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ABSTRACT

With the advent of delicate and high speed structures like guided missiles, aircraft and
rotating machines, researchers have been discovering the importance of joint effects on
the structural dynamic response. In order to be able to anayse joint effects and to
incorporate them in calculations, it is necessary first to identify the joint dynamic
characteristics.

There are severa different methods for identifying a joint’s dynamic characteristics but
amost all of them are restrictated to some particular applications and cannot easily be
generalized This thesis seeks to devel op a uniform approach to the identification of linear
dynamic parameters of joints.

It is shown in this thesis that although most of the existing model updating techniques are
applicable to the joint identification problem, these subjects, i.e model updating and joint
identification, congtitute two completely different problems from a computational point of
view and the joint identification problem is more complicated in this respect. Also, it has
been argued that joint identification and model updating problems cannot effectively be
solved simultaneoudy and within one problem.

Thus, the computational aspects of identification problem in general, and joint
identification problem in particular, have been discussed thoroughly and the methods of
dedling with these complications have been investigated.

Having classified the different joint identification methods and divided them into FRF-
based and modal-based techniques, the performance of different joint identification
methods has been investigated and their advantages and drawbacks have been discussed.
Furthermore, a new modal-based identification method has been developed for which a
smilar assessment is shown to prove its efficiency.

It has been found that almost all joint identification methods are sensitive to measurement
noise and the reason for this sensitivity and ways of coping with it are investigated.

The ultimate goal of this thesisis to provide the best approach to the joint identification
problem for each particular case and to enable the analyst to identify the best possible




linear mathematica model for a joint which can subsequently be incorporated into an F.E.
model of a structure.
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Contribution of higher neglected terms in expanson equation
(7.20)
(K1, - Elemental stiffness matrix
(M1, - Elemental mass matrix
(Dl - joint damping matrix
o - Relative error of coefficient matrix of a LS problem (chapter 4)
B - Relative error of solution vector of a LS problem (chapter 4)
Bi ith modification factor of damping matrix (chapter &)
r Residua vector of a LS problem (chapter 4)
- Mode index
{X} - Vector of unknowns
M], - Mass matrix of anadyticad model with modelling error
K], . Stiffness matrix of anayticd model with modelling error
[AM], - Error in mass matrix of element i
[AK]; - Error in stiffness matrix of dement i
{d30 - Eigenvector of anayticad model with mass & dtiffness
error
A0 - Eigenvalue of analytical mode with mass & stiffness
error
kij - Element ij of stiffness matrix
my; - Element ij of mass matrix
- Number of modes involved in caculations (chapter 8)
L - Number of coords involved in caculations (chapter 8)
n - Number of elements of mass & stiffness matrices
being corrected (chapter 8)
q Number of rigid body modes

Number of mass related unknowns after imposing symmetry &




-

Py

connectivity conditionds (chapter 6)

Rigid body modes residua

higher modes residua

Element of sensitivity matrix representing dA/dm
Element of sengitivity man-ix representing dA/dk
Element of sensitivity matrix representing d¢/om
Element of sengitivity man-ix representing d¢/ck
Error multiplier for eigenvaues

Error multiplier for elgenvectors

Dummy structure

Slave coordinates receptances

Transfer receptances between dave and interface
coordinates

Inter-face coordinatess receptances

Force vec tor

Vector of the interface forces

Vector of the dave or agpplied forces

Unity matrix

Index for correction structure (chapter 6)

Y oung’s modulus

Physica generalized coordinates

symbol of real structure.
rth mode modal vector of real structure

rth mode modal vector of analytical structure
rth eigenvalue of real structure

kzh kept eigenvalue of analytical model

eth diminated eigenvalue of andyticd mode

Number of kept modes and index for kept modes
Number of eliminated higher modes and index for
eliminated higher modes.

Number of coordinates.

Number of stiffness related unknowns after imposing
symmetry and connectivity conditions

Principal  coordinate

Number of constraint equations (chapter 4)

number of stiffness related unknowns after imposing
symmetry and connectivity conditions and
considering localized error(s) or macro-elements




q;

[K]

[AK]
[AM]
[AD]
[AZ]
K,]
[K,]

{Ag)
{AL}

[S]

[SIg
[S]y
[H,]

(H,]

number of mass related unknowns after imposing

symmetry and connectivity conditions and
considering localized error(s) or macro-elements
Stiffness matrix

Mass matrix

Total number of interface coordinates

Number of coordinates which should be corrected in

chapter 6

Number of anadyticd modd’s coordinates used in transformation
equation (6.2), equal to the number of measured coordinates of
real structure

Number of coordinates of analyticd model which are assumed
that have been modelledcorrectly (chapter 6)

Number of slave coordinates of substructure A (chapter 10).
Number of measured modes of red structure (chapter 6)

Number of measured modes of substructure B (chapter 10)
Andyticd and experimental model giffness
difference matrix, [K,J-[K,], error matrix
Anadyticd and experimental models mass
difference matrix

Anadytica and experimenta models damping
difference matrix

Andytical and experimental models impedance
difference matrix

Stiffness matrix of andyticad model

Stiffness matrix of substructure A

Stiffness matrix of rea structure

Eigenvector difference vector

Eigenvdue difference vector

Sengitivity matrix

The square coefficient matrix of a norma equation derived from
an over-determined set of equations

Red part of sengitivity matrix

Imaginary part of senstivity matrix
Receptance matrix of anadyticd model
Receptance matrix of substructure A

Measured receptance matrix of rea structure
Length of base eement




.

X

r

jt

Il Aglly
Il ARl

Il A lig

Il Ah I,
[AX]
[C(®p]

[L(wp]
{L(wy}

[C(®p]
ij
[P]

k

(AV},
{V}
{U},
{Rq)}r
{1¢}r

VIl

Length of joint in red structure

Length of joint in analytical structure or tria joint

Index for anaytica model

Index for substructure A

Mass dengty

Typical variable (chapter 8)

ith mass modification factor in regular updating
practice

ith stiffness modification factor in regular updating
practice

ith modification factor in equations (3.8.1) and (3.8.2)
Norm of initid (before any updating) difference
between eigenvectors

Norm of initid (before any updating) difference
between egenvaues

Norm of resdua (after updating) difference

between eigenvectors

Norm of resdua (after updating) difference

between eigenvalues

The matrix which contains the unknown mass and stiffness

modifications which are necessary to update the analytical model
Coefficient matrix of algebraic version of matrix equation (4.1) at

frequency ; before separation of variables

Matrix on the r.h.s of the matrix equation (4.1)

Vector on ther.h.s of the algebraic version of matrix equation
(4.2)

Asfor [C,(®,)] after separation of variables

ij element of viscous damping matrix

The coefficient matrix of the find set of agebraic equations

obtained by combining equations of different frequencies
Initial value for stiffness element lcJ inFig. 4.3

Varidaion in particle 1 impedance due to variation in stiffness
elementkj

Variation in rth right singular vector

rth right singular vector

rth left singular vector

rth right eigenvector

rth left egenvector




e s \

.

[AZ]

Nf

TN

[KJ;

Modification to joint impedance matrix

Number of frequency points used for averaging in
LS solution

Number of interfacing stations

Dummy structure index (Chapters 2,9 and 10)
Number of interface coordinates involved in
interfacing station r

Trid joint stiffness matrix

Trid joint mass matrix

rth natural frequency of test structures Rad/Sec

Mean stiffness matrix of joint calculated by neglecting joint mass
in identification calculations

Joint impedance matrix

Receptance matrix of assembled structure

Joint receptance matrix

Save coordinates

Index for coordinates which are modelled correctly (chapter 6)
Interface coordinates

Index for coordinates which should be updated
joint stiffness matrix

Joint mass matrix
Resudual effect of higher neglected modes of
substructures

Residual effect of higher neglected modes of

substructures without any joint at interface
Circular frequency Rad/Sec
rth eigenvalue of assembled structure

Frequency Hz
The angle between rth left & right eigenvectors

Least squares
p norm of amatrix and/or vector

Condition number of a matrix
ith singular value

Standard  deviation

Statistical expected value
Mean square value

Absolute vaue

Slave coordinates superscript




" TS

LI

(1"
[1*
00

Interface coordinates superscript
Pseudo-inverse of a matrix
Conjugate transpose of a matrix
Transpose of a matrix

Order of magnitude




Xl

LIST OF FIGURES

Figure Title Page
11 Classification of research work in joint identification area 4
12 Classification table of the identification techniques 7
2.1 Dummy structure D and joint element J 11
2.2 Dummy and red eéagtic media at interface 21
3.1 Mode of real structure X & analyrtical modd A 35
3.2 The geometricd and mechanical properties of base element 35
3.3 Vaiation of the norm of modal parameters differences with

Lja/Le 36
3.4 Results with (Lja/Le)% equalsto 1 and 5 for structures A & X,

respectively, 1 st run 37
35 The test structures of second series of case studies 44
3.6 Results for the first run of analysis for the casesin (3.12) 45
3.7 Results of the first run of the analysis for the casesin (3.11) 45
3.8 Results of the first run for the casesin (3.12), mass modification

involved 47
3.9 Results of first run for the casesin (3.12) 47
3.10 Results of the first run for the casesin (3.11). mass modification

involved 47
311 Results of the first run for the casesin (3.11) 47
4.1 Three degrees of freedom system 56
4.2 The analytical model considered for systemin Fig. 4.1 58
4.3 Typical two degrees of freedom system 61
4.4 Variation of Az, versus variations of Akj for different initial

values of kjo and frequency 63
4.5 The example structure with one interfacing station comprising of

4 interface coordinates 78
4.6 The 1st right & left singular vectors of [H] with & without noise 87
4.7 The 2nd right & left singular vectors of [H] with & without noise 87
4.8 The 3rd right & left singular vectors of [H] with & without noise 87
4.9 The 4th right & left singular vectors of [H] with & without noise 88
4.10 The 5th right & left singular vectors of [H] with & without noise 88

5.; Modéels of red & analytical structures 95




X1

5.2 Typica result of identified joint impedance using solution

technique 1 98
53 Typical result of identified joint impedance with 5% noise and

using solution technique 1 98
5.4 Variation of typical elements of [K] and [K] with eimination band

width 106
6.1 Classfication of joint identification & model updating methods 111
6.2 Red structure X & analyticaly coupled structure A-C 125
6.3 The flow chart for iterative solution of equations (6.37) & (6.32) 131
6.4 Variation of norm of difference of eigenvectors with iteration,

using equations (6.37) & (6.32) 132
6.5 Variation of norm of difference of eigenvalues with iteration,

using equations (6.37) & (6.32) 132
6.6 Variation of norm of difference of eigenvectors with iteration,

noise added 137
6.7 Variation of norm of difference of eigenvalues with iteration,

noise added. 137
6.8 Test structures for model updating case studies 139
6.9 Stiffness modification factors after first run 140
6.10 Variation of norm of difference of moda parameters with

iteration 140
6.11 Stiffness modification factors, error added to modal parameters 142
6.12 Variation of norm of difference of moda parameters with

iteration, error added 142
6.13 Variation of norm of difference of moda parameters with

iteration, error added 143
7.1 Typica result of identified joint impedance using solution

technique 1 151
7.2 Typica FRF of structure X 151
7.3 Typical result of identified joint impedance with 5% random noise

using solution technique 1 151
8.1 Test structures for case studies 171
8.2 Variation of norm of the eigen-parameters with iteration 176
8.3 Variation of mass & giffness error with iteration 176
8.4 Exact & approximate values of typical sendtivity matrix’'s

elements 179
85 Variation of difference of modal parameters with iteration 182

9.1 Grounded assembled structure 195




X1

9.2 Test structures used in al case studies 197
9.3 Typica identified joint impedance without noise 199
94 Condition number of coefficient matrix on the Lh.s of eguation

(9.7 199
9.5 Typical joint impedance matrix elements with 5% noise 200
9.6 Typical FRFs of two structures 201
9.7 Typical joint impedance matrix elements with 5% noise added

only to FRFs of assembled structure 202
9.8 Assembled structure C for case study 3 203
9.9 Typical joint impedance matrix elements with 5% noise added

only to FRFs of assembled structurein Fig. 9.8 204
9.10 The ratio of the elements of typica left singular vector with &

without noise 206
9.11 Typical joint impedance matrix elements with 5% noise with SVD

technique applied to reduce noise effect 209
10.1 Substructures A & B and assembled structure C 215
111 Support ring, blade and assembled structure 221
11.2.(a)  The substitutiona bade & clamped structures & the dave &

interface coordinates position 222
11.2(b)  Joint model & hitting direction 222
11.3 Typical FRFs of substructures & assembled structure 224
11.4 Typica measured and regenerated FRFs 226
115 Typica identified joint impedance using raw data 227
11.6 Typical measured & regenerated FRFs using processed data 228
11.7 Typica identified joint using two levels of processed data 229
11.8 Typicd identified joint impedances using different groups of dave

coordinates in the caculations 230
11.9 Typica results of datistica calculations performed on whole set

of identified joints 232
11.10 Typica regenerated FRFs using tota average joint impedance in

exp.(11.3) 234
111 Typica regenerated FRFs using the diagona elements of the tota

average impedance matrix in exp. (11.3) 235
11.12 Typical regenerated FRFs using the three spans average valuesin

exp. (11.4) 236

11.13 Typica regenerated FRFs using the middie span average
impedance in exp. (11.4) over whole frequency range 237



11.14

11.15

12.1

12.2

Typical regenerated FRFs using different multiplications of
middle span’s average impedance

Variation of the differencesin natural frequencies of measured &
regenerated FRFs with mean impedance multiplier

The table of advantages & disadvantages of joint identification

techniques
Joint identrification technique selection table

X1V

237

238

246
247



Table
31

3.2

331

3.3.2

3.3.3

3.4

3.5

3.6

3.7

41

4.2

5.1

5.2

5.3

6.1

6.2

6.3

7.1

8.1

LIST OF TABLES

Title
The results of attempts made to update structure A to structure

X for cases (3.6.1) to (3.6.5)

Results for two approaches to update model A to Modd X

Typica sengtivity matrix elements for the first approach

Typica sengtivity matrix elements for the first approach

Typica sengtivity matrix elements for the second approach

Results for the casesin (3.12), mass modification factors not
involved

Results for the casesin (3.1 1), mass modification factors not
involved

Results for the casesin (3.12), mass modification factors
involved

Results for the casesin (3.1 1), mass modification factors
involved

Condition number of matrix [P]T[P] using different balancing
methods

Singular values of matrix [H]

Natural frequencies of test structues in the range of interest

Typica error percentages in identified joint parameters for
three cases (a), (b) and (c)

Typica vaues related to coefficient matrices in equations
(5.20), (5.23) and (5.24)

Singular values of matrix [S] using one mode in the
calculaions

Variation of condition number of matrix [S] with number of
modes involved in the caculaions

Residua errors in typica joint parameters for with-residual-
effect & without-residual-effect cases, respectively

Error vadues in the typical identified joint parameters for two
cases in equations (7.15) & (7.23)

Typica elements of sendtivity matrix for lower modes

XV

Page

37

41

41

41

41

45

46

48

48

80

86

102

103

107

129

129

133

156
173




8.2

8.3
8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

91

11.1

11.2

Results of calculation for with and without mass cases, modes
3-9 involved in caculaions

Typica eigenvalues of rea and tria structures

Typica eements of sendtivity matrix with and without rigid
body and higher modes effect (without balancing)

Mass and stiffness identification results, cal culations with 2
modes

Mass and stiffness identification results, calcul ations with 4
modes

Mass and stiffness identification results using only
eilgenvaues, caculations with 7 modes

Differences of moda parameters with and without noise
Mass and stiffness identification results with 7 modes
stiffness identification results without mass being involved,
caculations with 7 modes

Mass and stiffness identification results with 7 modes
Singular values of [A-H,] with and without noise

Measured and predicted natural frequencies of substructure &
assembled structure in frequency range of interest.

Variation of the differences in natural frequencies of measured
& regenerated FRFs with mean impedance multiplied

XVI

175
180

180

181

181

183

185

185

186

186
206

224

238



TABLE OF CONTENTS

TITLE

ABSTRACT
ACKNOWLEDGEMENTS
NOMENCLATURE

LIST OF FIGURES

LIST OF TABLES
TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION
1.1 The Joint Identification Problem
1.2 The Structura Dynamic Role of Joint
1.2.1 Fexibility
1.2.2 Energy Dissipation
1.2.3 Energy Transfer
1.3 Literature Survey
1.4 Classfication of Joint Identification Methods
1.5 Scope of the Thesis

CHAPTER 2 THE INFLUENCE OF JOINT(S) IN STRUCTURAL

DYNAMIC COUPLING ANALYSIS
2.1 Introduction
2.2 Joint Effectsin FRF-Based Coupling

2.2.1 Metod A- Coupling Considering Only Slave Coordinates

of Assembled Structure

2.2.2 Method B- Coupling Considering the Whole Set of

Coordinates of C
2.3 Joint Effects in Modal-Based Coupling
2.4 Conclusions and Remarks

XVl

Xl

XV

XVII

0 N A W WLWNN -

10
11

14

15

16
24



XVII

CHAPTER 3 MODEL UPDATING AND JOINT IDENTIFICATION
METHODS: THEIR RANGE OF APPLICATION,
RESTRICTION AND OVERLAP

3.1 Introduction
3.2 Methods of Model UpdAting
3.2.1 Perturbation-Based Methods
3.2.2 Difference-Based Direct Methods
3.3 Joint Identification Methods
3.3.1 General Considerations
3.3.2 Decoupling Method
34 Is Joint Identification a Special Case of Modd Updating?
3.5 Case Studies
3.6 Concluding Remarks

CHAPTER 4 COMPUTATIONAL ASPECTS OF THE GENERAL
SYSTEM |IDENTIFICATION PROBLEM
4.1 Preliminaries
4.2 The Essence of a Least-Squares (LS) Formulation in an
Identification Anayss
4.2.1 Effects of Incompleteness of Experimental Data on
Equation (4.1)
4.2.1.1 The Source of Inconsistency in Noise-Free
Data
4.2.2 Effect on Equation (4.1) of Measurement Noise in
Experimenta Data
4.2.2.1 Noise Averaging Property of LS Formulation
4.2.2.2 Sensitive Nature of an Identification Problem
4.3 Computational Aspects of the LS Problem
4.3.1 Perturbation Bounds for the Solution of LS Problem
4.3.2 Imposing Constraints on the LS Problem and Reducing
the Number of Unknowns
4.3.3 Perturbation theorem for Singular Values of a Matrix
4.3.4 Solution Techniquesfor aL S Problem
4.3.4.1 Application of Normal Equation
4.3.4.2 Application of SVD Technigque to Calculate the
Pseudo-Inverse
4.4 111 - Conditioning Problem of aL S Formulation

26
26
27
28
29
29
31
32
34
49

51

52

53

55

59
59
60
66
66

67
69
69
69

70
71




CHAPTER 3 MODEL UPDATING AND JOINT IDENTIFICATION
METHODS: THEIR RANGE OF APPLICATION,
RESTRICTION AND OVERLAP

3.1 Introduction
3.2 Methods of Model UpdAting
3.2.1 Perturbation-Based Methods
3.2.2 Difference-Based Direct Methods
3.3 Joint Identification Methods
3.3.1 General Considerations
3.3.2 Decoupling Method
34 Is Joint Identification a Specia Case of Model Updating?
3.5 Case Studies
3.6 Concluding Remarks

CHAPTER 4 COMPUTATIONAL ASPECTS OF THE GENERAL
SYSTEM |IDENTIFICATION PROBLEM
4.1 Preliminaries

4.2 The Essence of a Least-Squares (LS) Formulation in an

Identification Analysis

4.2.1 Effects of Incompleteness of Experimental Data on

Equation (4.1)

XVIII

26
26
27
28
29
29
31
32
34
49

51

52

53

4.2.1.1 The Source of Inconsistency in Noise-Free

Data

55

4.2.2 Effect on Equation (4.1) of Measurement Noise in

Experimental Data

4.2.2.1 Noise Averaging Property of LS Formulation
4.2.2.2 Sensitive Nature of an Identification Problem

4.3 Computational Aspects of the LS Problem

4.3.1 Perturbation Bounds for the Solution of LS Problem

59
59
60
66
66

4.3.2 Imposing Constraints on the LS Problem and Reducing

the Number of Unknowns

4.3.3 Perturbation theorem for Singular VVaues of a Matrix

4.3.4 Solution Techniques for aL S Problem
4.3.4.1 Application of Normal Equation

67
69
69
69

4.3.4.2 Application of SVD Technique to Calculate the

Pseudo-Inverse
4.4 11l - Conditioning Problem of aL S Formulation

70
71



4.4.1 11l - Conditioning Arising From Transforming a Matrix
Equation to a Set of Linear Algebraic Equations
4.4.2 111 - Conditioning Arising From Seperation of Variables
in Algebraic Equation (4.2)
4.4.3 Balancing Techniques and Reducing the Number of the
Unknown Parameters
4.5 A Discussion of the Concept of IlI - Conditioning and Sensitivity
of a Matrix
4.5.1 Sensitivity of Modal Parameters of a Matrix to Small
Perturbation
4.6 Concluding Remarks

CHAPTER 5 APPLICATION OF AN FRF-BASED DIRECT METHOD TO
THE JOINT IDENTIFICATION PROBLEM
5.1 Introduction
52 Genera Formulation
5.2.1 Formulation of the FRF-Based Direct Method
5.2.2 Modifying Equation (5.3) to Make it Suitable for Joint
Identification Applications
5.3 Difficulties Associated With Using Equation (5.5)
5.4 Solution Techniques for Equation (5.5) and the Effect of Various
Parameters on Results
5.5 Case Studies
5.5.1 Case Studies Using Solution Technique 1
5.5.2 Case Studies Using Solution Technique 2
5.5.2.1 Computationad Aspects of Solution Technique 2
5.5.2.2 Effect of Natural Frequencies of Test Structures
on Caculations
5.5.2.3 Sensitivity Analysis
5.5.2.4 Effect of Frequency Elimination Band width
5.5.2.5 Effect of Increasing Frequency Range of
Analysis
5.6 Conclusions and Remarks

CHAPTER 6 A NEW MODAL-BASED DIRECT IDENTIFICATION
METHOD FOR JOINT IDENTIFICATION & MODEL
UPDATING
6.1 Introduction

XIX

72

72

75

81

84
88

90
91
91

92
92

93
95
96
99
99

101
103
105

107
108

110



6.1.1 The Need for a New Joint Identification and Model
Updating Method
6.2 General Formulation of Modal-Based Direct Method Applicable
to Model Updating
6.2.1 Solution Procedure for Equation (6.12) Having
Complete Coordinates Measured
6.2.2 Solution Procedure of Equation (6.12) Based on
Incomplete Measured Coordinates & modes
6.2.2.1 Solution Procedure 1, Approximate Solution
6.2.2.2 The Role of [R,] in the Calculation and its Effect
on Results
6.2.2.3 Solution Procedure 2, Exact Solution
6.3 Relationship of the New Method to the Eigendynamic Constraint
Method
6.4 Application of Proposed Method to the Joint Identification
Problem
6.5 Case Studies
PART | CASE STUDIES RELATED TO THE JOINT
IDENTIFICATION PROBLEM
6.5.1 Computational Aspects
6.5.1.1 Test Structures and Joint Models
6.5.1.2 The Effect of the Number of Modes Involved in
Cdculations on the Results
6.5.2 Iterative Solution of Equations (6.32) & (6.37)
6.5.2.1 Guide-Lines for Iterative Solution
Implementation
6.5.3 Condition numbers of an Eigenvalue & Eigenvector and
their Application as Criteria for Mode Selecttion
6.6 Sensitivity Analysis

PART 2 CASE STUDIES RELATED TO MODEL UPDATING
6.7 Test Structures Description
6.7.1 Comparison of the Modal-Based Direct Method with the
Inverse Eigen-Senstivity Method
6.7.2 Sensitivity Analysis
6.8 Conclusions and Remarks

XX

110

111

114

116
116

119
120

121

123

124

124

125

126
129

133

134

136

139

141

141
143



XXl

CHAPTER 7 APPLICATION OF FRF-BASED PERTURBATION
ANALYSIS TO THE JOINT IDENTIFICATION
PROBLEM
7.1 Introduction 145
7.2 General Formulation of an FRF-Based Perturbation Technique 146
7.3 Modifying Equation (7.3) to Make It Suitable for Joint

Identification Applications 146

7.4 Convergence Bound for Equation (7.5) 148
7.5 Solution Techniques for Equation (7.5) & the Effect of Various

Parameters on the Results 149

7.6 Case Studies 149

7.6.1 Case Studies Using Solution Technique 1 150

7.6.2 Case Studies using Solution Technique 2 152

7.6.2.1 Computational Aspects of Solution Technique2 152

7.7 Conclusions and Remarks 156

CHAPTER 8 INVERSE EIGEN-SENSITIVITY ANALYSIS METHOD
(IEM) APPLIED TO JOINT IDENTIFICATION

8.1 Introduction 158
8.2 Formulation of Method 159
8.2.1 Undamped System 159
8.2.2 Compensating for the Effects of the Rigid Body &
Higher Modes 164
8.2.3 Formulation of the Method for Damped System 168
8.2.4 Concluding Remarks 170
8.3 Case Studies 171
8.3.1 Test Structures & Joint Models 171
8.3.2 Computational Aspects of Sensitivity Analysis 172
8.3.3 Performance of the Method 174
8.3.4 Performance of the Method with Truncated Modal
Model 177
8.3.4.1 General Considerations 177
8.4 Performance of the Method Using Just Eigenvalues 183
8.5 Importance of Using the Correct Joint Model 184
8.6 Sengtivity of IEM to Measurement Noise 184

8.7 Conclusions and Remarks 187




XXII

CHAPTER 9 FRF-BASED DECOUPLING METHOD

9.1 Introduction 188
9.2 Structurd Decoupling Methods 188
9.3 FRF-Based Decoupling Method 189

9.3.1 Decoupling of an Assembled Structure Consisting of
Two Elastic Substructures & Joint Element 189

9.3.1.1 Remarks and Comparison of the Two Methods
Based on Equations (9.7) & (9.9) 191

9.3.1.2 A Method to Dea with Substructures with
Unmeasured Interface Coordinates 192

9.3.2 Decoupling of an Assembled Structure Consisting of one
Elastic Substructure 195
94 Concluding Remarks 196
9.5 Case Studies 197
95.1 Test Structures and Joint Model 197

9.5.2 Invedtigation on the Parameters Controlling Sengtivity 200
9.5.3 Application of LS Method to Reduce the Noise

Effect 205

9.5.4 Application of SVD Technique to Reduce the Noise
Effect 205
9.6 Conclusions and Remarks 210

CHAPTER 10 MODAL-BASED DECOUPLING METHOD

10.1 Introduction 211
10.2 Formulation of Moda-Based Decoupling Method 211
10.3 Case Studies 215
10.4 Remarks and Conclusions 219

CHAPTER 11 EXPERIMENTAL CASE STUDY

11.1 Introduction 220

11.2 Statement of the Problem 220
11.3 Joint Model and Measurement Points Selection 223
11.4 Validating the Measured Data 225
11.5 Discussion of the Results 226
11.6 Vdidating the Identified Joint 233

11.7 Concluding Remarks 238



XX
CHAPTER 12 CONCLUSIONS
12.1 General Conclusions 240
12.1.1 Effect of Joint(s) on Dynamic Coupling Analysis 240
12.1.2 Classfication of ldentification Techniques 241
12.1.3 A New Modal-Based Direct Identification
Technique 242
12.1.4 Computational Aspects of Identification Problem 242
12.1.5 Model Updating & Joint Identification in Practice 243
12.1.6 Choosing the Appropriate Model for a Trial Joint when
Using Adaptive Identification Techniques 243
12.1.7 Sendtive Nature of the Identification Problem 244
12.1.8 Guide Lines for Proper Joint Identification Method
Selection 244
12.2 Contributions of the Present Research 248
12.3 Suggestions for Further Work 249
REFERENCES 250
APPENDIX A MODE SHAPES OF THE BLADE STRUCTURE 254
APPENDIX B STATISTICAL METHOD USED FOR DATA ANALYSIS 258



CHAPTER

INTRODUCTION

[L.I]THE JOINT IDENTIFICATION PROBLEM

With the advent of delicate and high speed structures like guided missiles, aircraft and
rotating machinery, researchers have been discovering the increasingly important role of
structural stiffness in structural design. This important role can be due to a variety of
system design considerations. For example, considering the case of guided missiles, the
airframe stiffness has a significant effect on the characteristics such as airframe aeroelastic
coupling with guidance and control systems, structural dynamic loads and the response
induced by flight enviroment ,....... etc. An other example is in the field of machine tool
design where the stiffness of the structure plays a crucial role in the precision of the metal
forming process.

Experience has shown [ 1,2] that many of the joints commonly employed in structures to
serve design requirements can result in substantial and often unpredictable reductions in
the stiffness of the primary structure. In the absence of reliable analysis methods for
estimating joint effects on structural stiffness, a common practice is to rely on
experimental data for definition of the joint properties. The shortcoming of this approach,
however, is that data obtained for a particular joint design on a given structure often
cannot be extrapolated with any confidence to a different structure design or even, in
many cases, to a different location on the same structure.

Ewins, Silvaand Maleci [2] pointed out the deteriorating effects of neglecting the joint in
a coupling analysis of a helicopter structure.

The significant effect of the joint on a structure’s stiffness and, the consequent dynamic
behaviour on the one hand, and the need to identify joint characteristics and incorporate
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Note that although equations (3.3) and (3.4) look similar, there are two significant
differences between them, namely: equation (3.3) is approximate while equation (3.4) is
exact and the first matrix in r.h.s. of equation (3.4) is[H,] while it is [H,] for equation

(3.3).

Now, if a complete coordinate set is used, the updating analysis using equation (3.4)
does not require any iteration and there should be no limit for the Il [H,]- [H,] Il but, since

it is practically impossible to achieve a complete measured coordinate set, in order to be
able to perform [H,J([AZ])[H,} in (3.4), Lin proposes to fill the unmeasured FRFs in H,
with their analytically-derived counterparts. This assumption, plus the application of an

incomplete coordinate set, makes iteration necessary in gpplication of Lin's method. Also,
if II[H,]- [H,] Il'is greater than a certain limit, then the above-mentioned assumption, i.e

using the analytical FRF to fill H,, will not be valid and the calculations will not
converge. Thus, Lin’s method is one which originally is derived from a direct approach
but which, due to practical limitations, has to adopt certain assumptions which imply a
need for iteration and a limit on the extent of the differences which can be determined.

Apart from differences in formulation, all updating methods share certain shortcomings.
The most important of these comes from the fact that the experimental data are always
incomplete and, compared with the analytical model, comprise a very small amount of
information. To get around the computational difficulties associated with this
incompleteness, different methods use different assumptions and techniques but, due to
the nature of the problem (expecting a large amount of information from a relatively small
amount of available experimental information), the results of all methods suffer from this
problem in one way or another. For example, some methods like EMM use expansion or
condensation techniques to resolve the incompleteness problem, which spreads the error
in the analytical model all over the matrices, On the other hand, some other methods like
the modal or FRF perturbation-based methods or Lin’s method do not use expansion or
condensation techniques but, due to other assumptions, their abilities are limited to a
certain amount of difference between two consstent modes of structure.

[3.3] JOINT IDENTIFICATION METHODS

3.3.1 GENERAL CONSIDERATIONS

All the classifications and methods introduced in section 3.2 are completely applicable to
joint identification methods as well. The only, but very important, difference between the
two cases is a difference in the way of applying the methods, as will be discussed




[3] Model Updating & Joint Identification ,........... 30

shortly. In addition to the methods of section 3.2, there is another family of direct
methods which are especially useful for joint identification purposes. These methods are
refered to here as “Decoupling Methods’, DM.

The essential difference in the application of updating methods for joint identification is
that in this case we can assume that the only source of error (causing the difference
between consistent models of structure) is the joint and this not only makes the
incompl eteness problem discussed in section 3.2 less serious but also reduces the number
of unknowns significantly, compared with the true updating case.

It should be noted that, in using any of the updating method for joint identification, it is
necessary to consider the joint explicitly in an analytica model. This can be done by
considering extra elements at the joint location in the FE model to represent the joint.

To validate an assumption of localized error, one has to make sure that there is no source
of error apart from that in the joint and there are two ways of doing this as, follows:

@) - by updating the analytical models of the substructures which constitute the
assembled structure one by one beforehand, so that one can assume the only
remaining source(s) of error in assembled structure is(are) due to the joint(s); or

(i) - by using experimental models for the substructures which constitute the
assembled structure in order to generate an anaytical model involved in the
analysis.

Option (ii) means that instead of comparing the analytical model of the structure with its
experimental counterpart, one can use the experimental models of, say, two substructures
of the assembled structure and then, assuming a model for joint, couple the two
substructures through that joint. Then, one can compare the generated structure- which is
cdled the “anayticaly-coupled structure’- with the rea structure.

To avoid the coupling of substructures -which isinevitable in case of option (ii)- the so-
called “decoupling method” has been developed [ 10,11] (see also chapters 9 & 10), as
discussed next
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3.3.2 DECOUPLING METHOD

In this approach, instead of using the difference(s) between the consistent models of the

assembled structure (which makes coupling necessary, in case of option (ii) of previous

section) to identify the joint, the joint model is extracted by decoupling the assembled

structure so as to expose its constitutent substructures, which include the joint. Then,

having the individual substructure models, one can identify the joint model. Since the

substructure models are used directly in this method, there is no need for coupling or for

prescribing a model for the joint, Categories similar to those in section 3.2 can be defined

for decoupling methods as well, i.e. the FRF decoupling method and modal decoupling

method.

Deding with the decoupling method, two points should be noted as follows:

(a) -

(b) -

usually, the decoupling method is used for the identification of a single typical
joint between two substructures but the method developed in chapters 9 & 10
can easily be generalised to identify n joints of an assembled structure
simultaneously. This generalisation requires an experimental model of each of
the substructures involved in the assembled structure;

the decoupling method is sensitive to noise (chapter 9). This means that it can be
potentially advantageous to use analytical models of substructures (instead of
their experimental models) along with experimental data from the assembled
structure in a decoupling process. This substitution will eliminate from the
decoupling process the noise typical of experimental models. It should be noted,
though, that using FE models of substructures again introduces the possibility of
mis-modeled regions which will affect the results of the identified joint.

It is convenient at this stage to restate the major differences between model updating and
joint identification methods.

(a) -

® -

In joint identification, the joint is the only unknown element and this fact reduces
the number of unknowns significantly compared with the number of unknowns
in a model updating problem.

Using certain identification techniques, there is no problem due to
incompleteness involved in joint identification
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IS JOINT IDENTIFICATION A SPECIAL CASE OF MODEL
UPDATING?

The main purpose of posing the above question is to establish the possible redundancy of
developing joint identification methods digtinct from those used for model updating.

Considering the discussions in sections 3.2 and 3.3, an answer to the above-mentioned
guestion is proposed:

" strictly, one can consider joint identification as a special case of model updating but this
does not imply that joint identification can be considered as part of a model updating
procedure since this is not a well-conditioned process itself and adding the joint(s) as
further unknown(s) will worsen the situation, as will be shown later. Thus, although
similar mathematical techniques can broadly be used to tackle both model updating and
joint identification problems, the considerations which are necessary for each case are
quite different and one cannot solve both problems in one solution process so they should
be dealt with separately.”

To explain this statement, we consder the three following questions.

@ - Considering joints as extra elements in an FE model of a structure, and as mis-
modeled elements along with other missmodeled elements, is it possible to
identify the joint in an updating process?,

@) - Is it possible to spot the location of the joint in an FE mode?,

(ili)-  Can we update an FE model ignoring the joints atogether?.

Aswill be shown below, questions (ii) and (iii) are natural extensions of question (i).

The answer to question (i) is that, theoretically, it IS possible to identify ajoint as a part

of a model updating problem but, computationally and practically, it may result in some

difficulties. These difficulties arise from the nature of the joint, which is a complicated

element, and of the updating problem, and are as follows.

(a) - since the number of joints in an assembled structure is usually large, adding the
joints to an FE model as extra unknowns can increase the size of the model
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dramatically which, in turn, will cause poorer condition for the updating
computations and will increase computation time significantly [29];

(b) - considering the joint(s) in an FE mode requires a prescribed mode for each joint
which must be accurate: this can be quite difficult to achieve in practice;

(© - considering the fact that some of the jointsin an assembled structure can be very
stiff in some directions, inclusion of the joint identification task in an updating
process can make the calculations very ill-conditioned. For example, if, in the
limit, one of the jointsisrigid in one direction, then the updating problem will
become singular. It should be noted that in the updating case, even for direct
methods, there is a limit to the difference between the models of the structure
which can be accommodated, and this might well be exceeded in the case of
certain types of joint.

Generally speaking, treating joint identification as a part of model updating may simply
result in adding more difficulties to a problem which is not very well-conditioned to begin
with. Thus, it is not recommended to seek to undertake a joint identification exercise at
the same time as a general model updating process. Rather, it is possible to use updating
methods for direct joint identification since, in this case, the number of unknowns is
much smaller and the incompleteness problem is less severe. Note that even in this case
there is a high risk of ill-conditioned calculations. For example, using the FRF-based
direct method for joint identification, one has (see chapter 5) :

(HI§ - [HIE = [HIR(AZDH]} (35)
where eguation (3.5) has been derived from equation (3.4) with notations "s" and "i"
designating slave and interface coordi nates, respectively. Now, if thejoint is stiff in some
direction(s), then the columns of [HJS! related to that direction(s), say rotation, will be
linearly dependent (or near linearly dependent) which will make the calculations ill-
conditioned or even rank-deficient.

Considering the answer to the first question, the 2nd and 3rd questions follow naturally.
The second question arises because one can ask “is it not possible to spot the location of
significant joints (i.e. those joints in an assembled structure which are reasonably
flexible) and then to consider only these in the FE model of the assembled structure?‘. Of
course, by doing this one will be able to avoid the additional ill-conditioning of the
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problem signalled above by not introducing stiff joints into the FE model and by not
increasing the number of unknowns.

The nature of the third question is different from the second one and it raises the
possibility of ignoring the existence of the joint(s) in a structure altogether. This question
will be irrdlevant if the objective of joint identification is something apart from updating a
model but, for the time being, we confine ourselves here to the common objective of
model  updating.

In order to demonstrate the problems associated with identifying a joint as a part of model
updating, and to be able to answer the 2nd and 3rd questions above, the case studies
described in the next section have been undertaken.

[3.5] CASE STUDIES

The first set of case studiesis aimed at the answering the first question posed in section
34, ie.

" considering joints as extra elements in an FE model of a structure, and as mis-modeled
elements along with other mis-modeled elements, is it possible to identify the joint(s) in
an updating process?”

The following points will be explored during this set of case studies,

(@)-  what problems may be introduced by considering joint identification as a part of
an updating process?, and

(b) -  how can updating methods be used for direct joint identification?

The test structure used for this set of case studiesisthe beam shown in Fig. 3.1.

In all case studies of this series, structure X, which simulates the “real” structure, isa 6-
element FE model of a simply-supported beam where element 4 is designated as the joint

element. The base element of X has the geometrical and mechanical properties shown in
Fig. 3.2.
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Structure X

Structure A

Fig. 3.1 Mode of real structure X & analytical model A
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Fig. 3.2 The geometrical and mechanical
properties of base element

The joint dement in this “real” structure has the following properties:
Lix = 5% L, Ejy = 10% E,, pjx =0 (3.9

Thus, the joint model is a short element which is more flexible than it would be if it were
composed of the beam materid.

Structure A, which simulates the analytical model of the real structure, is a 6-element FE
model of asimply supported beam with element 4 again acting as ajoint. The geometrical
and mechanical properties of base element of model A are exactly the same as those of X
and are shown in Fig. 2. The joint element in structure A has the following properties for
the different case studies in this series as follows:
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Ljy=20%L;, = 1%L, Ej, = By, Pja= O (3.6.1)
Liy =60% Ly, = 3% L, Ej, = B Pja=0 (3.6.2)
Ljy = 200% L, = 10% L, Ej, = Ej, Pja=0 (3.6.3)
Lj, = 300% Ly, = 15% L, Ej, = Ej, Pia=0 (3.6.4)
L;, = 2000% L;, = 100% L, Ej, =Ej, Pja=0 (3.6.5)

Thus, in al casesthe joint model of structure A has the same material flexibility (Young's
modulus) as structure X: both joint models in X and A are massless, and the only
difference between the two models comes from the difference between the length of the
joint modelsin X and A.

Now, using the inverse eigen-sensitivity analysis method [24] we will try to update
model A to match model X for the different cases in equations (3.6.1) to (3.6.5). Note
that in al the case studies only slave coordinates or off-joint coordinates have been
considered in { A¢}.

Fig. 3.3 shows the variation of 11 A llyand I AL Ily as afunction of variation of (Lja/ij)-
As is evident from Fig. 3.3, both Il A¢ 1l and Il Ahlly increase as the joint model in
structure A becomes shorter or longer relative to joint modd in X.

03 6.000+6
1 (Lille)% of X=5% [ 5 00046
g 0.27 F4.00046 =
S_ 0.1 4 - 3.00e+6 i
o - 200046
0.0 Y T Y T Y T Y 1.006+6
0 5 10 15 20
(Lj/Le)% of structure A
Fig.3.3 Variation of the norm of modal — o Al
param. differences with Lja/Le AR I

Fig. 3.3 also reveals that the rate of variation of 11 A¢ lly and I AL Il is higher for a shorter
joint than for a longer one, compared with ij. Table 3.1 shows the results of updating

attempts for different casesin (3.6.1) to (3.6.5).
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(A0l / 1AG1I)% (IAMI ./ 1AM %
(Lig/Lix)%
20 1600 37
60 24 15
200 34 15
300 38 15
2000 50 30

Table 3.1 The results of attempts made to update structure
A to structure X for cases (3.6.1) to (3.6.5).

