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ABSTRACT

-

-

-

This study deals with the vibration analysis of bladed systems and can be

divided info fwo parts (i) Structural analysis of packefed bladed discs and

(ii) Aeroelasfic characteristics of bladed systems. Both parts share the

feature that vibration properties are complicated by a lack of symmetry.

The a im of  the first part i s  to  seek ef fect ive and ef f ic ient  ways of

predicting the vibrational behaviour of turbine blades when grouped info

p a c k e t s  o n  a  disc. Several theoretical models based on various

techniques were developed to investigate different aspects of the problem.

Finite element modelling was used to analyse isolated blade packets while

substructuring via recepfance coupling was needed to Investigate the

complete bladed system. The /after model led to the formulation of two

new methods of analysis, results from which were checked by a series of

experiments and good agreement was obtained  in all cases. A lumped

parameter fechnlque  was used for qualifaflve stud/es and If was found that

this particular model was adequately representative of packefed bladed

disc behaviour provided quantitative predictions were not required.

The second part deals with the aerodynamic analysis and flutter stability of

bladed discs, with particular interest in mistuned systems. A simple

structural model based on the lumped parameter configuration used in (i)

was combined with exis fing unsteady aerodynamic theories for

t w o - d i m e n s i o n a l  unsfalled cascades of f lat plates. T h e  e f f e c t s  o f

mistuning and the levels of forced response were investigated for a

number of bladed systems in order to find and to cafegorize patterns of

qualitative behaviour. Nnally, a finite element model of a cantilevered

flat plate subject to axial aerodynamic loading was developed to analyse

the flutter stability of an lsolafed blade. A numerical study was conducted

to predlcf the natural frequencies and the mode shapes for both In vacuum

and under aerodynamic loading and also the amount of aerodynamic

damping was determined in the latter case.
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CHAPTER 1

4 INTRODUCTION

1.1 THE NATURE OF THE PROBLEM

-

-

-

-

-

Vibration induced fatigue has always been one of the chief hazards to

turbomachinery blading and hence the theoretical prediction of natural

frequencies, mode shapes and forced response levels is of vital

importance for designing away from ranges where the stresses are likely

to be high. As suggested by Smith in Ref. SD-l. it is convenient to

distinguish between globally- and locally-occuring vibration problems.

The first type involves the motion of the whole structure while the second

is restricted to a few internal components such as discs. blades and

shroud attachments. Failures due to problems of the first kind are

usually related to bearings and/or shafts and their study is outside the

scope of this work which will focus on bladed disc vibration.

The blades. especially in steam turbines and to a lesser extent in gas

turbines. are often grouped together at some point along their span via a

metal band or wiring lace referred to as shroud which can be continuous

(continuously-shrouded disc) or segmented (packeted  biaded disc).

Although both structures may appear very similar. the broken cyclic

symmetry of the latter gives rise to a much more complex vibration

problem than the one presented by the former. Both analyses are
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further compounded by the complexity of the blade geometry and. thermal

and centrifugal effects which customarily are not included In the

theoretical model.

1.2 UTERATURE  SURVEY

Although bladed disc vibration problems have been the subject of

numerous investigations, most of the published work deals with the

continuously-shrouded or unshrouded assemblies and the case where the

blades are grouped into packets is somewhat neglected. Nevertheless,

as early as 1927 (even earlier, Including publications in German) ,

Stodola [Ref. SD-21 pioneered the theoretical study by estimating the

fundamental frequency of a blade packet. His analysis was based on

Lagrange’s energy equation and on account of the complexity of the

calculations. no estimates were given for higher modes. Sezewa  [Ref.

SD-31 studied the transverse vibrations of an infinite number of beams

grouped together and found that the deviation of the packet cantilever

frequencies from the single blade frequencies was governed by the ratio

of blade to shroud cross-sectional area. Smith [Ref.  SD-41 considered

the in-plane or tangential vibrations and derived a frequency equation for

a general number (NJ of blades in the form of a determinant of

order (N + 1). He studied six- and twenty-bladed packets and showed

the existence of a qualitative behaviour which could be related to the

number of blades in the packet. His work was extended by Prohl [Ref.

SD-51 and Weaver and Prohl [Ref. SD-61 to include out-of-plane or axial

vibrations. An analytical method of calculation. subject to the usual

limitations of elementary beam theory. was presented and used to

compute axial, tangential and torsional natural frequencies of various
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packets together with the associated mode shapes and stress levels.

Using a finite difference technique, Eliington and McCaiiion [Ref.  SD-71

derived the frequency equations for the symmetric and asyrrmetric  modes

of vibration of a packet of laced turbine blades. Their work was based

on Ref. SD-4 and made extensive use of the V/brat/on  Analysis Tables

later published as Ref. SD-8. it was found that the blades could be

considered as clamped-clamped or clamped-hinged. depending on the

shroud to blade stiffness ratio. Rieger and McCallion [ R e f .  S D - 9 1

investigated the oscillations of a single-storey, single-bay portal frame

comprised of uniform prismatic beams. Although their analysis was not

developed specifically with turbine blades in mind, the generality of the

model used allows their results and conclusions to be directly applicable

into this area. Based on an exact solution of the Bernouiiii-Euler

differential equation for transverse motion, a series of non-dimensional

tables were presented to help the evaluation of in-plane natural

frequencies by simple interpolation.

Advances in computational methods led to the formulation of finite

element models and such a technique has been used by Thomas and

Belek  [Ref.  FE-11 to investigate the in-plane vibrations of an isolated

blade packet, represented once again using uniform beams. The effects

of various weight. flexural rigidity and length ratios between blades and

shroud segments were systematically studied and it was found that the

vibration characteristics of a multibiaded packet could be predicted, with

reasonable accuracy, from the behaviour of the corresponding two-biaded

packet. A similar study was also undertaken by Salama. Petyt and

Soares [Ref. FE-21 who incorporated the effects of a rigid disc with finite

. /
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radius. Their analysis was restricted to in-plane vibrations but it

included the dynamic response to perlodlc loading which was considered

with reference to a six-bladed  packet . They also investigated the

variation of the packet’s natural frequencies with blade ,number and

obtained similar results to the ones reported by Sezewa  in Ref. SD-3.

Recent studies, based on substructuring techniques, considered both

in-plane and out-of-plane motlons of packeted bladed discs. Afolabl

[Ref. SD-101 used Timoshenko beam theory to predict the dynamic

response of a single packet of cantllevered  blades. His work was further

developed by Dimitriadis [Ref. SD-111 who modelled the whole bladed

assembly by including a disc of finite radius and rigidity. The process in

his method involved numerous matrix inversions. thus making It very

inefficient in terms of computation time. Stathyanopoulos [Ref. SD-121

used a lumped-parameter model, similar to the one originally proposed

by Dye and Henry in Ref. SD-13, to investigate the similarities between

the vibrational behaviour of the two types of assembly; the packeted

bladed and continuously-shrouded discs. Some of the work described

above is summarized in Ref. SD-14 in an attempt to rationalise packeted

bladed disc behaviour and to relate it to the one of two much simpler

assemblies. namely the continuously-shrouded disc and a single packet

of cantilevered blades.

Singh and Schiffer [Ref. SD-151 used a three-dimensional finite element

model to predict the natural frequencies  and the associated mode shapes

of a 90-bladed disc arranged In 15 packets of 6 blades each. Their

analysis was complemented by the use of a mass-spring model and it

was concluded that this simplified representation was accurately

k



I k

-6-

descriptive of bladed disc assemblies.

1.3 OBJECTIVES AND SCOPES OF THE PRESENT ANALYSIS

Although the vibration of blade packets has been studied by several

authors. there are still a number of questions which can be raised with

respect to packeted bladed assemblies.

(i)

(ii)

(iii)

(iv)

What are the additional effects of packeting on the assembly's

natural frequencies and mode shapes over the continuously-

shrouded case?

In the case of a symuetrical packeting arrangement, can these

be predicted qualitatively without having to undertake a

lengthy and perhaps superfluous analysis 7 and/or

Can these always be estimated quantitatively from knowledge

of the two much simpler assemblies, namely the continuously-

shrouded disc and a packet of cantilevered blades?

The inherent circular syumetry being destroyed, how is the

response in any one mode to periodic loading will be affected?

The existing analytical models being either Incomplete or too expensive to

use, there Is an obvious need for the formulation of more advanced ones

In order to address the problems above and the present study aims to

undertake a thorough analysis of packeted biaded disc vlbration from both

theoretical and experimental aspects. As customarily done, the blades

and the shroud arcs wlii be modelled by uniform beams of rectangular

cross-sectlon and the disc as a circular  plate of constant thickness. A

further objective of this study lies In showing that the Incorporation of

more complex blade geometries Into this simplified model Is possible and
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this feature will be discussed on a case study.

The packeted bladed disc assembly will be considered to be undamped.

an assumption which can be justified in view of the light damping present

in the system. The reasons for this approach are threefold: Firstly, it Is

difficult to estimate the damping amount for each mode; secondly. the

damped and undamped solutions are known to be very close for lightly

damped systems; and thirdly, the inclusion of damping necessitates the

use of complex algebra, thus doubling the computational effort.

A number of theoretical models based on

(i) finite elements,

(ii) substructuring via receptance coupling and/or finite elements,

(iii) lumped parameter techniques

will be used to predict the vibration properties of a 30-bladed disc which

Is consldered  as the datum case throughout this study. Also, a series of

experiments will be carried out to check the valldlty of the theoretical

analyses. Although it is expected that all models above will yield similar

qualitative predictions. other important aspects of packeted  bladed disc

vlbratlon  - such as the accuracy of quantitative  predictions and the

relative computational effort - will be investigated in detail.



-8-

. CHAPTER 2

FINITE ELEMENT ANALYSIS OF CANTILEVERED BLADE  PACKETS

Before undertaking a complete packeted  bladed disc analysis. It was

decided to investigate the behaviour of a single packet of cantilevered

blades. The present study is an extension of the work reported in Ref.

FE-l to all six co-ordinate directions with inclusion of finite disc radius

and rigidity. The objectives of this Introductory analysis are twofold:

- W to establish the vibration properties of blade packets in

order to draw parallels with those of the complete assembly;

(ii) to look for permissible simplifications in order to

facilitate the construction of a full bladed disc model.

-

2.1 FINITE ELEMENT MODEL

-

-

-.

--

The blade packet Is idealized using 12 degree-of-freedom uniform

one-dimensional beam elements of rectangular cross-section. A typical

element. together with the global and local co-ordinate systems used. is

shown in Fig. 2. 1. All three translational deflections within the element

are approxlmated to cubic polynomials of the form:

u(x) = a, + a,(x/l) + a&VU2 + a,(Wl)”
v(x) - as + a,(xJl) + a,(x/l)2 + ae(Wl13
w(x) = a, + a,,Wl) + a,,Wl)2 + a,,(x/l13

(2.1)

,. , -, , .“‘“r . . . , j :.
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and the rotational deflections are:

9 - du/dx ; Ip = dv/dx ; e-dw/dx (2.2)

The element mass and stiffness matrices can be derived by equating

different expressions for the kinetic and potential energies stored in a

typical element: that is to say:

-

e 1
T = l/2 pAs[(i3~/ti)~  + (i3v/at)=  + (Bw/at)=]dx  + l/2 pJ_I-(c?U~/at)~ dx

0 0

-

-

-

-

-

-

= l/2 tqleT We(9)e

e e
U-= 1/2 EIy_I-(@w/~xz)=dx  + l/2 EI,/(@v/axt)= dx

0 0

e f
+ l/2 EA

/
(au/ax)Z dx + l/2 GJ/ (awax)z dx

0 0

(2.3)

- l/2 (q)eT EKle (cl)e (2.4)

A list of all symbols used Is given in the nomenclature and explicit

formulations of the mass and stiffness matrlces above can be found In

the published literature [See Ref. FE-N. It should be noted that these

were first computed in local coordinates and then expressed In global

ones via the appropriate transformation matrix. The overall mass and

stiffness matrices, denoted by UN and Ml. were assembled uslng the

-_
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stiffness method described In Ref . FE-4 and they have a banded

configuration, the width of which depends on the number of blades per

packet. The overall equation of motion is:

IKIts) = 4 cwts1 (2.5)

the solution of which yields the natural frequencies wr and the associated

mode shapes Iql of the blade packet.

Fig. 2.2 shows a typical packet geometry with three blades. In the

present formulation. the blade stagger can be accounted for and

Bernou  Hi-Euler or Timoshenko beam theories can be used at will.

2.2 NUMERICAL STUDY

A computer program, namely FINPAC, was written to analyse the

vibrational behaviour of free-free or cantilevered blade packets. A set of

preliminary calculations were made to investigate the convergence of the

eigensolution for various mesh sizes. It was found that 3 elements per

blade and also per shroud segment were sufficient to compute the first

30 natural frequencies within a relative error bound of 1% and the

accuracy obtained was considered to be adequate for the purpose of this

study. In any case. the overall equation of motion for a cantilevered

packet is of order:

6 [P IQ + (P - Wns - WI (2.6)



E
-

- 11 -

-

-

-

where p is the number of blades, and nb and n, the numbers of finite

elements along the blade and shroud segment respectively. This yields a

medium size eigenproblem which can be solved using standard routines

and subroutine F02AEF from the Numerical Algorithms Group (NAG)

library was used throughout this study. Also, a few test runs were made

to check the results against those given in Refs.  FE-l, SD-8 and SD-10

and very good agreement was obtained in all cases considered.

__

-.

-

The substantial body of numerical work reported in the first part of this

thesis will be carried out for the data listed below in Table 2. 1.

No of blades = 1,2,3,4,5 and 6

Young's modulus = 207 GN/m2

Density - 7850 Kg/m'

Blade stagger = O"

Disc radius = 262.6 mm

Table 2.1 Packet data

-

-

-_

__

-

Blade length (Rad) = 200.7 mm

Blade thickness (Ax) = 12.7 mnr

Blade width (Tang) - 17.3 uml

Shroud thickness (Rad) - 3.1 nml

Shroud width (Ax) = 12.7 mo

It should be noted that the one-bladed packet is nothing but a single

blade cantilevered at its root and that Timoshenko beams were used

throughout the analysis. The results obtained are listed in Table 2.2.

.
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T

E-2 P3 P=4 P=5

231.21 230.48
280.83 290.58
417.80 375.04
639.04 526.43
857.89 876.32

319.35
1438.52
1485.34
1493.98
1497.81

325.87
1403.76
1480.34
1482.56
1491.86
1492.52

1454.19
1477.43
1534.60
1619.48
1766.04

1451.55
1489.32
1535.88
1571.21
1649.94
1818.31

1777.26
1790.66
1805.69
1816.69
1994.26

1761.65
1766.02
1798.30
1808.26
1814.32
2038.49

3288.75
3629.16
3953.30
4045.29
4356.75

3287.05
3575.05
3869.36
4008.06
4053.66
4344.77

261.18 241.19
504.21

235.34
365.44
707.92

232.76
308.95
518.62
808.04

-_

-

-

-

355.20 331.25
1494.11

324.43
1490.03
1490.70

321.22
1470.67
1487.33
1496.97

1618.95 1504.78
1628.08

1468.23
1549.48
1683.70

1454.78
1502.28
1586.36
1728.97

-

-
2181.24 1798.31

2050.23
1758.64
1809.96
2017.31

1780.03
1798.37
1814.51
2002.58

3506.94 3397.82
4380.69

3335.34
3920.34
4373.06

3305.90
3760.86
4024.97
4363.18

-

Table 2.2 Variation of cantilevered packet natural frequencies

(Hz) with number of blades in the packet (p)

A: Axial or out-of-plane

T: Tangential or in-plane

-
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2.3 CONCLUDING REMARKS

(i) The blades being unstaggered, the in-plane (tangential) and

out-of-plane (axial) vibrations are uncoupled. This has been

done for the sake of clarity and also to provide a datum case

for th8 fOlIOWing chapters.

( Ii) For 8aCh  single-blade cantilever frequency. the grounded

packet exhibits a number of natural frequencies equal to the

number of blades in the packet. thus covering all possible

mode shapes. As

significant effects

will be shown in Chapter 4. this feature has

on the packeted  bladed disc behaviour.

(Iii) As can be seen from Table 2.2. the tangential or in-plane

vibration characteristics of a multi-bladed packet follow a

certain pattern which can be predicted with reasonable accuracy

from the behaviour of the corresponding P-biaded packet. This

matter is discussed in detail in Ref. FE-l.

( iv) The axial or out-of-plane vibrations however, do not show a

similar trend. The natural frequencies being spread over a

much Wider range, the multi-biaded disc behaviour cannot be

predicted by simple interpolation. This can be explained by th8

fact that the shroud has a much more pronounced effect axially

and, also, that bending and torsion are closely coupled in this

direction. Unfortunately. most of the published literature is

restricted to tangential vibration analysis. axial vibrations being

somehow neglected.

(VI Finally. it should b8 noted that the axial vibrations are much

more likely to be affected by the disc flexibility than are the

tangential ones since the disc is relatively stiff In this latter

direction. Thus the rigid disc assumption can only be applied

to in-plane vibrations and the model used here has to be

improved for the out-of-plane analysis. This problem will be

addressed in Chapters 3 and 4.
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eY 0xh-82 X

Z

Fiq. 2. 1 12 DOF beam element

Fig, 2.2 Three-bladed packet ( 3 elements per
blade and also per shroud segment)

-

i I
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CHAPTER 3

RECEPTANCE COUPUNG ANALYSIS OF PACKETED  BLADE0 DISCS

-

-

-

-

-

3.1 THEORETICAL ANALYSES

The problem of studying assemblies which have a complex geometry can

be greatly simplified by subdividing the structure into components which

are directly amenable to mathematical analysis. The characteristics of the

Initial structure can then be determined by synthesis of these individual

components and the process Is referred to as substructure analysis.

In the case of a packeted bladed disc. the two main components are the

disc and a single packet of blades - sometimes called superblade -

which, In turn, can be subdivided into Individual blades and shroud

segments. The coupling process will ultimately take place at specific

points on the disc rim where the blades are mounted. The complete

analysis of the motion at these points would require the consideration of

all possible six co-ordinates. thus limiting the analysis to a small number

of blades for obvious reasons of memory storage and computation time.

Fortunately, as concluded In Ref. SD-17, not all six co-ordinates are

strictly necessary. only axial translation and tangential rotatlon being of

primary Importance to bladed disc vibration since the disc Is much more

flexible  I n  t h e s e two degrees of freedom. The remaining four

co-ordinates will be consldered to be grounded at the blade roots

throughout the analysis. Although the effect of the root flexlbllity  can be
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modelled by using translational and torsional springs in the appropriate

co-ordinate directions. it will be excluded from the present formulation.

chiefly because of the computational effort required to conduct a

parametric study.

In common with many other studies [Refs.  W-10. SD-11.  SD-16.

SD-17,  SD-18.  SD-19.  SD-201, blades and shroud arcs will be

represented as prismatic beams of rectangular cross-section and the disc

as a unlform circular plate of constant thickness. Receptance

expresslons  for such idealised components are already available in

analytlcal form and can be found in Refs.  SD-8 and SD-21. A typical

three-bladed packet together wlth the co-ordinate system used is shown

in Fig. 3. 1.

Two methods of analysis will be presented below. one which considers

the assembly as a whole and the other which takes advantage of its

cyclic symmetry. Both techniques assume that the receptance matrix IsI

of a typical packet has already been computed either by receptance

coupling of blades and shroud segments or by modal summation of a

finite element elgensolution. In the interests of continuity, the governing

equations of motion will be derived first and the explicit formulation of the

component receptance matrices will follow later.

3. 1. 1 Direct Method

The so-called direct method Is a full analysis In the sense that the

bladed disc is considered as a whole without depending on or using the

cyclic symmetry of the system. It Is an extension of Ewlns’ unshrouded
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disc work [Ref. SD-161 to packeted bladed discs. The coupling process

takes place at the N points around the disc rim where the blades are

mounted and, as two coupling co-ordinates per blade are used. the

system Is of order 2N.

Fig. 3.2 shows the co-ordinates used together with the forces and

moments acting on the blade roots and the disc rim. ( y , +j)  and (4,

eyj) denote the displacement and slope at the root of the jth blade and

at the corresponding point on the disc rim while (1, rnj) and (Fj. Mj)

are the force and moment acting at these locations in the same order.

[al and @I are the disc and packet receptance matrices whose explicit

forms will be given later.

The response/load relationship for a disc with N blades is:

tq)D = Ial (QID (3-l)

where (q)D and (Q)D are the response and load VeCtOrS  at the disc rim

whose explicit forms are given by:

(Q}T~-  (FL, . . . Pj, . . . MA, . . . . M-j, ....)la~

Similarly. the response/load relationship for the N blades is:

(3-a

I’& = WI (QIB (3-3)

where (q)S and (Q)S are the response and load vectors at the blade

roots whose explicit forms are given by:

. ,,.
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_

-

{q}TB-  (Zi, ..a Zj,  ...%,t  .a. WI ***j-N

(3-4)

The equations of motion are derived by considering the dynamic

equilibrium of all loads applied and the compatibility of responses

obtained, that is to say:

Ekpilibrium: IQID +  (QIB * (01

(3-5)

Compatibility: tq)D - (q)B

Combining equations (3-l 1, (3-3) and (3-5) we obtain:

ICal + CPII  (Q)D = - [Cal +  WI1 (Q)B - (0) (3-e)

The necessary and sufficient condition for a non-trivial solution of the

above system of 2N simultaneous linear equations is:

det Ilal + [PII = 0 (3-7)

The roots of equation (3-7) are the natural frequencies of the bladed

disc system and several well-established numerical techniques. some of

which will be discussed later. are available for the solution of this

determinantal equation. Once a natural frequency has been located. the

corresponding load vector (i. e. the modal shape by linearity) can be

found by setting any one of its elements to unity and solving (2N-1)

linear simultaneous equations for the remaining (2N-1)  elements. if

required. the response vector can be recovered from equations (3-l) or

(3-3) .
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3.1.2 Cvcllc Symmetry Method

In 1955 Armstrong presented a method of analysis for discs with identical

blades [Ref. SD-221 and his technique has now been developed to

incorporate symmetrical packeting arrangements. Unlike the

continuously-shrouded case, each packeted bladed disc mode is known

to contain more than one diametral component and hence Armstrong’s

method is not directly applicable. Nevertheless. it is assumed that the

wheel vibrates with a dominant n nodal diameter shape, that is to say

contributions from other diametral patterns are negligible. (A similar

assumption, concerning the interblade phase angle of an aeroelastic

system, will be made later in Chapters 9 and 10) . Also. it is assumed

that the blade displacements follow a cosine fluctuation both in time and

angular position around the circumference. Thus, for example, the

response of the jth blade can be written as:

-.

qj - q, cosZ?mj/N (3-8)

where q. is some arbitrary amplitude and. n , and N are the nodal

diameter and total blade numbers respectively.

This time, the packet is considered as a mult i -root blade (or

superblade)  and the coupling. as shown in F i g . 3.3. takes place

between these roots and the corresponding points on the disc sector. If

p is the number of blades per packet. the system’s matrix will be of

order 2p and hence a very substantial saving in the central memory

requirement is achieved.
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Let [ynl be the receptance matrix of the disc sector for the n nodal

diameter mode whose explicit form will be given later and 161 the

receptance matrix of a single packet. Proceeding as above for the direct

method. it can be shown that the governing equation of motion is:

(tYn3 + 161) (QIR a (01 (3-9)

where

( 3 .10 )

The natural frequencies of the packeted bladed disc while vibrating mainly

in its n nodal diameter shape can be found from the determinantal

equation :

detl[Ynl  +  CSII = 0 ( 3-11)

Each of the two analyses described above requires the formulation of a

matr ix  pair ,  f [al. @I) or ( tynl. tsl) , whose derivation will be discussed

below.

3.2 DERIVATION OF DISC RECEPTANCES

The equation governing the harmonic motion of a thin. uniform,

isotropic. fiat, circular plate, expressed in polar co-ordinates. is:

(V2 + k2) (V2 - k2) w - 0 ( 3-12 )

where v2 is the Lapiacian operator.

