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Abstract

Rotor Internal Damping (RID) was the first recognised cause of rotordynamic self-induced

vibration over a century ago. Hardware fixes (special dampers, redesigned rotor fits,

modified bearings, etc.) are used empirically to overwhelm its destabilising effect. Such

fixes will generally avoid absolute instability, if occasionally not bounded whirling, but do

not allow for a proper understanding of mechanisms at play. Analytically, material RID

was the more commonly studied, with models ranging from linear viscous to non-linear

stiffness/damping hysteresis; thus allowing for the more philosophical research of simple

shafts. Rotors’ couplings are agreed to be the prominent RID sources, but were seriously

researched during the last two decades, modelling rotor joints with macroslip friction.

Although more realistic than material RID, such models could have been much improved

had it not been for the geometric modelling approach limitations. This, on account

of their very case-specific experimental and modelling particularities, and limitations of

time-marching analysis render them inadequate for industrial applications.

This work was motivated by the virtual absentia of easily-applicable yet accurately-

representative industrial techniques, when RID is becoming a more potential problem

source. The scope of novel contributions is developing a valid and functional basis for the

design, analysis and testing of rotor systems with RID. Three main basis for industrially-

applicable techniques are developed, along with their numerous peripheral contributions,

herein. Analytical techniques are adapted from control engineering to tackle the localised

nonlinear RID system that is feedback-setup as linear and nonlinear subsystems. Linear

hysteretic, along with viscous, RID is properly introduced and analysed, yielding rep-

resentative Eigen-solutions and forced response. Analysis are mainly conducted in the

rotating frame to accommodate the predominantly frequency domain models used. An

experimentally applicable stability test is developed to assess safely the stability of a

possibly unstable target system, whilst included in an overall stable system.
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Nomenclature

Rotordynamics nomenclature

S Dynamic system, possibly nonlinear and time-varying

t Time

ı =
√
−1 Imaginary constant

Ω, Ωc, Ωcu
Constant speed of rotation, Critical speed, Critical speed of undamped system

ω, ωe Frequency of oscillations, Frequency of excitation

τ = ωt, τΩ = Ωt Frequency angle, Speed angle

n Number of system’s degrees of freedom (DOFs)

m,G, k Linear mass, gyroscopic and stiffness coefficients

c, ci External and internal linear viscous damping coefficients

d, κ Hysteretic linear damping coefficient as used in complex k(1 + ıκ), κ = d
k

. . . . . . . . . . . . . .Time domain: Instantaneous real vectors v = v(t) ⇐Bold Upright . . . . . . . . . . . . . .

F (.) ; F(., .) Scalar ; Vector Function 2n×1 of parenthesised variable/s

x,y X-, Y-directional coordinate vectors: n
2
× 1

q = {x y}T Displacement vector: n × 1

f = {fx fy}T External Force (input) vector: n × 1

p = {q q̇}T State phase vector 2n × 1

qr = {ξ η}T Displacement vector in rotating coordinates: 2 × 1

pr State (phase) vector in rotating coordinates: 4 × 1

. . . . . . . . . . . . Rotordynamic real LTI system matrices: Stationary frame of reference . . . . . . . . . . . .

M,C,K Mass (positive definite), Damping, Stiffness n × n matrices

G,Kcc Gyroscopic, Circulatory skew-symmetric matrices

A,B,O State, Input, Output matrices of state-space

S(A,B,O) State-Space representation of LTI dynamic system S

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .Complex Coordinate/System notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mc,Cc,Kc complex representation of isotropic rotors M,Cg,Kg

z = x + ıy complex displacement vector representing {x,y}
fc = fx + ıfy complex force vector representing {fx, fy}

. . . . . . . . . . . . . . . . . . Transformation Stationary ⇔ Rotating coordinate systems . . . . . . . . . . . . . . . . . .

T coordinate Transformation matrix at constant speed Ω

x, y ; ξ, η 2 DOF plannar coordinates in stationary ; rotating frames

z = x + ıy ; ζ complex coordinate in stationary ; rotating frames

Cr,Kr general Damping & Stiffness matrices in rotating coordinates

I,ℵ Identity, Unit anti-symmetric matrices

PhD thesis 5



Eigen analysis nomenclature

λi ith eigenvalue

ωi, ω̂i ith (damped) modal frequency, natural frequency

γi ith modal damping factor

m̂, k̂, ĉ Modal mass, stiffness, damping

ri, r̂i ith (right) eigenvector, modal vector

li, l̂
∗
i ith left eigenvector, adjoint (complex-conjugate left) modal vector

R,L Modal matrix of (right) eigenvectors, matrix of left eigenvectors

λf :i; ωf :i > 0 Eigenvalue of ith∈{1,...,n} FWD mode ; with +ve modal frequency

λb:i; ωb:i < 0 Eigenvalue of ith∈{1,...,n} BWD mode ; with -ve modal frequency

Λ Canonical form of A, usually diag{λi∈{1...2n}
}

Frequency domain nomenclature

s Laplace variable

q(s),f(s) Laplace transform of q, f

q, f Complex Amplitude of sinusoidal q, f

H(s) Transfer Function Matrix (TFM) of stable S

G(s) TFM of possibly-unstable S (RID or other mechanism)

Hr(s) TFM in rotating coordinates

Hij(s) Individual Transfer Function (TF) in H(s) indexed ij

Gij(s) Individual TF in the possibly-unstable G(s) indexed ij

gd
ij, p, o Gain, a pole and a zero of Hij(s)

H(ıω) Frequency Response Matrix (FRM)

Hd(ıω) Receptance FRM

Hv(ıω) Mobility FRM

Hij(ıω) Individual frequency response function (FRF) in H(ıω)

S,V Dynamic Stiffness = inv Hd, Impedance = inv Hv

ℜ(.),ℑ(.) Real, Imaginary parts of parenthesised complex entity

(.)∗ Complex conjugate of complex variable, vector or matrix
~X Complex amplitude of sinusoidal x(t) = ℜ( ~Xeıτ )

X̄ = | ~X| Absolute amplitude of x(t) = ℜ( ~Xeıτ ) = X̄ cos(τ + ψx)
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Mathematical abbreviation symbols

≡ Equivalent, Identically equal

≃,≈, 6= Semi-equivalent, Approximately equal, Not equivalent

A : [a ⊲ b] Closed range of A increasing from a to b

A : [a⊲ 〉 Open-ended range of A increasing from a onwards

ր,ց Increase, decrease with specified range direction

©,ª Clockwise, Counter-clockwise
def
= Defined as

∀ For all

∈ Belongs to, Element of, in
S⊂,

S⊃ Sub-system of , Sup-system of subsystems

∃ There exists

→ Tends to

⇒ Implies, leads to

a ⇔ b a leads to b and b leads to a∑
Summation∏
Product

|.| Absolute value of (.)

‖p‖ Euclidean norm of vector p

Rl The l-dimensional Euclidean space
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Nonlinear analysis nomenclature

N Nonlinear element characteristic, possibly multi-valued input-output relationship

x generic input to N , usually x = x(t) is a sinusoid

NM Modified nonlinear element, equivalent to N with more than one input

F Nonlinear force/Output of nonlinear element N ,NM

F1 = F1(t) First (fundamental) harmonic component of F = F(t)
~F1 Complex amplitude of F1(t) = ℜ( ~F1eiτ )

F̄1 = | ~F1| Absolute amplitude of F1(t) = F̄1 cos(τ + θ1)
~ξ Complex amplitude of sinusoidal ξ(t) = ℜ(~ξeıτ )

ξ̄ = |~ξ| Absolute amplitude of sinusoidal ξ(t) = ξ̄ cos(τ + ψξ)

SNL Separable nonlinear S into LTI and NL/time-varying subsytems

SL,SN LTI and NL/time-varying
S⊂ SNL

F Internal Nonlinear force vector

N Matrix of Nonlinearities N s

k First order Describing Function of N
kM Describing Function of NM

K Matrix of ks

Terminology abbreviations and acronyms

RID Rotor Internal Damping

EAST Experimentally Applicable Stability Test

LTI, LTV, NL Linear Time-invariant, Linear Time-varying, Nonlinear

SISO, MIMO Single-input-single-output, Multi-input-multi-output≡Multivariable

LC Limit Cycle, e.g. RID precession

SVNL Single-valued Nonlinearity

DVNL, MVNL Double-valued, and Multi-valued Nonlinearity

EOMs Equations of motion

DOFs Degrees of Freedom

SDOF, MDOF Single DOF, Multi DOF

FR, FRF Frequency Response, Frequency Response Function

TFM, FRM Transfer function matrix, Frequency response matrix

DFM, HBM Describing Function Method, Harmonic Balance Method

TMA, FEA Time Marching Analysis, Finite Element Analysis

PR, SPR Positive real, Strictly positive real

PD, PSD Positive Definite, Positive Semi-Definite

ROSTADYN ROtor STAtor interaction DYNamics. BRITE/EURAM project no. 5463, 1994-97
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1. Introduction

Rotor internal damping (RID) refers to damping within a rotating structure (mechani-

cal assembly) as opposed to external damping from the stator/support. RID can cause

forward (FWD) whirling with a frequency close to that of a FWD mode (usually first)

of the rotor when running supercritically, i.e. above first critical speed (fig.6.1). This

subsynchronous precession is regarded as a self-excited vibration (of a particular mode,

fig. 2.15), which can be bounded (fig.2.13) or can grow to result in an unstable system

(fig. 2.14) should a combination of operating conditions exist. The most significant con-

dition is speed, with whirling initiating at the onset speed of instability. Such self-induced

whirling/instability is unlike resonance at a critical speed or a parametrically-excited in-

stability causing high levels of vibration in a narrow range of speed that a rotor can pass

through while accelerating or decelerating. If the onset of RID instability is reached,

non-synchronous vibration is initiated and maintained, not passed through on further

increase of speed. If whirling is bounded, its amplitude may fluctuate noticeably with

increased speed, yet can be limited by the system’s nonlinearities until the rotor or stator

parts (seals, bearings, etc.) fail. Alternatively, whirling might not be bounded and its

amplitude will increase monotonically, even at a constant speed until failure.

Turbine manufacturers, try to avoid severe RID-induced whirling by:

• Raising the onset speed of instability and decreasing the subsynchronous whirling

amplitude via: a) introducing external damping, possibly through special dampers

e.g. adaptive control dampers b) lowering friction coefficients in rotor joints—which

are the major source of destabilising RID—via lubrication, tightness and minimising

surfaces’ relative motion; and locating these joints away from anti-nodes c) intro-

ducing support anisotropy.

• Avoiding operation much above the critical speed, whenever convenient

It will be seen that in order to increase operating speeds, a pre-requisite of increased

turbine efficiency, the development of:

• A more in-depth understanding of the RID mechanism and instability phenomenon

• Accurate and efficient linear and nonlinear (NL) analytical techniques and models

of RID, to predict its instability behaviour and perform parametric evaluations.
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• Safe and conclusive experimental stability testing of operational rotor prototypes.

are required to be able to live comfortably with RID whirling, as opposed to totally

avoiding the unpredictable unknown, which is the motivation of this research (§.1.2).

1.1. Statement of the problem

1.1.1. Problem overview

By the turn of the 20th century, turbine manufacturers had started to design and operate

rotors supercritically. That was only after DeLaval’s experimental demonstration (1895)

of the safely-sustained supercritical operation of a steam turbine. His experiment refuted

Rankine’s hypothesis (“Indifferent Equilibrium”, 1869) that rotors, modelled with no

Coriolis effect, cannot be stable if operated at speeds above the critical [63].

1.1.1.1. Realising the cause of and the quick-fix to RID instability

No sooner did turbine manufacturers start operating supercritical rotors than they en-

countered severe vibrations that were at first related to imbalance. The industry was

bewildered by the successful supercritical operation of some units but not others of sim-

ilar construction. A few researchers hypothesised on the possibility of RID being the

cause, but took it no further until General Electric (GE) encountered severe problems

with their blast furnaces’ compressors [80, 130]. In 1924, Kimball [80, 81, 82, 83] came

to the then apparently illogical reasoning that RID caused such instability as it induced

a “follower force” that is tangential to the rotor’s orbit, acts in its direction of precession

and increases in magnitude with speed of rotation. He then argued that this force could

overcome the stabilising external damping forces at a certain supercritical onset speed,

thereby rendering the rotor unstable—see physical explanation in §2.4.2.

RID was the first recognised cause of self-induced instability, and oil-whip followed

shortly after. Although the main source of RID was always agreed to be friction from

rotor joints/fits, until recently, it was regularly modelled as linear viscous damping. Since

its recognition, manufacturers have always appreciated the RID destabilising effect and

accounted for it in their designs by implementing hardware fixes to overwhelm it. Such

fixes (e.g. special external dampers, redesigning rotor fits and modifying bearings) or

even operating below the predicted onset speed will generally avoid absolute instability

but meanwhile do not allow for a proper understanding of the mechanisms at play.

16 On Rotor Internal Damping Instability



1.1. Statement of the problem

1.1.1.2. Proper modelling of RID Vs. ease of modelling and analysis

Analytically, material hysteresis is the more commonly studied RID destabilising mech-

anism, with several models available for its representation. These range from linear

viscous to non-linear stiffness and/or damping hysteresis; thus allowing for the more

philosophical research of simple shafts [55, 57, 58, 59, 69, 122, 123, 124, 132, 148, 160],

which included some mathematical muscle-flexing investigating double-Hopf bifurcations

[159, 164, 165, 166], etc. but with few attempts at industrial applications [197, 198, 199].

Although friction at rotor joints has always been agreed [63, 64] to be the prominent

source of destabilising RID, it has received minimal attention analytically and even less

so experimentally, in the sixties [19, 41, 93, 177]. Recently (late 70’s–early 90’s), serious

research efforts [7, 8, 13, 17, 90, 91, 104, 107, 108, 111, 127, 174, 175, 179, 185, 184]

were invested in geometrically-modelling rotor joints with simple friction RID models

and experimentally identifying their coefficients [88, 89], on the tails of the Space Shuttle

Main Engine (SSME) RID instability problem [34]. Still, the knowledge of, and analytical

capability for dealing with rotor joint friction are less than sufficient to use confidently

at an industrial level. This is due to the experimental and modelling difficulties of their

very case-specific behaviour. Turbine manufacturers usually suffice with Eigen-analysis

results of linear (FEA) EOMs with cross-coupled equivalent viscous and/or hysteretic

damping coefficient of RID (§.2.4.6.1) based on [200] and its extensions [31], which yield

erroneous and unrepresentative results. Should any mode have a positive decay coefficient

(unstable), then the onset speed of instability is concluded to be lower than the design

operational speed, and a rotor redesign is effected.

Linear FEA is a simple approach to a complex problem, not only for friction damping,

but even for material damping. The nature of material hysteresis causing damping is

rather complicated with several factors affecting it. Limiting concern to metallic (partic-

ularly ferrous) rotors, authors make some simplifications and idealisations in developing

material damping models. Factors such as mean stress, loading history, magnetism and

even pre-stressing are amongst those usually ignored. Temperature effects, although im-

portant for turbine stages, are usually ignored along with amplitude-dependence in the

case of linear RID. For the materials concerned, frequency can have a minimal effect

on their damping capacity only at very low amplitudes and only on comparing frequen-

cies of two-to-three orders of magnitude; a scenario of which the frequently-used viscous

RID is not representative. A review of the damping literature [76] such as that provided

by Pisarenko (1974), Lazan (1968) or Lincare (1954) reveals the complexity of damping

mechanisms, the limitations of their models and, more importantly, the different opinions

of authors on matters such as amplitude dependence and others. The different material

damping models used for representing RID vary and sometimes results contradict.
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A specific material damping model representative of the damping magnitude and ac-

counting for the various operative factors (mechanisms) affecting this magnitude would

be too complicated and unnecessary. This is so since material damping—in metallic,

non-composite rotors—may increase by an order of magnitude due to rotor operating

conditions, yet will still be very small by comparison with friction damping from joints

and couplings, provided that large shaft deformations are avoided. This latter condition

is usually satisfied due to geometric constraints and yield safety factors.

1.1.1.3. The depth of recent in-depth research into friction RID

Although turbine manufacturers appreciated the destabilising effect of RID, its signif-

icance in comparison with other self-excited instabilities is noticeably minor and can

usually be handled empirically, since rotors are usually lightly damped except in specific

cases. Examples of such specific cases are the SSME turbopumps, on account of their

built-up design, with several joints (fig. 2.18) that are capable of relative slippage result-

ing in friction within the rotating assembly. RID instability of the SSME turbopumps was

of such significance that intensive research was commissioned and a better understanding

of the phenomenon was made available for the more standard industries to adopt and

apply. Still, research associated with such opportunities is usually focused on the par-

ticular problem at hand and will generally not go much further beyond recommending a

solution or remedy tailored specifically for that case. For instance, the work associated

with the SSME focused mainly on spline couplings, the main source of RID, and used a

simplified friction damping model for illustration purposes. Much less work was associ-

ated with shrink fits, despite their marked destabilising influence since they were a lesser

source of trouble. Negligible effort was invested in modelling RID of Curvic couplings,

since they were deemed non-influencing to the specific RID problem at hand due to their

location close to the anti-nodes of the first mode. The models developed demonstrated

the possibility of a limit cycle instability that resembled the experiments, conducted with

a spline coupling, only qualitatively. See §.2.1 for an overview and critique of previous

work on RID instability. Works on Curvic couplings’ modelling and analysis include

[13, 140, 194, 195, 196].

1.1.1.4. Current industrial problem

RID is becoming a more potential source of problems, not only for advanced turbines

e.g. SSME turbopumps, but also for the more standard supercritically-operated industrial

turbines as well as aero-engines (figs. 2.16, 2.17). This is due to the ever-increasing

demand for lighter and more compact aero-engines that sustain higher flow rates inducing

higher forces and encouraging joint slippage. Although industrial turbomachinery is not
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necessarily of a highly built-up design as aero-engines; RID could be problematic as it can

initiate a series of interactions of different self-induced instabilities, such as those resulting

from rubs and oil whip in industrial steam power generators.

A thorough understanding of the RID destabilising phenomenon is not confidently

at hand, which is of paramount importance to the implementation of increased perfor-

mance/weight efficiency and safe operation of high speed rotors. Recent experimental

work on RID sources is minimal and largely concentrated on axial spline couplings. An-

alytical work has been either too theoretical to apply industrially or over-simplified in

most industrially-applicable cases. Representative RID models have not been incorpo-

rated properly in system analysis that include other self-induced instability mechanisms.

Examples of rotors below involve intricate designs. Such rotor-stator systems cannot

be modelled adequately (for RID stability analysis) in FEA by merely utilising beam ele-

ments with dissipative capacity, spring-damper bearings and, on rare occasions, rotational

spring-damper couplings; as is the current practice.

Mid-sized to large helicopters’ engines are frequently of an intricately built-up design

incorporating CurvicTM couplings, tie bolts, interference fits and, occasionally, spline

couplings. They are good examples that can suffer serious damage from RID instability,

thus causing financial loss or worse when lives are involved. They are also examples of a

situation where hardware fixes to the RID problem are not always possible due to their

rather compact design.

Large and heavy rotors as found in steam turbines, are examples at the other end of the

spectrum. Due to the flexible rotor design and special couplings linking shaft segments,

such sagging rotors are inherently heavily damped. The RID follower force effect (resulting

from alternating bending moments due to gravity sag) will tend to displace the rotors

horizontally, hence rendering them prone to radial rubs—another source of self-induced

instability.

1.1.2. Factors influencing RID instability

Operational and experimental observations can generally characterise the RID instability

behaviour and identify the factors affecting it under different circumstances. Analytical

models can predict some such observations due to the different mechanisms modelled as

well as postulate on the effect of others that cannot be easily observed.
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1.1.2.1. RID instability behaviour

The behaviour of RID instability can vary considerably, even in cases of almost identical

conditions. However, there are some general characteristics of said behaviour:

1. RID instability has never been observed below the first critical speed. RID analysis

models that predict instability/precession at subcritical speeds are considered erro-

neous, usually on account of inappropriate modelling and/or analysis. Linearisation

(5.2) with a NL hysteretic RID model (2.18) may predict subcritical-speed insta-

bility (2.24), which is blamed on Taylor series truncation (§.2.4.3.4). Also, a linear

hysteretic model [200] that is inappropriately implemented will yield instability on

rotation commencement (§.2.4.6.1), which has never been reported.

2. Should RID whirling appear, it can be sustained up to higher speeds at a quasi-

constant frequency that is close to that of the FWD bending mode for each speed

(fig. 2.15). The speed up to which RID whirling can be accommodated is rather

case-specific.

3. Should it appear, the whirling amplitude can increase and decrease (possibly to

unnoticeable) several times with increased speed, before a semi-constant amplitude

of this subsynchronous component is established (fig. 2.21).

4. At a constant operating speed, the whirling amplitude may vary (fig. 2.25) or even

disappear totally, (fig. 2.24), as in the case of an axial-spline coupling locking due

to loss of the instability-inducing friction forces.

5. If whirling is accommodated over a wide speed range that extends beyond the second

critical speed, its frequency can suddenly jump from that of the first FWD bending

mode up to that of the second FWD bending mode (fig. 2.19).

6. Whirling does not have to start with a frequency close to that of the first FWD

mode. It can start with a frequency close to any of the FWD modes provided it is

subsynchronous; as represented linear -analytically in [45].

7. The more common appearance of instability in industrial rotor cases is an increas-

ing level of the subsynchronous component (at the first bending frequency) with

speed until failure. Shrink fits and/or spline couplings are virtually always in-

volved. However, as observed experimentally, an increased whirling amplitude does

not necessarily imply an increased destabilising effect (§.5.3.2.2), provided it does

not provoke other destabilising mechanisms.
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1.1.2.2. Factors affecting instability behaviour

From literature reviews, factors that influence RID instability are summarised below:

State and method of operation

1. Operating speed: Whirling initiation, reoccurrence and imbalance-beating occur at

specific operating speeds. Such speeds, especially instability onset, may well vary

for the same rotor depending on factors to follow. Also, as the operating speed

varies, it will affect whirling patterns and amplitude.

2. Acceleration: The rate of acceleration, particularly just after resonance, and that

of deceleration from a speed where whirling was established, will affect the whirling

amplitude and sustainability over varying speed spectra.

3. Load: Lightly loaded shafts with small inertia are more susceptible to RID instability

than those with higher loads. That can be due to the need for stronger disturbances

to influence the steady operation of rotors with higher inertia and load, which can

consequently initiate instability.

4. Rotor orientation: Vertical orientation can make a rotor more prone to instability

than a horizontal one, which is demonstrated experimentally and analytically [177].

Furthermore, industrial vertical rotors utilise tilt pad bearings which introduce less

external damping and have different characteristics to oil film bearings.

Damping source and operative mechanisms Friction joint damping resulting from

surfaces’ relative tangential motion is significantly more pronounced than that from their

perpendicular motion, and the latter is usually ignored. The micro/macro slip behaviour

dictates an increased damping capacity up to a maximum that decreases after a certain

amplitude of relative motion; as depicted by describing functions (fig.5.2). A friction

damper is thus characterised by the surfaces’ properties and their relative motion.

Friction damping mechanisms in rotors

• Rotors/shafts Couplings: axial splines, flanges, CurvicTM couplings

• Shrink fits: discs on hubs or sleeves.

• Tie bolts and keys in key-ways

• Blade root fixation to wheels.

• Heavy horizontal rotor segments’ shear slippage.

PhD thesis 21



1. Introduction

Three generic types of couplings exist, at least [47], which are used to join rotors of

individual subassemblies, components or rotating machinery subsystems:

1) The single fixed joint (solid coupling) is often a high precision spline connection that

is locked up tightly on a combination of pilot diameters (hence the name: piloted spline)

and tooth contact surfaces with provisions for shimming or clocking adjustments. The

result is a solid shaft effect, yet allowing for sufficiently small angular misalignment and

radial eccentricities, so as to maintain vibrations below allowable limits. When locked

securely, contact surfaces’ relative motion is largely inhibited.

2) The single working joint, which is splined with crowned teeth and a crowned tip

diameter, can allow large relative axial motion and modest angular misalignment. It is

common practice to lubricate such an un-piloted spline joint to suppress RID whirling.

3) The distance piece with a joint at either end—capable of accommodating all misalignments—

is an additional rotordynamic element with balancing requirements, etc.

Factors affecting friction damper characteristics are:

• Contact pressure.

• Surface geometry, material, hardening condition and machining.

• Lubrication (wet or dry) film thickness and material characteristics.

Minimising friction between rotating parts’ surfaces can avoid RID instability well beyond

the range of operating speed. Friction effects can be minimised by decreasing the slipping

surface areas as in piloted splines, decreasing friction coefficients as in un-piloted splines,

and increasing contact pressure as in Curvic couplings. Depending on the friction joint,

its placement relative to bending amplitude (and rate) peaks plays a major role. For

instance, placing tight joints away from vibration nodes has a favourable effect on account

of decreased specific energy dissipation (fig.5.2). While material hysteresis is hardly of

significance in aero-engines, it should be appreciated in composite rotors [187].

Mode of mechanism operation Not all RID is undesirable since its effects vary with

source and mechanism—see radial RID follower forces from couplings and fits §.2.4.5.2
for comparison. For instance, friction is intentionally introduced into blade roots as

a vibration damper. While blade root dampers function in a similar fashion to spline

couplings, the most prominent cause of RID instability by far, there is hardly any bending

at the root, thus hardly any radial restoring force (§.2.4.2). Also, disc dynamics are de-

coupled from shaft dynamics except in the disc’s one-nodal-diameter mode which gives rise

to the gyroscopic moments. On the other hand, shearing of short modular rotor segments,

as found in helicopter powerplants at elevated temperatures, does produce radial forces.
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The effect of friction forces hence resulting on stability ought to be afforded some serious

considerations, which is planned for future work.

Stator damping, anisotropy and nonlinearity Support flexibility, damping and anisotropy,

as well as side loads tend to enhance stability by raising the onset speed of instability,

and decreasing the subsynchronous whirl orbit size [20, 21, 24, 46, 65, 191]. Childs [33],

based on his experimental research, contests the literature-exaggerated significance of sta-

tor asymmetry in suppressing RID instability. On the other hand, Rotor asymmetry is

argued [187] to counteract the destabilising effect of RID, since it can induce backward

precession—parametric instability at certain speeds. Stiffness asymmetry will also modify

the rotor orbits at different sections thus influencing the operative damping mechanisms.

A different argument based on multiple frequencies is presented on p.193.

Imbalance has a nontrivial influence on whirling initiation, particularly around the crit-

ical speed, and maintenance. It introduces a static displacement into the friction joint

thus influencing its characteristics; yielding a non-symmetric joint and a more complex

problem to analyse. In this work, time simulations have shown a significant beating effect

between imbalance and whirling vibrations. The magnitude of imbalance has a marked

effect on the growth or limitation of whirling and will affect its behaviour as speed is

increased or decreased.

Gyroscopic effects enhance rotor stability; a fact observed in the lab (vertical rotor

running without bearings) and proven here analytically (p.162). The gyroscopic effects

on stability in non-conservative systems have been researched well [6, 67, 68, 87, 193], but

perhaps not specifically in conjunction with RID. Roseau [159], included the gyroscopic

effects of thin discs in simulations of a nonlinear-stiffness shaft with linear viscous RID.

It was shown that there is an optimum combination of: a) The number and location of

discs, and b) the amount of RID for an enhanced stability of motion.

1.1.3. State-of-the-art gaps

Although research into the effects of RID has been ongoing for over a century, there are

some significant gaps in the current knowledge base as well as the analysis and testing

techniques available. Reliable and industrially-applicable tools are one rather important

category missing. To the author’s knowledge, the industry has no analytical tool to

predict regions of rotational speeds, above the first critical, for safe rotor operation with

the coexistence of sustained yet tolerable RID whirling. This should be of significant

importance to super-critical rotor manufacturers, in increasing the rotor operating speed
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(and hence efficiency) while maintaining safety with confidence. Another category in need

of attention is the experimental validation of various mathematical hypotheses.

1.1.3.1. Representative damping models for RID

Damping models used to date yield qualitative representations of RID instability/whirling.

Linear RID models be they viscous and/or hysteretic, are used in linear Eigen analysis

that concludes on absolute stability/instability at an operating speed and thus can infer

graphically (fig.4.19) an onset speed of instability. Such linear analysis cannot account

for the largely nonlinear behaviour of RID instability or the factors affecting it (§.1.1.2.1,
1.1.2.2). As such, linear RID analysis serve as useful, albeit rough, initial stability esti-

mates, or as a pass/fail test to avoid totally instability onset speed.

Nonlinear models of hysteresis and support characteristics give a better representa-

tion of the obviously nonlinear problem. Whirling existence, its varying amplitudes with

speed, and even precession-frequency jumps can be theoretically demonstrated by non-

linear hysteresis models. However, such models are far more qualitative in nature than

linear ones, with operating speeds regions where they are not even qualitatively repre-

sentative. Nonlinear hysteresis and/or support characteristics models are also limited to

rather simplified shaft-on-two-bearings rotors. An attempt [159] at a nonlinear shaft with

linear viscous RID and several disc configurations, expanding on the double-Hopf bifur-

cations discussed in [164, 165, 166], demonstrated there is an optimum disc configuration

to kerb instability, but is still a long way short of a representative model over a the whole

speed-spectrum, let alone a real system.

Joints modelled with geometrically-distributed friction elements §.2.4.5.2, although

primitive thus far, yield the better whirling representation over all the speed spectrum.

However, the nature of geometric-modelling is virtually preventative of refined friction

elements use, and simple Coulomb or bi-linear elements (3.68,3.69) are largely used. Ac-

cordingly, results fall short of accurately predicting the whirling: orbit, amplitude and

amplitude’s qualitative fluctuation with speed. Also, such models do not reflect the effect

of whirling or forced response amplitude on stability. While increased whirling amplitude

tends to settle down to a sustainable level in most joints, this is not the case where un-

piloted spline couplings are concerned (fig.5.6). In such case, an element similar to the

bi-linear one, only with an assumed model that troughs, e.g. parabolic friction (fig.3.2)

in series with a spring, is suggested for future work.
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Suitability of RID models There are numerous RID models used with several analyses

techniques, some of which are straightforward, others have several reservations and some-

times results contradict. As such, the model selection procedure can be cumbersome and

prone to error for the industrial engineer; a frequently recurring situation.

Analysis objective Consider the selection of an axial spline coupling RID model from:

simple Coulomb damping vs. multi-parameter microslip vs. their equivalent linear damp-

ing model. For a simple/initial check of absolute stability and a rough estimate of its

onset, an Eigen-analysis with equivalent viscous linear damping model would be ade-

quate, provided operation is well below the predicted onset of instability. Thereafter,

time integration with a Coulomb damping model, in conjunction with the collective teeth

stiffness, will give a whirling orbit representation, which can be used in a parametric eval-

uation of the stabilising variables such as external damping, asymmetric bearings, side

loads and imbalance. Still the whirling orbit’s amplitude will be recognised in a non-

dimensional form. In this example, the use of a geometrically-distributed microslip model

is a totally unwarranted complication, as the coupling’s dynamics are vaguely predictable

anyway, and do not exhibit much microslip in the un-piloted case. Adopting a black box

input-output model for this joint however, is probably the better way forward for a more

realistic as well as expedient whirling prediction as implemented hereafter.

Proper implementation Even the choice of a linear damping model for Eigen-analysis

can yield serious erroneous predictions. Nelson’s RID model implementation [200] and

its arguably improved sequels [31] are widely implemented with industrial in-house FEA

packages, and constitute a combination of both viscous and hysteretic damping. The

erroneous implementation of hysteretic RID allows for unstable modes from the outset,

see §.4.2.3 for an appropriate implementation. Also, the linearised stability analysis (5.2)

with nonlinear hysteretic RID yield different results and conditions for stability, one of

which (2.24) erroneously allows for subcritical instability.

1.1.3.2. Refined friction models for the various types of rotor joints

Geometrically-derived friction joints models are arrived at by distributing simple fric-

tion elements over the joint’s geometry. Spline joint models are available, and time-

marched to predict the non-dimensional existence, stability and frequency of whirling.

Usable friction models for other joints e.g. shrunk-on discs and hubs, flanged or Cur-

vic couplings, etc. are practically non-existent. Should geometrically-derived models be

deemed those of choice, models for these potentially destabilising joints are needed since

they are widely incorporated in aero-engines.
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Refined friction elements The limited-availability geometrically-derived friction joint

models, use Coulomb friction and occasionally its slightly improved bi-linear version,

with elasticity deriving from the coupling itself, see §.2.4.5.2. Although macroslip can

be a viable representation in the case of un-piloted axial splines, it is rather inadequate

to represent friction in shrink fits and Curvic couplings. One of the several microslip

elements (§.3.2.1.2), and their possible extensions to a contact area [161], is required for

accurate whirling predictions, and explaining its amplitude variation whilst sustained.