As is evident from Table 3.1, calculations diverge for cases where the joint length in
model A isless than about 20% of the true joint length. For all other cases, although Il A
Il and Il Ah Il reduce, absolute convergence is not achieved and there are always some
residua values for Il A¢ Il, and Il Ahllp .These residuals increase as the (Lja/ij) ratio

increases.

The reasons for the divergence in the case of (Lja/ij) £20%, and for the presence of
residuals in other cases, can be explained as follows. Fig. 3.4 shows the stiffness
modification factors for structure A achieved after the first run for the case of equation
(3.6.2).

joint location
0.5- J

-0.5

-1.5 |- (Lja/Ljx) =20%

-2.5

1 2 3 4 5 6
Element number
Fig. 3.4 Results with (Lj/Le)% equals to 1

and 5 for structures A & X,
respectively, 1st run

Stiffness modification factors

It is evident from Fig. 3.4 that the results of the fiit run correctly spot the mis-modeled
element, i.e. the joint element, and also indicate that the flexibility of this element should
be increased. The modification factor for the joint element is about -1.9, which makes the
stiffness matrix negative-definite and causes divergence of calculations in this case.
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Different techniques (like introducing the mass modification factors to the analysis or

dividing the modification factors by an amount so as to prevent the negative definiteness
of tiffness matrix) have been tried to see if it is possible to reduce Il A¢lly and Il AA I, for

this case, but al attempts failed in this respect.

To explain the existence of 11 A¢ II, and Il Ah I, in the cases (3.6.2) to (3.6.5), consider
the following elemental mass and stiffness matrices for a smple beam eement:

12 6L -12 6L
412 -6L 212
12 -6L

412

[K.]=(El L2

(3.7.1)
156 22L 54 -13L

= ([)AL 420) F 18t 3L7 3.7.2
M .

- 41.2

It can be seen from (3.7.1) and (3.7.2) that al the stiffness matrix elements are linearly
proportional to E and, also, that all the mass matrix elements are linearly proportional to
p. On the other hand, for both mass and stiffness matrices, the elements related to
different degrees of freedom present in [ K J¢ and [ M ]¢ are themselves quite different
functions of L., the length of the element. For example, translational elements in the
stiffness and mass matrices are proportiona to (lng) and L, ,respectively, while
rotational elements in these matrices are proportional to (1/L,) and Lg, respectively. This
means that changing E and p does not affect the proportionality ratio between different
degrees of freedom but changing L, will affect it.

On the other hand, almost all the updating methods are based on elemental modification
factors oy, and o, for [K1¢ and [M]$ and modifying elemental mass and stiffness
matrices of an element by multiplying them with oy, and o, just modifies E; and pe; but
not L;. Thus, if the differences between elemental mass and stiffness matrices of the real
structure and its analytical model are caused by length differences or smply, if the
proportionality between elements of the mass and stiffness matrices of the real joint,
related to different degrees of freedom, is not similar to that assumed in analytical model
base element, it will not be possible to make Il A¢ 11, and I A |1, zero just by adjusting E

and p of the mis-modeled analytical elements, as has been proposed in[7].
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It should be noted that ajoint is avery complicated mechanical or structural element and
that it can easily deviate from the analytical pattern which is assumed when modelling the
joint as a smple FE eement.

To deal with this problem, one has to consider a separate modification factor for each
group of degrees of freedom involved in the joint model (degrees of freedom involved in

interfacing). For example, to model the joint in Fig.3.1, one has to consider three
modification factors for the stiffness matrix, o to a3, and three modification factors for

the mass matrix, 0y to 0. The details are:

al a2 -a
2a3 -ay
[K]j= leading to
3
x|
al 0 ‘al 0 0 0
000 ay _ a3
(K], = oy 08 T o 4, + i, 00 (3.8.1)
0 B 2230 2a,
and similarly,
156a4 0 54a4 0O 0 22a5 0 -13ag’ 0000
(Ml =0y 1562, 0 | 7S 0 -22a5 |T% 0 0
(3.82

It should be noted that using modification factors o to ag in equations (3.8.1) and

(3.8.2) in an updating process, will seriously affect the condition of the updating
calculations. This effect has been examined in the following case study.

Considering two models A and X in Fig. 3.1 for this case study, the mis-modeled
element in A, i.e. element 4, has the same length as element 4 of structure X but its
Young's modulus and density are reduced by 50% compared with the mechanical
properties of the pertinent element in X. This means that elements of the mass and
stiffness matrices of the mis-modeled element are equal to 50% of those belonging to
element 4 of structure X. The mass and stiffness matrices of element 4 in models A and X
are then as follows:

* Note that defining[K], & [M]; as in equations (3.8.1) & (3.8.2) may Cause inconsistency in calculated

mechanical & physical properties. Another way of defining [A]; & [AML. is as follow:
J

e e K
[AK]; = 57~ AL + 3p~AE+ —aFAp
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m.504 .02 .17 -.012
M 0011 .0126 -.00087 201
x : 504 -.021 (39.0)

L 0011

[~ 644000 96600 -644000 96600

K,]. = 3972
(Kqlx 644000 -96600 (3.92)

| 19320 -96600 THED

and*
- 252 .01 .087 -.006
M.,]l. = 9.
(Mal, 252 -.01 (3:93)
i .00058 .006 -..00058 1
~ 322000 48300 -322000 48300
. 9660 -48300 4830 204
4a” 322000 -48300 (3.9.4)
i 9660

The updating task has been undertaken using two different approaches. In the first
approach the regular updating technique, i.e. using one modification factor for each one
of the mass and stiffness matrices of al elements involved in the model, has been
adopted. hence, for this case there are 6x2=12 modification factors involved in the
calculation.

In the second approach, the modification factors in equations (3.8.1) and (3.8.2) have
been used and only for the mis-modeled element. This means that for this case there are 6
modification factors, ato ag. For both cases modes 1 to 5 have been used in the
calculation and, thus, the dimensions of the sensitivity matrices for two cases are 20x12
and 20x6, respectively.

Table 3.2 shows the biggest and smallest singular values and condition number of the
sengtivity matrix as well as the number of iterations necessary to achieve the solution.

* A 12 digit accuracy computer is used in caculations
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results for first run o] On K(S)=01/6, | No. of iteration
first approach 1.74 .002 870 3
second approach 12.26 6.4E-5 2ES 3

Table 3.2. Results for two approaches to update model A to model X

It is evident from Table 3.2 that in the case of the second approach, even though the
number of unknowns is as half that of the first approach, the condition number of the
sengitivity matrix is much higher than that in the first approach.

The reason for the poorer condition in the case of the second approach can be explained
by exploring the elements of sensitivity matrices for the two cases. Table 3.3 shows the
typical eigenvalues related elements of the sensitivity matrix for-three modes, for two
cases.

C1m 02m %3m O4m 0'5m O6m
oA /oo | -.03 17 .3 .3 17 .03
Myrdog | -1 -3 1 -1 -3 -1
M3 /0| -17 -17 17 17 -17 -17

Table 3.3.1. Typical sensitivity matrix elements for the first approach

01k %2k 03k G4k 5k C6k
o\ /0oy [ .029 167 3 3 167 .03
ohy /0a; | .098 3 .098 1 3 |
or3y /0oy | 167 .166 167 17 17 17

Table 3.3.2. Typical sensitivity matrix elements for the first approach

al 05 a3 oy (XS a6
oAy / do; .53 -1 .94 -.18 -.012 -.00026
dAy / day 1.4 -2.34 1.05 -.065 -.0062 .0008
dA3 / 9oy 4 -.51 .29 -1 -.033 -.0064

Table 3.3.3. Typica sensitivity matrix elements for the second approach
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Comparing Tables 3.3.1 and 3.3.2 with 3.3.3, it is evident that, for the first two of these,
the elements of the sensitivity matrix related to mass and stiffness variations are of the
same order of magnitude but, for the Table 3.3.2 this is not the case and, especially, the
elements related to cross and rotary inertia have markedly smaller orders of magnitude
than the other elements.

It should be noted that the following matrices have been used in calculaing the sensitivity
matrix for the case of the second approach :

- 322000 0 -322000 0 O 48300 48300
0 0 0 0 -48300 0
[AK], = oy 322000 0 | T2 0 -48300 +
L 0 0
-0 0 0 0
9660 0 4830
0 o (3.10.1)
a3l 9660
and,
2520 .0870 F0.01 0 -0067 [0 0 0 0
00 0 0 006 0 00058 0 -.00044
[AM], = 0y 2520 | % 0 -01 |T% 0 0
0 0 100058
(3.10.2)

and the sensitivity matrices corresponding to two approaches are balanced* using similar
techniques.

Tekingthevery small values of elements of coefficient matrices Of 0.5 and o in equation

(3.10.2) into consideration, the reason for the small order of magnitude of the elements of
the sengitivity matrix related to cross and rotary inertia becomes clear.

Examining Tables 3.3.1 and 3.3.2 reveals that in the case of the first approach, i.e.
regular updating, the stiffness-related sensitivity elements for eigenvalues are positive for
all modes and those related to mass are negative. This means that, as expected, increasing
elements stiffness or decreasing their mass will increase the natural frequencies of

* Balancing is a technique which is used to reduce the large differences in order of magnitude of elements
of a matrix. For more explanation see Chapter 4.
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structure. On the other hand, Table 3.3.3 shows that in the case of second approach the
cross stiffness-related elements of the sensitivity matrix behave in a reverse manner, i.e.
increasing cross stiffness will decrease natural frequencies of all modes. Also, for the
second mode, rotary inertia-related element acts in areverse way. This observation shows
that updating the stiffness matrix of an element as a whole, as is a common practice in
model updating, the positive sensitivity of eigenvalues relative to trandational and
rotational stiffness variation will compensate for negative sensitivity of eigenvalues
relative to cross stiffness and thus the outcome will always be positive sensitivity of
eigenvalues relative to stiffness variations.

Thus, trying to identify the joints of the structure during a model updating process, oneis
faced with (at least) the following problems :

@) - the number of modification factors for the joint elements is significantly larger
than for other elements. Thiswill affect the condition of the matricesinvolved in
cdculations and will tend to make them ill-conditioned [29];

@) - there is a high risk of divergence when a soft joint has been modelled by a stiff
joint, asin the case of relation (3.6.1).

If, on the other hand, one of the updating methods is going to be used for the direct joint
identification application, then the number of modification factors should be defined
according to equations (3.8.1) and (3.8.2) which, in this case, results in a manageable

number of unknowns because it is much smaller compared with the updating application.

From this point on, a second set of case studies will be considered in which the 2nd and
3rd questions posed in section 3.4 will be addressed. These questions are:

@a) - isit possible to spot the location of joints in an anaytical model of the structure
and, if so, can we decide which of the joints are rigid enough to be ignored?;

and

(b) - is it possible to update the analytical model of a structure ignoring its joints
atogether?.

The test structures for this series of case studies are shown in Fig. 3.5.
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structure X

— P R

joint element

structure A

Fig. 3.5 The test structures of second series of case studies

Structure X, which simulates the real structure, is exactly the same as structure X in
Fig.3.1 with its 4th element acting as a massless joint. The elemental mechanical and
geometrical properties are identical to thosein Fig. 3.2. Structure A, which simulates the
analytical model of structure X, is similar to that structure except that it does not contain
the joint element, i.e. A has only 5 elements. The analysis is based on an attempt to
update model A to match model X, using the inverse eigen-sensitivity analysis method,
and to examine the effect of various different parameters on the analysis. It should be
noted, again, that only slave or off-joint coordinates have been included in { Ap}.

The following parameters have been considered in the case studies:

E=10%E, ,L;=01%L, ,Lj=1%L, ,L;j=10%L,
Lj =100%L, (3.12)

Lj=5%L, . =01% E, E; =1% E, .E=1%E, [E; =10% E, E; =100% E,
(3.12)

Each of the cases in equations (3.11) and (3.12) has been considered both with and
without mass modification factors included in the andyss.

Tables 3.4 and 3.5 and Figs. 3.6 and 3.7 show the results of the analysis of cases (3.10)
and (3.11) when only the stiffness modification factors are involved in the analysis.

Examining Figs. 3.6 and 3.7 reveals that, as the joint becomes stiffer, the modification
factors become smaller and location of the joint becomes more accurate. On the other
hand, if the joint flexibility goes beyond a certain limit, the location ability of modification
factorsis badly reduced.
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analysis for the cases in (3.11) B Li=10%Le
Lj=100%Le
Li=5%Le | !AQI/AQ, | AN AN | lAol, | 1AM,
Ej=.0l%Ee 211% 40% .998 2.24e7
Ej=. 1 %Ee 82.6 53% .646 1.32¢7
Ej=I %Ee 63% 42% .561 8.37¢e6
Ej=10%Ee 71% 5% 22 4.96e6
Ej=100%Ee 97% 26% .084 2.74e6

Table 3.4 Results for the cases in (3.12),mass modification factors not involved
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Ej=I0% Ee IAQH_. /AGll, IAMI . /IAAI, Al A,
Lj=.1% Le 78.9% 10.5% .007 135596
Lj=1% Le 78% 9% 0615 | 1.27¢6
Li=lo% Le 63% 6% 32 8.1e6
Li=100% Le | 104% 24% 1252 | 2.26e7

Table 3.5 Results for the casesin (3.1 1), mass modification factors not involved

It is evident from Tables 3.4 and 3.5 that llA¢lly and IIAAlly become smaller as the joint
becomes stiffer but this is not the case for IA¢I . /Ay and IAAIL . /AL, and there is
an optimum flexibility which yields minimum Al . /IAGlly and HAAIL . /IAMIL,. Also,

Tables 3.4 and 3.5 reveal that if the joint flexibility exceeds a certain limit, the updating
attempt will fail. It should be noted that although HA¢Il . /IAGIly and HARN . /AN,

increase with joint stiffness, nevertheless, since for very stiff joints (stiff in a certain
direction sense) llA¢lly and llAAIl, become very small, one can ignore their effects (in the

min min

direction(s) in which the joint is stiff).

Further examination of Figs. 3.6 and 3.7 reveals the interesting fact that for the range of
moderately flexible joints for which it is possible to spot their location on the analytical

model accurately (according to Figs. 3.6 and 3.7), it is also possible to see their relative
flexibility by comparing their modification factors. Thus, the stiffer the joint is (in certain
direction(s)), the smaller become the stiffness modification factors (for those
direction(s)). As a result of the joint’s complicated nature, it is quite possible that a joint is
stiff in some directions and flexible in others and, thus, in order to be able to distinguish
between the rigidity of the joint in different directions involved in interfacing, it is
necessary that for different directions one has to define separate modification factors for
the joint adjacent elements, similar to those in equations (3.8.1) and (3.8.2).

Anocther point, deduced from Tables 3.4 and 3.5, is that the reduction in lAAll, is much
greater than the reduction of 1Ay and lIAAll, is much smaller than lIA¢lIR. So, it seems

that eigenvectors are much more sensitive to the presence of a joint than are the
eigenvalues.

Tables 3.6 and 3.7 and Figs. 3.8 to 3.11 show the results of the analysis for cases in
(3.11) and (3.12). this time with mass modification factors also involved in analysis.

It is seen from Figs. 3.8 to 3.11 that by introducing mass modification factors into the
analysis, the joint location performance of the modification factors has become very poor.
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Examining Tables 3.6 and 3.7 reveds that, generally speaking, introduction of the mass
modification factors into the analysis has reduced llA¢ll; and llAAl; and, in some cases,

this reduction is significant.

Li=5%Le | IAQI /Ay | NAM ;AN [ Agly | 1AM,
Ej=.01%Ee 183% 12% 998 | 2.24e7
Ej=.1%Ee 284% 169% 646 | 1.28e7
Ej=1%Ee 57% 11% 561 | 8.37e6
Ej=10%Ee 58% 5.6% 22 4.96¢6
Ej=100%Ee 68% 20% 084 | 2.72e6

Table 3.6 Results for the cases in (3.12), mass modification factors involved

Ej=I0% Ee HAGH;/NAGI, NAM . JIAR, Al AN,
Lj=I1% Le 69.5% 11.5% .007 135596
Li=1% Le 67.5% 10.6% .0615 1.27e6
Lj=I0% Le 48% 3% 32 8.1e6
Lj=100% Le 89% 24% 1.252 2.26¢7
Table 3.7 Results for the cases in (3.1 1), mass modification factors are involved in
calculations.

The reason for areduction in liA¢ll; and lIAMg is that by letting mass become involved in

the analysis, more parameters are available for adjustment to make the two models A and
X closer.

On the other hand, the same effect is responsible for the worsening of the joint location
spotting capability because part of the flexibility which is required to update model A is
produced by mass modifications and the distribution of this mass modification is quite
different from the distribution of stiffness modification factors. (Stiffness modification
affects lower modes more significantly while mass modification affects higher modes
more significantly.)

In order to seeif attribution of mass to joint makes any difference in the above-mentioned
deduction, the case of Lj=5% L. and Ej=10% E, has been repeated, this time with Pj=Pe

and both with and without mass modification factors being involved. The results of this

case study confii the above-mentioned deductions, i.e. introducing mass modification
factors into the analysis reduces lIA¢lly and IAAll; and damages the location capability.

The interesting fact is that even for this case, where the joint massis not zero, oneis able
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to spot the joint location and to assess its relative flexibility using only stiffness
modification factors in the anayss.

[3.866LONCLUDING REMARKS

From what has been reported so far, the answer to the question posed in section 3.4 :

“is joint identification a special case of model updating ?"

is as follows:

“Similar mathematical techniques can be used for both problems but the nature of the two
problems is different and due to this different nature the two problems cannot be tackled
simultaneoudy in an updating process, a once, Thus they are two separate problems’

The following conclusions can also be deduced,

(@) -

®) -

©) -

Adding joint identification to a model updating problem increases the number of
unknowns dramatically and affects the condition of the calculations. In some
cases, if the joint model has not been selected carefully, the calculation diverges.

Considering only stiffness modification factors, it seems that for joints with
moderate flexibility it is possible to spot joint locations in an anaytica model and
to assess their relative flexibility. In order to be able to assess the relative
flexibility of ajoint in the different directions which are involved in interfacing,
one has to introduce separate modification factors for each direction and this,
again, will increase the number of unknowns.

Very dtiff joints can be ignored in an updating analysis. The question here is
how can we recognize a “ stiff” joint? As has been shown, a stiff joint has two
characteristics which are, first, the stiffness modification factors of the joint
adjacent elements would be very small and, second, llA¢llg and 1AMl are very
small. Since, even without any joint-related problems, there are many mis-
modeled regions in an analytical model, in order to be able to use either of the
above-mentioned criteria one has to go through the updating process first and
then, after updating miss-modeled regions, one can decide on the degree of
rigidity of the joint(s).




Model Updating & Joint Identification ,............ 50

(d) -

-

For a wide range of moderately flexible joints, it is not possible to update the
anayticd mode ignoring the joint.

It seems that the only practical approach to the updating problem for complex
structures is to update separate substructures without any joints (or with
obviously rigid joints) and then to assemble them together, making sure that the
only sources of difference between the analytical model and the real structure
come from the joints. Naturally, the next step will be to identify the joints and to
incorporate them into the anaytical model.



CHAPTER E’

COMPUTATIONAL ASPECTS OF THE GENERAL SYSTEM
IDENTIFICATION PROBLEM

PRELIMINARIES:

The objective of structural identification is to determine the physical properties such as
mass, stiffness and damping of a structure, or a part of a structure, using a set of given
(often measured) information. The information which is used to identify the structure's
dynamic characteristics is either in amodal parameters format or in a response model
format. Identification techniques have been broadly categorized in chapter 1 into direct*
and adaptive techniques. In adirect identification approach, the information set is related
only to the structure under identification and calculations will result in a mass and
stiffness and damping matrix attributed to the structure. In an adaptive approach, on the
other hand, the data are related to an assumed analytical model of the structure and to the
structure itself and, using the difference between two models and a cause-and-effect
principle to formulate a governing equation, the difference between the characteristics of
the real structure and the assumed analytical model will be calculated. The adaptive
identification technique, or asit is usually called “model updating technique**” , is more
popular as it is expected to provide more information than the direct technique can (due to
the fact that more information is available).

Mathematically, the identification problem falls into the category of inverse problems.
Basically, a direct problem is shaped physically first and is then tackled mathematically
while an inverse problem is shaped mathematically first and then the solution to it may or
may not gain any physical meaning. Generaly speaking, having a set of properties
(information) about a structure, there can be no physically meaningful system (existence

* Not to be confused with direct model updating technique, explained in chapter 3.
** As mentioned in chapter 1, model updating is an application of adaptive identification technique.
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guestion), a unigue system (uniqueness question) or many systems having these
properties [30]. The existence and unigqueness problems are mainly dependent on the
amount of the data which is available for identification.

From the above definition of direct and inverse problems, it is clear that, for example,
coupling is a direct problem while the model updating is an inverse problem and some
problems like structural modification analysis can be considered in either category,
depending on the definition of the problem.

Since, the physical properties of the structure are known in a direct problem, using
Newton's second law, the governing equation of the problem will be of the “differential

equation” type. Depending on the type of mathematical model used for the structure, i.e.

continuous or discrete, the governing differential equations of a direct problem can be
partial or ordinary, respectively. On the other hand, the nature of the governing equation
of an inverse problem is algebraic and thisis why the theories of linear (or even non-
linear) algebra and matrix computations are a the heart of identification anayss.

In what follows, some essentia theories related to the computational aspects of the
identification problem in generd, and the joint identification problem in particular, will be
presented. It should be noted that unless otherwise stated, by the “general identification
problem” we mean model updating which, as explained above, is an adaptive
identification technique.

[42]THE ESSENCE OF A LEAST-SQUARES (LS) FORMULATION IN
AN IDENTIFICATION ANALYSIS

The governing equation of an identification problem is usualy formulated in a matrix
equation format. (The exception is the inverse eigen-sensitivity technique where the
governing equation is in the form of a set of linear algebraic equations). The governing
equation can generaly be consdered as follows:

[A ]axni [AX ]nixni [B ]nixb =[L]ap (4.1)

where the matrices [A], [B] and [L] are known and elements of matrix [AX] contain the
unknown modifications which are necessary to update the mass and stiffness matrices of
the analyticd mode to those of the red structure.
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All the matrices in equation (4.1) are either frequency- or eigenparameter-dependent. The
data required to construct [A], [B] and [L] can be acquired in 3 different ways as follows.

(@)-  fromapuretheoretica analysis;

(by-  from a hybrid analysis. In this case part of the data comes from theoretical
anayss and the other part from experimenta anayss, and

(¢)-  from a pure experimenta anayss.

Thefirst case, is of no interest to us here and will not be discussed. Further, there are two
problems associated with cases (b) and (c), namely:

1- incompleteness of experimental data; and
2- measurement noise in the experimenta data.

The effect of the two above problems on the matrix equation (4.1) will be discussed in the
following sections.

4.2.1 EFFECTS OF INCOMPLETENESS OF EXPERIMENTAL DATA ON
EQUATION (4.1).

Experimental data always suffer from spatial and modal incompleteness.
.“Incompleteness’ means that we are able to measure only a limited number of
coordinates and modes of areal structure which has an infinite number of coordinates and
modes. The questions of existence and uniqueness posed in section 4.1 are closely
connected with incompleteness of the experimental data

The incompleteness of these data has two important effects on a general identification
problem, as follows:

(@ -  if theidentification method being used is a direct* one (as explained in chapter
3), then data incompleteness will introduce an approximation to eguation (4.1)
which is due to incompatibility between the dimensions of the experimental and
anaytical data and will lead to an iterative solution of equation (4.1). Also,

* By “direct” we mean direct model updating method and not direct identification method explained in
section 4.1
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(b) -  dueto the large number of unknowns in matrix [X] and, again, a smaller amount
of data, i.e. a<n; in equation (4.1), there is no unique solution for equation

(4.1). The non-uniqueness of the solution is quite expected as it isimpossible to
extract a large amount of information, uniquely, from a relatively small amount
of data.

As will be shown in later chapters, using proper identification techniques, the first
problem in (a) may be avoided for the joint identification problem but, for a general
identification problem, it is computationally impossible to solve equation
(4.1) without approximation, (unless of course, using a direct updating method, the
amount of datais equivalent to amount of unknowns).

Considering the second problem, in (b), i.e. the non-uniqueness problem, the amount of
data can be magnified by constructing equation (4.1) for each individual frequency or
mode and combining them Having done this, the amount of data will be magnified by the
number of measured frequencies (or modes) while the number of unknowns remains
constant.

Since the elements of matrix [AX] in equation (4.1) are frequency-dependent (from here
on we will only use the term frequency-dependent but every conclusion is true also for
the case of a moda parameter-dependent [AX]), then in order to be able to combine
equations from different frequencies, it is necessary first to transform the matrix equation
(4.1) to a set of algebraic equations and, second, to separate the mass, stiffness and
damping parameters in [AX]. For the first step, one has:

[ Cl(mi) ](axb)x( njx(nj+1)/2) { AX(O)i) }nix(nin)/z ={ L("‘)i) }(axb)x1 (4-2)

where matrix [ C;(w;) ] is generated from [A] and [B] at frequency ;. Note that the
symmetry of matrix [AX] has been already taken into account in equation (4.2).

For the second step, i.e. separating mass, stiffness and damping parameters, considering
the following equation for each element Axij of [AX]:

Axyj = Akyj - @ FAmy + (@;Acy) i (4.3)

equation (4.2) can be rewritten as:
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{AK}

[ C((‘)i) ](axb)x(snix(nin)/z) {AM} 3njx(nj+1)2 { L((‘)i) }(axb)x1 4.4)
{AD}

Combining equation (4.4) for different frequencies leads to the following over-
determined set of agebraic equations:

{AK}

[P ](nfxaxb)x(anix(nin)/z) {AM} 3Njx(Nj+1)/2 = {q }(axb)x1 (4-5)
{AD}

where n; is the number of frequency points used in the calculation. The over-determined
set of equationsin (4.5) can be efficiently solved by a least-squares technique. Although
it is possible to construct equation (4.5) as a square system, for the following reasons,
this equation must always be overdetermined in a general identification problem (even
when noisefree data are consdered, as here):

(@ -  asguare coefficient matrix has a high risk of being ill-conditioned or even rank-
deficient due to modelling and/or computational reasons. For example,
considering the inverse eigen-sensitivity identification method, the sensitivity
matrix (i.e. [P] in equation (4.5)) can be ill-conditioned due to the existence of
linearly dependent rows related to eigenvectors. The rows are linearly dependent
due to improper modelling of the analytical system, whereby some coordinates
may be redundant. Computational reasons for ill-conditioning of matrix [P] will
be discussed in more detall later in this chapter and

(b) -  inconsistency in the data. The matter of inconsistency in data requires more
detailed explanation which will be given in following section.

42.11 THE SOURCE OF INCONSISTENCY IN NOISE-FREE DATA

Taking symmetry into consideration, a general undamped n degree-of-freedom system
has a maximum of n(n+l) mass and stiffness elements which could be identified and,
theoretically, there are n(n+l) modal parameters of the system which can be used for
identification. For example, considering a three degree-of-freedom system in Fig.4.1,
there are 12 mass and stiffness elements which must be identified and the number of
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known modal parameters equals to 12 as well. Thus, having a complete modal model,
one will be able to congtruct the physical syssem model uniquely.

Fig. 4.1 Three degrees of freedom system

Now let us consider the case where only part of the modal data is available, say, 9
parameters out of the total of 12. Since we have incomplete data, it is not possible to
identify the true physical system directly. So, the analyst chooses to use an adaptive
identification method, such as the inverse eigen-sensitivity method. If the analyst has a
priori knowledge about the connectivity properties of the real system in Fig.4.1, then by
imposing connectivity constraints onto the analytical model, the number of unknowns,
i.e. mass and stiffness differences between two models, can be reduced to 7. The
guestion here is “can we identify the real system using only 7 items of known modal
data?’ and if the answer is yes, then what would be the role of the 2 extra modal data
items available. To answer this question, having assumed that the inverse eigen-
sensitivity method is to be used for identification, consider the governing equation for the
above problem as.

.511-'- 517-
{{AM} ----- {{AK}} “6)
(A} )% = s71 - s77 [Liamy)™ '
881 - - - g7
S91 - - - Sg97

Assuming that the 7X7 square matrix partitioned in [S] is not rank-deficient, then it can be
shown that it is always possible to express the 8th and 9th rows of [S] as linear
combinations of the other rows, as follows:

(881","'9887) = “1(311’-’-v-’517) + (12(521,-,-,-,827) +....+ a7(S71m-m577) 4.7
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or
(581751 =[S 1y (@) (@.8)

Since the matrix [S] in equation (4.8) is assumed not to be singular, one can aways
calculate the coefficients vector {a}. Equation (4.8) means that introduction of
connectivity constraints will make the sensitivity of the modal parameters linearly
dependent so that only the number of sensitivity elements equal to the number of
unknowns are independent.

It should be noted that the same conclusion will be true for the 1.h.s of equation (4.6)
related to the 8th and 9th rows, i.e. the differences in modal parameters related to the 8th
row will be a linear combination of { A$} and {AA} related to rows 1 to 7. This can
easily be proved asfollows:

g . . {AKNT :
pre-multiplying both sides of equation (4.8) by {AM]} | - One obtains:

{AK T ({AKNT, o T
{{AM}} {88}7X1_{{AM}} [S 1y tadyy (4.9)

Substituting for{{AK}}T[ S1.F from equation (4.6) in equation (4.9) yields:

(AM) o~
(AK}] T (AO)) T
{{AM}}1x7{58}7x1 = {{Ak}}1x7{°‘}7x1 (4.10)
or
A T
(80} o1 (ANt 1080 row = a7 (@2 (4.11)

So, generally speaking, having a priori knowledge about a system’s connectivity and an
incomplete set of data, one is able to identify the physical system uniquely and
exactly without using redundant data, i.e. the square system of equationsin (4.5) is
adequate.

Now consider the more redlistic case where the analyst has no or little apriori knowledge
about the connectivity of the system but assumes a prescribed connectivity pattern for it,
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Fig.4.2. (note that in practice the analyst has no aternative but to keep a sort of
connectivity which has been assumed in forming the analytical model, otherwise the
number of unknowns will increase dramaticaly)

Fig.4.2 The analytical model considered for system in figure 4.1

Assuming again that 9 modal dataitems out of 12 are available, although here the number
of unknownsis 6 for the analytical model in Fig. 4.2, all the available modal data must be
used to identify the unknowns in equation (4.6). The reason why all the modal data must
be used here is that, although according to equations (4.7) and (4.8) the 7th, 8th and Sth
rows of [S] can be expressed as combinations of the other 6 rows, equation (4.11) is not
true for this case, i.e. the {A¢} or {Ah} related to rows>6 cannot be expressed as a
linear combination of those related to other rows, as the effect of the missing spring in the
analytical mode! is not reflected in [S] (but is reflected in Agg or AAg). Thus, due to the
lack of information about the system’s connectivity, the system of equations in (4.6) is
inconsistent and in order to find the closest system to the real one (in a least-squares
sense) one must use all the information available. For this case, using all available data,
one will identify a unique, but inexact, model for the physical system.

In addition to the above-mentioned reason for inconsistency, i.e. lack of information
about connectivity, approximation(s) made in deriving equation (4.5) will be another
cause of inconsistency. The approximation in equation (4.5), as explained in chapter 3
and section 4.2.1, is either due to the nature of the identification method, i.e.
perturbation-based method, or due to incompleteness of data, but in any event is
inevitable. Now, the vector {g} on ther.h.s of equation (4.5) which represents the
differences between either modal parameters or FRFs of the real and analytical systemsis
exact while the elements of [P] are approximate and thus, even if the analyst has a
complete knowledge of the connectivity of the real system, the set of over-determined
equationsin (4.5) isinconsistent.

So, generally speaking, the source of inconsistency in equation (4.5) is an insufficiency
and incompleteness of the data, and since thisisinevitable in practice, in order to obtain
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the best results in a least-squares sense, one has to use as many as equations as possible.
Note that sometimes adding extra equations to an over-determined set of equations
increases the error level in the results. This can be either due to significant noise effect in
equations added to the origina set for with-noise case, or due to.invalidity of the first
order perturbation approximation for perturbation-based identification techniques (see
section 7.6.2.1)

4.2.2 EFFECT ON EQUATION (4.1) OF MEASUREMENT NOISE IN
EXPERIMENTAL DATA

There is a specia class of identification problem where only a part of a structure, e.g. a
joint, needs to be identified. For this class of problem, it is possible to solve equation
(4.1) uniquely at each individual frequency point, using certain identification methods.
This possibility depends, again, on the number of unknowns and available data and since
the amount of datawhich isdesired is usually small in this case, the incomplete measured
data may be sufficient to provide the desired information.

Although it is computationaly possible to solve equation (4.1) uniquely in such a cases, it
is still necessary to construct the over-determined set of equations in (4.5) in order to
reduce the measurement noise effect in the calculations.

4.2.2.1 NOISE AVERAGING PROPERTY OF LS FORMULATION.

If arandom nature is assumed for the measurement noise, then its mean value will tend to
zero. Although the nature of measurement errors is complicated, and is not restricted to
random noise, the main contribution to measurement error is due to random noise,
neglecting the systemdtic errors® .

As mentioned above, the mean value of a random noise signal is supposed to be zero, but
thisis true if and only if one takes an infinite number of samples of the signal which, in
turn, means an infinite number of measurements. In a real case, where only a finite
number of measurements are available, the effect of noise is expected to be reduced by
using as many eguations in the calculations as possible.

It isimportant to note that if the error effect dominates any of the matrices[A], [B] or [L]
in equation (4.1), for each individual frequency, then using a LS solution may not make

* |t should be noted that in any case LS has no improving effect over systematic errors.
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any improvement effect on the result. To clarify this matter, consider the following
example.

4.2.2.2 SENSITIVE NATURE OF AN IDENTIFICATION PROBLEM
EXAMPLE 1

In some identification techniques, such as the decoupling method, the matrix [A] in
equation (4.1) is composed of some submatrices as follows:

[A]1=[I-B*A;-H]IC] (4.12)

The submatrices in equation (4.12) are frequency-dependent and will be defined in
chapter 9*. Equations (4.13) and (4.14) define the matrices [A,-H_] and

B*[A, -H_]C*, respectively at f = 100 Hz. Equation (4.15) shows the matrix
B*[A;-H_]C* again, this time with 5% random noise, proportional to H, added to [H.]
(A;,B* and C* are unchanged). Comparing equations (4.14) with (4.15), it is evident
that the effect of added noise has dominated the matrix B*[A - HC]C+ and, consequently,
matrix [A].

-8.3337E-6 4.1 1IE-6 1.57E-6 -3.17E-6 1.60E-6
-2.028E-6 -7.738E-7 1.607E-6 -8.115E-7

[AH] = 29E-7 791E-7 -387E-7 |(4.13)
2.85E-6 - 1.047E-6
B 3.61E-7 _

. . 1801 16248 -2611
B*[A,-H ]C* = 414
e -47988 -7947 (419

-23853 -12299 10049 4900 |

* Note that there is no connection between [B] and [C] in equation (4.12) and those in equations (4.1) and
(4.9
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" 124138 -34980 42061 12543
_ -34549 1464 11858  -3398
B*[A,-H_C* = (4.15)

4288 19790 -132616 -29537

5667  -1805 -26099 181

Having defined [E] as the error matrix to be added to [H.] and I[E]ll<< H[H_]ll, one has:
B*[A;-H_+E]JC"=B*[A-H_]C+ + B+HE|C+ (4.16)

The dominant error effect in equation (4.15) means that ;

IB*[EJC*I 211 B*[A, - H, ]C*l (4.17)

in equation (4.16). Physically, the quantity on the r.h.s of inequality (4.17) represents the
effect of the joint on the structure’s behaviour and, thus, inequality (4.17) means that
joint effect is so insignificant that the noise effect dominates. The same explanation
applies to the genera identification or updating problems. For example, in the case of
model updating, the effect of some mass or stiffness parameters of a structure may be so
insignificant on the response of the structure, within a specific frequency range, that their
effect can be easly become dominated by noise.

It is convinient here to demonstrate the sensitive nature of the identification problem
through a smple example as follow.

EXAMPLE 2

Consider the two degrees of freedom systemin Fig. 4.3

Fig. 4.3 Typica two degrees of freedom system
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Both particles in Fig. 4.3 have identical mass, m, and the spring, Kj, can be considered

either asajoint, in ajoint identification analysis, or atypical component of the structure,
in a genera identification problem. It is desired to examine the significance of Kj's
variation on the impedance of particle 1, z;, and to examine the effect of this significance
on the sensitivity of the process of identification of Kj, to noise.

For the impedance of particle 1, one can write:

dz; N K
dK;  (-mw? + K + K;)?

(4.18)

It is evident from equation (4.18) that stiffer Kj is, the less significant its effect on the z,
becomes. To demonstrate the effect of this insignificance of Kj on the identification
process, the variation of z; due to finite variations in K; can be formulated as:

Z,= K= AK. (4.19)
" (K-me?) + Kol 4K; + [(K-mw?) + Kj0]2 '
and
2
d(aZy) K (4.20)

d(aky) [4K; + (K-ma?) + Kjo]2

where Kjo is the initial value of Kj and AKJ. shows its finite variation. The following
information can be deduced from equations (4.19) and (4.20):

2
K 0 o sz and ST K
J (4K [(K-mw?) + K]
2 d(aZ
AK. > joo==> A+---> Ig and %AKD ----- >+0
< d(AZ,)
AKj > -00 ==> AZI““> [(K_mmz) T KJO] and d(AKJ) 0
AK K 2) + K.\] ==> AZ > +oo and dazy) . >+00 (4.22)
; ----> -[(K-mw*) jO] == 1 d(AKj + )

For a very flexible joint (relative to the impedances of the substructures at the interface
coordinates), one has:

d(aZ,) K2
2>=l

- 2 == A7AY N\ SN
Kj0<< (K-mw*®) ==> d(AKj)lAKj=0 (K-mw?)
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and
K2

AZII —eD>4o0 - —2
AKJ (K-mO) )

(4.22)

For a very tiff joint :

K. >> (K-mo?) ==> o]
jo >> (K-mw?) - == d(AK;)JlAK 0

+o0

>= 0 and AleAK el (4.23)
i

Using these data, the variation of AZ, relative to AK;, for high and low frequency ranges
and for flexible and stiff KiJQ, is shown in Fig. 4.4. As is evident from this figure, the
d(aAZ)

d(AKJ-)'AKj:O

asymptotic value of AZ aswell as are very small for a very stiff joint. Note

that both parameters are frequency-dependent but, for stiff joints, both of them are small
to areasonably high frequency range (as will be shown with a numerical example).

) .-.-.-..;.—.—.-.—.-.-.-.-‘.—.\
i +
L

;
12000 A : +
]

?
i

o OoTTerore-0 000000 (¢

+
e T L

FEFFFFFFFFS
+++++

SR TN WA S

-12000
-100000 AKj 0 M stiff kjo lower w

+ stiff kjo higher w
soft kjo lower w
Soft kijo higher w

Fig.(4.4) Variations of ZI versus variations
of KJ for different initial values of
K;j0 and frequency

These small values for the slope at AK;=0 and for alimiting value of AZ, as AK;-->eo
reveal that very small changes in AZ; will result in very large changes in AKJ. and vice-
versa, i.e, very large variations in AKj may cause negligible changesin AZ.
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As Kjo decreases or as frequency increases (effect of the inertia term), the situation
becomes better. For flexible joints, for example, where the slope at AKj=O isamost 1,
any small changesin AZ will cause changesin AKJ. of the same order of magnitude.

The following numerical example will demonstrate the effect of joint flexibility on
sensitivity to error. Considering Fig. 4.3, let

=662,400 N/m m=0.55 kg  K;;=662,4000 N/m (4.24)

For the above-mentioned values for joint properties at frequency f=300 Hz one has:
Z,=(K-mw?)-K2 (K., + K-me?)! = -1372057 N/m

1 i j0 -
and the asymptotic value of AZ;= 56662 N/m (4.25)
Taking +5% of Z; in equation (4.25) as error yields,
+5% Z,= AZ,= -68603 N/m

Using equation (4.19) one has:

AK; = -2425833 N/m (4.26)

This value represents a 37% variation from the true joint’s stiffness value. If one now
uses -5% Z, error, one has:

AK; = 26786048 N/m (4.27)

which is an error of about 400% in the joint’s stiffness. Using data similar to those in
equation (22) but here taking Kjo = 198720, i.e. a more flexible joint relative to the

previous one, yields,

AZ= 332827.9 N/m
Z,= 282546 N/m
5% Z,= 14127 N/m
AK ;= 202 N/m (4.28)

which is about 0.1% error in joint stiffness and for AZ, = -5% Z, the error becomes
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AK, = -201 N/m (4.29)

whichisagain 0.1% error in joint stiffness. Equal absolute values for AKj were expected
inthis case, considering Fig. 4.4 for the case of the flexible joint.