W the transverse deflection at the plate mid-plane.
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k+ = phw=/  D and D = Eh’/12(1 - v2):

wlth w frequency of vibration,

h plate thickness,

P density.

E Elastic modulus,

V Polsson’s ratio.

and D is sometimes called as flexural  rigidity.

The solution of equation (3-12) can be found in the published literature

and will not be reproduced here. As shown in Ref. SD-M, the general

expresslons for transfer receptances between points i and j on the disc

rim. where the ith and jth blades are mounted. can be expressed as an
-_

infinite Fourier series of the form:

-_ 00

aij = l/Tl (l/2 a0 +
c

an co9 [2m(i-j)/N]) (3-13)

n=l

where an Is a combination of Bessel functions of order n and also

depends on the disc properties and the frequency of vibration. In

practice, this series Is truncated at integer multiples of the highest

possible nodal diameter number. As there are two coupling co-ordinates

per blade root. there will be three types of receptances relating (i)

displacements to forces, (Ii) displacements to moments or slopes to

forces and (iii) slopes to moments. Cases (ii) and (iii) will be

distinguished by superscripts ’ and ’ respectively. Once these transfer

(or point if i coincides  with j> receptances are known. the overall disc

receptance matrix [al can easily be derived using the circular symmetry.

Such a formulation yields:

0) (ii). 1 QLl ai . l ati
Cal - ;;w ;: where [a], = - - - - - I (3-14)

(ii) (iii)
2Nx2N aNi arN2 l *  WN
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Because of the inherent symmetry, it may be shown [Ref.  SD-161 that:

_._ Q%j+q = aj,j+N-q  = % (3-15)

where q Is some arbitrary Integer. This feature makes the submatrix [aIs

a circulant of the Toeplltz type. properties of which can be found In Ref.

MA- I .

As expllcltly  shown by equatlon (3-13) , receptance expressions in the [al

matrix contain contributions from all possible  nodal diameters, a feature

which makes the analysis general. The cyclic symmetry approach, which

assumes a priori an n nodal diameter pattern, requires only receptances

of order n but these must be expressed compatibly with the discontinuous

lumped loading of the form imposed by the chosen modal shape.

Armstrong, Ref. SD-22, showed that:

anG = N/2n fsin(ne) /ne. an +  sln[(N-n)4/[(N-n)el.  CXN-n  + .  .I (3-16)

where B is half the angle subtended at the disc centre by the blade root

width and the superscript G indicates that receptances are expressed In

the global co-ordinate system. The receptance matrix of the disc

sector. to which p blades are mounted. can now be written as:

Blade 1 Blade p

where the superscripts ’ and ’ have their previous meaning.



I E

- 23 -

3.3 DERIVATION OF PACKET RECEPTANCES

Two different approaches will be used to derive the packet receptance

matrix.

3.3. 1 Finite Element Method

The finite element model described in the previous chapter can also be

used to obtain the packet receptance matrix at the blade roots. For free

harmonic vibrations, the equation of motion Is:

(ml - 6) z WI) IsI - 0 (3-18)

where all symbols have their customary meaning. The formal solution of

equation (3-18) yields the eigenvalues I Urz 1 and the mass-normalized

eigenvectors Ml from which the complete packet receptance matrix can

be obtained as:

CAl6px6p = [f@36- r(+' - ~')-'-J~ [@]*r2x6p (3-19)

R L6p

where p Is the number of blades per packet and R the number of modes

to be included In the modal summation.

As explalned In Section 3. 1 . it was decided to use two coupling

co-ordlnates only, namely axial translation and tangential  rotation, the

remaining four being grounded throughout the analysls. The co-ordinate

deletion has to be carried out on the packet dynamic stiffness matrix

defined as:
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cD16px6p  = wr’6px6p

which after the grounding process reduces to:

IdI - cwR2px2p

and the packet receptance matrix is obtained via re-inversion.

1Wzp~2~ - Cdl-’

This latter can then be written explicitly as:

- 6ep2s 6epel  9 l +P@ J2px2p

(3-20)

(3-21)

(3-22)

(3-23)

The overall packet receptance matrix @I, which is required by the direct

method. can now be formed from the elements of the individual packet

receptance matrix in the following manner:

Packet 1 Packet:

r
WI8 .

[p] I - - - - - - _ Epls _
W’Jl3 ” . _ [p’l

8

Packet 1 Packet!
P

[P’ls  . . cp’l

s- -------_ _

CP”l,
WI,

where
r

Ip*ls -_ 62181  62~62  l hep1 . . . . . . . I_
w”1, -

I
601ei 6eie2  l 6eLep

l . . . . . . . I_

(3-24)

2Nx2N

(3-25)
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3.3.2 Receptance  Coupling

The packet receptance matrix can also be formed by coupling the

individual blade and shroud segments which, once again. are considered

as prismatic beams of rectangular cross-section. Although this is a

straightforward process, It involves numerous matrix inversions and hence

optimizatlon of the coupilng sequence  Is  necessary . To ensure

compatiblllty between the two approaches, a single global co-ordinate

system, shown in Flg. 2. 1. was used for both the finite element and

receptance coupling models. The coupling was performed in ail six

co-ordinates and the following sequence was used.

-

-

-

1) The blade and shroud impedance matrices were computed directly

from tabulated expressions.

2) The first blade, then all shroud segments and finally the last blade

were coupled end-to-end to form the external frame of the packet.

3) The remaining blades, 2 to p-l. were placed in-between the shroud

segments and hence the impedance matrix of the complete packet, as

shown in Fig. 3.4. was obtained. To be aligned with the global OXYZ

co-ordinate system, ail beam elements had to be rotated through an

angle +, this being the angle between the global OX and the local Ox

axes.

4) Only two co-ordinates, namely axial translation and tangential

rotation, were retained at the blade roots; the remaining four being

deleted from the packet impedance matrix, since they are considered to

be effectively grounded.

5) Finally, the packet receptance matrix IS1 was obtained by inverting

the reduced impedance matrix formed above and then deleting ail but the

blade root-root receptances.

Once the single packet receptances are computed, the overall packet

matrlx @I can be assembled as indicated by equatlons (3-24) and (3-25) .

.
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Fig. 3.1 Typical blade packet

.thFig. 3.2 Loads and responses at disc rim and J
blade root
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D I S C  S E C T O R

B L A D E  P A C K E T

Fig. 3.3 Disc sector - Blade packet coupling

Fig. 3.4 Coupling sequence for packet rece?tance matrix coryzwtation



- 28 -

CHAPTER 4

NUMERICAL STUDY

-
4.1 GENERAL

Two computer programs based on the methods described In Sections

3.1.1 and 3.1.2, namely MULPAC and SINPAC. were written. for the

numerical study. These programs share a common LIBRARY containing

component receptance routines and other general purpose subroutines

such as matrix inversion, determinant evaluatlon, discrete Fourier

transforms, etc.

Although based on receptance coupling models, the analysis which will

be presented below is a natural extension of that initiated in Chapter 2 in

the sense that the effects of a flexible disc are now being considered.

The packet data were given in Table 2. 1 and the disc detalls are listed

below in Table 4. 1. All cases will be run for N=30. where N is the

number of blades on the disc. and

throughout the analysis. A typlcal

used is shown In Fig. 4. 1.

Tlmoshenko beam theory will be used

packet together with the co-ordinates

Inner radius = 0 mn Young's Modulus - 207 c;N/m'

Outer radius = 262.6 XII Density - 7850 Kg/m'

Thickness = 12.7 nm Poieson's ratio = .287,

Table 4.1 Disc details

-
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Because of the restriction on the number and position of coupling

co-ordinates. ail graphs - which will be presented in natural frequency

vs nodal diameter format - refer to axial vibration. in other more

symmetric biaded disc configurations. it is well known that each vibration

mode may be characterised by a shape containing n nodal diameters.

This notation will also be used here but it must be observed at the outset

that each mode of a packeted assembly is more complex in its shape

than is implied by n nodal diameters and does in fact, contain several

dlametrai components. For convenience. each mode will be labelled by

the largest dfametrai component in its mode shape. In order to minimize

the computational effort, the study will further be focussed

variation of the first three families. sometimes associated with 0.

nodal clrcle( s) .

on the

1 and 2

4.2 CONTINUOUSLY-SHROUDED DISC

Before investigating the effects of packeting. it was decided to study the

case of a continuously shrouded disc. An existing Disc-Blade-Shroud

receptance coupling program, BLISC [Refs. SD-17 and SD-271,

further developed for this purpose. To ensure compatibility with

present analysis. coupling was performed in ail six co-ordinates at

blade tips but only In two at the roots, these

tangential rotation. Two particular types of

were consldered to be the two limltlng

configuration. were used:

(i) a uniform continuous shroud which is a

blade tips;

being axial translation

was

the

the

and

shroud attachment, which

cases of a packeting

circular ring connecting
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(ii) a non-interlocking shroud which is modelled as a series of rigid

blocks possessing mass and inertia and attached at blade tips.

Results are given in Tables II. 1 and Ii. 2 of Appendix II and plotted below

in Fig. 4.2. The natural frequencies In Fig. 4.2 exhibit the well-known

tendency of grouping Into families. each one being associated with the

disc behaviour at low nodal diameter numbers and the blade dominance

Increasing thereafter. An Inspection of the Individual blade mode shapes

revealed that the first two families were mainly in bending while the third

one showed torsional characteristics. These findings are in total

agreement with Cottney [Ref. SD-171 who studied both the unshrouded

and shrouded versions of the same disc. In the former case. the

identification of the families is much easier due to the asymptotic

approach towards the single blade cantilever frequencies. The same type

of behaviour is also observed with the non-interlocking shroud curves

which tend to the cantilever frequencies of an Isolated blade at the tip of

which the shroud mass and inertia are concentrated. This Is due to the

stiffenlng of the dtsc which behaves almost as a rigid body in high

diametral modes. Also, the gap between the two shrouded assembly

curves diminishes with increasing frequency and decreasing nodal

diameter number. This suggests that the effect of packeting is likely to

be more pronounced on the lower families as well as on higher modes in

each family.

4.3 TEN PACKETS WITH THREE BLADES EACH

For the 30-bladed disc used in this study. there are six possible regular

packeting configurations, each comprising 15, 10, 6. 5. 3 or 2 identical
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packets. The three-bladed  packetlng arrangement will be considered as

the reference case and studied in great detail. Also. results for other

configurations will be reported.

-

Fig. 4.3 illustrates the shrouding pattern used together with a schematic

representation of its Discrete Fourier Transform (OFT)  . it is seen that

this particular arrangement renders ail coefficients zero but the ones of

order 0 and 10, suggesting that the cyclic symmetry has been broken at

least once. this being in the case of the 10 nodal diameter shape since

the term of order 0 corresponds to the continuously-shrouded case.

This can be explained by considering the single and double modes in

which a biaded disc assembly is known to vibrate [Ref. SD-161. in a

tuned system, a single mode possesses only one natural frequency and

its associated mode shape is circumferentially symmetrical due to the fact

that each blade experiences the same loading. The only possible single

modes. for which the circular symmetry cannot be maintained, are those

with 0 and N/2 nodal diameters. the latter occuring only in the case of

discs with even blade numbers. Ail the remaining modes are double in

the sense that they occur in pairs having identical frequencies and the

corresponding mode shapes are also identical except for their

circumferential orientation. When the blades are grouped into packets,

the cyclic symmetry is broken for some of these double modes which

then split into two single ones with distinct frequencies and similar mode

shapes. In the case of 10 packets. or superblades. it is obvious that

there will be one preferred

to the matching symmetry

modal shape. The same

modes. simply because 10

orientation of the 5 nodal diameter pattern due

between the packeting arrangement and the

argument also applies to 10 nodal diameter

is an integer multiple of 5.
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4.3.1 Analvsis via Direct Method

-

-

--

-

-

--

The first part of the numerical study was conducted using computer

program MULPAC which is based on the direct method of Chapter 3.

The natural frequencies of the packeted bladed disc were determined by

searching for the roots of equation (3-7) within the 100-4000 Hz

frequency range. A frequency step of 25 Hz was first used to locate the

single and double roots which were then pinpointed using repeated

bisections combined with a special root-finding algorithm described in

detail in R&s. SD-23 and SD-24. The essence of the method lies in

setting up and reducing the system’s matrix  into upper triangular form at

two distinct frequencies. The number of negative elements (or sign

count) on the leading d iagonal is calculated in both cases, the

difference giving the number of sign changes (1. 8. number of natural

frequencies minus number of poles) within the interval  considered.

Unfortunateiy. the process is polluted by the presence of many poles

which occur at each subcomponent free-free natural frequency and

hinder location of the true natural frequencies. A typical plot of the

system’s characteristic determinant against frequency showing one single

and two double roots is given in Fig. 4.4. As can be seen from the

figure. the frequency determinant exhibits very sharp and sudden

changes. a characteristic feature of the direct analysis  method which

makes the finding of certain modes very dlfficuIt. Once a natural

frequency was located. the associated shape was identlfled by solving

equation (3-6) for the load vector. i. 8. the mode shape by linearity.

Some dlfficultles were encountered for closely-situated roots whose modal

shapes were distorted due to numerical pollution.
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Two sets of results. each corresponding to a different formulation of the

packet receptance matrix, will be presented below. in the first set, the

blades and shroud segments are coupled end-to-end to yield the packet

receptances while these are derived via modal summation is in the

second. Results are given in Tables II-3 and II-4 of Appendix Ii and

plotted in Fig. 4.5. The natural frequencies are once again grouped into

families but this time the frequency versus nodal diameter curves exhibit

discontinulties due to the splitting of the 5 and 10 nodal diameter modes

which together with those for 0 and 75 diameters constitute the single

modes of the system. all others being double modes. This rather

singular behaviour is characteristic of packeted biaded disc assemblies

and will be discussed further and generalised in the following sections.

-

4.3.2 Analvsis via Cvciic Svmmetrv  Method

-

-

-

-

-

The second part of the numerical study was conducted using computer

program SINPAC  which is based on the cyclic symmetry method of

Chapter 3. The natural frequencies of the packeted biaded disc were

determined by searching the roots of equation (3-l 1) within the

100-4000 Hz frequency range. The root-finding algorithm described in

the previous section was also used here. it should be noted that the

method considering a typical disc sector with only one packet rather than

the whole assembly. the solution of equation (3-l 1) always yields single

roots though some of  them may well represent double modes.

Furthermore. unlike the previous case, there is no need to identify the

modal shape since precognition of a dominant n nodal diameter

component was imposed in the first instance.
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The natural frequencies of the 10 packeted configuration. as predicted by

SINPAC, are listed in Table 11-S and plotted in Fig. 4.6. All results

were computed In the case of a packet receptance matrix derived via

coupling of individual components. As can be seen from Fig. 4.6. each

family is now represented by three curves, each approaching a single

packet cantilever frequency at high nodal diameter numbers. In the light

of the previous bladed disc studies and also of the results obtained via

the direct method, It Is immediately seen that the correct vibrational

properties can only be represented by the single curve drawn in bold.

coinciding In turn with each of the initial three curves and the take-over

occuring at 5 and 10 nodal diameters. While there is very good

agreement with the results previously obtained via the direct method. the

physical significance of these superfluous predicted values, so-called

@oat modes, is not entirely clear. The answer to this question almost

certainly lies in the assumption that each mode has a pure n nodal

diameter shape while In reality each comprises several components.

This feature will be discussed in Section 4.5.

4.3.3 Further Considerations

Accuracy of the finite element modelling.

Although the two sets of results shown in Fig. 4.5 are in good

agreement. there are a few discrepancies which merit closer inspection.

As everything else remained the same throughout both analyses, it was

decided to plot the packet receptance curves derived from the two

methods. and Figs. 4. 7a and 4. 7b show the variation of the translational

. ,
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and rotational receptances

packet with frequency.
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(pzl. ZL and &yL eyl)

Both the receptance

summation curves follow each other closely within the 100-4000 Hz

frequency range. it should be noted that the locations of the natural

frequencies on these figures do not correspond to the free-free

of the three-biaded

coupling and modal

conditions since the packet was effectively grounded at the blade roots in

four out of the six co-ordinates. The slight deviations in these

theoretically-generated curves is partly due to the inevitable inaccuracies

involved in the finite element method. in this study both the blade and

the shroud segments were modelled using 3 elements and the criterion

was the convergence of the first 30 modes (f,,, = 4924.9 Hz) of the free

blade packet. This resulted in a 16 node/96 degree-of-freedom model.

and consequently in 96 modes. out of which only the first 75 were

included in the modal summation (fTS = 31029. 5 .Hz). Thus the finite

element method leads to the computation of the packet receptances by

truncating an infinite series - and this by definition of finite elements -

as opposed to the receptance coupling method which uses the closed

form solution and hence effectively incorporates all possible modes.

The introduction of a finer mesh would permit the inclusion of more

modes and hence improve the accuracy but this could only be done at

the expense of increased computing time and memory requirements.

Another major difficulty is associated with the rigid body mode shapes

which always contain impurities or residuals due to the fact that these

zero modes are numerically unstable and iii-conditioned.

- The main purpose of deriving packet receptances via a finite element

eigensoiution was to investigate the possibility of incorporating complex

blade geometries into the basic model of Chapter 3. and the related set
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of results is not of relevance to the general method of analysis and

hence will be excluded from further discussion.

Survey of packeted bladed disc behaviour.

Fig. 4.8 recapitulates all bladed disc results obtained so far with the

exception of those related to finite element modelling. It is observed

that:

(I) As the number of nodal diameters increases. all three families

approach a cantilever  frequency of the single blade packet. A

similar phenomenon, reported in Ref. SD-17, is known to

occur in the case of an unshrouded disc whose families

become asymptotic to blade cantilever frequencies. This is due

to the stiffening of the disc at high nodal diameters.

( Ii) The most striking difference between the continuously-shrouded

and packeted bladed disc behavlour is the discontinuous pattern

exhibited by the latter. As discussed earlier.  the broken cyclic

symmetry forces some of the double modes to split - in this

case 5 and 10 nodal diameters - and this can be predicted by

considering the DFT of the complete packeting  arrangement. It

should be noted that the direct method predicts the double and

single modes correct/y In the sense that the corresponding roots

are also single or double. The cyclic symmetry method

however, always yields single roots and hence additional

information is required. A rationale will be given in Section

4.5 .

(Iii) An at least as important, but a much less obvious, difference

lies in the modal shapes. The packeted bladed disc exhibits

complicated modes which contain more than one diametral

component as opposed to Its continuously shrouded counterpart

whose modes are always pure In shape. The direct method

being a full analysis, the various diametral components
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( iv)

(VI

(vi)

contalned In any one mode can be obtained from the DFT of ,

the corresponding modal shape. Some examples are given In

Fig. 4.9 and a systematic study will be presented later.

The continuously-shrouded discs  (uniform or non-interlocking)

can effectively be consldered as the two limiting cases of their

packeted bladed counterparts. It is clearly seen that packetlng

has no significant effect at low nodal diameter numbers and

also at high frequencies where the continuous and

non-interlocking shroud curves stay together and hence the 1F

family (first flapwise) is most vulnerable to packeting effects.

The amount of splltting in the 5 and 10 nodal diameter modes

is proportional to the gap between these two curves which

Increases with nodal diameter number and decreases with

frequency.

The 1F family presents a somewhat distinct feature vls-‘a-vls the

location of Its natural frequencies which can be estimated from

knowledge of the properties of two much simpler assemblies.

the continuously-shrouded disc and a single packet of

cantilevered blades.

The packeted bladed disc yields higher natural frequencies for

some nodal diameters than its continuously-shrouded

counterpart. This should be attributed to the fact that the

corresponding set of results presented in Fig. 4 .0  was

complied using different computer programs and hence

different techniques of analysls. This feature will be discussed

further In the next section.

Review of the two methods of analysis.

(I) From a numerical vlewpolnt. the cyclic symmetry method has

some dlstlnct advantages. It requires considerably less

computational effort and It Is applicable  to assemblies with large

blade numbers. Furthermore the root-finding process Is less

tedlous and the mode shapes need not be Identified.
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(Ii) The cyclic symmetry method however. cannot predict the

various diametral  components which are present in any one

mode nor distinguish between the single and double modes of

packeted bladed disc vibration and hence additional information

must be supplied.

(iii) Blade-to-blade differences and/or unsymmetrical packeting

arrangements can only be considered through the direct method

since each blade in the assembly Is always modelled individually

whether the symmetry exists  or not.

4.4 ADDITIONAL CALCULATIONS

To study the effects of packeting further, it was decided to extend the

analysis above to other possible packeting configurations of the 30-bladed

disc. Fig. 4. 10 illustrates the shrouding arrangements considered

together with their OFT. Calculations were performed via MULPAC and

complemented in some cases using SINPAC. Results are listed in Tables

II. 6 to II. 11 and plotted in Fig. 4. 11 from which it can be seen that all

packeting configurations of the 30-bladed disc follow the same qualitative

trend which has been established in the previous  section.

(iI Discs with  continuous and non-interlocking shrouds can still be

c o n s i d e r e d  a s  t h e  t w o  llmlting cases of  their  packeted

counterpart. This is clearly observed for the 2- and 3-bladed

packets while the others lead to higher natural frequencies.

The discrepancies  are believed to be due to the use of two

different computer programs, BLISC  and MULPAC, which model

the shroud as a circular hoop and a polygon of straight beams

respectively. As discussed in Ref. SD-17. the hoop curvature

Is expected to couple in-plane flexure  to tangential translation,
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and out-of-plane fiexure to tangential rotation. Since this

coupling effect is of particular importance at the blade Ups, the

straight beam approximation is much more acceptable for a

2-bladed packet than for a lo-biaded one . Also. certain

modes of the packeted configuration are likely to be more

sensitive to stiffness changes due to the gaps in the shroud, a

feature which depends on the nodal diameter orientation.

(Ii)

-

The double modes which split can be predlcted with the aid of

the corresponding Fourier diagrams although there may be

more modes which split than given by the Fourier analysis.

These are due to the global symmetry inherent in the assembly.

in physical terms. a mode wlii spilt each time its associated

shape is forced to have a preferred orientation. Thfs  can be

visuaiized best by checking whether some or ail of the nodal

diameters could pass through the gaps In the shrouding in a

symmetrical manner.

-
(iii) Although totally within the general behaviour outlined above, the

case of the P-bladed packet presents a somewhat distinguishing

feature. in spite of the absence of a splitting double mode,

the characteristic curves still show a discontinuous jump

occuring between 7 and 8 nodal diameter modes. in this case

there are 15 gaps in the shroud and hence these two modes

are the closest ones to have a preferred orientation.

( iv) As can be seen from Fig. 4. 1 lb. a dominant n nodal diameter

assumption used the cyclic symmetry method yields accurate

results even when the number of blades per packet has been

increased to 5. in this case the modal shapes. which contain

up to 5 nodal diametral components, are considerably more

complicated than the ones of the 3-biaded packet with a

maxlmum of three components.
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4.5 A RATtCNALE  FOR PACKETED BLADE0 DiSC A N A L Y S I S

it has already been established that packeted  biaded disc vibration is

characterized  by:

(i) the splitting of certain double modes into single ones;

(ii) the coaplexity of each mode shape which contains at least

two nodal diametral components.

From design considerations. it is very important to be able to predict

these two qualitative properties before undertaklng a lengthy and perhaps

superfluous analysis involvlng the numerical solution of a determinantal

equation. Furthermore. in order to be used on its own. the cyclic

symmetry method requires this extra information. These two essential

features of packeted biaded disc  assemblies. (I) and f Ii) above, can be

anticipated using the modal interference diagrams shown in Fig. 4. 12

which may be drawn using M, the maximum possible number of nodal

diameters. and P. the total number of packets in the assembly. These

diagrams are constructed by drawing the two 45O lines emanating from

each integer multiple of P on the nodal diameter axes (e. g. at 5. 10,

and 15 In Fig. 4.12d or at 3. 6. 9 and 12 In Fig. 4.12f) and including

the main diagonal.

<I) The nodal diameters at which the modes are split into two

different frequencies are found from the intersections of the

interference lines with the leading diagonal and for a given

packeting arrangement, they correspond to the preferred

locations of the nodal lines.