Since sophisticated elements are more costly in terms of modelling and computation

power, the level of sophistication for a friction joint model has to be justified in terms

of accuracy vs. behavioural representation. This is undoubtedly, one reason why micro-

microslip friction elements are not implemented in RID time-marching analysis, as op-

posed to the rather straightforward Coulomb damping that can be modelled as an ideal

relay. As a general rule, joints with rigid surfaces that are not very highly-pressed together,

e.g. unpiloted spline couplings, can suffice with a simple macroslip model, especially that

a sophisticated model does not necessarily imply accurate numerical predictions. As sur-

face elasticity (as opposed to joint elasticity) and normal forces are increased, the need

to account for microslip behaviour becomes more significant in order to predict, more

accurately, whirling characteristics.

Un-piloted spline couplings (p.22) are designed to tolerate misalignment. Their teeth

are not heavily pre-stressed, do not share the torque load equally, and experience enough

axial and radial (usually ignored) relative motion to keep them virtually continuously

slipping. As such, a macroslip RID model can be adequate for qualitative whirling rep-

resentation in axial splines. The adequacy verdict derives from considering the vaguely

predictable axial splines’ dynamics, their modelling approximations, and the means of as-

signing surface friction/stiffness coefficients, against the complexity of a microslip model

and its parameters’ sensitivity to the actual joint dynamics, etc. A macroslip model is also

passable as it can represent loss of whirling in the case of axial splines locking (fig. 2.24)

after a few revolutions at constant speed or on increasing speed.

Shrink fits on the other hand, are never totally slipping, almost always involve small

partial interface slip due to shaft’s flexibility, and their vibration patterns are far more

well behaved and predictable in comparison with axial splines; (figs. 2.24-2.25); a case

where a micro-microslip model is an ideal choice. This is especially true since shrink-fit

RID whirling has not been observed to be lost with elapsed time at a constant speed

or on increasing operating speed (fig. 2.25). A sophisticated microslip model can reflect

on the experimentally-observed changing whirling amplitude at constant or with varying

speed. Similar comments apply to Curvic couplings, although they seldom result in RID

whirling on account of their high precision matching and tight clamping.
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Input-Output models Hybrid analytical-experimental techniques-derived Masing’s joints

have not, to author’s knowledge, been utilised to study the RID problem. Since:

• Friction joints characteristics are rather case-specific

• Masing’s models are best suited to cyclic vibration analysis, hence are best used

with approximate methods, thus avoiding their complex time-marching analysis.

such models incorporating microslip should prove ideal in tackling the RID problem.

1.1.3.3. Approximate nonlinear analysis and nonlinear coupling methods

The RID problem is inherently nonlinear, yet Eigen analysis are the typically used in-

dustrially. Lyapunov linearisations have been implemented academically [41, 93, 177] for

simple rotors, to conclude only on absolute stability and may yield erroneous results.

Time marching for combined effects Time marching (typically fourth order Runge-

Kutta) is the analysis used largely to tackle the nonlinear RID problem and is the ultimate

analytical tool to check model performance. Although RID effects in simple rotors have

been studied using relatively simple nonlinear damping models, this was in virtual isola-

tion from other rotordynamic phenomena with the exception of rotor/stator asymmetry

and imbalance. Rotor-stator interactions like dry friction rubs (blades/flexible stator,

shaft/stator and seal, etc.), hydrodynamic bearings effects, labyrinth seal fluid coupling,

etc., are usually not accounted for in RID instability analysis. These nonlinear mech-

anisms are potential sources of self-excited instability/subsynchronous whirling, which

can be co-rotating or counter-rotating (forward or backward precession). These whirl-

inducing mechanisms can all interact with the RID mechanism as well as each other:

Exciting, emphasising or counteracting.

Although time marching is a very reliable technique, its brute force renders it:

• Too costly, computation wise, for a realistic system

• Unsuitable for parametric evaluations or behavioural patterns identification

The Harmonic Balance Method (HBM). Cumbersome implementation of HBM early

variants1 showed the possibility of a non-trivial supercritical solution, representing whirling

[177] of an unforced simple rotor with nonlinear hysteretic RID. However, the author did

not find any material of significance on applying the HBM/DFM for RID precession anal-

ysis. The HBM/DFM (see §.5.3) are neat, simplistic and straightforward alternatives

1Near-periodic solutions of quasi-linear systems at multiple resonances; summarised in [93].
A method of solving quasi-linear systems [177]
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to the lengthy time-marching analysis of precession, particularly in the case of the lack

of, or the weak existence of, higher harmonics resulting from the nonlinearity. Exper-

iments on rotors with shrink fits and axial splines do not exhibit higher harmonics of

whirling (figs. 2.24-2.25); a situation that is reaffirmed by the analytical time marching

of our simple rotors (fig.3.1) with friction joints (fig.3.2). Although the HBM/DFM are

popular approximation tools for nonlinear vibrations, they are primarily used for forced

response analysis and have not been used for RID stability analysis. An obvious hurdle

for LC/precession analysis using the HBM/DFM is finding an initial guess (IG) for the

iterative solution. This problem is solved herein (§.5.3.2.2) with meticulous caution ex-

ercised when using DF analysis with negative frequencies (5.14). Results thus achieved

are reliable and in very good agreement with time-marching, hence the HBM/DFM for

precession analysis are excellent tools for parametric studies in this specific case.

1.1.3.4. Gyroscopic effects on stability

The research conducted [159] in the gyroscopic effects on stability is highly theoretical for

a nonlinear simple shaft rotor utilising double-Hopf bifurcation to study the stability of

the first and second shaft modes, and the effect of disc location on stability. An extension

of that to realistic rotors will prove useful (p.162).

1.1.3.5. The short-segmented rotor model

All rotordynamic models consider lateral vibrations that result in an alternating bending

moment leading to axial relative motion of surfaces when addressing the friction RID

problem. Several helicopter engines are relatively short in overall length, and are built-up

of several short segments, whose diameters can be more than twice their lengths. The

segments are held together with tie bolts whose tension can drop at elevated tempera-

tures; a situation beam elements are not suited to represent, and shear forces ought to

be accounted for, as they produce surface friction that can affect stability. Although

radial shear friction in spline couplings is usually ignored, since it does not contribute

much to friction RID and causes modelling complications e.g. EOMs nonlinear coupling

[185], it ought not be ignored in the case of a short-segmented rotor and its effect on

stability/whirling ought to be assessed.

1.1.3.6. Experimental investigations and prototype testing required

Experimental observations of the phenomenon thus far are far from being adequate

to fully cover its various aspects. In general, no experimental work has been carried

out whilst controlling the values and behaviour of RID and its mechanisms—see §.6.2.4
for suggested flexible experimentation. More experimentation on the effect of couplings
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other than splines in different configurations is needed. Experimentation to validate the

postulated stabilising gyroscopic effect and value of RID (p.162) is required. Validation

of predicted whirling amplitudes is necessary to verify the accuracy of RID models if they

are to be used with confidence; an exercise that has not been carried out.

Safe and conclusive prototype testing is an inherent part of turbine production. How-

ever, testing for possible instabilities under various conditions is merely part of perfor-

mance testing within controlled environments, which can be rather hazardous. A prop-

erly structured means of modal-stability testing a possibly-unstable rotordynamic system,

whilst insuring overall stability, is not available to the authors knowledge.

1.2. Research scope and thesis description

The main motivation for this research is to address the current industrial problem (§.1.1.1.4)

with RID and cover most of its related gaps (§.1.1.3).

1.2.1. Research scope and problem-solving philosophy adopted

1.2.1.1. Research scope

‘To develop a valid and functional basis for the design, analysis and testing of rotor systems

with RID’. The resulting analytical and experimental techniques can be expanded upon

and further fine-tuned for industrial purposes as well as research. Rotor-dynamists will

use the final reliable and industrial-applicable tools for:

• Design: Parametric evaluations for external damping, joint location, etc.

• Experimental: Safe and reliable prototype testing for operation and design validity

• Analysis of problematic rotors: RID whirling stability and possible fixes

The above yields decisions as to the avoidance or mild tolerance of RID whirling within

predictable levels, without excessive modelling limitations or over simplifications.

1.2.1.2. Philosophy of tackling the RID problem

RID derives predominantly from friction joints that are physically localised on the rotating

assembly. Accordingly, RID is localised, and joints with nonlinear stiffness and damping

are modelled as localised nonlinearities in this work. To isolate and concentrate on the

RID instability problem, only linear (possibly time-varying) rotordynamic systems are

considered with both linear and nonlinear RID with characteristics ‘N ’.
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System separation into linear and nonlinear parts A model for the overall NL system

‘SNL’ can be separated into a linear time-invariant (LTI) subsystem ‘SL’ model and a NL

subsystem ‘SN ’ model that is possibly time-varying; which is short-handed as {SL,SN}
S⊂

SNL (figs. 3.5, A.2). This scenario allows convenient models: spatial (3.1), modal (3.34)

or response (fig. 4.9), for SL and SN to be acquired separately, and combined thereafter

using nonlinear coupling techniques [51, 101, 151] to produce an overall model for SNL

representing the rotordynamic system including NL RID. The model thus developed can

be further fine-tuned by correlating analytical and experimental results under relevant

conditions, which is to be followed by a model updating process [60, 149].

Nonlinear coupling techniques have been implemented successfully with spatial and FR

models to predict steady-state forced-response of structures with localised nonlinearities

using the HBM. However, such techniques have not been extended to stability and whirling

analysis because MIMO mechanical systems do not : 1) Lend themselves naturally to such

exercise and 2) exhibit instabilities frequently. Control engineering, on the other hand,

offers well-developed analysis techniques specifically for such problems and mainly for

models SNL

S⊃ {SL,SN} that are setup in a feedback formulation. The suitability of such

analyses to handle the RID problem will depend on the characteristics of both SL,SN

presented in chapter 3.

Analytical and experimental techniques used are: Routh-Hurwitz criteria. State-space

and TFM representations. Non-self-adjoint modal analysis of indefinite nonsymmetric

matrices. FR and TMA of linear and nonlinear rotordynamic systems. Experimental

modal analysis of nonlinear rotordynamic systems. Control/stability analysis, feedback

formulations and conformal mapping. Stability theory and Lyapunov analysis. Masing’s

rule for nonlinear friction joints. Describing function analysis.

1.2.2. Thesis Description and Layout

This work contributes the basis for three analytical techniques, along with their several

leading contributions, which are corroborated experimentally. These techniques are:

A proper use of linear ideal Hysteretic RID model appropriately implemented with

sgn ω for FR and Eigen-analysis in the rotating frame, which involve negative frequencies.

Results are representative of experimental observations—Chs. 4, 6.

An Experimentally Applicable Stability Test EAST is developed to assess safely the

modal stability (and its margins) of a target rotordynamic system, which may become

30 On Rotor Internal Damping Instability



1.2. Research scope and thesis description

unstable. FRFs of the quasi-linearised target system, setup as a subsystem of an overall-

stable system, reflect stable/unstable poles using conformal mapping—Chs. 4, 6.

The extended Nyquist criterion is a graphical FR method for RID whirling predic-

tion, which is borrowed from control engineering, used in conjunction with the DFM, and

modified to suit the complex SISO nonlinear RID problem in the rotating frame. Exper-

imentally observed varying whirling/stability behaviour is corroborated by the choice of

friction model, reflecting different RID joints-Ch. 5.

They are presented in this order, over the coming six chapters, described briefly as:

Chapter 2 Review of significant RID research and critique of industrial tools.

Chapter 3 Analysis foundation laid. Linear rotordynamic and friction models’ character-

istics presented using Masing’s rule. Important modal expressions developed analytically.

Parabolic friction model assumed. Localised RID modelled in feedback.

Chapter 4 Linear RID systems’ analytical conditions for instability and gyroscopic ef-

fects on modal stability developed. Appropriate use of complex stiffness with negative-

frequency analysis presented. Peculiarities exemplified numerically. Results compared to

stable system. Effect of stable/unstable poles on polar plots elucidated.

Chapter 5 Nonlinear analysis overviewed. Suitable analysis identified. Nyquist criterion

adapted for RID, validated against linear cases, and used with complex RID DFs.

Chapter 6 Experimental corroboration of the analytical work developed above. The

follower force rationale demonstrated. RID micro-slip behaviour confirmed.

Chapter 7 Conclusions on analytical developments and experimental validations. Fu-

ture plan for extending techniques’ functionality, along with implementing dither system

linearisation and stabilisation; being the logical consequence of NL analysis developed.

Appendix Reference material on complex formulations. Adapted Control theorems and

applications such as the extensively used DFM.
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Important findings of the literature review, and their associated commentary are presented

in this chapter. An overview of available literature since 1924, which is in numerous

languages, pointing out philosophies of handling the problem as well as hurdles associated

with reviewing literature on such an old and persistent problem is presented first. Then, a

historical perspective, as to the phases when RID instability received significant attention,

and their resulting findings, is summarised. Important Experimental observations by

various researchers are detailed next. These are used as guides for developing RID models

and analysis capable of reproducing such observations, as well as for comparison with

this work’s experimentation, which adopts the experimental modal analysis approach.

Lastly, significant analytical work is presented. This includes physical reasoning of the

RID destabilising effect, linearised modelling and analysis attempts at representing the

experimentally-observed behaviour, and finally geometrically-derived joint models that

may be linearised and used within FEA along with beam elements’ linear RID.

2.1. Overview of available literature

High-speed rotating machinery manufacturers started having severe and destructive vi-

bration problems as soon as they operated supercritically, which was by the turn of the

20th century. Then, RID was the first cause to be attributed to such phenomena, and was

formally published in 1924 [80, 130]. Since its recognition, various approaches have been

adopted by different researchers in assessing the effect of RID on rotor systems’ dynamic

behaviour and in refining their models to better represent the actual behaviour. These

differences were largely due to the varying nature of the damping sources and mechanisms.

Modelling, analysis and computing capabilities and the researchers’ affiliation, also had

a significant effect on shaping the progress and philosophy of handling the problem. The

fact that research is still ongoing in several parts of the world reflects the importance of,

and need for further understanding the RID problem. The result of circa one hundred

years of research is a substantial amount of literature concerned with RID.

Since 1924, research on the RID destabilising effect has been ongoing in several parts

of the world. As is the nature with an old persistent research problem, there are sev-

eral schools of thought with different philosophies towards tackling the problem, to which
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authors would affiliate. The literature fell in one of two obvious categories: an industrially-

affiliated category, where authors—as much as the available computation and analytical

capabilities would allow—would try to provide industrially useable tools to predict the ex-

istence of RID-induced instability and possibly avoid it; and a more academically-affiliated

or theoretical category where authors would deal with the problem as a mathematical one,

making several hypothetical assumptions and unrealistic conditions, yet solve the mathe-

matical problem they posed. Examples of the results of the industrially-affiliated authors

are: the early (1924-35) research results [80, 81, 82, 83, 154, 155, 156, 157, 170], the rep-

resentation of the effect of RID on a shaft cross-section as a follower force derived from

the viscous stress-strain relation [45, 63, 64, 65] (late ’60s), the transfer-matrix method

including hysteretic damping [103], rotor FE routines incorporating equivalent damping

coefficients [31, 128, 129, 163, 200], and the models of friction-producing joints [7, 8, 88,

89, 90, 91, 104, 184, 185]. Examples of the academically-affiliated research are continuum

shaft models with: nonlinear stress-strain-rate relation [25, 55, 56, 57, 58, 59, 123, 124],

some looking at double-Hopf bifurcations [164, 165, 166], and lastly fitted with discs (via

a delta function) and linear viscous damping [159]. Perhaps the early works of Diment-

berg and Tondl [41, 177, 178] fell in-between, as they were serious at elaborating the

marked effect of RID models, albeit for Jeffcott rotors, but then ended recently in a more

academic guise [42, 43].

Literature concerned with the destabilising effect of RID is in several languages: Rus-

sian, Czech, English, Polish, German, French and recently Chinese. Most of the systematic

experimental work was done in the former eastern block before the mid sixties. Valuable

analytical work was also carried out there, explaining numerous such experimental find-

ings. Only a few of those publications were translated to English years later, e.g. that of

Tondl, Bolotin, Dimentberg and Kushul. The extensive work (especially experimental) of

Chaevskii, Poznyak and Olimpiev could only be recognised from Tondl’s translated text

[177]. Authors who settled in the western world, e.g Muszynska, include their previous

research in their English publications and cite some works of researchers from their former

part of the world. Publications in German and French are of a more recent nature (i.e.

after mid sixties). German publications tend to be more industrially-applicable such as

those of Kramer, Gasch, Pfutzner, Hasselgruber, Hassenpflug and Foppl. Luckily, the old

German work on RID was not diverse and important modern publications have English

equivalents. A few French publications are translated (like Roseau’s text) or are reprinted

in English, like Lalanne’s and Ferraris’s work.
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2.2. Historical preview

Research into the effects of RID was mainly influenced by industrial interests and require-

ments as will be demonstrated. The mid 1920’s, late 1940’s and mid 1970’s (and for a good

twenty years to follow) are the major industrial drives’ periods. Recently (1993), Euro-

pean aero-engines manufacturers developed more interest in RID, on account of whirling

induced by spline joints, reflecting their need to further understand the phenomenon and

other destabilising mechanisms’ interactions.

The 1920’s saw a trend reversing the rotor design concepts of the previous decade.

Turbine manufacturers began to construct lighter weight rotors with shrink fits, having

lower critical speeds and designed to operate above the first critical speed. “Flexible

rotor design” manufacturers encountered severe operating difficulties at speeds above

critical that were, at first, attributed to lack of proper balancing. Meanwhile, General

Electric (GE) encountered a series of blast furnace compressors’ failures that were operated

supercritically. Shop men and engineers referred to the violent vibration “of unknown

origin” at, the some times observable, lower than operating speed frequency as “shaft

whipping” or “instability”. This trend triggered considerable research interests since

the absolute trust in high speed rotating shafts operating in aircrafts, power stations,

factories and laboratories was being questioned. Rotor instabilities thus became the

elite branch of vibration, and substantial research effort headed in that general direction.

Initial significant research was carried out by Newkirk (1924), Kimball (1924, 25) and was

concurrently carried on by Taylor (1925), Robertson (1933–35) and Smith (1933).

In Eastern Europe, energy industries and factories started relying heavily on high-

speed rotating machinery by the late 1940’s. Due to the lesser financial significance of

research at the time in that part of the world, coupled with their mathematical excellence

and dedication to research (as opposed to the western world particularly for the more

taxing experimental research), valuable analytical and more so experimental results were

achieved. Tondl’s ten-year research (1953-63) at the National Research Institute of Heat

Energy in Prague, and Kushul’s work (1954-65), starting with high-speed textile spindles

operating in the ‘instability region’, and his observation of the jump from whirling at

the first to that at the second natural frequency, are examples of great works concerned

with RID, that were not to be bettered or even reconstructed; this is probably due to

the concentration on the more prominent causes of self-induced vibration in rotating

machinery such as oil whip.

By the mid 1960’s, the western world’s research in RID picked up again (Ehrich, 1964;

Gunter, 1966), building on its counterpart’s—eastern block: Dimentberg, Bolotin, Kushul,

Tondl—works that became available. The main drive for this research pick-up (starting

with Ehrich, 1964) was NASA’s interests (Gunter, 1966) in running supercritical aero-
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engines and accounting for subsynchronous whirling—RID and oil whip were the known

causes. The analytical results are more industrially-applicable and in simpler terms (as

opposed to that of the eastern block) for the industry engineer to absorb. Such works as

those of Ehrich and Gunter, formed the foundation for incorporating the effect of RID

in industrially-applicable FE routines. A few Polish and Czech authors carried on with

their nonlinear analytical research (Muszynska, 1968) and (Tondl, 1965) but, it was not

to be compared with the previous research’s momentum in the eastern block.

The SSME turbopumps’ (HPFTP High Pressure Fuel Turbopump & HPOTP High

Pressure Oxygen Turbopump) instabilities encountered by Rocketdyne (a division of

Rockwell International that was developing the principal propulsion element SSME for

NASA’s Space Shuttle) were the third major industrial drive for RID research in the mid

1970’s. This research was directed towards friction-induced instability due to the built-up

design of the turbopumps that operated supercritically. A major research program was

initiated by NASA (1983-1988) and concentrated mainly on spline couplings as they were

experimentally-concluded to be the main source of significant friction damping. Internal

hysteresis damping was consciously ignored as it was insignificant by comparison with

friction regarding energy dissipation. Research and publications concerned with spline

couplings’ dynamic coefficients and friction mechanisms are still ongoing till the present

day [128].

2.3. Experimental observations

Some of the important experimental techniques and observations from the literature are

summarised here. These experimental investigations were carried out by prominent re-

searchers whose conclusions shaped their analytical approach and that of others. Their

findings portray the characteristic behaviour of RID instability and give insight into what

needs to be investigated further. Experimental findings and conclusions, from the exper-

iments conducted by the Imperial College team working on ROSTADYN1, are in general

agreement with the experimental observations of previous research results.

2.3.1. Newkirk, Kimball, Taylor and Robertson (1924-1935)

B. L. Newkirk of the GE research laboratory investigated (1924) the nature of GE blast

furnace compressors’ failures on site and later experimentally on a test rotor simulating

a typical compressor unit. Although his methods were relatively crude, due to lack of

probes at the time, he observed (and was the first to demonstrate) that above the first

critical speed, rotors could enter into a violent whirling in which their centreline precessed

1ROtor STAtor interaction DYNamics: BRITE/EURAM project no. 5463, 1994-97
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at a rate equal to the first critical speed. He also uncovered some very important facts

(listed below) regarding the phenomenon.

1. Balancing did not affect the whirling onset speed or its amplitude

2. Whirling always occurred above the first critical speed, never below it.

3. Onset speed of instability varied widely between similarly-constructed machines.

4. Precession speed was constant regardless of operating speed.

5. Whirl was encountered only in built-up rotors.

6. Increasing foundation flexibility increased the whirl threshold speed.

7. Distortion or misalignment of bearing housing increased the threshold speed.

8. Introducing damping into the foundation increased the whirl threshold speed.

9. Increasing axial bearing thrust load increased the whirl threshold speed.

10. A disturbance was sometimes required to initiate whirling in well-balanced rotors.

Newkirk observed that if his experimental rotor was running smoothly near the thresh-

old speed, a disturbance would cause it to go into whirl. The time required for this whirl

to die away increased as the rotor approached threshold. Once whirling had developed

above threshold, it would grow until limited by the protective ring, to a spiral motion

that is somewhere between very gentle and extremely abrupt, depending on speed and on

the type of shrink fit. Occasionally, he observed that under large deflections, instead of

the motion becoming unbounded, a finite quasi-steady-state whirl pattern would develop.

That suggested at a much later time that shaft stiffness nonlinearity could produce limit

cycles.

Statement 6 above, left Newkirk at a loss to explain why foundation flexibility alone

should improve rotor stability. Early in the experimental phase, his assistant, H. D. Taylor

discovered that any looseness in the bearing support or clamps which held the test rotor

had a strong tendency to prevent whirling. Following these experiments, special bearings

incorporating flexibility and damping were designed for unstable turbo-compressors using

a wide range of stiffness and damping values. In no case were these compressors made able

to whirl, despite the lowering of the critical speed as was expected. It was also concluded

that bearing damping was necessary to suppress whirling; a situation that was different

while trying to suppress oil whip a year later.
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Later, Kimball and Lovell et al (1925) performed extensive tests of the internal friction

characteristics of various metallic and non-metallic materials. The experimental tech-

nique employed, to determine the ratio of internal friction forces to elastic shaft forces,

adopted the “follower force” hypothesis due to RID. If the rotating horizontal shaft was

loaded vertically (e.g. due to gravity), it would experience an alternating internal bending

moment which would result in internal damping (due to material hysteresis) and hence,

a follower force. This follower force has the same sense of direction as that of rotation,

whence would displace the centre of the shaft in the same direction. The follower forc

would tend to rotate the centre of the shaft but, it is counter-acted by the gravity force.

In other words, a vertical force on a rotating shaft where RID is active, will cause not

only a vertical displacement in the direction of the force, but also a horizontal one in the

direction of rotation. The angle of inclination, between the shaft-bearing centres’ plane

(formed by the shaft centre axis and the bearing centre line) and the vertical, was the

measure used to compare the damping forces with the elastic ones in that rotating shaft.

Their measurements showed a ratio of 0.001 to 0.002 for most ferrous and non-ferrous ma-

terials they tried. In sight of Kimball and Lovell’s findings and in accordance with such

small ratios, Newkirk concluded that it must have been the friction created by shrink fits

of the impellers and spacers that was the predominant cause of whirl instability. He had

observed that no whirl instability could be developed when all shrink fits were removed

from his test rotor.

At Newkirk’s suggestion, Kimball experimentally investigated a special test rotor with

rings on hubs shrunk on the shaft, and confirmed that the frictional effect of shrink

fits is the more active cause of shaft whirl as opposed to the effect of internal friction

(hysteresis) in the shaft itself. Taylor concluded, after numerous tests with various hub

configurations, that axial contact length of shrink fits should be as short and tight as

permissible without exceeding the yield strength of the material. Robertson reported

that even short, highly-stressed shrink fits may induce instability, provided the rotor is

given a sufficiently large initial disturbance e.g. displacement to initiate relative internal

slippage in the fit. He showed several designs of hubs and bosses found to be beneficial

in reducing the destabilising effect of internal friction. In general, if long shrink fits

have to be employed, as in compressor wheels and impeller spacers, it is then necessary

to undercut the pieces along the central region of the inner bore so as to restrict the

contact area to the ends of the fit. One of Robertson’s more important conclusions, was

that similar effects could be produced by any friction which opposes a change of shaft’s

deflection; e.g. friction existing at the connections of flexible couplings.
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2.3.2. Chaevskii & Olimpiev (1953-1959)

In the former eastern block, systematic experimental research was first conducted by

Chaevskii (1955, 1957) followed by Olimpiev (1959). Chaevskii investigated both the

effect of hysteretic damping and dry friction between hub and shaft in the horizontal and

vertical rotor orientations. His test equipment consisted of a vertical shaft with a disk

which could be immersed in fluid to a variable depth, thereby controlling the magnitude

of external viscous damping. His conclusions on the effects of hysteretic damping were :

1. If the motion of the rotor was stable with the shaft in the vertical position, it was

also stable in the horizontal position for the same external damping. The opposite

need not be true.

2. If the motion of an unbalanced rotor became unstable in the region just above the

critical speed, this does not signify that it will be unstable at higher speeds as is

the case with perfectly-balanced rotors.

3. In as far as steady large amplitude vibrations are attained, the frequency of these

vibrations will be approximately equal to the natural frequency of the rotor.

Olimpiev performed extensive tests on more than twenty models of rotors running in

ball bearings. The rotors were of lengths and diameters from 705 to 1300 mm and 20

to 60 mm respectively. He found that the danger of self-excited vibrations being set

up as a result of hysteretic damping diminished rapidly as the shaft dimensions (mainly

diameter) were increased. Hence this danger would be practically non-existent in rotors of

turbo-generators and other machinery without overhung discs. For such rotors (without

overhung discs) of at least 35mm running in anti-friction bearings, self-excited vibrations

did not exist until well beyond the second critical speed.

2.3.3. Kushul (1954-1965)

In his translated text, Kushul (1965) describes some experimental observations of the

motion of some high speed textile spindles which exhibited self-excited whirling motion.

The spindles were composed of built-up structures of a long wooden spindle inserted

over a thin steel shaft (effectively a long shrink fit). He observed experimentally the

“unstable” precessive rotor orbits above the stability threshold via an innovative optical

system for that time. He attached a fine needle to the spindle end and obtained pictures by

photographing (fig. 2.19) the resulting motion through a telescopic lens. The frequency of

whirling was established from the relation between the speed and the number of stationary

loops in the orbit pictured. Kushul is one of the few people who reported on RID instability
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within the unstable region. Although he did not have access to linear capacitance probes

to observe the rotor orbits, his work with the above-mentioned optical system verified and

demonstrated important facts.

1. Self-excited vibration occurred only above the first critical.

2. The whirl frequency remained almost constant at all speeds and was close to that

of the first natural frequency of the spindle.

3. In certain cases well above the threshold, the whirl frequency could abruptly change

from that of the first to that of the second spindle natural frequency.

4. The use of an elastic support by itself with no increased damping did not reduce

the self-excitation. (contrary to Newkirk and Taylor’s experimental findings)

5. External damping improved the rotor stability.

6. The most effective means to control the instability was a spring-loaded bushing and

damping sleeves.

2.3.4. Tondl (1953-1965)

Tondl (1965) conducted experiments on two types of rotor configurations (fig. 2.20) af-

fecting RID and made use of a capacitance probe for vibration pickup and a camera for

time history recording. The first type was a rotor with a single slit disk held together

by screws and with conical apertures in the centres to mate with the hub on the shaft.

Two configurations for the hub were used to demonstrate the difference in the effect of

dry friction between hub and shaft, and internal friction (hysteretic damping). The first

configuration was a double-ended conically- machined hub that was tightly shrunk onto

the shaft so as to demonstrate the hysteresis effects. The second hub was composed of

two small shrunk-on discs over which a double conically-ended sleeve was carried to mate

with the disc. The second type of rotor carried seven discs with holes around their cir-

cumference shrunk onto a shaft of the same diameter as the former. Rods were loosely

inserted through the holes of the central three discs and secured against slipping out.

With the shaft deformed, slippage occurred at the contact surfaces of the holes and rods

forced out by centrifugal forces.

When using the first configuration for the first type, instability was ascertained after

the critical speed and was related to the imperfect shrink-fit of the disc that came al-

most totally loose during operation (fig. 2.21). When a proper shrink fit was effected,

instability precession or transients were not encountered except after the operating speed

was quadruple the critical speed. Material hysteresis was then ignored and attention
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was concentrated on dry friction. Turning back to the first rotor and running the speed

continuously up, self-excited precession was set up at above 4000 rev/min (1st critical at

1200 rev/min) and was practically constant in amplitude and frequency (first natural) on

increasing rotational speed (fig. 2.21). He referred to the 4000 rev/min as the onset of

instability before which several sub-harmonic resonances (at the 1st natural frequency)

were encountered above the critical speed, the more significant of which was at a speed

twice the critical speed. Other sub-harmonics were encountered between the critical speed

and that at twice critical. A couple more sub-harmonics were observed at speeds between

twice the critical and the onset speeds. Running up to and down from a speed above

the onset had similar characteristics but did not follow exactly the same path, and the

running down path had higher amplitudes of precession. The starting speed of precession

seemed to depend on the acceleration after the critical speed has been crossed. Generally,

if the first critical frequency component from unbalance at critical speed or that from

self-induced precession was given enough time to die away, the onset would be delayed

and would have lower amplitudes.

Tondl, in his translated text, makes no reference to the changing frequency—observed

(fig. 2.22) for the seven-disc rotor’s vibration—of precession with rotational speed. It is

perhaps intriguing, why he did not extend his analysis to include, or comment on the gy-

roscopic effect of the discs; especially that it was demonstrated analytically (Dimentberg,

1961) that gyroscopes raise the natural frequency and hence, the critical speed and the

onset of instability. Tondl’s conclusions in brief were:

1. If very small diameter shafts are not of concern, the most important component of

internal damping is that caused by friction set up at the contact surfaces of rotor

parts during deformations of the rotor. Examples are friction between shaft and

disk hub, rotor key-ways with keys inserted, etc. Above critical speed, this type of

damping may cause instability as it could be excited by rotor unbalance.

2. The whirling frequency was practically the same as rotor natural frequency.

3. It was found experimentally that RID had an unfavourable effect on transitional

vibrations of rotors passing more quickly through the critical speed. Just above

resonance, the vibrations contain a very large component of the natural frequency.

If the speed is rapidly decreased after self-excited vibrations are started, these vi-

brations are maintained as far as down to the critical speed, as opposed to the

gradual increase or decrease of speed where the instability occurs at a speed above

the critical. Hence, the most rapid crossing of critical speed was not the most

favourable; rather, a fast crossing in the immediate resonance region followed by

gradual increase of speed at a low acceleration just above the critical speed.
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2.3.5. Mechanical Technology Incorporated (1983-1990)

MTI carried out a long-term project (1983-1987, and finally reported in 1990) to investi-

gate the internal rotor friction instability problem for NASA G. C. Marshall Space Flight

Centre. The project was mainly concerned with the instability of the SSME turbopumps

(fig. 2.18) after being diagnosed to be due to RID in the early to mid 1970’s by D. Childs

et al (1976). MTI ’s research concentrated on RID produced by surface friction at joints

and conducted traction, dynamic and rotordynamic tests (figs. 2.23– 2.25). Traction tests

were carried out to determine coefficients of friction under various conditions of normal

load, amplitude and frequency of vibration, surface materials, machining and lubrication,

and temperature. Dynamic ( forced 1st mode and free decay) testing was conducted for

damping factor estimates on joint components with mating surfaces in the turbopumps

namely: Curvic couplings, shrink fits and axial spline couplings. Rotordynamic tests were

carried out, using both shrink fits and axial spline couplings, on rotating shafts to monitor

their behaviour in a range of sub- and super-critical speeds. Analytical and experimental

research was carried on, after the project’s completion by its research team members and

concentrated on friction in axial splines.