It is worth mentioning that in the first case, i.e. arelatively stiff joint, if AZ, becomes
equal to 82257, which is equal to 6% Z,, then AKj will beinfinity and if AZ exceeds this
value very dightly, AKJ. will be very large negative value. Also, Fig. 4.4 reveals that for
a stiff joint, AKJ. IS positive over a very narrow band of AZ variations, but otherwise is

aways negative.

It will be shown in later chapters, related to analysis of the performance of different
identification techniques, that amost al identification techniques, either joint identification
or generd identification, are sendtive to noise in the above mentioned respect and that the
noise effect may dominate the matrices involved in calculations for each individual
frequency. In such cases, where the noise effect is dominant at each individual frequency,
questions concerning the condition number of [A] or application of the S.V.D technique
to invert it or using L S technique to reduce the noise effect, areirrelevant These concepts
are only useful when the noise acts as a perturbation and does not dominate the matrix.

Using data from different frequencies, the only way to reduce the noise effect on the
matrix [A] in equation (4.12) is to average the error at source, i.e. [Al - H,], before
multiplying this matrix with matrices B* and C*, which process magnifies the error. For
the case of [A] in equation (4.12), due to the pattern of equation (4.12), it is not possible
to put [Al - H.] from different frequencies together (before multiplying it with B* and
C*) and, thus, application of a least-squares technique in this case is not associated with
any error averaging advantage. As will be discussed in chapter 9, the dominant error
effect is an inherent issue and depends on the nature of the identificatin problem and for
these cases the error effect can only be reduced using specid techniques.

An important conclusion deduced from example 1 is that governing equations like (4.1)
(in which matrices [A] and [B] are simple matrices, i.e. not composed from other
frequency dependent submatrices as in equation (4.12)), are the most suitable ones for LS
formulation from an error averaging point of view.
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[4.BJCOMPUTATIONAL ASPECTS OF THE LS PROBLEM

As was discussed in section 4.2, the least-squares formulation is an essential part of any
identification problem, due to the incompleteness of data and/or noise effects. In this
section, theorems related to the solution of a LS problem and the effect of noise on it will
be discussed.

It is convenient, first, to consider the perturbation bounds for the solution of the least-
sgquares problem. This matter has been discussed thoroughly by Lawson and Hanson in

[29] and we shall only present the principal conclusions here,

4.3.1 PERTURBATION BOUNDS FOR THE SOLUTION OF LS
PROBLEM

Consider equation (4.5) as:

[ P ]an { {Xl} } nxt o { q }mx1 (45)
{AK}

where {X{} =4 {AM]}
{AD}

For convenience in gtating results in term of relative perturbations we define the following
relative parameters.

_HEIL

“TUP I

g lldgl

iTq 1l

gl <__ligl

Y=TPIIX, M- TPX, I (4.30)
el o Nrll (=-PX.) .

P=rP X, - TPxX, 1 r=q-PX; :

K =1 Pl P+ Il = condition number({P]) (4.32)
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A K P11 P+l
K=lxoa I-MENNPI (4.33)
THEOREM 1

Let XI be the minimum-length solution to the least-squares problem PXI=q with residual
vector r=g-PX{. Assume lEIlIPHl < 1 and Rank & Rank(P), and let X;=X;+dX be
the minimum length solution to the least-squares problem

P(X+dX)) = (P+ E)X; +dX;) = q+dq

Then
Rank(P)=Rank(P) (4.34)
and
Il dx, Il
IIXIIII <Ra+RyP+kRpa+xa
SRIQ+kp)o+7yP] (4.35)
THEOREM 2

Assume m>n=k = Rank(P) and Il E1l Il P* Il < 1. Then

ndx, i
X SRIA+Kp)a+yp (4.36)

Equation (4.36) indicates that the upper bound of the relative error for solution of the LS
problem is proportional to the relative errorsin [P] and {q} as well as the condition
number of [P] and the relative norm of the residual. Thus, reducing a, p and K may
improve the results.

4.3.2 IMPOSING CONSTRAINTS ON THE LS PROBLEM AND
REDUCING THE NUMBER OF UNKNOWNS

The subject of imposing constraints on the LS problem and/or reducing the number of
unknowns has important practical applications. A set of constraints can be imposed on the
solution of a LS problem by changing equation (4.5) to following equation [29]:

[ {;14 ] (X} ={ Egi } (4.37)
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where [F] is apxn matrix, {D} isap dimensiona vector and [F] {X}= {D} expresses
the set of desired constraints. For example, suppose one requires that the solution vector
{X} should be close to a known vector {{}. Setting [F]=[1] and {D}={{} in equation
(4.37) expresses this requirement.

Constraints can be imposed on equations (4.5) using one of the following methods:

@) - imposing constraints as a preference by adding rows to equation (4.5) as is
shown in equation (4.37). In this case the constraints will be satisfied as close as
possible (in aleast-squares sense). The order of [P] in this caseis (m+p)X(n); or

(b) - imposing constraints explicitly by modifying [P] and deleting an appropriate
number of unknowns in {X, }. In this case [P] will be mx(n-p).

Generaly speaking, deleting some of the unknowns in any LS problem increases the
residual norm lirll (note that this does not necessarily means worse results) and at the same
time reduces the condition number of [P], according to the following theorem [29]

THEOREM 3

Let [P] be an mxn matrix. Let k be an integer, 1<k < n. Let [B] be the mx(n-1) matrix
resulting from the deletion of column k from [P]. Then the ordered singular values of [B]
Gip interlace with those of [P], ojp, as follows:

case 1 m2n
O1p >0 b >0pp >0pp > >G(y.1yb >Opp > 0 (4.38)

case 2 m<n

O1p >O1p >02p >00p > >G>0 >0 (4.39)

P P

Thus, considering the definition of condition number, it is clear that cond([B]) <
cond([P]).

So, using method (b) above, one decreases, or at least does not increase, the condition
number of coefficient matrix [A] at the expense of increasing, or at least not decreasing,
the norm of the residual vector {r}.
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4.3.3 PERTURBATION THEOREM FOR SINGULAR VALUES OF A
MATRIX

THEOREM 4

Let [B], [P] and [E] be mxn matrices with [B]-{P]=[E]. Denote their respective singular

values by B, o, and €;, i=l,.......... , k; k=min(m,n), each set labled in nonincreasing
order. Then
IB,- ol <eZNEN i=lns, k (4.40)

According to equation (4.40), if the noise added to a matrix has a small norm, i.e. itisa
perturbation, then provided the original matrix is not ill-conditioned, the singular values
of origina matrix can be considered unchanged.

4.3.4SOLUTION TECHNIQUES FOR A LS PROBLEM.

The solution to the LS problem in equation (4.5) can be generaly presented as.
+
{X1}=1Plixm { 9 s m>n (4.41)

+ .
where {X; } is the minimum second norm solution to the LS problemand [ P 1, iS the

pseudo- or generalized inverse of the rectangular matrix [P].[29,32,33,34]. The main

difference between these different methods of solving equation (4.5) lies in the method
+

used to calculate [ P ],y

The two popular techniques for calculation of [ P ]n:m are asfollows:

1- application of the norma equation; and

2- application of the SV.D technique

4.3.4.1 APPLICATION OF NORMAL EQUATION
Premultiplying both sides of equation (4.5) with [P]T, it can be rewritten as:

[P Joxenl P Jonxat X1} = [ P o { @ Y (4.42)
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The nxn sguare system of equation (4.42) is caled the system of normal equations for the

linear least-squares problem. If [P] is afull-rank matrix, i.e. its columns are linearly
independent, then [P}T[P] is nonsingular and the solution {XI } can be written in the

form:
{X;} = (P1T[PIy 1 [P1T(q} (4.43)

Where the matrix
[P Jyxm = (PITIPD L PIT (4.44)

Is the pseudo-inverse of [P]. Although the normal equation method is ssimple and easy to
implement, it has a computational drawback which is due to squaring of matrix [P] in
equation (4.42). Due to premultiplication of [P] with [P]T, the condition number of
matrix [P1T[P] can be much greater than that of the original matrix, [P]. The relationship
between the condition numbers of [P]T[P] and [P] is as follows:

w((PITPD = 11 @PIT(PD 1i 11 (PITEPD- i <neyTinnepinigey Tiney-tn= w2 py)
(4.45)

or if a second norm is used to define condition number of [PIT[P] as x([PIT[P]) = 5 /c,,,
then one obtains:

[PIT[P] = (V X, UH) (U 5, VH) = V 25 V => k((PI"[P)) = 0//0,, = ( o} / oT)?
= K2([P)) (4.46)

Thus, the condition number of matrix [PJT[P] can be as large as the square of that of [P]
and this may cause serious computationa errors in subsequent calculations.

4.3.4.2 APPLICATION OF S.V.D TECHNIQUE TO CALCULATE THE
PSEUDO-INVERSE

Application of the S.V.D techniqueto calculate[ P ]+ in equation (4.41) does not have the
increased condition number problem which the normal equation has. Furthermore, the
S.V.D technique has the advantage of calculating the singular values of [P] and this
enables the analyst to assess the condition of this matrix and, if it is poor, to use
appropriate techniques to improve the results[31].
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The S.V.D technique has two disadvantages which are (i) the lengthy calculations and (ii)
the large dimensions which are involved in it. For example, if the matrix [P] is generated
using ng frequency points, as in equation (4.5), then for a=10 and b=10 and n=100 the
dimension of matrix [P] will be 10000X(3n;(n;+1)/2). Usually, a and b and ng are much
larger than the above values, and thus, the dimension of matrix [P] will be very large.
The large dimension of [P] not only increases computation time but also reduces the
accuracy of the cdculations.

On the other hand, the normal equation technique is not faced with the dimension
problem, as matrix [P]T[P] can be generated using equation (4.4) at each individual
frequency, as follows:

It}
[PIT[P] = 2 [CT(w) C()] (4.47)
i=l

Thus, using the normal equation technique, one avoids the memory size and time
consumption problems but the method will be useful if and only if the condition of matrix
[P] is not high and a computer with sufficient floating point accuracy is being used.

So, it is now clear that the condition of matrix [P] is a crucia issue and in subsequent
sections, the computational causes of ill-conditioning of matrix [P], and consequently
[P1T[P], will be discussed and the methods to cope with these causes will be presented.

ILL-CONDITIONING PROBLEM OF A LS FORMULATION

It was mentioned earlier in section 4.2.1 that poor modelling of the analytical model used
in an adaptive identification approach is one reason for the ill-condition (or even rank
deficiency) of matrix [P], in equation (4.5). In this section, the computational factors
which may result in an ill-conditioned [P] are discussed.

Refering back to section 4.2.1, formulation of the LS problem in equation (4.5), from
matrix equation in (4. 1), requires two following steps:.

1- transforming matrix equation (4.1) to an set of algebraic equations in equation
(4.2); and then
2- separating mass, stiffness and damping parameters in {X} and generating

eguation (4.4) a each frequency point.
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Each of the above steps introduces certain computational difficulties to the solution of a
LS problem, and these will be discussed below.

4.4.1 ILL-CONDITIONING ARISING FROM TRANSFORMING A
MATRIX EQUATION TO A SET OF LINEAR ALGEBRAIC
EQUATIONS.

Consider equations (4.1) and (4.2).
[A Jang AX Jnjng [B o =1 L law (4.)
[ Cl((‘)i) ](axb)x(snix(ni+1)l2) { AX((‘)i) }nix(nin)/z ={ L((‘)i) }(axb)x1 (4-2)

Each element cp related to Ax;; can be calculated from the following equation
(assuming symmetry):

C1((t-Dxa+g, (-Dx(n;-4/2)+) = a(ti) x b(,g) + a(t,j) x b(i,g)
=l niadpi  t=l...a andg=1I...b (4.48)

If i=j then
c((t-1)xatg, G-DX(ny-i2)+)) = a(t.i) x b, g) (4.49)

Examining equation (4.48) reveals that the summation on the right hand side of this
equation may lead to a poorly conditioned matrix, [Cl], because the summation on the
r.h.s may generate elements with large differences in order of magnitude and sometimes
can lead to a sparse matrix. Also, in cases where noise is present, the summation on the
r.h.s of equation (4.48) may cause the noise effect in some elements to be larger than the
correct vaue itsdlf.

4.4.2 ILL-CONDITIONING ARISING FROM SEPARATION OF
VARIABLES IN ALGEBRAIC EQUATION (4.2)

Having transformed equation (4.1) to a set of algebraic equations for each frequency o,
and having imposed a symmetry constraint on [AK],[AM], one obtains:

{K}
[C@) caxbyx(nini+ 1)) { M) }(ni(ni+1))xl = {1L(9) Haxtyx1 (44)

where the matrix [C(w)] is partitioned as follows:
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dements dements
related to related to
{AK {AM]}

| . . . |
rLl(nTI)/Z ng n?-l)/2

(4.50)

Each element Cpq related to Akij can be calculated from equations (4.48) and (4.49) and
elements of Cpq related to mass are exactly equal to those related to stiffness multiplied

by -w?.

The matrix [C(0)] in the Lh.s of equation (4.4) has been generated from the r.h.s of
equation (4.1), i.e.

{AK}
[A] [AX] [B] leading to [C(w)] (4.51)
{AM}

Now, two cases are possible for the relative dimensions of matrices[A], [B] and [X],
i.e. either axb < ny(n;+1) which means an under-determined set of equationsin (4.4) and

happens in the case of a genera identification problem (model updating), or axb >
n,(n;+1) which usually happens in the case of the joint identification problem. For the

first case, i.e. axb < ny(n;+1), it is obvious that equation (4.4) isrank deficient. In what
follows it will be shown that even for the second case, i.e. axb > n;(n;+1), equation
(4.4) istill rank deficient.

Let axb > n(n;+1) and
[T(w)],x, = [AJ[AX][B] (4.52)

Considering the maximum possible rank of the constituent matrices of [T] in equation
(4.52), and the following inequality:

rank (TAL[B]) S min (rank([A] or [B])
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it becomes clear that matrix [T] is rank-deficient and its maximum rank cannot exceed
(ni). This rank-deficiency means that there are only ni rows (or columns) of [T] which

are independent of each other and these constitute (“i)2 independent linear equations in

[C(0)] in equation (4.4). On the other hand, the number of unknowns in equation (4.4)
isni( ni+l), whichis greater than maximum possible number of independent equationsin
equation (4.4). It should be noted that in cases where any one of the constituent matrices
of matrix [T] in equation (4.52) is rank deficient, the rank of matrix [T] will decrease and
s0 will the number of independent equations in equation (4.4).

L et us now to demonstrate how using a L S formulation as mentioned in section 4.2.1 can
improve the rank deficiency problem of individual equations like (4.4). Using the normal
equation technique in equations (4.42) and (4.47) to solve the least-squares problem
defined in equation (4.5), one obtains the following equation:

{AK}

[[C(0 DITIC(@ DIHC(@)ITIC(@)]+.... +[C(w, )T Y €40t} 1] -

{AD}
[[C@IT{ L)) }HC@) T {L(@p+... +[Clw, )1 Liw, ) }] (4.53)
or
(AK)}
[P1'[PN (AM) (=[P] {q} (4.30)
{AD}

Examining equation (4.53) shows that athough each of the matrices added together in the
Lh.s of this equation isitself rank deficient, one expects that, adding them together, the
resultant matrix will be of full rank. It should be noted that there is no mathematical proof
"to support this expectation but, combining sufficient equations, nf, the coefficient matrix
on the Lh.s of equation (4.53) turns out to be well-conditioned (with further
considerations which will be explained shortly). In order to be able to decide how large
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nf must be, the simplest way is to check the rank of the coefficient matrix on the Lh.s of

equation (4.53) each time after adding a new set of equationslike (4.4) to it.

In addition to the “increasing number of unknowns’ problem caused by the separation of
parameters, there is another problem associated with separating mass, stiffness and
damping parameters in { AK}. In order to explain this problem, we return to equations

(4.4) and (4.50). Considering the nature of matrix [C(0)], which is explained in
equation (4.50), the columns of [C(w,)] related to M for each frequency ®; are exactly

equal to the columnsrelated to K multiplied by -(a)i2 and, if aviscous damping model isin
use, the columns related to D are exactly similar to those related to K multiplied by iw;.
The difference in order of magnitude caused by multiplying mass-related elements by -
co%, especially at higher frequencies, makes matrix [C(w,)] ill-conditioned at each
individual frequency and also makes the resultant set of equations in equation (4.5), and
consequently in equation (4.42), ill-conditioned. Thisill-condition has a significant effect
on results and should be dealt with through balancing of the matrix [P] in equation (4.5).

443 BALANCING TECHNIQUES AND REDUCTION OF THE
NUMBER OF THE UNKNOWN PARAMETERS

It was shown in section 4.4.2 that separation of the parameters in { AK} leads to an ill-
conditioned [P] due mainly to the increased number of unknowns (rank deficient [C(w,)]

in equation (4.4)) and to the difference in the order of magnitude of the elements related
to different parameters. In this section we will show that both the above causes of ill-
conditioning can be dedt with by baancing [P] through a reference anayticd model.

Generaly speaking, atypical model updating problem does not require any balancing, as
the above-mentioned difference of order of magnitude between elements of [P] do not

exist in this case. The matrix [P] in amodel updating analysis is automatically balanced,
because of the following model used for [AK],[AM] and [AD].

[AK] = Yoy, [K],
e=1

and

[AM] = iame M] e (4.54)
e=1
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where n is the number of elements and [M], and [K],, are the elemental matrices used to
generate the andytica counterpart of the red structure.

Using equation (4.54) to generate matrix [C(w,)] from [A][AX][B] will automatically
balance matrices [C(w,)] and [P] because the order of magnitude of [M], is very small
compared with that of [K], and, thus, multiplying it with a)% will not cause an ill-
conditioning problem.

For joint identification applications, where one may not have an FE-generated analytical
model available, one of the following techniques can be used for balancing matrix [P]:

@) - balancing can be performed by multiplying the columns of [P] related to mass
and damping by suitable scaling factors to make these columns order of
magnitude comparable with that of columns related to stiffness.

The scaling of mass- and damping-related columns must be performed on the fina
coefficient matrix [P] in equation (4.5) and one cannot balance matrices at each
individual frequency unless asimilar scaling factor isused for all frequencies.

Although improving the condition of [P] significantly, the method of balancing described
above sometimes still yields a large condition number of [P], especially when
identification is carried out over a wide frequency range. Also, finding a proper scaling
factor is analyst-dependent and sometimes difficult;

() - amore efficient way of balancing the matrix [P], inspired by equation (4.54), is
to choose a prescribed model for [AK],[JAM] and [AD] as a reference joint

model and, then, to consider [AK],[AM] as follows (damping is ignored from
here on as it is straightforward to extend any result to the damped case):

m-
[AK]; = gam [AK] ¢

and

m.
[AM];= dgl,amd [amM14 (4.55)
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where m; is the number of interface stations in joint identification applications where each

interface station consists of a set of interface coordinates. Note that always

m; <n; (4.56)
Each matrix [M]g (or [K]r‘é) in equation (4.55) is an n;xn; matrix with non-zero
dements in locations related to constituent interface coordinates of interface station d, and
n is the number of total interface coordinates.

As noted earlier, using an adaptive identification technique, one requires an analytical
model* for comparison with the real structure. In the case of joint identification, in order
to be able to generate the analyticad model, one has to consider a trid joint modd.

Principdly, the quality of a reference joint mode is dictated by the model assumed for the
trial joint (i.e. features like number of interface coordinates at each interface station or
connectivity assumed between different interface coordinates) but quantitatively the trial
joint model and the reference joint model can be completely different.

Using equation (4.55) in generating matrix [C(0)] from matrix [A][AX][B] will
automatically balance matrices [C(0)] and [P] because the order of magnitude of [M]Se is
very small compared with [K]rde and thus multiplying it with co% will not cause an ill-

condition problem.

Apart from the automatic balancing feature associated with technique using equation
(4.55), another advantage of this balancing is that in this case the number of unknownsis
reduced to 2my, i.e. 0y, 0 r=1,2,....mi, (or 3mi in the case of viscous damping
where one extra coefficient must be considered for damping ) and thus there will be no
problem of rank deficiency associated with matrix [C(0)] in equation (4.4) if the
following inequality is satisfied:

< n? (4.57)

3am; .

Considering (4.56), it is clear that inequality (4.57) is always satisfied. In order to clarify
further the matter of unknown reduction property of reference model, consider the
following example. Fig. 4.5 shows the “real” structure for this example and, as is

* Note that the analytical model can be entirely generated by F.E. method or can be generated from
composing experimental data acquired from structure itself and a prescribed model assumed for the
unknown part of structure, e.g. ajoint. The analytical model generated using the latter techniqueis called
by author: “the analytically coupled structure’. (see chapter 3)
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evident from this figure, there is one interfacing station with 4 interfacing coordinates in
it'* , i.e. m=1 and n;=4.

rnterfacing station

X

— —d

joint

Fig. 4.5 The example structure with one interfacing station
comprising of 4 interface coordinates

Now, considering the reference model in equation (4.55) for the joint in Fig. 4.5, the
number of unknowns in equation (4.4) is reduced from 30, in the general case, to 3, i.e.
three unknowns a,, oy and o, while the number of independent equations available in

equation (4.4) is 16.

The model adopted for modifications [AK]j and [AM]j to thetrial joint model in equation

(4.55) is exactly similar to the mass and stiffness modification models which are used in
model updating practice. In spite of al the advantages associated with taking modification
factors as in equation (4.55) (stated above), it is not applicable to joint identification
problem directly and must be modified. The reason for this impracticality has been

explained in chapter 3 and, briefly, is due to the fact that assigning only one modification
factor for the whole set of degrees of freedom involved in an interface station d in [M]Se

(or [K]r%) only reflects the need to change the density (or Young's modules) of the
reference joint model at that station and does not take into account the essence of any
variation of the geometrica characteristics of the reference joint. Keeping the geometrica
features of the reference joint model unchanged means that the geometrical characteristics
assumed for the reference joint model are a correct representation of the geometrical
characteristics of the real joint, which is not true.

Considering a beam element model for the joint in Fig. 4.5, in order to give necessary
flexibility to parameters Ol in equation (4.55) to change the geometry (in this case length)

** |tisrelatively easy to decide about the number of interfacing stations but it is not so easy to decide
about the proper number of interfacing coordinates within each interfacing station. As a genera rule, the
number of interface coordinates in each interfacing station is equal to the minimum number of coordinates
required to couple substructures across that interfacing station.




m Computational Aspects of The System Identification Problem 79

of reference joint model, as well as E and p, (at least) the following model must be
adopted for mass and giffness modifications:

a;0-a; 0 Oay 0 a,
000 0 'a2 0 2330 a3
[AK]j =0y a, 0 +0t, 0 -at o 0 0
0 0 0 0 02
and similarly,
156a, 0 54a, 0 022a5 0 -13ag
[AM]; = a4 0 0 o 0 135 0 |
156240 [ 7 0 -22a
0 0
0000
das 0 -3ag
O 0 0 (4.58)
dag

Equation (4.58) means that there will be 6 modification factors (9 if viscous damping is
involved) at each interfacing station, for reference joints with a beam eement model ( i.e
with 4 degrees of freedom involved in interfacing) and, thus, the necessary (but not
aufficient) condition for a full rank matrix [C(U)] in equation (4.4) is:

9m;

1

A

n? (4.59)

In the general case where nid interface coordinates are involved at each interfacing station

d, the number of modification factors at each station depends on the connectivity model
between the different interfacing degrees of freedom;

(c) - in real engineering applications there are cases where it is very difficult, if not
impossible, to assign any prescribed model to areal joint, and consequently to
trial and reference joints. In such cases, the reference model described by
equation (4.58) is not applicable and a completely general pattern must be
considered for the reference (and trial) joint models. For example, considering
the joint in Fig. 4.5 as a joint with 4 degrees of freedom, i.e. four interface
coordinates, and without considering any pattern for the joint mass and stiffness
matrices, apart from symmetry, the reference modd is:
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oa; Ohay O3a 4
Usas Ogag
a8a8 aaag
L %102 108

[AK]; =

r“uau Qyodpy 323 Upgdqy
Olyca Ola Oq~a
15215 %1616 *17217
[AM]; = (4.60)
xjga18 X19dg

I O0d20 .

As equation (4.59) indicates, using the general balancing approach for ajoint with 4
degrees of freedom, there will be 10 modification factors o for each of the mass and
stiffness (and damping if it is viscous) parameters at each interfacing station, each of
which must be calculated. It is clear from equation (4.60) that a general reference joint
model in this equation balances the matrix [P] but does not reduce the number of
unknowns.

In the generd case where nid interface coordinates are involved a each interfacing Station
d,the number of modification factors ateach station isequal to nid( “id+1 )/2 for each of

the mass or diffness or damping parameters and thus the full rank condition for equation
(4.4) will be:

Note t hat : n; = m;n;y

To demonstrate how balancing can affect the condition of matrix [P}, Table 4.1 showsthe
condition number of matrix [P]T[P], in equation (4.47), for a typical joint identification
calculation, using different balancing techniques. Note that in all cases the number of
unknowns is the same.

No baancing Simple scaing Balancing using ref.
balancing in ta) |joint model in (4.58)
x([p1T[P)) 7TE22 9ES 4E8

Table 4.1 Condition number of matrix [P}I[P] using different balancing methods
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DISCUSSION OF THE CONCEPT OF ILL-CONDITIONING AND
SENSITIVITY OF A MATRIX

The question which will be addressed in this section is: “is the condition number of a
matrix a necessary and sufficient criterion for determining its sensitivity to small
perturbation?‘. The answer to the question, as it will be shown shortly, is “condition
number is not a sufficient (defined below) condition and is not necessary. In other words,
there may be cases where the condition number is reasonably low but the matrix is very
sensitive to perturbations’.

Consider the sat of equations in (4.5) as a generd agebraic equation:

[P Jmxn { Xy} }nxl ={q}na (4.5)

The upper bound for errors in solution of matrix equation (4.9, induced by errors added
to the coefficient matrix [P], is given in equation (4.36) and is:

nax, i,
||x11|| SK[d+xp)a+ yfl (4.36)

where parameters in equation (4.36) have been defined in section 4.3.1. According to
equation (4.36), the condition number of matrix [P], K, is an upper bound for errors and
having large values for this upper bound does not necessarily means that error value is
high. So, condition number is not a sufficient criterion, i.e. if the condition number of a
matrix is large it does not necessarily imply that the matrix isill-conditioned but, in most
cases that condition number of a matrix is large enough, there is a substancial chance of
that matrix being sensitive. So, here we make a distinction between matrix sensitivity and
ill-conditioned, i.e. amatrix isill-conditioned whenever its condition number is high but
not every ill-conditioned matrix is sengtive to perturbations.

In what follows, we will demonstrate the non-necessity of condition number for
sensitivity assessment of a matrix and, having comprehensively discussed the various
aspects of senditivity of a matrix, we will present a sufficient (but not necessary)
condition for a matrix to be ill-conditioned.

Let us first demonstrate the non-necessity of condition number, as a sensitivity
assessment criterion, through an example.
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Consider the receptance matrix, [H], of a structure in expression (4.61). Expressions
(4.62) and (4.63) show the inverse of [H] before and after adding 5% random noise,
proportiona to eements of [Hj, to it, respectively.

6.157E-8 1.156E-7 -6.63E-9 -5.418E-8 -2.4E-8
1.58E-8 -3.639E-9 -2.568E-8 -1.14E-8

[H] = -3.757E-8 1.676E-8 7.45E-9 (4.61)
-1.677E-7 1.2E-8
-3.36E-8

-1.4E6 9.1E6 -1.29E6 -1.08E6 -2.44E6
-7.34E6 -2.19E6 -2.1E6 -4.7E6
BIRE -2.7 17E7 -2.18E6 -4.9E6 (4.62)
-5.24E6 -680700
- -2.6887 .

-1.07E8 -17E8  -3E9  -3.1E8 -9.58E7
-9.72E7 123E23 1.07E24 1.2E23  1E23
[Hjl=| -1.15B9 4.8E23 -1.4E24 -6.2E22 2.7E24 (4.63)
-1.17E8 6.4E22 1.8E22 1.12E22 2.8E23
| 5E8  3.3E23 5.18E24 5.5E23 -6.9E23

Comparing expressions (4.62) and (4.63) reveds the high sensitivity of matrix [H] to
perturbation. On the other hand, the condition number of [H] is equal to 6. Now, the
question is: “what is the underlying factor which makes matrix [H] in equation (4.61)
sensitive to noise?‘. To answer this question, let us first consider just what is meant by
the sengitivity of a matrix.

Consider a general complex matrix [A] and its singular value decomposition as.

[A]mxn = [U]mxm [Z]mxn [V]ann (4'64)

where [U] and [V] are unitary matrices and their columns are the left and right singular
vectors of [A] respectively. Mathematically, [V] and [U] are eigen-matrices of [AJH[A]
and [A] [ATH, respectively.
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The diagonal matrix [X] contains the singular values o; of matrix [A] so that, if rank [A]
isr £ min(m,n), the matrix [Z] will only have r non-zero diagona elements. Equation

(4.64) can be rewritten as:

(Al f = {uliv)iop+ . + ul {viHo, (4.65)

mxn
Although the inverse of arank-deficient matrix does not exist, one can define the pseudo-
inverse of the matrix, for this case [32,33,34]. Using the pseudo-inverse of a matrix, the
minimum 2 norm |east-squares solution of [A] {x}={ b} can be calculated. The pseudo-
inverse is defined as:

[A]m‘:m = {v}l{u}fl{.llcﬁ ........ 4 {v}r{u}frl_u(;r (4.66)

It can be shown [33] that the smallest singular value of [A] is the 2-norm distance of [A]
to the set of all rank-deficient matrices. This meansthat if [A]y is amember of the set of
matrices with itsrank k € r = rank [A], then:

min Il [A] -[A} Il =1I[A] -[A], LlI= 0, (4.67)

Matrix [A] of equation (4.64) is called sensitive if, after adding a small amount of noiseto
it, some or al of its singular parameters, i.e. singular vectors and singular values in
equations (4.65) and (4.66), change dramatically.

Note that in the case of equation (4.65), in spite of major changes in some of the singular
parameters, the elements of the matrix itself show only very small variations (as small
noise has been added to matrix) but, for [A]"! in equation (4.64), changes in singular
parameters of [A] are associated with dramatic variationsin [A]itsalf.

The Taylor series expansions of G, and {v }r, the rth singular value and right singular
vector of matrix [A], interms of variable e; are:

a0
6.=0C,+ 2 -éngei + o, (4.68)
i=1
a{v}
(vl ={vlg+ 2 % LAe, +.... (4.69)

where in afirst-order approximation the higher-order terms are neglected. For this case
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3o

A0, = 2 a—eilAei (4.70)
a{v

sty =3 Ly @71

Equations (4.70) and (4.71) indicate that variation of singular parameters depends on
both the magnitude of error and sensitivity of singular parameters themselves. Since, as
mentioned earlier in this section, {v} and {u} areright and left modal vectors of [AJH[A]
and [A][ATH, respectively, study of the following section is necessary, in order to be able
to investigate singular parameters sengitivity to perturbation.[28,35]

4.5.1 SENSITIVITY OF MODAL PARAMETERS OF A MATRIX TO
SMALL PERTURBATIONS.

This problem has been efficiently explained in [28] (and [35]) which can be summerized
as follows:

Suppose Xr is a smple eigenvalue of a rea matrix [B] and {l¢}r and {R¢}r are the

corresponding left-hand and right-hand eigenvectors . Then as [AB] tends to the null
matrix, [B+AB] has an eigenvalue kr + Alr in accordance with the stationary property of

eigenvalues (Rayleigh principle), or by using first-order eigenvalue sensitivity, such that
the change of the rth eigenvalue can be caculated from:

_ (01 TeaBI o),

A 4,72
01T o), 472)
From equation (4.72), the absolute value of Akr can be expressed as:
T
ALI € "{1¢}r" ”[iB]""{Rq’}r" @73
r 0 T( 0}

and I{1¢}I{R¢}rl is the cosine of the angle Or between the left and right-hand
eigenvectors. When coser is very small, the corresponding eigenvalue is very sensitive to
perturbations in the elements of [B]. Wilkinson [35] suggested that | {1¢}¥{R¢}rl isa

condition number for a nonrepeated eigenvalue. When the matrix [B] is symmetric and
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9r=0, since {1¢}I{ Rq>}r isnormalized to unity, the condition number for a nonrepeated

eigenvaue is dependent on the norm of modification matrix [AB].
For a general matrix with distinct eigenvalues, the eigenvector {Rcb'}r of [B+AB]

corresponding to {R¢}r is such that (lIf[AB]Il --> 0)

, {01 (01 TIABI{ 0} (g0} (0} T8B1{ 0}
'x? ’r'{R‘“r'z TR 2 b Ay 7Y

s=1 s#r s 1S s=1 s#r

Again, it can be seen that the quantity cosf)r is important, however, the sensitivity of the
eigenvector is also dependent on the proximity of lr to the other eigenvalues. From
equation (4.74), the smallest value (Xr-ks), indicating the separation of eigenvalue Xr

from its neighbours, is usually defined as a condition number for the corresponding
eigenvector {Rq)}r.

Denoting [AB] in equations (4.73) and (4.74) as perturbation to matrix [A]1H[A]*, let us
now consider the sensitivity of singular values of matrix [A], rewriting equation (4.73)
as.

T
Aot < {vYTII[ABYII{v)
r I{v}'ll:{v}rl

(4.75)

Since |{V}I{V } 1= 1 then, according to equation (4.75),1A6 | can only be large if I[AB]II

islarge. In this case since;

c,= ILAJll, and assuming that I[AB]Il << lI[A]ll, ===> lI[AB]I} << o, (4.76)

IAO'rl may be relatively large for smaller singular values and, thus, the smallest singular

value is the likeliest one to be affected most. As a matter of fact, the sensitivity of the
smallest singular value of a matrix, just explained, is measured by the condition number
of the matrix, i.e. if the smallest singular value of a matrix is very small comparing to the

norm of the matrix (or its biggest singular values), it is very likely that a relatively
moderate I[AB]Il will affect o, dramatically. On the other hand, if c, is not very small

relative to G then, according to inequality (4.76), o, will not be affected too much.

* Note that in this case [B] i[A]H[A],then{Rq)}é{v}and{lq)} {v} for singular parameter applications
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It is convenient now to examine the possibility of having sensitive right and left singular
vectors. Actualy, the possibility of having sensitive singular vectorsis usually dismissed
in a routine sengitivity analysis and the author found it to be a quite an important matter.
Consider equation (4.74) as* :

(Av] (v} {v}1[aB{v} yr
Y 2 (v)Ttv) (0,0 @1

s=1 s#r

From equation (4.77) it is clear that a singular vector whose pertinent singular value is
close to a neighbouring singular value is a sensitive singular vector. Sensitive singular
vectors can lead to a sensitive matrix and, as amatter of fact, the reason that matrix [H] in
equation (4.61) is sensitive to noise, in spite of having a small condition number, is that
its singular values are very close to each other. To demonstrate how close the singular
vaues of [H] are, Table 4.2 shows the values with and without noise effect.

G, X 1E-7 0, X 1E-7 O X 1E-8 O, X 1E-8 O X 1E-8

-noise | +noise | - noise | +noise | - noise | +noise | - noise | +noise | - noise | +noise
O; 1816 | 1.789 | 1.710 ] 1.715 | 7.848 | 7.700 | 4.330 | 4.302 | 2.911 | 2.854
Gi/ Ci+ | 1.06 1.04 2.18 2.22 181 1.79 1.487 15

Table 4.2 Singular values of matrix [H]

Asisevident from Table 4.2, the 1st and 2nd singular values are very close to each other
and, also, the 4th and 5th singular values are relatively close. Figs 4.4 to 4.8 show the
sngular vectors of matrix [H] before and after adding 5% noise.

Examining Figs. 4.4 through 4.8, it is evident that variation in 1st and 2nd singular
vectors, which have very close singular values, is much greater than corresponding
variations in other singular vectors.

* Same argument applies to {Au }r with [B] = [AllA]Y
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[48]|CONCLUDING REMARKS

Some formulation and computational aspects of the general identification problem have
been discussed in this chapter. It seems that the nature of the identification problem is
generally ill-posed mainly due to the small amount of available information. The
identification problem may also beill-conditioned which can be due to poor modelling of
the analytical model and/or ill-condition of the matrices which are used to construct the
governing equations and are related to the real structure. Also, it has been argued that the
solution procedureitself can be responsible for poor conditioning of the calculations and,
in this case, using as much data as possible and a proper balancing technique, that the
condition of caculations can be improved.
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In order to reduce the number of unknowns in an identification problem, it is a common
practice to preserve the connectivity pattern of the anaytical model as additional
congtraints. It has been shown that, by preserving connectivity pattern, one may identify
the closest possible analytical model to the real structure, in aleast-squares sense, but it is
not possible to identify the real structure exactly (unless one knows the real connectivity
pattern of the rea structure).

It has also been shown that, even for a noise-free data case, a least-squares formulation is
anecessary part of any identification problem, due to the inevitable incompl eteness of the
data being used

Assuming that the condition of a particular identification calculation is acceptable, most
identification methods (in fact almost all of them) are still very sensitive to measurement
noise. It has been argued here that the sensitive nature of identification calculations is
inherent and this matter will therefore need to be further discussed in the chapters related
to each particular identification technique.

Having discussed the concept of ill-conditioning of a matrix, it has been shown that the
closer the singular values of a matrix are to each other, the more sensitive becomes the
matrix and this is true regardless of the condition number of the matrix.(Note that the
theory essentidly holds for matrices with distinct eigenvalues and thus singular vaues)




CHAPTER (5)

APPLICATION OF AN FRF-BASED DIRECT METHOD TO
THE JOINT IDENTIFICATION PROBLEM.

INTRODUCTION

In the present chapter, the performance of an FRF-based direct identification procedure,
for dealing with the joint identification problem will be examined. Generally speaking,
FRF- based methods are usually preferred to modal-based methods, due to the
advantages associated with them, including;

relative ease in handling the damping problem;

simplicity of FRF-based coupling techniques, especiadly, when a joint is
present;(see chapter 2)

in the case of a pure experimental analysis, there is no need for moda analysis
when using an FRF-based identification method;

having measured FRFs for a limited frequency range, the effect of out-of-range
modes is already reflected in the measured data; and

usualy, the amount of information measured in the frequency domain is large
and this provides the flexibility of selecting proper data points for an
identification analysis.

As mentioned in chapter 3, the FRF-based direct method was originally developed by
Lin* [27] for model updating applications and locating non-linearities in structures and
here the method will be modified to make it suitable for joint identification applications.

* The same technique is used in [13] & [14)fov Joiwm 1dent;fiCaTion
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[5.2] GENERAL FORMULATION

5.2.1 FORMULATION OF THE FRF-BASED DIRECT METHOD

Consider the following mathematical identity,[27]:
[[A]+[B]] 1= [A] L [[A)+(B]]-![B](A]! (5.1)

where[A] and [B] are general matrices satisfying the condition that both [A] and [A+B]
are nonsingular.

Designating suffices a and x to the analytical and experimental models of the structure,
respectively, and assuming that [A] and [A+B] in equation (5.1) are the impedances of
the analytical and experimental models of structure, respectively, one has.

[Z ()] 1= [Z,(@)]!- [Z ()] [Z () - Z,(@)][Z,(@)]! (5.2)
or, from (5.2)

[Hy(m)] - [H,(w)] = [H, ()] [AZ(w)] [H,(w)] (5.3)
where [AZ(w)] is the impedance error matrix defined as

[AZ()] = [Z, ()] - [Z,(w)].

Although equation (5.3) is quite general, due to incompatibility between dimensions of
[H,(0)] and [AZ(0)] caused by coordinate incompleteness of measured data, it is
difficult to use equation (5.3) for general identification and model updating problems (see
chapter 3). On the other hand, if one can localize the error between the two models, then
the dimension of [AZ(0)] can be reduced and the “incompatibility of dimensions’

problem, stated above, does not exsist. Thus, from an implementation point of view,
equation (5.3) is very suitable for joint identification applications as the source of the
error between two modelsis localized to the interfaces.
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5.2.2 MODIFYING EQUATION (5.3) TO MAKE IT SUITABLE FOR
JOINT IDENTIFICATION APPLICATIONS

Assuming that a real structure consists of a number of substructures and, furthermore,
that the difference between two models A and X, [AZ], is concentrated at the interfaces

between the substructures, equation (5.3) can be rewritten as follows:

[aHPs (Al | [ HSE | ][ 1o) (o7 | (IS (HE
= o o (5.4)
[AH]IS [AH]H (1% (11} JL (01 (aZ) JL (H1S (H))

Equation (5.4) can be resolved into 4 sub-matrix equations from which the following is
selected as the most suitable for joint identification:

[AH(0)]* = [H(@)] [AZ(w)][H(w)] (5.5)
In the following section, the reason for choosing equation (5.5) out of the 4 possible

equations derivable from (5.4), and the practical difficulties associated with equation
(5.5), are discussed.

[SBPIFFICULTIES ASSOCIATED WITH USING EQUATION (5.5)

Refering back to the equation (5.4), the four equations deducible from this equation are:

[AH()] = [H(@)I$ [AZ(@)][H(@)]S (@)
[AH(w)]* = [H(@)]¥ [AZ(w)] [H(@)]4 (b)
[AH(w)]' = [H(®)]2 [AZ(@))[H(@)] ©
[AH(@)) = [H(w)]2 [AZ(@)][H(@)] (d) (5.6)

Of these, (¢) and (d) are not suitable due to the presence of [H(o))];i on the r.h.s of the
equations which, in most cases, is very difficult to measure. Having defined ng and n; as
the numbers of slave and interface coordinates, respectively, the reason for choosing
equation (@) in (5.6) is that by transforming this equation to a set of algebraic equations,
one obtains ngxng equations for each frequency, while the corresponding number of
equations achievable from (b) equas to nyxn;. Now, while the number of interface
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coordinates, n,, is constant, one can increase the number of slave coordinates as much as
possible and, having ng>n;, equation (a) always yields a larger number of algebraic

equations.

