In order to reduce the noise effect on the calculations, it was decided to perform modal

analysis on the substructure’s FRFs. Two points are considered in this connection as

follows:
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(a> - modal analysis is not performed on the assembled structure FRFs  because these

data contain the effect of joint and using modal analysis can alter this effect,

especially the damping effect; and

(b) - the blade itself is a fairly lightly-damped structure (mild steel) and performing a

very accurate modal analysis on its measured data may improve the results.

The coupling test for validating the data, described in section 11.4, is used here again,

this time using processed FRFs of the substructure in the coupling analysis. Typical

regenerated FRFs  along with measured ones can be seen in Fig. 11.6. As is evident from

these figures, the two curves are reasonably close which indicates the validity of the

processed data. It should be noted that two different levels of processed data have been

used in Fig. 11.6 and later on in identification. The first level of processing is just to

smooth the measured FRFs individually and to eliminate any random noise effects. The

second level of processing is to rationalize all measured FRFs, in order to minimize

systematic error and inconsistency. The reason for using two levels of processed data is

to examine the effect of analyst interaction on the identified joint.

Substructure’s natural freq.
Substructure’s natural freq.

Frequency Hz.

- 1 7 0 1
4 . 0 0

I I
Frequency Hz.

3196:00

Fig. 11.6 Typical measured & regenerated FRFs using processed data,
(a) only smoothed, (b) rationalized, - - - Measured data, Regenerated data
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Having performed the modal analysis, typical results of identified joint impedances can be

seen in Fig. 11.7. Comparing the mean impedance matrices in Fig. 11.7 with those in

Fig. 11.5 it can be seen that the real parts of these matrices are more or less correlated and

consistent but this is not the case for imaginary parts.

1.7E6 3.97E6  0 0

6SE6  0 0

l.lE6 3.3E6

1.2E7 1
1.3E6 2.2E6  0 0

5.8E6 0 0
1.4E6  lSE6 1 (

7.3E6

F r e q u e n c y  H r .

!I
I

10-
4 . 0 0

--r--.---  * - -r -1 -. - ’

Frsqusnc;  H z .
3204 ! 00’

Fig. 11.7 Typical identified joint using two level of processed data,
(a) smoothed data, (b) rationalized data, Moving average, . . . . . Total averal

As was mentioned in section 11.3, the main reason for measuring redundant slave

coordinates is to be able to repeat the identification process using different groups of slave

coordinates. Some typical results of these attempts are shown in Fig. 11.8. Comparing

the identified joints in Fig. 11.8  with those in Figs. 11.5 and 11.7, a reasonable degree of

consistency between the various results can be deduced.
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This consistency, which is especially notable for some of the joint impedances like

2(2,2),  is both qualitative and quantitative. Qualitatively, all identified joint impedances

(i.e. joint contributions) first increase with frequency until they reach their maximum

values and then start to decrease, as frequency increases further. The frequency spans

over which joint impedances increase, remain constant and decrease are almost the same

for all identified joints and are O-1000 Hz, 1000-2000 Hz and 2000 Hz and onward,

respectively.

The quantitative consistency is reflected in the following points:

(a> - consistency in the magnitude of identified values; and

(b) - for all results, the impedance values identified for the springs 1 and 3, i.e. z(l,l)

and z(3,3) (see Fig. 11.2.b), are much smaller than those identified for springs 2

and 4. Considering the joint model and the impact direction in Fig. 11.2.b and

the mode shapes of free-free blade in appendix A, the reason for relatively lower

values identified for the springs 1 and 3 becomes clear. According to the free-

free blades’ mode shapes in appendix A, the root of the blade remains rigid in

the frequency range of interest which means that the root constitutes a much

stiffer structure than the blade aerofoil . Considering this rigidity of the blade’s

root, impact direction and joint model the relatively insignificant contribution of

springs 1 and 3 to the blade’s response can be deduced.

As was mentioned in section 11.3, the existence of consistency in the different sets of

results is very important and proves that it is not measurement noise which controls the

identified joint.