<ii) Also. columns or rows of the modal interference diagrams

indicate the comblnatlons  of nodal diameter components which
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exist together in the (complicated) mode shapes of the

packeted biaded disc. For example, referring again to fig.

4.12d. it is seen that all modes will have shapes whose

diametral components are either:

(a) 0. 5. 10 and 15;

(b) 1. 4, 6, 9. 11 and 14:

(c) 2, 3, 7, 8. 12 and 13.

No other combinations are possible. This result has significant

Implications for prediction methods which can exploit the limited

number of diametral components present in any one mode. It

also has implications for the susceptibility of each mode to

forced excitation. as will be examined in Chapter 6.

Finally, it is stressed that the interference diagrams. introduced in this

work, are applicable to any biaded disc assembly provided the packeting

arrangement is symmetrical. Numerous cases with different blade and

packet numbers have been studied and found to be within the rules above.

:
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Packeting  configuration O F T  camp.

9 l

c
30 0

(a) 2 blades per packet

IS
30 0

(b) 5 blades per packet

L
0

(c) 6 blades per packet

I,
30 0 I5

(d) 10 blades per packet

Fig. 4.10 Various packeting  arrangements together with their
Fourier series representation
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(b) 6 packets of 5 blades

Fig. 4.11 Natural frequencies of the 30-bladed disc for further vacketing arrangements (continued)
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(a) Continuously shrouded (b) 15 packets of 2 blades

(c) 10 packets of 3 blades (d) 5 packets of 6 blades

(e) 6 packets of 5 blades (f) 3 packets of 10 blades

Fig. 4.12 Modal interference diagrams
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CHAPTER 5

EXPERIMENTAL PROGRAMME, PROCEDURE AND RESULTS

5.1 OBJECTIVE

Two methods, both based on substructuring, have been proposed for the

theoretical analysis of packeted bladed discs and an extensive numerical

study of the various packeting arrangements of a 30-bladed disc has

been conducted. There is an obvious need to undertake an experimental

investigation in order to provide a check on the calculations and

observations reported in Chapter 4 and this will be done In the case of

the lo-packeted configuration for which computations from both methods

can be compared with measurements. The main objective of this

exercise is to check whether the two receptance coupling programs,

MULPAC and SINPAC. can fulfil their purpose of  predict ing the

assembly’s natural frequencies and mode shapes reliably and accurately.

5.1 GENERAL PROCEDURE

5.2.1 Testpiece

As can be seen from Fig. 5. 1, the testpiece used is a plane disc with

30 uniform unstaggered blades grouped into 10 identical packets. The

relevant dimensions and material properties are listed in Tables 2. 1 and

4.1 . The experimental model was designed so as to match the analytical
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model as closely as possible and to this effect it was manufactured as a

single integral component from a mild steel plate. except where the

shroud arcs were attached to form the blade packets. This practice was

thought to be warranted to avoid introducing unknown conditions at the

blade roots since the root flexibility is known to have a crucial bearing on

biaded disc vibration [Ref. SD-251 and this complication is outside the

scope of the present analysis.

5.2.2 Description of the Apparatus and Experimental Procedure

The apparatus used in the experimental investigation was arranged as

shown in the schematic diagram of Fig. 5.2. During the experiments,

the testpiece rested on a partially inflated automobile inner tube and the

foundations were isolated from ail unwanted noise disturbances. The
ax ia l l y

structure was excited via an eiectro-magnetic shaker at a point near the

disc rim while the response was measured at the blade tips using an

accelerometer. The position of the shaker had to be

times because it happened to be on or near a nodal

modes which could then not be properly excited. The

carried out in two phases.

changed several

line of particular

experiments were

( 1) First, the natural frequencies of the structure were located using

white noise excitation and processing the response signal through a

digital spectrum analyser. This technique produced with a

reasonably accurate description of the natural frequency locations

within the 80 - 4000 Hz range,

(2) Next, a sinusoidal excitation was used throughout the second phase

for ail frequency response function measurements. A fine resolution

about the suspected resonances ensured the accurate determination
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of the natural frequencies. The modal shapes were then identified

using sand which, as shown in Fig. 5. 1. settled on nodal lines.

Also, for checking against theoretical predictions. a few mode

shapes were determined accurately by measuring the response at the

tip of each blade.

5.3 RESULTS

All measured frequencies together with the corresponding theoretical

predictions are listed in Table II. 14 of Appendix II and plotted In Fig.

5.3. Also, the tip response of each blade was measured when the disc

vibrated in 3 diameters. 0 circles and 10 diameters, 1 circle modes.

These measured mode shapes together with their DFTs are compared

with the theoretically generated ones in Table Il. 15. it should be noted

that all mode shapes and their corresponding Fourier transforms are

normalized such that the largest element has a value of 100. Table II. 15

Is plotted In Fig. 5.4.

5.4 DISCUSSION OF RESULTS

-
(I)

-

-

-

-

As can be seen from Fig. 5.3. correlation between theory and

experiment is satisfactory with natural frequency errors rarely

exceeding 5% and usually being less than 2%. The average

error. defined as the absolute arithmetic mean of individual

relative errors. is about 3.2% for the direct method and 1. 8%

for the cyclic symmetry method. a feature more explicitly shown

in Fig. 5.5 where the correlation between predicted and

measured values is displayed. The cyclic symmetry method

being based on a simplified analysis, this result is somewhat

surprising and merits a closer look. As can be seen from Fig.

5.5a. the direct method usually overestimates the natural

frequencies. suggesting that the Young’s modulus to density

. /



- 53 -
-

-

-

-

-

-

-

-

-

-

(ii)

-

-

-

ratio used in the theoretical calculations was too high. These

predicted frequencies being on average 3.2% higher than the

measured ones, the solid line of Fig. 5.5 was ad justed

accordingly. The broken line representing the corrected

correlation, it is seen that the direct method yields closer

predictions. Further discrepancies between the computed and

measured values can be explained as follows:

in the analytical model, the shroud is represented by a

series of straight beams joined end-to-end while the

testpiece has packets formed by circular arcs attached at

the blade tips:

as shown in Fig. 5.6. the shroud attachment causes

radial blade stresses, a phenomenon which has not been

allowed for in the analytical model;

as the hole in the shroud was considerably larger than the

Allen screw diameter. a certain amount of slip between

the blade tip and the inner shroud surface was inevitable.

This was partly remedied by cementing the tip connection

but it was believed that some motion was still possible,

especially in radial rotation. It will be recalled from

Chapter 3 that blade tips and shroud segments are rigidly

connected in the analytical model, this being imposed by

compatibility equations.

Some modes of vjbration  are missing from Table II. 14 and Fig.

5.3. These fall into two distinct categories:

(a) although the force into the structure was applied at various

points to avoid any possible nodes, certain modes of

vibration could not be excited at all;

f b) some very closely-spaced natural frequencies were located

in the frequency sweep but the associated modal shapes

could not be identified because of the heavy interferences

from the neighbouring modes. This particular problem

arose each time the assembly’s natural frequencies were

expected to approach a cantilever frequency of the single
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packet. The frequency response function shown in Fig.

5.7a indicates the presence of 5 modes near the packet

cantilever frequency predicted at 707 Hz. Out of these,

only 2 modes, namely the 11 and 12 nodal diameter

ones. were identified during the second phase using

slnusoidal excitation and entered in Table II. 14. A further

example, this time for the second family, Is given In Fig.

5.7b.

(Iii) As can be seen from Fig. 5.4, the correlation between

predicted and measured mode shapes Is as good as can be

expected wlthin experimental accuracy. The 3 diameters, 0

circles mode at 154.8 Hz being very close to the 0 diameter, 0

circle mode at 143.0 Hz, the effect of that latter (umbrella

mode) on the measured respone is significant and results in a

shift which accounts for the constant Fourier term being the

largest. Otherwise, It is clearly seen that the 3 nodal

diameters mode has also components of order 7 and 13. a

feature correctly predlcted by the modal interference dlagram of

Flg. 4. Similarly. the 10 diameters. 1 circle mode includes a

term of order 0.

5.5 CONCLUDING REMARKS

Two methods have been developed to compute the natural frequencies of

a packeted bladed disc. Both give very similar results and these in turn

compare well wlth the measurements made on a physical testpiece.

Further, it Is confirmed experimentally that the packeted bladed disc

modes are complex In shape, always having more than one diametral

component. However, all modal shapes identified exhlblted  a dominant

nodal diameter number, contributions from the others being negligible.
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Thls suggests that the cyclic symmetry model. together with the modal

Interference diagrams, is adequately representative of tuned packeted

bladed assemblies.

All results were found to be within the expected experimental accuracy

and no contradictory behaviour towards the theory outlined in Chapter 4

was encountered.
-

-

-
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Fig. 5.2 Experimental apparatus 2
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Fig. 5.4 Predicted and measured mode shapes together with their DFT

Fig. 5.6 Radial stresses in the blade Packet
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while blade 2 is in compression.
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CHAPTER 6

LUMPED PARAMETER ANALYSIS OF PACKETED  BLADE0 DISCS

Although two satisfactory analytical models based on receptance coupling

have been developed and used wlth succes to predict the packeted

bladed disc behaviour quantltatlvely. these cannot be put In use to

conduct parametric  studles In view of the computational effort required.

There Is an obvlous need to devlse a slmpler and more economical

model yleldlng qualltatlve results for standard bladed disc analyses such

as blade mlstunlng and forced response levels. The maln purpose of

thls chapter Is to demonstrate that the lumped parameter technique.

successfully used In the case of continuously-shrouded discs. Is also

applicable to packeted configurations. Although some

examples will be glven, this Is by no means an attempt to a

study.

numerical

parametric

6.1 LUMPED PARAMETER MODEL

In the original lumped parameter model of a compressor rotor proposed

by Dye and Henry [Ref. SD-131. a single mass was used to represent the

blade while the sectorlal mass of the disc was lumped at the root. An

Improved verslon of thls model, In which the blade Is modelled vla two

lumped masses. was developed by Afolabl [Ref.  SD-261 to Investigate the

effects of random mlstunlng on the vlbratlon of coupled turbomachine

blades. HIS work has now been extended to Incorporate blade packets
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and the model used is shown in Fig. 6. 1.

The equations of motion for the jth blade can be written as:

IllSj - SXj_1  + (k+2S  >Xj - SXj+l - kYj = 0

Mj;j - Syj-1 + (K+k+2S)Yj  - SYj+l - kXj - KZj = 0 (6-l)

Wiij - hzj-1 + (K+g+2h)Zj - hZj+l - KYj P 0

where all symbols used are defined In Fig. 6.1. Assuming simple

harmonic motion. the analysis is reduced to the following linear

eigenvalue problem of order 3N:

( CKI - @LcMl) 1s) = 0 (6-2)

-

__

-

-

-

where N is the number of blades on the disc, and EKI. [Ml. w and (q1

have their customary meaning.

6.2 Numerical Study

LUMPAC, a computer program based on Afolabl’s original. was written

and used for the numerlcal study.

6.2. 1 Derivation of the Model Parameters

The actual values of the lumped mass and stiffness parameters used in

the model above can be derived for any given bladed disc by using a

semi-empirical method described In Ref. SD-26. for the 30-bladed

disc. these values were computed as follows:
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1) The total mass

M such that:

- 64 -

(Mb) of the blade was divided into two masses m and

m+M = (%I

(5-3)

m=aM

2) If the first two cantilever frequencies of an Individual blade are 1CF

and 2CF. the blade springs k and K can be determined from the

two-degree-of-freedom cantilever model illustrated in Fig. 6.2. It

can be shown that:

IC - M [G + G2 - 4EI(l + a)]/2

k= aGM=/K

(6-4)

where G - (XX')= + (ZCF)= and H - (lCF)= (2CF)=

3) If the total mass of the disc alone is (MD) , the sectorial mass W is

given by:

w - (&I/N

where N is the total number of blades.

(6-5)

4) The disc model stiffnesses h and g are determined using a

curve-fitting technique. Let W= and w, denote the natural frequencies

of the unshrouded disc for the 2 and 3 nodal diameter modes

respectively. By setting the shroud stiffnesses s and S to zero and

assuming values for the disc stlffnesses h and g. the natural

frequencies of the 2 and 3 diameter modes are forced to converge

towards o2 and w3 while the higher modes are expected to approach

the first cantilever frequency asymptotically.

5) T h e shroud springs are determined In the same way, using this time

the natural frequencies w(s) of the continuously-shrouded disc.
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The model parameters of the 30-bladed disc are listed in Table

6. 1.

(EB) - .35 Kg

a - .5

(&I) - 21.6 Kg

1CF = 262. Hz

2cF =1640. Hz

wz = 102. Hz

03 - 151. Hz

W(S)@ = 556. Hz

W(S)AS - 866. Hz

m =

M =

w -

k -

K =

h-

g-
8 =

s -

.115 Kg

.321Xg

.720 Kg

,317 x 106 N/m

24.171 x lo6 N/m

2.6 x lo6 N/m

60.0 N/m
5.000 x lo8 N/m

8.000 x lo5 N/m

Table 6. 1 Model parameters for the 30-bladed disc

6.2.2 Case Studies

The following is a list of cases studied using LUMPAC :

0) a single packet comprising three cantilevered blades,

(ii) the disc with a uniform continuous shroud,

(iii) the disc with a non-interlocking shroud,

(iv) the disc with 10 packets of 3 blades.

All cases above were run with the parameters given in Table 6. 1 except

for (I) where h and g were set to lOto and for (iii) where S=O. s=200

N/m and m=. 146 kg. Results are listed in Tables II. 11. II. 12 and II. 13

and plotted in Fig. 6.3. As can be seen from Figs. 4.8 and 6.3. there

is excellent qualitative agreement between the two approaches used and

hence It can be stated that the lumped parameter formulation is

adequately representative of bladed disc systems if quantitative analysis Is

of no primary importance. The investigation of the forced response

. ,



E-

-
- 66 -

levels. for which a global picture of a qualitative nature Is usually

satisfactory. can therefore be carried out on this simplified model to

economlze  on computational effort. This Idea will be developed In the

next section.

6.3 f ORCEO RESPONSE CALCULATIONS

6.3.1 Basic Theory

The equation of motlon for forced harmonic vlbratlons  Is:

(e-6)

-

and x1, yj and zj are the j th blade deflections at the Up, the clapper

point and the root; and Fxj, Fyj and Fzj the forces applied at these

locations In the same order. lt can be shown that:

-

-

Pxj *

where r is
N

FO

t

n

Fj = PO .ir[nt + 2n(j - 1)/N]

the engine order of the excitation,

the total number of blades,

an arbitrary constant,

the time,

the rotational speed.

(G-7)

For the sake of clarity. It has been assumed that the external forces are

applied at the blade tips only. Remembering that rn = w, the frequency

of vibration, equation (6-7) reduces to:



E

-

- 67 -

Pj = PO =2nir(j  - 1)/N  . ,iti (6-8)

which combined together with equation (6-6) yields a response vector of

the form:

(q) = [[K] - uz [M]]-’  (PO e2nir(j  - ‘)jN) jml,N (6-g)

The matrix HKI - a2 Uvlll-i is simply the receptance matrix of the bladed

system which can also be expressed as:

-

I VI - WL WI 1-I = [a(w)3 = cumLlcdJ3T ( 6-10 )

-

-

-

where [+I is the eigenvector matrix from the free vlbratlon analysis

and. I‘A J Is a dlagonal matrix whose (1, J) element Is of the form

(Al - 0*1-a, ~j being the j th elgenvalue from the free vlbration analysis.

Substituting equation (6-10) Into equation (6-9) gives the flnal form for

the response vector:

-

-

-

-

-

where R is the number of modes to be included in the modal

summation.

6.3.2 Case Study

A 5th engine order (5EO) excitation was applied to both continuously-

shrouded and packeted assemblies and the response curves. computed

at the tip of the middle blade In the packet, are shown In Fig. 6.4.

The frequency range for which calculations were made includes up to six

nodal diameter  modes of the flrst famlly of the continuously-shrouded
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-

-

-

-

-

-

-

-

- qualitative behaviour:

-

wheel and it Is clearly seen that the SE0 excitation generates a response

in the five-diameter mode only. Thls is a well-known result for tuned

systems [Ref. SD-l 81.

The presence of gaps In the shroud disturbs the cyclic symmetry for the

five-diameter  mode which splits into two single modes, both of which are

susceptible to SE0 excitation. The third resonance at 332 Hz occurs at

another single five nodal diameter mode. this time belonging to the

second family. Hence the packeting is seen to have the effect of

bringing additional modes Into excitation and this feature should be duly

considered at any design stage.

6.4 CONCLUDING REMARKS

Both the receptance coupling and the lumped parameter methods yield

the same qualitative results, showing that the latter can adequately

represent bladed disc systems provided no quantitative predictions are

required. The Implications of this are threefold:

(i) several important aspects of packeted bladed disc vibration,

such as asymmetrical packeting arrangements, importance of

Individual blade tunes, root-flexiblllty  effects, influence of

varlous parameters on forced response levels etc. , can be

Investigated without requirlng a prohibitive computational effort:

(ill other results, experimental or theoretical, can be checked to

see whether they are wlthln the bounds of the expected

f iii) the .lumped  parameter

structural basis to a

method can also serve as a reliable

first generatlon of aeroeiastic models
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yielding qualltatfve  stablllty  predictions. This will be discussed

In Chapter 8.

-

-

-

-

-
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Fig. 6.1 Lumped parameter model of a three-bladed packet

xi Tip deflection of ]*th blade,

yi Clapper point deflection of 1'thblade,

'i
Root deflection of

Blade mass between

Blade mass between

jth blade;

tip and clapper point,

root and clapper point,

Mass of disc sector,

Upper shroud stiffness,

Lower shroud stiffness,

Stiffness between tip mass and clapper mass, .

Stiffness between clapper mass and disc sector,

Sectorial disc stiffness,

Grounding stiffness.

,_. -
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M k m

Fig. 6.2 2 DOF cantilevered blade model
-

-

-

-

-

FREOCENCI  ( nz )

Idzl....r...,‘....‘....‘....‘....’....’....’....‘....‘....l...,
1 6 0 2 0 0 240 2 6 0 3 2 0 3 6 0 4 0 0 4 4 0 480 520 6 6 0 6 0 0 f 0

Fig. 6.4 Response of the continuously-shrouded and packeted
assemblies to 5E0 excitation
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CHAPTER 7

CONCLUSIONS

-

-

7.1 SUMMARY OF CONCLUSIONS OF PRECEDING CHAPTERS

The work described in the first part of this thesis represents an effort to

rationalize  the vibrational behaviour of packeted bladed discs. To this

end. several independent analytical models have been formulated to study

both qualltitatlve and quantitative aspects of the problem and some of the

theoretical findings have been checked experimentally. With respect to

the models used, it is found that:

-

-

-

-

-

(iI In the case of a stiff disc with relatively flexible blades grouped

into identical packets, the cantilevered packet (finite element)

model is adequate for determining the natural frequencies and

mode shapes of the whole assembly. In any event, this model

Is particularly useful if only In-plane vibrations are of Interest.

(ii) The direct method (receptance  coupling) is a general packeted

bladed disc analysis tool, capable of dealing with asymmetric

arrangements and/or individual blade mistuning. However, due

to restrictions on Central Memory storage, its use Is limited to

relatively small blade numbers.

(iii) The cyclic symmetry method (receptance coupling) is ideally

suited for studying bladed discs with symmetrical packeting

arrangements. It Is applicable to any number of blades and

requires less computational effort than the direct method.
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( iv) Used in the case of a 30-biaded disc. the models in (ii) and

(iii) above gave very similar results which in turn compared

well with the experimental measurements on a physical

testpiece. The impiications of this are twofold: firstly.

receptance coupling is fully capable of analysing packeted

biaded systems and secondly. correct choice of coupling

co-ordinates at the blade root was made.

(VI A lumped parameter study of the same disc showing very good

qualitative agreement with the previously-obtained results. it is

concluded that this model is adequately representative of

packeted biaded disc assemblies provided quantitative analysis

is of secondary importance. An immediate application area is

the investigation of the response levels due to forced vibration

where only a global picture of a qualitative nature is required.

(vi) Packet receptances derived from a finite element eigensoiution

can be substituted into the basic models (ii) and (iii) to

incorporate more complex blade geometries. Although the

basic steps of this relatively new technique have been

established. some difficulties in both finite element modelling

and the truncation of the modal series are anticipated in view of

the slightly different results obtained when using simple beams.

Although this particular study was conducted for a 30-biaded disc, it is

the author’s conclusion that the methods of analysis are general and

applicable to any packeted biaded assembly and some of the results

obtained are representative of universal biaded disc behaviour. it is

found that:

(I) The natural frequencies of a cantilevered blade packet are

grouped into families. each exhibiting a number of modes equal

to the number of blades in the packet. The lowest natural

frequency in each family corresponds to a blade cantilever
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frequency and Its limiting value can be estimated by allowing for

(ii)

some concentrated mass and Inertia at the blade tip due

shroud.

The in-plane or tangential vibration characteristics

to the

of a

multi-bladed unstaggered blade packet fol low a certain

predlctable  pattern: in each family with N modes, (N-1)

natural frequencies are  grouped together  and  the  Nth

frequency. which is either the lowest or the highest of that

family. is somehow isolated. This finding is in agreement with

Smith [Ref.  SD-41 who reached a similar conclusion using an

approximate method. Also, as discussed in Ref. FE-l, the

in-plane behaviour of a multi-bladed packet can be deduced

from the one of the corresponding two-bladed packet. The

out-of-plane or axial vibrations however. do not show a similar

trend. the packet’s natural frequencies being randomly

dispersed between the first and the last frequency in each

family.

The packeted bladed disc exhiblts:

double modes (I. e. two modes with identical natural

frequencies and almost Identical mode shapes) which

arise from the circular symmetry or;

single modes which occur when the cyclic symmetry is

destroyed.

The latter fall Into two distinct categories: the first contains

modes for which the symmetry cannot be maintained in any

case. These are common to both packeted and

continuously-shrouded assemblies and occur for 0 and N/2

nodal diameters where N is the total number of blades and

even. The second category consists of split double modes for

which the circular symmetry has been broken by the presence

of packeting . They have two distinct but close natural

frequencies and they are both associated with the

same nodal diameter pattern.
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(Ill) Unlike  Its continuously-shrouded counterpart, a packeted bladed

disc’s modes are complex In shape, contalnlng several nodal

diameter  components. However, dlametral components from

single modes are coupled only with components from other

single modes and the same Is true for double modes.

( Iv) Both the modes which split and the modal composition In terms

of nodal dlameter components can be predicted from the modal

Interference diagrams Introduced In thls work.

(VI As for the continuously-shrouded case. the natural frequencies

of the packeted bladed disc exhibit the well-known tendency to

group Into famllles.  each becomlng asymptotic to a cantilever

frequency of the single packet.

(VI) DISCS  with continuous and non-interlocklng shrouds can

effectively be consldered as the two limiting cases of their

packeted bladed counterparts. The families from both analyses

being very close to each other at low nodal dlameter numbers,

packetlng has no slgnlflcant effect on the corresponding natural

frequency locations. Also. the curves depart from each other

wlth Increasing frequency and hence the effects of packetlng

will be more pronounced on families associated with 0 and 1

nodal clrclef  s) . Furthermore, the first family presents a

somewhat dlstlnct feature vls-a-vls the single packet cantilever

frequencies: the natural frequency locus can be predicted with

reasonable accuracy from knowledge of these former together

with the two continuously-shrouded cases.

(VII) The packeted bladed disc response to engine order excitation

always occurs in more than one mode. due to the presence of

several diametral components. Thls feature must be duly

consldered at the design stage.
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7.2 LIMITATIONS AND EXTENSION OF THE PRESENT WORK

Although the analytical models were formulated for the more general case

of coupled axlal/tangentlal vibrations. both numerical and experimental

studies focussed on the out-of-p1 ane analysis. chiefly to Illustrate

patterns of typlcal behaviour more clearly. It Is suggested that the

effects of changing the blade stagger angle are Investigated and more

coupling co-ordinates at the blade root used If necessary. Due to

storage considerations, this can only be done in the case of the cyclic

symmetry method which can easily be extended to all possible 6

co-ordinate directions.