From their traction tests, MTI concluded that a constant coefficient of friction is not

generally valid; particularly in the case of joint surfaces that are not lubricated and have

very small relative motion. They still sufficed with using constant friction coefficients in

their damping models, since even those interfaces with small relative motion were dry-film

lubricated. They argued that a better understanding of the relation between the friction

coefficients and the relative vibration amplitudes was required before incorporating a

variable coefficient of friction damping in their models.

Forced dynamic testing revealed that Curvic couplings had a very low equivalent damp-

ing coefficient which, with little approximation, can be treated as a linear damper when

properly fastened with high tension bolts. Hence Curvic couplings were not included in

the rotordynamic test program, especially since their position on the turbopumps does not

allow them to experience significant bending. The other two components tested, on the

other hand, exhibited an equivalent damping coefficient that was amplitude-dependent—

hence the damping force is nonlinear. The coefficients’ dependence on amplitude in the

case of a shrink-fit seemed to be a linear function of amplitude (nonlinear damping force)

at relatively low amplitudes, quadratic at upper-mid range and cubic if the highest ampli-

tude test point is taken into account. Spline couplings had a very strong (more than cubic)

dependence on amplitude. The only model to their knowledge that emulated such be-

haviour was that of a lap joint undergoing micro slip, with its equivalent damping having

a linear dependence on amplitude—nonlinear (quadratic) damping force with amplitude.

Rotordynamic testing showed that both axial-splines and interference-fits produced
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subsynchronous components on the FFT spectrum shortly after the first critical has been

passed. The experimental results of the spline coupling were not very repeatable due to

their, intended, loose design which resulted in continually changing natural frequency and

normal forces that in turn affect friction. The subsynchronous vibration (instability) levels

grew to be unbounded (except only by safety rings) within a few hundred revolutions of

initiation. The existence of the supercritical component starting at half its equivalent

running speed was related to the gravity sag that produces a twice per rev component.

The continued existence of the twice per rev supercritical vibration with increased speed

was attributed to the broad-band noise produced by friction. It could have also been

attributed to the supercritical harmonics produced by a strong nonlinearity. Interference-

fits produced more repeatable and less vigorous patterns that were sustained further.

The rotordynamic test-rig was modelled analytically utilising the friction RID model of

the axial spline-coupling developed under the program. The results (figs. 2.26, 2.27) were

adequate for representing the frequency of the subsynchronous precession and demon-

strated the possibility of a sustained limit cycle.

2.4. Different models and analysis techniques

This section is intended to acquaint the reader with modelling RID and demonstrate, with

simplified examples, the effect of changing RID model in rotordynamic EOMs. Some of

the simpler models compiled from the literature survey are reproduced in this section,

along with the author’s explanation, commentary and critique. The different analysis

used for stability and response prediction are introduced alongside the models.

After introductory notes—looking at the development of RID models over the years–and

elucidating the physical meaning of the follower force along, this section introduces the

simplest Jeffcott rotor model supplemented with internal damping. Although the Jeffcott

rotor is an oversimplification, it does help demonstrate the phenomenon, with minimal

mathematical complication. Later, particular solutions from viscous and hysteretic RID

models are extrapolated so as to comment on the experimental results obtained at Imperial

(figs. 6.5, 6.7, 6.9). After introducing the RID instability behaviour with various RID

models (viscous, hysteretic, friction), an analytical examination of damping sources is

introduced; followed by stating the analysis conducted previously in studying RID in

conjunction with rotor and/or stator asymmetry and their results. Finally, industrial

tools for RID instability prediction are stated.
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2.4.1. Introductory notes

During the course of his investigations, A.L. Kimball (1924) postulated that shaft hystere-

sis induced by alternating stress cycles could produce forces that are normal to the plane

of the deflected shaft. He suggested that internal shaft friction could be responsible for

shaft whirling and postulated that below the rotor critical speed, internal friction would

damp out the whirl motion while above it will sustain whirl. Based on his observations,

these forces could also be developed by shrunk-on discs. Newkirk (1924) was able to

demonstrate, theoretically, the instability of a rotor with internal damping above the first

critical speed, by including an additional follower force normal to the deflected rotor.

Newkirk made no attempt to extend the Jeffcott model to include a flexible and damped

foundation; hence he was not able to account for some of Kimball’s observations, and

particularly for his own observation (no.6 §.2.3.1 ) mentioned earlier, in his theoretical

model.

The follower force is represented as cross-coupled stiffness coefficients in a non-symmetric

stiffness matrix—Maxwell-Betti reciprocity theorem cannot be satisfied—of a linear anal-

ysis, resulting in a system that is potentially unstable and that has an instability onset.

The whirling frequency resulting from such an analysis would be equal to one of the for-

ward natural frequencies—usually the first—which was a good enough approximation to

real situations. The cross-coupled terminology comes from the form of the force expres-

sion in a non-rotating co-ordinate system where a deflection of the rotor in one direction

would cause a force in the orthogonal (tangential) direction that drives the rotor into an

orbit. If the magnitude of the follower force is proportional to the instantaneous whirl

velocity, the force is classified as a negative damper and as cross-coupled stiffness force if

proportional to the instantaneous orbit radius.

Until the late 1950’s, analytical models for RID emulated the so-called follower force by

a cross-coupling of stiffness in the EOMs of a simple rotor, with no analytical reference to

its source. By the late 1950’s, this cross-coupling was presented as a result of including an

internal damping force, that is operative on rotor flexing in a frame of reference rotating

at a speed equal to the rotor spin speed (Dimentberg, 1959). Still, there was no analytical

derivation as to the source of such an internal damping force. Tondl (1963) presented the

effects of including this internal damping force, as one that can have a varying charac-

teristic dependence on amplitude, in the EOMs of both, horizontal and vertical simple

rotors.

Dimentberg (1959) was the first to examine analytically the source of EOMs cross-

coupling. He represented stresses as, not only related to strain by Young’s modulus, but

also related to the strain-rate by a viscous coefficient. EOMs cross-coupling will occur on

rotor flexing in the rotating frame of reference. He formulated the first continuum model
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of a rotor as one that is based on a rotating simple beam and related the bending moments

to the stresses resulting from the strain and the strain-rate. Bolotin (1961) and Tondl

(1963) followed in Dimentberg’s footsteps and represented the stress as a function of the

varying amplitude of strain. The stability analysis of the above was largely by applying the

Routh-Hurwitz criterion to the linearised EOMs. Ehrich (1964) and Gunter (1966) built

on Dimentberg work by representing graphically (as force vectors) the forces resulting

from the strain/strain-rate-dependent bending moment, and the stability was examined

by examining the external damping force magnitude opposing that of internal damping.

Although the different RID models—with varying amplitude-dependence—reflected the

authors’ efforts to better represent the nature of the destabilising damping, it was not

until 1977 that Tecza investigated a realistic source of RID, i.e. the friction-producing

spline coupling, and included its effect directly in the EOM.

Analytical investigations into the effect of RID on stability can be divided into two

damping-source-dependent major categories under which researchers have tried to ratio-

nalise the phenomena namely: material hysteresis damping, be it visco-elastic or hysteretic

under linear or non-linear regimes of motion; and friction-induced damping from inter-

ference fits, splines, flanges, tie bolts, etc. The latter reasoning is the more accepted (for

metal rotors), due to the practical design of built-up rotors and the significant difference

in the amount of energy dissipated (from one system or mode to another) via the two

broad source-categories.

Although friction has always been recognised as the source of destabilising damping, an-

alytical models for some of the friction-producing components (axial splines, interference

fit and Curvic coupling joints) were developed fairly recently, acknowledging the macro

slip behaviour of surfaces in contact, yet modelling their friction as Coulomb friction (con-

tinually slipping surfaces) for simplicity of analysis. A simplified model of macro-micro

slip in a Curvic coupling was attempted by Lund (1986).

Presence of instability is predicted preliminary, by comparing the negative energy dis-

sipated by friction at joints (integrating the moments produced over one complete whirl

cycle) with the positive work from external damping, to give the whole system’s (pos-

itive or negative) energy dissipated per whirl cycle at speeds above critical. At a later

stage, non-linear time-transient analysis including the non-linear component models are

employed to predict a non-dimensional orbit stability as a vibration amplitude that is

diminishing or increasing or as a sustained limit cycle orbit. Previously, Tondl (1965)

accounted for the overall internal rotor friction in analogy with Coulomb friction, yet

attempted no modelling of the friction-producing joints.

Material (visco-elastic and hysteretic) damping models were the first sources and al-

though they have not been very fashionable recently, especially in industrial research (e.g.

NASA or aero-engine manufacturers), material damping models under non-linear motion
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(nonlinear Green’s strain tensor) analysis (frequently using the centre manifold method)

still retain a portion of the current research on RID—which is not diverse anyway—in

predicting general trends of stability, response and limit cycle behaviour. Equivalent Lin-

ear damping models using linear analysis are still largely employed for threshold speed of

instability prediction in industrial rotordynamic analysis.

2.4.2. The logic and physical reasoning of a RID follower force

If a non-rotating shaft experiences lateral vibration, internal stresses are developed that
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ω t = π /2 ω t = π
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Figure 2.1.: Plane vibration of: a) visco-elastic beam b) elastic beam with hub friction

are related to the strain of the shaft fibres, which are, in turn, related to the deformation of

the shaft. A metal shaft within linear stress-strain σs = Eε range, has a bending moment

Ms = EIu′′ and a restoring force fs = −EIu′′′′ at the section considered. If the shaft

is of a viscous nature, additional stresses are developed due to the strain rate of change

σv = µε̇, which are in quadrature phase leading strain-related stresses. As such, when

the beam is at the equilibrium position (zero deflection) with the maximum ε̇ there exists

these strain-rate dependent stresses which oppose the flexing of the shaft. Because the

shaft is not rotating, the neutral strain and neutral stress axis coincide, with the restoring

force and the internal damping force vectors, resulting from the strain-dependent and

strain-rate-dependent stresses respectively, are in the same direction perpendicular to the
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neutral stress axis, albeit in quadrature phase. A similar argument applies in the case

of a purely elastic shaft with a shrink-fit (fig. 2.1). On replacing the moment resulting

from the viscous stresses by the moment resulting from the surface friction, we obtain a

force vector that is in the same direction and phase—in the case of Coulomb friction—as

those of the restoring force. This analogy between friction damping and viscous damping

should be in mind when considering the rational, which follows, of the RID follower force.

For RID to be operative, the shaft itself has to flex changing strain in its fibres, which

produces viscous stresses (or surface friction) and consequently the related RID force. In

a shaft with linear viscous characteristics, the infinitesimal stiffness and damping forces

(dfs = EεdA and dfv = µε̇dA) result from multiplying elastic and viscous stresses with

their corresponding infinitesimal areas dA. The simple example of a rotating shaft that is

downward forced (e.g. gravity) and sagged, illustrates the changing strain effect in shaft

fibers A, B, C, D (fig. 2.2) at a cross-section. For the loading shown, fibres A, B have

X

Ω

- df
s

- df
s

+df s+df s

X

Ω

+df
v

 -df
v

 -df v+df v
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C D

AB

C D

1
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Figure 2.2.: Stresses in a rotating visco-elastic shaft cross-section displaced downwards

a negative strain −ε, thus experience a compressive force −dfs. Fibres C and D have a

positive strain +ε and experience a tensile force +dfs. These forces produce a moment

dMs = 2dfsa. The resulting moment for the whole cross-section is in equilibrium with the

external moment due to the load applied (gravity).

Damping forces are shown in the right-hand diagram (fig. 2.2). Fibres travelling from

point 1 to point 2, in the direction of rotation, will be extending; and those travelling

from point 2 to point 1, will be shortening. Hence the strain in fibres B and C will have

a positive rate of change +ε̇, and that in D and A will have a negative rate of change −ε̇.

As such, the damping forces developed will have corresponding signs. Unlike the elastic

(stiffness) forces, these added viscous forces—resulting from the added viscous stress—did
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not result from a shaft deformation in the horizontal direction, in which the shaft can (and

will) move until these forces are balanced by the shaft stiffness in the horizontal direction.

The shaft section will move in the horizontal direction in an attempt to minimise its

potential energy—by trying to annul viscous stresses—via straining the fibres in a manner

producing elastic stresses of opposite sign to the existing viscous stresses.

From equilibrium (of stable operation), the damping forces must be opposed/counter-

acted by equal (and opposite) stiffness forces dfc as:

dfv + dfc = 0 = µε̇dA + EεcdA

whence the imposed strain

εc = −µε̇

E

Damping forces thus impose the strain −εc in B and C, and +εc in D and A . This strain

is imposed in a similar manner over the whole of each half-cross-section; hence the shaft

bends and gives rise to displacement in the horizontal direction, emulating the effect of

applying a horizontal force which is tangential to the displacement of the rotor centre—

“follower force”. Mathematically, the RID-induced horizontal displacement is part of

the particular solution of rotordynamic EOMs with RID—the other part is the vertical

displacement—as will be seen in the following section.

As with sagging that results in the RID-induced horizontal displacement, it is reasonable

to accept that any random static lateral load resulting in a displacement r will induce a

follower force (fig. 2.3). Extending the foregoing to general hysteresis anelasticity, which

r

kr

c
i Ω
r

f

α

Ω

x

y

Figure 2.3.: Follower force due to an arbitrary displacement of the shaft cross-section

requires stress σ leads strain ε by a phase angle α in forced response, it is clear that

hysteresis in a rotating shaft will cause a phase shift in the development of stress as the

shaft fibres rotate around the through peak strain to the neutral strain (ε = 0) axis—
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perpendicular to displacement vector r. The result is a neutral stress axis (σ = 0) that

phase shifted by an angle α from the neutral strain axis. Accordingly, the force resultant

of stress, which is perpendicular to the neutral stress axis is not in line with the deflection

vector r, and hence this force resultant has a radial component (in line with r) and a

tangential component perpendicular to r.

In the special case of circular whirling (2.4), when the rotational speed Ω is greater

than the whirl frequency ω, a shaft fibre will travel in the same direction (as rotation)

relative to the neutral strain axis. Since strain lags stress by angle α, the neutral stress

axis must be ahead of the neutral strain axis. Thus, the force resultant of flexural stresses

has a restoring component kr cos α and a tangential component kr sin α, which is in the

direction of the whirl acting as a follower force. If the shaft does not whirl, e.g. just

sagging, this argument still holds since Ω > ω = 0; and the neutral stress axis will lead

the neutral strain axis, yielding a stress resultant that has a restoring component in the

direction opposite to displacement, and a tangential component that displaces the shaft

centre in the horizontal direction according to sense of rotation.

Y

r

Ω

f
res

Neutral stress

Neutral strain

X

α

Ωt

Ω > ω

α

X

Y

r

Ω

Neutral stress

Neutral strain

α

Ωt

Ω < ω

α

f
res

Figure 2.4.: Ω-dependant lead/lag angles of neutral stress and strain axis of anelastic shaft

However, if Ω < ω, a shaft fibre will travel in the opposite direction of Ω, relative to the

neutral strain axis, and the position of the neutral stress axis is reversed. Therefore, the

tangential force component will oppose whirling, acting in the direction of the stabilising

external damping; in which case, it is not a follower force, or maybe a negative one.

2.4.3. A simple Jeffcott rotor model with RID

The Jeffcott rotor model (§.2.4.3.2) can demonstrate the possibility of instability due

to simple linear viscous RID. LTI EOMs of the perfectly balanced and unexcited rotor

include speed-dependent cross-coupled stiffness terms to represent the destabilising force.
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Stability analysis is effected by examining eigenvalues of the general solution, as well as im-

plementing Routh’s criterion to assess stability conditions, thus identifying the threshold

speed of instability. The particular solution demonstrates the follower force cross-coupling

effect as displacing the rotor horizontally on applying a vertical force. Attention is drawn

to the particular solution speed-dependence or independence in the hysteretic RID case,

to confirm the forced response of the experimental rotor (fig. 6.9).

2.4.3.1. Complex kinematics and rotating vectors in xy- and ξη-frames

For RID analysis, it is essential to consider the ξη-frame of reference, which is rotating at

shaft speed Ω with respect to the stationary xy-frame (fig. 2.5).

ρ

Ω t

φ

x

y

η

ξ

Stationary frame

Rotating frame

Figure 2.5.: Stationary xy and ª rotating ξη frames of reference

Furthermore, authors used polar coordinates (2.1) in the ξη-frame to analyse NL RID

models (§.2.4.3.4) with ρ being length (magnitude) of the displacement vector, and φ its

angle of rotation.

ρeıφ = ζ (2.1)
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Figure 2.6.: Simple elliptic precession

Rotating vectors can be used to represent the possibly asynchronous (ω 6= Ω) single-
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frequency elliptic precession of fig. 2.6:

q =

{
x(t)

y(t)

}
=

[
uc us

vc vs

] {
cos τ

sin τ

}
=

{
X̄ cos(τ + αx)

Ȳ cos(τ + αy)

}
= ℜ

({
~X
~Y

}
eıτ

)
(2.2)

Elliptic precession can be co-rotating (FWD) or counter-rotating (BWD), i.e. in the same

or opposite directions to that of rotation. Special cases of (2.2) are:

us = −vc ∪ uc = vs , ⇒ αu = αv + π/2 ª : FWD circular precession (2.3a)

us = vc ∪ uc = −vs , ⇒ αu = αv − π/2 © : BWD circular precession (2.3b)

when X̄ = Ȳ and (2.3a)[(2.3b)] states that x(t) leads [lags] y(t) by π/2 resulting in FWD

[BWD] circular precession.

EOMs resulting from (2.4) are used (Chs. 2–5) in conjunction with various analysis.

z = x + ıy and fc = fx + ıfy (2.4)

If we treat the xy-plane as a complex one, (2.4) reduces to pre-multiplying (2.2) by {1, ı}
and setting z = x + ıy, two complex rotating vectors can represent this elliptic motion:

z = ~Zfe
ıτ + ~Zbe

−ıτ (2.5)

of fixed amplitudes Z̄f , Z̄b representing FWD and BWD circular precessions respectively,

where
Z̄f

Z̄b

{
>1 ⇒ FWD
<1 ⇒ BWD which, when added, result in an ellipse with semi-major axis a,

semi-minor axis b, and attitude angle α:

a = |Z̄f | + |Z̄b| (2.6a)

b = |Z̄f | − |Z̄b| =
1

a
det

[
uc us

vc vs

]
(2.6b)

2α = αf + αb (2.6c)

A positive [negative] value for the semi-minor axis b, indicates a FWD [BWD] whirling

orbit. FWD [BWD] circular precession requires ~Zb = 0 [~Zf = 0].

Similarly for the ξη-frame, ζ = ξ + ıη, where pre-multiplying (3.4) by {1, ı} gives:

z = ζeıτΩ = ρeı(τΩ+φ) (2.7a)

ζ = ze−ıτΩ = ~Zfe
ı(ω−Ω)t + ~Zbe

−ı(ω+Ω)t (2.7b)

In (2.7b) the complex rotating vector ~Zbe
−ı(ω+Ω)t is always rotating in the -ve direction
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©, while the rotational direction of ~Zfe
ı(ω−Ω)t depends on sgn(ω − Ω)

{
>0 ⇒ª
<0 ⇒© .

2.4.3.2. The Jeffcott rotor

This is a simple single-disc rotor on an elastic shaft, mounted in two bearings. The mass

of the shaft is considered negligible compared to that of the disc. The disc is not oblique

with respect to the shaft and is centred between the bearings; hence no gyroscopic effect

need be taken into account. The shaft rotates at a constant speed (angular velocity) Ω

and, initially, in rigid bearings. Accordingly, the disc motion is considered a simple plane

motion. x, y are the co-ordinates of the disc centre in the stationary frame of reference

X,Y ; and ξ, η are the co-ordinates of the disc centre in the rotating frame of reference.

ǫ is the centre of gravity eccentricity of the disc, m is the mass of the disc and k is the

shaft stiffness (fig. 2.7). Assuming linear viscous external damping, the stationary frame

φ

x

y

Ω t
ρ

ζ

η

∋

m

Figure 2.7.: The Jeffcott rotor

EOMs of the horizontal Jeffcott rotor without RID are:

mẍ + cẋ + kx = mǫΩ2 cos Ωt

mÿ + cẏ + ky = mǫΩ2 sin Ωt − mg

which can be combined in the complex format as,

mz̈ + cż + kz = mǫΩ2eiΩt − img (2.8)

Using (2.7) to obtain EOMs expressed in the rotating frame of reference as:

m(ζ̈ + 2iΩζ̇ − Ω2ζ) + c(ζ̇ + iΩζ) + kζ = mǫΩ2 − imge−iΩt (2.9)

RID force F is introduced to the EOMs describing shaft flexing, in the rotating frame:

m(ζ̈ + 2iΩζ̇ − Ω2ζ) + c(ζ̇ + iΩζ) + kζ + F = mǫΩ2 − imge−iΩt (2.10)
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Changing the nature of F will affect the solution behaviour and stability patterns, as well

as impact type of analysis that should accommodate its nature.

2.4.3.3. Linear viscous internal damping

With F = Fv = ciζ̇, (2.10) can be written after normalising with mass m, as:

ζ̈ + 2iΩζ̇ − Ω2ζ + c̃(ζ̇ + iΩζ) + c̃iζ̇ + ω2ζ = ǫΩ2 − ige−iΩt (2.11)

which, in the stationary frame of reference, translates to :

z̈ + c̃ż + c̃i(ż − iΩz) + ω2z = ǫΩ2eiΩt − ig (2.12)

or in the real (non-complex) format as:

ẍ + c̃ẋ + c̃iẋ + c̃iΩy + ω2x = ǫΩ2 cos Ωt

ÿ + c̃ẏ + c̃iẏ − c̃iΩx + ω2y = ǫΩ2 sin Ωt − g (2.13)

with cross-coupled stiffness coefficients reflecting destabilising forces, according to Castil-

iano’s theorem: A neutrally stable elastic system must have a symmetric stiffness matrix.

EOMs complete solution is the sum of the general and particular solutions.

The particular solution of (2.13) to rotating imbalance at Ω and gravity g is:

z = Zǫe
iΩt + Zg

Introducing this particular solution to eq. (2.12) we get:

Zǫ = ǫΩ2

ω2−Ω2+ic̃Ω
= Rǫe

−iµ

Zg = ig
ic̃iΩ−ω2 = Rge

−iν (2.14)

in which

Rǫ =
ǫΩ2

√
(ω2 − Ω2)2 + c̃2Ω2

, tan µ =
c̃Ω

ω2 − Ω2

Rg =
g√

c̃2
i Ω

2 + ω4
, tan ν =

ω2

c̃iΩ

with Rǫ, Rg, µ and ν being real constants. From (2.14), it follows that the disc centre

is deflected by Rg due to gravity. Due to RID, this deflection is not in the direction of
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R
g

ν

x

y

Rg, ν = F(Ω)

Ω

Figure 2.8.: Particular solution to gravity: Balanced Jeffcott rotor with viscous RID

gravity but is turned through an angle (π/2 − ν), in the sense of shaft rotation, from

the negative Y axis (fig. 2.8). Rg and ν decrease with increased speed; limΩ→∞ Rg = 0

and limΩ→∞ ν = 0. Rǫ is the radius of the circular path that imbalance drives the shaft

centre around at the same speed and in the direction of shaft rotation. Zǫ, the particular

solution to imbalance, is identical to that of Jeffcott rotor without RID. This is logical

since the response to imbalance in a Jeffcott rotor is a synchronous circular precession,

causing no periodic flexing of the shaft fibres, and hence no RID force is functional.

The general solution of eq. (2.12), employed to study the stability of motion; is:

z = Z1e
iλ1t + Z2e

iλ2t

where Z1, Z2 are integration constants and λ1, λ2 are roots of the characteristic equation:

λ2 − iλ(c̃ + c̃i) − ω2 + iΩc̃i = 0 (2.15)

resulting in the roots:

λ1,2 =
i(c̃ + c̃i)

2
±

√
ω2 −

(
c̃ + c̃i

2

)2

− iΩc̃i

putting

ω2
c = ω2 −

(
c̃ + c̃i

2

)2
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and while c̃iΩ < ω2
c we can approximate

√
ω2

c − iΩc̃i ≃ ωc −
1

2
i

(
c̃iΩ

ωc

)

which results in

λ1 ≃ +ωc +
1

2
i

(
c̃ + c̃i −

c̃iΩ

ωc

)

λ2 ≃ −ωc +
1

2
i

(
c̃ + c̃i +

c̃iΩ

ωc

)

which leads to the conclusion that Z2e
iλ2t is always stable : BWD whirl

The stability of Z1e
iλ1t, and hence z, depends on the imaginary part of λ1 which when

multiplied by i gives the decay (non-oscillatory) component of the free vibration

Z1e
iλ1t = Z1e

i(ωc+
1
2
i(c̃+c̃i−

c̃iΩ

ωc
))t

= Z1e
(iωc−

1
2(c̃+c̃i−

c̃iΩ

ωc
))t

With stability requiring a negative real part of the solution, the stability condition is:

(
c̃ + c̃i −

c̃iΩ

ωc

)
> 0

⇓

Ω < ωc

(
1 +

c̃

c̃i

)
(2.16)

Alternatively, stability conditions are determined using the Routh-Hurwitz criterion for

equations with complex coefficients (see p.161) on (2.15), which result in the conditions:

(−)

∣∣∣∣∣
1 0

0 −(c̃ + c̃i)

∣∣∣∣∣ > 0 ⇒ c̃ + c̃i > 0 , and

∣∣∣∣∣∣∣∣∣∣

1 0 −ω2 0

0 −(c̃ + c̃i) c̃iΩ 0

0 1 0 −ω2

0 0 −(c̃ + c̃i) c̃iΩ

∣∣∣∣∣∣∣∣∣∣

> 0 ⇒ ω2(c̃ + c̃i)
2 − c̃2

i Ω
2 > 0 (2.17)

Since c̃ > 0 and c̃i > 0 the first condition is always satisfied. Since ω2 ≫ (c̃ + c̃i)
2 the

second (2.17) requires Ω < ω
(
1 + c̃

c̃i

)
, which is practically the same result from (2.16).
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2.4.3.4. Hysteretic internal damping

RID force parallel to velocity vector This frequency-independent hysteretic RID force

is generally nonlinear, amplitude- (max |ζ|) and pre-stress-dependent:

F = Fh = F [max |ζ|] ζ̇

|ζ̇|

ζ̇

|ζ̇|
is included not only to dictate direction, but also to render RID inoperative in the

absence of ξη-frame vibration. The EOM with mass-normalised RID function F̃ is:

ζ̈ + 2iΩζ̇ + (ω2 − Ω2)ζ + c̃(ζ̇ + iΩζ) + F̃ [max |ζ|] ζ̇

|ζ̇|
= −ige−iΩt (2.18)

Note that if the RID force, Fh, is expressed as a function of amplitude (either linear

or nonlinear) only, without the term ζ̇

|ζ̇|
; it will not produce any cross-coupling in the

EOMs as expressed in the stationary frame of reference, in a manner similar to kz and

kζ of eqs. (2.8, 2.9). This is because the cross-coupling in the stationary frame derives

from transforming the rate-dependent terms, which are not cross-coupled, in the rotating

frame; to the stationary frame, in a manner similar to eqs. (2.11, 2.12).

Introducing polar co-ordinates (2.1) ρeiφ = ζ = ξ + iη =
√

(ξ2 + η2) eiφ we get:

{ρ̈ − ρφ̇2 + i(ρφ̈ + 2ρ̇φ̇) + 2iΩ(ρ̇ + iρφ̇) + (ω2 − Ω2)ρ

+c̃(ρ̇ + iρφ̇ + iΩρ) + F̃ [max ρ]
ρ̇ + iρφ̇√
ρ̇2 + ρ2φ̇2

}eiφ = −ige−iΩt (2.19)

which, on separating the real and imaginary terms, can be split into:

ρ̈ − ρφ̇2 − 2Ωρφ̇ + (ω2 − Ω2)ρ

+c̃ρ̇ + F̃ [max ρ]
ρ̇√

ρ̇2 + ρ2φ̇2

= −g sin(φ + Ωt) , and

ρφ̈ + 2ρ̇φ̇ + 2Ωρ̇ + c̃(Ω + φ̇)ρ

+F̃ [max ρ]
ρφ̇√

ρ̇2 + ρ2φ̇2

= −g cos(φ + Ωt) (2.20)

Particular solution These equations are satisfied by the particular solution: ρ = R and

φ = −Ωt + φo in the rotating frame of reference, where R and φo are constants defined
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by the equations:

Rω2 = −g sin φo

F̃ [R] = g cos φo

which yields,

tan φo = − Rω2

F̃ [R]
= − kR

F [R]
= − 1

Θ[R]

The term kR
F [R]

is the dimensionless ratio of the elastic force—called forth by the deflection

R—to the damping force, and is independent of speed, and hence is the angle φo. If the

damping force—which is a monotonic increasing function of amplitude—was linear with

amplitude (valid for small amplitudes), then φo does not change with the amplitude of

vibration. From the above, φo is a negative angle i.e. clockwise from the stationary x-axis.

It is more instructive to consider the angle φ̌0 as measured from the negative y-axis in
R

φ
0

y

R, φ
0
 = F(Ω)

Ω

x

φ
0

v

/

Figure 2.9.: Particular solution to gravity: Balanced Jeffcott rotor with hysteretic RID

the direction of rotation (fig. 2.9), in which case

Rω2 = g cos φ̌o

F̃ [R] = g sin φ̌o

tan φ̌o = Θ[R]

The (-) sign is omitted as φ̌0 is measured from -ve Y-axis. Since φ̌0 is usually very small:

R ≃ g

ω2

(
1 − 1

2
φ̌2

0

)
≃ g

ω2

{
1 − 1

2

(
Θ

[ g

ω2

])2
}

,

φ̌0 ≃ tan φ̌0 =
F̃ [R]

Rω2
= Θ[R] ≃ Θ

[ g

ω2

]
(2.21)
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The speed-independent shaft deflection R due to gravity is reduced by 1
2

(
Θ

[
g

ω2

])2
, and is

diverted from the -ve Y-axis by an angle φ̌0 ≃ Θ
[

g
ω2

]
in the direction of rotation.

Linearised stability analysis (5.2) in the neighbourhood of particular solution R. We

consider r to be the variation in variable ρ, and υ the variation in variable φ. Since

disturbing motion r is small compared to undisturbed motion R, we can replace the

function F̃ [max(R + r)] by the function F̃ [R + r]. Using the expansions:

F̃ [ρ + r] = F̃ [ρ] + F̃ ′[ρ]r + F̃ ′′[ρ]r2 + · · · ,

where,

F̃ ′[ρ] =
d(F̃ [ρ])

dρ

and

ρ̇ + ṙ√
(ρ̇ + ṙ)2 + (ρ + r)2(φ̇ + υ̇)2

=

ρ̇√
ρ̇2 + ρ2φ̇2

+
ρ2φ̇2

(ρ̇2 + ρ2φ̇2)
3
2

ṙ − ρ̇ρφ̇2

(ρ̇2 + ρ2φ̇2)
3
2

r − ρ̇ρ2φ̇

(ρ̇2 + ρ2φ̇2)
3
2

υ + · · · ,

and

(ρ + r)(φ̇ + υ̇)√
(ρ̇ + ṙ)2 + (ρ + r)2(φ̇ + υ̇)2

=

ρφ̇√
ρ̇2 + ρ2φ̇2

− ρ̇ρφ̇

(ρ̇2 + ρ2φ̇2)
3
2

ṙ +
ρ̇2φ̇2

(ρ̇2 + ρ2φ̇2)
3
2

r +
ρ̇2ρ

(ρ̇2 + ρ2φ̇2)
3
2

υ̇ + · · · ,

Substituting ρ + r for ρ and φ + υ for φ in equations (2.20) and omitting the nonlinear

terms in accordance with Lyapunov’s theorem on the first approximation, we get:

r̈ +

(
c̃ +

F̃ [R]

RΩ

)
ṙ + ω2r + F̃ [R]υ = 0 , and

Rϋ + c̃Rυ̇ + Rω2υ − F̃ ′[R]r = 0

The characteristic equation of which derives from,

∣∣∣∣∣
λ2 + (c̃ + F̃

RΩ
)λ + ω2 F̃

− F̃ ′

R
λ2 + c̃λ + ω2

∣∣∣∣∣ = 0
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where F̃ = F̃ [R]. Evaluating the determinant we obtain the equation :

λ4 +

(
2c̃ +

F̃

RΩ

)
λ3 +

[
2ω2 + c̃

(
c̃ +

F̃

RΩ

)]
λ2

+ ω2

(
2c̃ +

F̃

RΩ

)
λ + ω4 +

F̃ F̃ ′

R
= 0

The Routh-Hurwitz criterion for equations with real coefficients ai∈0...2n, requires ∀ai be

of the same sign and different from zero, which is satisfied since c̃ > 0, F̃ > 0 and F̃ ′ > 0;

and also requires that ∆0,...,3 (as defined below) be all greater than zero.