Having established consistency in the results, the next step will be to calculate a statistical

average of all sets of results from different identification attempts. This has been carried

out by combining the all results and calculating the statistical average for each span of 200

Hz. Then, using these average values, the following averages have been calculated:

(4 - average over the whole frequency range, O-3200 Hz

(b) - averages over three frequency spans, i.e. 0- 1200, 1200-2200,2200-3200

Typical results of these averages are shown in Fig. 11.9. The total average and averages

over three frequency spans are shown in expressions (11.3) and (11.4)
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r 2.2E6 3.7E6 0 0 1

EJI =
6.9E6 0 0

1.6E6  3.7E6
L l.lE7 -I

7.5E5 1.9E6 0 0
rq 5.7E6 0 0=

6.4E5 1.5E6
4.1E6

[
4.6E6 5.9E6 0 0
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2.4E6 4.4E6
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1.2E6 3.3E6 0 0
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2200-3200 Hz
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(11.3)

(11.4)
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.
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1 0 I
2 0 0 . 0 0

I I

F r e q u e n c y  H z .
3 2 0 0 :  0 0

Fig. 11.9 Typical results of statistical calculation performed on whole set
of identified joints _ Moving Average, - - Total Averages over 3 frequency spans
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Defining a confidence criterion as (Oij  / E(zij))  [46], where Oij  is standard deviation of

element ij of joint mean impedance matrix and E(Zij)  is the mean value of element ij, and

calculating this value for each element ij of [gJ] and for each span relating to Fig. 11.9,

shows that confidence criterion changes between 2% to 10% for different elements and,

for the different spans of each element ij.

I11 6 VALIDATING THE IDENTIFIED JOINT

In this section the identified joint will be used in the coupling of the blade to ground, as

was done in section 11.4, and the results will be compared with measured FRFs of the

clamped blade. If the identified joint is a reasonable representation of the real joint, then

the coupling results should show better match with measured data than those achieved in

Fig. 11.4.

Fig 11.10 shows typical regenerated FRFs using the joint model in expression (11.3),

i.e. the average impedance over the whole frequency range. As can be seen from this

figure, the match between measured FRFs and the regenerated ones is good up to about

800 Hz. It is also notable from this figure that the first regenerated natural frequency is

much closer to the 1 st measured natural frequency than is the case in Fig. 11.4 but this is

not the case for second natural frequency.
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Frequency H z .

N -

- 1 7 0
4 * 00

I I
Frequency Hz.

3198:QQ

Fig. 11 .lO Typical regenerated FRFs using total average joint impedance
in exp. (11.3)

Having used only the diagonal terms of the mean impedance matrix in expression (11.3),

typical results of regenerated FRFs  are shown in Fig. Il. 11. Comparing the results in

Fig. 11.11 with those in Fig. 11.10, it is evident that the match between regenerated

curves and measured ones is much better in former case than the latter, at least up to about

1000 Hz. The reason for this better match in Fig. 11.11 lies in the fact that, examining the

blade moda shapes in appendix A, it is seen that the root of the blade is much stifler than

the blade’s aerofoil and remains rigid in the lower and moderate frequency ranges which,
in turn means that for these frequency ranges the cross stiffness k,, and k34 in Fig.

11.2.b have very small contribution to the response and can be considered as zero.
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Fig. 11.11 Typical regenerated FRFs using the diagonal elements of the
total average impedance matrix in exp. (11.3)

Fig. 11.12 demonstrates typical regenerated FWs using three spans impedance averages

in expression (11.4).  As is evident from these figures, the match between the two curves

in each is satisfactory except for the very high frequency range. There are some spikes on

the regenerated curves which correspond to the joint impedance change frequencies in

expression (11.4), in which the structure’s characteristics change discontinuously.

Comparing the results in Fig. 11.12 with those in Fig. 11.4, it is concluded that a better

match is achieved by incorporating the joint in the coupling and, especially, the

differences in the 1st and 2nd natural frequencies have become smaller
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Fig. 11.11 Typical regenerated FRFs using the diagonal elements of the
total average impedance matrix in exp. (11.3)

Fig. 11.12 demonstrates typical regenerated FWs using three spans impedance averages

in expression (11.4). As is evident from these figures, the match between the two curves

in each is satisfactory except for the very high frequency range. There are some spikes on

the regenerated curves which correspond to the joint impedance change frequencies in

expression (11.4), in which the structure’s characteristics change discontinuously.