The effect of blade root flexlblllty  was totally excluded form the present

analysls. This feature can be Incorporated into the existing models using

translational and rotational springs In the appropriate co-ordinate

directions but It Is antlclpated the cost of such an exercise will be high.

The cantilevered packet flnlte element model Is suggested as a starting

point. Damping was also excluded from the analysis but It Is believed

that Its inclusion would not bring any significant changes to the results

obtalned.

Flnally. there Is an obvious need for more accurate modelling of the

blade geometry. This can be achieved via a finite element model. the

elgensolutlon from which can be used to evaluate packet receptances.

Although the basic steps of this approach have been established In this

study. several dlfflculties are antlclpated In the case of more advanced

finite elements. namely the size of the elgenproblem. the reduction

techniques  which must be employed and the compatlbllity of a particular

element wlth the analytical disc model used.

I
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CHAPTER 8

INTRODUCTION

8.1 THE NATURE OF THE PROBLEM

8.1.1 Aeroelastic  Phenomena

The term aeroelastlcity was first used by aeronautical engineers to

describe an important class of problems encountered in aircraft design.

it is often defined as a science which involves the mutual interaction

between the aerodynamic, elastic and inertial forces which act on the

structure. Structural fiexlbility may not be objectionable in Itself or even

desirable in some cases but aeroelastic phenomena arise when structural

deformations induce additlonal aerodynamic forces. These additional

aerodynamic forces may also produce additional structural deformations

which then will cause still greater aerodynamic forces. Such interactions

may tend to become smaller and smaller until a condition of stable

equilibrium is reached, or diverge and destroy the structure. In spite of

the presence of external (aerodynamic) forces applied to the structure.

this type of vibrational behaviour is fundamentally different from the one

frequently encountered in structural dynamic analysis. namely forced

vibration. Referring to the former as self-exicted vibration, Ref. AE-1

forwards the following distinction.

In a self-excited vibration the alternating force that sustains the motion Is
created and/or controlled by the mot/on  itself; when the motion stops the
alternating force disappears.

,,.
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In a fOrC8d v i b r a t l o n .  t h e SUStainlng  alt8rnating  fOrC8 8XiStS i n d e p e n d e n t l y
of th8 motion a n d  p e r s i s t s 8V8n When the v i b r a t o r y  m o t i o n  is stopped.
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A self-excited vibration can also be considered as a free vibration with

negative damping, and this approach will b8 adopted throughout this

work. With positive damping. the damping force does negative work

since it is always opposed

out from the system. in

damping force (which now

results in energy being fed

to the motion, and hence  th8 energy is taken

the case of negative damping, hOWeVer.  the

is a driving force) does positive work and this

into the system and then used to increase  the

amplitude of vibration. With a perfectly linear self-excited system. this

response would become infinitely larger in time b8CaUSe  Of the COntinUOUS

e n e r g y  input t0 th8 S y s t e m . in most real structures. hOW8Ver.  th8

mechanisms of self-excitation and damping exist simultaneously and

separately. thus allowing the system to recover and oscillate about

dynamical ly  changing point  of  8qUlllbriUm. This phenomenon

schematically lllUStrat8d  in Fig. 8. I.

a

IS

8. 1.2 Tvpes of Flutter

Although more than one type of Self-eXCit8d vibration dU8 to a8rOdynamiC

effects is encountered in practice. thls work will be restricted to the

study of a particular kind, namely th8 flutter of axial turbomachinery

blades. Flutter can be defined as the dynamic instability of an elastic

body in a gas flow. it occurs when the unstedy aerodynamic forces and

moments Created by periodic blade vlbrations do positive work on the

blade during each cycle and th8 mechanical damping is insufficient to

dissipate this work input. Flutter is mOSt commonly encountered on

bodies subjected to large lateral aerodynamic loads of the lift type. such
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as aircraft wings, turbomachinery blades and Venetian blinds. although

no research is known to have been done in this last case.

At

(1)

the outset. two different regimes of flutter must be distinguished:

stall flutter with large angles of incidence where there is flow
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separation from the aerofoii surface: and (ii) classical or unstalied flutter

wlth small angles of incidence where the flow remains attached to the

aerofoil surface. The former type is mainly encountered on compressor

blades operating at near-surge conditions and will be excluded from this

study. A comprehensive review of subsonic stall flutter in axial

turbomachines is given in Ref. AE-2. Unstalled

a major concern for aircraft wings - but a minor

blades when operating at relatively low speeds.

high-speed jet engines however. the supersonic

one of the most serious technological problems

stage of modern compressors. Two more types

flutter has always been

one for turbomachinery

With the introduction of

unstalled flutter became

associated with the fan

of flutter - encountered

in practice - are reported in Ref. AE-3 and summarized below:

- transonic tie. mixed subsonic/supersonic) choke flutter which

important when the blade is operating at near-choke conditions;

- A-100 type supersonic torsional flutter which occurs above a

level presure ratio.

Typical flutter boundaries that have been observed

compressors are shown in Fig. 8.2. However, this

centered  on classical or unstalled flutter and when flutter

referred to, this type is implied.

on

becomes

threshold

modern

study will be

is henceforth
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8.2 SURVEY OF PREVIOUS WORK

-

-

-

_-

in most cases. aeroelastic equations are derived by equating (the work

done by) the aerodynamic forces and moments to (the work done by)

the elastic and inertial ones so that the basic model is usually

independent of the flow type until numerical values are required. Hence

the survey of previous work on flutter will focus firstly on the evolution of

aeroeiastic models irrespective of the flow type used and a review of the

existing unsteady aerodynamic theories will be given later.

8.2.1 Aeroeiastic  Studies

Although most of the early research work on flutter is related to

aeroplane-wing stability and not to turbomachinery blades. the models

and techniques used are relevant to the present study and a precis will

be given here. Theodorsen [Ref. AE-41 and Theodorsen and Garrick

[Ref. At+51 were. the first  to approach the bending/torsion flutter problem

by considering an aerofoii of finite aspect ratio, moving with small

oscillatory amplitudes at constant velocity through an incompressible

non-viscous fluid. The aerodynamic forces were determined by

considering the problem as one of two-dimensional potential flow.

Furthermore. it was assumed that the distributed inertial and geometric

properties of the aerofoii could be conservatively represented at a typical

section - usually at the 314 span - using a lumped parameter technique.

The problem was further simplified by considering the system’s motion as

a combination of the fundamental bending, fundamental torsion and the

aileron motion about the hinge line. The aerofoii was then represented

by an equivalent typical section of unit span length restrained by springs

c
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against translational and rotational motions. This basic model was later

to become a standard textbook feature Wefs. AE-1. AE-6 and AE-71 as

well as a basis for a number of subsequent studies [Refs.  AE-8. AE-9.

AE-10. AE-17. AE-12. AE-13. AE-14. AE-15. AE-WI.  including the

present one. The first exact treatment of the bending/torsion flutter is

due to Goland [Ref. AE-171 who solved the partial differential equations

of motion for a uniform cantilevered bar under known aerodynamic load.

The flow through an axial compressor or turbine stage is much more

complicated than the flow past a single aerofoll due to the presence of

many blades per stage and. in general. of several stages which

introduce severe Interference effects. In view of these complicated

interactions between rotor and stator  blades. most analyses concentrate

on a single blade row: unwrapping an annulus of differential radial height

from the flow passage of an axial-flow compressor, fan or turbine

produces the two-dimensional cascade flow model which is generally used

in turbomachinery studies.

Multi-bladed cascade analysis initiated from the study of wind tunnel

interference effects for an Isolated aerofoll situated between two solid

walls. This is equivalent to an unstaggered cascade In which all blades

are vibrating out-of-phase with each other [Refs.  AD-l. AD-2. AD-3 and

AD-41. The solution for the generalized  cascade was obtained by Lane

[Ref. AE-181 who showed that a system of N identical blades can be

reduced, wlth no loss of generality whatsoever, into a &g/e equivalent

blade so long as a linear analysis Is permissible. HIS method was based

on discretlzing the variation of the interblade phase angle to N equally

spaced values within the interval IO. 2n[ and this technique is now a
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standard feature for most two-dimensional cascade studies including the

present  one  [Fiefs. AE-8. AE-11. AE-12 .  AE-13 .  AE-14 .  AE-15 .

AE-16. and AE-201.

Whitehead [Ref. AE-81 investigated the single-degree-of-freedom torsional

flutter of unstalled blades at zero deflection. He was the first to study

the effects of small differences between the blades and he concluded that

mistuning had always a stabillzlng outcome. He later extended his work

to investigate the effects of mistunlng on the forced aeroelastic response

of bladed disc assemblies Befs. AE-21 and AE-221. For a mistuned

assembly with N blades, he showed that although the amplitude of any

one blade could theoretically Increase by a factor of 11 + f(N/2) l/2 or

(1 +  fN)/2, this upper limit would not be reached under normal

circumstances. Hanamura and Tanaka [Ref. AE-131 investigated the

special case of alternate mistuning on torsional flutter and concluded that

this particular mistuning had greatly increased flutter velocity. Srinivasan

[Ref. AE-121 developed Whitehead’s basic model to incorporate

mechanlcal coupling among the blades vla a shroud attachment. He

conducted a series of parametric studies for a particular bladed disc

assembly wlth emphasis on mistunlng.

Carta [Ref. AE-91  applied an energy method to predict the flutter

boundaries of a bladed shrouded disc. His technique was based on

evaluating the logarithmic decrement of the system as the ratio of the

work done by aerodynamic forces and moments to the average kinetic

energy of the system. This approach was later ganeralized by

Mikolajczak et al. [Ref. AE-101 who included the effects of mechanical

damping and the drag force into their model.

. ,.
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The study of the coupled bending/torsion flutter in cascades is still in its

early stages. Sendiksen and Friedmann [Ref. AE-111 were first to

combine Theodorsen’s model [Ref. AE-41 together with Lane’s assumption

[Ref.  AE-181 and hence to model the cascade via a lumped parameter

model where the blades were only aerodynamically coupled. They

systematically investigated the effect of bending/torsion coupling on tuned

cascade stability over a wide range of design parameters. Kieib [Ref.

AE-161  and Kaza and Kieib [Ref. AE-141 used the same model to study

the mistuned cascade stability and to predict the amplitude of blade

vibration forced by wakes. They later extended this basic model [Ref.

AE-201 to incorporate structural coupling among the blades via summation

of in-vacuum modes of vibration. More recently. [Ref. AE-191 they

considered the case of straight, slender. twisted, non-uniform elastic

blades with a symmetric cross-section for which the equations of motion

were derived using Hamilton’s principle. A conceptually similar approach

is due to Srinivasan and Fabunmi [Ref. Al+231 who, instead of using one

typical section, defined the blade properties at several spanwise  stations:

a technique which allows complex blade geometries to be modelled with

reasonable accuracy. Their analysis did not include structural interblade

coupling and led to eigenprobiems of prohibitive sizes for realistic blade

numbers.

8.2.2 Aerodynamic Studies

The theory of vibrating incompressible. inviscide flow has been gradually

built up by several authors. in spite of the earlier research by Giauert

[Ref.  AD-51 and Von Karman [Ref.  AD-81. Theodorsen’s work [Ref. AE-41
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is the first which derives analytical expressions for the lift and moment

coefficients for an isolated aerofoii oscillating in incompressible flow. His

analysis was later complemented by Postei and Leppert [Ref.  AD-71 who

calculated the corresponding pressure distribution on the aerofoii surface.

Mendelson and Carol1 [Ref. AD-81 derived the lift and moment equations

for an infinite unstaggered cascade by assuming that ail blades vibrated

in phase. Lane and Wang [Ref. AD-91 presented a calculation method

applicable to cascades of any stagger and phase angle. Their method

was subsequently rationaiited by Whitehead [Ref. AD-101 who presented

the unsteady lift and moment coefficients in a standardized form.

The theoretical determination of the air forces acting on an oscillating

two-dlmensionai aerofoii moving through a compressible fluid at subsonic

speeds was first achieved by Possio in 1938 [Ref. AD-l 11. Garrick [Ref.

AD-121 extended his work and published extensive numerical tables for

Mach numbers less than 0.7 beyond which he found the theory

inapplicable. Wooiston and Runyan [Refs. AD-l and AD-21 studied the

problem of subsonic tunnel interference effects for an isolated aerofoii.

Their work was generaiized by Lane and Friedman [Ref. AD-131 who

presented a method of calculation for the generaiized cascade and gave

numerical results for the unstaggered case. Whitehead [Ref. AD-141

developed this technique to make it applicable to the transmission and

reflection problems, and to the generation of sound by vibration and

incoming flow disturbances. Smith [Ref. AD-151 considered the same

problem but his analysis was based upon the work of Kajl and Okazaki

[Ref.  AD-161 who represented each blade by an unsteady distribution of

pressure doublets.
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The problem of a two-dimensional. oscillating. thin aerofoii moving with

supersonic speed was first considered and solved by Possio in 1937 [Ref.

AD-171. The supersonic wind tunnel wall interference effects for an

isolated aerofoil - equivalent to an unstaggered cascade with antiphase

vibration of adjacent blades - were investigated by Miles [Ref. AD-31 and

Drake [Ref. AD-41. Their work was extended to staggered cascades with

supersonic axial velocity (supersonic leading edge locus) by Lane [Ref.

AD-181 using Lapiane transform techniques. The analysis of the

practically more important but mathematically more difficult case of

subsonic axial velocity was first treated by Goreiov [Ref.  AD-191 who used

a collocation method. Kurosaka [Ref. AD-201 obtained a closed form

solution in the case of an infinite cascade oscillating at low frequencies

using Laplace transform methods. Treatises for semi-finite cascades

were published almost simultaneously by Verdon [Ref. AD-211. Brix and

Piatzer [Ref. AD-221, Nagashima and Whitehead [Ref. AD-231, Goldstein

[Ref. AD-241 and Verdon and McCune [Ref. AD-251, ail of whom

considered a reference blade about which a finite number of neighbouring

blades were taken into account until convergence towards a periodic

solution was achieved. The first completely analytical solution is due to

Goldstein. Sraun and Adamczyk [Ref. AD-261 and Adamczyk and

Goldstein [Ref.  AD-271 who applied the Wiener-Hopf technique to the

solution of the integral equation for the velocity potential.

8.3 OBJECTIVES AND SCOPES OF THE PRESENT ANALYSIS

At the outset, the underlying objective of this research is to improve the

basic understanding of the aeroeiastic characteristics of biaded disc

systems. To help to meet this rather general objective, it is proposed to
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develop a numerical model which provides an acceptable interface of

bladed disc structural dynamics with the existing unsteady aerodynamic

theories. Although the formulation of the latter Is not wlthin the scope of

thls study. the choice and development of the former are and they will

lnevltably  constitute Its framework. As the alm of this study Is to provide

an overall representation of the aeroelastic phenomena rather than to

seek the solution of a particular  problem, it Is appropriate to devise a

strategy that yields a multi-purpose analysis and design tool based on

effective numerical methods. A  lumped parameter  model .  as

documented In Chapter 9. will be used Initially since It has been shown

in Chapter 6 that such a model Is adequately representative of structurally

mistuned bladed disc systems and that It can provide a rapid and

relatively cheap means of observlng patterns of qualitative behavlour

systematically.

The methods presented In thls work, together with many others. can

provide a theoretlcal  basis for improved analysis and design capabilities

for rotating machinery manufacturers. The long term effect should be a

decrease In the amount of costly full scale engine testing and a reduction

in the number of blade failures and resulting redesigns In the

development process. Furthermore, the use of dellberate mistuning  as

passive control tool for flutter could become a popular design feature for

the next generation of turbo-machines.
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Structural damping

Fig. 8.1 Variation of systeiz's stability in time

Suoersonic stall

Subsonic/Transonic

Classical unstalled
supersonic flutter

Mass Flow Rate

Fig. 3.2 Types of fan/coo?ressor  flutter [2ef. RE-31

.,
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CHAPTER 9

DERIVATION OF THE AEROELASTIC  MODEL
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9.1 STRUCTURAL MODEL

As shown in Fig. 9. 1, the bladed disc assembly is discretized via a

hybrid model of the original lumped parameter representation proposed by

Dye and Henry [Ref. SD-131 and the isolated aerofoil of Theodorsen [Ref.

AE-41. A modified version of the latter. as used in this study, is

I l lustrated in Fig.  9.2. The blade is represented as a two

degree-of-freedom oscillator in which the inertial coupling of the bending

and torsional motions due to pretwist, rotation of the rotor, etc. is

modelled through the offset distance d between the centre of twist and

the centre of gravity. The elastic axis passes through this centre of twist

at which a force normal to the blade surface causes only a translational

displacement and no rotation. For most practical applications, the mass

moment of inertia in the chordwlse direction is much greater than that in

the direction normal to the chord and hence the motion in the former

can be neglected without any loss of expected accuracy. The inertial

propert ies (m. I, dl of the blades are usually represented at 314

spanwise  position while the remaining model parameters ( M. k. c. K. g,

Sh, Sal are determined by a trial-and-error process provided sufficient

vibration data are available (see Section 6.2. 1). As can be seen from

Figs. 9. 1 and 9.2. there are two degrees of freedom per blade (one

translational and the other rotational) and one per disc sector. and

“’ ‘,.
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hence the model above leads to an elgenproblem  of order 3N, where N

Is the total number of blades.

- 91 -

If Fj and Tj are the external force

the equations of motlon for the jth

written as:

and moment acting on the jth blade,

blade and the jth disc sector can be

. . . .
m-j hj + mjd a-j - Sh hj_1 + (2@, + kj 1 hj - a h-j+, - kj yj = -Fj

. .
Ij ij + mjd hj - Sa aj-% + (2Sa + Cj) Qj - Sa aj+L = Tj (9-l)

M i;j - K yj-z + (UC + g + kj) Yj - K Yj+, - kj hj = 0

where all other symbols have been defined In Figs. 9.1 and 9.2. The

lumped parameter model Is Ideally sulted for a systematic  study of the

mlstunlng effects since blade-to-blade dif ferences can easily be

Introduced by changing any of the four section parameters, namely mj,

lj* kj and cj. Although a more general approach Is possible. the

mistuning In this work will be restricted to the varlatlon of the blade

torsional frequencies about a reference value and hence all model

parameters but cj will be kept constant for a given bladed disc.

Assumlng simple harmonic motion and extendlng equatlon (9-l) to N

blades In non-dlmenslonal form gives :

(9-2)

where [M) and [K] are the non-dimensional mass and stiffness

matrices whose explicit form is given in Appndix III,

p is a non-dimensional parameter defined in Aspendix III,

o,, is some! arbitrary reference frequency;
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(Q)T - (-P;,  T;, 0, . . . . . . .-F;, T& 0 )

It should be noted that both the response and the force vectors are also

in non-dlmenslonal form. this being denoted by *. Structural damping of

the hysteretic type can easily be Introduced by letting:

kj - kj(l+i%)

(9-3)

=j - Cj(l+itb,)

-

-

-

-

where nh and s), are the damping coefficients for bending and torsion

respectively.

9.2 AERODYNAMIC MODEL

The choice of the particular  expresslons to replace F and T In equation

(9-l) depends on the Mach number range In which flutter Is expected to

occur. The unsteady aerodynamic loads were calculated using

Whitehead’s theory [Ref. AD-101 for lncompresslble flow, Smith’s theory

[Ref. AD-151 for subsonic flow and Nagashlma and Whltehead’s theory

[Ref. AD-231 for supersonic flow with subsonic or supersonic axial

velocity. Although the formulation of these Is outside the scope of this

work. It Is appropriate to review the basls of their derivation in

reasonable detail in view of the common assumptions and solution

techniques used.

. :
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9.2.1 Fundamentals of Two-Dimensional Cascade Flow Theories

The cascade flow model used in all three analyses is shown in Fig. 9.3.

The following common assumptlons are made:

(I)

(II)

(Ii11

( Iv)

(VI

(VI)

tvll)

The system Is two-dimensional. This means that the bending

vibration of a blade may be represented by the translational

motion of the equivalent two-dimensional aerofoil In a direction

normal to the chord and that the torsional vibration  becomes

simply a rotation about a fixed axis.

The blades are represented as flat plates of negligible

thickness.

The effects of fluld vlscoslty  are neglected so that there are no

boundary layers on the blades and the flow follows the blade

surface without stalling.

The blades operate at’ zero mean incidence  so that the mean

deflection Is also zero.

The blades undergo simple harmonic motlon whose amplitude Is

small. They all vibrate with the same amplitude and with a

constant phase angle between adjacent blades. For a stage

wlth N blades. this phase angle Is restricted to N values which

are Integral fractions of 2n. Both flutter and forced vlbratlon of

Identical blades Is of this form but any motion of the blade row

can be synthesised by superposing modes of this kind so that

thls assumption does not lead to any loss of generality.

The flow Is isentropic and Irrotatlonal.

The wakes shed from upstream perlodlc obstructions are limited

to slnusoldal distortlons  represented by vortlclty perturbations so

that  they are convected downstream at the mainstream
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velocity v.

(viii) The unsteady blade loading at the trai l ing edge is f ini te for

incompressible and subsonic flows. This is a statement of the

Kutta-Joukowski condition.

( ix) All perturbations from the uniform main flow are small so that

the continuity and momentum equations may be linearized  and

the principle of superposition may be applied to the solutions

obtained.
-

The main  object ive o f  the aerodynamic analyses  i s  to  predict  the

aerodynamic forces and moments acting on a cascade of fiat plates due

to:

(a) translational vibration of the plates normal to their chord line,

this corresponding to the flapvise vibration of a three-

dimensional blade;

(b) torsional vibration about a given axis;

(c)wakes convected into the cascade from periodic upstream obstruc-

tions.

The general method of calculation is based on equating the total induced

velocity normal to the blade surface to the input upwash veloci t ies

corresponding to (a) , (b) and (~1  ; that is to say:

Vinduced 'vupwash (94)

-

The induced velocity can be determined by regarding the blades and their

wakes as vortex sheets [Refs. AD-10 and AD-151 or pressure dipoles

[Ref. AD-231 in which case the convected wave equation has to be used.

In any event. equation (9-4) leads to an integral equation of Fredholm

type of the first kind which can be expressed as:
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/

b

K(-r - e) f(T) 67 - Vu(e) (9-S)
-b

where f is the unknown  pressure or vorticity distribution,

K kernel function,

VU inputupwash velocity,

b semi chord length,

e a co-ordinate along the blade chord,

7 a dunmy integration variable.-

The kernel in equation (9-5) is a very complicated (complex) function of

five parameters. namely: the reduced frequency A. the Mach number M.

the cascade stagger angle c. the gap to chord ratio g/c and the

Interblade phase angle or. Some analytical formulations can be obtained

under certain simplifying assumptions [Refs.  AD-20 and AD-231. and a

closed form solution Is discussed In Ref. AD-27. The problem is further

complicated by the presence of singuiaritles In the kernel function and

these must be extracted prior to the numerical solution. This is

discussed in detail in Ref. MA-4.

Once the pressure (or vorticity) distribution is determined. the unsteady

aerodynamic ilft force and moment per unlt span length are given by:

/

b

P- f(T)  dr

- b

/

b

T= f(T) T dT

- b

(g-6)

where f denotes the pressure distribution function across the blade

chord.

, ‘,.
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9.2.2 Force and Moment Coefficients

As mentioned earlier, the force and moment defined by equation (9-6)

are due to three input upwash velocities and hence they can explicitly be

written as:

P--27QvbL (dCph+aV  Cpo-WC-)

(9-7)

whereVia the relative flow velocity,

Y fluid density,

W velocity of disturbance due to wakes,

L blade span,

and CFh, Qa and CF~ are the force  (or moment) COeffiCientS  due to

blade translational velocity. blade rotation and wake disturbances

respectively. it should be noted that these coefficients are normally

computed at the leading edge and hence they are an expilcit function of

a sixth parameter. the elastic axis position. The conversion formulae can

be found in Ref. AD-lo.

When the frequency of vibration approaches zero, the coefficients tend to

a finite limit which, in the general case, is not zero. it can be shown

that:

lim cph - lim cp, - lim CR, - cp

-

.,‘,.. ._.,_. / .._..., _:,.: . .