∆0 ∆1 ∆2 ∆3

a1

a3

0

0

a0

a2

a4

0

0

a1

a3

0

0

0

a2

a4

This results in the following inequalities, necessary to satisfy, for stability of motion:

∆0 = a1 > 0 true

∆1 = a1a2 − a0a3 = a1

([
2ω2 + c̃

(
c̃ + F̃

RΩ

)])
− ω2a1 > 0 true

∆2 = a3(a2a1 − a0a3) − a2
1a4 ⇒ c̃ω2

(
c̃ + F̃

RΩ

)
− F̃ F̃ ′

R
> 0 condition

∆3 = a4∆2 ⇒ ∆2 > 0 condition

For the motion under investigation, the first two inequalities are always satisfied. The

last two inequalities indicate that the condition for stability is ∆2 > 0 which requires:

c̃ω2

(
c̃ +

F̃

RΩ

)
− F̃ F̃ ′

R
> 0

or when rearranged

Rc̃2ω2 +
c̃ω2F̃

Ω
> F̃ F̃ ′ (2.22)

If either of the terms on the left-hand side of the inequality (2.22) is larger than the

right-hand side, then the inequality is satisfied. Accordingly, if

Rc̃2ω2 > F̃ F̃ ′
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which contains no speed of rotation term, and can be rewritten as

c̃2

ω2
>

F̃ F̃ ′

Rω4

or on defining D = c̃/ω = c
ωm

as relative external damping, can be rewritten as,

D2 > Θ[R] ( Θ[R] + R Θ′[R] ) (2.23)

is true, then motion is always stable, satisfying (2.23) and in turn (2.22) which is a

sufficient condition for the stability. Since (2.23) does not contain a speed term, then (if

satisfied) the motion is stable over the whole interval of speed Ω with no onset speed of

instability. This could be achieved by increasing the external stabilising damping.

In the case of linear hysteretic RID, valid for small amplitudes, F̃ is a linear function

of R ⇒ F̃ [R] = RF̃o. Using this simplifying assumption, the (2.23) acquires the form:

D2 >
F̃ 2

o

ω2
= Θ2

o

On the other hand, if the inequality (2.23) is not satisfied, the stability criterion (in-

equality 2.22) implies that the motion will be stable up to a certain speed (dictated by

the relative magnitudes of internal and external damping), after which the motion will be

unstable as implied by the following, which is a restatement of inequality (2.22)

Ω < ω
(c̃/ω)(F̃ /Rω2)

(F̃ /Rω2)(F̃ ′/ω2) − (c̃2/ω2)
=

ω
(c̃/ω)(F/kR)

(F/kR)(F ′/k) − (c̃2/ω2)
=

ω
DΘ[R]

Θ[R](Θ[R] + RΘ′[R]) − D2
. (2.24)

Or, on implementing the reasonably valid simplifying assumption of linearity:

Ω < ω
(c̃/ω)(F̃o/ω

2)

(F̃ 2
o /ω4) − (c̃2/ω2)

= ω
DΘo

Θ2
o − D2

.

Inequality (2.24) and its linear form suggest that instability will occur after an onset speed,

which can be any multiple or fraction of the rotor’s natural frequency; i.e. the onset of

instability can be a sub-critical speed. Because this had never been verified experimentally,

the model was deemed an erroneous representation by Tondl (1965). He argued this

erroneous result was caused by replacing F̃ [max(R + r)] with F̃ [R + r]. Furthermore, he

had assumed that RID force acts in a direction opposite to that of ζ̇, which is contradicted
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by simple reasoning showing it does not quite coincide with ζ̇.

RID force not parallel to velocity vector Expressing disc deflection ζ in polar co-

ordinates ρ, φ, for a small change of the vector ∆ζ, we have:

∆ζ =
∂(ρeiφ)

∂ρ
∆ρ +

∂(ρeiφ)

∂φ
∆φ = (∆ρ + iρ∆φ)eiφ

There are two components of change: 1) Radial component, ∆ρ of ρ; and 2) Cross-radial

component, ∆φ of φ. Considering RID is nonlinear with amplitude: ∆ρ and ∆φ will

result in RID forces of unequal absolute values. RID force can thus be expressed by:

Fh =


F1[max ρ]

ρ̇√
(ρ̇2 + ρ2φ̇2)

+ iF2[max ρ]
ρφ̇√

(ρ̇2 + ρ2φ̇2)


 eiφ

and in analogy with equation (2.20) we get

ρ̈ − ρφ̇2 − 2Ωρφ̇ + (ω2 − Ω2)ρ

+c̃ρ̇ + F̃1[max ρ]
ρ̇√

ρ̇2 + ρ2φ̇2

= −g sin(φ + Ωt)

ρφ̈ + 2ρ̇φ̇ + 2Ωρ̇ + c̃(Ω + φ̇)ρ

+F̃2[max ρ]
ρφ̇√

ρ̇2 + ρ2φ̇2

= −g cos(φ + Ωt) (2.25)

Particular solution is ρ = R and φ = −Ωt+φo as in (2.20) where R and φo are constants.

φ̌0 which reflects the RID effect on the particular solution is defined by:

φ̌0 ≃ tan φ̌0 =
F̃2[R]

Rω2
= Θ2[R] ≃ Θ2

( g

ω2

)

which unlike (2.21), shows that, of the two RID force components, only the cross-coupled

component is effective in displacing the rotor horizontally.

Stability analysis , applying Routh-Hurwitz criterion. For stability at any speed:

F̃2[R]F̃ ′
2[R] < c̃2Rω2
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which if not satisfied, the inequality

Ω <
c̃ω2F̃1[R]

F̃2[R]F̃ ′
2[R] − c̃2Rω2)

becomes the criterion for stability. From the foregoing, the radial component of internal

damping acts in a manner similar to external damping in enhancing the stability and

raising the onset speed of instability. On the contrary the cross-radial component of

internal damping acts in an opposite manner and may cause instability.

2.4.4. The Jeffcott rotor with RID on asymmetric bearings

The use of energy dissipated, in one precession cycle, for assessing stability of extended

Jeffcott rotor, on orthotropic bearings, is demonstrated and criticised. Energy dissipated

or introduced by RID is calculated and added to that dissipated by external damping. If

the total energy is negative [positive], then the system is stable [unstable]. The destabil-

ising effect of rotor and/or stator asymmetry is ignored. The suppressing effect of RID

on this parametric instability is hinted at.

2.4.4.1. Viscous RID model on orthotropic bearings

Stationary frame EOMs for a balanced jeffcott rotor on orthotropic bearings are:

mẍ + ci(ẋ + Ωy) + cẋ + kxx = 0

mÿ + ci(ẏ − Ωx) + cẏ + kyy = 0 (2.26)

The solution at the threshold of instability will be in the form:

[
kx − mω2 + iω(ci + c) Ωci

−Ωci ky − mω2 + iω(ci + c)

]{
x

y

}
= 0 (2.27)

For a solution to exist, the determinant must be zero, resulting in

ω =

√
kx + ky

2 m

Ω2
s = ω2

(
1 +

c

ci

)2

+
(kx − ky)

2

4c2
i

(2.28)

Instability sets in when the speed reaches Ωs. The rotor is stabilised either by providing

external damping c, or by making the supports anisotropic to raise the threshold speed
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Ωs but will not eliminate instability. Energy dissipated by RID per whirl cycle is:

Edis = d

∫ τ=2π/ω

0

[(ẋ + Ωy)ẋ + (ẏ − Ωx)ẏ]dt (2.29)

which results in

Edis = 2πd

(
ω

a2 + b2

2
− Ωab

)

stating that the dissipated energy will be negative when

Ω > ω

(
a2 + b2

2ab

)

As defined, ω is the elliptic orbit single frequency (2.2), and a, b are its axis (2.6). It is

what can be termed as the mean natural frequency of the rotor-bearing system, that has

two natural frequencies, one in each of the two orthogonal directions. On substituting

x = x0e
λt, y = y0e

λt; the undamped and de-coupled version of (2.26) has:

λ1,2 = ±iωny ; ωny =

√
ky

m

λ3,4 = ±iωnx ; ωnx =

√
kx

m

where ωnx and ωny are the two independent natural frequencies—one in the x and the

second in the y directions—of the system, causing two critical speeds. The free vibration

of the system is, thus, composed of two oscillations with the above frequencies.

We can define

k̄ =
kx + ky

2
, ∆k =

kx − ky

2
> 0 , ω̄ =

√
k̄

m
, k̆ =

∆k

k̄

where k̄ is the average stiffness and ω̄ is the mean natural frequency. After mass-

normalisation, eq. (2.26) can be put in matrix form as:

{
ẍ

ÿ

}
+ (c̃ + c̃i)

{
ẋ

ẏ

}
+

[
ω̄2(1 + k̆) c̃iΩ

−c̃iΩ ω̄2(1 − k̆)

] {
x

y

}
= {0} (2.30)

This system (eq. 2.30) differs from its undamped and de-coupled version in, as expected,

the damping terms and the cross-coupling terms. The damping coefficients merely re-

duce the value of the natural frequency to that of the damped natural frequency e.g.

(ωnyd
=

√
ω2

ny − (c/2m)2). The cross-coupling has a more interesting effect on the natural

frequencies or eigenvalues (fig 2.4.4.1). As cross-coupling is introduced to the undamped

and de-coupled system, the lower natural frequency ωny is raised (increases in value), and

62 On Rotor Internal Damping Instability



2.4. Different models and analysis techniques

the upper natural frequency ωnx is lowered (decreases in value). The squares of both
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Figure 2.10.: The effect of cross-coupling on the eigenvalues of a 2DOF system
with a single mass and orthotropic stiffness. The dotted (lower) curve represents the lower natural

frequency as normalised by the mean frequency, i.e. (ωny/ω̄); and the solid curve represents the normalised

higher natural frequency. c̃iΩ is normalised by ∆k.

frequencies (ω2
ny, ω2

nx) change by the same amount which depends on the strength of the

cross-coupling relative to ∆k/m. This approaching of natural frequencies increases with

stronger cross-coupling, and continues until the cross-coupling coefficient equals ∆k; by

which time, both squares of natural frequencies would have changed by an amount ∆k/m

and both frequencies will equal the mean natural frequency ω̄. On strengthening the

cross-coupling further, the natural frequencies will have the same oscillatory part yet, one

will have a real part that is positive (unstable) and the other will have a stable negative

real part. In this instance, using (ω̄) in eq. (2.29) is valid and will produce a negative Edis

only. A positive Edis is not possible since the system would be unstable.

Eq. (2.30) yields the nondimensional characteristic equation

λ̂4 + 2(D + Θ)λ̂3 + (2 + (D + Θ)2)λ̂2 + 2(D + Θ)λ̂ + (1 + (ΘN)2 − k̆2) = 0

where λ̂ = λ/ω̄, and N = Ω/ω̄. Applying the Routh-Hurwitz criterion, we get the

condition for stability as

(D + Θ)2 + k̆2 − (ΘN)2 > 0

which is rewritten as

Ω2 < ω̄2




(
1 +

D

Θ

)2

+

(
k̆

Θ

)2

 (2.31)

Eq. (2.31) is the same as eq. (2.28); only it is evident that ω̄ is neither a whirling frequency

nor an eigenvalue—it serves merely as a reference frequency—which confirms its misuse
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for calculating the energy dissipated by RID as in eq. (2.29).

The condition for stability obtained (inequality 2.31) for the extended Jeffcott rotor

(on orthotropic bearings) is the same as that for the Jeffcott rotor on isotropic bearings

(ineq. 2.17), except for the second term inside the square brackets—i.e. (k̆/Θ)2 which

is equal to (kx − ky)
2/4c2

i as in eq. (2.28). This term is used as a secondary argument

to support the claim—using this model—that bearing orthotropy enhances the stability

by raising the onset of instability (Smith, 1933). This claim, however, is not entirely

valid; since (k̆/Θ)2 raises the onset of instability, of the externally undamped system,

to ω
√

1 + k̆ which is the higher natural frequency ωnx =
√

kx

m
—k̆ is corrected by Θ

when the cross-coupling due to viscous RID is accounted for in the EOMs which brings

the critical speeds closer together, hence reducing k̆ = ∆k/k̄ of the undamped system.

As such, according to this model, the instability due to linear viscous RID of a Jeffcott

rotor can occur only at speeds above the second critical speed; which is a statement quite

similar to the case of isotropic bearings. The possibility of instability occurring before the

second critical speed is highly unlikely; since below the first critical, RID is stabilising and

in-between the two critical speeds, the response to imbalance is a backward precessing

elliptic orbit at a frequency equal to that of rotation Ω, which results in a stabilising RID.

The main mathematical argument, on which enhanced stability due to bearing or-

thotropy is based, is the fact that an undamped system (of EOMs) with isotropic stiffness

terms will have ∆k = 0. As such, any coefficient of stiffness cross-coupling will be greater

than ∆k; a situation that results in two eigenvalues having the same imaginary part

(oscillation frequency) and also having real parts that are of the same magnitude yet op-

posite signs. Accordingly, the undamped rotor system will be unstable—on application of

any disturbance—regardless of it being rotating or not. If present, external damping can

counteract and, possibly, eliminate the positive real part in one of the eigenvalues, depend-

ing on the relative value of the damping coefficients and the cross-coupling coefficients.

However, Childs (1993) contests the effectiveness of introducing support orthotropy as a

means of enhancing rotor stability; and claims, based on his experimental research, that

its effect has been exaggerated in the literature.

2.4.4.2. Hysteretic RID model on orthotropic bearings

The basis for the following hysteretic RID model is there exists a phase angle α between

the neutral stress and neutral strain axis of the shaft cross-section. The neutral stress

axis either leads, or lags the neutral strain axis by the angle α depending on whether ω
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is less than, or greater than Ω respectively.

mẍ + cẋ + krx + γkry = 0

mÿ + cẏ + kry − γkrx = 0

where kr is the shaft radial stiffness, and

γ = sin α when Ω > ωor for negative ω —backward whirl

γ = − sin α when Ω < ω (2.32)

In a similar analysis as in eqs. (2.27), the condition for stability is

ωc

kr

> γ , ω =

√
k

m

When the whirl frequency equals the critical speed, the rotor becomes potentially unstable

with a positive γ: a situation that does not vary with increased speed. If, however, the

bearings provide sufficient damping such that ωc
kr

> γ, the rotor will be stable at all

speeds—which is similar to the result from ineq. ( 2.23).

When the bearings are anisotropic, the whirl orbit becomes an ellipse with an instan-

taneous whirl frequency ωt expressed as

ωt =
ωab

x2 + y2

and the energy dissipated per whirl cycle is

Edis = −krab

∫ 2π

0

γd(ωt)

If ωt > Ω at any time during the whirl cycle, then the energy dissipated is negative,

corresponding to energy added to the rotor which becomes unstable.

2.4.4.3. Coulomb damping

The dry friction force of constant magnitude opposite to the direction of the relative

sliding velocity, is represented in the stationary frame of reference as

Fx =

(−ẋ + Ωy

v

)
µN , Fy =

(−ẏ − Ωx

v

)
µN with v =

√
(ẋ + Ωy)2 + (ẏ − Ωx)2

where µ is the friction coefficient and N the normal force to the surfaces in contact.
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The energy thus dissipated per whirl cycle is

Edis = µN

∫ T

0

[(
(ẋ + Ωy)

v

)
ẋ +

(
(ẏ − Ωx)

v

)
ẏ

]
dt

2.4.5. RID sources models

2.4.5.1. Viscous stress

In a non-synchronous whirl circular orbit The simple case of a circular orbit with

Ω > ω is considered. A boundary value problem is formulated for an Euler beam and

considering the added effect of viscosity-induced stresses on the bending moment.

We start from the stress-strain relation at a point in the cross-section of the shaft with

a linear term relating stress to the rate of strain as

σz = Eεz + µ(dεz/dt) (2.33)

from the linear beam theory, the strain at a point

εz = εo(r/ro) cos γ

with γ being the angular orientation of the shaft fibre from the plane of deflection, so

σz = εo(r/ro)(E cos γ − µ sin γ dγ/dt)

The resulting moments at any shaft cross-section are

Mzy =

∫ ∫

A

σzr cos γdA = (εo/ro)EI

Mzx =

∫ ∫

A

σzr sin γdA = −(εo/ro)µ(dγ/dt)I (2.34)

The resultant forces from the moments are the radial restoring force

fy = EI(d4y/dz)

and the tangential destabilising force

fx = −µI(dγ/dt)(d4y/dz)

from the perpendicular moment (2.34) resulting from the viscous term in the stress-strain
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relation. Shaft rotation with respect to the plane of deflection is given by

dγ/dt = Ω − ω

If we presume the existence of external viscous damping that is proportional to the shaft’s

vibration (at its natural frequency) and opposes it, the shaft motion is stable up to the

point where the damping forces cancel each other

cωy = µI(Ω − ω)(d4y/dz) (2.35)

Turning back to the vibration modes, we have from the balance of the radial forces

EI(d4y/dz) + ρ̄ω2y = 0

which is the classic equation for beam vibration where ρ̄ here is the shaft mass per unit

length, with a solution in terms of the mode shapes as

y = yo cos(nπz/l)

with n being the mode number, l the shaft length and z the shaft’s axial co-ordinate. The

conventional solution for critical speeds (natural frequencies) being

ω2 = EIn4π4/ρ̄l4 (2.36)

which on substitution in stability criterion (2.35) yields the simplified expression

Ω = ω + (cE/µρ̄)/ω

Damping coefficients can be expressed as ratios to system critical damping as:

ζ = ζe + ζi = (c/2ρ̄ω) + (µω/2E)

with a useful parameter expressing their relative effects as their relative ratio at a typical

mode (e.g. the fundamental mode)

ζe1

ζi1

=
(cE/µρ̄)

ω2
1

The stability boundary then becomes

Ω

ω1

=
ω

ω1

+
ζe1/ζi1

ω/ω1
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For a given value of damping ratio parameter, it can be seen that the minimum rotational

speed at which instability is encountered is not necessarily associated with whirl at the

first natural frequency ω1. With the set of natural frequencies from (2.36)

ωn

ω1

= n2

The mode n associated with limiting stability is found to be relevant to the range

n2(n − 1)2 < (ζe1/ζi1) < n2(n + 1)2

with the stability criterion
Ω

ω1

= n2 + (ζe1/ζi1)/n
2

In a non-synchronous whirl general orbit A more general representation of the RID

effect as induced by shaft fibres undergoing cyclic stress which is related to the fibre’s

strain and its rate (2.33), is obtained by considering the variation of the variable Rz—

which is the shaft centre deflection at the axial location z of its length l.

εz = εo(r/ro) cos γ , εo = ro
d2R

dz2

Since Rz is not constant, then εo also varies with time and consequently has a time

derivative dεo/dt which results in writing eq. (2.33) in the form

σz = εo

(
r

ro

)
(E cos γ − µ sin γγ̇) + µ

dεo

dt

(
r

ro

)
cos γ

which results in bending moments in the radial (denoted by MR), and cross-radial (or

tangential denoted by Mφ) directions

MR =

∫∫

A

σzr cos γ dA

=

∫ 2π

0

∫ r

0

(
r

ro

){(
εoE + µ

dεo

dt

)
cos γ − εoµ sin γγ̇

}
cos γ r2drdγ

=
I

ro

(
εoE + µ

dεo

dt

)
,

Mφ =

∫∫

A

σzr sin γ dA = −εo

ro

µIγ̇ (2.37)

The radial (restoring) and tangential forces developed per unit length are given by

f̄r = −
[
EI

d4R

dz4
+ µI

d4Ṙ

dz4

]
and f̄φ = −µI

d4R

dz4
γ̇ where γ̇ = Ω − φ̇
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The unit tangential force can be either stabilising or destabilising (driving force) depending

on whether rotor precession φ̇ is greater or less than the shaft speed Ω

The rotor deflection can be represented by the summation of its modes as

R(z) =
∞∑

n=1

Rn sin
nπz

l

In the case of a single-mass (disc) rotor located symmetrically along the shaft axis, the

deflection may be approximated by the first mode. The total radial and tangential force

acting on the rotor is found by integration over the length of the rotor to obtain

fr =

∫ l

0

f̄rdz = −
(π

l

)3

EIRm + µIṘm and fφ =
(π

l

)3

µIRm(φ̇ − Ω) (2.38)

where Rm is the deflection of the rotor mass centre.

2.4.5.2. Joint friction

In order to consider component damping in EOMs, we need the relation between the

bending moment and the difference angle along the component. The simplified toothed

coupling model of fig. 2.11 is considered. The same method can be used for spline-

couplings and shrink fits and can be modified slightly to deal with Curvic couplings.
R

γ

Ωt

ϕ
r

ϕ
l

ϕ, Μϕ

ψ
Μψ

α, Μα

β
 Μβ

Figure 2.11.: A simplified model, of a rotor coupling, for component damping

Fig.2.11 shows the coupling’s two halves in separate sketches. The angles of rotation

(tilt) can be different and both will be assumed small and displayed as vectors. The

components of the difference angles are ∆ϕ = ϕr −ϕl and ∆ψ = ψr −ψl the components
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of the bending moment are shown as Mϕ and Mψ. In the rotating co-ordinate system

with angular velocity Ω, the corresponding notations are ∆α, ∆β and Mα,Mβ .

Bending moment at the coupling arises from the tooth forces and their distance from

the axis of rotation. We assume a linear force-displacement relationship such as applies

to a spring and distribute the forces continuously around the circumference of the circle

of radius R. For the difference angle γ, the relative displacement at the position R, γ is

xγ = ∆α R sin γ

and the elastic displacement force on the arc of length R dγ is

df =
k

2π
∆α R sin γ dγ

where k is the axial stiffness of all teeth. The moment of this force about rotation axis

dMα = df R sin γ .

By integration, the resulting moment is

Mα =

∫ 2π

0

k

2π
∆α (R sin γ)2 dγ = k

R2

2
∆α .

As such, the rotational stiffness is the amount of bending moment produced per unit angle

of relative rotation (tilt)
⌢

k =
Mα

∆α
= k

R2

2
(2.39)

Viscous damping in joints can be similarly assumed as uniformly distributed over all

teeth with a coefficient ci. Then the moment produced for a rate of change of ∆α̇ is

Mα̇ = ci
R2

2
∆α̇ =

⌢
ci ∆α̇

From the foregoing, the resisting moment to the instantaneous relative angular rotation

∆α(t) can be expressed as

Mα =
⌢

k ∆α +
⌢
ci∆α̇

Mβ =
⌢

k ∆β +
⌢
ci∆β̇

(2.40)
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which represent rotating-frame moment components, or stationary-frame at Ω = 0. In a

stationary frame, moment components can be expressed using (2.7) as:

Mϕ =
⌢

k ∆ϕ+
⌢
ci Ω ∆ψ + (

⌢
ci +

⌢
c )∆ϕ̇ ,

Mψ =
⌢

k ∆ψ− ⌢
ci Ω ∆ϕ + (

⌢
ci +

⌢
c )∆ψ̇ (2.41)

where
⌢
c is the coefficient of external damping due to joint rotation. The EOMs cross-

coupling reflects the existence of destabilising circulatory moments rendering the system

potentially unstable, as in the previous case of shaft’s linear-viscous material damping.

For absolute stability, work done by all forces and moments must be positive As an

illustration, we can calculate the work done by the above moments over one period of

natural vibration. To avoid complications, we will consider the circular motion1 of the

Figure 2.12.: Visual example showing the oscillatory motion of a shaft section
relative to the rotating frame of reference and the resulting alternating bending moments

shaft centre with natural frequency ωn, which results in the following rotations

∆ϕ = ∆̂ϕ cos ωnt , ∆ψ = ∆̂ψ sin ωnt

and the work done by the moments in one period is

Wv =

∫ 2π/ωn

0

(Mϕ ∆ϕ̇ + Mψ ∆ψ̇) dt = 2π( (
⌢
ci +

⌢
c ) ωn−

⌢
ci Ω ) ∆̂ϕ2

1with circular motion, the coupling (or shaft) experiences only one frequency (Ω − ωn), as opposed
to multiple frequencies (at least two, as in the case of a simple elliptic motion) when motion is not
circular, and hence the damping force cannot be expressed simply in the case of viscous damping.
Circular motion occurs if both the rotor and stator are perfectly symmetric and no gravity force
functional; a situation that is not possible practically.
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With stability assured for positive Wv, its borderline is encountered at rotation speed

Ωth =

⌢
ci +

⌢
c

⌢
ci

ωn

Speeds above Ωth will cause the work done Wv by the moments to be negative, hence

rendering the system (forward rotational mode) unstable. The above equation is similar

to the ineq. (2.16) for the stability of the forward lateral vibration mode.

Friction damping in joints resulting from the relative motion (rotation) of coupling

parts also can have a destabilising effect on rotor motion. Considering the (simplest)

Coulomb RID model in a one-dimensional element, we have the force arising from a

relative displacement x(t) = x̂ sin ωt expressed as

f(t) = Fc sgn(ẋ)

with Fc being a constant doing work Wc over one period expressed as

Wc = 4Fc x̂

Similarly, the friction-induced moments due to relative rotation ∆α at a joint are

Mα(t) = Mc sgn(∆α̇)

and the work dissipated over one period is

Wc = 4Mc ∆̂α

For a flexible toothed coupling with a dry friction coefficient µ that is loaded by a turning

moment MT (producing normal forces on the teeth) and that experiences a relative axial

displacement x(t), the resulting axial friction force from all the teeth is

f(t) = µ
MT

R
sgn(ẋ)

For rotational vibration of this flanged coupling, we have the relative vibration velocities

of the two halves as α̇ and β̇ (in the rotating frame) resulting in a relative axial velocity

ẋγ at the point on the circumference described by the angle γ and expressed as

ẋγ = R (∆α̇ sin γ − ∆β̇ cos γ) = R

√
∆α̇2 + ∆β̇2 sin(γ − ϑ)
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where

cos ϑ =
∆α̇√

∆α̇2 + ∆β̇2

, sin ϑ =
∆β̇√

∆α̇2 + ∆β̇2

by which ẋγ is: negative for 0 < γ < ϑ, positive for ϑ < γ < π + ϑ and negative again for

π + ϑ < γ < 2π. Assuming uniformly distributed friction force at the teeth around the

circumference, then for an element of arc this force is:

df =
µMT

2πR
sgn(ẋγ) dγ

which leads to the following components of moment in the rotating frame of reference

Mα = µ
MT

2π

∫ 2π

0

sgn(ẋγ) sin γ dγ , Mβ = −µ
MT

2π

∫ 2π

0

sgn(ẋγ) cos γ dγ

which—in accordance with the sign of ẋγ—on performing the integration result in

Mα =
2

π
µMT cos ϑ , Mβ =

2

π
µMT sin ϑ

or on using the values for cos ϑ and sin ϑ results in

Mα =
2

π
µMT

∆α̇√
∆α̇2 + ∆β̇2

, Mβ =
2

π
µMT

∆β̇√
∆α̇2 + ∆β̇2

(2.42)

Moments Mϕ and Mψ in the stationary frame are obtained by applying transformation

(2.7) to the (above) moments in the rotating frame of reference, i.e. exchange

∆α̇ = ∆ϕ̇ + Ω∆ψ , ∆β̇ = ∆ψ̇ − Ω∆ϕ .

The resulting moments will be

Mϕ =
2

π
µMT

∆ϕ̇ + Ω∆ψ√
(∆ϕ̇ + Ω∆ψ)2 + (∆ψ̇ − Ω∆ϕ)2

Mψ =
2

π
µMT

∆ψ̇ − Ω∆ϕ√
(∆ϕ̇ + Ω∆ψ)2 + (∆ψ̇ − Ω∆ϕ)2

(2.43)

which exhibits a cross-coupling of the term Ω∆ϕ, which will result in the potentially

destabilising circulatory forces in analogy with (2.41).

Moments Mϕ and Mψ are nonlinear in their velocities, thus are not readily amenable

to the linear stability analysis (e.g. Routh-Hurwitz criteria or eigen value examination)

customary for LTI systems e.g. (2.13). Two approaches are customary in such case: a)
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Implement numerical time integration to the system-governing nonlinear EOMs with the

nonlinearities from the joints separated from the linear rotordynamic system, and residing

on the right-hand side of the EOMs as nonlinear forcing functions. b) Use equivalent

viscous damping coefficients to be plugged in the EOMs similar to eqs. (2.41). It has been

shown that the work done by the friction moment over one period is Wc = 4Mc∆̂α, and the

work done by the viscous damping moment (expressed in terms of ∆̂α) is Wvα
= π

⌢

d ω ∆̂α.

With Mc = 2
π
µMT , the equivalent dry friction coefficient is

⌢
cc=

4Mc

πω ∆̂α
=

8

π2
µ

MT

ω ∆̂α

or on using x̂ at the radius R as
⌢
cc=

8

π2
µ

MT

ω

R

x̂

which can be plugged in eqs. (2.41) instead of
⌢
ci and apply the same stability analysis,

the Routh-Hurwitz criterion or check the decay coefficient of the eigen values for stability

conditions. The above expressions for
⌢
cc are rather questionable due to the uncertainties

in ω and ∆̂α (i.e. x̂
R
). However, they can provide a rough first estimate of stability.

2.4.6. Industrial tools

Lund (1974) was arguably the first to include the RID destabilising effect in a real-

istic rotor-bearing system analysis. He extended the Myklestad-Prohl transfer matrix

method (for critical speed calculation) to examine eigenvalues of the system which would

incorporate journal bearings, internal (shaft) damping, aerodynamic excitation, etc. He

represented the effect of hysteretic RID as an angle α (2.45) by which the stress leads

the strain, and to which the energy dissipated is proportional. For current industrial

applications however, incorporating joint RID in stiffness matrices of rotordynamic FEA

is more realistic, even with viscous RID, and far more straightforward—see [47, 86].

2.4.6.1. Linear material damping representation in rotating beam FEA

Building on Lund’s work, E. S. Zorzi, who was interested in RID, and H. D. Nelson, who

had just published one of the first papers (1975) on rotor FEA, published a paper (1976)

incorporating RID in Nelson’s FE model via a constitutive (stress-strain) law. This law

(2.46) known widely as Nelson’s model, has viscous as well as hysteretic RID coefficients,

and is utilised extensively in industrial FE routines. Adopting and building on Nelson’s

work, L. W. Chen and D. M. Ku developed (1991) a C0 three-node isoparametric rotor

finite element—as opposed to the C1 two-node element—based on the Timoshenko beam.

Their derived strain energy dP e and dissipation function dDe of a differential element—
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ignoring transverse shear deformation—are stated here. Nelson’s model and conclusions

are presented briefly from these two papers; and criticised for their limitations.

The EOM for the undamped rotor element without axial load is written as:

([MT ] + [MR]){q̈} − Ω[G]{q̇} + ([Ke] − [A]){q} = {Qc} cos Ωt + {Qs} sin Ωt (2.44)

where the 8 × 8 element matrices are: [G] the skew symmetric gyroscopic matrix, [MT ]

the translational mass matrix, [MR] the rotary mass matrix, [Ke] the stiffness matrix.

Nelson’s RID model has linear viscous RID simply represented by coefficient ηv, and

hysteretic RID expressed by the loss factor ηh, which is related to the loss angle αh:

sin(αh) =
ηh√

1 + η2
h

(2.45)

Combined, the two RID models yield the axial stress-strain constitutive relationship:

σz = E

{
εz√

1 + η2
h

+

(
ηv +

ηh√
1 + η2

h

)
ε̇z

}
(2.46)

Incorporation Nelson’s model in (2.44) yields the moment-curvature relationships:

{
Mx

My

}
= (2.47)

EI




1+ηh√
1+η2

h

(
ηvΩ + ηh√

1+η2
h

)

(
ηvΩ + ηh√

1+η2
h

)
− 1+ηh√

1+η2
h




{
u′′

v′′

}
+ EI

[
ηv 0

0 −ηv

]{
u̇′′

v̇′′

}

Coupled response in the x-z and y-z planes is clear through viscous and hysteretic RID

effects; while viscous RID velocity-dependence produces additional de-coupled moment.