On the other hand, as discussed in chapter 4, the maximum number of independent
equations at each frequency point is constant and equal to n;xn,, regardless of the number
of equations achievable from equation (5.5). Thus, it seems that for the noise-free case,
equation (5.6.a), or (5.5), does not have any advantage over equation (5.6.b) (because
the numbers of independent equations are identical in the two cases). However, if
measurement noise is present in the caculations, the agebraic equations achievable either
from (5.5) or from (5.6.b) become inconsistent and it is better to use equation (5.5) in
this case asit provides more equations (and thus more information).

The question which may arise here is “what is lost by using only one possible equation,
out of the 4 available in equation (5.6)?". The answer to this question is that,
gualitatively, there is no difference between the 4 equations in (5.6) and, indeed, the
effects of the joints are reflected on the Lh.s of each of them but, quantitatively, the
effects of joints may be reflected more significantly in one than the others. From this
point of view, it is case-dependent and difficult to decide which equation is superior.

Having chosen equation (5.5) for joint identification, there are 2 problems associated
with using this equation, as follows:

(@)-  the elements of matrix [H(co)]s;(i on the r.h.s of equation (5.5) are difficult, if not
impossible, to measure; and

(b)- if thejoint is tiff in some directions, then the columns (or rows) of [H((o)]f(i

related to those directions will be linearly dependent, or almost linearly
dependent, which deteriorates the results.

[S4BOLUTION TECHNIQUES FOR EQUATION (5.5) AND THE
EFFECT OF VARIOUS PARAMETERS ON RESULTS

As equation (5.5) is frequency-dependent, it can be solved by one of two different
techniques, as follows:

solution technique 1- solving matrix equation (5.5) at each individual frequency over
the frequency range of interest; or
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solution technique 2- transforming equation (5.5) into a set of agebraic equations
and then combining the equations from different frequencies together and solving them
simultaneoudly as a “least-squares’ problem. In this case, equation (5.5) becomes:

{AK}
(P14 (M)  ={q} (5.7)

{AD}

Asisevident from equation (5.7), [AZ] has been decomposed to its constituent variables
and [AK],[AM],[AD] are explicitly present in the governing equation (5.7).

If the first technique is used for solving equation (5.5), then in order to be able to have
meaningful inversions of [H]* and [H], the following inequality must be satisfied:

ng 2 ni (5.8)

As explained in section (5.3), the bigger ng is, the more accurate becomes the result, in
cases where noise is involved in the data.

If the second technique is applied, it is not necessary to satisfy (5.8) provided that

sufficient frequency points are used in setting up equation (5.7). It should be noted that,
again, the bigger ng is, the more accurate becomes the result.

One other important issue in the identification procedure based on equation (5.5) is the
method used for setting up the analytical model. In practice, depending on the type of
approach, there are 2 ways of congtructing an anaytical modd, as follows:

(@) - if the analysisis based on the application of purely experimental data, i.e. if no
FE model is used, then the analytical model can be set up by coupling the
constituent substructures of the real structure through atria joint model, using
their experimentd FRFs (modd A-C);

() - if ahybrid approach is used, some of the data related to model X are derived
from experiment and the rest related to the analytical model are generated using
the finite element models of the substructures, again coupled to each other
through atrial joint model using the spatial model of substructures and the trial
joint
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In the case of using approach (@), there is a coupling process necessary to set up the
model A-C.

The trial joint model, which is used to set up the analytical model, can be considered to
be either damped or undamped*. If a damped trial model is used for the joint, then it is
necessary to use a prescribed damping mode for the trid joint. Since joint elements show
different damping mechanisms for different frequency ranges (usually hysteretic damping
isdominant at lower to moderate frequencies and viscous damping is more appropriate at
higher frequencies), the prescribed damping model can be a combination of both
hysteretic and viscous damping and, at least theoretically, the result will show which
damping mechanism is dominant within a particular frequency range.

It should be noted that the configurational model of the trial joint is dictated by the
interface coordinates of the rea structure.

[S5CASE STUDIES

To study the performance of the solution based on equation (5.5) and to examine its
sensitivity to measurement noise, a series of case studies have been undertaken.

The test structures for al case studies are shown in Fig. 5.1

Joint

5 6 Structure X

Structure A-C

Fig. 5.1 Models of real & analytical structures

Structure X, which simulates the real (i.e. experimental) structure, is a 6-element FE
model of afree-free beam where element 4 is designated as the joint element. In order to
be able to simulate practice as closely as possible, only trandational slave coordinates are

* Note that since equation (5.5) is based on a direct identification approach, at least for the present
aPPLication (e T ot Ldem@Catidn ) Theve s o Limit aron 50 The WADI
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considered in the calculations and, thus, the numbers of slave coordinates, n, and of
interface coordinates, n;, for all case studies are equal to 5 and 4, respectively.

The base element of structure X has the geometrical and mechanical properties shown in
Fig.3.2.

The joint element of the read structure has the following properties.

Lix=100%Le . Ejx= 1000% Eq, pjx=10%p (5.10)

Thus, the joint element is 10 times stiffer and 10 times lighter than the base element.

The specification in equation (5.10) yields the following mass and stiffness matrices for
the real joint (i.e. experimental) model:

.05 .0021 .01746 -.00126
.000 11.00126 -.000087

M]. =
] 05 -.0021
.00011
*6440000 966000 -6440000 966000
193200 -966000 96600
[K].. = (5.11)
ix 6440000 -966000
193200

Structure A-C, which simulates the analytical model of the structure, is also a 6-element
FE modd of a free-free beam with element 4 again representing the joint. The geometrical
and mechanica properties of the base element of model A-C are exactly the same as those
of X (shownin Fig. 3.2.), except for element 4 which represents the trial joint. Since the
process of coupling may induce more errors into the calculations, so, in al the case
studies, we will simulate approach (a) of section 5.4, i.e. model A-C is set up by
coupling substructures through atrial joint, using substructures’ FRFs.

5.5.1 CASE STUDIES USING SOLUTION TECHNIQUE 1

In this series of case studies, equation (5.5) will be solved as a matrix equation and at
each individua fregquency.



Application of FRF-Based Direct Method . . . . . 97

CASE STUDY 1

Fig. 5.2 shows typical results for the joint identified using equation (5.5). The trial joint
for this case study (and subsequent case studies unless otherwise stated) has the
following specifications:

Lit=Ljx - Ejt=50%Ejx . pj=50%pjy (5.12)

which yields the following mass and stiffness matrices

=.025 .00105 .00873 -.00063
.000055 .00063 -.0000435

-
My 025  -.00105
- .000055
-3220000 483000 -3220000 483000
96600 -483000 48300
K]t = (5.13)
] 3220000 -483000
96600

As Fig. 5.2 shows, the results are satisfactory over whole range of frequency of interest.

To examine the performance of equation (5.5) in the presence of measurement noise,
“5% random noise’* has been added to both real and imaginary parts of al FRFs
involved in the calculations.

* The n% random noise effect has been simulated using random number generator command RND as
follows

e; =/ 100)X(RND)X(Hij)x((-l)aNT(RND)Xlo))

where RND generates random numbers between 0 and 1 and INT command is used to take integer part of a
real number. & isthe error added to Hij' Note that &; is calculated separatly for real and imaginary parts

AU and alan ite cian ic rhAancan randamisy
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150
z
3
120 1z00.00 ° Fr;quency |_‘|Z. ''1000.00
Fig. 5.2 Typica result of identified joint impedance using solution
technique 1

Typical results of the analysis, with noise, are shown in Fig 5.3 . Examining Fig 5.3, it
Is evident that the results are very poor and thus this method is very sensitive to noise.

ccy

(dB

ﬁ\f\»w/\/m“ﬁ‘ww N

[ 1 1 1
Frequency Hz.

N RIMPI(
)

[

500.00 1000.0~

Fig. 5.3 Typical result of identified joint impedance with 5% noise and
using solution techniaue 1. correct vaue

As discussed in section 4.2.2.2, the reason for this high sensitivity to noise lies in the
nature of the identification problem and is not a computational issue. For example,
having defined [E] as the noise effect matrix, equation (5.3) can be rewritten :(for the
sake of simplicity, it has been assumed that matrices [H,] and [H,] on the r.h.s of

equation (5.3) are not affected by noise) as.
[HJ1[H, - H, + E] [H,]"' = [AZ] ==>[H]{AH][H,]"! + [H ] [E][H]! = [AZ]

The first term on the Lh.s of the above equation yields the correct value for [AZ] and,
physicaly, this term contains the receptance difference matrix, [AH], resulting from the
effect of mass and stiffness errors between models X and A. Now, if the effect of large
variations in some of the mass and/or stiffness elements of the structure is insignificant
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on its response, then small changesin [AH] due to noise in [H,] will cause very marked
changes, in the identified [AZ] which, in this case, the effect of second term on ther.h.s
of above equation has dominated the effect of the first term.

So, for joint identification applications, if the joint in the real structure is stiff enough
(even if in some directions), very large variations in joint stiffness will cause insgnificant
changes in structural response, so that 1000% variation in joint stiffness may cause only
a 1% variation in the eigenvalues. This means that, when solving the inverse problem,
very small variations in system response may cause very remarkable changes in identified
joint parameters. The nature of this type of inherent sensitivity to noise will be further
examined in chapter 9.

Thus, generally speaking, the FRF-based method based on equation (5.5) is not as
efficient usng solution technique 1. In what follows the application of solution technique
2 to the joint identification problem will be examined.

5.5.2 CASE STUDIES USING SOLUTION TECHNIQUE 2

In this section we shall examine the application of solution technique 2, i.e. transforming
eguation (5.5) to a set of linear algebraic equations by separating joint mass and stiffness
parameters in [AZ] and then, combining the set of equations relating to different
frequencies together, solving the resulting over-determined set of algebraic equations
using a least-squares method.

Having assumed a random distribution for the measurement noise, its effect on each
equation will be averaged out by adding the equations for different frequencies together
and, thus, areduced sensitivity to noise is expected. (Note that as explained in chapter 4,
random noise effects can theoretically be eliminated completely if one can add an
infinite number of independent equations together.)

5.5.2.1 COMPUTATIONAL ASPECTS OF SOLUTION TECHNIQUE 2
As mentioned before, using solution technique 2, the following two steps are necessary:

@) - transforming matrix equation (5.5) into a set of algebraic equations at each
frequency o.; and

o) - separating the mass and stiffness (and damping) parameters in [AZ]
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Computational problems caused by the above steps have been discussed in chapter 4 (see
section 4.4).

Considering matrix [AZ(0)] as.
[AZ(0)] = [AK] - [AM]w? + i [AD] (5.14)

equation (5.5) can be transformed into a set of algebraic equations for each frequency ®,
and having imposed a symmetry congraint on [AK],[AM] and [AD], one obtains.

{AK}

[C(m)](nSXnS)X3/2(ni(ni+1)) {AM} 32(ni(ni+ 1)1 ={L(w) }(nsxn Ix1 (5.15)

{AD})

where the matrix [C(0)] is partitioned as follows:

elements elements elements
related to related to related to
{aAK} {aM} {aC}
n(n+1)/2 n(n+1)/2 n(n+1)/2
i i i { I

(5.16)

Each element Cpq related to Akij can be calculated from the following equation (assuming
symmetry):

C((t-Dxng+g , G-Dx(ny- ir2)+)) = hy (8,1) x h,(,g) + h, (t,j) xh,(1.8)
hj= 1. noandj>i ot g= o ng (5.17)
Ifi=jthen

C((t-Dxngtg , G-Dx(y- #2)+) = hy (4,1) x b, (G,8) (5.18)
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Having combined equations (5.15) for each of nf frequency points together, let us set up

the fina over-determined set of equations as follows:
{AK} )

[P](nansxnf)x3/2(ni(ni+1)) {AM} >3 2(mi(ni+ 1)1 = {q}(nSXnSan)Xl (5.19)

{AD} J

Using the normal equation technique (explained in section 4.3) to solve the least-squares
problem defined in equation (5.19), one obtains the following determined set of
equations.

{AK} )

[S14 {AM} ¢ ={Q} (5.20)

{AD} J
The number of the unknowns in equation (5.20) depends on the type of the model which
isassumed for the joint, as described in section 4.4.3.

Here, one of the following modes will be used for the joint:

joint model 1- in which a “beam element type” joint model is used. The number of
unknowns for this case is equal to 6 (3 unknowns for mass and 3 unknowns for
stiffness, see equation (4.58)).

joint model 2- general joint model which does not assume any relationship between the
degrees of freedom involved in interfacing. The number of unknowns for this case is
equa to 20 (see equation (4.60)).

5.5.2.2 EFFECT OF NATURAL FREQUENCIES OF TEST
STRUCTURES ON CALCULATIONS

It is convenient at this stage to examine the effect of the natural frequencies of models X

and A-C on the calculations. As explained in sec. 4.4, if any of the matrices involved in
the r.h.s of equation (5.5), i.e. [H]}, and [H]}, are ill-conditioned, then according to

following inequality:
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« ([AL[B]) £ min (x([A] or [B]) (5.21)

the coefficient matrix [C(0)] in equation (5.15) will be ill-conditioned, leading to an ill-

conditioned matrix [P] in equation (5.19). Now, at natural frequencies of the real
structure model X and the analytical model A-C, the matrices [H]}' and [H]Y,

respectively become ill-conditioned and this will affect the result of solving equation
(5.19) using a least-sguares technique.

CASE STUDY 2

To illustrate the above-mentioned problem, equation (5.19) has been solved using the
normal equation technique leading to equation (5.20), for the, (a)-500 - 1000 Hz, (b)-
405-981 Hz and (c)-549-981 Hz frequency ranges and with 100 Hz, 144 Hz and 72 Hz
frequency increment steps, respectively.

Considering the natural frequencies of structures X and A-C within the 400-1000 Hz
frequency range shown in Table 5.1, it is clear that 2 out of the 4 frequency points used
in the joint identification in case (b) coincide with natura frequencies of the structure X.

Also, for case (c), 2 out of the 6 frequency points coincide with natural frequencies of
structure X, but, for this case the frequency points within the following band are

excluded from the cdculations:

@, - 60 (rad/s)< @; <, + 60 (rad/s)

which leaves 4 non-coincident frequency points in the calculations.

Natural Fregs fg Hz fg H= fio H
Structure x 549 693 981
Structure A 546 688 974

Table 5.1. Natural frequencies of test structures in the range of interest.

Table 5.2 shows the errors in typical parameters of identified joint parameters for the
different cases.

Examining Table 5.2 the following conclusions can be drawn from this case study:
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(a) - using frequencies close to or equal to the natural frequencies of the structures
involved in caculations deteriorates the results;
(b)-  error values for mass parameters are larger than those for stiffness and this is

especidly true for rotary inertia

Trans K CrossK | Rotay K | Trans M | Cross M | Rotary M
Error% Error % Error % Error % Error % Error %
Casea | 1point close 2.2 19 05 16 2.8 13.7
to resonance.
Caseb 2 points 1200 1300 1500 6700 22700 60000
coincide
Casec | no close or .01 022 .017 013 .02 .04
coincid.points

Table 5.2 Typical error percentagesin identified joint parameters for three cases.(a), (b)
and (¢

5.5.2.3 SENSITIVITY ANALYSIS

In this section, the effect of measurement noise on the results will be examined.
M easurement noise has been simulated by introducing 5% random error, proportional to
the receptances of the test structures. The test structures and real and trid joint models are
similar to those in Figs. 5.1 and 5.2 and expressions (5.10), (5.11), (5.12) and (5.13).

Before starting to discuss the case studies, it is convenient at this stage to explain the
technigue which has been used to solve equation (5.20). Consider equation (5.20) again:

{AK}
[S] ={Q} (5.20)
{AM}

where, for the sake of simplicity, damping has been neglected.

Partitioning matrix [S] in (5.20) one obtains:

[S11] [S4)l {AK} {Q}
[ ] i { 522

[S21] [Spp) 1 U {AM) {Qa}
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After some matrix manipulation, the unknown vectors { AM } and { AK} can be calculated
from following equations:

([S95] - [S9] [Su]'l [Si2] M{AM} ={Q,} - [Sy] [Su]'l{Ql} (5.23)
and
{AK} = [S”]'l( {Q,}-[S;,] {AM}) (5.24)

So, the vector {Q,}-[S,] [Sll]'1 {Q,} onther.h.s of equation (5.23) can be shown as
the contribution of joint mass to difference matrix [AH].

Note that solving equations (5.23) and (5.24) offers no advantage over solving equation
(5.20) directly, i.e. direct inversion of [S], but, as will be shown shortly, partitioning the
matrix [S] and solving equations (5.23) and (5.24) will make it easier to find an
explanation for the high sensitivity of equation (5.20) to noise and to fiid ways of coping
with this high sensitivity.

CASE STUDY 3
In this case study, equations (5.23) and (5.24) have been solved within the frequency

range of 100-1000 Hz and with 5 Hz frequency increment steps. The results of this
analysis are shown in expressions (5.25), (5.26).

-.0062(5000%) .0125 .0047

M]. =
] 036 -.0212
-36(614%) .021(890%) -.123 _GYe3
" -2.12E7(2300 %) -3E6(210%) 2.12E7 - 3E 6
-571611(200%) 3E6 -285805
[K]. = (5.25)
j -2.12E7 3E6
571611
*5.265E6(18%) 783703(19%) -5.265E6 783703
; 157812(18%) -783703 78906
[K]. = (5.26)
] 5.265E6 -783703

157812
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As expression (5.25) indicates, the results of solving equations (5.23) and (5.24) are

very poor. On the other hand, the joint mean stiffness matrix [K]j in expression (5.26) is

satisfactory. The mean stiffness matrix in expression (5.26) has been calculated from
equation (5.24) by ignoring the mass in the calculations, using following equation:

(AK}; = (S, Q) (5.27)

The better results for calculations without mass indicate the very small
effect of the joint mass in the calculations (at least in some directions*)
which can easily become polluted by measurement noise.

Having scanned the 100-1000 Hz frequency range, the above results, i.e. significantly

better results for [K]j compared to [K]j and the deteriorating effects of joint mass on the

results when noise is present, are confirmed.

It should be noted that for al case studies the largest error in the results is always
associated with rotary inertia and this implies the insignificant effect of this parameter on
the structure’ s response.

5.5.2.4 EFFECT OF FREQUENCY ELIMINATION BAND WIDTH

It was shown in case study 2 that avoidance of the natural frequencies of the test
structures can significantly improve the results for the noise-free case. In this section, the
effects of the natural frequencies, and the effect of eiminating them from the calculations,
on the results will be investigated for the with-noise case.

CASE STUDY 4

In this case study, the analysis within the 500-1000 Hz range will be repeated for 5

cases. In the first case there is no frequency elimination and for the rest of the cases the
bandwidths of elimination around resonance frequency , are asfollows:

o, - 10 (d1s) <@; <0, + 10 (rad/s) (a)

* Aswill be shown in later chapters, the structure’ s response is insensitive to variations in joint rotary
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@, - 20 (rad/s) < w; c @, + 20 (rad/s) (b)
o, - 30 (rad/s)<w; <.+ 30 (rad/s) ()
o, - 60 (rad/s) < @; < @, + 60 (rad/s) (d)

Fig. 5.4 shows the variation of atypical element, say k(l,), of stiffness and mean
diffness matrices versus frequency eimination bandwidth.

4.00e+7 1.00e+7
T correct value -
3.006+7 4 [ 9.00e+6 .
g ) - 8.006+6 >
Z.  2.00e+7 - L
= 1 - 7.00e+6 _
— 1.00e+7 A =
~— 4 - 6.00e+6 :
~ - -
0.00e+0 - 5.00e+6
I correct value |
1.00e+7 | 4.00e+6

' f f - f f
0 20 40 60 80 100 120
Elimination band width rad/s

—= k(1,1)
Fig. 5.4 Variation of typical elements of [K] ——e— k1,1
& [Kk] with eimination band width

Examining Fig. 5.4 reveas that for low to moderate elimination bandwidths, say up to

40 rad/s, frequency elimination improves the results for both [K]j and [I-(]j and

increasing the elimination bandwidth beyond a certain limit, i.e. excluding al resonances
and high level responses from calculations, will reduce the level of responses of
structures involved in the calculation and thus the effect of structures in the calculations
will be similar to very stiff structures with high-frequency resonances and this will result
in over-estimation of stiffness values (as figure 5.4 indicates).

Considering Fig. 5.4 and the above deductions, it seems that it is possible to have a
reasonably accurate estimation for stiffness (and damping if it is hysteretic). This can be
achieved by repeating the calculations within the different frequency ranges and, for each
frequency range, with different elimination bandwidth and then calculating a mean of the
(mean dtiffness matrix), using statistical techniques.
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5.5.2.5 EFFECT OF
-ANALYSIS

INCREASING FREQUENCY RANGE OF

CASE STUDY 5

The main purpose of performing this case study is to examine the effect of a higher
frequency range on the results and to find out why, in spite of increasing frequency range
and consequently increased mass effect, the results for the mass and stiffness matrices of
the joint are ill poor.

The test structures and real and trial joint models are similar to those in previous case
studies and are shown in Figs. 5.1 and 5.2 and expressions (5. 10), (5.11), (5.12) and
(5.13). The noise effect is again simulated by a 5% random noise added to the
receptances of the test structures.

Calculations have been performed for the two frequency ranges of 500-1040 Hz and
1500-2040 Hz with 90 Hz frequency increments in both cases. Table 5.3 shows the
order of magnitude of typical elements of the coefficient matrices involved in equations
(5.20), (5.23) and (5.24) for with- and without- noise cases. Note that frequency ranges
and increments have been chosen in such away that no resonance frequency coincidence
occursin either case.

Typical v. without noise Typical error %
500-1040 | 1500-2040 | 500-1040 | 1500-2040
[S] of equation (20) O(E-10) O(E-13) 0(5) 0(600)
[Sy,] - [Sy] [Sn]’1 [Sip] | O(E-16) O(E-17) 0(50) 0(70)
{Q} O(E-11) O(E-13) 0(25) O(500)
(Q} - IS, [S;77HQ} | o@-17) O(E-16) 0O(800) 0(800)

Table 5.3. Typica vaues related to coefficient matrices in
equations (5.20), (5.23) and (5.24)

It is evident from typical without-noise values in Table 5.3 that by increasing the
frequency range, the mass effect in calculations reflected in vector {Qy}-[S51[S¢;]

l{Ql} has been increased (note that vector { Q} in the r.h.s of equation (5.20) has been
generated from vector {AH} on the Lh.s of equation (5.5)).

On the other hand, a higher frequency range has reduced the order of magnitude of the
elements of the coefficient matrices. In other words. increasing the freauencv range of



B] Application of FRF-Based Direct Method . . . . . 108

analysis will reduce the norm of the coefficient matrices involved in calculations. This
small order of magnitude can make (real value/noise effect) ratio very small which in turn
causes poor results.

The above-mentioned observation yields this result that “increasing the frequency range
of the caculations does not yield better results, although it increases the mass effect in the
calculation”.

Table 5.3 also reveals the very large value of error in vector {Q,}-[S,] [S“]'l{ Q }for

the with-noise case. As this vector represents the contribution of joint mass to difference
matrix [AH], this large error indicates the insignificance of joint mass contribution to
[AH].

[5.6] CONCLUSIONS AND REMARKS.

From what has been presented in this chapter, the following conclusions can be drawn:

@) - there are two drawbacks associated with using the FRF-based direct method for
joint identification, namely:

(i)- it is necessary to measure transfer FRFs between the interface and Slave
coordinates, and this may be difficult, if not impossible, in practice; and

(ii)- to set up the analyticd model, or the anaytically-coupled structura mode, a
coupling process is necessary which may induce extra errors to the identified
joint;

(b) - using the individual frequency points solution technique, i.e. technique 1 in sec.
5.4, equation (5.5) yields satisfactory results for cases without noise. If noise is
introduced into the caculations, equation (5.5) fals to give sensible results;

© - transforming matrix equation (5.5) to a set of algebraic equations, and using a
least-squares technigque, one should be careful about the rank and condition of
the over-determined set of algebraic equations. Unless sufficient frequency
points are used, the coefficient matrix in equation (5.19) will be ill-conditioned;

) - for the with-noise case, the mean stiffness matrix is a reasonabl e approximation

to the real stiffness matrix. The satisfactory result for the mean stiffness matrix
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e

® -

means that the effect of mass in the calculations is insignificant and thus can
easily be affected by noise and this, in turn, will affect the stiffness matrix (see
equations 5.23 and 5.24 and Table 5.3);

the accuracy of the mean stiffness matrix as well as the mass and tiffness
matrices depends significantly on the frequency elimination bandwidth used in
the calculations;

to have a sensible approximation to the stiffness (and damping) matrix of ajoint
for the with-noise case, the best way is to perform calculations within the
different frequency ranges and, for each range, with a different elimination
bandwidth. Having calculated mean stiffness matrices for each case, and using
satistical techniques, one can calculate a mean of the (mean stiffness matrix).




CHAPTER

A NEW MODAL-BASED DIRECT IDENTIFICATION
METHOD FOR JOINT IDENTIFICATION & MODEL
UPDATING

INTRODUCTION

6.1.1 THE NEED FOR A NEW JOINT IDENTIFICATION AND MODEL
UPDATING METHOD

Model updating and joint identification methods have been categorized in chapters 1 and
3. As discussed in these chapters, due to certain similarities between the mathematical
techniques used in joint identification and model updating (chapter 3), one can use almost
the same classification for both fields. The usefulness of the classification of joint
identification methods is due to the fact that, following this classfication, one can identify
the areas which have not yet been fully discussed or explored.

The classification proposed in chapter 1 is shown in more detail in Fig. 6.1, where it can
be seen that the various techniques used for formulating the relationship between cause
(i.e. the missmodeled elements or joint(s)) and effect (the differences between two
consistent models of the structure) are broadly divided into two groups: perturbation- (or
sensitivity)-based and direct methods. As mentioned in chapter 3, a sort of nt? order
approximation has been used in the former group to formulate the cause and effect
relationship while in the latter group no approximation is involved in the formulation. It
should be noted that the classification in Fig.6.1 is based on the mathematical basis of the
derivation only: no computational considerations are involved at this stage.

Examination of Fig.6.1 reveals that there are at least two areas which have not yet been
investigated, i.e. spatial-based and modal-based direct methods. Thus, it is necessary to
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study these areas and to explore their performance. In the present chapter the modal-based
method will be studied.

CLASSIFICATION TABLE FOR ADAPTIVE IDENTIFICATION
TECHNIQUE ( MODEL UPDATING & JOINT IDENTIFICATION
METHODS)

|CAUSE & EFFECT FORMULATION

PERTURBATION
BASED METHODS DIRECT METHOD

SPATIAL-BASED
EMM SPATIAL-BASED

MODAL BASED ?

INV. EIG. SENS.

MODAL-BASED
l"
FRF-BASED
RECEPTANCE SEN.

FRF-BASED
LIN'S METHO

Fig.6.1 Classfication of joint identification & model updating
methods.

The modal-based direct method, as the author calls the new method, is described below
and will be seen to be a natura extension of the component mode synthesis method
[17,19,20]. Using the same concept as for component mode synthesis and solving the
inverse problem, one should be able to identify unknown (or mis-modeled) elements.
Formulation of the method is based on the free interface component mode synthesis
method and, in what follows, the general formulation of the method which is applicable
to model updating and structural modification will be presented first followed by
gpplication of the method to the joint identification problem.

[62]5ENERAL FORMULATION OF MODAL-BASED DIRECT METHOD
APPLICABLE TO MODEL UPDATING

We shdl use the following definitions.

X = exact (i.e. experimental and updated analytical, FE) model of a structure which
exhibits the dynamic properties observed in ted;
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A =origina (i.e. before updating) analytical model;
E = structura modification(s) added to model A to update it to model X

Considering complete coordinate interfacing between A and E, the equation of motion for
model A can be written as.

MI{x,} + [K]{x,} = {F} 6.1)
where {T} contains the reaction forces at the interface coordinates.

Considering the coordinate transformation from physical coordinates to principal
coordinates {p, }, and separating the n, modes into kept (k) and eliminated (€) categories,

one has:

{Px}
{xa} =10, 1{pa} =[9 0c ] (6.2)

(Poc) |

Using (6.2) and taking advantage of the orthogonality relationships between the
eigenvectors and the mass and stiffness matrices, equation (6.1) can be rewritten as

follows:
{i;ak}+[mai]{pak}=[¢ak]T{T} (6.3)
(Pa) + [ ©2 Hpge} = [ 00 17(F) 6.4)

Assuming that the smallest (oae is much larger than the maximum frequency which is of

interest, i.e. coae» ®max of investigation * the inertia effects of higher modes will become

much smaller than their contribution to the flexibility of the structure and, thus, one can
ignore the inertia term in equation (6.4) so that this equation can be written as:

[ @2 Hpge) [ 0,1 () (6.5)
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[ @2 Hpye) [ 0,1 () (6.5)
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Equation (6.5) reflects the fist-order (static) approximation to the contribution of the
higher eliminated modes to the flexibility of the structure [36] (usually referred to as the
“residua” effect)

The response model of structure E can now be expressed as
[Zg] (x,) =-{T) (6.6)

noting that the compatibility and equilibrium conditions have dready been imposed on the
response model of E in equation (6.6).

Using equation (6.2), equation (6.6) can be written as:

(P}
L (6.7)

£} =1Zg] [ 0gc 1 Ope ]
{pae}J

Calculating { p, } from equation (6.5) and substituting it into equation (6.7), one obtains:
1+ (Zg (00021 101 14T} = [Z51[0,1{Pyy) (6.8)

The term [¢, e][m;]'l[%e]T on the L.h.s of equation (6.8) represents the contribution of
the higher modes to the flexibility matrix and can be cadculated as follows:.

Ky =030 (021 050" +pell02]" [0 (6.9)

teading 10 [91[02 1" 1056 =K, - [0 (021" 100"
=[R,] (6.10)

Designating [Ra] to the Lh.s of equation (6.10) reflects the fact that, as mentioned before,
the term [¢ae][m:e]'l[¢ae]T represents the residual flexibility due to the higher modes

which, in the case of purely experimental applications, can be determined from the
measured FRFs of structure A.

Substituting for [q)a‘,,][oo:e]'1[<|>ae]T from equation (6.10) in equation(6.8) yields:

(F} =- [ 1+ [ZgIR,) T [Zglo (P} (6.11)
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Substituting { '} from equation (6.11) into equation (6.3), and after some algebraic
manipulation, one has:

A (a4 L1021+ (041" CH, + Ry 1051 1{p,}=0 (6.12)

where in equations (6.11) and (6.12) [Zg] and [Hg] are structure E impedance and
receptance matrices, respectively.

Equation (6.12) is the main formula for this part of the analysis. Theoretically, having

measured the modal parameters of a real structure X, and having calculated the modal
parameters of analytical model A, one should be able to calculate [Hg] or [Zg] from

equation (6.12), yielding the mass and stiffness correction matrices necessary to update
the FE model A. It should be noted that [Hg] in equation (6.12) is frequency-dependent

and that solving equation (6.12) using the ' mode's modal parameters yields [Hg] at
w? = A, » 1.€. at the resonant frequency of the updated structure. So, equation (6.12) is

not a standard eigenvalue problem in its present form.

6.2.1 SOLUTION PROCEDURE FOR EQUATION (6.12) HAVING
COMPLETE COORDINATES MEASURED

The solution procedure will be as follows.

Assume that n, and m, are the numbers of measured coordinates and modes of model X,
respectively. Also, that na and k are the numbers of coordinates and kept modal
parameters of model A, respectively. The vector { p,} for mode r can be calculated using

the measured modal vector of mode r and the transformation in equation (6.2), as
follows:

{¢xr}nxxl =[x ]nxxk {Pxrhyxy  Wherer=L, 2. m, (6.13)

andn 2k

Having calculated { py. }, . ; for mode r and put it in equation (6.12), one has:
([0 g + Ryl (0] (Pye) =g (P} - [021 (D) (6.14)

or, letting [HE + R,]" = [A],
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[ (Oaiitng AT g Daknotc 1 Pxebins = e (Par} - [021 (P (6.15)

Transforming matrix equation (6.15) into a set of algebraic equations with elements ay; of
[A] as unknowns gives k equations with n,(n,+1)/2 unknowns (assuming a symmetric

[A]). In the case where a complete set of coordinates and modes of model A are involved
in the analysis, the total number of equations will be k=n, and thus the number of

equations will be less than that of unknowns. To prevent the construction of an under-
determined set of equations, it is possible to combine k (=n,) equations like (6.15) for

each mode r together and thus to increase the number of equations. To be able to do this,
since [Hg] is frequency-dependent, one has to write equation (6.14) as follows (note that

for the case of complete modes and coordinates [R,] = 0):

[ Waidionng (KTE - IMIED, o [0kl e ] P bt = e (P} - 102 )

(6.16)
or
{Kg}
[COD]n xng(ng+ 1) (Mg} [na(na+Dx1 = (L) p 1 (6.17)
. . . . . [ {Kg}
where equation (6.17) is the algebraic version of equation (6.16) with (Me) as the
E

vector of unknowns. Now, it is possible to put up to n, sets of equations like (6.17)
together (one for each mode) and in doing this one will have up to ng equations

(depending upon how many modes are used). On the other hand, separation of the mass
and stiffness variables in equation (6.16) increases the number of unknowns to n, (n,+1).
Thus, athough the number of equations has been increased, the set of equations is till
under-determined. This means that this method is not applicable to cases where structure
E has a general form and some restriction must be imposed on the mis-modelled
coordinates to reduce the number of unknowns.

One restriction which can be imposed on E is preservation of the connectivity of the
analytical model. This restriction is not only convenient but is necessary, too. Having
imposed a connectivity restriction, the numbers of unknowns for [K]g and [M]g are
assumed to be equal to p and g, respectively. Thus the necessary and sufficient condition
for equation (6.17) to be solved uniquely, for the case of complete measured modes and
coordinates, is:

prqinxn, (6.18)
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which is not difficult to satisfy.

6.2.2 SOLUTION PROCEDURE OF EQUATION (6.12) BASED ON
INCOMPLETE MEASURED COORDINATES & MODES

6.2.2.1 SOLUTION PROCEDURE 1, APPROXIMATE SOLUTION

In this section, we will try to deduce the necessary and sufficient conditions under which
the method can be used for updating applications in the case of incomplete measured
modes and coordinates.

The first step in dealing with the case of data incompleteness is to modify equation
(6.14). Assuming that

IR I T << I [HE] I (6.19)

one can ignore [R,] in equation (6.14), thus reducing it to equation (6.16), i.e.

[ [Ouion [KTg - Ay IMIEN, o D0y e 1 (Pycliery = (Prrd - (031 (py}(6:20)

To see the effect of ignoring [R,], expand [H, + Ra]'l as.

[HE+Ra]'1=_.[Z]E-[Z]E[Ra] [Z]g
= [K] - M1 A, - [[K] - IM] A ][R[K]-[M] A ]
= [[K]-[KI[R,](K]] - [(MI-[K][RI[M]-[M][R,][K]]A,, - [M][Ra][MP»,%r
(6.21)

Note that in order to save space the index E for [M] and [K] has been omitted in equation
(6.21).

As is evident from equation (6.21), modification terms to [M] and [K] in this equation
can be neglected, using the lower measured modes (i.e. smaller Ay;) and as many modes

of the analytical model as possible (i.e. very small lI[R ]II).

Generating equation (6.20) for each measured mode, transforming the results into a set of
algebraic equations like equation (6.17) and combining them and then solving them
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{Kg}

. For this case the
{ME}}

simultaneously will produce a solution for unknown vector {

inequality (6.18) has the following form:

praSm xk (6.22)

On the other hand, according to equation (6.13), the following inequality must also be
satisfied:

-
A
=}

(6.23)

Thus, combining (6.22) and (6.23), the single inequality which must be satisfied is
(along with (6.23)).

pqSmxn (6.24)

Since relatively few modes and coordinates can be measured in practice (compared with
an FE model), inequality (6.24) can constitute a serious restriction on the application of
the method. In such cases, where inequality (6.24) cannot be satisfied, there are two
ways of dealing with this shortcoming, as follows:

(a) - to decrease p and g by assuming specific locations for the error(s)
(or by considering macro-elements). In this case, the number of

erroneous degrees of freedom, i.e. the number of degrees of freedom of the
hypothetical structure E, isne and equation (6.2) can be written as:

{x,} [Oaks] [Daes] | [ {Pak}
=[¢,1{p,} = (6.25)

il [9aii) [9aci] | U {Pac

The coordinates of structure A have been divided into those which should be modified
shown with index "i" and with the total number of N, and those which are assumed to be

modelled correctly, shown with index "s" and a total number of ng. In this case,

equations (6.1), (6.3) and (6.4) can be written as:

- (x 0] [(0)
vy ! +[K1{ N }={ } (6.26)
(X, {xy} (T}
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(Par} + [ 02 pg) =1 0 1T(F) (6.27)

(Pac) + [ 02 Upgel =[5 1 () (6.28)

Following the same method as for a case with complete coordinates, equations (6.11) and
(6.12) can berewritten as :

(T} = - [ 1+ [ZglRy] | (25l 0gg ] P} (6.29)
and
e Parhnt +L 102+ Bilone g + Rednerne Baighnexi 1P} =0 (6:30)

where [R,;] in equations (6.29), and (6.30) is defined as follows:
Ry = (0,102 1 10" =Kyl - 10,3021 101" (6.31)

This means that only the coordinates which are modified are involved in the calculation of
[R,]

Assuming, again, that II[R ]Il << I[HE]Il, equation (6.30) reduces to:
Al Prrhoet * [10 2 {05 hcanel (KT - A MIgTnexnel@ailnexic] (Pr} =0 (6:32)

For this case, as before, the solution procedure starts by calculating {py,}y,; from

equation (6.25) as follows:

{¢XIS}nxsx1 = [ Oaxs ]nxsxk {Pxrlx) Wwherer=1,2.... m, (6.33)

Note that although {9,;} and [ ¢,; ] could be used in equation (6.33) to calculate {P,,},
by using the correctly modeled coordinates’ modal parameters in { ¢, .} and [ ¢4 1, one
has the advantage that it is usually easier to measure certain correctly modeled coordinates
than those coordinates which are assumed to be wrongly modelled (for example,
coordinates across a joint). The inequdities which must be satisfied in this case are
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p1+q1§ m, xk

(b) - to increase ng in inequality (6.24) and thereby k. This can be done by
compensating for incompleteness of the measured coordinates by filling the
unmeasured coordinates of the measured eigenvectors with their anaytical
counterparts. Although, for the time being, there is no justification for the
correctness of this compensation, experience shows [27] that if the errorsin the
FE model are not large, then this compensation converges using iteration.

Another more logical way of increasing n, is to expand the measured eigenvectorsto the
unmeasured coordinates using the FE model mass and stiffness matrices as interpolation
and extrapolation matrices [37,38]. It should be noted that the analyticd modal parameters
are unique in the sense that they minimize the potential function (or Rayleigh quotient) of
the model that we have assumed for the structure and so what we get from the expansion
of experimental modal parameters is just an interpolation and does not have any functiona
properties.

6.2.22 THE ROLE OF [R,] IN THE CALCULATION AND ITS EFFECT
ON RESULTS

In cases where incomplete modes are involved in the transformation (6.2), which is
inevitable in practice due to the incompleteness of the measured coordinates, the matrix
[R,] must be introduced into the calculations. This matrix, whose norm, II[R,]Il, depends
on the number of kept modes of the analytical model (k), represents the effect of higher
modes on the flexibility of the anadytical moddl.

On the one hand, neglecting [R,] means that what we introduce to equation (6.12) as the

“analytical model” is stiffer than the real analytical model as defined by its mass and
stiffness matrices. This will result in a more flexible modifying structure E (as is aso
evident from equation (6.12)). On the other hand, incorporating [R,] in the calculations
will cause a problem in efforts to impose the connectivity (which is necessary to reduce
the number of unknowns). It should be noted that using a simplifying assumption in
equation (6.21), one has a problem in imposing connectivity as matrices [K]-[K][R][K]
and [M[R][K]+[K][R][M] do not have any connectivity pattern.

Now, the smaller i[R,]Il'is, the more valid become both approximate equations (6.20) and
(6.32). Thus, in order to be able to apply the method in the case of incomplete modes and
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coordinates while preserving connectivity, one has to increase the number of kept modes
of the analytical model, (k), as much as possible.

The other point which can improve the accuracy of the results is the proper selection of
experimental modes in the Lh.s of equation (6.13). If one assumes that the difference
between the real structure and the analytical model is not very large, then one can
represent the lower modes of thereal structure as alinear combination of arelatively large
number of the lower analytical modes with high accuracy. For example, assume that there
are 10 measured modes for the real structure and 15 kept analytical modes. In this case,
using equation (6.13), the first mode of the real structure can be represented with high
accuracy as alinear combination of the first 15 analytical modes and, as the mode number
of the real structure on the l.h.s of (6.13) increases, the accuracy of this approximation
(in equation (6.13)) decreases. Thus, it is recommended to use as few measured modes
as possiblein equation (6.13).