Comparing the results in Fig. 11.12 with those in Fig. 11.4, it is concluded that a better

match is achieved by incorporating the joint in the coupling and, especially, the

differences in the 1st and 2nd natural frequencies have become smaller



cl11 Experimental Case Study 236

0_ I

.

i- 1
- 2 0 0

4 . 0 0
I I

F r e q u e n c y  H z .
3196100

- 2 0  II!-------- _-.-I_----~  _

Joint  characteristic discontinuity --j
I

Joint  characteristic discontinuity

F r e q u e n c y  H z .

Fig. 11.12 Typical regenerated FRFs using the three spans average value
in exp.( 11.4)

In order to prevent discontinuities in the structure’s response, it was decided to use the

middle span joint impedance average value in expression (11.4), i.e. the average value

over the range 1200-2200 Hz, for the whole frequency range. Typical results of this case

are shown in Fig. 11.13.

In order to examine the sensitivity of the assembled structure’s response predictions to

variations in the identified joint parameters, the coupling process has been repeated using

the middle span average multiplied by different factors. Some typical results of these

couplings are given in Fig. 11.14. Also, Fig. 11.15 and Table 11.2 demonstrate the

variation of the 1st and 2nd natural frequencies with the middle-span average impedance

variation.
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[Z] i/l 0 [2] i/5 Lzli [Z]  jX5 [Z]iXlO [2] ix”

Af,(Hz) 48 13 -7 -24 -48 -26

Af#W 71 298 12 48 -19 -48

Table 11.2 Variation of the differences in natural frequencies of measured & regenerted
FRFs with mean impedance multiplier, fmeasured  - fregenerated

As is evident from Fig. 11.15 and Table 11.2, the identified joint yields the closest match

between regenerated and measured natural frequencies. Also, examining Figs. 11.14 and

11.15 one can conclude that the assembled structure’s response is sensitive to the

identified joint variation and, thus, one can claim that the identified joint in expression

(11.4) is a reasonable representation of the joint under investigation.

El11 7 CONCLUDING REMARKS

Application of the FRF-based decoupling technique, as a typical joint identification

procedure, to a practical joint identification problem has been examined in this chapter.

The most important deductions and practical implications are highlighted below:
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(a> - although using processed FRFs in an identification calculation yields smoother

results, it seems that one can achieve almost the same results using raw data in

the calculation;

(b) - by performing modal analysis on measured FRFs,  one should be very careful

not to change the original measured data. In any case, modal analysis of the

FRFs of the assembled structure is not recommended as these FRFs contain the

joint effects which can be easily altered; and

cc> - having FRFs for a couple of redundant slave coordinates is very valuable in

order to check the consistency in the identified joint using different groups of

slave coordinates in the identification process.



CHAPTER 12I

CONCLUSIONS

I12 1 GENERAL CONCLUSIONS:

The main object of this work has been to develop a unified approach to the identification

of a linear model of structural joints. The work was mainly based on the assumption that

a joint identification technique must be applicable to both mixed analytical/experimental

(“hybrid”) data and pure experimental data. In this connection, special attention has been

given to measurement noise effects on the results and to ways of reducing these effects.

As the joint identification problem is a special case of the more general identification

problem, it was appropriate to discuss important and relevant topics of the general

identification problem such as overlaps of joint identification and model updating

problems. Further, the computational aspects of the identification problem in general, and

the joint identification problem in particular, have been discussed in detail, in which

crucial questions concerning the existence and uniqueness of the solution have been

addressed.

Although remarks and conclusions have been given in each of the preceding chapters, it is

appropriate now to provide a general summary of each of these conclusions and important

findings so that the various parts of the work which constitute new developments are

highlighted.