The Lagrangian EOM can be established for the damped finite rotating shaft element:

([MT ] + [MR]){q̈} + (ηv[K
e] − Ω[G]){q̇} + (ηa[K

e] + ηb[Kc]) {q} = {Q(t)} (2.48)

where

[η] =

[
ηa ηb

−ηb ηa

]
; ηa =

1 + ηh√
1 + η2

h

; ηb = ηvΩ +
ηh√

1 + η2
h

and

[Kc] =

∫ l

0

EI[Γ′]T

[
0 1

−1 0

]
[Γ′]ds
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It is in this circulatory matrix [Kc], where the RID-induced instability is characterised.

These authors’ results show that hysteretic RID is destabilising at all speeds; and that

all FWD modes are unstable, while all BWD modes are stable, if only hysteretic RID is

defined, since including viscous RID introduces the stabilising term ηv[K
e].

2.4.6.2. Limitations of, and reservations on Nelson’s model

There are several reservations regarding Nelson’s work, most notably: The destabilising

effect of hysteretic RID at all speeds.

The erroneous conclusion that a hysteretic RID model will cause instability as soon

as rotation commences, is due to the invariant sign of the hysteretic angle αh (2.45) at

speeds above, and below the natural frequency of the mode concerned. An example of

appropriate implementation is (2.32).

The nonfactual claim that Dimentberg (1959) reached the same conclusion about the

destabilising effect of hysteretic RID at all speeds. Dimentberg states, very clearly, that

hysteretic RID can be destabilising above the critical speed only, along with a condition

of an insufficient stabilising external damping; which, if exists, the rotor will be always

stable. Also, Dimentberg did not use an angle αh (the cause of this erroneous conclusion)

to characterise hysteretic RID; in fact his model was similar to that of (2.25) used by

Tondl (1963) which stemmed from Dimentberg’s model.

The constitutive law assumed resembles Dimentberg’s (1959) summation of both hys-

teretic and viscous damping coefficients in one of his expressions for the threshold speed of

instability; which was presented for illustrative purposes only. However, this constitutive

law is rather un-orthodox, because it combines the constitutive differential equation of

viscous damping with a FR model of hysteretic damping.

Deriving bending moments from anelastic stress-strain relations does not account

for the fact that hysteretic RID will be inoperative when stresses are time-invariant (syn-

chronous circular precession) and a destabilising EOMs cross-coupling will be in effect

regardless. Tondl (1963) had overcome this hurdle by multiplying the hysteretic damping

force by the nondimensional term ζ̇/|ζ̇| (2.18) thus insuring hysteretic RID is inoperative

and does not affect the EOMs when there is no shaft flexing.
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Figure 2.13.: Oscilloscope pictures of the stable and unstable (bounded self-induced
whirling) motions below and above the threshold of instability respectively

Figure 2.14.: A waterfall plot of a typical industrial rotordynamic instability
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Figure 2.15.: Spline coupling RID-induces whirling of the MAKILA engine tie-bolt

Figure 2.16.: The MAKILA engine main components
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Figure 2.17.: Tie-bolt of the MAKILA engine at turbine section
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Figure 2.18.: Friction producing joints in the SSME turbines
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Figure 2.19.: Photographs of whirling rotor (textile spindle) orbits, above critical speed
RID from a long shrink-fit. Speed: 4300 rpm; above instability threshold (Kushul, 1965)
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Figure 2.20.: Tondl’s experimental Rotors
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Figure 2.21.: Tondl, 1965: Friction RID whirling frequency’s varying amplitude with rpm
Rotor with central disc shrunk-on imperfectly. Measurements were not highly repeatable
due to fabrication imperfection and wearing affecting friction forces. [V: signal in the

vertical direction, H: signal in the horizontal direction, f: frequency of the signal. Notches on

the signal pictured off the oscilloscope are from the speed-indicating marker on the rotating rotor]
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2. Review of significant RID research

Figure 2.22.: Tondl, 1965. Varying frequency and amplitude of friction RID precession
when gyroscopes are effective—rotor with seven discs

f : frequency of the signal from the vertical probe.
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2.4. Different models and analysis techniques

Figure 2.23.: MTI, 1990. FFT plots showing the sub and supercritical operation of rotor-
dynamic test rig with axial spline

Critical speed 2200-2300. a) Sub-critical operation showing the supersynchronous excita-
tion of the natural frequency. b) Super-critical operation with no subsynchronous compo-
nent. c) Subsynchronous instability sets in after a small increase in speed. d) Change of
the subsynchronous component frequency due to the spline coupling loose characteristics.
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2. Review of significant RID research

Figure 2.24.: MTI, 1990. Waterfall plot showing the varying amplitude of instability —
loss of spline friction

Above, FFT showing RID instability at the supercritical speed 2800 rpm.
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2.4. Different models and analysis techniques

Figure 2.25.: MTI 1990. FFT & waterfall plot showing the time varying nature of the
interference-fit-induced subsynchronous vibrations
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2. Review of significant RID research

Figure 2.26.: MTI, 1990; Time transient analysis for predicting the motion of the rotor-
dynamic test rig with axial spline coupling

A Coulomb friction model for RID is used. Rotor response settled into a limit cycle
orbit alternating between an inner and an outer circle as it precessed
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2.4. Different models and analysis techniques

Figure 2.27.: MTI, 1990; Predicted FFT plot based on the time transient analysis of the
rotordynamic test rig with the axial spline coupling
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2. Review of significant RID research

Figure 2.28.: MTI, 1990. The effect of imbalance and friction-torque product on the limit
cycle orbits

Time marching predictions for the spline-coupling model.
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2.4. Different models and analysis techniques

Figure 2.29.: MTI, 1990. The effect of bearing asymmetry on limit cycle orbits and ellipse
sizes

Time marching predictions for the spline-coupling model.
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3. RID systems modelling and

characteristics

The foundation for linear and nonlinear (NL) analysis to follow is laid here. The overall

NL system is separated SNL

S⊃ {SL,SN} into linear time-invariant (LTI) ‘SL’ and NL ‘SN ’

(possibly time-varying) subsystems, which are setup in a feedback formulation (fig. 3.5),

and whose characteristics will determine suitable analysis (Chs. 4,5 ).

Real and complex EOMs of the absolutely stable LTI/LTV gyroscopic subsystem are de-

veloped in the stationary and rotating frames, yielding State-Space and Transfer Function

Matrices (TFM) representations, whose characteristics narrow down possible NL stability

analysis. Closed-form analytical expressions of Eigen-results (§.3.1.3.2) are developed for

comparison with RID-augmented systems, and are at the core of this work.

RID is introduced as a localised friction joint, which couples the linear rotor (fig.3.1)

to the rotating frame ground (fig.3.4). Characteristics of various damping, including

an assumed parabolic dry friction, models (rheological, FR, hysteresis) further limit the

choice of NL analysis, and more importantly affect whirling behaviour significantly.

3.1. Linear rotordynamic characteristics

Practical spatial models of rotordynamic systems are invariably presented as a set of

second-order ordinary differential equations that represent lumped-parameter models.

These equations are assembled from the EOMs of the system’s components—shafts, discs,

couplings, bearings, etc.—in a compatible manner with the analysis procedure to be imple-

mented. The ‘Direct Stiffness Method’ (DSM) and the ‘Transfer Matrix Method’ (TMM)

are the analysis procedures commonly used. The DSM is more widely adopted primarily

due to the popularity of Finite Element Analysis (FEA).
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3.1. Linear rotordynamic characteristics

3.1.1. EOMs of Linear Rotor-Bearing MDOF system

For transverse vibration analysis, a linear MDOF rotordynamic system S can be repre-

sented in the stationary (Euclidean/inertial) frame of reference as:

Mq̈ + (G + C)q̇ + (K + Kcc)q = f (3.1a)

Mq̈ + Cgq̇ + Kgq = f (3.1b)

with C,K being generally indefinite and non-symmetric matrices. The cross-coupled (cir-

culatory) Kcc matrix derives from destabilising mechanisms such as RID. Cg,Kg are the

stationary frame generalised damping and stiffness matrices. The q vector comprises the

translational and rotational DOFs of discretised stations, in which case f comprises the

corresponding external forces and moments. Small translational and rotational displace-

ments can be related, whence the system’s order can be halved.

3.1.1.1. 2DOF rotor in stationary xy-frame

This is a simple yet illustrative rotor-bearing LTI system with inertia and gyroscopic

Y
ax

is

Z axis X axis

x axis

h
ax

is

Y
ax

is
r WtW

Self-aligning grounded

spherical roler bearing

Flexible support bearing

Joint

Figure 3.1.: Simple gyroscopic rotor on orthotropic bearings represented by 2 DOFs

effects from a disc as well as a symmetric flexible shaft, both comprising the rotor. This

rotor is mounted on non-rigid bearings, which are possibly orthotropic and contribute

stiffness and external linear viscous damping. This system can be modelled using an

assumed 1st mode shape [96] as in (3.1) by:

q =

{
x(t)

y(t)

}
, f =

{
fx(t)

fy(t)

}
; I =

[
1 0

0 1

]
, ℵ =

[
0 −1

1 0

]
, M = mI , G = −GΩℵ

orth. bearings: C =

[
cx 0

0 cy

]
, K =

[
kx 0

0 ky

]
=

[
k + ∆k 0

0 k − ∆k

]
(3.2a)

iso. bearings: K = kI , C = cI (3.2b)
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3. RID systems modelling and characteristics

External damping is said to be proportional when C = αM + βK. Thus far, Kcc
def
= 0 as

the effect of RID or any other destabilising mechanism has not yet been considered.

3.1.1.2. EOMs of 2DOF rotor in rotating ξη-frame

As RID forces are initially augmented to rotating frame EOMs (§.3.2.2.1), the steps

involved in shifting between ξη- and xy-frame EOMs are detailed due to their importance

Vector transformations between coordinate systems

T =

[
cos τΩ − sin τΩ

sin τΩ cos τΩ

]
⇒ Ṫ = ΩTℵ, T̈ = −Ω2T ; T −1 = T T , Ṫ T = −ΩT Tℵ ; T̈ T = −Ω2T T

(3.3)

f = T fr = T

{
fξ(t)

fη(t)

}
q = Tqr = T

{
ξ(t)

η(t)

}
(3.4a)

q̇ =
d

dt
(Tqr) = T (q̇r + Ωℵqr) q̈ =

d2

dt2
(Tqr) = T (q̈r + 2Ωℵq̇r − Ω2qr) (3.4b)

qr = T−1q = T T

{
x(t)

y(t)

}
q̇r = Ṫ Tq + T T q̇ = T T (q̇ − Ωℵq) (3.4c)

System Matrices in the rotating frame The rotor system defined by (3.1, 3.2) is

expressed in accordance with (3.3, 3.4) as

MT (q̈r + 2Ωℵq̇r − Ω2qr) + (G + C)T (q̇r + Ωℵqr) + KTqr = T fr (3.5)

To express the force vectors in the rotating frame we pre-multiply (3.2) or (3.5) by T T

T TMq̈ + T T (G + C)q̇ + T TKq = T TT fr = fr

T TMT (q̈r + 2Ωℵq̇r − Ω2qr) + T T (G + C)T (q̇r + Ωℵqr) + T TKTqr = fr
(3.6)

The EOMs are then rearranged into rotating frame matrices and vectors:

Mrq̈r + Crq̇r + Krqr = fr (3.7)

where

{ Mr = T TMT

Cr = 2ΩT TMTℵ + T T (G + C)T

Kr = −Ω2T TMT + ΩT T (G + C)Tℵ + T TKT
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3.1. Linear rotordynamic characteristics

LTV matrices will emerge in the ξη-frame if any of the xy-frame matrices (3.1b) describes

an anisotropic rotor e.g. (3.2a). According to (A.3), isotropy of the 2DOF rotor (3.2)

requires M,Cg,Kg to have identical diagonal elements and skew-symmetric off-diagonal

elements as in (3.2b). With orthotropic bearings K 6= Kiso ∴ ∆k 6= 0,⇒ Kr
def
= LTV as in

(3.9). In this case, proportional damping C ≡ βK ⇒ Cr
def
= LTV as well.

The isotropic rotor (3.2) with (3.2b) yields (3.6) written as

mT TIT (q̈r + 2Ωℵq̇r − Ω2qr) + cT TIT (q̇r + Ωℵqr)

− GΩT TℵT (q̇r + Ωℵqr) + kT TITqr = fr

since T TIT = I and T TℵT = ℵ, we have

mI(q̈r + 2Ωℵq̇r − Ω2qr) + (cI − GΩℵ)(q̇r + Ωℵqr) + kIqr = fr

or on rearranging, keeping in mind that ℵ2 = −I

mIq̈r +
(
cI + (2m − G)Ωℵ

)
q̇r +

((
k + (G − m)Ω2

)
I + cΩℵ

)
qr = fr (3.8)

The anisotropic rotor (3.2, 3.2a) has ∆k 6= 0. For simplicity, assume C = cI 6= βK

hence, according to (3.7), the ∆k ∈ K will affect only Kr via:

T TKT = T T

(
kI + ∆k

[
1 0
0 −1

])
T = kI + ∆k T T

[
1 0
0 −1

]
T

where, ∆k T T
[

1 0
0 −1

]
T = ∆k

[
cos 2τΩ − sin 2τΩ

− sin 2τΩ − cos 2τΩ

]

leading to the LTV EOMs:

mIq̈r +
(
cI + (2m − G)Ωℵ

)
q̇r

+

((
k + (G − m)Ω2

)
I + cΩℵ + ∆k

[
cos 2τΩ − sin 2τΩ

− sin 2τΩ − cos 2τΩ

])
qr = fr (3.9)

3.1.1.3. Complex EOMs of a 2DOF rotor

Complex EOM of the isotropic rotor version (kx = ky = k). Applying (A.4) to (3.2,

3.2b), the EOM in the stationary xy-frame is:

mz̈ + (c − ıΩG)ż + kz = fz (3.10)
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3. RID systems modelling and characteristics

The corresponding EOM in the rotating ξη-frame can be arrived at by applying the

complex transformation (2.7) to (3.10), which is equivalent to applying (2.4,A.4) with

(ζ,Mr,Cr,Kr) in place of (z,M,Cg,Kg) to (3.8), resulting in:

mζ̈ +
(
c + ıΩ(2m − G)

)
ζ̇ +

((
k + (G − m)Ω2

)
+ ıΩc

)
ζ = fζ (3.11)

3.1.2. Linear system model representations

Although the RID problem is a nonlinear one, the special cases of linear (possibly time-

varying LTV) RID systems are worthy of studying, because a linear system:

• Is always the first basis for system design and frequently for final analysis purposes.

• Affords analysis that is far more tractable yielding a unique formal solution, which

is applicable for all initial conditions and inputs.

• Yields valuable insight into fundamentals of system behaviour, which are used for

analogy to study effectively nonlinear systems.

A multivariable dynamic system S can be represented by either state-space representa-

tions or by an input-output representation, e.g. transfer function matrix (TFM) H(s).

3.1.2.1. State-Space representations

A state-space representation consists of a set of first order differential equations, describing

variables’ evolution whose values at any given instant determine current state.

General dynamic systems representation State-space is suitable for representing com-

binations of S
def
= {LTI, LTV, NL} that is described by a finite lumped-parameter model,

which is setup as a set of ordinary differential equations. Modelling distributed-parameter

infinite-dimensional systems described by partial differential equations is also possible, al-

beit with mathematical difficulties.

A general state-space model of l-dimensional lumped-parameter S, which is possibly

nonlinear and time-varying can be represented in the Rl space as:

ṗl×1 = Fl×1(p, f , t) The State Equation (3.12)

where F is generally nonlinear. To insure the mathematical validity of (3.12), certain

restrictions maybe imposed on F; e.g. using idealised functions with peculiar features

(e.g. discontinuities), and thereafter a careful examination of analysis is necessary to
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3.1. Linear rotordynamic characteristics

ensure such features do not invalidate the solutions. Input-output descriptions/models

especially of nonlinear elements may well be used in conjunction with state-space forms.

The linear time-varying version S(A,B,O,D, t) of (3.12) whose equations represent

the states p, inputs f and outputs o of S is:

ṗ = A(t)p + B(t)f LTV State equation (3.13a)

o = O(t)p + D(t)f LTV Output equation (3.13b)

The time variable t indicates S
def
= LTV, where the relation of S inputs (external forces)

and outputs (responses) is time-dependent. Such model is representative of rotor-bearing

systems with asymmetric rotor when represented in the xy-frame, or with orthotropic

bearings when represented in the ξη-frame (3.9). The difficulty of solving for A(t) prevents

much further progress, except in special cases, e.g. when A(t) is periodic.

The LTI subcategory S(A,B,O,D) of (3.13a, 3.13b) is:

ṗ = Ap + Bf LTI State equation

o = Op + Df LTI Output equation

Al×l is known as the dynamics (State) matrix as it describes the system dynamics and

controls the trajectories of the state vector p(t). The input matrix B reflects the effect of

forces (inputs) on the state variables ∈ p the state vector. The output matrix O represents

the relation (transformation) of p to the output vector o. The transmission matrix D

represents the direct effect of f on o, bypassing the S dynamics in A.

Linear rotordynamic system representation An nDOF LTI/LTV mechanical S that

is modelled as a set of second-order ordinary differential equations ⇒ Rl = R2n. The

state-space representation S(A,B,O,D) is not unique and depends on the choice of p.

Intuitively, we can elect to set the displacements q and velocities q̇ as candidates for p

in which case p
def
= a phase state vector. For our purposes, (3.13b) has D = 0 = D(t). A

rotordynamic S can be represented in state-space as:

ṗ = Ap + Bf (3.14a)

o = Op (3.14b)

where p2n×1, fn×1 ⇒ A2n×2n, B2n×n
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3. RID systems modelling and characteristics

Setting p =
{ q

q̇

}
from (3.1) we have:

A =

[
0 I

−M−1Kg −M−1Cg

]

2n×2n

, B =

[
0

M−1

]

2n×n

(3.15a)

B in (3.15a) implies that an input (force f) is physically applicable to any coordinate

(station). As imbalance is usually accounted for in the EOMs as an external force, it

should contribute to f of (3.14). The choice of O depends on what is measurable and of

interest from p. If we are interested in q or q̇ we can set O = Od or O = Ov respectively,

or even O = Odv if we want both q, q̇:

Od = [I 0]n×2n, Ov = [0 I]n×2n, Odv = I2n×2n (3.15b)

→֒ o = q, →֒ o = q̇, →֒ o =

{
q

q̇

}
(3.15c)

2DOF rotor-bearing S representation in state-space:

Input and Output matrices used in both stationary and rotating frames are:

B =
1

m




0 0

0 0

1 0

0 1




, Od =

[
1 0 0 0

0 1 0 0

]
, Ov =

[
0 0 1 0

0 0 0 1

]
, Odv =

[
Od

Ov

]
(3.16)

State matrix in stationary frame for isotropic S:

A =




0 0 1 0

0 0 0 1

− k
m

0 − c
m

−ΩG
m

0 − k
m

ΩG
m

− c
m




(3.17)

State matrix in rotating frame for isotropic Sr:

Ar = − 1

m




0 0 −m 0

0 0 0 −m

k + Ω2(G − m) −Ωc c Ω(G − 2m)

Ωc k + Ω2(G − m) −Ω(G − 2m) c




(3.18)

Complex formulations in state space, albeit unorthodox, are possible:
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3.1. Linear rotordynamic characteristics

Input & Output matrices for the 2DOF Sc:

Bc =

{
0
1
m

}
, Od

c = {1, 0}, Ov
c = {0, 1}, Odv

c = I2×2 (3.19)

State matrix in stationary frame for 2DOF isotropic Sc:

Ac =

[
0 1

−k/m −(c − ıΩG)/m

]
(3.20)

State matrix in rotating frame for 2DOF isotropic Src:

Arc =

[
0 1

−
(
k + (G − m)Ω2 + ıΩc

)
/m −

(
c + ıΩ(2m − G)

)
/m

]
(3.21)

3.1.2.2. Transfer Function Matrices (TFMs) representations

We can derive TFMs H(s), e.g. the n× n Receptance Hd
(s) and Mobility Hv

(s) matrices,

either from the EOMs directly or from the state-space representation of LTI S(A,B,O).

Each of the n × n TFMs is made up of individual transfer functions (TFs) Hij(s) ∈ H(s),

with i, j∈{1...n}. In vibration terminology, TFs of the form Hii(s) are referred to as point

TFs since the input is applied to the same point where the output is measured/observed.

On the other hand, Hij(s) are referred to as transfer TFs since the point of output is

transferred from the point of input. As we are concerned here with 2 × 2 TFMs of a

2DOF rotordynamic SL, a transfer TF can only be established between two perpendicular

directions (in quadrature). In order to avoid confusion of terms, the transfer TF Hji(s)

e.g. Hyx(s) will be referred to as a quad TF, as opposed to the point TF Hxx(s).

TFMs construction from EOMs If we take the Laplace transform of the LTI (3.1) with

zero initial conditions, we have:

(
Ms2+Cgs+Kg

)
q(s) = f (s) (3.22a)

Sq(s) = f (s) (3.22b)

and with Laplace transform L(q̇) = sq(s), we get:

s−1S sq(s) = sVq(s) = f (s) (3.22c)
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3. RID systems modelling and characteristics

We can construct Hd,Hv from S,V respectively:

q(s) = Hd
(s)f (s) ⇒ Hd

(s) = S−1 =
adj[S]

|S| (3.22d)

sq(s) = Hv
(s)f (s) ⇒ Hv

(s) = V−1 = sHd
(s) (3.22e){

q(s)

sq(s)

}

2n×1

=

[
Hd

(s)

sHd
(s)

]

2n×n

fn×1(s) (3.22f)

TFMs construction from S(A,B,O) H(s) representing MIMO SL in (3.22) is:

H(s) = O[sI − A]−1B = O
adj[sI − A]

|sI − A| B = O
adj[sI − A]

D(s)
B (3.23)

where D(s) = s2n + a2n−1s
2n−1 + · · · + a1s + a0 i.e. a2n = 1

Individual transfer functions Hij ∈ H(s) can be derived directly from S(A,B,O) as:

Hij(s) = Oithrow

adj[sI − A]

D(s)
Bjth

col
=

Nij(s)

D(s)
(3.24)

Nij(s) = gij(s
u + bu−1s

u−1 + · · · + b1s + b0); gij
def
= real gain ∈〈−∞,∞〉, 0 ≤ u < 2n

By (3.24), the TF Hij(s) represents a SISO SL of order n ≥ 2.

Example TFMs representing our 2DOF S in both xy- and ξη-frames are presented.

Firstly, the receptance (compliance) TFM representing S with orthotropic bearings in

the stationary frame (3.2a)—with C = cI for simplicity—is derived from S(A,B,O) as:

Hd

Orth
(s) =

1

m2D(s)

[
s2m + sc + k − ∆k −sΩG

sΩG s2m + sc + k + ∆k

]
(3.25a)

D(s) =
(
s4m2 + 2s3mc + s2(c2 + Ω2G2 + 2mk) + 2skc + k2 − ∆k2

)
/m2 (3.25b)

Isotropic rotor-bearing TFMs with ∆k = 0 (3.2b) for receptance in both stationary

and rotating frames, are derived from S as in (3.22). The individual transfer functions

H11 = H22; H12 = −H21 for both H,Hr as expected e.g. (3.26, 3.28).

In the stationary frame Hd
(s) derives from S that results from (3.22, 3.2):

S = S2×2 =

[
s2m + sc + k sΩG

−sΩG s2m + sc + k

]
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3.1. Linear rotordynamic characteristics

and since S11 = S22, S21 = −S12 =⇒ adj [S2×2] ≡ ST , we have:

Hd
(s) =

1

|S|

[
s2m + sc + k −sΩG

sΩG s2m + sc + k

]
(3.26a)

|S| = s4m2 + 2s3mc + s2(c2 + Ω2G2 + 2mk) + 2skc + k2 (3.26b)

The same Hd
(s) in (3.26) can be derived from (3.23, 3.17) with B,Od from (3.16)

In the rotating frame (3.22) is applied to (3.8), and Hd
r (s) is derived from Sr

Sr = Sr2×2 =

[
s2m + sc + k + Ω2(G − m) −sΩ(2m − G) − Ωc

sΩ(2m − G) + Ωc s2m + sc + k + Ω2(G − m)

]
(3.27)

and again adj [Sr2×2 ] ≡ ST

r , leading to

Hd
r (s) =

1

|Sr|

[
s2m + sc + k + Ω2(G − m) sΩ(2m − G) + Ωc

−
(
sΩ(2m − G) + Ωc

)
s2m + sc + k + Ω2(G − m)

]
(3.28a)

|Sr| = s4m2 + 2s3mc + s2
(
c2 + 2mk + Ω2(2m2 − 2mg + G2)

)

+ 2sc
(
k + Ω2m

)
+

(
k + Ω2(G − m)

)2
(3.28b)

3.1.3. Modal analysis in stationary & rotating frames

3.1.3.1. Eigensolutions and modal directionality

The eigenvalue problem (3.29a) associated with the state matrix A in (3.14, 3.21,

3.31), which is generally non-symmetric and indefinite, is a non-self-adjoint one. The

eigenvalue problem and its adjoint are:

[λiI − A]ri = 0 Ari = λiri (3.29a)

lT

i [λiI − A] = 0 AT l∗i = λ∗
i l

∗
i (3.29b)

The eigensolutions of (3.29) are the eigenvalues λi and their corresponding (right) eigen-

vectors ri or left eigenvectors li, where i ∈ {1 . . . order of A}. The complex ith eigensolution

pair (λi, ri) represents the ith mode of lateral vibration, which is generally non-planar.

Although not encountered herein, real eigensolutions are possible, especially in systems

with hydrodynamic bearings.
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The eigenvalues of S (3.1) are the eigenvalues of A describing it, which are the roots

of its characteristic polynomial |λI − A| leading to the characteristic equation:

|λI − A| = D(λ) = 0 (3.30)

where the polynomial function D(λ) is of the same order as A. This is logical since the

free response of a LTI S (3.1, 3.2, 3.8) to initial conditions p(t0) at t = t0 is defined by

setting f = 0 in the state equation (3.14a) leading to:

ṗ = Ap (3.31)

the solution of which is defined totally by A and the initial conditions:

p(t) = eA(t−t0)p(t0)

t0 = 0 ⇒ p(t) = eAtp(0)

The eigenvalues are also the latent roots of the second-degree lambda-matrix D2(λ) re-

sulting from the latent equation:

|D2(λ)| ≡ |λ2M + λCg + Kg| = 0 (3.32)

Eigenvectors and modal (latent) vectors: ri and r̂i are related by the construction of

state matrix A (3.15a) from system matrices (3.1), which results in:

ri =

{
r̂i

λir̂i

}
D2(λi)r̂i =

[
λ2

i M + λiCg + Kg

]
r̂i = 0 (3.33a)

l∗i =

{
l̂∗i

λ∗
i l̂

∗
i

}
l̂T

i D2(λi) = l̂T

i

[
λ2

i M + λiCg + Kg

]
= 0 (3.33b)

Eigensolutions from real representation of a rotordynamic—SL ∈ R2n ⇒ A2n×2n ⇒
(λ, r)i∈{1...2n}

—occur in n complex-conjugate pairs. Accordingly, (3.30-3.33) yield 2n eigen-

solution pairs presented here as:

ri = r∗i+n ri,i+n = ℜ(ri) ± ıℑ(ri) (3.34a)

λi = λ∗
i+n λi,i+n = ℜ(λi) ± ıℑ(λi) (3.34b)

where ℜ(λi) = − γi |ωi|√
1 − γ2

i

and ℑ(λi) = ωi ; i ∈ {1, . . . , n} (3.34c)
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In this modal model (3.34) that has been derived from the spatial model (3.1), the first

n eigenvalues have (damped) modal frequencies ωi∈{1...n}
that assume both positive (+ve)

and negative (-ve) values (e.g. fig. 4.2). ℜ(λi)
def
= decay constant (rate) and γi

def
= modal

damping factor whose sgn(γi) is opposite to sgn
(
ℜ(λi)

)
, both of which are independent

of sgn(ωi). For SL to be stable, ℜ(λi) has to be negative, which requires sgn(γi) to be

positive ∀i∈{1,...,2n}, hence the use of |ωi|. Modal parameters, including the all important

γi, can be equally derived from response models using as in fig.6.9

Modal directionality Generally, each individual mode of lateral vibration represents a

precession in the corresponding frame of reference, be it stationary or rotating. Modal

directionality, as defined here, refers to the direction of such precession, which can be

clockwise (CW ©) or counterclockwise (CCW ª) with respect to the frame where the

mode is derived. Modal directionality is expressed by the relation between the mode’s

eigensolution pair (λ, r)i defining it, e.g. (3.35). It is also possible to deduce modal

directionality from response models (e.g. figs. 4.8, 4.9, 6.7) as presented in §4.1. It is

worthy of noting that, in complex rotor models, not all modes have a unique direction.

Modes classified: FWD/BWD, CCW/CW In the stationary frame, modes are usually

classified as forward (FWD) or backward (BWD), to reflect the co- or counter-rotating

precessions respectively with the direction of rotation, which is taken as positive (+ve) in

the ª direction. The combination of:

• Lead/Lag structure of r̂x to r̂y in the modal vector r̂i =
{

r̂x
r̂y

}
i

• Sign (+ve/-ve) of the corresponding modal frequency: sgn (ωi), i ∈ {1, . . . , 2n}

from (3.33a) reveals the modal directionality, e.g. (3.35). The undamped (C = 0) rotor-

dynamic SL will have its modes classified in accordance with:

FWD modes BWD modes

+ve ω : r̂x leads r̂y by π/2 r̂x lags r̂y by π/2 (3.35a)

-ve ω : r̂x lags r̂y by π/2 r̂x leads r̂y by π/2 (3.35b)

Clearly, (3.35a) and (3.35b) represent complex conjugate modes. The lead/lag angles of r̂x

to r̂y in (3.35) of damped SL are generally close to but 6= π/2 due to the anisotropy intro-

duced by K 6= Kiso and/or non-proportional damping. Vector phasing of proportionally

damped isotropic SL where C = αM+βKiso as defined in (A.3) follows (3.35), e.g (3.45).

A similar classification to (3.35) can be applied to modes derived in the rotating frame.

However, as the FWD and BWD terms lose their significance in the rotating frame, they

are replaced by CCW ª and CW © modes respectively.
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Rotational speed, eigenvalues and critical speed The eigenvalues λi∈{1...2n}
associated

with FWD and BWD modes are distinguished here as λf :i, λb:i respectively. For compli-

ance with the results of complex formulations e.g. (3.41) as well as convention:

FWD modal freqs. BWD modal freqs.

λf :i ⇒ ωf :i > 0, λb:i ⇒ ωb:i < 0; i∈{1,...,n} (3.36)

λf :i+n ≡ λ∗
f :i ⇒ ωf :i+n < 0, λb:i+n ≡ λ∗

b:i ⇒ ωb:i+n > 0 ←֓

In general, increasing speed leads to increased absolute values of FWD modal frequencies

and decreased absolute values of BWD modal frequencies (e.g. 3.41, 3.42 and fig. 4.1):

Ω : [0⊲ 〉 ⇒ |ωf :i| ≡ |ωf :i+n| ր and |ωb:i| ≡ |ωb:i+n| ց

The critical speed Ωc
def
= the rotational speed at which the first FWD modal frequency

equals this rotational speed, i.e. at Ωc , ωf :1 = Ω. Therefore, at sub-critical speeds Ω <

Ωc ⇒ ωf :1 > Ω and at super-critical speeds Ω > Ωc ⇒ ωf :1 < Ω.

The modal solution Since the state matrix A is non-symmetric with the M−1Kg block

being a full matrix, using A for free and forced response calculations can be rather taxing

computationally for realistic FEA, due to the associated memory requirements, as well as

being more prone to rounding-off errors. With A being usually of a simple structure, it can

be diagonalised by similarity transformations that preserve system properties, i.e. char-

acteristic equation, eigensolutions and TFM. The right and left eigenvector matrices can

be defined such that

A = RΛR−1 LTR = I LTAR = Λ (3.37a)

or AR = RΛ lT

i rj = δij lT

i Arj = δijλi (3.37b)

stating that eigenvectors ri, li, i∈{1,...,2n} are biorthonormal and LT = R−1, leading to:

[
λI − A

]−1
= R

[
λI − Λ

]−1
LT =

2n∑

i=1

ril
T

i

λ − λi

(3.38)

where ril
T

i forms the ith constituent (residue) matrix of A.