6.2.2.3 SOLUTION PROCEDURE 2, EXACT SOLUTION

In this section, we shall modify equation (6.12) in order to be able to solve it without any
approximation on [R,] and we shall discuss the shortcomings of this approach.

After some matrix manipulations, equation (6.12) can be rewritten as

T+
o, Ze) (1020, ¢ - Ryl Waidoge AM] (s} = [aidionn, aidgk [AM (D)
(6.34)
where

[AA] = ]-[02] (6.35)

Note that [er] is a diagonal matrix. Equation (6.34), which holds for each mode r of
structure X, has the advantage that [Zg] is explicit in it and thus no approximation is
involved in solving this equation.

The maj or problem in dealing with equation (6.34) is that, in order to be able to calculate
[¢ak]kxn , one hasto satisfy the following inequality for each mode of X:

v

0 (6.36)
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Inequality (6.36) cannot be satisfied (considering inequality (6.24)) unless either a

complete set of modes are used or one of the methods described in sec. 6.2.2.1 is used to
reduce n, or to increase n,, and thereby to increase k. Assuming specific locations for the

error(s), asin section 6.2.2.1, equation (6.34) can be written as.

il (28] (021l - (Roid [l [AM] oy} =

T+
[Oaiilioing ekl [AM (Do) (6.37)
Now, since n, << n,, it is easy to satisfy both (6.36) and (6.23)

So, it is clear from the above discussion that equation (6.34) is not suitable for
model updating applications while it does seem promising for joint identification.

RELATIONSHIP OF THE NEW METHOD TO THE
EIGENDYNAMIC CONSTRAINT METHOD.

Although the method introduced in section 6.2 was originally derived from a component
mode synthesis analysis, it is now clear that it can also be derived from eigendynamic
constraint theory [28,39,40,41]. In this context, and in contrast to conventional
eigendynamic constraint methodology, it should be noted that the advantage of the new
method is that it can be applied in cases of spatialy-incomplete modal data.

The eigendynamic congtraint method is essentially based on the following formula
[(K+AK] - A, IM + AM]] { ¢, } = 0

leading to

[(AK] - A (AMI]{ 0, } = A MI{ 0y } - [KI{ 0} (6.38)

The main problem with applying equation (6.38) is the inevitable inconsistency between
the number of measured coordinates in {¢,,} and the dimension of the mass and
stiffness matrices of the analytical model. To resolve this problem, equation (6.38) will
be transformed to equation (6.12) as follows:

pre-multiplying equation (6.38) by [¢a]k:;a and post-multiplying it by wa]naxk

+ .
[®aly o> ONEObtAINS:
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(0a], - [AK]- Ay (AMINi0g) 100 * {0yhy g =

T T
Aar (0], IMITO,]  105) * (0cc)y yq - 0], TKI0] L 105], * {0}y o

leading to

(0], - [AK] - A [AMINi0) o (0a], & (0l g =

Ae [0a], 1 (9x) - [9al 5 (Ot x1 (6.39)

Now, assuming that the complete set of coordinates have been measured, the following

relation holds (see equation (6.13)):

(Oxrlngx1 =[xk Prrtix

or

Prrtiox1 = Bali 2 Oxnax (6.40)

where the vector N’xr}naxl has been transformed to a sub-space of the analytical model’s

principal space, using equation (6.40) (or, simply, the vector {(1),“}%x 1 has been

expressed as a linear combination of k eigenvectors of the analytical modd!).
Combining equations (6.39) and (6.40) yields:
(0], o [IAK] - A IAMITI0;) (Perhioqs =P (Prrhioes ~2a Pyl (6.41)

Now, provided that {Py.}, . can be calculated from (6.40), equation (6.41) yields k

equations for each measured mode. Combining these together, there will be myxk

equations available.

Noting that equation (6.40) can be rewritten as:
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{¢Xr}nxx1 = [¢a ]nxxk {pXI}kx]

or

(Parhix1 = @l (Oxchy 1 0K (6.42)

equation (6.42) has been derived from (6.40) simply by eliminating the unmeasured

coordinates from {¢,} and [¢,].
Equation (6.41) is similar to equation (6.12) except for the presence (or absence) of [Ra].

16.41 APPLICATION OF PROPOSED METHOD TO THE JOINT
IDENTIFICATION PROBLEM

Equations (6.32) and (6.37) could be used for joint identification purposes. For this
particular application, the erroneous coordinates are known to be those across the joint
and thus the inequality of equation (6.24) can easily be satisfied. This method is
especidly useful when severa joints in an assembled structure are to be identified.

Theidentification procedure will start with the explicit consideration of the joint(s) in the
FE model of the assembled structure and then continue using any of equations (6.32) or
(6.37). This approach has three problems associated with it, as follows:

(a) - the proper and accurate modelling of a joint is very important and sometimes
very difficult. If the joint has not been modelled properly, the identified joint will
not be correct ;

(b) - the mis-modeled substructures which constitute the assembled structure will
affect the characteristics of the identified joint;

(c) - sometimes, the FE model of a structure is very difficult and expensive to
construct. Thus, in this case, if only identification of the joint(s) is (are) desired,
it may not be worthwhile developing such an FE moddl.

The second and third problems listed above can be avoided by using experimental models
of the substructures, assembling them through a hypothetical trial joint model and then
calculating the modal parameters of this analytically-coupled structure, A-C, using them
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aong with the modal parameters of the assembled structure in equation (6.32) (or
(6.37)). This approach still has the disadvantage of requiring consideration of a
prescribed model for each joint and, besides, one has to couple experimental models of
substructures which itself is difficult and introduces some error to the problem.

In what follows, the computational aspects of the method will be discussed and its
performance and sensitivity to noise will be examined through a series of case studies.

[6.5]|CASE STUDIES

The main objective of this section is to examine the performance of the proposed modal-
based direct identification method. The section has been divided into two parts, as
follows:

part 1- application of the method to the joint identification problem, based on equations
(6.37) or (6.32); and

part 2- application of the method to the model updating problem, based on equation
(6.20)

It may seem that the application of equation (6.32) to joint identification is redundant,
when it is possible to solve the problem more accurately using equation (6.37). However,
if equation (6.32) turns out to have the same degree of efficiency as equation (6.37), then
using (6.32) is, at least, associated with advantage that the higher modes’ residual matrix
[R,] is not required in this equation. This is a great advantage, especialy when purely
experimental data are used to generate structure A-C.

PART 1 CASE STUDIES RELATED TO THE JOINT IDENTIFICATION
PROBLEM

6.5.1 COMPUTATIONAL ASPECTS

Solving either equation (6.32) or equation (6.37) requires certain computational
considerations which will be discussed in this section.

To clarify the concepts and conclusions which will be discussed through this and the
following sections, each conclusion will be illustrated with a numerical case study. It
should be noted that in al these case studies, in order to simulate real practice as closely
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as possible, only the trandational dave coordinates of the real structure will be used in the
calculations. It should also be noted that, unless stated otherwise, deductions and
conclusions which will be discussed throughout the part 1 apply both to equation (6.32)
and to equation (6.37).

6.5.1.1 TEST STRUCTURES AND JOINT MODELS

The test structures which are used in al case studies of this part are shown in Fig. 6.2.
Structure X, which simulates the real structure, is an 16-element clamped-clamped beam
with element 9 designated as the joint element.

As mentioned in section 6.4, the analytical model (i.e. structure A-C), is generated by
coupling the constituent substructures of the assembly through atrial joint model. Since,
as mentioned before, only the trandlational slave coordinates of the A-C and X structures
are used in calculations, there are 13 coordinates in the eigenvectors of structures A-C and
X in the transformation equation (6.33). Also, unless stated otherwise, the modes of the
A-C structure used in the calculations will be the first 7 modes. So, the transformation
matrix in equation (6.33) is a 13X7 matrix.

Structure X

Trial joint

Structure A-C

Fig. 6.2 Red structure X & analytically coupled structure A-C

The base element used in developing the FE models of the various structures has the
geometrical and mechanical properties shown in Fig.3.2.

The joint dement of the red structure has the following properties:



[6] Modal-Based Direct Identification Method 126

Lix = 8003% Le , Ejy = 500% E¢. pjx=10%p, (6.43)

and is thus 5 times stiffer and 10 times lighter than the base element.

The specifications in equation (6.43) yield the following mass and stiffness matrices for
the red joint mode!:

.00011 .00126 -.000087
MI,

ix 05 0021
05 .0021 .01746 -QRI2E

3220000 483000 -3220000 483000

96600 -483000 48300
K], = (6.44)
J 3220000 -483000

96600

The configurational model of the trial joint is dictated by the interfacing configuration of
the red structure and the trid joint specification will be given for each case study.

6.5.1.2 THE EFFECT OF THE NUMBER OF MODES INVOLVED IN
CALCULATIONS ON THE RESULTS.

In order to be able to solve equation (6.37) (or (6.32)), it is necessary to transform it into

a set of algebraic equations. Having done this, the resultant set of algebraic equations has
the following form for each eigenvalue, lxr :

[C]kxlﬂ(ni(ni+ 1)) { AZ_]O\'xr) }1 L2(nj(nj+1))x1 = {LO\'XI) }kXI (6.45)

where k is the number of kept modes of structure A-C and n, is the total number of

interface coordinates. It should be noted that the symmetry of the joint impedance matrix
has aready been taken into account in equation (6.45).

Although it seems that equation (6.45) can be solved for each individual eigenvalue of
structure X, due to ill-conditioning of coefficient matrix [C] and due to the fact that the
coordinates involved in the calculations are incomplete, in order to obtain reasonable
results a minimum number of modes is usualy required to make up the condition of
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matrix [C] and to reflect sufficiently the effect of the joint in the equation. The reasons for
the ill-conditioning of matrix [C] have been explained in chapter 4 and the number of
modes required to achieve an acceptable condition number depends mainly on the degree
of ill-condition of matrix [C] which, in turn, depends on the number of unknowns in the
Vector {AZj(er)} of equation (6.45).

Separating the variables in equation (6.45), one obtains:

{AK.}

[CA_ Dlkxng ={LA D)ix1 (6.46)

(M} fu

The number of unknowns in equation (6.46) depends on the model which is considered
for the [AKj] and [AMJ,], as explained in section 4.4.3. In the case studies below the

following model is used for [AKJ,] and [AMJ,]:

beam element modd. In this model a “beam eement type’ joint modd is used, as
defined in equation (4.58). The number of modification factors, o, for this case

is 6, three for mass and three for stiffness.

So, if the real joint can be considered as a beam element, i.e. with 4 degrees of freedom
involved in interfacing and having the same connectivity properties as a beam element,
then there will be 6 modification factors at the interfacing station in Fig. 6.1 (or 9 if

damping is involved) and a necessary condition (but not sufficient) for a full rank matrix
[C(er)] in equation (6.46) is:

k29 (6.47)

For our present applications where.there is only one interfacing station and no damping is
considered, inequality (6.47) becomes:

k26 (6.48)

As is evident from (6.48), it is easy to satisfy this inequality but , as mentioned before,
the condition of matrix [C] is not the only problem and due to incompleteness of the
coordinates involved in the calculations one still needs to use several modes in order to
achieve reasonable results (as will be shown below).
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On the other hand, there is a limitation to the number of modes of areal structure which
can be used in the calculations. This limitation arises from the approximation made in the
derivation of equation (6.37). According to this approximation, the effect of the higher
neglected modes in the calculation can be approximated by a residual matrix [R] and the
higher the mode number, r, involved in the calculation, the less valid becomes this
approximation (see equation (6.28)). So, the best way of deciding whether the number of
modes considered in the calculation is adequate is to check the condition number of the
final coefficient matrix [S] in equation (6.49) and to check the results to see if they are
reasonable for each particular application.

Having calculated equation (6.46) for each mode of structure X, by combining the
equations of m_ modes together using the standard approach as explained in section

4.3.4.1, the following agebraic equation is obtained:

{AK} )

[S]14 {AM} ¢ ={Q) (6.49)
{AD} J

CASE STUDY 1.

To demonstrate the above concepts, the following case study has been undertaken. The
test structures for this case study are shown in Fig. 6.2 and according to this figure there
are 13 trandationa slave coordinates which are used in the calculation. Also, the total
number of modes for structure A-C is 30 from which 7 are used in the calculation as
“kept” modes.

The tria joint model has the following specifications.

Ljt= (8003)% Le . Bjg = (250)% Be , Pje=8%pe (6.50)

Thus, the trial joint model has the same length as the real joint but with 50% and 20%
error in stiffness and mass matrices, respectively.

Having used one mode of structure X in the calculation and using equation (6.37), Table
6.1 shows the first six singular values of matrix [S] in equation (6.49),
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0'1 0'2 0'3 0'4 65 0'6

cof[S] | 9.1E11 | 7E9 | 3E8 | 1E6 | 2.8E-8 | 4E-15
Table 6.1 Singular values of matrix [S] using one mode in the calculation

As seen from Table 6.1, the rank of matrix [S] is equal to 4 which is the rank of matrix
[AZj] in equation (6.45).

Table 6.2 shows the variation of the condition number of matrix [S] with number of
modes.

My 1 2 3 4 5 6
K of [S] 2.2E26 1E10 4.2E8 2.1E7 1E7 3ES
Table 6.2 Variation of condition number of matrix [S] with number of modes involved in
the caculations

As Table 6.2 indicates, adding a 2nd mode to the calculations causes the condition
number to drop dramatically. This drop at 2 modes is due to the fact that the rank of
equation (6.49) for each mode is 4 (as Table 6.1 shows) and, thus, having 6 unknowns
in this equation, i e. a 6x6 matrix, equations of at least two modes should be combined
to make up the condition of matrix [S)].

It is worth mentioning here that although inequality (6.48) is satisfied by using only one
mode in the calculation, according to Tables 6.3 and 6.4, matrix [C] of equation (6.46) is
rank-deficient using only one mode (which means that inequality (6.48) is a necessary but
insufficient condition).

Based on the results of this case study, it is recommended that one should increase the
number of modes until the condition number of matrix [S] is acceptable and a dramatic
drop in condition number is evident but no further as increase in the number of modes
beyond this limit will reduce the accuracy of the results.

6.5.2 ITERATIVE SOLUTION OF EQUATIONS (6.32) & (6.37)

Experience shows that although joint mass and stiffness matrices identified using
equation (6.49) are good, the level of residual errors in these matrices are still high. In
this section the reason for this unsatisfactory result is discussed and it is shown how an
iterative solution procedure can improve the results.
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Equation (6.25) (or 6.2) can be written in acompact form as:
{0xr) = [$akd (Pyrkc)} + (D26 {Pyre} (65 1)

As explained in section 6.2.1, having used a complete modal model and coordinates, the
vectors {p,, t and {p,,.} can be calculated from equation (6.51) for each mode of

structure X. Substituting the calculated {p, }in equation (6.37), and solving it, one will
obtain the desired joint mass and stiffness matrices. In the case of incomplete data in
respect of modes and coordinates, however, there are two problems which affect the
results, and these are:

@a) - the calculated vector {p, 4 } is approximate, due to the neglected effects of the
higher modes in equation (6.51); and

(b) - some part of the information relating to the joint effect in the calculation is
missed, due to the incomplete set of the coordinates.

The problem in (b) can be dedt with using significant* modes in calculations.

The first problem in (a) can be explained as follows. Dividing the modes of the A-C
structure into ‘kept’ and ‘eliminated modes, and using only the kept modes in the
calculation, has two separate effects on the computation. The first appears either in
equation (6.37) when the effect of the higher eliminated modes is approximated by a
constant residual matrix [R], or in equation (6.32) where the effect of higher modes is
neglected altogether.

The second effect appears in equation (6.51). As mentioned above, due to the neglected
contribution of the higher modes, the vector {p, 4 }, whose elements are the participation

factors of each kept mode of the A-C structure in expansion of {¢, .} in equation (6.51),
is approximate. Now, as structures X and A-C become closer to each other, the effect of
the higher modes becomes smaller and, thus, {p,4} becomes more accurate. For
example, consider the case where X and A-C are exactly the same and r equals 1, i.e. the
first mode of the real structure is expanded in terms of the modes of the A-C structure. In
this case, only the participation factor of first mode of the A-C structure, i.e the first
element of { p,4 }, isnon zero and equalsto 1.

The above argument suggests that an iterative solution to equation (6.37) (or 6.32) can
potentialy be useful. A suitable iterative solution procedure is shown in Fig. 6.3

* A mode is a significant mode if it is markedly affected by the joint presence.
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solve Eq. (6.33) & calculate {p} .
XT

solve Egs. (6.37) or (6.32) &
caculate {AK} & {AM}

modify the A-C. model &
recalculate modal
parameters

HAGH & I AXII
small enough

no

yes

calculation
finished

Fig. 6.3 The flow chart for iterative solution of equations (6.37) &(6.32)

The philosophy behind the iterative procedure in Fig. 6.3 is simply that since, at each
iteration, structures X and A-C become closer, so the vector { p, 4 } calculated after each

iteration is more accurate than that for the previous iteration, thereby yielding better
results.

To show the performance of the iterative method, the following case study has been
undertaken.

CASE STUDY 2

In this case study, the effect of iteration on the results will be investigated.
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The variation of the condition number of [S] of equation (6.49) can be seen in Table 6.2
and according to this table application of 5 or 6 modes in the calculation will be sufficien.
Thus, 5 modes of structure X will be used in the calculations here.

Using equations (6.32) and (6.37), Figs. 6.4 and 6.5 show the variation of [IA¢ll and
HAMI with iteration number, respectively.

0.4
—&8— based on Eq. 6.32
0.3 = = based on Eq. 6.37
e 0.2-
<
0.1 4
0.0 - T T
0 2 4 6 8
Iteration number
Fig. 6.4 Variation of norm of difference of
eigenvectors with iteration, using
equations (6.37) & (6.32)
1.00e+7
~—&— based on Eq. (6.32)

8.00e+6 —— based on Eq. (6.37)
= 6.006+6
i 4.000+6 =

2.000+6 -

0.00e+0 : Y T

0 2 4 6 8
Iteration number
Fig. 6.5 Variation of norm of difference of
eigenvalues with iteration, using
equations (6.32) & (6.37)

Table 6.3 shows the residual errorsin atypical joint parameter identified using equations
(6.32) and (6.37).
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k”Error% klZEnor% k22Error% mnError% mlerror% mzzError%

Eq. 6.32 0.62 0.58 0.6 0.8 0.94 11

Eq. 6.37 0.6 0.4 0.4 04 0.5 0.9

Table 6.3 Residud errors in typica joint parameters for with-residua-effect & without-
residua-effect cases, respectively.

Examining Table 6.3, it is evident that, athough the results achieved from equation
(6.37) are dightly better than those achieved from (6.32), there is no remarkable
difference between the two sets of results, except for rotary inertia. The similar results for
equations (6.32) and (6.37) show the insignificant effect of the higher modes' residual
matrix [R,] on the resultsin this case. The greater effect of [R,] on rotary inertiais due to
the fact that the effect of the latter parameter on the structure’s response is so insignificant
that any approximation (or noise) will affect the identified inertia values dramatically.

Trying to implement the iterative procedure in some case studies, the author came across
the problem of a non-positive-definite mass matrix. The reason for this was that, due to a
poorly identified joint mass matrix, attempts to update the trial mass matrix can result in a
non-positive-definite mass matrix. The way of dealing with this problem is to ignore the
mass in the calculations and to update the stiffness matrix only and to carry on the
iteration. The mass matrix should then be identified after each iteration and provided that
it does not lead to a non-positive-definite mass matrix, one can take it back to the
caculations, i.e. to update the mass matrix after each iteration.

6.5.2.1 GUIDE-LINES FOR ITERATIVE SOLUTION
IMPLEMENTATION

It was shown in case study 1 that in order to achieve a reasonable condition number for
matrix [S] it is necessary to use a certain number of modes in the calculations. On the
other hand, using the higher modes in the calculations will introduce more
approximations and may spoil the result. Experience shows that for large values of IIAKII
and 1AM, where it is difficult to converge to a solution, one can achieve better results by
using the following procedure.

The vector {p, }, caculated from equation (6.51) for a small number of the lower

modes of structure X, is usually accurate. The only problem with using a small humber
of the lower modes in the calculation is rank deficiency of matrix [S]. Now, if one
neglects [AM] in the calculations, then the number of unknowns will be cut by half. The

smaller number of unknowns means that a smaller number of modes is required to make
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up the rank of the matrix [S]. It should be noted that, using the lower modes in the
calculation, neglecting the joint mass effect (which is very small) will not have any
detrimental effect on the accuracy of the results.

So, for the first or second iterations, it is recommended to neglect the mass in the
calculations and to update only the stiffness matrix and then, having reduced lAKII, one

can take the mass back to the caculations and iterate again.

The other practical consideration is that, in order to calculate the vector {p, } from

equation (6.33)( or 6.51) as accurately as possible, it is necessary that in expanding the

th mode of the structure X in equation (6.33), the rth mode of the structure A-C must be
included in the basis of the transformation matrix, [¢,, ], on the r.h.s of equation (6.33).

6.5.3 CONDITION NUMBERS OF AN EIGENVALUE & EIGENVECTOR
AND THEIR APPLICATION AS CRITERIA FOR MODE
SELECTION

As discussed in section 6.52, an important factor for the iteration procedure in Fig. 6.3
to converge to a solution, is the accuracy of vector {p,, }, calculated from equation
(6.33). It was argued in section 6.5.2 that the closer the eigenvectors of two structures
are to each other, i.e. the smaller are lIA¢H and lAAll and the more accurate becomes the

expansion.

Since, in solving either equation (6.37) or equation (6.32), the analyst has some
flexibility in selecting which modes he wishes to use in the calculations, and if one can
identify the modes with the smalest 11 A¢ Il and Il Ah Il and use them, then there will be a
greater chance of achieving convergence. On the other hand, if the larger Il A¢ Il and
I Ah 1l are due to a larger effect of the errors (in the trid joint) on a particular mode, then
by eliminating that mode from the calcul ations one may lose valuable information. So, in
order to be able to decide whether a mode with large Il A¢ Il and Il Ah Il should be
eliminated or not, one must enquire whether these large norms are due to large Il AK Il and
Il AM Il or whether the mode is a sensitive one, i.e. large llA¢ll and lIAMI for small 11 AK 11
and Il AM II .

In what follows, a criterion will be developed to allow the analyst to select the best
modes, in the above sense, in calculations using the condition numbers of the eigenvalue
and eigenvector.
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It was shown in section 4.5.1 that variations in the eigenvalues and eigenvectors of a
genera matrix [A], due to small perturbation [AA] in [A], can be found from the

following equations:

Tiaa)
r;{lqﬂr = (R0}, (652)
{0} (0}
From equation (6.52), the absol ute value of Axr is expressed as:
n{.o ) TI tAAgn I I
< {9}, [T {0} (653)
r {0} {0}
and
. T ~ T
{0} {0} [aA){ ¢} {0} {0} :1aA1{_ 0}
(20, {z0), = E e E e (659)
e {9} (g0} A-A) e cosB (A -A)

where { 0} and {0} are the right and left eigenvectors of [A] and I{l¢}'{{R¢}r| isthe
cosine of the angle Or between the left and right-hand eigenvectors. From equation (6.53)

it is evident that when coser is very small, the corresponding eigenvalue is very sensitive

to perturbations in the elements of [A]. As mentioned in section 4.5.1, Wilkinson [35]
suggested that I{l(p}'{{ R¢}rl is a condition number for nonrepeated eigenvaues.

It can be seen from equation (6.54) that the quantity cos()r is again important. However,
the sensitivity of the eigenvector is aso dependent on the proximity of Xr to the other

eigenvalues. From equation (6.54), the smallest value of (kr-ks), indicating the separation

of the eigenvalue from its neighbours, is usually defined as a condition number for the
corresponding eigenvector { R¢ }r .

So, using cos()r and ()»r-ks) as criterig, the analyst can decide whether a mode associated

with alargellA¢ll should be eliminated from the calculations or not, i.e. if the large l1A¢ll is
associated with large (cos()r(kr-ks))'1 then that mode should be eliminated.
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6.®|SENSITIVITY ANALYSIS.

Experiments suggest [42] that measurement noise will typically induce up to 1% errorsin
eigenvalues and 10% errors in eigenvectors. The sensitivity of the present method to
measurement noise has been examined by carrying out a further series of case studies.
After spending some time trying different methods, the following error adding
mechanism has been adopted:

Ap=Ap + (IIr) X (€,/100) x A X RND
Op =0, + (e,/100) x ¢, X RND (6.55)

where, in equation (6.55),e; and e, are error multipliers and are equal to 1 and 5,
respectively. Also, the RND function generates random numbers between 0 and 1, i.e.
0O<RND«<I1. Note that the sign of the noise induced errors in equation (6.55) is also
determined randomly.

CASE STUDY 3

Case study 2 has been repeated here with noise added in equation (6.55), introduced to
the modal models of both structures X and A-C.

Figs. 6.6 and 6.7 show the variation of lA$H and IAAIl with iteration number using
equations (6.32) and (6.37).

The results in Figs. 6.6 and 6.7 were obtained using 7 modes of structure X in the
calculations and, further, the joint mass has been ignored through all iterations and thisis
due to the problem that the mass results are so poor that considering them in the
calculations will result in a non-postive-definite mass matrix.

Figs. 6.6 and 6.7 indicate that, by using only stiffness in the iteration, the Al and 1AM
values cannot be reduced beyond a certain limit and reasonably good results may be
achieved after the 1st run of the calculations. It is also clear from Figs. 6.6 and 6.7 that
results obtained from equation (6.32), i.e. ignoring residual effects, are better than those
obtained from (6.37). There are two reasons for the better results achieved using equation
(6.32), namdly:
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(a) - the effect of error on the higher modes’ residual matrix [R,]. Examining this

matrix for the with- and without- noise cases it is realized that the error effect on
R,] is not dramatic ; and

(b) - as explained in section 4.2.2.2, since the coefficient matrices on the l.h.s of
equation (6.32) are simple matrices, i.e. are not composed of other submatrices,
this equation has a better error averaging performance using a least-squares

technique.
' — based on Eq. (6.32)
—— based on Eq. (6.37)
0.4 -
<
< -
0.3 4 - Y
0.2 T T T 1
0 1 2 3 4 5
Iteration number
Fig. 6.6 Variation of norm of difference of
elgenvectors with iteration, noise
added.
1.00e+7 ]
J — based on Eq. (6.32)
_ 8.00e+6 - ~—— based on eq. (6.37)
g 6.000+6
= 4.000+6
2.000+6 -
1 — - |
0.00e+0 Y T . |
0 1 2 3 4 5

Iteration number

Fig. 6.7 Variation of norm of difference of
elgenvalues with iteration, noise
added.

Expression (6.56) shows the identified mass and stiffness matrices after the 3rd iteration.
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r .0412(18%) .00208(2%) .0142 -.0012
-.00039(400 %) .00 124 .00029

0412 -.00209

L -.00039

M1, =

1.9E6(41%) 302685(35 %) - 1.9E6 302685
69743(35%) -302685 3487 1
l. = (6.56)
7] 1.9E6 -302685

69743

—

and

r 2.12E6(26 %) 34446427 %) -2.12E6 344464

80875(16%) -344464 40437

[K;);= 2.12E6 -344464 (6:57)

80875 J

Examining the results in expressions (6.56) and (6.57) shows that the mean stiffness
matrix in expression (6.57) is much more accurate than that in expression (6.56). Also,
examining the mass matrix in expression (6.56) indicates that the only element of that
matrix which is very poor is the rotary inertia term, and this is responsible for the non-
positive-definiteness of the mass matrix. Otherwise, the results for other elements are
reasonably good. This great effect of noise on the rotary inertia, once again (see chapters
5 to 10) proves that this element’s effect on the structure’s response is insignificant and,
thus, is detrimental when noise is present (see chapter 4). It should be noted that an
attempt was made to prevent the mass matrix from becoming non-positive definite by
scaling it but still no further improvement is achieved.

It is worth mentioning that case study 3 has been repeated for the case where no noise is
present in the modal parameters of structure A-C. This was done to examine the
performance of the method when using a hybrid technique, i.e. part of the data from the
FE modd and part from experiment.

The result of this case study shows no improvement over the results in equations (6.56)
and (6.57) (as was expected).
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PART 2 CASE STUDIES RELATED TO MODEL UPDATING

CASE STUDY 4

[6.77]TEST STRUCTURES DESCRIPTION

Fig 6.8 shows the test structures used in the case studies related to model updating.

1 2 3|4 5 6 71 8 91 10

Structure X

1 Structure A ?

Mis-modelled element Mis-modelled element

Fig. 6.8. Test structures for model undating case studies

Structure X, which simulates the real structure, is alo-element FE model of a simply-
supported beam. Structure A, which simulates analytical model of structure X, isalso a
lo-element simply-supported beam model but with 100% error in the stiffness matrices of
elements 3 and 8.

The first 6 modes of structure X and the first 9 modes (out of 20) of model A are used in
the calculations. These start by calculating {p,} for mode r of structure X from equation

(6.13),i.e.
{0xrdnx1 = [ 9ak nxi (Prrtin (6.13)

wheren, =9 in equation (6.13) (note that only trandlational slave coordinates of X are

used in calculations) and k=9. The next step is to set up equation (6.20) for mode r and
transform it to a set of linear algebraic equations similar to (6.46). The coefficient matrix
of this set of equationsis a 9x10 matrix (under-determined), for each mode r. Combining
a set of equations for the first 6 modes of structure X, the order of coefficient matrix of
the final set of equations will be 54x10.
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Fig. 6.9 shows the stiffness modification factors calculated in the first run of calculation.

0.6

0.4 1

0.2 4

0.0

-0.2

Stiffness modification factors

-0.4
1 2 3 4 5 6 7 8 9 10

Element’s number

Fig. 6.9 stiffness modification factors
after first run

As is evident from Fig. 6.9, the results of this first run have correctly
located the mismodeled elements.

Fig. 6.10 shows the variation of llA¢Hl and IAAIl with iteration number. It is evident from
Fig. 6.10 that complete convergence is achieved after 6 iterations and significant
reductions in lIA$Il and IAAIl are obtained after 4 iterations.

0.3 4.00e+7
—a— |Alf
— AN - 3.000+7
- <
2.00e+7 S
- 1.00e+7
¥ 0.00e+0

7 6

Iteration number

Fig. 6.10 Variation of norm of difference of
modal parameters with iteration
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6.7.1 COMPARISON OF THE MODAL-BASED DIRECT METHOD WITH
THE INVERSE EIGEN-SENSITIVITY METHOD

The performance of the proposed technique for model updating has been examined in
case study 4 and seems to be promising. Since both the proposed method and IEM are
modal-based, it is convenient to compare their relative advantages and disadvantages.

A modal-based direct updating technique has the following advantages over IEM:

@) - since the differences of modal parameters are not directly involved in
formulation, no correlation analysis is necessary to identify related modes of the
rea gructure and analyticd mode. The only requirement in the proposed method

is that, using mode r of the structure X on the Lh.s of transformation (6.13), the
relevant mode of analytical model must be present in matrix [¢,, ] on the r.h.s of

the equation. The fulfilment of this requirement does not need such detailed
correlation anadyss, and

) - the modal-based direct method does not require the effect of higher modes to be
included in formulation.

The only advantage of the IEM over the modal-based direct method introduced here is that
the former method can be implemented using only eigenvalues in the calculation,
(provided a sufficient number of these have been measured).

6.7.2 SENSITIVITY ANALYSIS

CASE STUDY 5

Case study 4 has been repeated for case 5, this time with the error mechanism in equation
(6.56) applied to the moda parameters.

The modification factors obtained after first run are shown in Fig 6.11
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-1 ' 4 T T r T T T T
1 2 3 4 5 6 7 8 9 10
Element’s number

St iffiess modification factors

Fig. 6.11 Stiffness modification factors,
error added to modal parameters

, As is evident from Fig. 6.11, having added errors to the modal
parameters, it is still possible to spot the mis-modeled elements with a reasonable degree
of certainity. Fig. 6.12 demonstrates the variation of IA¢ll and IAAl with iteration

number.
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Fig. 6.12 Variation of the norm of
difference of modal parameters
with iteration, error added

It is clear from Fig.6.12 that a reasonably good reduction in llAAIll is achieved after 1 run
of the caculations but no improvement is obtained on llA¢IL.

In an attempt to improve the results in Fig. 6.12, the calculation was repeated, this time
considering only the modification factors with local maximum values. Examining Fig.
6.11, it isevident that modification factors related to elements 3 and 8 are local maxima of
modification factors, considering absolute values of modification factors. So, forcing
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modification factors other than those related to elements 3 and 8 to be zero, Fig. 6.13
shows the variation of modal parameters with iteration number.
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] - 2.000+7
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Iteration number

Fig. 6.13 Variation of the norm of
difference of modal parameters
with iteration, error added

Resultsin Fig.6.13 demonstrate a marked improvement over those in Fig.6.12.

[6.8BCONCLUSIONS & REMARKS

A new modal-based direct method has been proposed for joint identification and model
updating. The performance of the proposed method when applied to joint identification
and model updating problems has been investigated both with and without measurement
noise included.

An important conclusion, deduced from case studies 2 through 5, is that athough the
proposed identification (and updating) technique is a direct modal-based technique, one
has to use an iterative technique to achieve satisfactory results because of data
incompleteness, as al other identification techniques. Also, for the same reason, i.e.
incompleteness, there is a limitation to 1l AK Il and Il AM IIfor the caculaions to converge
to a solution. Experience shows that the calculations converge for error levels as much as
100% in mass and stiffness.

In the case of model updating, the similarity and advantages of the proposed method with
the eigendynamic constraint method and inverse eigen-sensitivity method has been
discussed.
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The new method developed for joint identification has the advantage that for structure X
only the measurement of slave coordinatesis required in the identification process. Also,
it is possible to identify a joint using only one measured mode of the assembled structure.

The method could be generalized to a damped case but, since complex eigenvector
extraction from measured data is generally associated with large errors, the application of
any modal-based method is not recommended for damped systems and the best method to
be used in such a case is one of the FRF-based methods described in (chapters 5 & 9).

It has been shown that iterative application of equations (6.32) and (6.37) to the joint
identification problem, and equation (6.20) to the model updating problem, yields good
results. Also, guidelines have been given for practical implementation of iteration and for
proper selection of the A-C structure’s modes involved in the calculation. According to
these guidelines, sensitive modes can be identified, and distinguished from significant
modes, and excluded from the calculations

When noise is present in the calculations, the identified mass matrix is most affected by
the noise and since using few lower modes, the mass effect on the calculation is fairly
insignificant, it is recommended that the mass be ignored in the calculations. Also, it has
been shown that, for the model updating case, using only local maxima of modification
factors yields satisfactory results.

For the joint model and test structures used in part 1 of the case studies in this chapter,
i.e. beam eement type joint a approximately the middie of a clamped-clamped beam, the
effect of rotary inertia of: the joint on the structure's response is very insignificant and,
thus, noise can dominate its effect. Thisis responsible for a poor identified mass matrix
in general and avery poor identified rotary inertiain particular. Asis shown in chapter 5,
and for test structures with different boundary conditions, the rotary inertia of ajoint has
the same inggnificant and, when noise is present, detrimental effect on the results.



CHAPTER

APPLICATION OF FRF-BASED PERTURBATION
ANALYSIS TO THE JOINT IDENTIFICATION PROBLEM.

7.1 INTRODUCTION

The application of an FRF-based direct method to the joint identification problem has
been discussed in chapter 5. It was mentioned in that chapter that one of the drawbacks
of an FRF-based direct method is that it requires transfer FRFs between interface and
dave coordinates, and these may be difficult to measure in practice.

The FRF-based perturbation analysis which will be presented in this chapter is not
faced with the above problem in that it is not necessary to measure transfer FRFs. Also,
since the technique is FRF-based, it has al the advantages associated with FRF-based
techniques mentioned in section 5.1, such as a large amount of data available which
provides the flexibility of selecting proper data points or, relative ease in handling the
damping problem.

On the other hand, as discussed in chapter 3 and will be shown here, since the technique
is perturbation-based, thus a number of iterations are necessary to achieve a solution and,
for the same reason, there is alimitation to the amount of error between the structure and
its analyticad model which can be identified using this type of technique.

In this chapter the performance of an FRF-based perturbation analysis to deal with the
joint identification problem will be examined. If this method turns out to be efficient (at
least comparable to the associated FRF-based direct technique), then it will be more
convenient to use the perturbation method from the above problem point of view.
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GENERAL FORMULATION OF AN FRF-BASED PERTURBATION
TECHNIQUE

In this section the FRF-based perturbation method will be formulated first in a general
manner (as in reference [25]) and then a version of the method suitable for joint
identification will be derived.

Designating suffices A and X to the analytical and experimental models of the structure,
respectively, one has:

[H,(@))=[Z 5 (@)+AZ ()] ! (7.1)
Expanding equation (7.1) using the binomial expansion yields:
[H, ()]= [Ha(@)] - Hy@UAZ@)HA@)]+ oo (7.2)

Assuming that I[AZ(w)]ll << lI[Z 5(@)]]l and ignoring orders of [AZ] higher than one,
equation (7.2) can be approximated to:

[Hy(w)] - [Hy(w)] = [Hp(0)] [AZ(0)] [H ()]
or.. [AH(w)] = [H(w)] [AZ(w)] [Hp ()] (7.3)

The matrix equation (7.3) is the genera governing equation of FRF-based perturbation
analysis.

MODIFYING EQUATION (7.3) TO MAKE IT SUITABLE FOR
JOINT IDENTIFICATION APPLICATIONS

Assuming that a real structure consists of some substructures and, furthermore, that the
difference [AZ] between two models A and X is concentrated at the interfaces of the

substructures (a reasonable assumption for joint identification problem), equation (7.3)
can be rewritten as follows:

(aHps (aRpS ] [ IS IS |Cop oy | (HO3 (HI

R

: ) L L (7.4)
(AR [ARTE | | e (i |01 [az) )| S (E)
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where suffices "s" and "i" relate to lave and interface coordinates, respectively.

Equation (7.4) can be resolved into 4 sub-matrix equations from which the following is
selected as the most suitable one for joint identification:

[AH(@)]% = [H()]SAZ(@)][H(w)] ¥ (7.5)

The reasons for choosing equation (7.5) out of the 4 possible equations deducible from
(7.4), and the consequences of ignoring the other 3 equations, have been thoroughly
discussed in section 5.3. Briefly, the obvious advantage of equation (7.5) is that only
FRFs relating to the slave coordinates are involved in the difference matrix [AH]SS, on
the L.h.s of equation (7.5), and this is a great advantage from the measurement point of
view.

Note that if we rewrite the earlier equation (5.5), i.e. the basic formula for FRF-based
direct joint identification technique, we obtain:

[AH(@)]* = [H(@)]5 [AZ(@)I[H(w)] (1.6)

The advantage of the current method’s equation (7.5) over equation (7.6), as mentioned
in the introduction, is that, using the former equation, one does not have to measure
transfer FRFs [H(@)]}, but instead to generate [H(w)]y, which seems to be more

practical and an easier task.

Trying to set up model A-C, i.e. generating the analytical model using only experimental
data in the analysis, a coupling process is necessary as explained in section 5.4. Since
equation (7.5) is a perturbation-based technique, a number of iterations will be necessary
in order to achieve a solution. After each iteration, the trial joint model must be updated
and model A must be generated again which means that a coupling process will be
required after each iteration. Requiring a series of repeated couplings is a drawback of the
FRF-based perturbation technique using only experimental data, as it may induce more
errors to the results and make the calculations time-consuming.

On the other hand, if the analytical model is setup by using FE models of the constituent
substructures of the structure X, one is not faced with above problem but there is the
possibility of having mis-modeled FE models of constituent substructures.
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The other details concerning the generation of the modd A-C, such as the damping model
and the configurationa model of trid joint, have aready been discussed in section 5.4.

[7.4]CONVERGENCE BOUND FOR EQUATION (7.5)

Since equation (7.3) is afirst-order approximation to equation (7. 1), it will be valid only
up to a certain value of I{AZ(w)]ll. In other words, writing equation (7.2) as:

[H,(@)] = [H(@)] - [Hp(0)] [AZ(w)] [Hp ()]
+ [HA (0)[AZ(@)][H 5 (0)] [AZ()] [H (w)] (7.7)

then, in order to have equation (7.3) converge to a solution, it is necessary to satisfy the
following inequality:

I erth order element of equation (7.7)Il <HI[H,J[AZ][H, ]! (7.8)
r=

From chapter 5, the directly-formulated verson of equation (7.3) is:
[Hp ()] - [Hy(w)] = [H, (0)][AZ(0)][Hp ()] (7.9)

Now, comparing equations (7.9) and (7.3), the difference between the matrices [AH(0)]
on the Lh.s of the two equations, a difference which is due to the elimination of the
higher order elementsin (7.7), can be deduced as:

[E(0)] = contribution of higher order elementsin ther.h.s of equation (7.7)
= [AH(m)] [AZ(w)] [H(w)] 5] (7.10)

Using equation (7.10), inequality (7.8), which is necessary and sufficient condition for
equation (7.3) to converge to a solution, can be written as:

It [AH(@)[AZ(w))[[H(@)] 5] 1| < I [H(@)] )NAZ ()] [H(w)] 4] Il (7.11)

Examining inequality (7.11), it is evident that if I[AH(w)}I becomes large, then there will
be a high risk of inequality (7.11) not being satisfied and, thus, that the calculations
based on equation (7.3) will diverge. So, natural frequencies of the structure X, at which
H[AH(w)]!l becomes large, are potentially high-risk points. The same argument applies to
natural frequencies of the analytical model, i.e. at the natural frequencies of A, I[AH(w)]!I
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becomes large, but, since at these points lI[H(w)] ,)}! itself becomes large, thus it islikely
that inequality (7.11) will be satisfied at the natural frequencies of the analytica model.