12.1.1 EFFECT OF JOINT(S) ON DYNAMIC COUPLING ANALYSIS

Joint(s) effect is not routinely considered in structural dynamic coupling analysis. In a

few cases where joint(s) effect is considered [8], its mass and stiffness matrices have

been directly added to those of FE models of substructures, i.e. spatial coupling. It has
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been shown in chapter 2 that including joint effect in coupling process leads to a quadratic

eigenvalue problem of a nonsymmetric matrix, using a free interface component mode

synthesis technique.

Also, equations have been developed which enables the joint to be incorporated directly in

the coupling process.

12.1.2 CLASSIFICATION OF IDENTIFICATION TECHNIQUES

After spending some time studying different identification (and model updating)

techniques, the author realized that there is a lack of an acceptable classification of

identification techniques. For example, ‘when can a method be called direct’? or ‘when is

a method perturbation-based’?

Based on the mathematical nature of the procedure which is used to formulate an

identification technique (and not its computational limitations), the author has proposed a

classification for identification techniques explained in chapters 1 and 6. According to this

classification, an identification technique is direct if, using complete measured data, no

approximations are involved in its formulation and, consequently, no iterations are

necessary in its implementation. On the other hand, for perturbation-based techniques,

approximations and, consequently, iterations are inevitable, even if a complete set of

measured data are used. So, no computational aspects are considered in above criteria.

In addition to classification according to the mathematical nature of the derivation,

identification techniques are further classified according to the type of the data being used

in the analysis.

Based on the above classification criteria, the author succeeded in predicting the existence

of a modal-based direct method and to formulate it, as explained in chapter 6.

In addition to adaptive identification techniques which are applicable to joint identification

problems, a new family of methods which are particularly developed for joint

identification was introduced in the classification, as decoupling techniques.
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1 2 . 1 . 3  A  N E W  M O D A L - B A S E D  D I R E C T  I D E N T I F I C A T I O N

TECHNIQUE

A new modal-based identification technique has been developed and described in chapter

6. The method was first formulated based on a component mode synthesis approach and,

later on, it was real&d that it is related to the eigendynamic constraint method. As a

matter of fact, the new method can be considered as a modified eigendynamic constraint

technique.

It has been shown in section 6 that, although the new method is a direct method according

to author’s classification, one still has to solve the governing equations iteratively, due to

incompleteness of the measured data. Also, for the same reason, i.e. data incompleteness,

there are limits on llA$ll  and IlAhll  for which the calculation will converge to a solution.

12.1.4 COMPUTATIONAL ASPECTS OF IDENTIFICATION PROBLEM

Generally speaking, the structural identification problem is an ill-posed problem. This is

basically due to the fact that, in practice, the identification problem is a process of

extracting a large amount of data from an incomplete and, thus, relatively smaller

available set of data. The poor formulation of the identification problem reveals itself in

computational inconsistencies and difficulties which, in turn, result in approximations

imposed on calculations.

In addition to the poor formulation, there are other parameters contributing to

computational difficulties such as, a poor analytical model and inappropriately balanced

matrices.

Due to the smaller number of unknowns involved in a joint identification problem, it is

possible to prevent poor formulation for them, using certain identification techniques such

as FRF-based decoupling or FRF-based direct techniques. Having said that, the ill-

conditioning problem still exists for the joint identification process, and in order to

prevent ill-conditioning, balancing techniques have been proposed in chapter 4.

One of the popular methods of artificially increasing the amount of available data in an

adaptive identification problem is to preserve the connectivity pattern of the analytical FE

model. It was shown in chapter 4 that by preserving the connectivity pattern of the

analytical model, one will identify the closest possible model (in a least-squares sense) to

the real structure but it is impossible to identify the real structure exactly.
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12.1.5 MODEL UPDATING & JOINT IDENTIFICATION IN PRACTICE

It was shown in chapter 3 that for a complex structure, it is virtually impossible either to

update its analytical model ignoring its joint(s), or to identify its joints and update its

analytical model simultaneously within a single model updating process.

The author believes that the only practical approach to the updating problem of a complex

structure is to update separate substructures without any joints (or with obviously rigid

joints) and then to assemble them together making sure that the only source of

difference(s) between the analytical model and the real structure come(s) from the joints.