The free and forced response of (3.14) can be obtained using the modal matrix R (right
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eigenvectors) in the similarity transformations1:

p(t) = Rp̃(t)

˙̃p = R−1ARp̃ + R−1Bf = Λp̃ + B̃f (3.39a)

o = ORp̃ = Õp̃ (3.39b)

With O ≡ Od (3.15b), Õn×2n is simply a matrix of modal vectors r̂v∈{1...2n}
. If A yields

distinct λs ∴ Λ
def
= diag{λv∈{1...2n}

} and the resulting state equation (3.39) is modally

uncoupled. Thus, the TFM of (3.23) can be expanded in modal partial fractions as:

H(s) = Õ
[
sI − Λ

]−1
B̃ =

2n∑

v=1

õcv b̃rv

s − λv

=
2n∑

v=1

Hv

s − λv

=
n∑

v=1

Hv

s − λv

+
Hv∗

s − λ∗
v

Hij(s) =
2n∑

v=1

õcv

i b̃rv

j

s − λv

=
2n∑

v=1

Hv
ij

s − λv

i.e. Hv
ij = õcv

i b̃rv

j = ÕivB̃vj

(3.40)

where Hv ≡ lims→λv
(s − λv)H(s) is the residue matrix for H(s) at the vth mode. õcv is

the vth column of Õ and b̃rv is the vth row of B̃ with ith and jth elements being õcv

i and

b̃rv

j respectively; which, in turn, are elements iv and vj of Õ and B̃ respectively.

3.1.3.2. Modal analysis of 2DOF isotropic rotor

It is important and interesting to observe the relation between eigensolutions λi, r̂i in the

stationary xy-frame and their corresponding λr:i, r̂r:i in the rotating ξη-frame, which is

expressed formally in p. 109, as well as the resulting residue matrices Hv ≡ Hr:v.

Eigensolutions from complex formulation of the undamped rotor system An un-

damped rotor is one without the stabilising external damping or the destabilising RID.

Although such a rotor is marginally stable and will not exhibit RID instability, its eigen-

values are presented here:

• For simplified illustration purposes

• Since its FWD modal frequency is used to determine Ωon the onset speed of insta-

bility, based on external/internal damping ratios in (4.22).

The complex 2 × 2 state matrices Ac,Arc (3.20, 3.21) yield the eigensolution pairs

(λc, rc)i and (λrc, rrc)i∈{1,2}
respectively, which do not generally occur in complex-conjugate

pairs as in the case of real formulations. Eigenvectors, e.g. rc:1,2 =
{

r̂
λr̂

}
c:1,2

, do not con-

tribute to identifying the modal directionality since modal vectors reduce to r̂c:i with no

1Here v is used as a mode identifier to avoid conflict with subscript i used for Hij ∈ H
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lead/lag information of r̂x:i to r̂y:i. As such, the ith mode is represented as a rotating

vector—of decaying magnitude for an externally damped rotor ~Ze(λc:i)t = ~Zeℜ(λc:i)teı(ωc:i)t

where sgn(ωc:i) is the only representation of modal directionality.

In the stationary frame eigenvalues of the undamped rotor-bearing system are:

λc:1,2 = ı

(
ΩG
2m

∓
√(

ΩG
2m

)2

+
k

m

)
= 0 + ıωc:1,2 (3.41)

As it stands, the square-root in (3.41) can be equally considered as +ve or -ve, however

for the purposes of identifying modal directionality, as well as clarity and consistency, a

square-root of positive real quantities is taken as positive throughout. Accordingly, ωc2

always has +ve value, while ωc2 always has -ve value. According to (3.36),

∵ ℑ(λc1) ≡ ωc1 < 0 ; ℑ(λc2) ≡ ωc2 > 0

∴ λc1
def
= λb ⇒ ωc1

def
= ωb ; λc2

def
= λf ⇒ ωc2

def
= ωf

with ωf and ωb being the FWD and BWD modal frequencies respectively. It is obvious

from (3.41, 3.42) that both ωb,f increase with increasing speed. In the case of ωb, simple

trigonometry dictates

0 > ωb =
ΩG
2m

−
√(

ΩG
2m

)2

+
k

m
> −

√
k

m
∀Ω > 0 (3.42)

that ωb increases from a -ve value to a lesser -ve value as Ω increases (fig. 4.2), hence its

absolute value |ωb| decreases with increased speed in agreement with (3.36).

In the rotating frame eigenvalues of the undamped rotor-bearing system are:

λrc:1,2 = ı

(
−Ω +

ΩG
2m

∓
√(

ΩG
2m

)2

+
k

m

)
(3.43a)

≡ λc:1,2 − ıΩ = λb,f − ıΩ = ı(ωb,f − Ω) ∵ ℜ(λb,f ) = 0 (3.43b)

Observe the relation (3.43b) between λc:i (3.41) in xy-plane and their corresponding λrc:i

(3.43) in ξη-plane, which is exemplified in figs. 4.2, 4.3.
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The Critical speed Ωc of this undamped 2DOF rotor-bearing system is arrived at by

setting ωf = Ω in (3.41) or ωr2 = 0 in (3.43), which result in:

Ωc =

√
k

m − G (3.44)

Due to their significance, the FWD modal frequency of this undamped rotor system and

its critical speed will be designated ωfu
and Ωcu

respectively.

Modal analysis with real representation of damped 2DOF rotor (3.2, 3.8) ∵ A
def
=

real, its eigenvalues are those of the complex representation (e.g. 3.41, 3.43) and their

complex conjugates:

λ1,2 = λc:1,2 , λ3,4 = λ∗
c:1,2 , λr:1,2 = λrc:1,2 , λr:3,4 = λ∗

rc:1,2

In the stationary frame the eigenvalues and modal vectors are:

λ1,2 = − c

2m
+ ı

ΩG
2m

∓ ı

√(
ΩG + ıc

2m

)2

+
k

m
r̂1,2 =

{
ır̂y

r̂y

}

1,2

(3.45a)

λ3,4 = − c

2m
− ı

ΩG
2m

± ı

√(
ΩG − ıc

2m

)2

+
k

m
r̂3,4 =

{
r̂x

ır̂x

}

3,4

(3.45b)

In (3.45a), r̂x = ır̂y ⇒ |r̂x| = |r̂y| representing a circular modal precession where x leads

y by π/2 in the direction of rotation indicated by sgn(ω1,2). (3.45b) is a similar scenario

with x lagging y. Together, ωi ≡ ℑ(λi) and r̂i elucidate the ith mode’s directionality,

in accordance with (3.35) and agreement with (3.41). When the eigenvalues λi with the

familiar and physically interpretable ωi > 0 (i.e. λ2,3 ≡ λf , λ
∗
b) are plugged in (3.33a):

λ2 ⇒ r̂2 ≡ª a FWD mode, and λ3 ⇒ r̂3 ≡© a BWD mode.

Although S of (3.2, 3.2b) is defined with proportional damping C = αM + βK, the

skew-symmetry introduced by G renders Cg not proportional to K and/or M, hence

γi 6=
βω̂i

2
+

α

2ω̂i

where ω̂i =
|ωi|√
1 − γ2

i

and ℜ(λi) = −γiω̂i

Actually, the coexistence of isotropy and proportional viscous C results in:

ℜ(λf )

|ℑ(λf )|
=

ℜ(λb)

|ℑ(λb)|
=

ℜ(λi)

|ℑ(λi)|
=

−γi√
1 − γ2

i

, ∀i∈1...4 ⇒ γb ≡ γf (3.46)

stating that the damping factor γi is identical for the four modes derived at constant

Ω. Accordingly (3.34), the FWD modes decay faster than the BWD modes, e.g. fig. 4.2,
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∵ ∀Ω 6= 0, |ωf | > |ωb| ⇒ ℜ(λf ) < ℜ(λb). Usually, as Ω : [0⊲〉,ℜ(λf ) ց and ℜ(λb) ր,

which is tempting to generalise as in p.241. However, the above is not sufficient to make

such a generalisation without further examination, e.g.(A.5) since γ varies with Ω and

with parameters (4.2), Ω : [0⊲〉 ⇒ γ ց, (fig 4.4).

In the rotating frame the eigenvalues and modal vectors are:

λr:1,2 = − c

2m
+ ı

(
ΩG
2m

− Ω

)
∓ ı

√(
ΩG + ıc

2m

)2

+
k

m
r̂r:1,2 =

{
ır̂η

r̂η

}

r:1,2

(3.47a)

λr:3,4 = − c

2m
− ı

(
ΩG
2m

− Ω

)
± ı

√(
ΩG − ıc

2m

)2

+
k

m
r̂r:3,4 =

{
r̂ξ

ır̂ξ

}

r:3,4

(3.47b)

Relation of corresponding eigensolution pairs in xy- and ξη-frames

The relation of corresponding modal frequencies in xy- and ξη-frames ωci ⇔ ωrc:i

expressed in (3.43b) is logical, according to (2.7), since an isolated undamped mode

represented by a vector ~Zeı(ωci)t that is rotating in the xy-frame is observed from the

ξη-frame as ~Zeı(ωci−Ω)t ≡ ~Zeı(ωrci)t. Consequently, at super-critical speeds Ω > Ωc, both

of the rotating frame modal frequencies ωrc:1,2 < 0 ∵ ωc:1,2 < Ω (fig. 4.3) resulting in ©

rotating vectors; i.e. both modes represent a CW © circular precession at their modal

frequency in the ξη-frame.

This logical relation (3.43b) applies equally to eigenvalues of real representations:

λr:1,2 ≡ λb,f − ıΩ = ℜ(λ1,2) + ı(ω1,2 − Ω) (3.48a)

which is obvious on comparing (3.45a) and (3.47a), and leads to:

λr:3,4 ≡ λ∗
r:1,2 = ℜ(λ1,2) − ı(ω1,2 − Ω) (3.48b)

Naturally, ℜ(λi) ≡ ℜ(λr:i) as the decay constant is unaffected by the coordinate transfor-

mation, which logically affects ℑ(λi) ⇔ ℑ(λr:i) the modal frequencies only—figs. 4.2, 4.3.

In turn, this renders the damping factors γr:i∈1...4 of modes in the ξη frame not necessarily

equal (e.g. fig 4.4), which is contrary to the case (3.46) of the xy frame:

γr:1 6= γr:2 ∵ γr:i = γi
ω̂i

ω̂r:i

hence γr:1 ≈ γ
|ωb|

|ωb| + Ω
and γr:2 ≈ γ

ωf

|ωf − Ω| (3.49)

Invariance of corresponding modal vectors and residue matrices By (3.45, 3.47),

the rotating frame modal vectors r̂∈{r:1...4}
have the same structure as their corresponding
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stationary frame counterparts r̂∈{1...4}
. Although corresponding modal vectors are struc-

turally invariant under transformations from xy- to ξη-frames-of-reference, they can be

scaled differently:

r̂b
def
= r̂1 ∝b r̂r:1

r̂f
def
= r̂2 ∝f r̂r:2

(3.50)

in accordance with the modal matrix R normalisation (3.37), hence generally, R 6=∝ Rr.

With the modal vector invariance (3.50), if we implement the same input and output

matrices B,O for defining both S(A,B,O) and Sr(Ar,B,O), then the corresponding

residue matrices are identical, in accordance with (3.40):

Hv ≡ Hr:v with v ∈ {1 . . . 4} (3.51)

3.1.4. Characteristics of rotordynamic TFM/FRM

Frequency response (FR) stability analysis methods are adopted and modified to suit the

RID problem. It is necessary to examine the relevant TFM/FRM characteristics.

3.1.4.1. Properties of TFM and its individual TFs

It is imperative that all system modes be represented for observation in the specific

transfer function (in the TFM) that is being analysed for system modes stability.

Controllability & Observability concepts in the time domain are associated with the

ability to control the state variables ∈ p, and evaluate them from the available output

variables ∈ o of S in (3.14). S is completely state controllable if it is possible to construct

an unbounded f(t) that will transfer any initial state p(t0) to any final state p(t) in a

finite time. Ranks of state controllability Con and observability Obs matrices

Con =
[
B AB A2B . . .A2n−1B

]
, Obs =




O

OA
...

OA2n−1




(3.52)

are standard checks for controllability of the LTI pair (A,B) ⊂ S(A,B,O) and ob-

servability of (A,O) ⊂ S(A,B,O): rank(Con) = 2n ⇒ (A,B)
def
= controllable, and

rank(Obs) = 2n ⇒ (A,O)
def
= observable. As such, the systems S defined by (3.22, 3.23,

3.26, 3.28) are completely controllable and observable. Actually, these systems will still be

completely controllable and observable even if only one output is observed and only one
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input is controlled, provided the EOMs are maintained coupled ; i.e. ΩG 6= 0 unlike (3.58).

For instance, Hd
21(s) ∈ Hd

(s) (3.26) is a TF representing a SISO SL (3.24), with fx(t) and

y(t) being the controlled input and observed output respectively, which is equivalent to

the completely controllable and observable SL(A,B,O) with O = [0100],B = 1
m

[0010]T

and A of (3.17).

Individual transfer functions Hij(s) ∈ H(s) are rational polynomial functions:

Hij(s) =
b́us

u + b́u−1s
u−1 + · · · + b́1s + b́0

álsl + ál−1sl−1 + · · · + á1s + á0

= 1/ál

1/ál
Hij(s)

def
=

Nij(s)

D(s)
=

1
ál

(
b́us

u + b́u−1s
u−1 + · · · + b́1s + b́0

)

D(s)

=
gij

(
su + bu−1s

u−1 + · · · + b1s + b0

)

D(s)
∴ gij =

b́u

ál

(3.53)

An individual Hij(s) that represents a completely controllable and observable SISO SL is

required to account for all the modes of A and their respective eigenvalues that are given

by the characteristic equation (3.29). Therefore the characteristic polynomial D(s) =

|sI − A| has to be presented intact with its highest order being l = 2n. This requires that

D(s) and Nij(s) be co-prime; i.e. no common factors. The difference in degrees of D(s) and

Nij(s) polynomials (l − u) is known as the relative order. All individual TFs Hij ∈ H(s)

(3.24, 3.53) are strictly proper, since always u < l ∵ D = 0 (3.13b, 3.14).

Poles-Zeros-Gain representation If polynomials D(s) and Nij(s) are co-prime, their re-

spective roots are the full sets of poles p1...l and finite zeros o1...u of Hij(s) in (3.53), which

can be represented as:

Hij(s) = gij

∏u
q=1(s − oq)∏l
v=1(s − pv)

for u 6= 0 (3.54)

Although the number of finite zeros is always less than that of poles in our strictly proper

TFs ∵ u < l, the total number of zeros—including those at s = ∞—is equal to number

of poles.

Pole polynomial of H(s) Because the MIMO S(A,B,O) of (3.22, 3.23, 3.26, 3.28) are

completely controllable and observable, the characteristic polynomial D(s) of Hij(s) is also

the pole polynomial of H(s), which is the common denominator polynomial ∀Hij(s) ∈ H(s).

In this case, poles of H(s) and eigenvalues of A are identical: D(s) = D(λ) ⇒ pv∈{1...l=2n}
≡

λv∈{1...2n}
—compare figs. 4.2-4.7—and poles can be used instead of eigenvalues in partial-
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fraction expansions (3.40) as:

H(s) =
n∑

v=1

Hv

s − pv

+
Hv∗

s − p∗v
and Hij(s) =

n∑

v=1

Hv
ij

s − pv

+
Hv∗

ij

s − p∗v
(3.55)

Zeros of H(s) are transmission zeros, since the transmission of such ‘complex frequencies’

is blocked throughout S; a situation that does not occur in our rotors. However, different

Hij(s) do have their specific finite zeros oq, which usually differ in number and value for

each Hij(s). Zeros of individual TFs are the result of all the modal partial-fraction terms

in (3.55) cancelling out (summing to nil) at specific complex frequencies s = oq∈{1...u}
.

Due to the complex-conjugate nature of such terms, finite zeros occur as purely real, or

in complex-conjugate pairs in-between two consecutive modal terms. Almost always, a

mechanical S will have point TFs that exhibit zeros in-between poles (e.g. fig. 4.7), and

quad (transfer) TFs without zeros in-between poles, yet possibly with a zero at s = 0 if

any [49].

xy-frame zeros and gains of Hd
11(s) = Hd

22(s) and Hd
12(s) = −Hd

21(s) in Hd
(s) (3.26) are:

Nd
11(s) =

s2m + sc + k

m2
⇒ o1,2 = − c

2m
∓ ı

√
k

m
−

( c

2m

)2

gd
11 = 1/m (3.56a)

Nd
21(s) =

sΩG
m2

⇒ o1 = 0 gd
21 = ΩG/m2 (3.56b)

which expresses that zeros are not speed-dependent in the xy-frame.

ξη-frame zeros and gains of Hd
r:ij are a bit more interesting, with Nd

r:11(s) = Nd
r:22(s) and

Nd
r:12(s) = −Nd

r:21(s)

Nd
r:11(s) =

s2m + sc + k + Ω2(G − m)

m2
⇒ o1,2 =

−c ±
√

c2 − 4m
(
k + Ω2(G − m)

)

2m
(3.57a)

Nd
r:21(s) =

−
(
sΩ(2m − G) + Ωc

)

m2
⇒ o1 =

−c

2m − G
def
= ‘purely real’ (3.57b)

The gains are gd
r:11 = 1

m
and gd

r:21 = −Ω(2m−G)
m2 , the latter being -ve—usually 2m > G.

By (3.57a), zeros o1,2 of the ξη-frame point TFs will be complex for speeds upto Ωc,

afterwhich they assume real values of opposite signs (e.g. figs.4.7). With c = 0, (3.57a)

yields complex o1,2 for Ω < Ωc ≡
√

k
m−G

.

Incomplete controllability & observability Had S(A,B,O) not been completely con-

trollable and observable, there would have been pole-zero cancellations ∀Nij(s)

D(s)
and H(s)

poles would have been just a subset of λv∈{1...2n}
of A. This would have meant that certain
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3. RID systems modelling and characteristics

modes of S(A,B,O) would have not been excitable or observable from any S input or

output. Although this does not occur since our MIMO SL is controllable and observ-

able, pole-zero cancellations may occur in certain Hij (s) =
Nij(s)

D(s)
that do not represent

a completely controllable and observable SISO SL. The modes cancelled out cannot be

influenced or observed from this particular TF, although they can be influenced/observed

from other TFs in the controllable and observable MIMO TFM. In rotordynamics, this

will happen when the EOMs’ coupling is lost, which is equivalent to ΩG = 0 in (3.2).

An example would be the 2DOF rotor on orthotropic bearings, whose controllable and

observable TFM representation (3.25) without gyroscopic coupling ΩG = 0 is:

Hd

Orth
(s) =

1

|S|

[
s2m + sc + k − ∆k 0

0 s2m + sc + k + ∆k

]
(3.58)

where |S| = s4m2 + 2s3mc + s2(c2 + 2mk) + 2skc + k2 − ∆k2

→֒ Hd
(s) =

[
1/(s2m + sc + k + ∆k) 0

0 1/(s2m + sc + k − ∆k)

]

Minimum-/non-minimum-phase transfer functions Most stable physical systems have

minimum-phase characteristics e.g. (3.56), with exceptions e.g. (3.57a) when Ω >
√

k
m−G

.

Such characteristics are used in conjunction with Nyquist-like criteria. They are also to be

used here (§ 4.3) to examine S for unstable poles and eigenvalues ℜ(p) > 0 ⇒ ℜ(λ) > 0.

Definition 3.1 A minimum-phase Hij(s) will have no poles or zeros in the right-half s-

plane or on its ıω-axis, excluding its origin (s = 0):

ℜ(p, o) < 0, ∀{p, o} 6= 0

A non-minimum-phase transfer function will have at least one zero or pole in the right-half

s-plane.

Positive Real (PR) and Strictly Positive Real (SPR) transfer functions are defined in

terms of their Nyquist plot and their stability characteristics. These characteristics, if

true, would allow for generating Lyapunov functions that are interpretable physically.

Theorem 3.1 (PR/SPR transfer functions) If

ℜ
(
H(s)

)
≥ 0 ∀ℜ(s) ≥ 0 ⇒ H(s)

def

= PR

ℜ
(
H(s − ǫ)

)
≥ 0 ∀ ℜ(s) ≥ 0, any ǫ > 0 ⇒ H(s)

def

= SPR

Theorem (3.1) implies simple necessary conditions for asserting if H(s)
def
= SPR:
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3.1. Linear rotordynamic characteristics

1. H(s) is strictly stable

2. The Nyquist plot of H(ıω) lies entirely in the right-half complex H-plane

3. H(s) has a relative order l − u = 0, 1.

4. H(s) is strictly minimum-phase: zeros & poles strictly in left-half s-plane

The basic difference is that unlike SPR, PR will tolerate poles on ℑ(s), ıω axis. The

concept of PR/SPR H(s) can be extended to H(s) so as to handle MIMO systems:

Definition 3.2 A square TFM H(s)
def

= PR if:

• Hij ∈ H(s) are analytic ∀ℜ(s) > 0

• H + H∗T ≡ PSD ∀ℜ(s) > 0

• H(s)
def

= SPR if H(s − ǫ)
def

= PR for any ǫ > 0

On examining Hij ∈ H(s) of (3.28, 3.26) we find that all Hij are not PR/SPR. Although all

Hij satisfy condition 1—no destabilising mechanisms considered yet—they fail to satisfy

conditions 2,3 and sometimes 4. With definition (3.2) we conclude that the TFMs H(s)

of (3.28, 3.26) are not PR/SPR.

3.1.4.2. Frequency response matrix and its FRFs

The frequency response matrix (FRM) H(ıω) and its individual FRFs Hij(ıω) are ob-

tained simply by substituting s in H(s) with ıω. Each FRF Hij(ıω)=
~qi(ıω)

~fj(ıω)

def
= complex ratio

of steady-state output to input sinusoids. The more formal description of an FRF is con-

formal mapping (part of) the imaginary ıω-axis of the s-plane (fig. 4.7) onto the complex

H-plane via Hij(s) : s = ıω
[ωa⊲ωb]

H(s)7−→ H(ıω)
[ωa⊲ωb]

, which is widely known as a polar (or Nyquist)

plot, e.g figs. 4.8, 4.9. On the magnitude plot |Hij(ıω)|, ℑ(p1,...,l) and ℑ(o1,...,u) are fre-

quencies, around which an FRF exhibits resonances and anti-resonances (|Hij(ıω)| & 0)

respectively; i.e. are very close, but generally not identical, to frequencies of resonances

and anti-resonances, provided S is not excessively damped.

Normality of the FRM H(ıω) is defined in terms of H∗T

=
(
H∗(ıω)

)T

its associate

matrix, which is the conjugate transposed of H(ıω). H(ıω) is normal If:

H(ıω)H∗T

(ıω) = H∗T

(ıω)H(ıω) (3.59)

The TFMs in the stationary (3.26) and rotating (3.28) frames and their FRMs have been

examined for condition (3.59) which was satisfied, hence the FRMs are normal.
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Diagonal dominance (DD) of H(ıω) is defined terms of its relative magnitudes |Hij|.

|Hii| >

n∑

j=1

|Hij| ∀ i ∈ {1, . . . , n} j 6= i ⇒ Row dominance

|Hii| >

n∑

j=1

|Hji| ∀ i ∈ {1, . . . , n} j 6= i ⇒ Column dominance

|Hii| >
n∑

j=1

(|Hij| + |Hji|)/2 ∀ i ∈ {1, . . . , n} j 6= i ⇒ Mean dominance

Equation (3.56) shows that H11, H22 ∈ H(s) of (3.26) will exhibit anti-resonances around

ω = ℑ(o1,2) where both |H11|, |H22| & 0 i.e. very close to zero. On the other hand,

each of H12, H21 ∈ H(s) has a single real o1 at the origin of the s-plane. This argument

suggests that around ω = ℑ(o1,2), |H11| < |H12| ⇒ H 6= DD. On examining the FRMs

of (3.26, 3.28) in figs. 4.8, 4.9, it is found that ∀ω > 0 between the two poles with

ℑ(p) > 0,H(ıω),Hr(ıω) 6= DD; of course the same goes for the complex conjugate of the

frequency range. However, both H,Hr
def
= DD outside these ranges.

3.2. RID characteristics and modelling

Rotor joints are a prominent source2 of localised stiffness and damping nonlinearities, and

are the prime source of RID in industrial rotors (non-composite nor viscoelastic) where

material damping is virtually negligible [180]. However, rotor couplings are modelled

regularly as linear elastic components possibly with inertia [47]. For simplistic stability

analysis of relatively large systems, RID from such couplings is modelled as linear viscous

elements that are stacked parallel to the elastic elements (2.40). Occasionally, ideal linear

hysteretic RID is used in the same manner, which may be a rather misleading.

Linear modelling is arguably justified by the small vibration amplitudes that rotors

are designed to endure. Some couplings however, e.g. splines especially un-piloted ones,

exhibit obvious nonlinear behaviour even at low vibration amplitudes, in which case a

nonlinear joint model is necessary if the dynamic predictions are to be relied upon. Indeed,

RID-induced precession, which can be predicted only by analysing a nonlinear model,

is observed mainly in rotors with interference-fits and/or spline couplings. Both such

joints result in nonlinear stiffness and damping, yet spline couplings exhibit nonlinear

characteristics that are pronounced strongly, which sometimes under certain disturbances

leads to unbounded precession.

Modelling RID properly for further analysis entails two important tasks:

2Other sources of nonlinearity are the various rotor-stator interactions
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3.2. RID characteristics and modelling

1. Use of a representative friction joint model

2. Introducing this model appropriately in the rotordynamic system

Both of which are presented hereafter.

3.2.1. Models of general nonlinear joints with friction damping

Damping here defines the energy dissipated under cyclic loading that results in a hysteresis

loop (external force-displacement), with ∆E being the area inside it:

∆E =

∮
fxdx (3.60)

representing the total energy absorbed per cycle. It is relatively straightforward to acquire

experimentally hysteresis loops of structural joints and materials, which are found to be

symmetric about their centre points. However, except for the simplest cases, rheological

(differential) models (equations) of form (3.61) are virtually unavailable to regenerate

hysteresis loops, in which case hybrid models (3.69-3.72) need be relied upon.

Rotor joints’ physical characteristics (inertia, stiffness and damping) have a consider-

able effect on the dynamic behaviour and accordingly, an accurate mathematical model

is rather important for reliable predictions. Although such joints usually have nonlinear

stiffness and damping characteristics, they are modelled regularly as linear elastic com-

ponents with isotropic translational or rotational stiffness coefficients k,
⌢

k (2.39) between

the two rotor stations at the ends of rotor segments that are coupled. One reason is that

nonlinear joint models are difficult to obtain let alone generalise under various conditions.

This is particularly the case when nonlinear friction is involved since friction forces and

the energy hence dissipated depend on numerous factors which cannot all be modelled

simultaneously in a dynamic model. Some rheological rotor joint models in the form of

(3.61b) have been derived from the joint’s geometry and surface conditions with Coulomb

friction at the interface, e.g (2.43), and implemented in a time domain analysis. These

are rather simplified, hardly reliable and are at best representative qualitatively. Another

issue to bear in mind whilst modelling joints is that some important friction character-

istics vary significantly during operation as well as with time and repeated usage e.g.

temperature, lubrication and surface-finish.

3.2.1.1. Fundamentals of modelling general nonlinear friction joints

A friction joint generally describes any connection of two structural members, where two

surfaces are pressed together by a normal force N applied through clamping or interference

mechanisms. With this definition, the clamped edge of a panel, the root of a turbine blade,
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rotor couplings and fits are joints with friction at their contact surface, which is referred

to as the interface. Damping, as defined in (3.60), results from the interfaces’ relative

tangential motion.

The route to arriving at a friction joint’s model Since a friction joint is largely char-

acterised by its hysteresis loop, its model is expected to predict and regenerate this loop

as accurately as possible. Two factors have a marked influence on a joint’s damping

characteristics, namely: 1) The clamping force N, which may range from loose as in

an un-piloted spline coupling to very tight as in a Curvic coupling, and 2) Interfaces’

finish/treatment, identifying the many parameters of which can prove to be a seriously

elusive goal. Generally, joint models fall in two categories: Rheological and Hybrid.

A general joint rheological model is an input-output model relating ‘restoring’ force

F to displacement and/or velocity and possibly inertia as in:

Flin = mẍ + cẋ + kx (3.61a)

FSVNL(ẋ) = mẍ + cNL(ẋ)ẋ + kx (3.61b)

FMVNL(ẋ, x, t) = mẍ + cNL(x, ẋ)ẋ + kNL(x, ẋ)x (3.61c)

All equations of (3.61) are intended to describe an autonomous system with time-invariant

coefficients. While (3.61a) is the usual linear EOM, the rest have nonlinear damping

cNL(x, ẋ) and stiffness kNL(x, ẋ) coefficients, which are functions of displacement and/or

velocity. (3.61 b) expresses a single valued nonlinearity (SVNL) F that is uniquely defined

against ẋ as in (fig.3.2). (3.61 c) expresses the more general F as a nonlinear function

of both displacement and velocity, and accordingly is not single valued with either on its

own. This is reflected in F being a function of t that is not explicit in the model, which

denotes a nonlinearity with memory, i.e. FMVNL is a multi-valued nonlinearity (MVNL)

depending on current state (x, ẋ) as well as state history. Such rheological models are at

best difficult to derive for a nonlinear joint with any degree of complexity, geometric or

physical, particularly when friction is involved.

Implementing hybrid techniques to model a general nonlinear joint is another pop-

ular approach that utilises both analytical and experimental data, which have been de-

veloped to produce fairly accurate models, particularly for hysteresis loops. The joint

model and its coefficients are validated by correlating to experimental results. For anal-

ysis purposes, these techniques serve best when the joint model is derived separately as

a substructure that is subsequently coupled to a target substructures to form the overall

(mechanical) structure. Since understanding the nature and configuration of a joint is
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essential to derive a suitable dynamic model, the most effective path to defining such a

model [100, 131, 151] probably is:

1. Study joint’s dynamic characteristics. Typically, this is carried out through a set of

static as well as dynamic tests to define a restoring force-response relationship. Ex-

ternal force is chosen appropriately leading to responses that are as representative as

possible of operating conditions, so as to characterise the nonlinear joint. Harmonic

excitation is favoured for characterising a nonlinear joint due to its precision and

controllability of variables e.g. frequency, response or excitation amplitudes.

2. Develop an accurate general mathematical model. This is the challenge and the

resulting model is restricted to test parameters e.g. type of excitation, frequency

range, amplitudes of force and response, etc.

3. Identify parameters of proposed model. For many-parameter models, this usually

involves an iterative model updating process. For simpler models and joints e.g.

cubic stiffness, curve-fitting the force-response relation does the trick.

Friction joints models can take the familiar but difficult to derive rheological:

F(ẋ, x, t) = cNL(x, ẋ)ẋ + kNL(x, ẋ)x (3.61d)

which is thus restricted to simple friction elements (3.68) and hence unrepresentative, but

may be used for preliminary qualitative investigations. Alternatively, the more widely

implemented hybrid techniques are used, where an analytical rule (p.118) is applied to

a load-deformation relation L(x) resulting in FMVNL(x, t)/x, which depends on the de-

formation history x[t0 : t]. Under sinusoidal deformation, a friction FMVNL(x, t) yields a

symmetric double-valued nonlinearity (DVNL) model FDVNL(sgn(ẋ), x) (3.69—3.72). The

FDVNL(sgn(ẋ), x) models are validated against experimentally-acquired hysteresis loops,

and have been found to be in good to excellent agreement if allowances are made for mi-

nor experimental inconsistencies. Different hysteresis loops can be conducted at various

experiment temperatures, albeit with difficulty, should heat-dependency of friction need

be characterised.

Modes of joint’s interfacial slip: Macro, Macro-Micro and Micro-Micro With fric-

tion resulting from interfaces’ relative deformation/motion, it is important to identify or

classify types of such relative motion/slip before discussing further the means of modelling

a friction joint and friction elements involved.
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Macroslip (sliding) occurs when both joint’s interfaces are totally sliding against each

other. Accordingly, macroslip is not encountered in Curvic and flanged rotor couplings, is

rarely noticeable in shrink/interference fits enduring large amplitudes, but is commonplace

with spline couplings. Even then, macroslip might not occur from the outset, as slip may

occur over some parts of the interface before the two components slide fully against each

other, which is referred to as microslip.

Microslip phenomena have the unifying feature of a gradually decreasing joint’s stiff-

ness (slope dL(x)
dx

of loading curve) with deformation on account of partial slip (fig.3.3).

Microslip can be categorised into two distinct mechanisms, namely: Macro-microslip and

micro-microslip. Macro-microslip is noticeably effective at large flexible interfaces, and

refers to microslip caused by joint components elasticity/deformation or by varying sur-

face pressure due to concentrated loads or waviness. Micro-microslip is caused by the

effects of uneven asperities on interfaces, is significant even at very small areas and is the

most prevalent mechanism in stiff joint components enduring small amplitudes.

Hysteresis and Masing’s rule An analytical hysteresis loop is derived promptly from a

rheological model with dissipative velocity coefficients as in viscous and Coulomb damping

(3.68) as well as the flawed linear hysteretic damping FRF model (3.64). However, in the

usual absence of rheological models, some hypothesis (e.g. Th.3.2) can be applied to the

skeleton (initial loading) curve L(x) so as to achieve FDVNL(x) comprising two distinct

nonlinear functions and defining the analytical hysteresis loop (fig.3.3).