The above argument is similarly true for the case of joint identification for which equation
(7.10) and inequality (7.11) can be written as:

[E] = contribution of the higher order elementsin ther.h.s of equation (7.5)

= [AH%()] [AZ(0)] [H(@) (7.12)
and:
IAHS (0)][AZ(@)][H(@)I S < IH(@)ISHAZ(o) [H@)IE (7.13)

SOLUTION TECHNIQUES FOR EQUATION (7.5) & THE EFFECT
OF VARIOUS PARAMETERS ON THE RESULTS

Similar to the approach used in section 5.4, since equation (7.5) is frequency-dependent,
it can be solved with two different techniques, as follows:

solution technique 1- solving matrix equation (7.5) at each individua frequency over
the frequency range of interest; or

solution technique 2- transforming equation (7.5) into a set of algebraic equations
and then putting equations from different frequencies together and solving them
simultaneously as a“least squares’ problem.

CASE STUDIES

To study the performance of the solutions based on equation (7.5) and to examine their
sensitivity to measurement noise, a series of case studies has been undertaken. In order
to be able to compare the performance of FRF-based perturbation and direct techniques,
i.e. equations (7.5) and (5.5), the test structures and the joint models have been chosen
to be exactly the same as those in chapter 5 and can be seen in Fig. 5.1 and expressions
(5.10) and (5.11). Briefly, the joint in structure X, i.e. real joint, has the following
specifications:

Lix =100% L., Ej; = 1000% E = 10% p, (7.14)

e’pjx
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where L, E,, and p,, are the mechanical and geometrical properties of the base element
shown in Fig. 3.2

7.6.1 CASE STUDIES USING SOLUTION TECHNIQUE 1

In this series of case studies, equation (7.5) will be solved as a matrix equation and at
each individua frequency.

CASE STUDY 1

Fig. 7.1 shows typical results for the joint identified using equation (7.5) after 3
iterations at each frequency. The trial joint for this case study (and subsequent case
studies unless otherwise stated) is the same as that in expressions (5.12) and (5.13) and
has the following specifications:

th = L_]X , Ejt = 50% ij N th= 50% ij (715)

As is evident from Fig. 7.1, the results are satisfactory except for a few frequency

points. Examining a typical FRF of the assembled structure, X, in Fig. 7.2 revedls that
frequencies associated with poor results coincide with natura frequencies of structure X.

Having poor results at or near the natural frequencies of X, as explained in section 7.4, is
due to the fact that at these frequencies II[AH]Il exceeds the limit which is necessary for

the first order perturbation assumption used in equation (7.5) to be vdlid.

Comparing the similar resultsin Fig. 5.3, achieved by using direct FRF-based method in
chapter 5, with those in Fig. 7.1, it is evident that, as was expected, the results in Fig.
5.3 are better at the natural frequencies of X which is due to the direct nature of method
used in chapter 5.

CASE STUDY 2
To examine the performance of equation (7.5) in the presence of measurement noise,
“5% random noise” has been added to both real and imaginary parts of all FRFs involved

in caculations.

Typical results of the analysis for this case are shown in Fig (7.3).
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Examining Fig (7.3), it is evident that the results are very poor and thus that the method
Isvery sensitive to noise. In addition to the reason for this high sensitivity to noise given
in section 5.5.1 (i.e. the insignificant effect of joint on the structures response so that this
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effect can be easily polluted by noise), the other factor responsible for the high sensitivity
of equation (7.5) is the approximate nature of this equation.

Consider equation (7.12) as:

[E] = contribution of higher order elementsin ther.h.s of equation (7.5)
= [AH™ ()] [AZ(e)][H(w)] 4 (7.12)

If the noise effects dominate [AH(®)]* in equation (7.12) (see section 5.5.1), then the

matrix [E] in equation (7.12) changes dramatically and this induces an extra large error
on the results. Comparing Fig. 7.3 with Fig. 5.4 (achieved using FRF-based direct
analysis), it is evident that, due to noise effect on [E] explained above, the result in Fig.

7.3 is very much poorer than that in Fig. 5.4.

7.6.2 CASE STUDIES USING SOLUTION TECHNIQUE 2

In this section the application of solution technique 2 will be examined, i.e. transforming
eguation (7.5) to a set of linear algebraic equations by separating the joint mass and
stiffness parameters in [AZ] and then combining the set of equations related to different

frequencies together, solving the resulting over-determined set of algebraic equations
using a least-sgquares method.

7.6.2.1 COMPUTATIONAL ASPECTS OF SOLUTION TECHNIQUE 2
Following the method used in section 5.5.2.1, considering matrix [AZ(0)] as:
[AZ(0)] = [AK] -[AM]w? + i [AD] (7.16)

equation (7.5) can be transformed into a set of algebraic equations for each frequency ®,
and having imposed a symmetry constraint on [AK],[AM] and [AD], one obtains:

{AK} )

[C((’))](nsxns)XS/Z(ni(ni+1)) {AM} >3 2(nj(ni+1))x1 = {L(w)}(nSan)xl (7.17)

{AD} J

Further details about transforming equation (7.5) to equation (7.17) can be found in
section 5.5.2.1.
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Having combined equation (7.10) for each of nf frequency points together, let us set up

the fina over-determined set of equations as follows:
{AK}
(7.18)

[P)(ngxngxnpx32(mini+ 1)) § (AM]} 3 XL {4} (ngxngxnp)x1

{AD}

Using the normal equation technique (explained in section 4.3) to solve the |east-squares
problem defined in equation (7.18), one obtains the following square set of equations:

[ {AK}

[ (@I IC@)IH+IC@)ITTC@ 1+ T T[Cla,)y (AM]) =

\ {AD}
[ (C@ 1™t L)) 1+CT{ Li@)+...HCw, N Lio,) }]
f f

or

f{AK}\

[S14 {AM} ¢ ={Q} (7.19)

\ {AD} J

In order to balance matrix [C], the reference joint model based on a beam element model
described in section 4.4.3, is used.

Having used equation (7.5) as the basic matrix equation to develop equations (7.17) and
(7.18), the question is now “if the first-order approximation in equation (7.2) is valid for
each individual frequency point used in developing equation (7.18), then would equation
(7.18) dways converge to a solution for sure?".

In order to be able to answer the above question, consider the convergence bound for
equation (7.5) in equation (7.13) as:
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IFAHS (@) IAZ(e)ITH(@)I 5] < I[H(@)ISHAZ (@) [H@)E] (7.13)
which, written in terms of equation (7.17) yields:

[ {AK} ) {AK} )

'

I [C@T {AM} ¢ 1> I [Cy@)]y {AM]} ¢l (7.20)

\. {AD} J {AD} J

where [C,(0)] is produced by transforming the matrix of the contributions of the higher

neglected terms in equation (7.12), [E], to a set of linear algebraic equations.

Now, consider the case where inequality (7.20) holds for each individua frequency
point, i.e.

r (AK)} 3 r (AK} N
I [C@PIy {AM} ¢ 1> I1[C ()] (AM]} o |

\ {AD} J . {AD} J
r{AK}\ r{AK}\

I [C@Y1 {AM]} ¢ I>1[C (@] {AM]} ¢

\ {AD} J \ {AD}

.......... ‘ ag) axy”

HC@ 1Y {AM} 1> 1[Cw, )1y (AM]} o (7.22)
\ {AD} {AD} /

But, having inequalities (7.21) satisfied does not necessarily mean that the following
inequality, which is necessary for equation (7.18) to converge to a solution, is satisfied
aswell:
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{AK} {AK}
IHC@PIIC@PI {AM} ¢+ ..+ [Cw I [C(@, )1 {AM} 11>

{AD} {AD}
{AK} ) {AK} )

HC@NITIC@PIY {(AM) p+...+[C(@ I TIC (0 )1 (AM]) (I

{AD} J {AD} J
(7.22)

Thus, the answer to above question is. “using equation (7.5) to set up equation (7.18),
although the first order approximation is valid at each individual frequency point, the
resultant equation, i.e. equation (7.18), may not converge to any solution”.

CASE STUDY 3

To illustrate the above-mentioned problem, two case studies have been undertaken based
on the test structures in Fig. 5.1 and a joint model as in equation (7.14). The trial joint
model for first case study is the same asthat in equation (7.15) and is:

th=ij , Ejt= 50% ij . Pjx = 50% Pix (7.15)

For the second case study, the trial joint has been chosen to be much closer to the joint
model and its specifications are:

Lit=Ljx » Ejt=9%0%Ejx . Pjx=90% pijx (7.23)

The frequency range of interest for both cases is 700 to 800 Hz calculated at 5 Hz
increments so that ng=20. It should be noted that according to Fig.7.1 the first-order

approximation assumption is valid for equation (7.5), and consequently (7.17), in all
frequency points within the range of 700-800 Hz. Thus, inequalities (7.20) and (7.21)
are satisfied at each frequency point

Table 7.1 shows errorsin typical identified joint parameters for two cases.
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TransK | CrossK | Rotary K | Trans M CrossM | Rotary M
Error % Error % Error % Error % Error % Error %
1t case 110 36 127 200 1200 480
2nd case 1.4 0.3 1.2 0.2 7.6 18

Table 7.1 Error values in the typica identified joint parameters for two cases in equations
(7.15) &(7.23)

Examining the error values in Table 7.1 reveals that the results for the first case, i.e.
where there is 50% difference between the real and the trial joint mass and stiffness
matrices, are very poor while the results for second case, i.e. 10% difference between the
two models mass and stiffness matrices, are very good. This means that in the first case,
athough the first-order approximation is valid a each individua frequency point, it is not
valid for the resultant final equation (7.18) and so the calculation diverges. On the other
hand, reducing the difference between two models in the second case, reduces the effect
of the higher neglected terms in equation (7.5) (see equation (7.12)) so that inequality
(7.22) is satisfied and calculation converges.

The other important result deduced from Table 7.1 is that, similar to the case studies in
section 5.5.2.3, the error percentage related to rotary inertiais much larger than the other
elements. This, once again, shows the insignificant effect of rotary inertia of the joint on
the response of the structure.

ONCLUSIONS AND REMARKS.

From what has been presented in this chapter, the following conclusions can be drawn:

(a) - the only, and the very important, advantage of the FRF-based perturbation
technique over the FRF-based direct method introduced in chapter 5, is that, in
current technique, the measurement of the transfer FRFs between interface and
dave coordinates is not required

(b) -  drawbacks of the technique are:

(i)- a series of repetitive couplings are required to implement this technique;

(ii)- there is a limitation to the amount of error between the red joint and the tria
joint which can be accommodated. Solving equation (7.5) as a matrix equation,
the calculation diverges at natural frequencies of the structure for the noise-free
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case. For awith-noise case, unless noise level is reasonably low, the calculation
does not converge.

(iii)- (on the other hand), solving equation (7.23) as a least-squares problem and
for the noise-free case, there is no guarantee that the calculations will converge
unless the error between the real and the trid joints is small.

So, for cases where the measurement noise level is low, say about OS%, the application
of equation (7.5) as amatrix equation is recommended.




CHAPTER (8)

INVERSE EIGEN-SENSITIVITY ANALYSIS METHOD (IEM)
APPLIED TO JOINT IDENTIFICATION

[8.1]INTRODUCTION:

In chapter 7, application of an FRF-based perturbation analysis to joint identification was
investigated and it was found that, in spite of practical advantages associated with the
method, it is not very efficient.

In this chapter, the modal-based version of the method of the chapter 7, i.e. the Inverse
E&en-Sensitivity method (IEM), will be discussed and its applicability to joint
identification problems will be investigated. Similar to the FRF-based perturbation
method, the IEM technique for joint identification requires no measurement related to the
interface coordinates of the assembled structure, i.e. thereal structure, to be made.

Similar to other adaptive identification techniques, application of IEM requires an
analytical modd of the structure. In model updating practice, the required andytica model
is generated by the finite element technique. In ajoint identification analysis, on the other
hand, the analyticd model can be generated using one of the following methods:

method 1- generating the analytical model (A-C model) by coupling the constituent
substructures of the assembled structure through a tria joint model, using
experimentally-measured FRFs of the substructures; or

method 2- generating the analyticd model by coupling the congtituent substructures of the
assembled structure through a tria joint model, using FE models of the
substructures.
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The study in this chapter is based on comparing the real structure, as an assembly, and its
analytically-coupled model A-C, assumed to be generated using experimental FRFs of the
substructures rather than their FE models, i.e method 1 above. Thus, the assumption that
the mis-matched regions between the two models to be the interface coordinates can be
strongly justified. On the other hand, using purely experimental data, some changesto the
origind IEM method used for model updating are necessary in order to consider the effect
of the higher and lower truncated modes. These changes will be discussed in this chapter.

FORMULATION OF METHOD

8.2.1 UNDAMPED SYSTEM:

Consider [M J and [K] as the mass and stiffness matrices of the A-C model and [M]

and [K] as those of the assembled structure. The following relations hold:

M] = [M] + [AM] and [K] = [K,] + [AK] 8.1)

where matrices [AM] and [AK] consist of mass and stiffness differences which, for joint
identification applications, are concentrated at the interfaces of the assembled structure.

There are various ways of defining [AM] and [AK]. In amodel updating problem these
matrices are considered as being composed either of corrections in each individual
element or of corrections in super or macro-dements of the FE mode (each super-element
consists of a combination of elements and covers a sub-domain of the structure).

In any case, one can define [AM] and [AK] asfollows,

n n
[AM]:dg,lamd[AM]d and [AK]:dg,lakd [AK],

where, depending on the method, n is either the number of elements or the number of

super-elements of the model and o d and o, ae the element’s correction factors.

Matrices [AM]4 and [AK], are of the same order as [AK], but except for the relevant

coordinates to element d of the model, all other elements are zero. Taking derivatives of
[K] and [M] in (8.1) with respect to o g and oy One obtains:

'md aa'kd
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Thus, using the element or superelement-based definition of [AK] and [AM], the

element’s mass and stiffness matrices should be known in order to be able to calculate

8(31M and aaK .In the case of joint identification using experimental data only, there are

md 0Lkd
two ways to define [AK] and [AM] at the interfaces, as explained in section 4.4.3,

namely:

@ - by considering [AK], and [AM], the mass and stiffness modifications to trial

joint model at interfacing station “d”, to be general symmetric matrices, as

shown in equation (4.60). In this case each element is a variable parameter, and
so if the number of interface coordinates at each junction is nyy, then the total

number of variables of each matrix is equal to n;4(ny4 +1)/2; or

(b) - by defining [AM]; and [AK] using an assumed model for the joints. This model
can be either FE-based or a lumped parameter model. As mentioned in section
3.5, for joint identification applications, one has to consider different correction
factors for the consistent groups of degrees of freedom involved in the joint
model (interfacing). For example, if one considers a beam element as the model
of ajoint between two beams, the correction factors for this joint model are as
follow(see equation (4.58)):

0] [0] ﬁ

a; a4y -a; 2 {
[AK]; = [0] 2a3 -a) a3 leading to
4 -4

2a3

" [0] [0] 0 0

a,0-2; 0 0 a,
[AK], = 000| [+ 0

(0] a; 0 0

) [0]

0000

sy 2a, 0 a (8.3
0] PO

and similarly
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- a—

(0] [0] [0] [0]
115624 0 5484 0 "0 225 0 -13aq
[AM]; = a ! 0 13as O
=%l 0 0 0 1 5
1562, 0 0 -22as
_ 0d | _ o J_
+ e
(0] [0]
0000
a6 4a6 0 ‘3a6 (84)
10] 00
_ 4ag

where a, to o are modification factors for the mass and stiffness submatrices of the
joint. Parameters a; in equations (8.3) and (8.4) can be considered as unity but, from a

balancing and condition of calculation point of view, it is better to use a prescribed
reference joint model to define the parameters a; (see section 4.4.3).

Thus, according to equations (8.3) and (8.4), corrections to the mass and stiffness
matrices can be calculated using the six correction factors, a, to oy

In either case (a) or (b), it follows from (8.2) that:

%%}IJ—-] = 1] %[kII(_]] = (1] for case (a) (8.5)
and

oM J[K

ﬁ[af_] =[I,] —a[&l = [I,] for case (b) (8.6)

where[I;]isamatrix with 1 asits ijth element and zero for all other elements and [I,]isa
matrix with parameters a; in specified stations depending on suffi (i) (see equations (8.3)
and (8.4)). Since the general formulation is similar for both (a) and (b), the following
discussions are based on the more general case of (a)

Considering the eigensolutions of [M] and [M J to be ({ ¢},A) and ({ $}°,A% respectively,

and using the Taylor series expansion of the eigenparameters, one can write:
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n.

n. n. 0
(0n) = 010+ 2. > aa”’} ij+; > aél‘f;mk.. ©7)

i=1 j=1 9y =1 ij

where r is the mode subscript and n; is the total number of interface coordinates in the

joint identification problem. A similar equation can be written for the eigenvalues, as
follows:

n. n. 0 n. n. 0
0 oA, oA,

For equations (8.7) and (8.8) to be correct it is necessary that IAKII/IIKII and IAMII/IMII
should not be greater than a certain limit, otherwise the first order approximation of the
Taylor seriesin (8.7) and (8.8) will not be met and convergence will not be achieved [28]
. The matter of convergence of these equations will be further discussed later in this
chapter.

Considering the limits of the summationsin equations (8.7) and (8.8), it is seen that there
are n% terms in each summation but, as mentioned before, considering the symmetry of

[AK] and [AM] (which is a necessary assumption to preserve the self-adjoint of the
structure), the number of termsin each summation reducesto n,(n;+1)/2. Using equations

(8.7) and (8.8), and noting that in writing n; the suffix "i" has been ignored, one can

write:
({0}1- (9)9)
{0}2-{0}8
< . > ;
Ap-AD | et
Ay - 1D
. J \
- Akl
{¢}° a{qm a{0}} 9{0}9
ak“ } } {aml }... ..{———amnn} Alflz
{a{¢}0 a{mo}{a{mm {a{¢}é’1} :
dky; } a dknn om;; 7" dmpp .| Aknn .
g oA ax‘f oAd Am1l
ok;;”" 7 Tdkpp om;;"" ° “'dmp, Am12
nd and  al g,
L dky0 7 T'okpg om;;”" ° “‘dmpy | m(L+1)xn(n+1) Am
nn /
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or {(AE} = [S]{Ap] (8.9)

Where [] is the so-called “modal sensitivity” matrix of the A-C model and m and L are
the number of modes involved in the calculations and the number of coordinates which
are considered in the calculation of differences in eigenvectors of each mode at the |eft
hand side of (8.9), respectively. For example, for the joint identification case, it is
possible that the vector on the L.h.s of equation (8.9) contains only the differences of
modal vector elements related to slave coordinates and the differences vector on ther.h.s
is due only to changes of mass and stiffness at the interface coordinates, i.e. changes in
the slave coordinates modal parameters due to the joint at the interface coordinates.
Equation. (8.9) is a set of algebraic equations which, depending on the values of L,m,
and n, could be over- or under - determined. To be able to solve equation (8.9) one
requires that:

m(L+1) > n; (n; + 1)

if L =n;, i.ethe number of slave coordinates = the number of interface coordinates, then
m >n; (8.10)

For a small number of joints, satisfying (8.10) does not cause any problem but for alarge
number of joints, not only it is difficult to satisfy (8.10), but ny(n;+1) will be alarge value
and the computation time will be considerable. To avoid this problem, one can assume a
prescribed model for the joint (as explained in (8.3) and (8.4)) and thereby reduce the
number of the correction factors to be determined.

Now, by choosing the correct number of coordinates and modes, one can solve (8.9) to
find the differences in stiffness and mass which are responsible for the discrepancies in
the modal models of the two systems which are believed to be due to joints. Apart from
comparison between two cases of one structure to identify the joint characteristics, the
method and concept can also be used for structural modification purposes i.e. to define
the desired changes for the eigenvalues(s) and / or eigenvectors(s) and then, by solving
(8.10), to find the necessary modifications to the structure.

It only remains to calculate the elements of matrix [S]. This can be done by taking partial
derivatives of the following equations:

[K-MAJ{¢ }=0 (8.11)
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{6, FIMI{¢ }=1

which leads to [24,43]:

A, oK

ETY L={¢ }! (ap . ap){ o, } (8.12)
and

{0 }

ap = élcrk {¢k} (8.13)
Where

(o158 25000, )
C’rk" )“r_xk

forr #k (8.19)

—4&({¢}‘ {¢} r=k
.. dM oK . , . .
The derivatives 5p— and a—p can be easily determined using equations (8.5) and (8.6).

8.2.2 COMPENSATING FOR THE EFFECTS OF THE RIGID BODY &
HIGHER MODES

In the experimental case, when only a few of the lower modes are identified and
identification of rigid body modes is not easy, no problem arises in dealing with (8.12)

but calculating expressions (8.13) and (8.14) will not be very accurate as they require the
calculation of all eigenvalues and eigenvectors. Since ( A -A;) appears in the

denominator of (8.14), so for the first few modes where A <<A_, (where A, is the
biggest measured eigenvalues) the omission of the higher modes in calculating (8.14)
does not cause any problem but as r approaches m, the effects of these modes may
become significant. The same is true for the effect of rigid body modes on the higher
modes’ sensitivity calculations, i.e., the higher A_is, the less significant the effects of the
rigid body modes on the calculation become, but for lower modes, the effects of rigid
body modes are significant
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Compensating for the effect of the higher modes has been discussed for the FE updating
problem in [43] and here the method will be modified for experimental applications and
will also be extended for compensating for the effect of rigid body modes, as follows:

Consider equation (8.13) as:

a{¢,}

p - C {0 )+ {Z} (8.15)
where
MU (F
{Z}= 2 {—‘—¢x}_{"} {o; 1
r J
J:
or
CYUIF L F
)= L = D
YL IFR
§Z€457%Q{¢j} (8.16)
jem#l T

where q is the number of rigid body modes or, more generaly, the number of lower
modes which have not been measured, and

oK oM
{F} =(§B -K,“gp—){ o, ) (8.17)

and g <r < m. If one assumes that lq <<A,, <<A,,; (which means assuming a large

frequency gap between the measured and unmeasured modes, which is not always true)
then for j > m and j< q one can write :

Ard=-)\ j>m (8.18)
Ahy= Ay a

Substitution of (8.18) into (8.16) gives:




[8] Application of IEM to Joint Identification 166

JYF F .} JYF
{Z,}=2 EHELENTS +2 S T 0]+ 2 RHB LIPS
r J
J:

J=q+1 j=m+1
(8.19)
Considering the nature of (F,) from (8.17),the first and third summations in (8.19) can
be written as:
1o}
S‘ Lo Lol
J= I
and
i . t
S s 1LY ®20
j=m+l s

Using equation (8.20), equation (8.19) can be rewritten as:

. . l
2)= ﬁ:wl}x{m} {Fr}+§:{¢x—{¢} +
J= r r J

j=q+1

. )t . ot
z{q"fﬂ'} ){F,}-E;”"}_i_q"} ) (F) 821
= )= !
or

. . t .}t {F
(z)= 2‘ Lo, }x{ 0; ! {Fr}+2{—¢i}.—>{v'—}‘ 0,1 -
)= r =

- - t
(K |- {F,}- S Lo ) R, 622)
)= !

Thus, in order to be able to compensate for the effect of the higher modes, it is necessary
to have the flexibility matrix of the structure. Note that most eigen-solution routines use
[K]! so this matrix has already been calculated and does not consume any extra time.
Since, when using only experimental data, the stiffness matrix is not available in a
practical joint identification, the compensation technique described above needs to be
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modified. Also, a method should be developed to compensate for the effect of rigid body
modes in the first summation.

Following equation (8.20), and taking the modal expansion of the FRF matrix as:

{o6:) {¢;})' {6, ) (¢;} { 0,1 {¢;}
[H]:Z‘ 7»--(02, +2 a2 +2 Y
= i j : j

J=q+1 j=m+1
(8.23)
and considering A <<}, <<A.;,one has:

(o, Lo} {¢i}{¢i}‘2{¢i}{¢-}‘_
[H]=z 0T +2 r-w? -
= j=q+1 J j=m+1 1

[Rm] -1/ 02+ X + [Ry]
(8.24)

where [Ry] and [Ry] are the so-called “residual matrices’ which can be determined
directly from the measured FRFs. Note that [Ry] approximates the effect of rigid body
modes (lower modes) by an inertia term while [Ry] approximates the effect of the higher
modes with a static deformation. Comparing equations (8.20) and (8.24) and using
(8.19) one obtains:

WU IF
(z) = S LO T (g ra vy + BML gy 825
=gt '

Equation (8.25) is a modified version of (8.19) and is suitable for experimental
applications.

It should be noted that, in order to determine the [R] matricesin (8.25), it is not necessary

to have the full FRF matrix of the A-C model. For example, assume that the variablep in

equation (8.15) is kij. This means that ?WK consists of a unit element in position ij and
1)

zero everywhere else. Calculating F, in equation (8.17) yields:
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4 A

o O O

{Fy) =Y ’

=
< .
G

SO OO

and calculating [R] F,, gives:

RI(F} =Y ( n9;

\RLiJ

As before, L is the number of coordinates used in the Lh.s of (8.9) (the dave
coordinates). So, the number of elements of [R] which should be determined depends on
the number of interface (modification) and dave coordinates.

If the stiffness matrix of the analytical model is singular in model updating, then,
according to equation (8.22), the effect of the higher neglected modes cannot be
compensated for. On the other hand, equation (8.25) is always applicable for the higher
modes contribution to the calculation and, thus, can be used in model updating
applications with asingular [K}.

8.2.3 FORMULATION OF THE METHOD FOR DAMPED SYSTEMS:
The extension of equation (8.9) to the case of a damped assembled structure will be

discussed in this section. The structural damping mechanism will be considered for the
damping model.
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To extend the ideas in equations (8.5) and (8.6) to damped systems, equation (8.1) can
be written as.

M] :[M]0 + [AM] and [K] =[K 0 + [AK] [D =[D], + [AD] (8.26)
and smilarly for equation (8.5)

oM dK dD
.. = (1] 3K.. =[1;] b 163 (8.27)
1] 1) 1]

where in equation (8.26) [D] represents the damping matrix. On the other hand, if a joint
model is used to define [AM]4 and [AK],, as in equations (8.3) and (8.4), then [AD]; can

be defined as:

[AD], = f’l B; [AK]y; (8.28)
1=

where "g" in equation (8.28) is designated as the number of sub-matrices which the
stiffness matrix of interfacing station d has been decomposed to. For example, the
stiffness matrix of a beam element type joint model in equation (8.3) has been
decomposed into 3 submatrices, i.e. g=3 (also see section 4.4.3)

Using equations (8.3) and (8.28) for a beam element type joint model, one obtains:

[0] [0] ] [0] [0] )
aIO‘aIO 0 a2 0 82
[AD]; = + B 0-a0 +
i=B, 0] 000 2| 1o ay
a; 0 0 -8
_ odJ_ 0od.
[0] [0]
0000 |
[0] 00
L 283§ _

There are two important points related to equation (8.28) as follows:

(a) - as eguation (8.29) demonstrates, using the damping model in equation (8.28)
does not imply that proportional damping has been considered for the joint; and
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To extend the ideas in equations (8.5) and (8.6) to damped systems, equation (8.1) can
be written as.

M] = [M], + [AM] and [K] = [K], + [AK] [D] = [D], + [AD] (8.26)
and smilarly for equation (8.5)

M K
—gm__ = (1] a‘a—k__ =[] —5’(‘3 - =[] (8.27)
1] 1] ij

where in equation (8.26) [D] represents the damping matrix. On the other hand, if ajoint
model is used to define [AM], and [AK],, as in equations (8.3) and (8.4), then [AD]; can

be defined as.

[AD]4 = f{l B [AK]y; (8.28)
1=

where "g" in equation (8.28) is designated as the number of sub-matrices which the
stiffness matrix of interfacing station d has been decomposed to. For example, the
stiffness matrix of a beam element type joint model in equation (8.3) has been
decomposed into 3 submatrices, i.e. g=3 (also see section 4.4.3)

Using equations (8.3) and (8.28) for a beam element type joint model, one obtains:

(0] (0] [0] (0]

a10-a10 0 a2 0 32
[AD]; =B +B 0 -a, 0 +
i 1 [0] 000 2 (0] a
a; 0 0
. on _J_ L 0d.

[0] (0]

0000 |
B 28, 0 a (8.29)
233 N

There are two important points related to equation (8.28) as follows:

(a) - as eguation (8.29) demonstrates, using the damping model in equation (8.28)
does not imply that proportional damping has been considered for the joint; and
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(®) -

introducing damping to the analysis makes the sensitivity matrix [S] in equation
(8.9) a complex matrix. However, using a damping model either in equation
(8.27) or in equation (8.28), no extra effort is required to calculate the complex
part of [S], i.e. the complex parts of elements like Sij related to mass
modifications are zero and those related to (complex) stiffness modification
elements are exactly equd to their rea part, or

[S] = [IS] . [S],,] + i [[S] . (01} (8.30)

The same remarks as were made for the undamped case also apply here when one is
dealing with truncated higher modes.

8.24 CONCLUDING REMARKS:

(a) -

(®) -

(©) -

@ -

A modified version of the sensitivity matrix analysis method has been devel oped
which can be applied to purely experimenta data. This not only seems to be very
useful for identification of a joint’s dynamic characteristics, but also seems
promising for general experimental structura modification purposes.

Since the method is based on experimental data only, it does not need the
development of an FE model and the dimension of the sensitivity matrix can be
kept quite low as compared with the FE updating case. This is particularly true in
structural modification applications where only localized modifications are
required.

Compared with FRF-based identification methods, this method requires a very
small amount of data storage.

The formulation has been modified so that the effects of neglected higher and
lower modes could be accounted for. This, as will be shown in the case studies,
will enable the analyst to use a selected number of modes.
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[8.3]CASE STUDIES
8.3.1 TEST STRUCTURES & JOINT MODELS

To study the performance of the IEM and its sensitivity to error, a number of case studies
have been undertaken. The model X which simulates the real structure in all case studies,
Fig. 8.1.(a), consists of two substructures coupled through a joint. Model A-C, or the
“analytical” model, is generated using substructures similar to those of structure X plus a
trial joint model, Fig. 8.1.(b). The FE models of the substructures are developed using a
base element identical to that shown in Fig. 3.2.

Substructure A joint Substructure. B (a)

Structure X

Trial joint
Substructure A Substructure B (b)

Structure A-C

Fig. 8.1 Test structures for case studies

The substructures in Fig. 8.1 are represented by FE models of two beams with 3 and 2
elements so that the structure X and model A-C each have 14 degrees of freedom. In
order to simulate a rea test case from the rigid-body modes point of view, the
substructures are supported on two soft springs. Note that in all case studies the rotational
degrees of freedom related to the slave coordinates have been eliminated and, thus, { A}
in equation (8.9) includes only the differences between translational slave coordinates of
the structure X and those of the model A-C. Considering the total number of degrees of
freedom for each structure and the number of interface coordinates (which is 4), the
number of trandational slave coordinates will be 5, i.e. {A¢} contains 5 elements for
each mode.
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The joint element of structure X has the following properties:

Lix= 100% Le ,Ejy = 1000% Ee .pjx =10%pg (8.31)

Thus, the joint element is 10 times stiffer and 10 times lighter than the base element
(shown in Fig.3.2).

The specification in equation (8.3 1) yields the following mass and stiffness matrices for
real joint model:

.05 .0021 .01746 -.00126
.00011 .00126 -.000087

ix .05 -.0021
.00011
6440000 966000 -6440000 966000
193200 -966000 96600
(8.32)
K1, = 6440000 -998200

All case studies are based on the application of a beam element model for the trial (and
reference) joint and calculation of six modification factors, o too in equations (8.3)
and (8.4) and thereby updating the tria joint model.

8.3.2 COMPUTATIONAL ASPECTS OF SENSITIVITY ANALYSIS

Two points should be considered and dealt with during the sensitivity analysis
calculations as follows:

(a) - moda vector scaling; and

(b) - balancing of the senstivity matrix
These will now be examined.

(a)-Modal vectors scaling:

As has been discussed in section 8.2, the modal vectors used in the sensitivity analysis
should be mass-normalized, i.e. they should satisfy the following relation:
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(o 1tIM] {9 ) =1 (8.33)
Depending on the particular eigen-solver used and the normalizing factor it uses during
the solution of the eigenvalue problem, some of the eigenvectors may be determined with
a1800 phase shift relative to their experimental counterpart. This does not violate relation
(8.33) but affects both the sensitivity matrix and {AE} in equation (8.9). This effect on
the sensitivity matrix is restricted to the eigenvector-related elements and the rows of the
sensitivity matrix related to the phase-shifted modes will be multiplied by (-1). In cases
where a truncated modal model is used in the calculation, residual terms representing the
lower and higher modes in equation (8.25) will be affected in the same way, i.e., will be
multiplied by (-1).

This error in the phase of some of the eigen-vectors, which alters the nature of equation
(8.9), may lead to divergence in the calculations and should be identified and dedt with.

One other smilar problem is the detection of related modes of the two models X and A-C.
Sometimes, due to the complicated nature of the joint and significant differences between
joint stiffness in different directions, it is difficult to pair the modes of the real structure
with their counterpart in the analytical model, in which the complexity of joint is not
properly considered. For example, it is quite possible that the first mode of the redl
structure is a torsional mode while that of the analytical model is a bending one. So, in
order to be able to calculate the difference vector on the Lh.s of equation (8.9) correctly, it
is essential that a form of correlation assessment must be used to pair the relevent modes
of the rea structure and the analytical model. The correlation assessment can be
performed using MAC and/or COMAC values [44,45].

(b)-Balancing of the sensitivity matrix:
Table 8.1 shows some typical elements of the sensitivity matrix before any balancing. As

is evident from this table, the sensitivity matrix contains elements with very different
orders of magnitude and this can make the matrix ill-conditioned.

trans.stiffness rotary stiffness translational mass rotary inertia
related related related related
a 64 p 4.5¢- 11 -1.89¢-8 .0558 -.354
0 AMd p 3.25¢-6 .0025 -5043 -23457
Table 8.1 Typical elements of sendtivity matrix for lower modes
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It is clear from Table 8.1 that the order of s** elements of [S] is much higher than the
others. Examining equations (8.12) and (8.14), the reason for the large order of
magnitude difference becomes clear, i.e. the multiplication of s} elements by A in
equation (8.12) and dividing s and s@ elements by A in equation (8.14).

So, an unbalanced senditivity matrix will look like:

{AO}mx1 [[0(16'10)]11 [O(D)]}, } { {AK}nxll
= 8.34
(MM [0(1e-5)]y,  [OUedy, || {AM}1pxi (834

Since eguation (8.9) represents an over-determined set of equations, using aleast-squares
method for solving it, one has:

[SITIS) = (S} S} T+, HS] STHT o (8.35)

= :‘ (s?) {S?}T+Z (st (shyt
= £

where {S‘?}T and {S;“}T are the ith and jth rows of the sensitivity matrix related to the
eigenvectors and eigenval ues, respectively. From equation (8.35) it is clear that [S]T[S]is
dominated by the second summation and so is its rank. On the other hand, the rank of the
second summation itself depends on the number of mass modification parameters, i.e. the
rank of submatrix 22 in (8.34), and, thus, [S]T[S] is rank-deficient. So, it is not possible
to obtain a full-rank sengtivity matrix without any balancing.

Using a reference joint model to define parameters a; in equations (8.3) and (8.4) will

automatically balance the order of the mass- and dtiffness-related elements of the
sensitivity matrix, [S], as explained in section 4.4.3. Also, in order to balance the relative

order of the eigenvalue- and eigenvector-related elements, each row of the sensitivity
matrix related to jth eigenvalue should be divided by lj.

8.3.3 PERFORMANCE OF THE METHOD

Performance of the method for either complete or truncated modal models can be broadly
categorized into the two following aspects:

(a) - performance with just a stiffness error;

* S?ﬁ = element of sensitivity matrix representing dA/da., |
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(b) - performance with both mass and stiffness errors.

The reason for this classification is that with just a stiffness error introduced the
identification calculation converges very rapidly and thisis true even for large errors. On
the other hand, when a mass error is involved in the calculations as well, convergence is
poor and is restricted to relatively smaller error magnitudes. The following table, 8.2,
better reveds this stuation:

error % lAQHy | IAMIG | 1AGIIR | IAMIR | convergence X
90% [K];& | .582407E6.006 33870 conjerges after 1E3
0% [M]; 3 iterations
90% [K];& | 5523(3.92E6| .17 [1.39E6|[M]; not P.D. 1E5
10% [M]; 3rd iteration
Table 8.2. Results of calculation for with and without mass cases, modes 3-9 involved in
calculaions

Asis evident from Table 8.2, there is no significant difference between 1lAAll, and 1Al
for the two cases and the condition numbers are reasonable. It should be noted that for the
case where mass error was involved modification factors were scaled after each iteration
in order to prevent the mass matrix from becoming non-positive-definite.

Table 8.2 suggests that atwo stage calculation processis potentially useful, i.e.

@) - keep the mass error constant and iterate with m=constant for k and then, when
the stiffness error is small enough;

(ii) - include m in the caculation and iterate until the desired results are achieved.

This method has been successfully applied to the second case in Table 8.2, i.e. 90%
stiffness and 10% mass error, and results are shown in Figs. 8.2 and 8.3.

It is evident from Figs. 8.2 and 8.3 that the stiffness error has been reduced to less than
2% after 2 iterations and there is no significant change in the modal parameters
differences after the third iteration, using only stiffness in calculations. Once mass is
included in the calculation and the stiffness error is small, the calculation converges to the
correct values of m and k in one more iteration
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It is worth mentioning here that for model updating applications, the IEM method
converges to a solution even for large values of error in the both mass and stiffness
matrices of analytical model. The reason for the deficiency in the joint identification case
lies in the fact that each correction factor of an elemental mass or stiffness matrix in the
updating case is divided into three modification factors for joint identification
applications, as shown in equations (8.3) and (8.4). Decomposing the mass and stiffness
matrices of an element (which is representing the joint) to submatrices and assigning a
separate modification factor to each submatrix is inevitable in joint identification

applications, (see chapter 3), and will have the following effects on the calculations:
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(a) - an increase in the number of unknowns which affects condition of the
caculations;, and
(b) - an effect of some of the submatrices on the calculations which is so insignificant

as to make the calculations diverge.

8.3.4 PERFORMANCE OF THE IEM METHOD WITH TRUNCATED
MODAL MODEL

As mentioned before, the main objective of the present chapter is to study the applicability
of the sensitivity-based joint identification method using experimental data. Since, when
using experimental data, only a limited number of modes are available, study of the
performance of the method with a truncated modal model comprises the major part of
present chapter.

8.3.4.1 GENERAL CONSIDERATIONS

Consider a symmetric and positive-definite n-degree-of-freedom system. Writing the
sensitivity equation (8.9) for this system, using the compl ete coordinate set and the modal
model, one will obtain a unique set of solutions for the mass and stiffness corrections
provided that the first order approximation is valid. In such a case, for each spatia
parameter on the r.h.s of equation (8.9), one has:

Aki=a;; AP +apAdpa+...... ... + b1 AN+ LR big A,
(8.36)

where aj;; and by; are elements of the inverse of the sensitivity matrix. If some of the
coordinates and/or modes are not present in the analysis, the related terms in equation
(8.36) will be eliminated. This means that Ak; will be under- or over-estimated. The
magnitude of this mis-determination depends on the coordinates and/or modes which are
eliminated.

It is clear that variations of each of the spatial parameters of the structure will affect some
of the modes more than others. For example, if a beam is modified with a mass
modification, Am, near to its mid-span, this modification will affect odd modes more than
even ones and, of course, higher modes will be more affected. Now, if one neglects odd
modes when calculating Am, its value cannot be correctly determined.
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From the above discussion, it is concluded that in truncating the modal model one should
try to include as many significant modes as possible (i.e. those modes significantly
affected by the presence of the joint) in the calculation.

The question here is that “how can the significant modes be identified?‘. The answer to
this question has been given in section 4.5.1, where the sensitivity of the modal
parameters of amatrix to small perturbations has been discussed. Rewriting the equations
derived in that section, one obtains:

. n{e 3T IaATI {9} 1
1S

8.37
r 101 T} (630
and
, E :{¢}S{,¢}§[AA1{¢}S
{0’} -{¢} = 4 {1‘1’}34’}30“{7‘3) (8.38)

As equations (8.37) and (8.38) indicate, quantities I( 1q>}3~{ ¢} land (?»r-?»s) can be used to
assess the sensitivity of the eigenvalue and eigenvector respectively of mode r. If for
mode r, a large IAkrI and/or {¢'}r-{¢}r is associated with large I( l(1)}'rr{(1>}r|'1 and/or
(kr-ks)'l, then that mode is not a significant mode but an ill-conditioned* one and should

not be consdered in calculations.