E
-

-

-

-

-

-

-

- 97 -

This Is the maln reason for basing CFh and CMh on the velocity of the

translational vlbratlon rather than the displacement since the force and

the moment are expected to vanish once the motion has stopped.

For a tuned cascade. In which there Is no structural coupling among the

blades and the Inertlal coupling Is weak, the bendlng flutter stablllty of

unstalled blades Is dlctated by the real part of CFh since this determines

the component of the blade force which Is In phase with the velocity of

the motion. If f?e(CFh)  Is pOSltlVe and there Is no mechanlcal damping

present, the blades will flutter. This can easily be seen by considering

the corresponding equation of motion:

mii+mcci+kw,~ ( 1  +  if@,) h  = 2npVbL (Ii Cph  +  Qv Cp,)

Assumlng harmonic motlon and equating the Imaginary parts gives:

Ql - A [w Re(Cph)  + a/h V Im(cpa)]  - 0 (9-8)

where A Is a posltlve c o n s t a n t . Equatlon (9-8) represents the

equlllbrlum condition for which the aerodynamic damping effect Is

cancelled by Its structural counterpart. Assuming that there Is no

mechanlcal damping and a/h Is small (I. 8. weak coupling between

bendlng and torslonal motions) . the condltlon for stablllty becomes:

The torslonal stablllty Is slmllarly controlled by Im(CMa). Although the

CFW and  CMW coefficients do not contribute to the stablllty analysis. they

can be used to predict the amplltude of the forced vlbratlon due to wakes

provlded the disturbance velocity  w can be estimated.
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9.3 AEROELASTIC  MODEL
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9.3.1 Derivation of the Aeroelastic Equations of Motion

The overall equations of motion for the biaded system under aerodynamic

loading will be derived by substituting the aerodynamic forces and

moments of equation (9-7) into equation (9-2) , The motion is assumed

to be simple harmonic with a constant phase angle between adjacent

blades. the values of which are restricted to:

&=Orrr/N wherer=O,N-1

and N is the total number of blades. For a tuned system, the modal

shapes corresponding to different interblade phase angles (or nodal

diameters) are always pure and hence the motion of the jth sector for

vibration in a single mode can be written as:

I hj/b
a-3
Yj/b

where

elrpCi(wt + &j)l

hj is the bending amplitude of the jth blade,

a-3 torsional amplitude of the jth blade,

Yj amplitude of the jth disc sector,

hat- bending deflection of the jth blade

in the rth tuned system mode,

%r torsional deflection of the jth blade

in the rth tuned system mode,

Yar deflection of the jth disc sector in

the rth tuned system mode,

w frequency of vibration,

(g-9)
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t time,

and i- 4-l l

In the case of a mistuned system, the blades have different response

amplitudes and the phase angle between adjacent blades may vary. In

view of the spatial periodicity. the overall motion can be expressed as a

superposition of all possible motions of the corresponding tuned system

and hence the motlon of the jth sector takes the form:

I
hj/b

a-3

Yj/b

exp(iut)= I exp[iW + &j)l

For an N bladed disc. equation (9-10) can be generalized as:

CEI (%rl
system response

vector

modal deflection

vector

(g-10)

(g-11)

where

E(O,O)  0 0 E(O,l) 0 0 .0 E(O,O) 0 0 E(O,l) 0 . 1

WI = [exp(anisr/N)] 0 0= I E(O,O) 0 0 E(O,l).E(lrO) 0 0 E(l,l) 0 0 . II 0 0 E(l,O) 0 E(l,O) 0 0 0 E(l,l)  0 E(l,l).  0 .

1 l l l

. . .
l I

s - j - l

and fq) is defined in equation (9-2) . Also. it can be shown that:



e-

-

-

-

-

-

-

-

Ichr1 - [El-% (s) - l/N cE3 (s) (9-12)

Using equation (9-10) , equation (9-7) can be re-written to express the

aerodynamic  forces and moments in terms of the non-dimensional

coefficients and modal deflections. Such a formulation leads to:

N - l

Pj =+bWL c %hrha.r/b+ lhar a, + lkl ewCiW+P,j  13
r=o
N-l (9-13)

Tj - yb%#L
c

Cbrhar/b+ k~~ar+lon*rl  expliW+&j)l
r=o

where

- 100 -

lhhr' 4i/h Cph khr' 8i/h Cm

lhar - 8/h= Cm km= 16/h= CM,

lhwr - -8/h= w/V Cpw h = -16/h= w/V Cm

and A = Pbw/V  is often termed as the reduced frequency.

The non-dlmensional form of equation (9-13) can be generalised  for an

N-bladed disc to give:

IQ) = w=/@,= IEICAl~~~  +  W=/WO=  CElW’w) ( 9-14)

where (Q) is defined in equation (9-2),

(qa,-) and [E] are defined in equation (S-11),

[A] is the aerodynamic matrix whose explicit form is given

in Appendix III,

(Pw) is the force vector due to wakes whose explicit form is

also given in Appendix III,

and q, is some arbitrary reference frequency.

Equation (9-14) constitutes

equation (9-2) represents

equation of motion Is:

the aerodynamic part of the analysis while

the structural side. Thus the aeroelastic

I
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(ml - ~=/%=Cl~l +  V(MW~lCAl~~ll)~9l  - ~/CL w=/~,=C~lU’~~ (9-15)

where use of equation (Q-12) has been made. Let:

cc1 = WI + l/(W) C~ICAII~I

PI = CCl-LW

in which case equation (Q-15) becomes:

(9-16)

(PI - w=&= [II) ISI - VP w=/q,=  ICl-LIEl(F’wI (9-17)

it should be noted that the above complex eigenproblem Is not linear

since the elements of W (and hence of [PI) are very complicated

functions of frequency. Thus. an iterative solution technique must be

used and this will be discussed In Section 10.1. The aeroelastic stabillty

of the cascade Is determined by the eigenvalues of the characteristic

matrix [PI. Let:

o,-*+i* (9-18)

where nr and nr represent the natural frequency and the aerodynamic

damping factor of the rth mode. Flutter occurs If:

Qr<o

9.3.2 Forced Aeroelastk  Response

(g-19)

In the foregoing analysis, it is possible to consider a forcing function

which, in the general case, contains all harmonics r of the rotational

speed n up to r = N-l. where N Is there total number of blades and r Is
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termed as the engine order of the excitation.

only one harmonic r = R. will be considered

For the sake of clarity.

at a time, though this

restriction brings no loss of generality since the principle of superposition

holds. Physically. this corresponds to the case in which there are R

symmetrically placed obstructlons located upstream from the rotor and the
-

circumferential wake distribution Is perfectly sinusoidal. Thus:

w=nR (g-20)

Remembering that the coefficients lhwr and I,r in equation (9-13)

represent the part of the aerodynamic loading due to wakes, the

non-dimensional forcing function corresponding to the Rth engine order

excitation can be written as:

%dR
wR)= laJRI I

lhwR
ei.Nnt +*(j - 1)/N] = h ePtiSR/N eiot

0 I I0
j=l,N s==O  , N-l

-

= W’J CE(s,R)l  ~Fvml (9-21)
-

-

where the notation fE(s. RI1 (F,R) indicates that excitation for only one

harmonic. namely r=R. is considered at a time. Using equation (9-l 6) .

equation (9-15) can be rewritten as:

(a - P/cr  (WI - P  Ccl I-’ VI 1%) ( 9-22 )

where p-d/~,~ is the non-dimensional forcing frequency parameter,

ts) cascade aerodynamic response vector,

VW) vector of wake amplitude coefficients.
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The notatlon [El (Fwl corresponds to the general case where all possible

harmonics (r = 0, N-l) are considered at any one Instant. Since

Interest Is confined to the Rth engine order excitation only, equation

(9-22) must be modified to read:

1s) - P/(W) (PI - P  CCIYL  CE(s,R)l  h~1 m-23)

Equatlon (9-23) differs from Its structural counterpart equation (6-10) by

the fact that the forcing frequency is Implicitly present In the [Cl matrix.

It should also be noted that the quantity wz appears both on the

numerator of the forcing frequency parameter p and on the denominator

of the lhwR and 1,~ coefficients so that It only affects ([Kl - ptC1)  -I

term.

-

--



--

-

Fig. 9.1 Lumped parameter model
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Shroud stiffness in translation,

Shroud stiffness in rotation.
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CHAPTER 10

NUMERICAL STUDY
-

10.1 DETAILS OF THE COMPUTER PROGRAM-

-

-

-

-

-

-

-

A digital computer program, namely FLUTl. was written to perform the

aeroeiastic analysis described in Chapter 9. Through its modular

structure. the following options can be considered.

<i) Computation of force and moment coefficients for different flow

conditions.

As mentioned earlier, the

using Whitehead’s theory

unsteady aerodynamic loads were calculated by

[Ref. AD-101 for incompressible flow. Smith’s

theory [Ref. AD-151 for subsonic flow, and Nagashima and Whitehead’s

theory [Ref. AD-231 for supersonic flow with subsonic or supersonic axial

velocity. In ail three cases, the solution methods presented in the

original source were followed closely and good agreement was obtained

with the published results. Some numerical problems, however, were

encountered in the case of subsonic flow and it was concluded that the

present formulation could lead to erroneous results for Mach numbers

above 0.9.

<ii) Determination of flutter stability.

The eigenproblem given by equation (Q-17) was solved using standard

routines from the Numerical Algorithms Group (NAG) library. The

c
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recommended path for eigen-analysis is first to balance the complex

matrix by reducing its norm. then to put it into upper Hessenberg form

using stabiiized elementary similarity transformations and finally to extract

the eigenvaiues via the LR algorithm with shifts of origin. Both the

original and the balanced matrix have the same eigenvaiues and the

eigenvectors of the former can be recovered by back-substitution.

Further details can be found in Ref. MA-S.

Unfortunately, the analysis is further complicated by the fact that the

stability matrix [PI is also a function of frequency, a feature which

renders the eigenprobiem below non-linear and mathematically very

complex indeed:

(Ip(n)I - to= III) (ql = (01 (10-l)

where w = n + jr).  n being the frequency and r) the damping part. After

some deliberation. it was recalled that the natural frequencies of the

aerodynamically loaded system would be close to the in-vacuum ones. in

which case the latter could be used as initial guesses to an iterative

solution for the real part of the complex eigenvaiue. That is to say:

(cp( no )I - (n, + ir),F  III ) If41 - (01

( [P( n, )] - (52, + iqt )= [II ) 1s) = to) (lo-21

( CP(nj_L)] - (nj + WjF  CII) 1s) = (01

until (nj - +11 In1 < a prescribed value, j being the iteration number.



- 108 -
-.

-

-

-

-

-

(Iii)  Forced aeroelastic  response.

The amplitude of the forced response induced by wakes. as given by

equation (g-23). was computed using a standard complex matrix

inversion routine from the NAG library. The frequency-dependence of

the [Cl matrix was taken into account by setting it up at the natural

frequency of interest or. in some cases. at the central frequencies of

subdivided intervals.

Although the correctness of the program could not be checked for the

general case (for which there are no published results available), the

following test runs were made:

(I)

(ii)

(iii)

-

- .

the in-vacuum natural frequencies and associated mode shapes

of various biaded discs were checked against those given in

Refs. SD-26 and SD-28;

in the case of a 12-biaded cascade. the loci of the

uncoupled torsional eigenvaiues were checked against Refs.

AE-8 and AE-12;

in the case of a 2%biaded rotor, the locus of the coupled

torsional eigenvaiues was determined in parallel with

Ref. AE-16. The stability plots resulting from both

calculations are given in Fig. 10. 1, which incidentally

provides a direct comparison of Adamczyk-Goldstein and

Nagashima-Whitehead theories for supersonic flow with

subsonic axial velocity.

Good agreement was obtained in ail three cases. However. it should be

noted that in (ii) and (iii) above. the blades are only coupled

aerodynamically: that is to say there are no mechanical connections

between them and hence they behave as isolated cantilevers from a

structural viewpoint.
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10.2 AERODYNAMIC FORCE AND MOMENT COEFFICIENTS

10.2.1 Direct Use of the Coefficients for Flutter Predictions

In  the case of  a  tuned bladed d i s c  w h e r e  t h e  Interblade s t r u c t u r a l

coupling is weak (for example. relatively stiff disc. flexible blades and no

shroud attachment) and bending and torsional motions are uncoupled,

the f lutter boundaries can be deduced from the calculation of the

aerodynamic force and moment coefficients without resorting to the full

aeroelastfc  model. As discussed in Chapter 9. the torsional  stability is

t h e n  g o v e r n e d  b y  IrnCCMJ and the dev iat ion f rom the in-vacuum

frequencies by RefCM,).

Cons ider  the fo l lowing hypothetical cascade whose characteristic

parameters are:

Number of blades = 12

Stagger angle = 48O

Gap/chord = 1 .0

Elastic axis = 43% chord

Reduced frequency = .42

and for which i t  Is p r o p o s e d  t o  c a l c u l a t e  t h e  f o r c e  a n d  m o m e n t

coefficients in eight different cases of  Increasing  M a c h n u m b e r .  i. 8.

M= 0. 0.4. 0.6. 0.7, 1.1, 1.2, 1.3 and 1.5. As there are 12

blades In the cascade. the only allowable values of the lnterblade phase

a n g l e  a r e  Integer m u l t i p l e s  o f  ~16. e a c h  o n e  glvlng r i s e  t o  a n

aerodynamic mode, the stability of which depends on the sign of Re(CFh)

and ImICM,). For the eight cases above. it has been found that in all

cases ReEFhI is negative so that the bending vibration is stable and this
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observation is in total agreement with Ftefs.  AD-lo. AD-15 and AD-23.

The CMa coefficient. however. shows significant variations between

modes and RefCM,I is plotted against im(CMarI  in Figs. 10.2a  to 10.2h.

Fig. 10.2a shows the stability behaviour of the cascade when subjected

to incompressible flow (M=O) . The aerodynamic modes 1. 2. 3. and 4

have positive imaginary part and hence they are unstable according to

the criterion presented in Section 9.2.2. In the subsonic regime. the

locus of the coefficients does not show any significant changes at M =

0 .4  (F ig . 10.2b) but the isolated behaviour of mode 1 becomes

dominant at M = 0.6 and 0.  7  (Figs.  10.2~ and 10.2d). In the

supersonic regime. the loci change rather rapidly in an apparently

random manner (Figs. 10.28 to 10.2h) from one Mach number plane to

the next. at least half of the modes being unstable in all four cases.

The deviation from the in-vacuum natural frequencies is governed by the

real part of CMa, and its generally positive value leads to lower damped

frequencies. For this particular cascade, it is interesting to note that

RefCMa) becomes negative at supersonic Mach numbers only.

10.2.2 Further Considerations

(I) Lack of symmetry. An obvious but rather important feature of the loci

shown in Fig. 10.2 is the asymmetry of the aerodynamic modes which

are dependent on the wave direction. this being given by the sign of the

interblade phase angle. In other words, the cascade distinguishes

between forward and backward travelling waves and hence, for a

12-biaded s y s t e m .  m o d e  1 (Pi = n/6) is different from mode 11

(pii = -n/6). 2 from 10. 3 from 9. etc . . . Furthermore, in most
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cases. the loci are of elliptical shape, the unstable modes usually

opposing the stable ones. it will be shown later how this feature can be

exploited to stabilise a biaded disc system by means of mistuning.

(ii) Blade Interactions in the cascade. The force and moment acting

on any given blade are dependent in some way on the blade’s own

position, velocity and rotation, and the position. velocity and rotation of

ail the other blades in the cascade, as well as the aerodynamic

parameters. The blade interactions can best be viewed in a global

sense by taking the discrete Fourier transform of a set of aerodynamic

coefficients comprising ail possible values of the interblade phase angle.

Fig. 10.3 shows plots of the Fourier components in the case of the Cfvlor

coefficients for increasing values of the gap to chord ratio parameter. it

is seen that the non-zero components are grouped on either side of the

Oth  order component which is the largest. This suggests that only a

limited number of neighbouring blades can influence the reference blade.

the interactions being roughly proportional to their respective distance.

As the g/c parameter increases, ail Chna  coefficients tend to the same

limiting value, irrespective of the value of the phase angle. and the

cascade flow coincides with that past a single aerofoii: the reference

blade. in this case. the DFT of a set of identical values returns ail

Fourier terms but the constant one as zero or. as expected, there is no

contribution from other blades which are too distant. Similar calculations

were performed for extending the validity of the result above to other

aerodynamic coefficients f CFh. CF~, CFw. CMh and Chnw)  as well as to

subsonic and supersonic flows. The same pattern was observed in ail

cases.
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T e s t  point A :  M* = 0.7 * .02. A* = .42 f .04

.50087 - .08295i .62771 + .0845Oi .59387 + .25643i

.73132 + .18769i .58956 + .42477i .43165 + .45305i

.50064 + .59905i .31361 + .53301i .24843 + .45937i
-

< lm

namely
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Sensitivity tests* Although three of the cascade parameters,

g/c. E a n d  Dr. are determined by its geometry. the remaining

two, Mach number and reduced frequency, depend on the flow conditions

and hence their evaluation may somehow be less accurate. To investigate

the sensitivity of the aerodynamic coefficients to small changes in these

two parameters, It was decided to compute their values at a series of

neighbouring points as tabulated below:

where - denotes a value under the nominal and + above. The test was

performed at two points marked as A and B in Flgs. 10.24 and 10.29.

The results for the CMa coefficient are tabulated below and

Fig. 10.4 .

plotted In

Test point B: M* = 1.3 f .03,  A*  = .42 f .04

-.12031 + .09655i -.03374 + .08916i -.00032 + .05334i

-.07218 - .06696i -.10765 + .07365i -.04277 + .07384i

-.05540 - .01068i -.09843 - .07287i -.09621 + .05509i

-

Table 10.1 Variation of the CMa coefficient  for small changes In

A and M

-
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As can be seen from Figs. 10.4a  and 10.4b. the CM~ coeff icient iS

quite sensitive to changes in both parameters. a property which must be

- 113 -

considered duly if quantitative flutter predictions are required.

<iv) Pressure distribution along the blade chord. As mentioned earlier,

once the pressure distribution function along the blade chord is known,

the unsteady aerodynamic loads can be computed in a straightforward

manner by integrating this function between the leading and trailing

edges. Fig. 10.5 illustrates the pressure difference across the blade

due to torsional vibration in the case of subsonic and supersonic flows.

In both examples the integral equation was solved using 30 collocation

points and hence the pressure distribution function was discretired at 30

points along the blade chord. As can be seen from Fig. 10.5a.  the

subsonic pressure distribution has a smooth shape as opposed to the

supersonic one - shown in Fig. 10.5b - which exhibits a discontinuity at

the point where the shock wave emanating from the leading edge of the

blade below hits the reference blade. In agreement with these two

examples above, further calculations showed that the pressure distrlbutlon

function could. in most cases. be approximated by a series of quadratics

each defined for a specific interval along the blade chord. This idea will

be developed later in Chapter 11, to yield an aerodynamic model of finite

element type.

10.3 CASE STUDY: TWELVE-BLADE0 DISC

Using the lumped parameter model described in Chapter 9. a detailed

stablllty  analysis and forced response study was made of a hypothetical

twelve-bladed disc, henceforth referred to as disc A. with emphasis on

. ,,
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mistuning. Modern fans and compressors operate with flow velocities

which are supersonic relative to the blades while the axial velocity

entering the blade row remains subsonic. Accordingly. the aerodynamic

computations will be restricted to this particular flow type which is of

current practical interest. The aeroelastlc system data are given below

in Table 10.2.

Number of Blades - 12

Stagger angle = 62O

Distance between adjacent blades - 86nml

Distance between the CI and the CG P lxml

Distance between the LE and the CT = 75w

Blade length = 500 lml

Chord length = 100 nml

Blademass = 0.785 Kg

Blade mass moment of inertia wrt CG = 1.43 x lo-' Kg. mz

First cantilever frequency in bending = 5oHz

First cantilever frequency in torsion = 500 Hz

Reference frequency = 500 Hz

Structural damping factor for bending -0

Structural damping factor for torsion - 0 and 0.003

Disc sector mass = 1.000 Kg

Interdisc stiffness = 1.0 x lo6 N/m

Grounding stiffness = 6.0 x lo4 N/m

Shroud stiffness in translation = 1.0 x lo6 N/m

Shroud stiffness in rotation - 1.0 x 10' N/m

Relative flow velocity = 375 m/s

Mach number = 1.25

Fluid density = 1.3 Kg/m'

Table 10.2 Aeroelastic system data

LE: Leading edge. TE: Trailing edge

CG: Centre of gravity. CT: Centre of twist
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10.3.1 Tuned Svstem

-

-

-

Preliminary Calculations.

Fig. 10.6 shows the natural frequency spectrum of disc A under vacuum

conditions. Although the system under vacuum cannot differentiate

between forward and backward travelling waves, the aerodynamically

loaded one will and thls Is the reason for plottlng the natural frequencies

against the harmonic number instead of the more usual variable, the

nodal dlameter number. As the model allows three degrees of freedom

per sector, the resulting modes are grouped into three families. the first

one corresponding to blade bendlng. the second to blade torsion and the

third exhibiting disc dominated modes. As there are no aerodynamic

loads acting on the disc sector. the behaviour of this third family Is of no

interest in aeroelastic studies. Also. as pointed out in Ref. AD-23. and

confirmed by independent calculations. the real part of the force

coefficient CFh never becomes positive so that the uncoupled bending

flutter is always stable (see also Ref. AD-30). Further calculations

revealed that In order to make the bending modes of the coupled motion

unstable. a series of rather unrealistic conditions (e. g. centre of gravity

at the leading edge and centre of twist at the trailing edge or vice versa)

would have to be imposed on the system and hence the first family was

also excluded from the analysis. However, it is stressed that this result

is specific to disc A and no wider generalization would be made at this

stage. Although the model above covers a 3N eigen-spectrum for all

cases studied, only those results related to the second family will be

reported and discussed and hence when frequency or damping is

mentioned, torsional motion is Implied. The mode shapes of this family

are displayed In Fig. 10.7.

-
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Convergence of the aeroelastic modes.

As mentioned earl ier. the convergence of the calculation of damped

natural frequencies and associated aerodynamic damping factors requires

an iterative technique in which the in-vacuum frequencies are taken as

initial guesses. in view of the computational effort involved in calculating

the aerodynamic coefficients and solving the eigenprobiem. any such

method would be unacceptably expensive unless a very rapid convergence

rate was assured. A series of calculations. as formulated by equation

(10-2). was conducted to check the numerical viability of the iterative

scheme. The results are given below in Table 10.3 and plotted in Fig.

10.0.

r n0 nz

0 500.27 498.62 490.61 498.62

1 506.17 498.83 498.64 490.64

2 521.97 509.65 509.04 508.97

3 542.82 527.% 526.43 526.31

4 562.90 546.76 545.55 545.40

5 577.17 562.08 561.01 560.71

6 582.31 570.02 569.00 568.80

7 577.17 567.92 567.40 567.11

8 562.90 557.19 556.92 556.24

9 542.82 546.29 546.29 546.29

10 521.97 527.86 527.75 527.68

11 506.17 511.17 511.06 511.01

Table 10.3 Convergence of the damped natural frequency (Hz)

r: harmonic number: nj: f requency at jth iteration.

-

As can be seen from Table 10.2 and Fig. 10.8, the natural frequencies

reach a stable value after the first iteration and further cycles do not

-
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bring about any significant improvement which could justify the additional

computational effort required. The same trend is also observed for the

aerodynamic damping factor obtained from the imaginary part of the

eigenvalue. Further calculations. not presented here. confirmed that the

iteration could be stopped after the first cycle without significant loss of

accuracy and this procedure was adopted for all subsequent calculations.

Another interesting feature of Fig. 10.8 is the asymmetry of the damped

natural frequencies on the n,. o, and n, curves. contrasting the ones on

the s&, curve which correspond to the unloaded case.

Stability analysis.