Theorem 3.2 (Masing’s rule) If a joint consists of linear components and dry friction

elements only, its properties are fully defined by the force-deformation relation of the

initial loading, i.e. further unloading and reloading relationships can be obtained directly

from the initial loading curve.

Publications concerning Masing’s rule existed in the 60’s [70], but to the author’s knowl-

edge, its proof was published in English as late as 1992 [151]. To date [121] Masing’s rule

[66, 152, 153] and its extensions [14, 29, 32, 119] yield analytical results that are in good

agreement with experimental results [5, 35, 74, 110, 120, 141, 142, 144, 186, 192].

A Masing-type joint described by (Th.3.2), can simplify the FMVNL(x, t)/x analysis

significantly, regardless of the loading/unloading pattern endured. The properties of a

Masing’s joint, are fully defined by L(x), which is usually identified experimentally.

If an interface is subjected to an initial load F and the deformation x follows the

path (curve) L(x) to the initial point A(xi,Fi), then an unloading path Nu(x) to point
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B(xu,Fu) can be expressed by:

Nu = Fi − 2L(xi−xu

2
) for xu > −xi

Nu = −L(−xu) for xu < −xi

Similarly, a reloading path from point B(xu,Fu) to some point C(xr,Fr) is:

Nr = Fu + 2L(xr−xu

2
) for |xr| 6 max(|xu|, |xi|)

Nr = L(xr) for |xr| > max(|xu|, |xi|)

Regenerating hysteresis loops using Masing’s rule is fairly straightforward when

assuming sinusoidal deformation x(t) = X̄ cos τ . The resulting model is a symmetric

FDVNL(x, sgn ẋ) defining the hysteresis loop, and comprising the unloading (Nu(x) when

sgn(ẋ) ≤ 0) and reloading (Nr(x) when sgn(ẋ) > 0) curves:

Nu = F̄ − 2L( X̄(1−cos τ)
2

)

Nr = −F̄ + 2L( X̄(1+cos τ)
2

)

which can be constructed using L(x) and vice versa. Energy dissipated ∆E by a Masing’s

joint is a function of peak amplitude X̄, and is obtainable directly from L(x) [151].

Masing’s rule applies to the macro- and microslip models (3.69—3.72) presented in this

thesis and is used to generate the analytical hysteresis loops (fig.3.3). Although Masing’s

is the more popular method for modelling hysteresis, there are more recent hysteresis

models [4] derived from L(x) using interesting rules other than Masing’s.

3.2.1.2. Friction elements models and characteristics

Dry friction is arguably [177] the main energy dissipative mechanism, particularly at joints

such as hubs shrunk-on shafts, flanged and Curvic couplings, as well as spline couplings

that may be only initially lubricated or might have a dry lubricant. Generally however,

joints exhibit nonlinear anelasticity, i.e. with stiffness as well as damping characteristics.

Many joints with energy-dissipating characteristics that are encountered frequently have

been studied, identified and modelled if with undetermined coefficients. Such nonlinear

anelasticity models are an analytical approximation of experimentally acquired hysteresis

curves. Alternatively, there are the usual explicit rheological equations that are input-

independent, such as those for the ideal viscous and coulomb dampers. Some of these

models will be used in conjunction with analysis to be developed hereafter.
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Approaches to obtain model parameters: Prediction Vs. Identification In order to

arrive at a joint’s model, some parameters for the friction elements exemplified (§.3.2.1.2)

need be defined. There are two approaches to adopt, depending on the element used,

namely: Identification and prediction. The Identification approach involves identifying

experimentally some intermediate parameters for the joint model, primarily the initial

loading curve L(x) and/or the joint’s hysteresis loop. The prediction approach predicts

joint properties from the basic parameters, namely: Normal pressure and friction coeffi-

cient (2.43) from surface condition, e.g. roughness, flatness and hardness.

From a design point of view, the prediction approach is the more desirable, since the

aforementioned design parameters can be used directly to predict analytically the joint’s

force-deformation relation. Indeed, if this can be done accurately, analysing a dynamic

system with friction joint should not be very problematic and the joint’s friction charac-

teristics and damping capacity may be optimised. Unfortunately, the prediction approach

is often not realistic on account of joint’s complexity. Other than normal pressure and

surface condition, joint properties are believed to be determined by contact duration and

interface contamination, as well as many other unknown factors, which are not adequately

represented by basic parameters [16, 84]. Accordingly, although attractive for design pur-

poses, the prediction approach is currently less than satisfactory should a joint model of

decent accuracy and reliability be sought.

Linear damping models are convenient as they can be used in conjunction with a stan-

dard linear eigen-analysis for most dynamic systems that may be adequately modelled

as linear, which includes a handsome percentage of industrial turbines. The two popular

linear damping models; namely viscous and hysteretic, have shortcomings when consid-

ering the rotor’s stability or lack thereof as discussed below. Serious caution ought be

considered when implementing the hysteretic model.

Linear viscous damping initially employed by Rayleigh [150], is a simple and convenient

model for linear analysis, with a realisable constitutive law, and thus has proper TFs (and

FRFs H(ıω)) as well as impulse response functions ~(t):

Fvisc = cẋ (3.62a)

Hv
visc(ıω) = 1/c Hd

visc(ıω) = 1/ıωc (3.62b)

~v
(t) =

1

c
δ(t) ~d

(t) =
1

c
u(t) (3.62c)

The drawback of this linear model is that the force and energy dissipated per cycle of

sinusoidal motion are linearly frequency-dependent. Although analytically sound, it will

be shown that using linear viscous RID is not really representative of joint RID and is not
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very well-suited to such analysis, since RID instability occurs only above critical speeds,

which implies rather high frequencies that exaggerate the effect of viscous RID.

Ideal hysteretic damping: A flawed model [37]. Studying flutter, Theodorsen and

Garrick [176] introduced a linear structural friction/damping model with frequency-independent

energy dissipation per cycle. Myklestad [125] introduced the popular and widely-used

concept of complex stiffness K damping (3.63), which for many years along with FRF

(3.64) were the only known means of representing hysteretic damper’s, and both were

unorthodoxly mixed with differential operators in EOMs of the form:

mẍ + Kx = fx(t), where K = k(1 + ıκ) and κ =
d

k
(3.63)

Bishop and Johnson [23] emphasised that hysteretic damping representations of form

(3.63) are viable only for single-frequency steady-state sinusoidal motion. Although there

is no differential or rheological equation to relate the physical parameters of hysteretic

damping and the determination of an impulse function is not straightforward [37], its

behaviour is defined properly by the less-popular FRFs:

Hv
hyst(ıω) =

ω sgn(ω)

d
, Hd

hyst(ıω) =
sgn(ω)

ıd
(3.64)

which when applied properly to EOMs like (3.63) yield the frequency response relations:

(
K − mω2

)
~X = f̄x for +ve ω

(
K∗ − mω2

)
~X = f̄x for -ve ω where K∗ = k(1 − ıκ)

(3.65)

Although a negative frequency (-ve ω) is not a popular recurrence in FRF analysis, it

is rather significant in rotordynamics (p.103) as exemplified in (§.3.1.3.2). The careful

implementation of complex stiffness K and its complex conjugate K∗ in conjunction with

+ve and -ve ω respectively for rotordynamic eigenvalues (fig.4.19) and complex system

frequency response analysis (fig.5.4) is of paramount importance.

Several attempts were made to study the transient motion of EOMs such as (3.63) by

obtaining impulse response functions for systems with hysteretic damping:

~d
(t) = − 1

πdt
~v

(t) = − 1

πdt2
(3.66)

These lead to some early confusions and the fact that: The ideal hysteretic damper (as

well as its modified Band-limited hysteretic damper) model violates the requirement of

causality ; i.e. the system responds before it is excited. If this flaw is set aside, the impulse

response function (3.66) may be used, utilising convolution integrals, to establish the
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relation between physical force and motion variables as in:

mẍ +

∫ ∞

−∞

− d

πt
(θ)x(t − θ)dθ + kx = fx(t) (3.67)

Alternatively, to avoid the anomalous non-causal behaviour of transient response, Jones

[75] levied the restrictive assumption of constant complex modulus’ parameters. Allowing

such parameters to vary with frequency; i.e. a complex modulus with frequency-dependent

parameters resolves the issue of non-causality.

The main problem with modelling RID as ideal hysteretic damping stems from using

the complex stiffness model as in (3.63) whilst not accounting for sgn(ω) as in (3.64). Not

accounting for sgn(ω) is erroneous and may yield misleading results in both:

• Stability analysis based on assessing eigenvalues with negative modal frequencies

• Frequency response of complex rotor representation, which may in-turn lead to

erroneous conclusions in a FR-based stability analysis

both of which will be elaborated and exemplified along with the necessary remedies in

§.4.2.3. However, it is unfortunate that several aero-engine manufacturers model rotors

with hysteretic RID (based on [200]) in such a manner that leads to erroneous conclusions,

which are not compliant with actual RID behaviour.

SVNL Dry Friction elements are expressed rheologically and plotted against relative

velocity v, thus having purely dissipative characteristics. As such, these elements are not

realistic on their own, and results of analysis using them are more satisfying qualitatively

than quantitatively.

Idealised Coulomb friction is most well known yet overly simplified relay-type force/velocity

model. Most other friction models are based on, or are closely related to this model. Its

direct use leads to the simplest joint model—the point contact dry friction element; since

the friction force is independent of the area and shape of the interface and is also inde-

pendent of the pressure at the interface. In other words, the joint can be considered as

contacting at one point only. An implication of the dry friction law is that before sliding

is initiated, the deformation of the joint is zero.

Coulomb’s dry friction law requires the tangential friction force Fcol be largely inde-

pendent of relative velocity, while proportional to the normal clamping force N via a

friction coefficient µ reflecting material properties and surface finish. Without slippage,
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Figure 3.2.: Speed-dependent Single-valued Damping Models

the internal joint force is equivalent to the externally applied force (fig.3.2).

Fcol = sgn(v)µN for |v| > 0

= fx for v = 0
(3.68)

Coulomb’s friction was used (2.43) to model friction in rotor joints, with the assumption

that all coupling teeth have slipped, which is obviously unrealistic.

An arguably more realistic SVNL dry friction law might assume the Frdf shape depicted

in (fig.3.2) according to Tondl. There is disagreement between several researchers (some

are discussed in [109]) as to whether Frdf is greater prior to relative slippage, let alone

having a minimum, after which it picks up. However, not only do old-school authors

such as Tondl, Dementberg and Atherton [9] support such a function, it actually offers an

explanation (§.5.3.2.2) as to why RID-induced precession at one speed may be bounded

for minor disturbances yet unstable for more significant disturbances. For later numerical

exemplifications, a parabolic function is assumed for Frdf in fig.3.2.

Macro-microslip joint models based on Coulomb friction and joint elasticity are

usually possible in closed form on account of this element’s simplicity, with the basic

assumption: Coulomb’s friction law is held at infinitesimally small areas and under in-

finitesimally small deformations, which is generally unrealistic. Generally, such joints

have very simple geometry, with the assumptions of uniform stress distribution over the

interfaces and uniform surface conditions in place. Interestingly however, some available
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joint models feature multiple slipped areas with bi-directional shear stress, which may not

be totaly balanced by external forces and moments.

Since Coulomb friction does not account for the effect of asperities and their elasticity,

it is unrealistic to implement in deriving a joint model particularly at low amplitudes.

Although it might be viable to model asperities’ rub by the dry friction law, it cannot

account for asperities’ deformation at low amplitudes before breaking-up, especially if

their relative motion is small compared to their size.

Piecewise-linear Macro-microslip models/assemblies were originally introduced to

model the yielding behaviour of continuous and composite materials [73, 190]. They

are based on various physical configurations of individual bilinear elements (3.69), which

can be connected in any parallel-series combination to yield different L(x), and to which

Masing’s rule is always applicable.

The Bi-linear element is an extension of Coulomb’s friction law, stacking a linear spring

in series with Coulomb’s friction element. Friction occurs at displacements greater than

critical Xcr, dictating an abrupt transition from elastic deformation to macroslip:

LBi(x) = kx for x < Xcr

= kXcr for x ≥ Xcr

(3.69)

Unlike dry friction elements at zero deformation, FBi(x, t) is determined under any state.

Features of bilinear element-based microslip joint models The bilinear element may

be adopted as a simplistic means of accounting for the effect of interfaces’ asperities. It

reflects Menq et al [114] suggestion of linear asperities’ stiffness before slipping as well as

identical properties (a substantial idealisation) thus approximating the contact interface

in a small area by a linear spring until the contact is broken. Although joints based on the

bilinear element are more realistic than those based on Coulomb friction, they are more

difficult to derive in closed form, which are in turn limited to simple joint configurations,

pressure distributions and surface conditions. However, macro-microslip joint models may

be suited for flexible joint components with large interfaces.

Micro-microslip elements start off deformation in microslip mode and converge with

increased amplitude to macroslip-like characteristic. Accordingly, unlike the Bilinear ele-

ment, energy is dissipated under any deformation however minuscule without the energy-

conserving linear elasticity capability. Two important and physically meaningful micro-

microslip models are presented. These are suited to model stiff friction joints enduring
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small vibration amplitudes, when different asperities’ shapes have the imposing influence

on energy dissipation characteristics.

Burdekin’s element model was the first proposed [28] microslip element in 1978. Each

asperity is represented as a prismatic rod with the same stiffness and each rod is modelled

as a bilinear element. After assuming a linear height distribution of rods, the initial loading

relation is supposed to follow:

LBrd(x) = kx − bx2 for 0 < x <
k

2b
(3.70a)

=
k2

4b
for x ≥ k

2b
(3.70b)

where k and b are parameters determined by the apparent contact area, normal and shear

stiffness of the asperities, normal displacement, friction coefficient and a constant relating

the number of contacts to the normal displacement of the surfaces. The parameters of
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Burdekin’s model are derived from LBrd(x), which is identified experimentally.

Shoukry’s element model [167] was developed using Mindlin’s spherical contact ele-

ment [115], thus microslip may occur at each asperity. Assuming exponential peak height

distribution of the spherical contact element, the force-deformation relation is:

LSh(x) = µN(1 − e−
ax
ð ) (3.71)

where ð is the standard deviation of peak height distribution, and a = 2(1−ν)
µ(2−ν)

with ν

being Poisson’s ratio. It is not necessary to identify experimentally this model, as it can

be predicted from physical parameters, e.g surface finish and normal pressure.

Multi-slip mode elements are more versatile on account of their ability to model all

deformation/slip modes, as well as other features discussed below.

Combined elements model is Sanliturk’s simple approach to include macro- and mi-

croslip characteristics in one model, using an empirical weighting factor β:

LHyb(x) = (e
−β

x
Xcr )LSh(x) + (1 − e

−β
x

Xcr )LBi(x) (3.72)

Where Xcr,LBi(x) and LSh(x) are defined in eqs. (3.69, 3.71) respectively.

Ren’s element model [151] uses a small area of the interface as the basic element, which

is unlike Burdekin’s and Shoukry’s models (3.70, 3.71) that assume an element for each

single asperity. Each of these small areas is modelled by a bilinear element, all of which

are of identical stiffness, and may comprise several asperities or represent only a part of

an asperity. The concept of a stiffness-area (s-area) is introduced, with domain s ∈ [0, 1]

representing the slipped s-area as a proportion of the total initial stiffness contributed

from an interface area, whose s
def
= 1. With s ∈ [0, 1] and deformation x being reciprocal

functions s
def
= s(x) ⇔ x

def
= x(s), the problem is definable in the s-domain and the

resulting model (3.73) can represent any Masing’s type joint. Ren’s generalised element

may represent joints experiencing: a) pure stiffness when x ≤ x(0), b) Micro-slip when

x(0) < x < x(1) only partial interfacial slip occurs, or c) Macro-slip when x ≥ x(1) the
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whole interface is sliding and Coulomb’s friction law applies.

LRen(x) = kx for 0 < x ≤ Xsl (3.73a)

= k
x − Xsl + x(b − ln x + ln Xsl)

b
for Xsl < x ≤ Xsle

b (3.73b)

= k
Xsl(e

b − 1)

b
for x ≥ Xsle

b (3.73c)

where Xsl is the slip limit—maximum linear elastic deformation without friction—and b

represents the level of difference between asperities, which reflects differences in individual

bilinear elements’ Xcr in (3.69). Naturally, different hysteresis loops result according to

choice of parameters, particularly varying b:

• With b ≃ 0, the resulting hysteresis loop is (virtually) that of the bilinear element

described by (3.69), which reflects (3.73a,c).

• With gradual increase of b, the hysteresis loop is a mixture of macro- and microslip

• With substantial increase in b, the hysteresis loop describes primarily microslip

3.2.2. RID Modelling: Concept, assumptions and EOMs

In the following modelling approach, a rotor joint is assumed to be localised at a single

rotor station (point). As interest is in stability of lateral vibration, only lateral forces are

considered with axial forces ignored. Since small angular displacements are related to and

accounted for by lateral displacements (§.3.1.1), the rotor joint is thus modelled by its

lateral restoring force resulting from its stiffness and friction characteristics, while joint’s

inertia is ignored. As with other friction joint models (§.3.2.1), the RID joint model can

be rheological or hybrid. While, to the authors knowledge, hybrid models have not been

implemented in studying RID instability, simple rheological models have been used, where

(a joint with) RID is modelled by:

• A simple restoring force model with assumed coefficients representing the overall

effect of RID from joint and/or shaft, e.g. linear viscous (3.77) or nonlinear Coulomb

friction for an illustrative sort of analysis

• A predicted joint model (as discussed on p.119) derived from joint’s design and in-

terface parameters: Configuration, normal pressure and assumed friction coefficient.

Again a simple rheological damping model is assumed, i.e. a joint with linear viscous

(2.40) and/or Coulomb damping (2.42) characteristics at interfaces
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The following modelling approach does not preclude the use of hybrid models (3.69—

3.72), some of which are to be implemented so as to explain some of the more interesting

features that may be physically observed during an RID instability.

3.2.2.1. Augmenting RID to linear rotordynamic EOMs in rotating frame

RID is effective only on rotor (shaft) flexing, to which the system’s behaviour resulting

from RID is related. For linear viscous RID, it is advantageous to consider rotor’s flexing

in the rotating frame of reference so as to isolate it from the overall system’s vibration,

which might not cause rotor flexing e.g synchronous precession of isotropic Jeffcott rotor.

However, it is essential to use rotating frame EOMs for other RID models :

• FR models (linear hysteretic or DFs of NL RID) assuming single-sinusoidal input.

• A hybrid model that requires a single dimension loading history.

• A rheological nonlinear model that is not easily transferred to the stationary frame.

Previous RID modelling method Researchers had modelled RID as a force Fζ aug-

mented to the complex ξη-frame EOM of Jeffcott rotor (2.9) to result in (2.10), which are

(3.11) and (3.76) with G = 0 respectively, for qualitative illustrations. Fζ is supposed to

be the restoring force corresponding to the RID-induced moments at a shaft cross-section

or coupling—see §2.4.5. Generally, Fζ
def
= ci(ζ, ζ̇)ζ̇ is nonlinear depending on shaft flex-

ing amplitude and its rate, which is equivalent to (3.61d). To simplify analysis, stiffness

was not expressed and Fζ
def
= ci(ζ̇)ζ̇ had a purely dissipative nature. Polar coordinates

ρeıφ =
√

(ξ2 + η2) eıφ = ζ were used [41, 177] to expand (2.10) for RID models other

than linear viscous, arguing that Fζ(ζ, ζ̇) is not necessarily opposite in direction to ζ̇.

Partial derivatives of ρ, φ yielded two geometrically nonlinear EOMs (2.20). Lyapunov

linearisation (5.2) was used thereafter to assess local absolute stability. Although (3.76)

linear viscous coefficients can be transferred with ease to the stationary frame (3.84), this

is a luxury not afforded by nonlinear models, yet an argument addressing this issue is

presented in the following section.

RID joint physical representation and analytical modelling In this thesis, RID is

modelled in a similar fashion to (2.10). Two orthogonal directions ξ, η are used so as to

satisfy Tondl’s aforementioned argument as well as accommodate the constant deflection

due to imbalance, which can be different in the ξ, η directions. Polar coordinates ρ, φ are

not used due to the unnecessary geometric nonlinearity they introduce to EOMs.
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Physical representation A RID-introducing joint such as that in fig.3.1 is represented

by two elements as illustrated in fig.3.4, which:

• Are in the orthogonal directions ξ, η, between the shaft and rotating frame ground

• Are generally nonlinear with displacement and velocity in the widest sense, but may

also be linear viscous elements represented by simple dashpots

• On displacement, each results in a (nonlinear) restoring force output Fξ,Fη that is

an element of the internal (nonlinear) force vector F

X axis
x axis

h
ax

is

Y
ax

is

Wt

X axis
x axis

h
ax

is

Y
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is
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r r

Figure 3.4.: RID joint representation and modelling for 2DOF rotor

F is introduced to the otherwise linear system in the rotating frame (e.g. 3.6) as:

Mrq̈r + Crq̇r + Krqr + F = fr (3.74)

Most generally, all elements in F are functions of all state variables in state vector pr

F
def
= F(pr)

def
= F(qr, q̇r), which for 2DOF is F

def
=

{
Fξ(qr, q̇r)

Fη(qr, q̇r)

}

Modelling assumptions for RID-induced F and box N of nonlinearities N The

MIMO system of (3.74) may be viewed as a linear system with a multivariable (multi-

dimensional) nonlinearity N having 2n inputs pr∈{1...2n}
and n outputs Fi∈{1...n}

, each of

which is a function of all inputs. A useful visualisation for forthcoming analysis is consid-

ering Fn×1 to be the output of a box N 2n×n (set) of N when subjected to an input pr2n×1 .

With the definition of a phase state vector (3.15), N can be an n-square set of MVNL

Nij ∈ N n×n with rate memory. In the most general sense, all Nij
def
= Nij(pr) are functions

of all inputs. A less general scenario is considering each output to be the sum of separate

nonlinear functions of each input, as in: Fi =
∑n

j=1 Nij(qj), which is the least necessary

for hard nonlinearities to avoid discontinuity of output Fi during continuous whirling.

The simplest scenario exists when there is no cross-coupling in N so that: Fi = Nii(qi),

which is assumed hereafter for RID in accordance with the following arguments. This is
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a fair assumption for linear RID, but results in a discontinuous Fi for the hard NL RID

models used, which is an issue that can be overlooked in lieu of simplified analysis that

are approximate in the first place.

In general (3.74), F results from internal restoring forces due to (nonlinear) elements,

each of which is characterised by Nij and is connected between the single coordinates qri

and qrj
. Hence, the input to Nij is seen to be the inter-coordinate relative displacements

qrij
= qri

− qrj
and/or their velocities. As in (2.10) a joint with RID is seen to connect

the rotor to the ground of the ξη-frame, so qrij
= qri

− 0 = qri
. It can be viewed as

a spatial nonlinear coupling between the LTI rotor subsystem SL and the ground via

the nonlinear joint model N whose input is merely the coordinates’ displacements and

velocities. Accordingly, the RID force vector F and N box for the 2DOF rotor of (3.74):

F =

{
N (ξ, ξ̇)

N (η, η̇)

}
, and N =

(
N (ξ, ξ̇) 0

0 N (η, η̇)

)
(3.75)

3.2.2.2. EOMs for 2DOF rotor with RID models

EOMs with simple single-valued RID models, e.g. linear viscous (3.62) and nonlinear

Coulomb RID (3.68) models are presented here in accordance with §.3.2.2.1 and in formats

necessary for further analysis. Gyroscopic effects may actually simplify analysis.

Complex representation Fζ of RID force vector F in the rotating ξη-frame Gen-

erally, complex EOMs representations are beneficial in reducing problem size and used

in frequency response and eigen analysis (§.4.1, 4.2). Other than avoiding the aforemen-

tioned discontinuous Fi = Nii(qi) pitfall (3.75) with real system representation, complex

representation is essential for further graphical (nonlinear) analysis (§.5.3.2.1). The aim

is to arrive at and justify the complex EOM with complex RID representation Fζ :

mζ̈ +
(
c +

(
2m − G

)
Ωı

)
ζ̇ +

((
k + (G − m)Ω2

)
+ cΩı

)
ζ + Fζ = fζ (3.76)

from expanding (3.74), with the 2DOF ξη-frame EOMs being:

mIq̈r +
(
cI +

(
2m − G

)
Ωℵ

)
q̇r +

((
k + (G − m)Ω2

)
I + cΩℵ

)
qr + F = fr

In the case of nonlinear RID however, complex representation (3.76) is only arguably

viable based on operational assumptions for models other than Coulomb’s.
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Linear RID force vectors For the straightforward case of linear viscous RID:

N = ciq̇r ∴ F = Fvisc =

{
ciξ̇

ciη̇

}
=

[
ci 0

0 ci

]{
ξ̇

η̇

}
= ciIq̇r (3.77)

In which case Fvisc is augmented to the 2 EOMs as:

mIq̈r +
((

c + ci

)
I +

(
2m − G

)
Ωℵ

)
q̇r +

((
k + (G − m)Ω2

)
I + cΩℵ

)
qr = fr (3.78)

which can in turn be written in complex format, with (1, ı) representing (I,ℵ), as:

mζ̈ +
((

c + ci

)
+ ı

(
2m − G

)
Ω

)
ζ̇ +

((
k + (G − m)Ω2

)
+ ıcΩ

)
ζ = fζ (3.79)

Similarly, hysteretic RID can be augmented whilst including the all important sgn(ω):

mζ̈ +
((

c + ıd sgn(ω)
)

+ ı
(
2m − G

)
Ω

)
ζ̇ +

((
k + (G − m)Ω2

)
+ ıcΩ

)
ζ = fζ (3.80)

where ω may be either positive or negative, but only representing either of:

• Frequency of response to excitation, with both being circular rotating vectors

• Modal frequency when fζ = 0

Although sgn(ω) renders (3.80) nonlinear, Eigen-analysis may be applied once for each of

-ve and +ve sgn(ω), depending on the mode of interest.

Argument for using a complex representation of a general nonlinear F As discussed

in §.3.1.1.3, A.1, the condition for representing the general nonlinear F by its complex

form Fζ in the complex EOM of isotropic 2DOF rotor (3.76) is: F
def
=

{ F(τ)
F(τ∓π/2)

}
with ∓

representing CCW and CW precessions respectively. This is a very viable assumptions

to make on account of gyroscopic coupling whilst rotating and common N ≡ Nξ ≡ Nη,

since displacement and/or velocity input to N in the case of:

• Sustained asynchronous precession from 1) Bidirectional forcing resulting in circular

rotating vector, or 2) Limit cycle due to nonlinearity. In both cases inputs are iden-

tical with π/2 lead or lag depending on rotating vector directionality and reflected

by sgn(ωe) in (figs.4.12, 4.13) or the precessing mode respectively

• Unidirectional forcing: Inputs are very similar, especially around resonances with

π/2 lead or lag on account of gyroscopic coupling (figs.4.8, 4.9)
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• Any disturbance: Inputs are comparable with π/2 lead or lag depending on modal

contributions. This is perhaps a gray area, but is of no concern here as interest lies

primarily in the first item.

Accordingly, (3.76) is used with confidence for the FR graphical analysis in §.5.3.2.1.

Representing F in the stationary frame and analysing the system in the xy-frame can

prove very useful, especially in the case of rotor on orthotropic bearings so as to avoid

the hassle of handling EOMs with time-varying matrices in the rotating frame.

Express system in stationary frame the ξη-frame EOMs (3.74) are expanded:

T TMT (q̈r + 2Ωℵq̇r − Ω2qr) + T T (G + C)T (q̇r + Ωℵqr) + T TKTqr + F = fr

Or equally T TMq̈ + T T (G + C)q̇ + T TKq + F = fr (3.81)

Then, pre-multiplying (3.81) by T transfers the EOMs back to the stationary frame as:

Mq̈ + (G + C)q̇ + Kq + TF = T fr = f (3.82)

Expressing F in terms of (q, q̇) should be rather convenient, if not very straight for-

ward, when considering EOMs in the stationary frame. According to (3.3,3.4) the non-

linear force vector becomes a function of xy-frame displacements and velocities as:

F(q̇r,qr) = F
(
T T (q̇ − Ωℵq) , T Tq

)
(3.83)

In the case of linear viscous RID where F = ciIq̇r and according to (3.82, 3.83) the

EOMs are:

TF = ciT Iq̇r = ciT IT T (q̇ − Ωℵq) = ciI(q̇ − Ωℵq)

=

[
ci 0

0 ci

]{
ẋ

ẏ

}
+ Ω

[
0 ci

−ci 0

]{
x

y

}
(3.84)

By (3.84), linear viscous RID introduces to the xy-frame EOMs:

1. The symmetric matrix ciI, which enhances stability as it adds to the stabilising

cI = C matrix in the overall Cg (3.1).

2. The speed-dependant skew-symmetric matrix Kcc = ciΩℵ (3.1), which has a desta-

bilising effect [33] that increases with speed.
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In the case of Coulomb RID (3.68)

TF = µNT sgn(q̇r) = µNT sgn(T T (q̇ − Ωℵq)) (3.85)

3.2.2.3. Feedback formulation of RID problem

Feedback formulations are used to separate SNL

S⊃ {SL,SN} for analysis requiring con-

sidering each subsystem separately. It promotes the more efficient DFM (§.5.3) over the

HBM on account of reduced system order. Also, such setups have been studied extensively

in the rich NL control engineering (§.A.2.3), which facilitates further adaptations.

System setup considering (3.81), F is moved to the righthand-side, resulting in:

Mrq̈r + Crq̇r + Krqr = fr − F (3.86)

The LTI lefthand-side of (3.86) part is represented by its TFM Hr(s), whose input then

becomes fr − F . This setup is suited for a nonlinear closed loop system representation

with F(q̇r,qr) in the feedback loop, and Hr(s) in the feed-forward path. Furthermore,

with complex representations of this setup, graphical stability and response predictions

of SISO systems with minimum-phase TFs can be applied as demonstrated in §.5.3.2.

Figure 3.5.: RID feedback setup in rotating frame
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State matrices from state and output equations including feedback RID are identical

to those from EOMs. From the feedback setup (3.86) according to (3.15,3.18)

ṗr = Arpr + B(f r − F)

With linear viscous RID in the feedback loop and excluding external forces leads to:

ṗr = Arpr − B(ciIO
vpr)

= (Ar − ciBOv)pr = Ǎrpr

The overall system state matrix Ǎr is identical to that derived from EOMs (3.78) as:

Ǎr = − 1

m




0 0 −m 0

0 0 0 −m

k + Ω2(G − m) −Ωc c + ci Ω(G − 2m)

Ωc k + Ω2(G − m) −Ω(G − 2m) c + ci




(3.87)

Similarly, the overall TFM of the MIMO feedback system is given by:

G(s) = [I + H(s)B(s)]−1H(s) (3.88)

Complex formulations in state space are possible, albeit unorthodox, yielding the char-

acteristic equation:

mλ2 +
(
c + ci + ı(2m − G)Ω

)
︸ ︷︷ ︸

cr

λ + k + (G − m)Ω2 + ıcΩ︸ ︷︷ ︸
kr

= 0 (3.89)

3.3. Concluding remarks

The Infrastructure, necessary for linear and nonlinear analysis developed and implemented

in chapters to follow, was laid here. System characteristics and the physically localised

nature of RID encouraged separating the overall NL system SNL

S⊃ {SL,SN} into LTI

‘SL’ and NL ‘SN ’ subsystems, whose characteristics will narrow down suitable NL analysis

to the approximate DFM. Rotating frame SL and SN subsystems are setup in a feedback

formulation (fig. 3.5) to make use of Nyquist like criteria (Ch.4 ) and facilitate further

adaptations from the rich NL control engineering (§.A.2.3, fig.A.2).

Linear Rotordynamic system As RID is initially augmented to rotating frame EOMs

(§.3.2.2.1), their relation to those of the stationary frame are detailed to emphasise the

physically comprehensible effects on FWD/BWD modes and FRFs, and postulate on
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the precession-quenching effect (p.193) of incommensurate 2Ω-frequency from support

anisotropy (3.9). Complex EOMs of the stable gyroscopic subsystem are stated in both

frames, as they better represent modal frequencies signs, and are used in conjunction with

the adapted Nyquist criterion (Ch.4 ).

Eigen-results closed-form expressions (§.3.1.3.2) are developed in both frames for com-

parison with RID-augmented systems, and their relation (3.48) used to: 1) Conclude

on the stability of FWD/BWD modes from those analysed in the rotating frame, which

is essential for complex stiffness RID; 2) Arrive at the critical speed expression (3.44),

necessary to elucidate the impossibility of subcritical RID instability; and 3) Emphasise

modal vectors’ (3.50), and corresponding residue matrices (3.51) invariance, which reflect

on frequency-shifted FRFs and their peculiarities (§.3.1.2.3 ). Modal directionality was

classified (p.103) to aid in identifying FWD/BWD mode-dominated FRF portions.