It should be noted that sometimes using a significant mode as the fiit or last mode of a
truncated set of modes make the calculation diverge. Thisis due to the fact that using a
truncated modal model, elements of the sensitivity matrix related to eigenvectors are not
caculated accurately and this inaccuracy is more marked for the first and last modes of the
truncated set of modes. Now, if thisfirst or last mode is a significant one (in the above-
mentioned sense) then the effect of this inaccuracy will be more marked on the
calculation. For example, in one of the case studies, reasonable results were obtained
using modes 3 to 6 (out of the 12 modes) in the calculations while no convergence was
achieved using modes 3 to 8! Examining llA¢ll for the two cases reveals that the
contribution of modes 3 to 7 to l1A¢ll is equal to 0.0137 while the contribution of mode 8

* As mentioned in section 4.5.1, Wilkinson proposes to consider (I{ ¢ }T (¢} h'and A A )" as

condition numbers of modal parameters. This proposition is reasonable as large values for any of these
quantities result in large value for IA?»rI and/or {¢'}r {0 }r , even when I[AA]H is small.
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alone is 0.0307. This means that mode 8 is a significant mode and thus has a large effect
on the calculations. On the other hand, mode 8 is the last of the truncated set of modes
used in the calculations and, thus, it is very likely that the sensitivity elements related to
mode 8 are not calculated precisely. In order to investigate the order of precision of the
sensitivity matrix elements related to mode 8, typical exact and approximate sensitivity
elements related to various modes are plotted in Fig. 8.4

As is evident from Fig. 8.4, exact and approximate sensitivity values show good
agreement for all modes except mode 8 and this explains the reason for divergence of the
calculations.

To demonstrate the performance of the method using a truncated modal model, a number
of case studies have been carried out. The details of the models being used can be found
in section 8.3.1.
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Fig. 8.4 Exact & approximate values of typical senstivity matrix’'s
elements

CASE STUDY 1

The test structures and joint model for this case study are shown in Fig 8.1. The tria joint
model is similar to the real joint model with a 20% error in its mass and stiffness
matrices. Two modes, 3 and 4, have been used in the calculations and so the sensitivity
matrix is a 12x6 matrix (see 8.3.1). Note that mode 3 is the first elastic mode of the
system. Table 8.3 shows the first seven eigenvalues of the real and tria structures.
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A1 A2 A3 A4 A5 A6 A7

real str. 531 839 27263 | 161320 | 606005 | 2.31E6 | 3.56E6

trial str 532 841 27129 | 161008 | 605727 | 2.3E6 | 3.57E6

To demonstrate the effect of the lower and higher truncated modes, Table 8.4 shows
typical elements of the sensitivity matrix where each row shows the sensitivity elements
related to a specified spatial parameter. For example, the sensitivity parametersin the first

Table 8.3 Typica eigenvalues of read and trid structures

row relate to trandational stiffness.

Table 8.4 shows the significant effect of the truncated modes. This effect is particularly

marked for rigid body modes.

Exact value - rigid body & Rigid body Higher modes | +rigid body &
E(S) higher modes modes effect effect higher modes
effect effect
Transl. 1.1637E-6 | 3.792E-7 9.253E-7 1.581E-7 1.146E-6
stiffness 32% E(S) 79% [ES)I 13.6% IE(S) 98% IE(S)I
Cross stiffness | -1.543E-5 | -4.978E-6 | -1.229E-5 | -2.064E-6 -1.52E-5
32% IE(S)I 79.7% IE(S)I 13.4% [E(S)I 98.5% IE(S)I
Rotary stiffneps 7.665E-5 2.44E-5 6.122E-5 1.013E-5 7.549E-5
31.8% IE(S) | 79.8% IE(S) 13.2% [E(S)I 98.5% IE(S)!
Transl. mass 20.72 32 -12.9 -1.6 20.697
154% IE(S)! 62.7% IE(S)I 7.72% IE(S)! 99.9 %IE(S)!
Cross mass 3.242 2.23 1.05 0775 3.203
68.8% IE(S)I 32.4% IE(S)I 2.4% IE(S)| 98.8% IE(S)I
Rotary inertia -.235 231 -.554 -.0969 -.225
98.3% [E(S) | 235% IE(S) . 41.2% IE(S) ] 95.7% IE(S)I

Table 8.4. Typica elements of sengtivity matrix with and without

The results of the identification calculations are shown in Table 8.5. An important
deduction which can be drawn from this and the following case studies is that very
reasonable correction values are achieved for stiffness and translational mass in the first
run. This implies that stiffness correction values may be reasonably calculated without

iteration.

rigid body and higher modes effect.(without baancing)
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Iter. Transl K | Cross K | Rotary K | TransiM | Cross M | Rotary M| 11A ¢ 11 ] 1IAAILI
number error % error % error % error % error % error %
Init. val. 20 20 20 20 20 20 .0032 339
1st run 0.6 1 1.6 5.4 53 534 .002 384
1 0.1 0.1 0.48 0.13 1 7 .0004 36
2 0.006 | 0.002 | .0003 .038 2.3 10 2.6E-5| .216

Table 8.5 Mass and stiffness identification resultscal culations with 2 modes

To demonstrate the effect of increasing the number of modes involved in the calculations

on the rate of convergence, Table 8.6 shows the results of this case study but here with
modes 3 to 6 used in the calculations.

Iter. Transl K | Cross K | Rotary K | TransiM | Cross M | Rotary M| 11A 11 | [TARF
number | emor% | emor% | emor% | emor% | emor% | error %
Init. val. 20 20 20 20 20 20 00377 | 3104
1st run 4.3 4.3 4.3 0.7 7 68 0014 | 2824
1 0.055 | 0.066 | 0.078 | 0.096 | 0.26 5.3 | 4.3E-5| 2.83
2 .055 1 0.066 | .076 | .0966 | 0.26 5.6 | 4.3E-5] 2.83

Table 8.6 Mass and iffness identification results calculations with 4 modes

Considering Tables 8.5 and 8.6 and comparing them with each other reveals the

following points:

(@ -

(b) -

increasing the number of modes has no significant effect on the stiffness error
reduction in the first run but has a remarkable effect on the mass error reduction,
particularly for cross and rotary inertia terms;

although both Tables 8.5 and 8.6 show that after the first run the errors of
stiffness and translational mass have been decreased significantly, the
magnitudes of lIA¢Il and HAAIl have not been reduced by the same proportion,
due to an increase in the cross and rotary inertia errors. The ratio between error
values in cross and rotary inertia on the one hand and lA¢!l and lIAAIl on the
other hand, once again illustrates the fact that cross and rotary inertia of the joint
model infig. 8.1 do not have a significant effect on the structure’' s response and,
as will be shown shortly, their effect can easily be polluted by noise effects. For
example, from Table 8.5, it is evident that after the first run, errors in the cross
and rotary inertia terms have been increased by 165% and 1600% respectively
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but, despite this increase, lIA¢!l shows no increase and lIAAIl increases only by
10%.

Apart from improving the rate of convergence, increasing the number of modes involved
in the calculations alows for the identification of larger error in the joint mass and
stiffness matrices. To illustrate this point, case study 1 has been repeated, this time with 6
modes involved in the calculation and 70% error in stiffness and 70% error in mass
matrices and for this case the calculation converges after 4 iterations.

Generally speaking, increasing the number of modes involved in the calculations can
improve the rate of convergence and alow for larger errors to be considered (although
thisis not always the case).

CASE STUDY 2

Everything in this case study is similar to case study 1 except that here only stiffness
errors will be assumed.

Fig. 8.5 shows the calculation results for 80% error in the stiffness matrix and with two
modes, 3 and 4, involved in the caculations.
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—a—  jagll
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©
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Fig. 8.5 Variation of differences of madal
parameters with iteration

As is evident from Fig. 8.5, the calculation converges after 1 or 2 iterations. The same
calculations with 50% error for stiffness matrix converge in the first run.




[8] Application of IEM to Joint Identification 183

PERFORMANCE OF THE METHOD USING JUST EIGENVALUES

Sensitivity analysis using just eigenvalues in equation (8.9) seems to be very promising.
This is due to the fact that the eigenvalue-related sengtivity elements can be caculated for
each mode individually (equation (8.12)) and, thus, using a truncated set of modes does
not affect the results. On the other hand, using eigenvalues only, more modes should be
measured to prevent equation (8.10) becoming under-determined

Another advantage associated with the eigenvalues is that, at least for a reasonable
number of lower modes, they can be measured with high accuracy while this is not the
case for the eigenvectors (note that even for the first mode of a structure there could be a
significant error in the eigenvector elements for points near to nodes). Although the
measured eigenvalues are generally accurate, examination of equation (8.12) reveals that
eigenvectors are involved in eigenvalue-related sensitivity element calculation and, thus,
inaccurate eigenvectors can affect the accuracy of the sendtivity matrix.

To examine the performance of the method using just eigenvalues, the following case
study has been carried out.

CASE STUDY 3
As before, the test structures and joint model for this case study are shownin Fig. 8.1
Table 8.7 shows the results of a case study with 20% error in joint mass and stiffness

matrices, using modes 3 to 9 in the calculations. Here, 7 modes have been used for six
unknowns (o to @ in equations 8.3 and 8.4) which makes the order of the sensitivity

matrix 7x6.

Iteration Trand K Cross K Rotary K | Trans M Cross M Rotary M AR

number error % error % error % error % error % error %

Init. Val. 20 20 20 20 20 20 55086
2 7 7 7 6 1.3 94 S

Table 8.7 Mass and stiffness identification results using only eigenvalues, calculation
with 7 modes

Table 8.7 indicates that after 2 iterations the stiffness and mass errors, apart from the
error in the rotary inertia, have been reduced reasonably but the rotary inertiarelated error
has been increased dramatically and HAAIl is virtually zero. This means that there is
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another structure with slightly different mass and stiffness matrices and exactly the same
eigenvalues. Note that for this case, further iteration has no effect on the results and this
is the structure to which the calculations converge. The large error in rotary inertia again
indicates that eigenvalues of the structure are not senditive to this parameter.

The same caculation has been repeated using a complete moda model and this converges
to the true joint mass and gtiffness matrix after only one iteration.

So, generally speaking, the application of eigenvalues only is not recommended for a
truncated modal model unless either a reasonably large number of modes are involved to
make the calculation converge to the rea joint, or an accurate mass matrix is not desired.

[8.5IMPORTANCE OF USING THE CORRECT JOINT MODEL

An important question which should be considered is. " how important is the application
of the correct joint model from the connectivity point of view?’ In other words, can we
use a lumped parameter model for ajoint which is FE -based in reality and, if we do so,

does the calculation correct this mis-modelling? After carrying out many case studies the
answer to this question is “NO”. This was not unexpected since using a lumped
parameter model for an FE-based model means 100% errors in cross el ements of mass
and stiffness matrices of the joint and in this case the calculation is very unlikely to
converge.

So, when using the sensitivity method for joint identification, one must use engineering
judgement about the nature of the joint and then choose the right joint modd.

[8.8|SENSITIVITY OF IEM TO. MEASUREMENT NOISE

As mentioned in section 6.6, measurement noise can induce typically 1% error in
eigenvalues and 10% error in eigenvectors. Sensitivity of the method to measurement
noise has been examined by carrying out a series of case studies. The error-adding
mechanism adopted here is the same as that shown in equation (6.56), i.e.

)\.i=)\.i-j- (1) x(cl/IOO)xRND x)\.i
0;=0;+ (ep/100) x RND x ¢; (8.39)
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where e and e5 are 1 and 5 respectively, and RND is a random number generator such

that 0 <RND< 1. The signs of noise-induced errors in equation (8.39) are also
determined by arandom function.

CASE STUDY 4

Using the test structures and joint model in Fig. 8.1 and with 20% error in the mass and
stiffness matrices of the trial joint, Table 8.8 demonstrates the difference between the
modal parameters with and without noise.

Mode No. 1 2 3 4 5 6 7
- Noise -1.4 -1.6 134 312 278 3000 1200
+ Noise -3 -1 20 243 309 7100 8600

Table 8.8 Differences of moda parameters with and without noise

8 9 10 11 12 13 14 1A AT
19723 51325 115075 1.24E6 189213 6.74E6 1.77E8 .0834 1.78E8
16000 72000 108000 1.2E6 7000pP 6.7E6 1.76E8 4 i.8E8

Table 8.8 continued
Case study 1 has been repeated with noise added to the modal model and modes 3 to 9
involved. The results of this case are shown in Table 8.9 .

Iteration Transl K Cross K Rotary K | Transl M Cross M | Rotary M| HAALNAGI
number error % error % error % error % error % error %
Init. Val. 20 20 20 20 20 20 73730,.1
10 29 33 37 40 203 773 1.5ES,
.097

Table 8.9 Mass and stiffness identification results with 7 modes

From Table 8.9, it is evident that the calculation has not converged after 10 iterations and

no improvement is achieved with further iteration. As was noticed in case studies in
previous sections, the structure’s response is insensitive to the joint’s rotary and cross
inertia variations and this, in turn, will cause the calculations to be sensitive to noise. For
example, Table 8.9 illustrates that a small amount of noise added to the structure’ s modal

parameters has resulted in alarge amount of error in the identified rotary and cross inertia
and this large error will affect the whole caculation.
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The above argument suggests that the noise effect may be reduced by ignoring the mass
modifications in the calculaions atogether.

In what follows, the above idea will be examined.
CASE STUDY 5

Having repeated case study 4 with the mass removed from the calculations, Table 8.10
shows the results for this case.

Iteration | Trand K Cross K Rotary K | Trand M Cross M | Rotary M| HAAILIAGH
number error % aror % error % error % error % error %
Init. Val. 20 20 20 20 20 20 73730,. 1
1 17 18 19 20 20 20 34282,
.093
Table 8.10 Stiffness identification results without mass being involved, calculation with 7
modes

As is evident from Table 8.10, ignoring the mass, stiffness errors have been reduced
dightly and lIAAll has been reduced remarkably.

So, when noise is present in the calculation, ignoring mass modification factors in the
caculations proves to be useful.

CASE STUDY 6

Case study 3 is repeated here, i.e. using only eigenvalues in the calculations, with noise
effect added to modal parameters. The results of this case study are shown in Table 8.11

Iteration Trand K Cross K Rotary K | Trand M | Cross M | Rotary M AL T

number error % error % error % error % error % error %

Init. Val. 20 20 20 20 20 20 73730
2 2 3 3 6.5 2.2 120 30252

Table 8.11 Mass and stiffness identification results with 7 modes

As Table 8.11 indicates, using just eigenvalues in the calculations, a great reduction in
mass and stiffness error values have been achieved in just 2 iterations. This shows that
identification is more sengtive to noise in eigenvectors than noise in eigenvalues.
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Thus, generally speaking, using just eigenvalues in calculations gives better results,
(which was expected as explained before), provided enough modes are used to prevent an
under-determined set of equations.

ONCLUSIONS AND REMARKS.

Application of the inverse eigensensitivity method to the joint identification problem has
been investigated in this chapter. The method has been modified to be applicable to the
pure experimental data case. The following genera conclusions can be drawn from the

discussions throughout this chapter:

(a) -

() -

© -

(-

the method gives good results for the stiffness of the joint almost without any
iteration required, but for the mass parameters this is not the case and a number
of iterations are necessary to obtain a reasonable result for the mass;

for the joint model used in the case studies of this chapter, the structure’'s
response turns out to be insensitive to the joint’s cross and rotary inertia
variations. This insensitivity leads to a large errors in the results when noise is
present in the measured data;

when noise is involved in the data, the method fails to give reasonable results
unless one of the following methods is used:

(i)- to ignore mass modifications in the calculation atogether; or

(ii)- to use just eigenvalues in the calculations. This option gives reasonable
results Provided sufficient number of modes are available (measured); and

the major setback of the method for experimental applications is its iterative
nature which makes repetitive couplings necessary. If couplings are performed
using FRF models of the substructures, then there is a modal analysis necessary
after each coupling. On the other hand, if a component mode synthesis technique
is used for the coupling analysis, then one is faced with the difficulties in solving
the eigenvalue problem as explained in chapter 2. Using FE models of
substructures in the coupling analysis problem is not serious and the method can
be used efficiently for this case.




CHAPTER

FRF-BASED DECOUPLING METHOD

INTRODUCTION:

Adaptive joint identification techniques were discussed in chapters 5 through 8. As
mentioned in chapter 1, and observed in al chapters, an essential feature of any adaptive
technique is that it needs an analytical model of the structure and, in most cases, this
model must be generated by coupling the constituent substructures of the assembled
gructure through a trid joint model.

On the other hand, for all other adaptive joint identification techniques except the FRF-
based direct identification method discussed in chapter 5, iteration is necessary to achieve
the solution (see chapters 6 to 8). Thus, for amost all adaptive techniques, repeated
coupling analyses are necessary which not only makes the identification calculations
lengthy but also increases error levelsin the results.

In the present chapter, an independent family of joint identification techniques called
“structural decoupling techniques’ by the author will be developed and their performance
and sensitivity to measurement noise will be discussed. Since the method studied in this
chapter is FRF-based, they exhibit all the advantages associated with FRF-based
techniques described in section 5.1. Also, as will be seen, application of this new
approach does not require any coupling analysis and, mathematicaly, is very smple to
implement.

[92] STRUCTURAL DECOUPLING METHODS

The basic idea of these methods is to extend the coupling formulation between two (or
more) substructures, considering the joint explicitly as an intermediate substructure and
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then solving the inverse problem, i.e, decoupling an assembled structure to its component
and, using either experimental or analytical models of substructures, identifying the joint.
This extension to the coupling formulation could be applied either to the FRF coupling or
Component Mode Synthesis methods and, thus, decoupling methods can be categorized
accordingly as follows:

@) - moda-based decoupling method; and
(b) - FRF-based decoupling method

Investigation of the performance of modal-based decoupling method is the subject of the
next chapter and we will concentrate here on the FRF-based decoupling method.

[9.3%RF-BASED DECOUPLING METHOD

As the name implies, this method is based on the use of the FRFs of the substructures
and the coupled structure to extract the dynamic properties of the joints. Depending on the
application cases and their feasbility, the following categories will be considered:

(@)-  two dadtic substructures decoupling;
(b)-  one eadtic substructure and ground decoupling.

It should be noted that the above-mentioned categories can be combined into a single
genera formulation, i.e, by considering case 2 as a specia case of case 1. However, it
will be shown later that this kind of general formulation is not suitable for experimental
studies and from this aspect it is better to consider these two cases separately.

9.3.1 DECOUPLING OF AN ASSEMBLED STRUCTURE CONSISTING
OF TWO ELASTIC SUBSTRUCTURES & JOINT ELEMENT

Consider two substructures A and B and the joint J as shown in Fig.2.1.

It isrequired to find the dynamic characteristics of joint Jusing FRFs of A and B and the
coupled structure, C. Having Combined A and B to form a dummy structure, D, and
recalling from chapter 2 the coupling equation relating FRFs of assembled structure, C,
and dummy structure, D, and joint element, J, is:

CASE (1) slave coordinates only involved in [H],
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-1
[H], =[A] - [B] [J+{D]] [C] ©.1)
where
[H]S [0] (HI! [0] [HIS (0]
[A] = [B] = . [C] = |
| 0] [H [01 [HI [0] [HI
[HI! (0]
[D]= | H=W ©.2)
[0] [H!

where [BI({J]+[D])"}{C] is the effect of coupling and joint flexibility on the substructures
slave coordinates, transformed from the interface coordinates by matrices [B] and [C].

CASE (2) complete coordinate set of structure C involved in[H],

For this case:

- - - - - - -1 -
o = [ 7] [ g + oy - 0 i o o] O ©.3)
or

(2], = [Z]; + (Z); - (T

where

oMy, 1] . [y ©0 7 . [Mygy O ]
[H]; = [H]y = [ = (9.4)
Lo R I U 0] Mgy

and subscripts sd and § designate the number of slave coordinates of structures D and J,
respectively.

If there are no slave coordinates on structure J, then :

Mysg  [0)
Hg=[Hy  ad 0 = (9.5)
0 [0
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For case (1), i.e. slave coordinates only involved in (H], the joint FRF can be extracted
from equation (9.1) as follows:

-1
[J = [ [BI*'(AJ-HIYICI'] - (D] (9.6)
or
[ (O-BI*(AI-H])ICIN)ID] ][Z]j = [ [BI*([A]-[H])ICT" ] 9.7)

The quantity [A]-[H] in equation (9.7) represents the joint effect on slave coordinates
and [B]* & [C]* transfer this effect to the interface coordinates.

A similar formulato (9.6) can be derived using impedances of the substructures. For this
case, the definitions of matrices [A],[B],[C]......[J] remain essentially as before but with
impedances being used instead of receptances. Thus, one has:

-1
[2]; = [ [BI'(AMZIYICT' ] - [D] 9.8)

Either (9.6) or (9.7) represent the essential formula for this method and define the
receptance or impedance of the joint, respectively.

For case (2), i.e. al coordinates of C involved in[H], the joint parameters are identified
from equation (9.3) as:

my= [ Ay ] [ g - 00, 080, 000 tANLS 9.9)

or
(2]; = (2], - Z)g + (0] (9.10)

Either one of equations (9.9) or (9.10) represent the essential formula for this part of this
method.

9.3.1.1 REMARKS AND COMPARISON OF THE TWO METHODS
BASED ON EQUATIONS (9.7) & (9.9):

Comparison of the two methods which are based on equations (9.7) and (9.9) (or (9.6)
and (9.10)) yields the following observations
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(a) -

®) -

By using equation (9.7) , one does not have to measure the FRF:s at the interface
coordinates of the coupled structure C. Since this is always difficult, and in
some cases impossible, this feature represents a considerable advantage for this
method,

Application of equation (2.7) requires calculation of the pseudo-inverse of some
matrices , i.e [B] and [C] in (9.6), unless (s,+s;,) = (i,+i,) which means that the
number of slave coordinates of dummy structure D is equal to the number of
interface coordinates. This assumption puts some constraints on the
measurement.( Note that using the pseudo-inverse could be advantageous in an
experimental analysis because it will serve to average the measurement errors
and spread them over a grester number of data points.)

In performing these pseudo-inverses, it is necessary that (s,+s,) > (i,+i;,) and that neither

s, hor s, be zero. Using equation (9.9) none of these problems exists and no

considerations are required about choosing the correct number of coordinates. This is
why both cases in section 9.2 can be handled by equation (9.9) but not by equation (9.7).

Thus, using equation (9.7) is generally better than using equation (9.9) and from an
experimental point of view the most important advantage is that stated in (a).

Using equation (9.7), it is still sometimes very difficult to measure the interface
coordinates point FRFs on one of the substructures, and for such a case the method
described below is proposed.

9.3.1.2 A METHOD TO DEAL WITH SUBSTRUCTURES WITH

UNMEASURED INTERFACE COORDINATES

Reconsider equation (9.6) or (9.8) :

-1
0= [ BI'(AIHHIYICIT'] -(D] (9.6)

-1
(Z);= [ [BI'(AMZI)ICT" ] - [D] (98)

where for (9.6) :
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[H]!
D] = (9.12)

(01 [Hi

and for (9.8)
(211

D] = (9.12)
01 JZI,

In what follows, equation (9.6) will be used for the analysis but every conclusionisvalid
for (9.8) as well.

Equations (9.6) can be written as:
Ul Uy | [ etz | | i 00
- - (9.13)

o i | L2t 2 | (o) [Hy

where [J11 is the joint's transfer FREs between the interface coordinates of the joint
related to substructures A and B and

[(F] = [ BI'CAHHIICTI ] (9.14)

and from (9.13) : )
Y =(F1'2  and (12 = [FP?! (9.15)

This means that [J]ii and [J]ii could be easily determined without any need to measure
the substructures point FRFs at the interface coordinates!

Using a prescribed joint model, e.g. an FE-based or lumped parameter model, it isa
straight forward matter to calculate the complete joint model having [J1ii and [J]ii. For a

lumped parameter joint model, for example, a simple joint can be modeled as:

i
-K. K.
i
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while for n such joints (either rotationa or trandationa) the model is:

K, 0 -K1 0
K2 0 -K2

-K1 0 K i 0
0 -K2 0 K2

From this it is easily seen that, in equation (9.13),[J]£i = -[J]aili) and [J]ai{) can be
determined from (9.15) and thus that one has [J]ai; and [J]bi{) in hand without measuring

FRFs a the interface coordinates of ether substructure.

For a more genera type of joint model, considering (9.15), equation (9.13) could be
written as :

(M1 o] [Fil! [o] | | (HI! (0]
= - (9.16)

01 F1% [ F*24 | 0 Hy
(1, i={Fy!1 - (H (9.17)
(311 =[F22 - (H}ii (9.18)

Usualy, it is not a difficult task to measure the transfer FRFs between the interface
coordinates of either A or B, i.e, the off-diagonal terms in [H]"; and [H]g, but the main

difficulty liesin measuring the point FRFs of the interface coordinates. Let us assume that
the point FRFs for B have been measured and thus that [J];, can be calculated from

(9.18).

If one assumes that [H]R in equation (9.17) isan i X i matrix then there are i diagonal

terms which have not been measured and also i unknowns related to the diagonal terms of
[J]1,4- So, the system of equations (9.17) is an underdetermined set and there is no exact
solution for it. One reasonable assumption is to consider the diagonal terms of [J]ii as
being equal to the diagonal terms of [J]igb. This can easily be justified if one considers an

FE or smple lumped mass-spring-damper models for the joint.
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Having [J11i, one can easily calculate [H]i and then assess these results by comparing

them with the FRFs measured at adjacent points of the interface coordinates of A. If the

results of this assessment are satisfactory, then the model found for J would be reliable
and one could use it aswell as [H]i,i for further analysis.

9.3.2 DECOUPLING OF AN ASSEMBLED STRUCTURE CONSISTING
OF ONE ELASTIC SUBSTRUCTURE

As its name implies, one of the substructures in this case is ground ( relative to the other
substructure ), Fig.9.1.

Substructure A

Fig. 9.1 Grounded assembled structure

For this case, the impedance modd of the joint can be written as :

18

Fa| | B (5
(= ) (9.19)
Fio) | 1zi® 2@ %

where g is asuffix for ground and notations " ~ " designates interface coordinates.
Since g is ground, {')E}jg=0 [Z]‘}a {')Z}ja = {F}ja (9.20)

and, using a proper FRF model for substructure A along with the following compatibility
and equilibrium equations we have:

(Fly=-(Fl, and X}y =X}y, (9.21)




@FRF—Based Decoupling Method 196

From equations (9.20) and (9.21) it follows:
. .. -1 -1 .
(Hlc = [[H]SaS - [HE ((H]} + ([Z]J?) ) [H]‘:] 9.22)

which can be solved for [Z]3.

@ =[ qsy* aupes - ) quyis* | - v (9.23)
i) =LUHE) (HI) - [H] ) ((HI) a :
or

..q-1
zp= [ 1-1L) HE ] ) (9.24)
where

s+ isst
[L] = (HI) (HI% - [H],) (HI)
[94|CONCLUDING REMARKS

From what has been said so far for frequency response decoupling methods, the
following conclusons can be drawn :

(@) -  neither of the methods discussed above uses a prescribed model for damping,
I.e, hysteretic or viscous, and so the appropriate model should be selected after
examining the identified joint’s FRFs. Thisis a considerable advantage when
identifying joints which reveal different damping mechanisms for different

frequency ranges,

(b)-  no prescribed modd for the joint is consdered. However, the nature of the joint,
i.e, trandationa and rotational or just trandationa or....etc, depends on the
interface coordinates used in coupling of the substructures,

(c) -  these methods could be applied to non-linear structures using appropriately-
measured FRFs;

(d)-  themethod proposedin 9.3.1.2 isauseful tool to deal with substructures where
interface coordinates are difficult to measure.
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CASE STUDIES

It was noted in the previous sections that either equation (9.7) or equation (9.9) can be
used as the basic formula for a genera decoupling anaysis. Due to the practical
advantages associated with using equation (9.7), explained in section 9.3.1.1, the
performance and sensitivity of this equation will be investigated in this and subsequent
sections

9.5.1 TEST STRUCTURES & JOINT MODELS

The assembled structure, C, and its constituent substructures are shown in Fig. 9.2.

Substructure A Substructure B

}

Joint element

Fin. 9.2 Test structures used in al case studies

Asisevident from Fig. 9.2, substructures A and B are FE-based beam models with 2 and
3 elements, respectively. These models are developed using a base element shown in Fig.
3.2:

In order to simulate a practical case as much as possible, just the translational degrees of
freedom of slave coordinates for both substructures and assembled structure are used in
calculations in all case studies. It is clear that by not using rotational degrees of freedom
in the calculations, one may lose valuable information about the joint’s effect on the
structure’ s response. In spite of this fact, since accurate evaluation of rotational degrees
of freedom responses is very difficult, rotational parameters of the slave coordinates will
be diminated from the calculations.

The joint element of the assembled structure in Fig. 9.2 has the following specifications:
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L = L, , B = 1000%E, p;= 10%p, (9.25)

Jc X

Thus, the joint element is 10 times stiffer and 10 times lighter than the base element in
Fig. 3.2. The specifications in equation (9.25) yield the following mass and stiffness
matrices for the joint element:

(.05 .0021 .01746 -.00126
.000 1.00 126 -.000087

M]. =
ic 05  -.0021
L .0001
6440000 966000 -6440000 966000
193200 -966000 96600
(9.26)
(K], = 6440000 -966000
193200.
CASE STUDY 1

In this case study, equation (9.7) has been set up and solved for the test structures in Fig.
9.2. Typical results of the identified joint are shown in Fig. 9.3. It should be noted that
since equation (9.7) is being solved at each individual frequency point, there is no need to
decompose [Z]j in equation (9.7) into its constituent pararneters, i.e. mass, stiffness and

(in damped case) damping. Thisiswhy the resultsin Fig. 9.3 are in terms of the elements
Of joint impedance matrix [Z]j.

As is evident from Fig. 9.3, the result is satisfactory. The condition number of the
coefficient matrix on the L.h.s of equation (9.7) is shown in Fig. 9.4. As this figure
indicates, the condition numbers of the coefficient matrix associated with resonance
frequencies of the substructures and of the assembled structure are high, which means a
greater possibility of high sengtivity to error at these frequencies.
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Fig. 9.3 Typical identified joint impedance without noise
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Fig. 9.4 Condition number of coefficient matrix on the Lh.s of equation
(9.7)

To examine the effect of measurement noise on the results, 5% random noise has been

introduced to both the real and imaginary parts of the FRFs of the substructures and of
the coupled structure. Typical calculated joint impedance matrix elements, zi(1,1) and

2(1,2), are shown in Fig. 9.5. Asis evident from this figure, the results are very poor
and comparing calculated mean vaues of results with correct vaues, it becomes clear that
computed results are at least 20 dB less than the correct values, which means 10 times
under-estimated.
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Fig. 9.5 Typica joint impedance matrix elements with 5% noise,
___correct value

The above-mentioned results lead to the conclusion that the identification procedure is
sensitive to noise. Investigation of the reason(s) for this high sensitivity and of methods
for its reduction are the subjects of subsequent sections.

9.5.2 INVESTIGATION ON THE PARAMETERS CONTROLLING
SENSITIVITY

In this section we will examine the nature of the identification problem sensitivity to noise
and will try to identify the underlying controlling parameters.

As mentioned in section 4.2.2.2, the significance of the effect of ajoint (each of its
individual parameters) on the assembled structure's response plays a major role in the
sengitivity of the identification procedure to measurement noise. In other words, a major
reason for high sensitivity can be attributed to the insensitivity of the assembled
structure’'s response to some of the joint parameters variations. The insensitivity of
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assembled structure C in Fig. 2.1 to variation of the joint parameters in expression
(9.26), for low and moderate frequency ranges, can be seen in Fig. 9.6. This figure
shows the typical FRFs of the assembled structure, C, generated once with the joint
model in expression (9.26) and the next time with a joint model 10 times stiffer and 10
times lighter than former joint modd.

ate1%4
a —
a .4 A
& 1 A
Jd 7/\
T \,\ A 17/‘\\\\
) .—V N \ / hd
— n \‘ \/
S
11}
v
-.68

12.00 l Frequ(‘ency Hz.

Fig. 9.6 Typica FRFs of two structures, --- joint model in (9.26)
__ 10 times stiffer joint

1

307. 00

As a general rule, the stiffer the joint, the less sensitive is the assembled structure is to
joint parameter variations.

CASE STUDY 2

Fig 9.7 shows the typical results of repeating case study 1 with just 5% random noise
added to [H].. As can be seen from this figure, even without adding any noise to the

FRFs of substructures, the results are very poor.

Recalling from section 4.2.2.2, and defining [E] as the noise-induced error matrix added
to matrix [H], (Il [EJI<<!I[H]_ID), the matrix [B]"([A]-[H]c)[C]’r in equation (9.7) can be

written as;

(BI"({A] - (H].- [EDIC]* = [BI*([A]-[H])[C]" + [B]*[ENC]* (9.27)

where the first term on the r.h.s of equation (9.27) represents the correct effect of the
joint on the assembled structure’s response and the second term shows the noise effect.
Now, as Fig. 9.7 indicates,

Il [BI+[E][C]+ Il > Il (BI*(TAHHIYICI* Il (9.28)
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i.e. the error effect has dominated the joint effect in the calculation.
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Fig. 9.7 Typica joint impedance matrix elements with 5% noise added
only to FRFs of assembled structure,___ correct value, - -- quadratic fitted curve

It is clear that the matter of the Structure’s sengtivity to joint parameter variations depends
on many factors among which the interfacing configuration is one of the most important.
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To illustrate the effect of the interfacing configuration, and other factors, on the
structure’s sensitivity and, consequently, on the results, the following case study has
been carried out.

CASE STUDY 3

Fig. 9.9 shows the results of identifying the joint for an assembled structure with the
interfacing configuration shown in Fig. 9.8 and with 5% random noise added to [H],

Substructure B

Lumped joint model

=

Substructure A

Fig. 9.8 Assembled structure C for case study 3

The constituent substructures of the assembled structure in Fig. 9.8 are the same as those
in Fig. 9.2 but a lumped parameter joint model has been used in Fig. 9.8 and no
rotational degrees of freedom are involved in the interfacing. The lumped parameter joint
model in Fig. 9.8 has the following mass and stiffness matrices:

05 0 0 0
0001 0 0
], = .05.0001

6440000 O -6440000 O

103200 0  -193200
(9.29)

[K]jc = 6440000 193r00

As expression (9.29) indicates, the joint model in Fig. 9.8 is alumped parameter version
of the (consistent) joint model in Fig. 9.2.
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Fig. 9.9 Typical joint impedance matrix elements with 5% noise added to
FRFs of assembled structurein Fig. 9.8

Examinationof Fig. 9.9 reveals that the results are satisfactory. On the other hand, using
the same interfacing configuration as in Fig. 9.2, i.e. with both translational and
rotational degrees of freedom included, together with a lumped parameter joint in
expression (9.29), again yields poor results.

The above observation indicates that, for the test structures of Fig. 9.2, the inclusion of
rotational degrees of freedom in the interface coordinates deteriorates the result. This
conclusion is in complete agreement with the conclusions drawn in chapters 5 to 8 (i.e.
insignificant effect of the joint’s rotational parameters.on the assembled structure’s

response).

Further examination of the results in Fig. 9.7 revedals that, despite poor results in this
figure, there is a clear trend in the identified joint impedances. Using a least-squares curve
fitting technique, this trend can be well described as a quadratic function of the form:

z; = kij - miij (9.30)
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The fitted quadratic functionsin Fig. 9.7 are shown by dashed lines. Note that the spikes
on the identified impedance curves, are related to natural frequencies of the substructures
and of the assembled structure (see Fig. 9.4).

The existence of the quadratic trend in the erroneous results in Fig. 9.7 indicates that the
noise has not affected the quadratic nature of the joint impedance. So, the identification
process identifies a joint element with an impedance of quadratic nature but, since the
noise has affected the FRFs of the assembled structure and substructures, the calculations
do not converge to the red joint but under-estimate it.

In the following sections, the methods of dealing with structures with insignificant joints
will be investigated.

9.5.3 APPLICATION OF LS METHOD TO REDUCE THE NOISE
EFFECT

Recalling from section 4.2.2.2 that, due to the fact that noise-induced errors dominate the
matrix [B]*‘([A]-[H]C)[C]+ in equation (9.7) (both sides of the equation) at each individual
frequency point, it is not possible to reduce the noise effects on the calculation by
combining equation (9.7) from different frequencies and using a least-squares (LS)
solution. So, in contrast to the adaptive identification techniques, the LS method does not
reduce the noise effect on the results.

9.5.4 APPLICATION OF SVD TECHNIQUE TO REDUCE THE NOISE
EFFECT.

The SVD technique is usually used to invert an ill-conditioned matrix where a small
amount of noise can affect the smalest singular vaues of the matrix.

In this section, the SVD is not used for inversion purposes (asit is not useful because of
the dominant error effect), but rather to find the parameters which cause the dominant
error effects in equation (9.7) and thus to eliminate them from the calculations. In this
connection, we will first examine the noise effect on [A-H,] and, second, on [H], asthe

main sources of error.
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Fig. 9.10 demonstrates the ratio of the elements of the left singular vectors of matrix [A-
H,] of case study 2, before and after adding noise to [H], for =200 Hz. Also, Table 9.1

demonstrates the singular values of [A-H,] with and without noise.

)
Z
=]
= 7.
+
D
S5 77
-4
! . 2 ' 3 ' 4 . 5
Vector’s number M 1st clement
) . O 2nd element
Fig. 9.10 The ratio of the elements of B 3d element
typical left singular vector with & U 4th element
without noise O sth element
04 1) 0'3 04 0'5
- Noise 1.177E-5 3.7E-6 1.15E-9 1.13E-10 9.2E-22
+ Noise 1.177E-5 3.72E-6 4.16E-8 2.5E-8 4.11E-10

Table 9.1 Singular values of [A-H,] with and without noise

Although the datain Fig. 9.10 and Table 9.1 are typical, the variation of the elements of
the right singular vectors and singular values shows the same pattern for the whole

frequency range of interest, i.e. 100-1000 Hz. Also, since only translational slave
coordinates are involved in [H], and in [A-H,], both matrices are of order of 5x5.

Examining Fig. 9.10 and Table 9.1, two conclusions can be deduced as follows:

(@)-  except for the two first column vectors of [U] and [V], the other columns are
afected by noise dramaticdly; and

(b) -  the3rd, 4th and 5th singular values are very small compared with the 2nd one.



@FRF—Based Decoupling Method 207

To determine the physical implications of the two above deductions, extend the method
introduced in [31] for the case of coupling analysis and define [A]=[A-H_] as the matrix

of the difference of FRFs of the assembled structure, C, and the dummy structure, D, at
their dave coordinates. Then using the SVD of [A], one obtains.

[A] = [A-H]] = [UIZIVIH = [8][VIH ==>[§] = [A][V] = [U][Z] (9.31)

As is evident from equation (9.31), the columns of [d] are equal to columns of [U]

multiplied by the appropriate ¢. Also, columns of [A] can be represented by linear
combinations of the columns of [8]. Now, saying that i singular value of [A-H,] is very

small means that:

NAI{ V};ll'is very small ===> [ll[A-H_J{V};llisvery small (9.32)

Expression (9.32) means that, for every small singular value, there is a certain pattern of

the slave coordinates’ response differences which has very insignificant contribution to
[A-H,], i.e. to the dlave coordinates FRFs difference matrix, and consequently to the

calculations. This inggnificant contribution can easily be dominated by the noise effects.

With the above physical explanation in mind, it is clear that the two above deductions
about the singular parameters of [A-H,], are cause and effect, i.e. the small singular

values related to the 3rd, 4th and 5th singular vectors are the cause of the dramatic noise
effect on their related singular vectors.

Therefore in order to prevent the insignificant difference patterns occuring, when noiseis
present, the appropriate singular values are set to be zero.

To investigate the effect of noise on [H], this matrix’s singular parameters have been
calculated for the frequency range of interest.

Examining the singular values of [H], reveals that, except at the natural frequencies of the
assembled structure, these parameters are not affected dramatically by noise. On the other

hand, exploring the left and right singular vectors of [H], shows that the noise effect on
these vectors is significant for the two following cases:

(@)-  for cases where two adjacent singular values are close (see section 4.51); and

(b) -  for the 4th right and left singular vectors.
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The first case above has been thoroughly discussed in section 4.5.1. For the second case,
closer examination shows that:

I{VIgl << I{V}}l i= 1to5&i#4 ==>fromequ.(9.31) I[H]{V};I= very small
(9.33)

Expression (9.33), again, means that the contribution of a certain pattern of deflection of
the slave coordinates of the assembled structure to [H], isinsignificant. Note that in this
case, in contrast to expression (9.32) for [A-H,], small II{V},ll is not associated with
small o .

So, from the above discussions on the quality of the noise effects on the singular
parameters of [H]. and [A-H,], it becomes clear that proper selection of singular

parameters of these matrices can improve the results of the identification.
CASE STUDY 4

Thetest structures and joint model for this case study are the same as those for case study
2, shown in Fig. 9.2 and equation (9.25). In order to reduce the noise effect on [A-H,],

this matrix has been regenerated using only the first two singular vectors and singular
values. Also, [H], has been regenerated using averaged [U], and [V], and either one or
two first singular values and singular vectors, i.e. if 6,/0, <2 then use only ¢, and if
0,/0,>2 use 6; and G, in regeneration of [H], (see section 4.5.1).