Naturally, the next step will be to identify the joints and incorporate them into the

analytical model.

12.1.6 CHOOSING THE APPROPRIATE MODEL FOR A TRIAL JOINT

WHEN USING ADAPTIVE IDENTIFICATION TECHNIQUES

One of the common characteristics of adaptive joint identification techniques is that they

require the construction of the so-called analytically coupled structure, A-C. This

requirement, in turn, makes the selection of a trial joint model inevitable and proper

selection of a trial joint can have an important effect on the results.

The first step in selecting a trial joint model is to decide on its configurational features,

i.e. the number of degrees of freedom involved in the trial joint model and their type. It is

clear that both the number of trial joint degrees of freedom and their type are dictated by

the configurational characteristics of the interface coordinates of constituent substructures

of the assembled structure.

So, the first step in selecting a proper trial joint model is to decide on the quality and

quantity of the interface coordinates. For example, with beam substructures, the question

is whether tension or torsion must be included in the coupling, and consequently in the

joint model, or not. Thus, as long as the configurational features of the trial

concerned, the proper selection of this element is case-and analyst-dependent,

not too difficult.

joint are

although

Once the proper configurational model is derived for the trial joint, the next question is:

whether it is possible to group different elements of the trial joint mass and stiffness

matrices in some sub-matrices, according to their consistency? This grouping can be done

using either an FE model pattern, or a lumped parameter pattern for the trial joint, as
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discussed in chapter 3. Having grouped the unknowns, the number of unknowns which

must be identified reduces dramatically and, as explained in chapter 4, this is an

advantage from a computational point of view.

12.1.7 SENSITIVE NATURE OF THE IDENTIFICATION PROBLEM

It has been shown throughout this thesis that the identification problem is sensitive to

noise. As thoroughly explained in chapter 4, the sensitivity of the identification procedure

is inherent and is due mainly to insensitivity of structure’s response to variations in some

of the structure’s components.

Based on the above explanation, in spite of the larger number of unknowns involved in a

model updating problem, the joint identification problem can be more sensitive to noise

than a model updating problem. Note that, although the number of unknowns is typically

larger for the updating problem, the chance that variations in the whole mass and/or

stiffness matrices of an element having insignificant effects on structure’s response is

much less than possibility of insignificant effect due to variation in the individual

components of that elements mass and/or stiffness matrices. For example, considering a

beam element as a part of an analytical model, that model’s response is likely to be much

more sensitive to variations of elemental mass matrix as a whole rather than the variations

of individual components in the elemental mass matrix, say, rotary inertia. (Note that in

modelling a joint, it is necessary to split the elemental mass and stiffness matrices into

consistent sub-matrices, as explained in chapter 3.)

It has been observed in chapters 5 through 9 that the insignificant effect of joint rotary

inertia on a structure’s response was responsible for a high sensitivity of the identification

process.

Through a discussion of the concept of ill-conditioning of a matrix in chapter 4, it has

been shown in chapter 9 that the insensitivity of the response of the structure to variation

in some of its components reveals itself in computations by causing small or very close

singular values for relevant matrices involved in calculations.

12.1.8 GUIDE-LINES FOR PROPER JOINT IDENTIFICATION

METHOD SELECTION

The matter of selection of a suitable joint identification technique is very case-dependent

and depends mainly on the type and amount of data available. Thus, it is difficult to give a
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general guide-line which covers every joint identification problem. Questions like whether

a reliable FE model of the substructures are available or, how much the cost of this

identification is going to be must first be answered before selecting a suitable technique.