In common with many other studies, it is found that the flutter stability is

best visualized by plotting the real part of the eigenvalue (here. natural

frequency) agalnst the imaginary part (here, aerodynamic damping

factor) on the Argand plane. Fig. 10.9 shows such a plot for the

aeroelastic modes of disc A, the solid line determining the locus of the

eigenvalues. As can be seen from Fig. 10.9. there is a wide variation in

the stability of the aeroelastic modes. the ones associated with interblade

phase angles 0. n/6 and n/3 (or harmonic numbers 0. 1 and 2 1 being

unstable. These are opposed by modes 6. 7 and 8 which possess

strong aerodynamic damping. The stability of the first three modes can

be improved by:

(I) stabillzing them at the expense of the remalnlng ones. especially

numbers 6. 7 and 8; and/or

(ii) altering the corresponding mode shapes since the amount of

aerodynamic damping in each mode is motion dependent.

-

-

-

Techniques (iI and f ii) above are concurrent. though not necessarily

c
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compatible. in the sense that they are both Introduced using some means

of structural modification. This Idea will be developed in the next section

under the heading of mistuning.

The correlation between the imaginary part of the CM~ coefficient and the

aerodynamic damping value was investigated by plotting the latter against

the former in Fig. 10. 10a. it is clearly seen that damping is almost

directly proportional to IrnfCf,,to) and this is an expected result since the

centre of twist being very close to the centre of gravity, coupling between

bending and torsion is weak.

The deviation from the in-vacuum natural frequencies - defined by

(SIC)2 - n2) / 100 as in Ref. AE-8 - is simiiariy controlled by Re(Cr& and

this is shown in Fig. 10. lob. The relative percentage deviation

- def ined  by  lOOx(s2,  - n)/n - is small and rarely exceeds 1%. the

largest occuring for Dr = n with 2%. This is an expected result since the

ratlo of  material to  a i r  dens i t ies  Is  la rge  for  most  aeroelastic

applications. and so the damped frequency Is usually close to the

in-vacuum one.

Effect of structural damping.

The broken line in Fig. 10.9 corresponds to the case where some

structural damping of the hysteretic type was introduced by setting m to

0.003. It is immediately seen that its only effect. as predicted by

equation (9-8) . is simply to shift the locus bodily towards stability without

changing the natural frequencies. This was true for ail the cases

computed and these other results will therefore not be presented.

. .
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- 10.3.2 Effects of Mistuning

in recent years, the idea of utilizing blade mistuning as a passive means

of flutter control has been suggested by several authors (see for instance

Refs_  AE-13,  AE-15 and AE-23)  . The purpose of this section is to

extend this popular approach to a model where the blades are both

aerodynamically and structurally coupled, a feature which was absent

from previous studies. As explalned earlier. the mistuning is introduced

through the torsional stiffness parameter c. thus restricting the

blade-to-blade differences to the variation in individual blade cantilever

frequencies in torsion.

Fig. 10. 11 shows six stability plots. each corresponding

type of mistuning with comparable levels of deviation from

to a different

the reference

blade frequency at 500 Hz. The corresponding data are given in Table

10.4. As can be seen from Fig. 10. 11. each mistuning pattern leads to

a different stability locus with at least one mode being unstable. Before

studying in some detail each of the six mistuning cases. it should be

stressed that modal interferences due to mistuning occur and hence there

is always more than one harmonic present in any one mode. Although

the dominant interbiade phase angle can usually be identified without

much difficulty (that is how the individual points of Fig. 10. 11 a r e

labelled). the assumption stating that all blades move with the same

amplitude and a constant phase angle is violated. Also, Fig. 10. 12

shows the discrete Fourier transform components of the eigenvectors

-

-

-

-

associated with the unstable modes 0. 1 and 2.
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(1) The first type of mistuning to be considered is random mistuning

which is simulated by defining the mean (500 Hz) and the

standard deviation (25 Hz) of the population and then using a

random number generator to calculate the individual blade

frequencies which constitute the sample. The stability plot shown

in Fig. 10. lla corresponds to a sample mean of 493 Hz and a

sample standard deviation of 21 Hz. Compared to their tuned

counterparts, ail mistuned modes are shifted in a random manner

which. to a certain extent. can be explained with the aid of Fig.

10. 12a. it is immediately seen that each mode shape contains ail

possible harmonics (r = 0. 11) and hence the change in stability

of any one mode is dictated by ail the others depending on how

the harmonics are coupled. Due to ail these modal interferences.

it Is very difficult. if at ail possible, to find a pattern from which

changes in stability could be predicted.

(ii) The second type is cosine mlstunlng  governed by the detuning

function 0.05 cos2e. As can be seen from Fig. 10. llb. t h e

marked improvement of modes 0. 1 and 2 is balanced by the

deterioration of modes 7. 8 and 11. These six are the active

modes as opposed to the remaining ones which are the passive

modes. From a structural viewpoint, this result may be seem

unexpected since in the case of a 12-biaded disc. any detuning

function of the form cos20 is known to split ail double modes into

pairs of single ones such as (1.11). (2.10). (3.9). (4.8). and

( 5 . 7 ) . Fig. 10. 12b reveals. however. that either ail even

(including 0) or ail odd harmonics are coupled in any one mode.

suggesting that modes 0 and 2 are stabiiized at the expense of

mode 8: mode 1 at the expense of 7 and 11. etc.

(iii) The third type is single blade mistuning where the first blade’s

cantilever frequency is set to 525 Hz. ail the other ones remaining

unchanged at 500 Hz. Fig. 10. llc shows that. there is no

significant improvement In the stability of the first three modes. a

;,_. I-
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phenomenon which can easily be explained with the aid of Flg.

10.12c. All three modes contain major harmonics of order 0. 1.

2, 10 and 11. and hence the interactions take place mainly among

It Is also seen that modes 10 andthese already unstable modes.

11 are both destabillzed to compensate for 1 and 2. and mode 0

Is shifted further towards instablllty.

(iv) The fourth type Is alternate mistuning of 10% In which even and

odd numbered blades have different cantilever  frequencies. these

belng at 525 Hz and 475 Hz respectively. Because of the

symmetry inherent In thls type of mistuning. the harmonic

associated with  the phase angle Dr becomes coupled with that

associated with (Pr + n) . In the case of a 12-bladed disc. 0 is

coupled with 6. 1 with 7. 2 with 8. etc. This is illustrated In Fig.

10. 12d. As can be seen from Fig. 10. lid. alternate mistuning

results in a strong stabllizing effect on the system since unstable

modes 0, 1 and 2 are opposed by the heavily  damped ones. I. 8.

6, 7 and 8. Another interesting feature of Fig. 10. lld is the split

of the stability locus into two distinct loops. This Is due to the

forced grouping of the lndlvldual  blade frequencies lnto high and

low families under the effect of mistuning.

(VI The fifth type of mistuning to  be  cons idered  Is  a  special

arrangement, henceforth referred to as SAl mistuning. in which

two high frequency blades at 525 Hz are followed by two low

frequency blades at 475 Hz. In this case the symmetry group

consists of four blades, analogous In some respects to a

four-bladed packet. and as can be seen from Fig. 10. 128. the

harmonics  which  couple  wl th  Dr are (Pr + n/2), (Pr + ITI and

<& + 3rr/2). As in the previous case, and due to the same

reason, this type of mistuning  has a strong stabilizing effect on the

system. The stability plot Is seen to split Into four distinct loops

of three modes each. thls being due to the lndlvldual blades

grouping into two low and two hlgh frequency families.
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(vi) The sixth and the last type of mistuning Is another special

arrangement. henceforth referred to as SA2 mistuning, in which

two high frequency blades at 525 Hz are followed by one low

frequency blade at 475 Hz. This causes harmonic & to be

coupled with (Dr + 2~73) a n d  (or + 4n/3)  a n d  t h e stablllty

locus splits Into three families of four modes each (see Figs.

10. llf and 10.120.

Randcan  mistuning Cosine mistuning

= no n 11 no n r)

0 484.2 484.9 -1.0 490.2 487.5 -.8
1 488.1 481.3 -5.9 491.0 488.0 -4.4
2 506.1 498.4 5.7 519.0 512.1 2.4
3 532.6 524.9 32.1 541.0 528.9 16.0
4 557.4 548.1 58.6 557.7 545.4 44.1
5 570.6 577.7 69.1 571.1 559.9 64.9
6 588.8 577.0 90.0 591.4 579.9 89.8
7 573.8 562.8 87.8 590.8 579.5 85.7
8 562.3 554.1 80.7 566.0 557.0 87.2
9 540.3 535.5 40.6 545.3 544.9 59.9

10 521.5 518.4 28.8 528.3 528.6 40.2
11 500.2 500.5 19.2 513.4 512.4 20.9

Single blade mistuning Alternate mistuning

r n0 n n n0 n s)

0 501.2 499.2 -8.3 494.3 492.2 3.2
1 506.2 500.6 -7.'8 499.4 492.2 -7.8
2 522.0 511.1 -3.0 511.7 500.8 4.1
3 542.8 529.9 34.0 519.9 511.4 22.4
4 562.9 549.3 51.8 573.4 562.7 43.1
5 577.2 563.9 68.9 584.1 571.3 58.6
6 588.2 576.6 88.1 588.5 577.0 83.5
7 580.0 569.1 95.7 584.1 574.9 90.7
8 566.3 668.9 100.9 573.4 566.2 89.7
9 546.4 547.2 50.2 568.0 560.9 41.9

10 525.5 528.8 21.2 511.7 513.0 40.6
11 509.3 512.9 23.2 499.4 502.7 30.4

Table 10.4 Mistuning data (Continued)

r: harmonic number: no vacuum frequency;

n: damped frequency: n: damping factor.

.:
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(vi) The sixth and the last type of mistuning is another special

arrangement. henceforth referred to as SA2 mistuning, in which

two high frequency blades at 525 Hz are followed by one low

frequency blade at 475 Hz. This causes harmonic or to be

coupled w i t h  (Dr + 2~73) and (Dr + 4n/3)  and  the stability

locus splits into three families of four modes each (see Figs.

10. llf and 10.120.

Randcm mistuning Cosine mistuning

= no n r) no n I)

0 484.2 484.9 -1.0 490.2 487.5 -.8
1 488.1 481.3 -5.9 491.0 488.0 -4.4
2 506.1 498.4 5.7 519.0 512.1 2.4
3 532.6 524.9 32.1 541.0 528.9 16.0
4 557.4 548.1 58.6 557.7 545.4 44.1
5 570.6 577.7 69.1 571.1 559.9 64.9
6 588.8 577.0 90.0 591.4 579.9 89.8
7 573.8 562.8 87.8 590.8 579.5 85.7
8 562.3 554.1 80.7 566.0 557.0 87.2
9 540.3 535.5 40.6 545.3 544.9 59.9

10 521.5 518.4 28.8 528.3 528.6 40.2
11 500.2 500.5 19.2 513.4 512.4 20.9

Single blade mistuning Alternate mistuning

r n0 n n n0 n sl

0 501.2 499.2 -8.3 494.3 492.2 3.2
1 506.2 500.6 -7.'8 499.4 492.2 -7.8
2 522.0 511.1 -3.0 511.7 500.8 4.1
3 542.8 529.9 34.0 519.9 511.4 22.4
4 562.9 549.3 51.8 573.4 562.7 43.1
5 577.2 563.9 68.9 584.1 571.3 58.6
6 588.2 576.6 88.1 588.5 577.0 83.5
7 580.0 569.1 95.7 584.1 574.9 90.7
8 566.3 668.9 100.9 573.4 566.2 89.7
9 546.4 547.2 50.2 568.0 560.9 41.9

10 525.5 528.8 21.2 511.7 513.0 40.6
11 509.3 512.9 23.2 499.4 502.7 30.4

-
Table 10.4 Mistuning data (Continued)

-

-

-

r: harmonic number: no vacuum frequency;

n: damped frequency: n: damping factor.
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SAl mistuning

n0 n tl

489.5 486.9 2.0
492.1 407.1 -6.0
524.8 490.8 11.9
533.0 524.5 31.5
561.4 550.3 34.5
590.3 578.1 79.1
592.4 581.9 82.1
590.3 580.2 86.3
561.4 554.3 68.0
533.7 549.5 44.4
524.8 524.2 45.1
492.1 518.5 28.4

SA2 mistuning

QO n rl

499.9 497.3 7.7
503.6 497.5 -4.5
508.6 502.7 7.2
554.7 545.0 20.7
564.4 554.2 44.0
591.3 579.3 59.7
595.2 584.2 84.2
591.3 582.2 92.4
585.2 575.3 86.5
554.7 554.3 45.3
546.0 543.6 22.9
503.6 504.1 27.7

Table 10.4 Mistuning data (Concluded)

r: harmonic number: no vacuum frequency;

n: damped frequency; n: damping factor.

It is difficult to assess the most beneficial type of mistuning because:

ta) although the mistuning levels are compatible. there is no real

one-to-one correspondence: and

(b) as the aerodynamic effects depend on both the frequency and

amplitude of vibration. the amount of global damping - defined as the

algebraic sum u of all damping values - varies in each case. The

following values. each corresponding to a different type of mistuning.

were calculated from Table 10.4:

=i = 505.6, Uii = 505.9, U-iii = 514.8

Uiv p 500.5,  Uv = 508.1, %ri = 494.6

and in the case of the tuned system u

spite of stabilizing a number of modes.

is 519.2. This suggests that in

mistuning may well decrease the

global amount of damping, thus degrading the overall stability. further

calculations with different system data showed that the global damping

could also be increased by mistuning. this being a very complicated

L I
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function of the motion because of the aerodynamic coefficients involved.

10.3.3  The Special Case of Alternate Mistuning

Although ail the last three mistuning types studied gave quite similar

results, the case of alternate mistuning is somewhat special and requires

further consideration.

(I) The Fourier analysis of some research fan data provided by a

well-known engine manufacturer showed that this type of mistuning

already existed in more the 80% of the assemblies studied,

probably due to dynamic balancing considerations.

(ii) As the harmonic associated with Pr is coupled on/y with that

associated with (Pr + IT) :

- the success of the method can be predicted straight away;

- under certain simplifying conditions (stiff disc, flexible blades)

the analysis can be reduced to the study of a two-bladed

cascade with phase angles & and (Pr + n) :

- the susceptibility of each mode to forced response is

restricted to two harmonics.

Figure 10.13 shows the variation of modal aerodynamic damping with

increasing degree of alternate mistuning. Once again, it is clearly seen

that Pr modes are stabiiized at the expense of (Dr + n) modes. Also.

certain pairs, namely (4. 10) and (5.11)  , do not play an active part in

the stability transfer, their modal damping values being subject to

fluctuations of the aerodynamic load rather than changing with structural

mistuning. Further calculations showed that this is always the case with

alternate mistuning, the number and identity of these passive modes

being determined by the number of blades in the system; though a
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rational pattern could not be identified. As can be seen from

70. 13~. mode 2 exhibits a drop towards instability at 20% mistuning

Fig.

and

the situation is not improved at 22%. The cause to this phenomenon is

of aerodynamic origin and can be traced back to the moment coefficient

associated with the interblade phase angle & = 4n/3. Table 10.5 gives

values for the (&tar  coefficient calculated at the undamped natural

frequencies of mode 8.

Table 10.5

n t-1
584.84

588.99

593.22

597.54

A %&la) Imetal
.9799 .077977 -.316625

.9887 .076338 -.316664

.9939 .007528 -.202775

1.0012 .006331 -.202775

Variation of the Chrla coefficient with frequency

n: damped frequency: A: reduced frequency.

The imaginary part of Cfv~o. shown to be directly proportional to damping,

exhibits a sudden jump at 20% mistuning which in turn effects the stability

of mode 8 dramatically. The loss in damping Is partly recovered by

mode 2. which inevitably is shifted towards the instability boundary.

Assuming that it Is

including a search

type of
between

model.

on the

behaviour

not due to a numerical

for acoustic resonance

is a good example of

the structural and aerodynamic

problem - a number of tests

suggested it was not - this

how interactions take place

parts within the aeroelastic

It further suggests that mistuning can have unpredictable effects

system’s stability by altering the aerodynamic load beyond

expected levels.

As mentioned earlier. the global amount of aerodynamic damping is a

,_.‘  / ,. _. ._, .:...
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system property which is effectively constant for given structural and flow

conditions. Fig. 10. 14 shows the variation of this quantity with

increasing alternate mistuning. Particular attention must be paid to the

drop at 20% mistuning and to the partial recovery at 22% mistuning as a

result of which some of the modes of Figs. 10.13b and 10.13~.  namely

5. 10 and 11. have been individually stabiiized.

Finally, It was proposed to investigate the effects of alternate mistuning

on systems with odd number of blades. To this end the number of

blades In disc A was decreased by one and the new ll-bladed assembly

was called disc 6. In this case, because of the broken cyclic symmetry.

all permissible harmonics (~0. 10) are present in any one mode, thus

giving rise to more complex modal interactions then previously.

Nevertheless. as can be seen from Fig. 10. 15. the global picture is

quite similar to the previous case, harmonic Pr being primarily coupled

either to:

[Pr+ (N - l)n/Nl or to [Pr + (N + l)~/Nl

or sometimes to both. From the formulation above, it is obvious that the

odd numbered case will tend to coincide with the even numbered one

with increasing number of blades.

10.4 AEROEIASTIC  RESPONSE TO FORCED VIWATION

it was shown in Chapter 9 that the analytical model developed in this

studty could also be used to predict the response levels of the assembly

to various forms of harmonic forcing induced by wakes: The forced
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response will be presented for disc A at a lower relative flow velocity (V

= 340 m/s) so that the system Is aeroelastlcally stable In all modes.

Furthermore. the velocity  W of the disturbance Induced by wakes Is

assumed to be equal to that of the main flow so that the ratio W/V

reduces to unity. Calculations were first made for the tuned system. and

Fig. 10.16 shows the response curves (which are Identical for all 12

blades) for the three cases of 2. 3 and 6 engine order (EO) excitations.

The reason for exciting these particular modes Is that the first one has

the

the

lowest amount of aerodynamic damping. the third has the highest and

second Is representative of the average value. As can be seen from

Flg. 10.16. the level of the forced response maximum Is Inversely

proportlonal to aerodynamic  modal damping, a well-known characteristic

of structurally-damped systems.

A further set of results Is shown In Flg. 10.17 for 2% alternate mistuning

of the same assembly subjected to a Qrd engine order ( 3EO)  excitation.

Only two harmonics.  of order 3 and 9. are present in mode 3 as a

result of which odd and even numbered blades vibrate wlth dlfferent

amplltudes. The 3EO response curve of the tuned system Is

consequently split into two. the first one corresponding to low frequency

blades and the second to hlgh frequency ones. Each of these curves

exhlblts  two resonances, one prlmary and one secondary. and hence the

single resonance peak corresponding to the tuned system Is replaced by

four dlstlnct peaks one of which Is very heavily damped. Also In Fig.

IO. 17 are shown the response curves (broken Ilne) of the same

mlstuned system on which no aerodynamic  forces act. It Is Immediately

seen that these exhlblt  only the primary resonances and the same Is also

true of the tuned system. The presence of the secondary resonances Is

b ,
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due to mistuning under which effect the system distinguishes between

forward and backward travelling waves. it is of further interest to notice

that these secondary resonances occur slightly earlier than the primary

ones. the relative difference being about 0. 1%.

In this particular example, the forced response level caused by mistuning

is comparable to that for the tuned system. Additional calculations.

which are not presented here. showed that alternate mistuning could also

have a beneficial effect by lowering the forced response level. though it

was a rare occurrence.

10.5 CONCLUDING REMARKS

An analytical model. based on the lumped parameter technique and

two-dimensional cascade theory. has been set up and used successfully

to investigate the flutter stability and the aeroelastic response of

bladed-disc systems subjected to various flow regimes. It has been

found that:

(iI In the case of subsonic and supersonic flows. the convergence

rate of computing the aerodynamic coefficients is unexpectedly slow

and the solution of the Integral equation usually requires more than

20 collocation points, 30 having been used in most cases. For

large numbers of blades the calculations become too expensive to

conduct parametric studies and hence the present analysis was

restricted to a 12-bladed system.

(iI1 Single degree-of-freedom torsional lnstabllities encountered in

subsonlc and supersonic flows and known as acoustic resonance

have been excluded from the present analysis. This phenomenon

is of aerodynamic origin and is due to the singular behaviour of
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the generating power series for certain very narrow ranges of the

interblade phase angle which, In the general case, do not

coincide with the discretized  values corresponding to the finite

number of blades. Further details can be found in Refs.  AD-30

and AD-31.

(Iii) For a given aeroelastic system, the calculations are quite sensltive

to small changes in both the reduced frequency and the Mach

number but less so to the fluld denshy. The reduced frequency

and the Mach number. both functions of the velocity, show

considerable variations from blade root to tip. a feature which

cannot be represented accurately by the typlcal section approach

unless the blade’s hub to tip ratio is close to unity. A realistic

solution should consider modelling the entire blade from root to tip

but the problem size would then become prohibitive for including

any form of mistuning.

(Iv) Although the effect of mistuning generally results In the stabillzation

of certain particular modes, the opposite may also result due to

sudden changes in the modal damplng amount which In turn are

caused by unpredictable variations of the aerodynamic coefficients.

(VI In Ref. AE-24 It is reported that mistuning can have an adverse

effect on the system’s stablllty. Using the principle of virtual

work. the blades are classified into two categories. namely

dampers which dissipate aerodynamic  energy via friction and

excltera  which act as sources of external force through which the

excess energy Is transmitted. The stability of the system is a

function of the damper to exciter ratio which depends on the

amount of mistuning introduced. The disagreement with the

present analysis is bel ieved to be due to the undergoing

assumption that the interblade phase angle remains constant. even

in the mistuned  case.

(vi) Finally, there is a one-to-one correspondence between a packeted

bladed disc and a symmetrically mistuned one. In both cases. the

cyclic symmetry Is symmetrically destroyed and the mode shapes
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contain several Fourier components which can be predicted from

knowledge of the total number of blades and the mlstunlng  (or

packetlng)  configuration.

-
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CHAPTER 11

FLUTTER ANALYSIS OF A CANTILEVERED PLATE
-

11.1 INTRODUCTION

-

-

-

-

-

-

-

-

-

Although the flutter analysis presented In Chapter 9 can provide the

designer with sufficient qualitative data. It can be criticized because of its

oversimplified structural representation and inadequacy for quantitative

work. The need for a more advanced model is obvious and the objective

of this chapter Is to establish the basic steps towards a more complete

aeroelastic analysis. The biaded disc studies initiated from a

cantilevered beam model, d i s c  flexibility  a n d radius were later

incorporated in the analysis and the effects of mistuning and packeting

were Investigated last. It is logical to follow the same historical trend In

aeroelastic analysis In which case the starting point would be the study of

a cantilevered plate under aerodynamic loading.

11.2 STRUCTURAL MODEL

As shown In Fig. 11.1, the structure is modelled using rectangular

isotropic

Although

plate elements with three degrees of freedom at each node.

the greatest advantage of finite element modelling over other

techniques lies In its general applicability to non-uniform components.

this work Is restricted to outlining the method of approach and to

lndicatlng the order of accuracy which can be expected. To this end.

. I
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the element mass, stiffness and aeroelastic matrices were derived for

untwisted flat plates of uniform thickness and the procedure is

summarized in Appendix IV. The derivation of more elaborate elements

is discussed in Ref. FE-3

11.3 AERODYNAMIC MODEL

11.3.1 Pressure Distribution

In Chapter 9. we have seen that the aerodynamic force and moment

coefficients may be calculated by integrating the pressure difference

across the blade. this being a function of the flow conditions and

cascade parameters. In this chapter, we shall assume that the pressure

distribution along the plate chord -with respect to an elastic axis passing

through the centre of gravity and per unit span length- is a known

function of the form:

P(Y) = -w Iph(Y)s +  C@ Pa(Y (11-1)

where w denotes the frequency of vibration,

y the fluid density,

c a constant which wi'll later coincide with the blade chord,

6 the translational velocity,

a the rotational co-ordinate,

y a co-ordinate along the blade chord.

ph and pa are the given non-dimensional pressure distribution functions

due to the translational and rotational motions respectively. Results from

Chapter 10 (see Fig. 10.5) suggest that they can be approximated by a

second order polynomial in most cases.