A typical result for the identified joint can be seen in Fig. 9.11. It is evident from this
figure that the results are much better than thosein Fig. 9.7. Note that the cal culated mean
valuesin Fig. 9.11, shown by dotted lines, give a reasonable approximation to the correct
impedances.
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Fig. 9.11 Typica joint impedance matrix element with 5% noise with
SVD technique applied to reduce noise effect

Finally, numerical case studies show that increasing the number of dave coordinates
involved in the calculation improves the results. Thisimprovement was expected because
more slave coordinates means more points are involved in the calculation of matrix
[A-H], and since, depending on their position in the structure, responses of different
points are differently affected by the joint, one has more estimates of the joint in the
calculation. This deduction is particularly true if the added slave coordinates are close to
an interfacing position. On the other hand, excessive number of slave coordinates may
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increase the error level in the calculations. For example, selecting a point which is a noda
point (or near to a nodal point) for one or more modes in the frequency range of interest
as a dave coordinate can introduce a huge amount of measurement error to the
calculations. Thus, selection of the number of slave coordinates and selection of their
location on the substructures and assembled structure is a delicate matter.

[9.66CONCLUSIONS & REMARKS

From the results achieved in the foregoing sections and the subsequent discussions, the
following conclusions can be drawn for the FRF-based decoupling method:

(@) -

(®) -

© -

the method is sensitive to measurement noise. This sensitivity, which depends
on the interfacing configuration, is due to insignificant joint effect on the
structure’s response. So, reduction of measurement noise is crucial. At a
preliminary stage of analysis this reduction of noise can be achieved by proper
selection of the slave coordinates and by post-processing of measured FRFs,
using modal analysis. If the post-processing is used, one should be very careful
when using regenerated FRFs, as even very dlight differences between original
and regenerated FRFs can affect the results of the computed joint remarkably ;

the following factors improve the result:

(i)-increasing the number of slave coordinates and properly selecting them. The
most useful save coordinates are those which are most affected by the joint In

other words, the most useful slave coordinates are those which do not cause any
insignificant difference pattern in [A-H], (see expression 9.32); and

(ii)- application of SVD technique to identify insignificant difference patterns and
eliminate them from calculations,

in cases where the effect of errors is dominant, the application of a LS technique
is not useful.
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MODAL-BASED DECOUPLING METHOD

INTRODUCTION

The FRF-based decoupling technique was discussed in chapter 9. As was noted in that
chapter, provided that the noise effect is not dominant, the FRF-based decoupling method
is very efficient. In the present chapter, the performance and sensitivity of a modal-based
verson of the decoupling method will be investigated.

The basic idea in modal-based decoupling method is the same as in the FRF version, i.e.
to extend the coupling formulation between two (or more) substructures, considering the
joint explicitly as an intermediate substructure and then solving the inverse problem, i.e,
decoupling an assembled structure to its components and, using either experimental or
analytical models of substructures, identifying the joint

ORMULATION OF MODAL-BASED DECOUPLING METHOD

Consider the assembled structure, C, shown in Fig. 9.1. This assembled structure
consists of two substructures A and B and ajoint element J.

Recalling the coupling equation from chapter 2 and assuming that substructures A and B
constitute a dummy structure D, the modal-based coupling equation can be written (see
equation (2.3 1)):
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{Par)
'xcr c
{Pp,}
Dad 0 1[l0gal 0 T A gl 0 Py}
0 D"bk] 0 [¢bki] 0 [¢bki] {pl;:r}

(10.1)

where notations i, s and k are designated as interface and slave coordinates and kept
modes, respectively, and,

2.-1 T
[0ze][@ ] [0,e] 0
Rlg=| = @ % 01 T (10.2)
0 CRICITON

As was described in chapter 2, [R ;] represents the residual contribution of the eliminated
higher modes to the flexibility of substructures A and B at their interface coordinates.
Thus, [Ry;] can be interpreted physically as a dummy spring or, generally speaking, as an
elastic medium which connects the interface coordinates of two substructures to each
other. Also, the joint which isareal elastic medium is present at the interface coordinates
of the substructures and connects the substructures to each other and as is evident from
equation (10.1) the flexibility matrices of these dummy and real elastic mediaarein series
and combine to congtitute the total elastic element acting between the interface coordinates
of the substructures.

In order to be able to calculate [Hj] from equation (10. 1), this equation should be solved
as an inverse eigenvalue problem. The solution procedure starts from calculation of

Py} | | |
] .. [usingexpansion equation (2.21) asfollows:
[ {Pyr}
TR I I O I
ars
< = pa; (103)
[ {Opss) 0 [dpysl |1 {Port

where {¢a§s} and {¢b§s} are subvectors of structure C's r'* eigenvector, containing the
slave coordinates related elements. Also, [¢,,,] and [¢,, ] are eigen-matrices of
substructures A and B, respectively, containing slave coordinates related elements of the
kept modes.
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C
Calculation of Par from equation (10.3) requires measurement of the rth eigenvector
(Py;}
of the assembled structure C as well as a sufficient number of modal parameters of
substructures A and B. It should be noted that only the slave coordinate eigenvector
parameters of structure C are required and thus no interface coordinates need to be

measured on structure C (which may be difficult to measure in practice.) Having
C
Par

calculated and putting it in equation (10. 1), this can be rewritten as.

{pp.)

T C
me} 0 }[A][wakil 0 H (Pai} | _
0 [Opy] 0 [Opxil J | (ppe,)

N {ps) _[[xak] 0 ]{p;}
“Lipd) 0 Dud ] (pS)
(10.4)
where
[A] =[[Hj] + [Rg] ]" (10.5)

Matrix [A] contains the unknown parameters of the joint which are to be found Equation

(10.5) can be converted into a set of algebraic equations with the elements of [A] as
unknowns. If ni is the number of interface coordinates, then [Hj] will be n;xn; and the

total number of unknowns, taking symmetry into the consideration, will be n;.x(n; +1)/2
while the number of equations is (m, + mb) where m, and mb are the numbers of

measured modes of substructures A and B, respectively. Now, if it is desired to identify
the joint from equation (10.4) using only one measured mode, the following inequalities
must be satisfied:

for equation (10.3)  (ma+mp)S ng = (nyg + ny) (10.6)

for equation (10.4)  myx(n; +1)/25 (ma+ my) (10.7)

where ngg, Nbs and n¢ are the numbers of measured slave coordinates of substructures A

and B and assembled structure C, respectively.

Inequalities (10.6) and (10.7) simply mean that in order to be able to identify the joint
using a single measured mode of the assembled structure C, the number of measured
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slave coordinates of the substructures must at least be equal to the number of unknowns
inthe joint impedance matrix.

In contrast to the FRF-based decoupling method where solving the governing equation
for each individua frequency yields good results due to the approximate nature of
equation (10.3), in which the contribution of higher modes has been ignored and
coordinate set is incomplete, i.e. part of information related to the joint effect is missed
(see equation (2.21)), solving equation (10.4) for only one mode does not yield a
satisfactory result. In order to achieve a satisfactory result it is necessary to incorporate
more modes of the assembled structure in the calculations, i.e. equation (10.4) for
different modes of the assembled structure must be combined to set up an over-

determined set of algebraic equations and, to be able to combine equations for different r,
it is necessary to separate the mass and stiffness parameters in [Hj], which is not

possible. The only way of separating the mass and stiffness parameters of [Hj] isto
ignore the higher modes' residual matrix [R 4] in equation (10.1), or (10.4). Then, using
[Zj] = [Hj]‘1 in equation (10.4), it will be an easy task to separate the mass and stiffness

parameters.

The other, more suitable, way of solving equation (10.1) isto write it as follows:

T+
[0g;] O
{pys} =
0 [¢bki] U-[Ah]] xr

. T
[0ai]l O (2] ] O
J - [Rdi]
0 [Opl

0 [dpxil |
[ogal O ] [logd © 1

aki aki

AA )

0 N’bkil_{ 0 N’bki]] [AM () (108)

where
Ayl O

AL] = -
[AM =[] [ 0 [}\bk]] (10.9)

Using equation (10.9), no approximation is introduced to equation (10.1) but, on the

[Paq] O
0 [¢bki]

inequality (10.7) for each mode. Also, inequality (10.6) must be satisfied as well.

[10.3CASE STUDIES

other hand, in order to be able to calculate[ ] , it is necessary to satisfy
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In order to study the performance of the modal-based decoupling method, a series of case
studies have been undertaken. Test structures used in all case studies are shown in Fig.
10.1. Substructure A is an 8-element FE model of a cantilever beam and substructure B is
aso an FE modd of a cantilever beam with 7 eements.

E Substructure A
A

Substructure B

ARSI SN ANSY

E Structure C

Fig. 10.1 Substructures A & B and assembled structure C

The specifications of the base element used to generate the substructures models are the
same as those in Fig. 3.2 of chapter 3. Also, the specifications of the joint model used to
generate the assembled structure are the same as those in equation (6.43) of the same
chapter, which yields following joint mass and stiffness matrices:

.05 .0021 .01746 -.00126 |
.00011 .00126 -.000087
M), =
J 05 -.0021
. 00011

[ 3220000 483000 -3220000 483000

96600 -483000 48300
(10.10)

(K] ix ~ - 3220000 -488000
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Since, as mentioned before, only the trandational slave coordinates of substructures A
and B and structure C are used in the calculations, there are 13 coordinates in the
eigenvector of structure C on ther.h.s of the equation (10.3)

In contrast to the FRF-based decoupling method, solving equation (10.9) even for a
single mode requires one to transform the matrix equation (10.8) into a set of algebraic
equations, as follows:

{K}

M) }nix(nin) = { L(wy) }(ma+mb)x1

[ CA) Jmasmbycnixmey) {

(10.11)

Thus, the introduction of a reference joint model is necessary, in order to balance the
coefficient matrix [C]. The reference joint model used in the subsequent case studies is
the same as that in equation (4.60) of chapter 4, i.e. a 20-parameter reference model as
follows:

oja; Gpay Ogaz  Oyay
Osa5 Ogdg Oqag
Ogag  Ogdg

- ®10310

[K]j =

G113 Ggpapp Og3dy3 Qg4

05215 %16 *17217
M]; = (10.12)
Oiga18 %9319

- 00220 -

Note that [Mj] and [Kj] have been used in equation (10.12), and not [AMJ-] and [AKJ-], as
the decoupling technique identifies the joint parameters directly and not modifications to

them (as in the adaptive techniques). Also, since there is no trial joint mode defined in the
decoupling method, the parameters a; can be defined using an arbitrary reference joint

model.

CASE STUDY 1
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Equation (10.8) is solved in this case study, using the first 7 modes and the first 6 modes
of substructures A and B respectively. Thus the transformation matrix on the r.h.s of
equation (10.3) is a 13x13 matrix. Further, the matrix [C(A,)] on the Lh.s of equation

(10.11) isa 13x20 matrix, for each mode of assembled structure, r.

Expression (10.13) shows the identified joint mass and stiffness matrices, using 5 modes
of the assembled structure in the caculations.

294257(90%) 22013(95%) -265246 47779

25105 415
[K); = 8816(90%) 293275 45210
and
0074(85%) .00015(93%) .003 -.00019
) 1.7E-5(85%) .0001 -1.2E-6 .
[M]; = 0074 -.00032 (1013)
2.94E-5

Error values in brackets in expression (10.13) indicate the poor quality of the result. In
spite of this, the proportionality between various elements of the stiffness and mass
matricesis reasonably well preserved.

CASE STUDY 2

Case study 1 is repeated, this time using the complete set of slave coordinates of the
assembled structure in the calculations, i.e. rotational slave coordinates are involved as
well. Under these circumstances, the transformation matrix on the r.h.s of equation
(10.3) is 26x26 which means that the first 13 modes of substructures A and B are
involved in the calculations. Furthermore, the coefficient matrix [C] in equation (10.11) is
a 26x20 matrix for each mode of assembled structure.

Expression (6.14) shows the result of this case.

2.6E6(18%) 600000(24%) -2.44E6 83015
-4377 18 -42639

[K]; = 277725(186%) 3.72E6 -268342
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and

.0005(354%) .0018 .00012
.093 -.0015

.064(18%) .0042(98%) .021 -1.24E-5

[M]; = (10.14)

Comparing results in expression (10.14) with those in expression (10.13), it is seen that
the stiffness results are slightly better in expression (10.14).

Generally speaking, the results achieved from modal-based decoupling method are not
satisfactory. It was explained in section 6.5.2 that achieving a satisfactory result from
equation (10.8) depends mainly on the accuracy of the expansion of the assembled
structure’ s modes in equation (10.3). The accuracy of this expansion, in turn, depends on
the how close the mode to be expanded, i.e. {¢r°S} is to the range space of the

transformation matrix, i.e.
b O

0 [q)bks]

Since the base vectors of the transformation matrix’s range space -i.e. the columns of the
transformation matrix- lie in the subspaces of the space which {¢r°s} belongs to (i.e
columns of transformation matrix belong to smaller space of substructures modal
matrices), thus it is very unlikely that one obtains a reasonably accurate expansion from
equation (10.3).



M odal-Based Decoupling Method 219

REMARKS AND CONCLUSIONS

In this chapter, a new modal -based decoupling method is proposed for joint identification
and its performance has been examined.

Although the method is very simple and easy to implement, due to the inaccurate
expansion in equation (10.3) caused by ignoring the higher modes of substructuresin the
expansion, achieving good resultsis very case-dependent and in genera unlikely.

As the component mode synthesis method is a well-established technique which is used
for coupling purposes efficiently [ 19], the deficiency of the modal-based decoupling
method is a good example of a case where the direct problem can be solved efficiently
while the inverse problem cannot




CHAPTER |11

EXPERIMENTAL CASE STUDY

INTRODUCTION

Various joint identification techniques have been thoroughly discussed in chapters 5 to 10
and the advantages and shortcomings associated with each technique were also
investigated.

In this chapter, the applicability of a typical joint identification technique to a practical
problem will be examined.

|11.2 STATEMENT OF THE PROBLEM

As apractical engineering case, it is desired to identify the dynamic characteristics of the
soft medium which isolates a blade from its stator support ring, Fig. 11.1. The blade
itself is made from a special steel aloy and is very stiff while the soft medium, which will
be called the isolator from here on, is aso made from steel but is much softer than the
blade and support ring.

The configuration of the assembled structure, Fig.1 1.1, is such that it would not allow
any access to the interface coordinates and, thus, it is not possible to measure the transfer
FRFs,HSxi. Considering the fact that these FRFs are not required in the FRF-based
decoupling technique, and other practical advantages associated with the FRF-based
decoupling method, this technique is chosen to be used in this analysis.




Experimental Case Study 221

R (i 1

SLOT

UPPER RING

SOLATOR SLOT

ISOLATING MEDIUM

-----------------------

A-A VIEW B!

LOWER RING

Fig 11.1 Support ring, blade and assembled structure

The two substructures are the blade and its support ring for which the slave and interface
coordinates should be measured. Due to the skewed nature of the blade and also due to
very difficult access to the support ring interface coordinates, it is very difficult to make
accurate FRF measurements on these substructures. On the other hand, the nature of the
joint and its dynamic characteristics which are going to be identified are independent of
the substructures configuration and their mechanical properties, provided that the
interfacing configuration and conditions are maintained.

Considering the above argument, it was decided to substitute the support ring by a clamp
and the skewed blade with a straight one. These “equivaent” clamp and blade are shown
in Fig. 11.2.a
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Upper clamp

{solator

Lower clamp

—

Impact (hitting)
direction

et

--})_.-_..-.‘_...-..__4--
oo

|-8 dave coords

9-12 interface coords

Fig. 11.2 (a)-The substitutional blade & clamped structures & the slave and
interface coordinates pogtion, (b)- joint model & hitting direction

The clamp and blade, especially the blade root, were designed in such a way that the
interfacing configuration of the equivalent assembled structure closely resembles those of

the rea assembled structure.

The reason for choosing a clamped configuration for the equivalent assembled structure,
i.e. using the clamp instead of the support ring, is that the sensitivity of the calculations to
noise is relatively low for clamped configurations, due to the fact that the effect of a soft
joint in the root of a clamped structure has a significant effect on the assembled structure’s

response.
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JOINT MODEL AND MEASUREMENT POINTS SELECTION
The basic identification formulafor this case study is (see section 9.3):
zp= [ 1- ] (1L.1)
i a '
where
— siyt ss isyt
[L] = ([H]a') ((HI - H]) ([H]‘a)

with notations “a’ and "c¢" designating the blade substructure and assembled structure,
respectively.

The dave coordinates which are measured on the blade substructure and clamped
assembled structure must be consistent with each other and with the interfacing
configuration. Also, the joint model should be selected in such away that it represents the
connectivity and configurational features of the real joint. It should be noted that there is
no need to consider a prescribed joint model when solving equation (11.1) and the only
reason for defining such a joint model is to clarify the sort of the model which is
consistent with the slave coordinates and the interfacing configuration considered. The
joint model and measurement points on the substructures and the assembled structure are
shown in Fig. 11.2.b.

Asisevident from this figure, there are 8 slave and 4 interface coordinates considered on

the blade which are selected on the geometrical symmetry axis of the blade. So, the
interfacing configuration and the slave coordinates selected are consistent, provided no
torsional mode is involved in the slave coordinates FRFs in the frequency range of
interest, O-3200 Hz. Now, since the slave coordinates are selected on the geometrical

symmetry axis, it seems that one can assume that there will be no effect from torsional

modes in the measured FRFs. On the other hand, if, due to production imperfections, the
mass symmetry axis is not coincident with the geometrical one and/or measurements are
not perfect, then it is very likely that there will be some contributions of torsional modes
in the FRFs.

To minimize any torsional mode effects, measurements have been carried out with the
maximum possible accuracy which can be achieved by a hammer test and repeated several
times. Also, performing FE analysis of the blade for the free-free and clamped
configurations, it has been established that there is atorsional mode in frequency range of
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interest for both configurations. Table 11.1 shows the natural frequencies of the blade for
the two configurations, obtained from the FE analysis and experimental measurement.
The mode shapes of the blade achieved from the FE analysis can be seen in appendix A.

Natural freguency 1st (bending) 2nd (bending) 3rd(torsional)
Substr.  Ass. Strf Substr. |Ass. Str.| Substr. pss. Str.

FE prediction 815 222 [1976 1440|2102 1910
Measured 888 220 2076 1436 (2228 1964

Table 11.1 Measured and predicted natural frequencies of substructure & assembled
structure in frequency range of interest.

Although having the effects of this torsional mode in the FRFs is a problem, examining
some typical measured FRFs in Fig. 11.3 shows that, as expected, the effect of the
torsional mode is very small and localized. This effect can either be eliminated from the
FRFs by modal analysis or the results achieved around and at the torsional mode's
frequency can be ignored in identification.

82
o |
- Torsiona mode
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3 * @
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2 3200
frequency Hz.
BBA Torsiona mode
; ¢
-}
E; (b)
]
s
P
]
5
-3
8 Frequency Hz. 3208
Fig 11.3 Typica FRFs of substructure & assembled structure,
(a) substructure (b) assembled structure.
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it is evident from equation (11.1) that the necessary and sufficient condition for this
matrix equation to be solved is that:

n:<n (11.2)

where n ;=8 and n;=4 are the number of the slave and interface coordinates, respectively.
The reasons for choosing n, to be twice that of n; are:

(a) - as mentioned in chapter 9, increasing the number of the slave coordinates
generally increases the information of the joint effect in the calculations and,
thus, a better estimation of the joint properties is expected, when noise is present
in the calculation;

(b) - as will be shown later, the identification process will be repeated several times
using different groups of the slave coordinates in the calculations. This not only
offers away of taking a large number of samples and, thus, obtaining areliable
statistical average but, can also act as a consistency check to see whether thereis
any underlying trend in the different results. If there is no consistency between
the results achieved using different groups of the slave coordinates, then one can
conclude that what is identified is controlled only by noise; and

©) - examining mode shapes of the blade in both free-free and clamped
configurations in appendixA shows that, inevitably, some of the slave
coordinates are near the nodal points of some of the bending modes. Now,
performing the identification using different groups of the slave coordinates can
minimize the effect of such dave coordinates.

It should be noted that increasing the number of the slave coordinates beyond alimit may
result in ill-conditioned matrices in equation (11.1).

VALIDATING THE MEASURED DATA

In order to examine the accuracy of the measured data, the blade is considered to be
coupled to ground, the analysis performed using its measured FRFs, and some typical
results of the coupled structure FRFs are compared with the clamped blade FRFs in Fig.
11.4.
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Fig. 11.4 Typical measured and regenerated FRFs,---- Measured FRFs
____ Regenerated FRFs

It is evident from this figure that there is good agreement between the generated and
measured FRFs. The exceptions are regions close to the natural frequencies of the
assembled structure and these are believed to be due to the joint effect. It should be noted
that with regenerated FRF we mean the FRF generated by coupling (i.e predicted),
throughout this chapter.

11 5|DISCUSSION OF THE RESULTS

Fig. 11.5 shows some typical identified joint impedance matrix’s elements, using all of
the 8 slave coordinates and araw measured FRFs in the calculations.
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As can be seen from thisfigure, the results are very noisy especially at frequencies near to
the natural frequencies of the substructure (also see Fig. 9.4). Using statistical analysis
based on moving averages, the mean value of each z(i,j) has been calculated for 15
averaging spans starting from 200 Hz, i.e. each span covers 200 Hz, as well as the total
average over whole frequency range, i.e. 200-3200 Hz, using each span’s mean value.
The details of the statistical method used can be seen in appendix B. Also, the total mean

joint impedance is given in Fig. 11.5.

In order to reduce the noise effect on the calculations, it was decided to perform modal
analysis on the substructure’s FRFs. Two points are considered in this connection as

follows:
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(@) - modal analysis is not performed on the assembled structure FRFs because these
data contain the effect of joint and using modal analysis can alter this effect,
especidly the damping effect; and

(b) - the blade itself is afairly lightly-damped structure (mild steel) and performing a
very accurate modal analysis on its measured data may improve the results.

The coupling test for validating the data, described in section 11.4, is used here again,
this time using processed FRFs of the substructure in the coupling anaysis. Typical
regenerated FRFs along with measured ones can be seen in Fig. 11.6. Asis evident from
these figures, the two curves are reasonably close which indicates the validity of the
processed data. It should be noted that two different levels of processed data have been
used in Fig. 11.6 and later on in identification. The first level of processing is just to
smooth the measured FRFs individually and to eliminate any random noise effects. The
second level of processing is to rationalize all measured FRFs, in order to minimize
systematic error and inconsistency. The reason for using two levels of processed data is
to examine the effect of analyst interaction on the identified joint.
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Fig.11.6 Typical measured & regenerated FRFs using processed data,
(@ only smoothed,  (b) rationdized, ---Measured data, Regenerated data
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Having performed the modal analysis, typical results of identified joint impedances can be
seen in Fig. 11.7. Comparing the mean impedance matrices in Fig. 11.7 with those in
Fig. 11.5 it can be seen that the real parts of these matrices are more or less correlated and
consistent but thisis not the case for imaginary parts.
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Fig. 11.7 Typical identified joint using two level of processed data,
(a) smoothed data, (b) rationalized data, Moving average, ..... Totd averag

As was mentioned in section 11.3, the main reason for measuring redundant slave
coordinates is to be able to repeat the identification process using different groups of slave
coordinates. Some typical results of these attempts are shown in Fig. 11.8. Comparing
the identified jointsin Fig. 11.8 with those in Figs. 11.5 and 11.7, a reasonable degree of
consistency between the various results can be deduced.
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This consistency, which is especially notable for some of the joint impedances like
z(2,2), is both qualitative and quantitative. Qualitatively, all identified joint impedances
(i.e. joint contributions) first increase with frequency until they reach their maximum
values and then start to decrease, as frequency increases further. The frequency spans
over which joint impedances increase, remain constant and decrease are almost the same
for all identified joints and are O-1000 Hz, 1000-2000 Hz and 2000 Hz and onward,
respectively.

The quantitative consistency is reflected in the following points:.

@) - consistency in the magnitude of identified vaues, and

(b) - for al results, the impedance values identified for the springs 1 and 3, i.e. z(I,I)
and z(3,3) (see Fig. 11.2.b), are much smaller than those identified for springs 2
and 4. Considering the joint model and the impact direction in Fig. 11.2.b and
the mode shapes of free-free blade in appendix A, the reason for relatively lower
values identified for the springs 1 and 3 becomes clear. According to the free-
free blades' mode shapes in appendix A, the root of the blade remains rigid in
the frequency range of interest which means that the root constitutes a much
stiffer structure than the blade aerofoil . Considering this rigidity of the blade's
root, impact direction and joint model the relatively insignificant contribution of
springs 1 and 3 to the blade’ s response can be deduced.

As was mentioned in section 11.3, the existence of consistency in the different sets of
results is very important and proves that it is not measurement noise which controls the
identified joint.

Having established consistency in the results, the next step will be to calculate a Statistical
average of al sets of results from different identification attempts. This has been carried
out by combining the al results and calculating the statistical average for each span of 200
Hz. Then, using these average values, the following averages have been calculated:

(a) - average over the whole frequency range, O-3200 Hz

(b) - averages over three frequency spans, i.e. 0- 1200, 1200-2200, 2200-3200

Typical results of these averages are shown in Fig. 11.9. The total average and averages
over three frequency spans are shown in expressions (11.3) and (11.4)
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Defining a confidence criterion as (o;;/ E(z;)) [46], where o;; is standard deviation of
element ij of joint mean impedance matrix and E(Zij) is the mean value of element ij, and

calculating this value for each element ij of [ZJ] and for each span relating to Fig. 11.9,

shows that confidence criterion changes between 2% to 10% for different elements and,
for the different spans of each element ij.

ALIDATING THE IDENTIFIED JOINT

In this section the identified joint will be used in the coupling of the blade to ground, as
was done in section 11.4, and the results will be compared with measured FRFs of the
clamped blade. If the identified joint is a reasonable representation of the rea joint, then
the coupling results should show better match with measured data than those achieved in
Fig. 11.4.

Fig 11.10 shows typical regenerated FRFs using the joint model in expression (11.3),
i.e. the average impedance over the whole frequency range. As can be seen from this
figure, the match between measured FRFs and the regenerated ones is good up to about
800 Hz. It is aso notable from this figure that the first regenerated natural frequency is
much closer to the 1 st measured natural frequency than isthe casein Fig. 11.4 but thisis
not the case for second natural frequency.
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Fig. 11.10 Typical regenerated FRFs using total average joint impedance
inexp. (11.3)

Having used only the diagonal terms of the mean impedance matrix in expression (11.3),
typical results of regenerated FRFs are shown in Fig. 11. 11. Comparing the results in
Fig. 11.11 with those in Fig. 11.10, it is evident that the match between regenerated
curves and measured ones is much better in former case than the latter, a least up to about
1000 Hz. The reason for this better match in Fig. 11.11 liesin the fact that, examining the
blade moda shapes in appendix A, it is seen that the root of the blade is much stifier than
the blade’ s aerofoil and remains rigid in the lower and moderate frequency ranges which,
in turn means that for these frequency ranges the cross stiffness k;, and k34 in Fig.

11.2.b have very small contribution to the response and can be considered as zero.
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total average impedance matrix in exp. (11.3)

Fig. 11.12 demonstrates typical regenerated FRFs using three spans impedance averages
in expression (11.4). Asis evident from these figures, the match between the two curves
in each is satisfactory except for the very high frequency range. There are some spikes on
the regenerated curves which correspond to the joint impedance change frequencies in
expression (11.4), in which the structure’s characteristics change discontinuously.
Comparing the results in Fig. 11.12 with those in Fig. 11.4, it is concluded that a better
match is achieved by incorporating the joint in the coupling and, especialy, the
differencesin the 1st and 2nd natural frequencies have become smaller
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Fig. 11.12 demonstrates typical regenerated FRFs using three spans impedance averages
in expression (11.4). Asis evident from these figures, the match between the two curves
in each is satisfactory except for the very high frequency range. There are some spikes on
the regenerated curves which correspond to the joint impedance change frequencies in
expression (11.4), in which the structure’s characteristics change discontinuously.
Comparing the results in Fig. 11.12 with those in Fig. 11.4, it is concluded that a better
match is achieved by incorporating the joint in the coupling and, especialy, the
differencesin the 1st and 2nd natural frequencies have become smaller
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In order to prevent discontinuities in the structure’s response, it was decided to use the
middle span joint impedance average value in expression (11.4), i.e. the average value
over the range 1200-2200 Hz, for the whole frequency range. Typical results of this case
are shown in Fig. 11.13.

In order to examine the sensitivity of the assembled structure’s response predictions to
variations in the identified joint parameters, the coupling process has been repeated using
the middle span average multiplied by different factors. Some typical results of these
couplings are given in Fig. 11.14. Also, Fig. 11.15 and Table 11.2 demonstrate the
variation of the 1st and 2nd natural frequencies with the middle-span average impedance
variation.
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Af(Hz) 48 13 -7 -24 -48 -26
Af,(Hz) 71 298 12 48 -19 -48

Table 11.2 Variaion of the differences in natural frequencies of measured & regenerted

Asisevident from Fig. 11.15 and Table 11.2, the identified joint yields the closest match
between regenerated and measured natural frequencies. Also, examining Figs. 11.14 and
11.15 one can conclude that the assembled structure's response is sensitive to the
identified joint variation and, thus, one can claim that the identified joint in expression

FRFs with mean impedance multiplier,

f

measured ~

regenerated

(11.4) is a reasonable representation of the joint under investigation.

CONCLUDING REMARKS

Application of the FRF-based decoupling technique, as a typical joint identification
procedure, to a practical joint identification problem has been examined in this chapter.

The most important deductions and practical implications are highlighted below:
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(a) -

(b) -

() -

although using processed FRFs in an identification calculation yields smoother
results, it seems that one can achieve ailmost the same results using raw data in
the calculation;

by performing modal analysis on measured FRFs, one should be very careful
not to change the original measured data. In any case, modal analysis of the
FRFs of the assembled structure is not recommended as these FRFs contain the
joint effects which can be easily altered; and

having FRFs for a couple of redundant slave coordinates is very valuable in
order to check the consistency in the identified joint using different groups of
dave coordinates in the identification process.




CHAPTER|12

CONCLUSIONS

GENERAL CONCLUSIONS:

The main object of this work has been to develop a unified approach to the identification
of alinear model of structural joints. The work was mainly based on the assumption that
ajoint identification technique must be applicable to both mixed analytical/experimental
(“hybrid”) data and pure experimental data. In this connection, special attention has been
given to measurement noise effects on the results and to ways of reducing these effects.

As the joint identification problem is a special case of the more general identification
problem, it was appropriate to discuss important and relevant topics of the genera
identification problem such as overlaps of joint identification and model updating
problems. Further, the computational aspects of the identification problem in general, and
the joint identification problem in particular, have been discussed in detail, in which
crucial questions concerning the existence and uniqueness of the solution have been
addressed.

Although remarks and conclusions have been given in each of the preceding chapters, it is
appropriate now to provide ageneral summary of each of these conclusions and important
findings so that the various parts of the work which constitute new developments are
highlighted.

12.1.1 EFFECT OF JOINT(S) ON DYNAMIC COUPLING ANALYSIS
Joint(s) effect is not routinely considered in structural dynamic coupling analysis. In a

few cases where joint(s) effect is considered [8], its mass and tiffness matrices have
been directly added to those of FE models of substructures, i.e. spatial coupling. It has
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been shown in chapter 2 that including joint effect in coupling process leads to a quadratic
eigenvalue problem of a nonsymmetric matrix, using a free interface component mode
synthesis technique.

Also, equations have been developed which enables the joint to be incorporated directly in
the coupling process.

12.1.2 CLASSIFICATION OF IDENTIFICATION TECHNIQUES

After spending some time studying different identification (and model updating)
techniques, the author realized that there is a lack of an acceptable classification of
identification techniques. For example, ‘when can amethod be called direct’ ? or ‘whenis
a method perturbation-based’ ?

Based on the mathematical nature of the procedure which is used to formulate an
identification technique (and not its computational limitations), the author has proposed a
classfication for identification techniques explained in chapters 1 and 6. According to this
classification, an identification technique is direct if, using complete measured data, no
approximations are involved in its formulation and, consequently, no iterations are
necessary in its implementation. On the other hand, for perturbation-based techniques,
approximations and, consequently, iterations are inevitable, even if a complete set of
measured data are used. So, no computational aspects are considered in above criteria.

In addition to classification according to the mathematical nature of the derivation,
identification techniques are further classified according to the type of the data being used
in the analysis.

Based on the above classfication criteria, the author succeeded in predicting the existence
of a modal-based direct method and to formulate it, as explained in chapter 6.

In addition to adaptive identification techniques which are applicable to joint identification
problems, a new family of methods which are particularly developed for joint
identification was introduced in the classfication, as decoupling techniques.
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12.1.3 A NEW MODAL-BASED DIRECT IDENTIFICATION
TECHNIQUE

A new modal-based identification technique has been developed and described in chapter
6. The method was first formulated based on a component mode synthesis approach and,
later on, it was realized that it is related to the eigendynamic constraint method. As a
matter of fact, the new method can be considered as a modified eigendynamic constraint
technique.

It has been shown in section 6 that, athough the new method is a direct method according
to author’s classification, one still has to solve the governing equations iteratively, due to
incompleteness of the measured data. Also, for the same reason, i.e. data incompleteness,
there are limits on llA¢ll and lIAAII for which the cal culation will converge to a solution.

12.1.4 COMPUTATIONAL ASPECTS OF IDENTIFICATION PROBLEM

Generally speaking, the structural identification problem is an ill-posed problem. Thisis
basically due to the fact that, in practice, the identification problem is a process of
extracting a large amount of data from an incomplete and, thus, relatively smaller
available set of data. The poor formulation of the identification problem reveas itself in
computational inconsistencies and difficulties which, in turn, result in approximations
imposed on caculations.

In addition to the poor formulation, there are other parameters contributing to
computational difficulties such as, a poor analytica model and inappropriately balanced
matrices.

Due to the smaller number of unknowns involved in a joint identification problem, it is
possible to prevent poor formulation for them, using certain identification techniques such
as FRF-based decoupling or FRF-based direct techniques. Having said that, the ill-
conditioning problem still exists for the joint identification process, and in order to
prevent ill-conditioning, balancing techniques have been proposed in chapter 4.

One of the popular methods of artificialy increasing the amount of available data in an
adaptive identification problem is to preserve the connectivity pattern of the analytical FE
model. It was shown in chapter 4 that by preserving the connectivity pattern of the
analytical model, one will identify the closest possible model (in aleast-squares sense) to
the rea structure but it is impossible to identify the real structure exactly.
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12.1.5 MODEL UPDATING & JOINT IDENTIFICATION IN PRACTICE

It was shown in chapter 3 that for a complex structure, it is virtually impossible either to
update its analytical model ignoring its joint(s), or to identify its joints and update its
analytical model smultaneoudy within a single model updating process.

The author believes that the only practica approach to the updating problem of a complex
structure is to update separate substructures without any joints (or with obviously rigid
joints) and then to assemble them together making sure that the only source of
difference(s) between the analytical model and the real structure come(s) from the joints.
Naturally, the next step will be to identify the joints and incorporate them into the
anayticad model.

12.1.6 CHOOSING THE APPROPRIATE MODEL FOR A TRIAL JOINT
WHEN USING ADAPTIVE IDENTIFICATION TECHNIQUES

One of the common characteristics of adaptive joint identification techniquesis that they
require the construction of the so-called analytically coupled structure, A-C. This
requirement, in turn, makes the selection of a trial joint model inevitable and proper
selection of a trial joint can have an important effect on the results.

The first step in selecting atrial joint model is to decide on its configurational features,

i.e. the number of degrees of freedom involved in thetrial joint model and their type. Itis
clear that both the number of trial joint degrees of freedom and their type are dictated by
the configurational characteristics of the interface coordinates of constituent substructures
of the assembled structure.

So, the first step in selecting a proper trial joint model is to decide on the quality and
guantity of the interface coordinates. For example, with beam substructures, the question
is whether tension or torsion must be included in the coupling, and consequently in the
joint model, or not. Thus, as long as the configurational features of the trial joint are
concerned, the proper selection of this element is case-and analyst-dependent, although
not too difficult.

Once the proper configurational model is derived for the trial joint, the next question is:

whether it is possible to group different elements of the trial joint mass and stiffness
matrices in some sub-matrices, according to their consistency? This grouping can be done
using either an FE model pattern, or a lumped parameter pattern for the tria joint, as
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discussed in chapter 3. Having grouped the unknowns, the number of unknowns which
must be identified reduces dramatically and, as explained in chapter 4, this is an
advantage from a computationa point of view.

12.1.7 SENSITIVE NATURE OF THE IDENTIFICATION PROBLEM

It has been shown throughout this thesis that the identification problem is sensitive to
noise. Asthoroughly explained in chapter 4, the sensitivity of the identification procedure
isinherent and is due mainly to insensitivity of structure’s response to variations in some
of the structure’ s components.

Based on the above explanation, in spite of the larger number of unknowns involved in a
model updating problem, the joint identification problem can be more sensitive to noise
than a model updating problem. Note that, although the number of unknownsis typically
larger for the updating problem, the chance that variations in the whole mass and/or
stiffness matrices of an element having insignificant effects on structure’s response is
much less than possibility of insignificant effect due to variation in the individual
components of that elements mass and/or stiffness matrices. For example, considering a
beam element as a part of an analytical model, that model’ s response is likely to be much
more sensitive to variations of elemental mass matrix as awhole rather than the variations
of individual components in the elemental mass matrix, say, rotary inertia. (Note that in
modelling a joint, it is necessary to split the elemental mass and stiffness matrices into
consistent sub-matrices, as explained in chapter 3.)

It has been observed in chapters 5 through 9 that the insignificant effect of joint rotary
inertiaon a structure’' s response was responsible for a high sensitivity of the identification
process.

Through a discussion of the concept of ill-conditioning of a matrix in chapter 4, it has
been shown in chapter 9 that the insensitivity of the response of the structure to variation
in some of its components reveals itself in computations by causing small or very close
singular values for relevant matrices involved in caculations.

12.1.8 GUIDE-LINES FOR PROPER JOINT IDENTIFICATION
METHOD SELECTION

The matter of selection of a suitable joint identification technique is very case-dependent
and depends mainly on the type and amount of data available. Thus, it is difficult to givea




[12] Conclusions 245

genera guide-line which covers every joint identification problem. Questions like whether
a reliable FE model of the substructures are available or, how much the cost of this
identification is going to be must first be answered before sdecting a suitable technique.

Based on the advantages and disadvantages of the various joint identification techniques
shown in Fig. 12.1, the method selection flow-chart of Fig. 12.2 is proposed.
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CONTRIBUTIONS OF THE PRESENT RESEARCH

To Newton is attributed the saying “If | have seen alittle farther than othersit is because |
have stood on the shoulders of giants’ [47]. Although the author does not compare
himself with Newton, nevertheless, the fact remains that any contribution | have made is
based on a massive amount of previous work, done by other researchers and scientists.

Bearing above-mentioned fact in mind, it is appropriate at this stage to present a brief
review of the contributions of the research described in the thesis, asfollows:

classfication of identification techniques in general and the joint identification
techniques in particular;

discusson of the range of applications and overlaps of joint identification and
modd updating methods;

investigation of the effect of joint(s) on structura dynamic coupling;

discusson of the uniqueness and existence of the solution of an identification
problem and the effect of preserving the connectivity pattern of the analyticd model
in the solution;

illustrating the essence of the least-squares formulation in an identification problem;

discussion of the usefulness limit of the least-squares solution when dealing with
noisy data;

extensive investigation of the sengtivity of the identification problem to
measurement noise and its connection with singular parameters of the matrices

involved in calculations;

discussion of the concept of ill-conditioning of a matrix and development of a new
criterion for a matrix’s sengtivity assessment;

extensve discusson of the posshilities and limitations of various joint
identification techniques,

development of a new mode updating and joint identification technique;
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modification of some of the exigting identification techniques to be applicable to the
joint identification problem; and

extensive research on the sengtivity analysis of various joint identification
techniques and the methods of reducing noise effect on results.

SUGGESTIONS FOR FURTHER WORK

It seems that further research is required in following aress:
investigation on the joint effect on the structura dynamics coupling;

The effect of a joint on the structural dynamics coupling analysis was examined in
chapter 2. It was shown there that introduction of a joint into the coupling process
will cause some complications. Some numerical case studies are necessary in order
to assess the performance of solution techniques proposed in chapter 2 and to
examine the effects of various simplifying assumptions, e.g. ignoring joint’s mass,
on results.

examination of missmodelling effects on the identified joint, usng a hybrid
approach for joint identification;

As the application of FE modds of substructures can facilitate the joint identification
process for complex structures, it is necessary to examine the effect of mis-
modelling of the FE model on the predicted result.

investigation on the performance of the new mode updating technique on rea
structure; and

identification of isolating medium of chapter 11 using the genuine blade and
supporting  ring;

Due to the smplification made on the real blade and support ring problem in chapter
11, it was possiblesible to use a relatively simple joint model in the identification
process. Now, considering a genuine skewed blade and ring a more complicated
model should be tested for the joint, athough the procedure is exactly the same as
that used in chapter 11
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APPENDIX A

MODE SHAPES OF THE BLADE STRUCTURE

As indicated in chapter 11, the mode shapes of the blade for the free-free and clamped
configurations are presented in this appendix. These mode shapes have been derived from
aFE analysisusing ANSY S and play amajor role in determining the consistency between
the slave coordinates, interface coordinates and joint model selected. In what follows, the
first three mode shapes of the blade for (@) the free-free configuration and (b) the clamped
configuration will be demonstrated.
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Appendix A Mode Shapes of Blade Structure
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APPENDIX B

STATISTICAL METHOD USED FOR DATA ANALYSIS

In the present gppendix the statisticadl method used to analyse noisy data in chapter 11 will
be explained. The explanation for the statistical terms used here can be found in [38].

The method is shown in the following flow chart.
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