Based on the advantages and disadvantages of the various joint identification techniques

shown in Fig. 12.1, the method selection flow-chart of Fig. 12.2 is proposed.
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joint identification techniques

modal-based +
1

smaller
amount
of data
involved

I

decoupling
I

+ adaptive

applicable

no iteration
=¶uired  + I I

_Idirect
.

perturbation perturbation
i

measurement
measurement
Of His on
assembled
structure not
requited

iterations -

I

+

identification techniques

-no interface related measurement on
assembled str. required
-no iteration required
-no A-C structure and, thus, coupling
required
-very simple mathematics are involved

-bad result in with

very case dependent

KEY TO INITIALS

LS = Least-squares
i = Interface coords
s = Slave coords

Fig. 12.1 The table of advantages & disadvantages of joint
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joint identification procedure

FRF-based decoupling technique

Yes Calculations
finished

I No

I No

Yes IESM using just
eigenvalues

I No

Direct modal-based
technique

C = Assembled structure
i = Interface coord
s = Slave coord

IESM = Inverse e&en-sensitivity
method

Fig. 12.2 Joint identification technique selection table

e I
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I12 2 CONTRIBUTIONS OF THE PRESENT RESEARCH

To Newton is attributed the saying “If I have seen a little farther than others it is because I

have stood on the shoulders of giants” [47]. Although the author does not compare

himself with Newton, nevertheless, the fact remains that any contribution I have made is

based on a massive amount of previous work, done by other researchers and scientists.

Bearing above-mentioned fact in mind, it is appropriate at this stage to present a brief

review of the contributions of the research described in the thesis, as follows:

classification of identification techniques in general and the joint identification

techniques in particular;

discussion of the range of applications and overlaps of joint identification and

model updating methods;

investigation of the effect of joint(s) on structural dynamic coupling;

discussion of the uniqueness and existence of the solution of an identification

problem and the effect of preserving the connectivity pattern of the analytical model

in the solution;

illustrating the essence of the least-squares formulation in an identification problem;

discussion of the usefulness limit of the least-squares solution when dealing with

noisy data;

extensive investigation of the sensitivity of the identification problem to

measurement noise and its connection with singular parameters of the matrices

involved in calculations;

discussion of the concept of ill-conditioning of a matrix and development of a new

criterion for a matrix’s sensitivity assessment;

extensive discussion of the possibilities and limitations of various joint

identification techniques;

development of a new model updating and joint identification technique;

Y
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modification of some of the existing identification techniques to be applicable to the

joint identification problem; and

extensive research on the sensitivity analysis of various joint identification

techniques and the methods of reducing noise effect on results.

I12 3 SUGGESTIONS FOR FURTHER WORK

It seems that further research is required in following areas:

investigation on the joint effect on the structural dynamics coupling;

The effect of a joint on the structural dynamics coupling analysis was examined in

chapter 2. It was shown there that introduction of a joint into the coupling process

will cause some complications. Some numerical case studies are necessary in order

to assess the performance  of solution techniques proposed in chapter 2 and to

examine the effects of various simplifying assumptions, e.g. ignoring joint’s mass,

on results.

examination of mis-modelling effects on the identified joint, using a hybrid

approach for joint identification;

As the application of FE models of substructures can facilitate the joint identification

process for complex structures, it is necessary to examine the effect of mis-

modelling of the FE model on the predicted result.

investigation on the performance of the new model updating technique on real

structure; and

identification of isolating medium of chapter 11 using the genuine blade and

supporting ring;

Due to the simplification made on the real blade and support ring problem in chapter

11, it was possiblesible to use a relatively simple joint model in the identification

process. Now, considering a genuine skewed blade and ring a more complicated

model should be tested for the joint, although the procedure is exactly the same as

that used in chapter 11
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APPENDIX A

MODE SHAPES OF THE BLADE STRUCTURE

As indicated in chapter 11, the mode shapes of the blade for the free-free and clamped

configurations are presented in this appendix. These mode shapes have been derived from

a FE analysis using ANSYS and play a major role in determining the consistency between

the slave coordinates, interface coordinates and joint model selected. In what follows, the

first three mode shapes of the blade for (a) the free-free configuration and (b) the clamped

configuration will be demonstrated.
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APPENDIX B

STATISTICAL METHOD USED FOR DATA ANALYSIS

In the present appendix the statistical method used to analyse noisy ,data in chapter 11 will

be explained. The explanation for the statistical terms used here can be found in [38].

The method is shown in the following flow chart.
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