,,.
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ph = r,yz + r,y + r3

(11-2)

pa = SLY2 + S2Y + BS

The definition of P(y) above in equation (11-l) is totally arbitrary and a

choice has been made to facilitate the mathematical analysis. There

are. however, some analytical expressions available for incompressible

flow. a classical example being Theodorsen’s expression for the non-

circulatory part [Ref.  AE-61.

11.3.2 Finite Element Discretization

As shown in Fig. 11.2. the pressure distribution function given in

equation f 1 l-1) is applied in turn to each finite element row in the X

direction. For the first element in each row the values of ph and pa are

specified at 3 points. namely at y=O.  y=b/2 and y=b and the coefficients

of the pressure parabolae  are determined using the Lagrange

interpolation formula.

Consider the finite element illustrated in Fig. 11. 1. Using the principle

of virtual work It can be shown [Ref. FE-31 that the element load vector

for any distributed load P the 2 direction is given by:

pr
(Qle - br -I I%= x =o Y=o

r=k,l,m,n

(11-4)

where elements of IBI and twl depend on the shape functions chosen for

the element. Inserting equation (11-l) into equation (11-4) a n d
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integrating over the element area yields:

Fr = oy ab  [Cm=  .  6, + ad %a . +I/720

-

-

-

-

-

.-

-

M, * Uy ab2  [C&r . Ii, + CW Cam  . a,]/720 (11-5)

er - my a2b [cehr  . & + cw Cm . a=]/720 r-k,l,m,l,n

where Chhr. Char. . - etc. are the non-dimensional aeroelastic force and

moment coefficients. It should be noted that these are termed

‘aeroelastlc’ and not ‘aerodynamic’ as in  Chapter  9  s ince  their

formulation requires knowledge of the element shape function and hence

they are structurally dependent. As can be seen from equation ( 1 l-5).

there are 6 x 4 = 24 coefficients which define the aeroelastlc  behaviour

of the element. Unlike In Chapter 9 . it Is not possible here to predict

the flutter stability from the sign of real or Imaginary parts since in the

general case these coefficients will have different values at each node

which. in turn, will be common to more than one element. Nevertheless.

It is expected that flutter In a pure bending mode will depend largely on

the real part of Chhr. Similarly, torsional flutter will be controlled by the

lmaglnary part  of  Caar  which. for any asymetrlc elastic axis position.

depends at!30  On Chhr, Char and Cahr. The Cehr  and C-r Coefficients

are of secondary importance since It Is assumed that there Is no flutter

motion in spanwlse torslon. Rearranging equatlon (1 l-5) glves:

where [Ale Is the element aeroelastic coefficient matrix and the elements

of (6) are the nodal displacements. Equation (11-6) Is derived fully In

Appendix IV.
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11.4 AEROEIASTIC  MODEL

-

-

-

--

-

-~

-

--

-

-

-

-

-

-

If [Al is the global aeroelastic inertia matrix, the overall equation of

motion becomes:

CK - m2 Ml tql = a2 CA1  tsl
Structural part Aerodynamicpart

(11-7)

O f

( Ml - @‘CM+Al)  1s) = (01 (11-8)
\

it should be noted that the eigenprobiem given by equation (1 l-8) is

iinear and hence it does not require an iterative solution as was the case

for equation (g-17)  . Since the elements of [Al are complex. the

eigenvalues and eigenvectors of equation (1 l-7) are also expected to be

complex In the general case. Let:

0, -Cl, +i* (11-9)

where nr is the natural frequency for mode r and nr is the aerodynamic

damping associated with that mode of vibration. Proceeding as

previously, the rth mode will be considered as stable if:

W’O (U-10)

and unstable otherwise. Although there is no structural damping term in

equation ( 1 l-8) , this feature can easily be incorporated into the stiffness

matrix. Assuming hysteretic damping:

CKI - [K+ ifl]
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in which case equation ( 1 l-10) becomes:

(r)  apsynwc  + T) structural)  > 0

As the structural damping is a positive defined quantity. It plays no

significant part in the stability analysis In the sense that it will always

have a stabilizing effect and hence it can be omitted without any loss of

generality and added linearly if required.
-

11.5 NUMERICAL STUDY

-

11.5.1 Preliminary Calculations

A computer program, namely FLUT2. was written to perform the complex

eigen-analysis discussed above. To this end equation (1 l-7) must be

re-ordered as:

([PI - wZC1l) ta - (01 (11.11)

-

where  IPI = ([Ml + [Al)-1 Ml is the aeroelastic stability matrix.

-

-

-

Once the element mass. stiffness and aeroelastic coefficient matrices are

computed, the corresponding global matrices can be assembled using

the direct stiffness method of Ref. FE-4 and the complex eigensolution

path of FLUTl (see Sectton  10.1)  is also used here.
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To check the correctness of the computer program and to determine the

minimum mesh size in order to obtain the first 10 modes accurately, a

series of calculations were made using the data given in Ref. FE-5.

These are reproduced in Table 11.1 and the resulting natural frequencies

are presented in Table 11.2 In the following non-dimensional form:

- h-w&Z Where D = Et'/12(l-uz)

-

-

_-

-

-

-

-

-

The type of the vibratlon mode is also given for each case where F

denotes flexural  bending. T torsion and PM a plate mode le. a mode

which would not be predicted by simple beam theory. The corresponding

mode shapes are plotted in Fig. 11.3

Length = 233 mm

Chord - 100 mn

Thickness - 2.3 mu

Density - 2764 Kg/m'

Elastic modulus = 68.9 GN/d

Poisson's ratio = .3

Table 11.1 Plate data

I c



E
-.

- 153 -

-.

-

-

-

-.

-

-.

__

Mode 3x1 5x3 6x4 7x5 F&f. FE-5

lF 3.42 3.43 3.43 3.43 3.43

1T 17.00 16.95 16.93 16.92 16.92

2F 21.66 21.68 21.56 21.51 21.48

2T 54.87 54.96 54.33 54.29 54.26

3F 56.19 61.49 61.04 60.73 60.55

3T

4F

FMl

103.26 101.63 101.58 101.52 101.49

132.27 118.79 119.06 116.36 117.89

146.73 125.43 127.11 127.18 127.19

182.87 149.64 153.30 154.70 155.67

194.31 160.60 163.71 163.65 163.55

- -

I

24x11

3.43

16.74

21.36

53.66

59.94

81.01

100.3

115.4

124.2

153.6

161.3
- -

l
I

3.45

16.79

21.50

53.76

60.37

100.8

117.2

131.8

161.2

Table 11.2 Convergence of the non-dimensional natural frequency

with mesh size

(Number of elements along the x axis is given first. 1

1

As can be seen from Table 11.2. the convergence is rapid for ail

modes and there is very good agreement with the published results

except for the PM0 mode which is not predicted at ail. This is probably

due to the differences in element formulation in the two sets of

calculations and as pointed out in Ref. FE-S. this mode is not . . . typical

of classical plate response. . . l and . . . . rather unusual. . ‘I

Using the same structural data, a second test was carried out to check

the convergence of the complex eigenvaiue with particular attention to.the

imaginary part. To this end both ph and pa were set to (1 + i) and the

elastic axis was taken at the three-quarter chord point. Results are

summarized in Table 11.3.
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Bkde 4x2 5x3 6x4 7x5 8x6

1p 3.35 3.35 3.35 3.35 3.35
5.00 4.96 4.93 4.92 4.92

1T 15.27 15.30 1 5 . 3 1 15.31 15.31
-20.75 -23.21 -24.05 -24.43 -24.48

2F 21.07 20.99 20.95 20.93 20.90
34.43 32.85 32.06 31.61 31.12

2T 48.52 48.80 48.91 48.96 49.00
-75.76 -76.64 -76.39 -76.09 -75.97

3F 58.90 58.89 58.25 58.67 58.42
97.99 88.68 64.63 82.50 82.19

3T 87.23 90.04 90.90 91.28 91.36
-209.68 -157.49 -143.37 -137.08 -135.10

4F 89.61 91.04 91.64 91.96 92.03
620.13 -639.65 -641.93 -642.51 -642.77

103.83 109.82 112.56 114.10 115.26
-854.13 -820.36 -807.04 -803.38 -801.14

107.40 115.56 115.96 115.81 115.38
36.55 100.90 82.82 83.04 83.06

4T 125.37 138.88 143.69 145.47 196.62
-849.31 -342.50 -231.47 -196.09 -181.39

Table 11.3 Convergence of w = n + in with mesh size

For each mode. the real part is shown on the upper line.

-

-_

-

A S can be seen from Table 11.3. the frequency part converges very

rapidly for all modes while the damping part shows a somewhat slower

convergence fate. especially for torsional and plate modes. This is

apparently due to the complexity of these modes (see Fig. 11.3) whose

shapes cannot be computed accurately for a small mesh size. Further

calculations revealed that the elastic axis position is also of significant

importance for the convergence of torsional modes. Nevertheless, a

mesh size of 7x5 was found to be adequately representative of both the

structural part and the aerodynamic loading and all subsequent
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calculations were performed for that particular mesh size.

11.52 Case Study

Using the model described above. the flutter stabiity of a cantilevered

plate was investigated. The structural data are listed in Table 11. 1 and

the aeroeiastic coefficients, due to the pressure distribution functions

illustrated in Fig. 11.4, are plotted in Fig. 11.5. Results from the

complex eigensoiution are given below in Table 11.4 and also the real

part of each normaiized mode shape vector is plotted in Fig. 11.6.

Mode now ( n-n, vn, rl

lF 34.68 -.15 1.33

1T 168.90 -1.32 -7.33

2F 216.95 -.15 8.40

2T 541.55 -1.35 -23.80

3F 611.50 - .18 23.52

3T 1012.06 -1.44 -46.96

4F 1176.63 -1.35 -72.48

1244.38 -3.29 -65.76

1505.75 -4.40 -227.58

4T 1628.49 -1.58 -85.10

Table 11.4 Natural frequency and aerodynamic damping values for the

first 10 modes.

As can be seen from Table 11.4. the aerodynamic loading not only

produces a damping effect but also results in a natural frequency shift

from the in-vacuum values. According to the stability criterion given by

equation (1 l-10) . only the first three modes are stable, ail remaining

II
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ones being prone to flutter. As the Chhr (r=k. I. m. n) coefficients have

negative real parts for all five finite element rows, the instability of the 4F

mode is somewhat unexpected. A closer inspection reveals, however,

that both bending and torsional motions are present in that mode (see

Fig. 17.8) and hence Its flutter instability is caused structurally. a

phenomenon which could not be predicted using the lumped parameter

model of Chapter 9.

The instability of the torsional and plate modes follows from the fact that

most of the C&r (r=k. I, m. n) coefficients have positive imaginary part

and the same applies to the plate modes in which a great deal of

torsional motion is present.

The natural frequency shift is observed not to correlate with the amount

of aerodynamic damping present in any one mode but It seems to be

dependent on the type of motion present in that mode: about 0.2% for

bending, 1.5% for torsion and 4% for plate modes. Also, the damped

natural frequency Is always lower than the undamped one, a well-known

characteristic of single-degree-of-freedom systems.

The differences  in mode shapes for the loaded and unloaded cases are

illustrated in Fig. 11. 7. It should be noted that these plots had to be

magnified about 50 times for better visuallzation of the aerodynamic

effect. Also, Figs. 11.3, 11.6 and 11.7 are replotted in Fig. 11.8

from a different vlewpolnt  on the OY axis. Let A denote the surface

resulting from the difference of the loaded and unloaded mode shape

plots .  As can be seen from Fig. 1 1 . 7 .  AIF. A~F and A3F are al l

twisted. a feature more clearly illustrated in Fig. 11.8. This suggests

L
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that the aerodynamic load can always introduce a torsional motion.

irrespective of the in-vacuum mode shapes. or amplify the existing one

as for the remaining modes. A comparison of Figs. 11.3 and 1 1 . 6

reveals that under load, 4F behaves more like a plate mode than a

flexural one and conversely. PM1 exhibits pronounced bending

characteristics. As a result A4F and APMl look remarkably similar In

shape and the implications of this phenomenon on stability have been

discussed earlier.

11.6 CONCLUDING REMARKS

A finite element based model to investigate the flutter stability of a

cantilevered plate has been introduced. The main advantage of this

model over the lumped parameter one lies in its realistic aero/structural

dynamics interface, an indispensable feature for any quantitative

analysis.

As the major aim of the chapter was to devise and apply a general

method of attack rather than to undertake a systematic analysis of

cantilevered plates under different loading conditions. only one case

study - on the rigour of which it Is not possible to reach any specific

conclusions - has been presented. It may. however. be stated that the

aerodynamic loading always produces a damping effect as well as a

natural frequency shift, both of which depend on the type of motion(s)

present in any given mode. Hence, a more correct formulation of the

flutter problem has been achieved since the modal stability is a

simultaneous function of both the structural behaviour and the flow

conditions.
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Fia. 11.1 Finite element model of a cantilevered
-

-

-

-

-

plate

Fig. 11.2 Pressure distribution along the chord
Note that only the real (or imaginary)
part is shown.

-
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1F CFz34.7  H Z ETR = 01

2F [F=217.3  H Z ETR = 01

1T tF=171  .2 H Z ETR = 01
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2T (F=S49-0  H Z  E T R  = 0 1

3 F  CFz612.6  H Z  ETR = (-J]
3 T  lFz1026.8  H Z  ETA q 01

4 F  CFz1192.7  H Z ETR = 01 pM1 IFzl286.7  H Z  ETR =  o]

P M 2  t Fz1574.9  H Z ETR q 0] 4 T  lFz1654.6  H Z ETR  q 01

Fig. 11.3 The first 10 modes of the cantilevered Flate for
vacuum conditions
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Fig. 11.4 Pressure distribution functions D and D for each of the 5 finite element rows in
the Y direction. The elastic axiih is a't" 3/4 chord position.
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Fig. 11.5 Aeroelastic coefficients resulting from the
pressure distribution given in Fig. 11.4
(e=a, y=1.3 Kg/m3)
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1T tFz168.9  H Z ETR=-7.3)

2F (Fz216.9  H Z ETR=8.41
/

2T ( F - 5 4 1 . 5  H Z  ETR=-23.61

3 F  [F=611.5  H Z  ETFiz23.51

4: ;Fr!!76.6 HZ ETRz-72.6  I

3 T CFz1012.1  H Z  ETR=-47.01

pp! Ii==:244.4  H Z  ETR=-65.8)

?r”? ;Fz1535.8  H Z ETi)=-227.6  I 47 IFzlE28.5 HZ EiRz-85.1  1

Fig. 11.6 The first 10 modes of
aerodynamic load

the cantilevered plate under
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Fig. 11.7 A surfaces
loaded and

resulting from the difference of the
unloaded mode shapes
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Fig. 11.8 Mode shapes of the cantilevered plate with and without
aerodynamic loading

’
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CHAPTER 12

CONCLUSIONS

12.1 SUMMARY OF CONCLUSIONS OF PRECEDING FOUR CHAPTERS

The work described in the second part of this thesis represents an

attempt to Improve the basic understanding of the aeroelastic

characteristics of bladed disc systems. To this end, two analytical

models. based on completely different approaches, have been developed

and used with success to conduct qualitative and/or quantitative studies

of a number of bladed systems. The first model, which is an integration

of the existing two-dimensional cascade flow theories with a lumped

parameter representation of a bladed disc assembly, was found to be

ideally suited for parametric studies yielding qualltative results.

(I) Due to the dependence of the aerodynamic coefficients on the

wave direction imposed by the interblade phase angle, the

aeroelastlc  structure distinguishes between forward and backward

travelling waves: a feature totally ignored by its structural

counterpart. Thls results in N distinct aeroelastic modes a s

opposed to [N/2 + 11 or [(N - 1) /2 + 11 single and double

structural modes where N is the total number of blades.

Furthermore, each aeroelastic mode is characterized  by a complex

number, the real part of which gives the natural frequency and the

imaginary part the aerodynamic damping. For all tuned cases

studied, it has been found that these two values are very strongly

correlated with the real and imaginary parts of the moment

coefficient In torsion (or force coefficient in bending). This
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suggests that the tuned system analysis does not require the full

model when the coupling between bending and torsional motions is

weak. Furthermore, the damped frequencies are observed to be

within f 3% of the in-vacuum values while the modal aerodynamic

damping amount showed a rather wide scatter on both ends of the

stability spectrum.

(ii) Structural mistuning has the effect of coupilng travelling waves

associated with different interblade phase angles and thus of

causing modal interference. The quantitative and qualitative

characteristics of this coupling process are determined by the

amount and form of mistuning present: symmetric arrangements

result in an orderly grouping of the harmonics which can be

predicted from the total number of blades.

( iii) Since the aerodynamic loads and hence the coefficients are

frequency-dependent. mistuning can have unpredictable effects on

the stability of a particular mode and, furthermore, the overall

amount of damping may decrease with increasing mistuning.

However, in general, mistuning has a beneficial effect on the

system’s stability in the sense that critical modes are very often

stabillzed at the expense of the well-damped ones.

( iv) Alternate mistuning, which couples only out-of-phase harmonics,

is particularly useful if the least and most stable modes are

separated by approximately 180 degrees interblade phase angle. It

has been found that this is usually the case, the phenomenon

being of aerodynamic origin. However, alternate mistuning is not

the most beneficial type and other symmetrical arrangements may

require lower levels of detuning to stabilize the same system.

(VI From an aeroeiastic viewpoint, mistuning can lower the level of the

response to forced vibratlon and thls finding is in contrast wlth the

common belief. it should however, be noted that this is a

relatively rare occurrence. as mistuning usually imposes more

severe conditions.
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The second model. derived from the finite element discretization of a

cantilevered flate plate and its surrounding fluid flow. was used to study

quantitatively the behaviour of an isolated blade subjected to a known

pressure function. it has been found that:

(I)

(ii)

the mode shapes of the aerodynamlcaiiy loaded system can be

significantly different from the in-vacuum ones:

the aerodynamic loading always produces a damping effect as well

as a frequency shift. both of which depend on the type of

motion(s) present in any given mode rather than the sign of the

aeroelastic coefficients. The damped natural frequency is always

lower than the in-vacuum one, the relative difference sometimes

exceeding 4%.

12.2 Lfmitatlons  and Extension of the Present Work

The studies presented herein constitute an introduction to the aeroeiastic

analysis of bladed disc assemblies. a multi-disciplinary subject whose

complete understanding will defy many workers for years to come. The

simplifying assumptions that have had to be made are too numerous to

mention individually: Non-linear effects. interactions between various

stages, three dimenslonal  flow, blade camber and twist, etc.

The most serious limitation of the first model is perhaps the typical

section approach which was developed some fifty years ago for fixed wing

geometry. As the relative flow veioclty  is usually supersonic at the tip

and subsonic towards the hub, spanwise  variation of blade mode shapes

must be incorporated into the model to account for the variation in both

the reduced frequency and Mach number with the radius. On the other

.,.
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hand. the assumption which considers the Interblade phase angle as

constant even in the mistuned case must be re-examined and the flow

models modified If necessary. Furthermore, the case of the stalled flow

must also be addressed.

The structural part of the second model can easily be extended to include

blade camber and twist. root flexibility  and finite disc effects. A more

accurate formulatlon of the aerodynamic load would require a

two-dlmensional integration (both spanwise  and chordwise) and this is

more difficult because of the transonlc regime which will be encountered

between the subsonic and supersonic regions. An alternative approach

Is to extract the aerodynamic data from measurements and incorporate

these Into the model.

Flnally, there is an obvious need for experimental verification of the

theoretical findings. Although some practical work to check the validity

of the aerodynamic coefficients is reported In the original publications.

aeroelastic data are almost non-existent. An experimental programme to

investigate the effects of symmetric mistuning on flutter stability Is

strongly recommended.
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APPENDIX I

UST OF COMPUTER PROGfUWS DEVELOPED IN THIS STUDY

Name

ausc

FINPAC

MULPAC

SINPAC

LUMPAC

FLUTl

FLUT2

Description

Computes the natural frequencies of a continuously-shrouded
disc via coupling of shroud, blade and disc receptances. A
cyclic symmetry approach is used.

Computes the natural frequencies and mode shapes of an
isolated blade packet (cantilevered or free-free) using a finite
element based model.

Computes the natural frequencies and mode shapes of a
packeted biaded disc by coupling disc and packet receptances
at the blade roots. This is a full analysis in the sense that
each blade is considered in turn without taking advantage of the
cyclic symmetry. The packet receptance matrix is either formed
by coupling Individual blade and shroud segments or derived
from a free-free eigensoiution obtained via FINPAC.

As above for MULPAC except that advantage of the cyclic
symmetry has been taken to minimize the size of the matrix
equations of motion.

Computes the natural frequencies and mode shapes of a
packeted biaded disc using a lumped parameter model.

Computes the flutter boundaries and the aeroeiastic response of
biaded disc systems subjected to incompressible. subsonic or
supersonic unstaiied flows. The structural model is a
mass-spring one and the aerodynamic models are based on
two-dimensional cascade flow theory.

Computes damped natural frequencies and aerodynamic
damping values of an isolated cantilevered blade subjected to a
prescribed pressure distribution using a finite element
approach. The associated mode shapes are also determined
and can be plotted if required.

*:
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APPENDIX II

TABULATED RESULTS FROM CHAPTERS 4.5 AND 6

Natural Frequencies <f-k) of the 30-bladed disc

n: Nodal diameter number: 8: nodal circle number

0

98.36

156.27

201.23

250.14

310.50

383.49

444.91

556.49

638.24

714.68

779.28

825.18

857.72

866.82

1

139.02

248.55

370.31

546.00

750.67

936.39

1077.00

1177.92

1255.86

1325.19

1369.94

1443.08

1546.47

1654.90

1777.46

1860.03
___-

2

498.18

808.89

1124.02

1381.80

1615.86

1883.70

2201.03

2585.61

3110.83

3336.41

3541.82

3703.39

3832.69

3938.11

4022.18

4080.65

Table II-1 Continuous uniform shroud

3

1215.63

1573.37

1969.05

2455.01

3056.37

3524.58

3907.11

4241.86

4627.00

5054.12

5564.36

6224.74

-

4

2067.88

2673.34

3317.06

3859.82

4346.98

4475.43

%69.02

4772.52

4834.52

4875.07

4904.92

4921.56

4942.43

4968.90

4985.39

4994.65

5

3396.52

3946.40

1
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0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0

95.91
145.69
171.14
185.06
193.53
199.14
203.10
206.06
202.65
202.00
202.96
203.62
204.03
205.12

1 2

138.20 497.37
248.56 809.16
369.68 1124.92
544.54 1388.99
747.72 1620.13
930.33 1892.02
1064.96 2220.41
1155.37 2577.63
1216.01 2912.51
1258.19 3184.46
1256.45 3384.33
1273.55 3526.32
1285.27 3628.45
1292.92 3704.14
1297.24 3762.06
1298.64 3807.64

Table II-2 Non-interlocking shroud

WS

6
7
8
9

10

11
12
13
14
15

-

0

109.2
163.45
187.4
194.01
340.49
340.60
340.75

345.37
345.34
670.36
664.99
669.18
694.80

1 2

142.70 497.91
253.30 821.63
373.73 1143.78
519.21 1469.30
819.06 1666.10
948.95 1884.07

1087.59 1977.90
1176.23 2262.15
1257.55 2633.33
1314.30 2935.76
1330.45 3128.80
1334.91 3305.11
1451.15 3472.50
1422.97 3774.84
1423.64 3811.43
1358.08 3928.02
1379.03 4006.70
1379.78 3912.46

3

1215.50
1575.96
1969.31
2%5.47
3012.62
3506.36
3901.38
4248.96
%20.31
5053.59
5536.79
6020.80

3

1222.05
1600.85
1973.95
2463.05
3019.45
3407.41
3585.03

-

4

2070.61
2680.85
3322.24
3879.28

4

2054.01
2673.91
3277.12

t

5

3393.01
3943.27

5

3406.12
3960.31

Table II-3 10 Packets of 3 blades (Direct method)
Packet receptances are derived via receptance coupling.
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-

-

-

-
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6
7
8
9
10

11
12
13
14
15

0

105.2
161.6
186.5
193.5

342.05
345.94
667.12
656.01
661.06
661.64
667.59
661.79

1

142.67
255.63
390.90
559.31
775.01
950.5
983.2
1111.88
1236.76
1283.03
1333.14
1346.6
1458.55
1444.53

1488.62

1522.51

2

498.11
820.89

1143.54

1663.05
1882.83
1928.16
2239.45
2600.53
2918.71
3104.90
3348.80
3535.50
3824.08

3972.14
4071.02

3

1227.03
1615.18
1977.83
2471.07
3000.06
3442.84
3627.66

2065.94
2691.84
3299.06

3452.84
4002.21

Table II-4 10 Packets of 3 blades (Direct method)
Packet receptances are derived via modal summation.

0 1 2

0 54.5 142.8 260.5 387.5 497.5 535.0 758.8
1 110.8 142.1 252.3 349.4 597.5 817.5 840.0 961.3
2 98.9 202.0 269.1 371.6 433.8 706.9 1133.8 1168.1 1256.3
3 150.2 274.7 425.6 548.8 583.1 797.5 1377.5 1425.0 1510.0
4 175.8 307.7 544.7 757.4 786.8 937.5 1596.3 1648.3 1724.8
5 189.5 323.1 604.1 942.2 979.2 1108.6 1862.3 1909.4 1973.0
6 197.7 331.6 632.5 1071.9 1120.0 1247.5 2193.8 2236.3 2297.0
7 202.8 336.6 647.7 1153.8 1210.0 1338.8 2550.0 2590.9 2665.0
8 206.4 340.1 656.9 1206.3 1267.5 1397.5 2863.0 2889.1 3014.1
9 209.1 342.5 663.1 1240.6 1305.0 1435.0 3077.5 3085.0 3281.3

10 210.9 344.4 667.5 1263.8 1330.0 1461.3 3174.0 3230.0 3462.5
11 212.3 345.6 670.6 1280.0 1347.5 1478.8 3224.4 3320.3 3576.6
12 213.3 346.6 672.5 1291.3 1360.0 1492.0 3250.0 3375.0 3648.1
13 214.0 347.2 673.8 1298.8 1368.8 1500.0 3265.0 3410.6 3691.6
14 214.4 347.4 674.4 1303.8 1372.5 1503.8 3274.4 3429.4 3715.3
15 214.6 374.5 675.2 1305.0 1375.0 1506.3 3276.9 3437.5 3723.8

Table II-5 10 Packets of 3 blades (Cyclic symnetry method)

-
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ws
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0

103.4
157.7
185.0
199.1
206.4
209.6
470.5
470.5
470.5
469.8

486.0
482.2
482.3

1

143.2
256.6
372.0
572.9
m . 7
969.5
1109.5
1192.5
1309.0
1341.5
1371.6
1394.7
1438.4
1432.2
1439.3
1442.5

2

504.5
826.0

1148.5
1386.8
1642.6
1911.0
2243.4
2599.3
2945.5
3165.2
3239.8
3476.3
3684.5
3660.9

3719.7

3

1251.8
1585.5
1968.9
2461.8
2969.5

-

L

4

2053.1
2663.0
3196.4

Table II-6 15 Packets of 2 blades (Direct method)

0
1
2
3

4
5
6

7
8
9

10
11
12

13
14
15

0

121.5
162.2
258.1
264.6
279.6
279.6
355.2

388.5

591.0
591.1
590.9
800.6
801.1
835.3
811.0

Table II-7 6 Packets of 5 blades (Direct method)

1

147.6
230.1
333.2
516.7
562.7
761.0
981.1
1107.0
1180.1
1246.3
1299.1
1306.6
1350.3

1369.6
1369.5
1616.6
1623.3
1573.9
1610.9

2

496.5
789.2
1155.1
1405.3
1465.1
1678.7
1916.7
2223.6
2239.2
2580.0
2900.0
3105.8
3168.3
3253.6
3385.6
3514.5
3553.3
3685.8
3706.0
3625.7

-
3

1247.6
1573.3
1962.8
2426.8
2476.3
2999.7

3420.9
3529.1
3553.3
3801.1
3921.5
4064.2
3924.7

4

2032.8
2657.5

-
5

3347.7

5

3253.1
3873.1



e

-

0

1
2
3

4
5
6

7
8
9

10
11
12

13
14
15

-

-

__

-

0

100.9
152.8
214.2
242.7
256.6
264.7
392.1
396.9
400.0
402.2
610.0
613.3
615.0
616.0
798.5
800.5
802.3
802.5

1 2

146.6 488.8
253.1 810.0
366.3 1129.4
540.9 1373.4
558.8 1414.0
770.5 1602.5
970.6 1872.3

1109.8 2196.5
1138.9 2214.9
1230.3 2567.1
1287.0 2882.2
1323.4 3106.9
1393.9 3131.7
1419.9 3263.1
1436.5 3361.3
1448.9 3422.6
1618.8 3655.0
1626.3 3697.5
1630.5 3722.5
1632.0 3730.0

175 -

Table11-8 6 Packets of 5 blades (Cyclic symmetry method)

6
7
8
9

10

11
12
13
14
15

0

124.8
231.6
242.7
268.5
335.8

315.8

676.3
691.0
808.3

828.2

1 2

152.5 499.7
269.5 817.3
386.4 1155.3
558.3 1419.6
766.0 1711.8
967.2 1893.2

1009.4 1919.2
1135.4 2212.8
1239.7 2569.0
1320.5 2905.1
1366.7 3154.3
1385.3 3246.4
1631.0 3684.7
1618.3 3829.6
1665.0 3867.0

3

1255.7
1585.0
1953.5
2438.1
2989.3
3406.5
3537.7

4

2030.4
2644.7
3262.6

4278.2

-

-

-

Table II-9 5 Packets of 6 blades (Direct method)

5

3336.0

. ,
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0 1 2 3 4

0

1
2
3

4
5
6

139.8
177.5
226.8
319.8
343.6
374.8
425.6

391.2
493.2
554.3
782.7
972.9
1184.1
1212.3
1321.3
1405.5
1410.9
1505.8
1515.2

814.5
1230.1

1978.3
2628.1

1907.2
2166.8

2422.2
2440.5
3020.0
3534.1

7
8
9

10
11
12

13
14
15

449.0

600.4

2551.2
2926.2
3195.2
3208.3
3311.3

647.5
823.2 1750.2

1705.1
1769.6

3600.8
4002.7

877.9 3847.6
3899.2

Table II-10 3 Packets of 10 blades (Direct method)

0 1 2

0 1.19 278.19 1879.11
1 275.80 613.36 2359.49
2 315.61 818.64 3518.14
3 369.45 886.91 4874.10
4 430.90 922.90 6251.11
5 495.07 949.73 7591.26
6 558.73 973.40 8864.87
7 619.68 995.78 10051.46
8 676.33 1016.87 11134.69
9 727.49 1036.47 12110.57

10 772.22 1054.12 12938.26
11 809.77 1069.33 13636.98
12 839.56 1081.66 14188.92
13 861.14 1090.75 14587.73
14 874.22 1096.31 14828.85
15 078.59 1098.18 14909.52

L

5

3454.1

4421.1

Table II-11 Continuous uniform shroud (Lumped parameter model)
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-

-

-

-

f-
0 1 2

0 1.17 251.14 1879.08
1 51.08 252.00 1879.34
2 100.33 255.02 1880.10
3 145.17 261.79 1881.33
4 181.08 275.98 1882.99
5 203.69 301.29 1885.02
6 215.14 334.92 1887.34
7 220.85 370.92 1889.87
8 223.97 405.65 1892.49
9 225.82 437.38 1895.09

10 227.00 465.17 1897.55
11 227.77 488.46 1899.76
12 228.28 506.90 1901.61
13 228.60 520.22 1903.00
14 228.78 528.28 1903.87
15 228.84 530.97 1904.16

- -
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!Eable  II-l2 Non-interlocking shroud (Lumped parameter model)

6
7
8
9

10

11
12
13
14
15

0 1 2

1.19 278.18 1879.11
80.86 279.80 1879.91

152.414 285.97 1881.97
203.20 300.65 1884.49
227.00 321.54 1886.50
232.93 331.65 1887.27
495.07 949.73 7591.26
495.07 957.35 7591.26
495.07 977.09 7591.26
495.07 1002.17 7591.26
495.07 1026.28 7591.26
495.07 1041.54 7591.26
772.22 1054.12 12938.26
772.22 1064.10 12938.26
772.22 1073.92 12938.26
772.22 1080.19 12938.26
772.22 1083.61 12938.26
772.22 1084.68 12938.26

-

'Isble  II-U 10 Packets of 3 blades (Lumped parameter model)

-.~

-

-

,,.
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M
Cl
El
c2
E2

0 Nodal Diameters

143.0 499.9 1207. 2030. 3337.
142.7 497.9 1222. 2054. 3406.

2 4 1.2 1.2 .9
14L 49T:5 1 2 1 0 . 2041. 3349.

-. 1 -.5 .l -.5 -. 4

-

-

--

-~

-

1 Nodal Diameter

M
Cl
El
c2
E2

248.4 815.9 1575. 2623.
253.3 824.6 1601. 2674.

2.0 1.1 1.7 1.9
252.3 817.5 1582. 2651.

1.6 .2 .4 1.1

2 Nodal Diameters

M 103.6 392.4 1121. 1936. 3341.
Cl 109.2 373.3 1144. 1974. 3277.
El 5.4 -4.9 2.1 2.0 -1.9
c2 98.9 371.6 1134. 1957. 3310
E2 -4.0 -5.3 1.2 1.1 -. 9

3 Nodal Diameters

n 154.8 544.2 1364. 2403.
Cl 163.5 519.2 1469. 2463.
El 5.6 -4.6 7.7 2.5
c2 150.2 548.8 1378. 2388.
E2 -3.0 .8 1.0 -. 7

4 Nodal Diameters

n 179.7 804.0 1597. 2909.
Cl 187.4 819.1 1666. 3019.
El 4.3 1.9 4.3 3.8
c2 175.8 757.4 1596. 2889.
E2 -2.2 -5.8 -. 1 -0.7

5 Nodal Diameters

M 187.7 1010. 1834. 3321.
Cl 194.0 948.0 1884. 34'07.
El 3.4 -6.1 2.7 2.6
c2 189.5 942.2 1862. 3365.
E2 1.0 -6.7 1.5 1.3

Table II-14 Packeted-bladed disc (10 Packets of 3 blades)

M: Measured
Cl: Computed via MULPAC
c2: Computed via SINPAC
El = (Cl - M) x 100/M
E2 - (C2 - M) x 100/M Continued
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5 Nodal Diameters

M 345.0 NI 1872.
cl 340.5 1978.
El -1.3 5.7
C2 323.1 1909
E2 -6.3 2.0

6 Nodal Diameters

M #I 1118. 2171.
cl 1176. 2262.
El 5.2 4.1
c2 1120. 2236.
E2 .2 2.9

7 Nodal Diameters

M NI 1202. 2507.
Cl 1258. 2633.
El 4.7 5.0
C2 1210. 2590.
E2 .7 3.3

8 Nodal Diameters

M 101 1261. 2776.
cl 1314. 2936.
El 4.2 5.8
C2 1267. 2889.
E2 .5 4.1

9 Nodal Diameters

M NI 1291. 2941.
cl 1330. 3129.
El 3.0 6.4
C2 1305. 3085.
E2 1.1 4.9

10 Nodal Diameters

M NI 1305. 3193.
cl 1335. 3305.
El 2.3 3.5
C2 1330. 3230.
E2 1.9 1.2

Table II-14 Packeted-bladed disc (10 Packets of 3 blades)

-

--

-

H: MMtSUred
Cl: Computed  via MULPAC
c2: Computed via SINPAC
El = (Cl - M) x 100/M
E2 - (C2 - M) x 100/M Continued

L .
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N
cl
El
c2
E2

M
Cl
El
c2
E2

n
cl
El
c2
E2

M
Cl
El
C2
E2

10 Nodal Diameters

665.8 1456. 3580.
670.4 1451. 3473.

.7 -.3 -3.0
667.5 1461. 3463.

.2 .3 -3.2

11 Nodal Diameters

675.4 1479. 3602.
665.0 1423. 3775.
-1.5 -3.8 4.8

670.6 1479. 3576.
-. 7 0.0 -. 7

12 Nodal Diameters

678.5 1488. 3647.
669.2 1424. 3811.
-1.4 -4.3 5.0

672.5 1492. 3648.
-. 9 .3 0.0

15 Nodal Diameters

IV1 1507. IV1
1380.

-8.4
1506

-.l

arable II-14 Packeted-bladed disc (10 Packets of 3 blades)

--

-

-

-.

M: WaSUred

Cl: Computed via MULPAC
C2: Computed viaSINPAC
El = (Cl - M) x 100/M
E2 = (C2 - M) x 100/M

NI: Not identified

Concluded

-

c ,
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o Circles, 3 Diameters mode 1 Circle, 10 diameters mode

_ _
’ Predicted at Measured at

163.4 Hz 154.8 Hz
Predicted at Measured at
1334. Hz 1305. Hz

No Displ. DFT Displ.
0 -.OO
1 -.23 .OO -59.361
2 -55.51  .Oo -89.352
3 -87.15 lOo.00  -96.209
4 -91.76 .OO  -93.980
5 -65.67 Jo -75.638
6 -13.54 .Oo -59.158
a’ 96.13 56.93 6.32 .oo -51.404

-34.6689 95.52 .oo
-34.30510 56.57 .OO  -39.987

11 6.27 .oO -68.856
12 -45.49 .oo -84.845

13 -91 l ei 1.75 -92.022
14 -loo.00  .Oo -100.000
15 -67.4o .Oo -77.187
16 .22 -71.024
17 55.54 -41.354
ie 87.14 -33.312
19 91.76 -34.391
22: 65.68 13.55 -53.402

-71.40922 -56.93
-77.091

23 -96.13 -94.083
24 -95.52 -88.690
2s -56.56 -95.058
26 -6.27
27 45.48
28 91.89
29 100.00
30 67.40

DFT
-100.000

1.964
2.132

48.792
1.463
2.224

.530
5.912
1.250
A27

1.426
.924
.817

6.407
1.534
-.307

No Dis?l. DFT Displ. DFT
0 .69 -47.202
1 -100.00 .Ol -91.333 1.726
2 98.90  .OO 26.001 .995
3 3.46 .Ol -36.177 2.904
4 -No.00  .Ol .-96.050. ,609

5 98.89 .Oo 26.747 ,757
-30.625 1.648

6 7 -99.99 3.46 .Ol .OO -97.202 3.287
30.309 5.5868 98.87 .OO

9 3.45 .OO -29.369 2.335
-87.713 loo.OoO

i
::

-99.99  lOo.Oo
98.89 A0 21.306 1.304

12 3.46 .OO -30.214 1.275
13 -99.99 .Ol -90.839 1.746
14 98.30  le.508.oO 2.017
15 3.46 .OO  -30.713 .195
16 -99.99 -89.797
17 96.88 27.180
18 3.46 -31.739
19 -99.99 -83.434
20 98.97 29.501

21 3.46 -34.608
-95.557

-.

Table II-15 Predicted and measured mode shapes
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3Nx3N

RI -

with

-.

-

-

IW =

fi2+26h 0

0 Xzyaj+26a

-RI2 0

,,z:26j i CH1 = [i -!a %]

yh2 - k( 1 + im)/mwo2 , Y2aj = Cj(1 + iT)a)/Iw02, e = I/lUb2

6h = 9r/nulJo2  , 6, = SoJmb2~g2 , 6X = ~UKQ

[PI 1 x 0

P-1 x x20

0 0 t

with t = m/M andX=d/b

Fwl= - (hwo#~,O, . . . . . . lhwN-I  n &mN-i , &xwt+1  I 0)

and the cascade response vector (q) and the [El matrix are defined in

equations ( 9-2) and (9-l 1) respectively.

.‘....,  . . . . l., .:__.
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(AL, Aa, A,, A,, A,, %I A,, A,r 4, Aror “~1,  A,,) (fv-1)

The elements of (Al can be found using the boundary conditions which

must be satlsfied at each node In turn, that is to say:

(h), = h,

(WWr - ar

(ah/m), * er where r - k,l,m,n

Inserting these conditions gives:

(6) = CBI (Al

w h e r e  (61T - (hk,  qR ek, . . . . . hnr ant enI (TV-21

and hence:

(Al = CBI- (61 (W-3)

The bending strain energy of an isotropic plate of uniform flexural  rigidity

D is:

U = D/2 C (azhr/~)(a2hr/W2)

+ 2~ ( arhr/aX2 )( a2hr/w2)  + 2( 1 - V)( a2hr/aXw)2 ] dXdy

r - k,l,m,n

(W-4)



-

-

-

-

-.

-

The curv

r - k,l,m,n

d 0 0 0

0 d 0 0 D wD 0

0 O d 0 with d = wD D 0
0 0 0 d 0 0 2(1 - w)D

.I 1
tures  can easily be obtained by differentiating equation (IV-1 1 ,

Substituting equation (IV-51 into equation (IV-41 and noting that only [El

is a function of x and y gives:

U = l/2 MT [D@{ /“/’ I~lTIDllEld~~  }W1] (61

y=o x=0

Applying Castigllano’s  theorem, 6U/6sr = Fr, yields:

where {F)T = (Frr Marl Qrl
r = k,l,m,n

(fv-6)

(W-7)

and EKle  is the element stiffness matrix for which an explicit expression is

given in Fig. IV-2a.

The external work done by the equivalent nodal inertia forces {Fin) in
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-

-

-

-

- where Me Is the element Inertia matrix for which an expllclt  expression

-

movlng through virtual  nodal displacements &,I Is equal to the external

work done by the actual distributed Inertia loading f In moving through a

virtual deflection h,. Hence:

b a

&IT* WinI -
Jl

hvf WY (W-8)

y=o x=0

The Inertia force per unit area when the plate Is vibrating slnusoldally

with circular frequency is:

f  - w=ph - ~=p(w}~(A)  - ~=(w}~[B]-~(6) (m-9)

Also from equation (IV-11

hv = mdTw = ( NdTCW~)W (rv-10)

Substituting equations (IV-91 and (IV-101 Into equation (IV-81 gives:

b a

[sYIT*(Yin? = 02~(6vITCBl*
CJ J

WI WIT MY
i

[B34{6) (rv-11)

y=o x=0

Each element of the vlrtual displacement  vector 16~) can be given the

value of unity In turn while the remaining ones are all set to zero, In this

case equation (IV-1 1) becomes:

@‘in) - u2 [ CBI* { J b /:WITP (W) ~Y}CBI-~]  (61 (Iv-12)

y=o x=0

Identifying with Newton’s second law

(Iv-13)

Is given In Fig. (IV-2b)

. ‘,.
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Using the principle

manner that nodal
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of virtual work again, it can be shown in a similar

forces due to a dlstrlbuted  axial loading P per unit

element area can be determined as:

Fr

(42)e = &rI I - -[B]*

&r

r - k,l,m,n

(WI P(XtY)dxdy (Iv-14)

In Chapter 11 It was assumed that the pressure distribution  per unit span

length is given by:

P(XRY) = P(Y) = -WY CPh(Y)fi + CW Pa (Y)al

where both ph and pa are second order polynomials of

Ps - c,yt + CAY +co

(Iv-15)

the form:

where s = h or a dependlng on the motion. It can be shown that:

-

b a

//

ab
-CBI* Iw) (c,y=+b,y+c,) dxdy = - -

Y=O x=o 720

chsk
b*Cask
a*=esk

chsl
b*%sl
a*%31

chsm
b.C-
a*=esm

Chsn
b*%sn
a*%snA

(Iv-15)

s = h o r a

..*, -. __. -2 .--
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where ask = chs1= 24C,b2 + 54C,b +18OC,

chsm’ Chsn’ 96C, b2 + 126C, b + 18OC,

cask' =asl- 6C, b2 + 12C, b + 3OC,

=asm- Cam - -12C, b2 - 18C, b - 3OC,

cesk - -%a1 - SC, b"+ lOCAb+ 30C,

Cm - -Cesn - -15C, b2 - 2OC, B - 3OC,

s-hora

Inserting equation (N-15) into (IV-144 and using  (IV-171 gives:

Frl_j I chhr h + C@*%ar ar

tQ)e = k = my ab/ 720 b.Chr Sr + bCW.Caar ar

I

(IV-18)

a.Qh, fj, + aCtd.Qar ar

r = k,l,m,n r=k,l,m,n

Assuming simple harmonic motion. equation (IV-181 can be written as:

(Qle = w2y aW72O. IAle (61 ( II-19 )

where W, is the element aeroelastic load matrix given by:

IAle =

with

IAIr p

= Char 0

cb Caar 0
caC_ 0I

r - k,l,m,n

and (61 is defined in equation (W-2) .

(IV-17)

[Alk

IAll

CAllIt
CAln

(IV-20)

I. /
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The aeroelastlc  coefficients given In equation (IV-201 are referred to an

axis position passing through the centre of gravity. It Is therefore

necessary to generallse  for any axis position distant e from the centre of

gravity. These two cases will be distinguished by the suffices 0 and 1

respectively. The lateral force Is not affected by the change of axis but

the radial moment is. Hence:

=, - =o
(Iv-21)

The transformation formulae can be found by Inserting equation (IV-21 1

into equation f IV-181 .

(%hr)i * (%hr)o

(Iv-22)

(Cahr)~ = (%rhr)o -ez (%hr)o

(Caar), = (Caar)o - ez (Caar)o - *,(C&r)o  + ifhe, (%r)o

r - k,l,m,n

where ei = e/c and ez = e/b.



e
-

- 191 -

[Kle =  D/lSOb  LLI UK,1 + [K,I)  IU

where

6opc6oq
3op
30s
3opdos

[KJ = ?;
-3op-3Oq
UP
154

-6Ope3oq
30P
1sS

20s
0 20s

-3oq
0
loq

-Iss
0

-39
lscl
0
10s

t4v
-3+3v
0

--I+v
3-PV
0
1-v

-3-12~
0

-4+4v

16P
lop

0

-=P
5P
0

-3op
lop
0

6ope6Oq
3op 2op

-3oq 0
-6OptaOg -30p
30P lop
-=g 0
-oOp-3Og -l6p
UP 5P

-=4 0

wop
-3Dp 2op
-30s 0 20s
3OP-6on -l6P 30s

-IsP 1OP 0
-30s 0 10s

6opc6Oq
-30p
3oq

42-12~
-3-12~
3+12v

2OP
0 2oq

42-12~
3+12v 44u
3+12v v

-42-12v -3-12~
-3-12~ -4+rv
3-3v 0

t 42-12~ I-3v
-3+3v 1-V
-3+3v 0

-42+12v -3+3v
3-3v -l+u

-3-12~ 0

v Poieeon’e  ratio
D Flexural  rigidity

42-12~
Nl2V

-3-12v
-42+12v

3-3v
3+12v
42-12~
-3+3v
3-3v

&I - 42-12~
-3-l2v 4-4u
-3-12~ v 4-4V
-42+12v 3+l2v 3-3v
3+12v -4+4v 0

-3+v 0 -3+3v
4-h
-V 4-4v

1 0 0 0

CL1 - [ 0 1 0  0

0 0 1 0
0 0  0 1 1 I1 0 01

and l-
1:: q

Fig.  IV-2a Element stiffness matrix

Me = ptab/f)SOO ILlrMlILl

-_

'-3454
-461
-461
-1226
-199
274

[II] - -394
116
116

-1226
274

-199

ard [L] ia

1
SynaTRIC

40
-274
-42
60

-116
23
30

-199
42

-166

a Element width
b l=eb
t thickness
P density
v Poinaon's  ratio

-3464 D flexural rigidity
461 -60
461 4 3 -60

-1226 199 274 -3454
199 -40 -42 461 -80

-274 42 60 -461 63 -90

4 3
-199 -3464

-461
461

-l226
274
199

-394
116

-166

-EO
63 -60

-2'14 199
60 -42
42 -40

-116 116
30 -26

-2e 30

42
-116

30
28

-274
60

defilnd in ?ig N-21

Fig. IV-2b Element mass matrix
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