Frequency response NL stability methods are to be adopted/modified for the RID

problem, so it was necessary to examine the relevant SL TFM/FRM characteristics. Al-

though FRMs in both stationary and rotating frames satisfied the Normality condition,

they failed the Diagonal Dominance (away from resonances) and Positive Real conditions.

While individual TFs in the stationary frame where fairly standard, with speed-invariant

zeros hence anti-resonances, the rotating frame point TFs exhibited an interesting zeros

pattern. Both zeros o1,2 will be complex for speeds up to Ωc, afterwhich they assume

real values of opposite signs (e.g. figs.4.7), which renders the TF of non-minimum-phase

at supercritical speeds. However, for the adapted Nyquist criterion (Ch.4 ) the complex

rotating frame TF satisfies the minimum-phase requirements. All TFs developed rep-

resent completely observable and controllable systems, provided gyroscopic coupling is

maintained, which is necessary (§4.3) to investigate unstable poles.

RID is modelled as a localised friction joint that couples the linear rotor (fig.3.1) to the

rotating frame ground (fig.3.4) by two elements in the orthogonal ξ, η directions, resulting

in internal (nonlinear) restoring force output Fξ,Fη ∈ F .

Linear viscous and (flawed) hysteretic damping models are arguably justified by the

small vibration amplitudes that rotors are designed to endure, and are viable for tight

joints, e.g. Curvic Couplings. The main problem with hysteretic RID stems from using its

complex stiffness (3.63) whilst not accounting for sgn(ω) (3.64), which yields misleading

results in assessing modal stability with negative frequencies, and FR-based stability

analysis of complex rotor representation. This FR model (3.64) can be augmented to
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rheological EOMs whilst including the all important sgn(ω) but does not transfer to the

stationary frame with ease, and has to be analysed in the rotating frame.

NL damping models are more representative of different RID joints, but have hard

characteristics that further limit suitable NL analysis. SVNL models include the simple

Coulomb and a proposed parabolic friction elements (fig.3.2) which offers an explanation

(§.5.3.2.2) as to why spline coupling RID-induced whirling at one speed may be bounded

for minor disturbances yet jumps (fig.5.5) to unbounded with significant disturbances

(p.203). MVNL models are various Macro- and Micro-microslip Masing’s elements, which

are more representative of interference and flanged couplings. Naturally, representing F

in the stationary frame is rather favourable for physical appreciation as well as to avoid

possible LTV terms. However, with the exception of Coulomb damping, this process

proved to be rather intractable.
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In this chapter, the eigen-analysis, frequency response and modal stability analysis of the

2DOF LTI RID system are elaborated and exemplified numerically. Conditions for the ex-

istence of RID instability are arrived at using the Routh-Hurwitz criterion, and elucidate

the stabilising gyroscopic effect. The effect of linear RID on BWD and FWD modes and

their stability is derived and compared to the rotor-without-RID case. The flawed hys-

teretic RID model is implemented appropriately in the rotating frame whilst accounting

for sgn ω, and yields representative results in the stationary frame. The experimentally-

observed unusual CCW Nyquist plot possibility is explained thoroughly as the result of

unstable poles in the right-half-s-plane. This explanation is the fundamental basis of the

experimentally-applicable stability test (EAST) for a possibly-unstable general dynamic

system, which is presented lastly.

4.1. Modal analysis and frequency response of stable

rotor without RID

This section sets-off by validating and exemplifying the analytical derivations and findings

of CH.3 for asymptotically stable rotor-bearing system without RID. The validated results

are then further probed into for later comparison with the effects of introducing linear

RID to the LTI rotordynamic system SL (§.4.2).

Numerical examples from several textbooks [49, 96, 97] were utilised to verify the eigen-

solver [1] results and thereafter, the analytical derivations of CH.3. A verification example,

using a simple xy-frame spatial model (3.2, 4.1) from [96] for a single-disc rotor that is

mounted on orthotropic bearings, is presented (fig. 4.1) for illustration purposes. The

numerical values borrowed:

m = 14.29 G = 2.871 in Kg

kx = 1.570e6 ky = 1.195e6 in N/m = Kg/s2
(4.1)

were derived by Rayleigh-Ritz method with the displacement function being the first

mode shape of a simply-supported beam representing the rotor’s symmetric shaft. The

full set of modal frequencies ℑ(λi)∈{1...4} are plotted against increasing rotational speed
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Figure 4.1.: Modal frequencies ωi = ℑ(λ)i∈{1...4}
of anisotropic rotor (3.2, 4.1) C = 0

Ω : [0 ⊲ 800'(Ω≡2ωf )] to well above the critical speed Ωc ≃ 353.7 rad/s, at which ωfu
≡ Ω

(fig. 4.1) and after which ωf ≡ ω2 = −ω4 < Ωsuper-critical.

Numerical results of the initial validation phase, i.e. Eigenvalues (e.g. figs. 4.1, 4.2) and

FRFs (e.g. figs. 4.8, 4.9) of stable SL, are in excellent agreement with those of [96] as

well as the eigenvalue expressions in §3.1.3.2, which validates the:

• State-space and FRM models set-up in §3.1.2

• Analytical eigenvalue expressions derived in §3.1.3.2

• Eigensolver [1] used throughout

The numerical values borrowed from [96] for the isotropic rotor of (3.2) are:

m = 14.29 Kg; G = 2.871 Kg; c = 75 Ns/m k = 1.195e6 N/m (4.2)

4.1.1. Analytical modal analysis

4.1.1.1. Eigenvalues

Eigenvalues in the stationary xy-frame The expression for eigenvalues λb,f (3.45) is

restated here (4.3) in a rearranged form primarily to examine conveniently the changes

to ℜ(λb,f ) with speed Ω, which are to be compared to those of the same system when
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augmented with RID (4.12).

λb,f =
−c + ı

(
ΩG ∓

√(
ΩG + ıc

)2
+ 4mk

)

2m
(4.3)

The expression under the square-root in (4.3) is complex ∀Ω 6= 0, and of the form:

√(
ΩG + ıc

)2
+ 4mk =

√
a + ıb (4.4a)

where a = 4mk + (ΩG)2 − c2 > 0 and b = 2ΩGc > 0 (4.4b)

The square-root of a complex expression/quantity, e.g. (4.4) results in another complex

expression, whose real and imaginary parts are expressed by (A.5) the formula for square-

roots of complex quantities. By the foregoing (4.3,4.4), real parts of eigenvalues ℜ(λb,f )

have two contributors:

• The quantity − c
2m

is common and contributes equally to both ℜ(λb) and ℜ(λf )

• The imaginary quantity ıℑ
(√(

ΩG + ıc
)2

+ 4mk

)
multiplied by ( ı

2m
), contributes

to both ℜ(λb) and ℜ(λf ), yet in an opposite sense in accordance with (4.3)

Since b = 2ΩGc is +ve (4.4b), formula (A.5a) applies to
√(

ΩG + ıc
)2

+ 4mk, i.e.

√
a + ıb =

√
a +

√
a2 + b2

2
+ ı

√
−a +

√
a2 + b2

2
for b > 0

= ℜ
(√(

ΩG + ıc
)2

+ 4mk

)
+ ıℑ

(√(
ΩG + ıc

)2
+ 4mk

)

with the resulting imaginary quantity (× ı
2m

):

• Adds to − c
2m

in the case of λb, hence increasing ℜ(λb)—less negative.

• Subtracts from − c
2m

in the case of λf , hence decreasing ℜ(λf )—more negative

Since b
def
= 2ΩGc increases with increased speed, then ℜ(λb) increases while ℜ(λf ) decreases

with increased speed as demonstrated in fig. 4.2.

Numerical examples of eigenvalues’ variation with speed Fig. 4.2 presents the eigen-

values λ1,2 ≡ λb,f that were calculated for SL represented in the stationary xy-frame (3.2),

while fig. 4.3 presents the eigenvalues λr:1,2 calculated for SrL in the rotating ξη-frame

(3.8), with rotordynamic coefficients (4.2). In (figs. 4.2, 4.3), λ1,2, λr:1,2 are separated

into real and imaginary parts ℜ(λ),ℑ(λ) that are presented on the same graph (figs. 4.2,

PhD thesis 139



4. Analysis of linear RID system

4.3) with two ordinates, one for each part, against the abscissa Ω. The modal frequency

ω = ℑ(λ) ordinate represents increasing ω, while the decay rate ordinate represents de-

creasing ℜ(λ) ⇒ increasing |ℜ(λ)| for stable SL.

Coefficients (4.2) result in an undamped system’s Ωcu
=

√
k

m−G
≈ 323.5rad/s, which by

inspection, is virtually identical to this damped system’s Ωc that is indicated on plots

with Ω : [Ω1 ⊲ Ω2] because of its strong significance to all analysis that follow. Observing

and comparing both figures (figs. 4.2, 4.3) shows:

• As Ω : [0 ⊲ 800] rad/s,

FWD mode: The +ve ω2 ≡ ωf ր and ℜ(λf ) ց⇔ |ℜ(λf )| ր;

BWD mode: The -ve ω1 ≡ ωb ր⇒ |ωb| ց and ℜ(λb) ր⇔ |ℜ(λb)| ց

• ωr:1,2 ≡ ω1,2 − Ω, while ℜ(λr:1,2) ≡ ℜ(λ1,2)

• ωr:1 is always -ve, while ωr:2 is
{

+ve for Ω<Ωc

-ve for Ω>Ωc
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Figure 4.2.: Eigenvalues λb,f (3.45) of isotropic rotor (3.2, 3.10) with parameters (4.2)

4.1.1.2. Modal damping factors

Modal damping is important for our stability analysis purposes as it is readily identifiable

(§.6.2, fig.6.9) from response models, obtained experimentally or analytically, using off-

the-shelf commercial software. Although sgn
(
ℜ(λ)

)
assesses SL stability, damping factors

γ1,2 in stationary and γr:1,2 in rotating frames that were derived from the modal models

(3.45, 3.47) are presented (fig. 4.4) for illustration and later-on comparisons with those

derived from response models. As derived (3.46), fig. 4.4 shows that γb ≡ γf but γr:1 6= γr:2
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Figure 4.3.: Eigenvalues λr:1,2 (3.47) of isotropic rotor (3.8, 3.11) with parameters (4.2)

in the rotating ξη-frame. Unlike γb,f , γr:i∈{1...4}
are plotted on a logarithmic scale so as to

accommodate their significant value variations.

It is interesting to observe the damping factors γr:2,4 of λr:2,4 rotating frame modes—

resulting from FWD modes with λf , λ
∗
f = λ2,4 in xy-frame—around Ωc. At the critical

speed Ωc,∵ ωf = Ω ∴ ωr:2 = ωf − Ωc = 0 = ωr:4 ⇒ ω̂r:2,4 = 0, when the eigensolution is a

non-oscillatory exponential decay with ℑ(λr:2,4) = 0 and ℜ(λr:2,4) ≡ ℜ(λ2,4) 6= 0; in which

case: Neither ℜ(λ)r:2,4 = −(γω̂)r:2,4 nor (3.34c) apply and damping factors γr:2,4 are not

defined. As Ω → Ωc from either end, ω̂r:2,4 → 0 and γr:2,4 → 1 so as to compensate for

the sustained ℜ(λr:2,4) 6= 0 while ω̂r:2,4 6= 0. As γr:2,4 → 1 around Ωc, modes with λr:2,4

are almost critically damped and will exhibit very few oscillations albeit at ωr:2,4 ≃ 0.

4.1.2. Frequency response of analytical rotordynamic models

FRF polar plots are used (§.4.3, 5.3.2) to examine stability. EAST (§.4.3) in particular,

assesses modal stability based on examining the effect of unstable poles ℜ(p) > 0 on

the FRF phase angle swept ∆∠Hij(ıω)

ω:[ωe:1⊲ωe:2]

on sweeping the range ω : [ωe:1 < ℑ(λ)
unstab

< ωe:2].

However, the effect of individual left- or right-half s-plane poles and zeros on ∆∠Hij(ıω)

ω:[ωe:1⊲ωe:2]

can differ markedly, depending on: The ratio |ℜ
ℑ
| of each pole and zero, the frequency range

[ωe:1, ωe:2], as well as how well-separated poles are from each other (fig. 4.5). Accordingly,

a thorough understanding of FRF polar plots’ general behaviour is necessary.
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Figure 4.4.: Damping factors γ1,2, γr:1,2 vs. Ω for stable rotor: parameters (4.2)

4.1.2.1. FRF characteristics of system with well-separated modes

A system with well-separated modes is one whose every mode is clearly identifiable from its

FRF; i.e. every mode that is represented by a partial fraction (PF) in the FRF expansion

(4.7) emulates a SDOF with a clear resonance on the magnitude plot and a quasi-circle

on the polar plot, which are easily separable from those of other modes, e.g. figs. 4.6, 4.9.

Rotors with RID that are of interest to this research would largely fall in this category

on account of moderate external damping and well-separated modal frequencies, as will

be elaborated hereafter. Also, the reliable implementation of EAST (§.4.3) requires a

rotordynamic system with well-separated modes.

General FRF relation to poles, zeros, gains and frequency range According to the

pole-zero-gain representation (3.54) of individual TFs, the corresponding FRFs’ |Hij(ıω)|
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and ∠Hij(ıω) can be represented as:

Hij(ıω) = gij

∏u
q=1(ıω − oq)∏l
v=1(ıω − pv)

, with u < l = 2n

∴ |Hij(ıω)| = |gij|
∏u

q=1 |ıω − oq|∏l
v=1 |ıω − pv|

(4.5)

∠Hij(ıω) = ∠(gij) +
u∑

q=1

∠(
−−−−→
ıω − oq) −

l∑

v=1

∠(
−−−−→
ıω − pv); ∠(gij) =

{ 0∀ +ve sgn(gij)

−π ∀ -ve sgn(gij)

Angles in a complex plane are measured in the CCW direction: ∆∠(.)
def
= +ve in ª.

The differences (ıω−pv) and (ıω−oq) represent complex pole and zero vectors
−−−−→
ıω − pv,−−−−→

ıω − oq respectively in the s-plane, from the pole pv∈{1...l}
or zero oq∈{1...u}

to some (exci-

tation) frequency ıωe on the imaginary axis (fig. 4.5). A pole or zero vector, e.g. (ıω − p)

has a length |(ıω − p)| and angle ∠(ıω − p), which at ω = ℑ(p) are ℜ(p) ‘shortest’ and 0

respectively. On sweeping a frequency range ωe : [ωe:1 ⊲ ωe:2] a pole (or zero) vector will

sweep:

∆∠(ıωe − p)
ωe:[ωe:1⊲ωe:2]

= ∠(ıωe:2 − p) − ∠(ıωe:1 − p) = tan−1
(ωe:2 −ℑ(p)

−ℜ(p)

)
− tan−1

(ωe:1 −ℑ(p)

−ℜ(p)

)

According to (4.5), all pole/zero vectors contribute to ∠Hij(ıω); with ∠(ıω− o) adding to,

and ∠(ıω − p) subtracting from the overall sum that results in ∠Hij(ıω).

Angle swept by left-half s-plane pole/zero vectors Vectors of enclosed1 poles or zeros

will sweep a net angle of π radians as the ıω-axis is traversed from −ı∞ to ı∞:

∆∠(ıωe − p)
ωe:〈−∞⊲∞〉

= ∠(ı∞− p) − ∠(−ı∞− p) = π if ℜ(p) < 0 (4.6a)

Angle swept by right-half s-plane pole/zero vectors Vectors of such poles or zeros

sweep a net angle of −π radians as the ıω-axis is traversed from −ı∞ to ı∞:

∆∠(ıωe − p)
ωe:〈−∞⊲∞〉

= ∠(ı∞− p) − ∠(−ı∞− p) = −π if ℜ(p) > 0 (4.6b)

Impact of well-separated modes on FRFs An FRF with clearly identifiable and well-

separated modes requires that consecutive eigenvalues have real parts that are substan-

tially lower than the difference of their frequencies. A moderately-damped system whose

1see concept.A.1, p.241
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resonant frequencies are separated by 10% or more of their frequency is generally consid-

ered to be one with well-separated modes. Interest in analysing stability of RID systems

implies that they fall in such a category because:

• Stability analysis is concerned with moderately- to lightly-damped modes, and ev-

idently, rotordynamic systems that exhibit RID instability are not supplemented

by overly heavy external damping. Consequently, the xy-frame SL has parame-

ters leading to modes with: ℑ(λ) ≫ ℜ(λ), which is reflected in TFs’ poles with

ℑ(pv) ≫ ℜ(pv) as well as zeros ℑ(oq) ≫ ℜ(oq)—see (3.57).

• RID instability may occur only at Ω > Ωcu
, which usually implies well-separated

modal frequencies and hence well-separated poles and zeros.

FRF in frequency vicinities of moderately-damped, well-separated modes Parame-

ters (4.2) at Ω = 500rad/s > Ωc result in well-separated poles and zeros with the ratios:

|ℑ
ℜ
(p)| ≡ |ℑ

ℜ
(λ)| ≃ 112 and |ℑ

ℜ
(o)| ≃ 110∀Ω (fig. 4.5). Here onwards, a relatively limited

frequency range in the neighbourhood of a zero or pole frequency ωe : [ωe:1 ⊲ℑ
(

o
p

)
⊲ ωe:2]

is denoted as ∆ωoq
⊢⊣

or ∆ωpv
⊢⊣

in the vicinities of the qth zero and vth pole respectively.
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Accordingly, on sweeping ∆ωpv
⊢⊣

or ∆ωoq
⊢⊣

the relevant pole or zero vector will exhibit the

following, which is demonstrated for (
−−−−−→
ıωe − p2) with ∆ωp2

⊢⊣

def
= ωe : [0.9ωf ⊲ 1.1ωf ]:

• A substantial angle sweep ∆∠(ıωe − p2) . πrad., e.g.:

∆∠(ıωe − p2)
ωe:[0.9ωf ⊲1.1ωf ]

= tan−1
( 0.1ωf

−ℜ(p2)

)
− tan−1

(−0.1ωf

−ℜ(p2)

)
≃ 0.943π ;

• A significant variation in length, which is very short at ωe = ℑ(p2)

Meanwhile, the other pole/zero vectors sweep a negligible angle, and vary in length

smoothly and monotonically; e.g. ∆|ıωe − p3| . (ωe:2 − ωe:1), see fig. 4.5.

According to the foregoing and (4.5), each pole/zero vector of a system with well-

separated modes has a marked influence on the FRF’s:

• Magnitude |Hij(ıω)| in the immediate vicinity of pole/zero frequency ω ≃ ℑ
(

p
o

)
.

Because pole/zero vectors are very short at ω = ℑ
(

p
o

)
:

∏u
q=1 |ıω − oq| diminishes

and so does |Hij(ıω)| & 0 at ω ≃ ℑ(oq);
∏l

v=1(ıω − pv) diminishes, and so |Hij(ıω)|
peaks at ω ≃ ℑ(pv). Although, the vth resonance and qth anti-resonance frequencies

are very close to ℑ(pv) and ℑ(oq) respectively, they are generally not exactly equal

due to the other pole and zero vectors’ influence, albeit minimal.

• Phase angle swept ∆∠Hij(ıω) on sweeping ∆ωpv
⊢⊣

or ∆ωoq
⊢⊣

. A zero vector will add

∆∠Hij(ıω) . π, while a pole vector will subtract ∆∠Hij(ıω) . π from ∠Hij(ıω).

Partial fractions emulate a SDOF in modal frequency vicinities The foregoing is

the rational reasoning behind stating that: Within a small frequency range ∆ωpv
⊢⊣

in the

vicinity of the vth modal frequency ωv, an individual FRF Hij(ıω) is dominated by the

vth mode; thus behaving as a SDOF, which is represented by approximating the partial-

fraction expansion (3.40) as:

Hij(ıω) =
2n∑

v=1

Hv
ij

ıω − pv

≈ Hv
ij

ıω − pv

+ Ev
ij where Hv

ij = õcv

i b̃rv

j = ÕivB̃vj (4.7a)

H(ıω) =
2n∑

v=1

Hv

ıω − pv

≈ Hv

ıω − pv

+ Ev where Hv = õcv b̃rv ,∀ω ∈ ∆ωpv
⊢⊣

(4.7b)

The constant elements Ev
ij of matrix Ev approximate the contributions of 2n − 1 modes,

other than the vth mode, to Hij(ıω) over frequency range ∆ωpv
⊢⊣

. Observing the FR con-

tributions
Hv

xx

ıω − pv

, of the four modal partial fractions (PF) v∈1...2n=4 , to their receptance

PhD thesis 145



4. Analysis of linear RID system

|Hd
xx(ıω)| over the +ve ıω-axis (fig. 4.6) validates such approximation and justifies its use

later on. The four residue matrices of receptance for parameters (4.2) at Ω = 500rad/s > Ωc,

with corresponding matrices in xy- and ξη-frame being identical, are:

Hb def
= H1 ≡ Hr:1 =

[
9.12 + ı5960.76 −5960.76 + ı9.12

5960.76 − ı9.12 9.12 + ı5960.76

]
10−8 = H3∗ ≡ Hr:3∗

Hf def
= H2 ≡ Hr:2 =

[
−9.12 − ı5960.76 5960.76 − ı9.12

−5960.76 + ı9.12 −9.12 − ı5960.76

]
10−8 = H4∗ ≡ Hr:4∗

(4.8)
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Figure 4.6.: Modal contributions to point receptance in xy-frame at Ω = 500rad/s

In fig. 4.6, attention is drawn to the anti-resonance frequency that is virtually equal to

ℑ(o1) the zero frequency, in accordance with the PFs summing-up to nil at the complex

frequency o1 (3.55)-p.111. At frequencies away from a +ve modal frequency ωv > 0 :

∠
Hv

ii

ıω−pv
≈ 0 ∀ωe < ωv and ∠

Hv
ii

ıω−pv
≈ π ∀ωe > ωv. Similarly, for ωv < 0 : ∠

Hv
ii

ıω−pv
≈ π ∀ωe <

ωv and ∠
Hv

ii

ıω−pv
≈ 0 ∀ωe > ωv. Accordingly, ℑ(o1) lies in-between the two consecutive

poles’ frequencies −ωb, ωf , whose PFs’ FR intersect
∣∣∣ H3

xx

ıωint−p3

∣∣∣ =
∣∣∣ H2

xx

ıωint−p2

∣∣∣ at a frequency

ωint fairly close to ℑ(o1). This is because at the anti-resonance frequency, PFs of λ∗
b and

λf have FRs that are almost πrad out-of-phase yet with comparable magnitudes, which

are about one order higher than those of λb and λ∗
f PFs. This scenario is typical of most

moderately damped mechanical systems, rotating or stationary, and is elaborated here
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for comparison with the atypical scenario of point FRFs in the ξη-frame.

4.1.2.2. Example pole-zero maps and FRF plots

It is important to have a firm grasp of the relation between poles/zeros and FRFs’ phasing

as this shall be used for identifying instability. A commentary on both point and quad

receptance FRFs as a consequence of their TFs’ poles, zeros and gain is presented here for

stationary-frame Hd
xx(ıω), Hd

yx(ıω) and rotating-frame Hd
ξξ(ıω), Hd

ηξ(ıω). First, pole-zero maps

are presented (fig. 4.7) for point TFs Hd
xx(s), Hd

ξξ(s) on s-planes with unequally-scaled

real and imaginary axis for compactness reasons. As each TF in a TFM of this rotor

represents a completely controllable and observable SL(A,B,O), the poles of quad TFs

Hd
yx(s), Hd

ηξ(s) are identical to those of point TFs. Zeros and gains of all TFs considered,

including Hd
yx(s), Hd

ηξ(s), are given by (3.56b, 3.57b).

FRF plots are presented in log-magnitude and polar plot formats (figs. 4.8, 4.9). Point

FRFs are in solid while quad FRFs are in dashed lines. The frequency range ∆ωe
def
= ωe :

[ωe:1⊲ωe:2] swept is part of the s-plane +ve ıω-axis, which is selected in each case to include

the vicinities ∆ω p
⊢⊣

, ∆ω o
⊢⊣
∀ (p, o) of point TFs that are in the upper-half s-plane, except

for those at s = 0. Start frequencies (ωe:1) are chosen to be not far from ℑ(pb) so as to

make H(ıωe:1) visible/unmasked on the polar plot. These poles’ and zero’s frequencies are

shown on magnitude plots so as to indicate approximately the frequencies of resonances

and anti-resonances. ∆ωe is split into two segments [ωe:1 ⊲ℑ(o)] and [ℑ(o)⊲ωe:2] that are

connected at the point TF’s zero-frequency. The corresponding FRF mappings Hij(ıω)

[ωe:1,ℑ(o)]

and Hij(ıω)

[ℑ(o),ωe:2]

are distinguished by different line weights. This is to identify the part of FRF

that is influenced by the FWD mode from that influenced by the BWD mode, especially

on the polar plots. Also, the first FRF point H(ıωe:1) is marked by ‘o’ on the polar plots

so that the direction of phase angle swept ∆∠H(ıω)
[ωe:1⊲ℑ(o)⊲ωe:2]

can be established.

At sub-critical speeds: Ω < Ωc (fig. 4.8)

In the stationary xy-frame: Both Hxx(s) and Hyx(s) have the two poles p3(≡ p∗1) and

p2 in the upper-left-quarter s-plane, which correspond to the BWD mode with λ3(≡ λ∗
b)

and the FWD mode with λ2 respectively (3.45). Hd
xx(s) has a complex zero o in between

p3 and p2 (3.56), while Hd
yx(s) does not, which is characteristic of point and quad TFs

[49] respectively. However, Hd
yx(s) does have a zero at the origin s = 0. Accordingly,

both Hxx(ıω) and Hyx(ıω) exhibit resonances around ω3(≡ −ωb) and ω2(≡ ωf ). Meanwhile,

around ω = ℑ(o), Hd
xx(ıω) has an anti-resonance, while Hd

yx(ıω) exhibits a minimum. By

(4.5), at ω = 0, |Hd
xx(ı0)| > 0 but ∠Hd

xx(ı0) = 0 as the angles of complex-conjugate pole/zero

vectors cancel out. On the other hand, |Hd
yx(ı0)| = 0 due to the zero at s = 0; a static force

PhD thesis 147



4. Analysis of linear RID system

ℜ ( p,o)

 H
1

1

d
(s

):
  
xy

 f
ra

m
e

ℑ
( 

p
1

..
4
 ,

 o
1

,2
)

@ Ω = 200 < Ω
c

−3 −2 −1 0 1
−400

−300

−200

−100

0

100

200

300

400

 

ℜ ( p,o)

 H
r:

1
1

d
(s

):
 ξ

η
 f

ra
m

e

ℑ
( 

p
1

..
4
 ,

 o
1

,2
)

−3 −2 −1 0 1
−500

0

500

 

ℜ ( p,o)

ℑ
( 

p
1

..
4
 ,

 o
1

,2
)

@ Ω = 500 > Ω
c

−4 −3 −2 −1 0 1 2
−400

−300

−200

−100

0

100

200

300

400

 

ℜ ( p,o)

ℑ
( 

p
1

..
4
 ,

 o
1

,2
)

Poles & Zeros maps in s−plane

−400 −200 0 200 400
−1000

−500

0

500

1000

 

Figure 4.7.: Point TF Pole-Zero maps at sub/supercritical speeds in xy- and ξη-frames
Hd

ξξ(s) poles at Ω > Ωc are complex, but seem to be almost on ıω-axis due to their

comparatively very small real parts and the scaling used to accommodate the purely real zeros

(3.57a) of comparative magnitude (but opposite signs) with poles imaginary parts.

fx does not cause a response (deflection) in the perpendicular direction y. Meanwhile,

∠Hd
yx(ıω) = π/2 for ω & 0 due to the corresponding zero vector ∠(ıω − 0) = π/2. This

situation does not change much as ω increases up-to ωe:1 ≈ 200rad/s as demonstrated

(fig. 4.8) with ∠Hd
xx(ıωe:1) / 0,∠Hd

yx(ıωe:1) / π/2 and |Hd
yx(ıωe:1)| ' 0.

As frequency range ω : [ωe:1 ⊲ℑ(p3) ⊲ℑ(o) ⊲ℑ(p2) ⊲ ωe:2] is swept, the following FRF

phase variations occur:

• Point FRF Hd
xx(ıω): On traversing ∆ωp3

⊢⊣

, the pole vector (
−−−−−→
ıωe − p3) sweeps an angle

∆∠(ıωe − p3) . π which subtracts from ∠Hd
xx(ı0) = 0 leading to a phase angle

swept ∆∠Hd
xx(ıω) ≈ −π and leaving ∠Hd

xx(ıω) ≈ −π. Onto traversing ∆ω o
⊢⊣

, the zero

vector sweeps ∆∠(ıωe − o) . π, hence adding ∆∠Hd
xx(ıω) ≈ π which annuls the

phase introduced by (
−−−−−→
ıωe − p3) and leaves ∠Hd

xx(ıω) ≈ 0. Notice that at ωe = ℑ(o),
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Figure 4.8.: FRFs in stationary (1st row) and rotating (2nd row) at Ω < Ωc ⇒ Ω < ωf

∠Hd
xx(ıℑ(o)) = −π/2. By the time ωe:2 is reached, the other pole vector (

−−−−−→
ıωe − p2)

had swept another ∆∠(ıωe−p2) . π leaving ∠Hd
xx(ıωe:2) ≈ −π; i.e. the overall change

in phase angle ∆∠Hd
xx(ıω)

ω:[ωe:1⊲ωe:2]

' −π.

• Quad FRF Hd
yx(ıω): The first pole vector sweeps ∆∠(ıωe − p3) . π, which subtracts

from ∠Hd
yx(ıωe:2) ≈ π/2, leaving ∠Hd

yx(ıω) ≈ −π/2. Then (
−−−−−→
ıωe − p2) sweeps another

∆∠(ıωe − p2) . π, leaving ∠Hd
xx(ıωe:2) ≈ −3π/2. The overall change in phase angle

∆∠Hd
yx(ıω)

ω:[ωe:1⊲ωe:2]

/ −2π.

In the rotating ξη-frame: Both Hξξ(s) and Hηξ(s) in Hd
r (s) have pr:2 ≡ (λf − ı200)

corresponding to the CCW mode (3.47a), and pr:3 ≡ (λb−ı200)∗ corresponding to the CW

mode (3.47b), in the upper-left-quarter s-plane. Hd
ξξ(s) has a complex zero or in between

pr:2 and pr:3, while Hd
ηξ(s) has a -ve real zero and -ve gain gd

ηξ (3.57). Both Hξξ(ıω) and Hηξ(ıω)

exhibit resonances around ωe = (ωf − 200) and ωe = −(ωb − 200). Although Hd
ξξ(ıω) has
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an anti-resonance around ωe = ℑ(or), Hd
yx(ıω) does not exhibit its minimum thereabouts.

Like Hd
xx(ı0), |Hd

ξξ(ı0)| > 0 and ∠Hd
ξξ(ı0) = 0. Unlike Hd

yx(ı0) however, |Hd
ηξ(ı0)| > 0 and

∠Hd
ηξ(ı0) = −π due to the -ve zero and -ve gd

ηξ respectively. As ω increases up-to ωe:1 ≈
90rad/s, this situation does not change much except for ∠Hd

ηξ(ıωe:1) ≈ −π
2

(fig. 4.8) due to

the angle swept by the real zero’s vector ∆∠(
−−−−−−−→
ıω + c

2m−G
)

ω:[0⊲ıωe:1]

. π
2
⇒ ∆∠Hd

ηξ(ıω)

ω:[0⊲ıωe:1]

. π
2
.

As ω : [ωe:1 ⊲ ℑ(pr:2) ⊲ ℑ(or) ⊲ ℑ(pr:3) ⊲ ωe:2], these phase variations occur :

• Hd
ξξ(ıω): Like ∠Hd

xx(ıω), ∠Hd
ξξ(ıω)

ω:[ωe:1⊲ωe:2]

traces out two quasi circles in © direction, rep-

resenting two semi-SDOFs, leaving ∠Hd
ξξ(ıωe:2) ≈ −π and ∆∠Hd

ξξ(ıω)

ω:[ωe:1⊲ωe:2]

' −π overall

change, which reflects the two poles and zero in-between (pr:2, or, pr:3).

• Starting at ∠Hd
ηξ(ıωe:1) / −π

2
, ∠Hd

ηξ(ıω)

ω:[ωe:1⊲ωe:2]

traces out two quasi circles, with an overall

change ∆∠Hd
ηξ(ıω)

ω:[ωe:1⊲ωe:2]

≈ −2π and leaving ∠Hd
ξξ(ıωe:2) ≈ −π

2
, which reflects the two poles

(pr:2, pr:3) without a zero in-between.

Observe that any phase change ∆∠H(ıω)
∆ω

is in the © direction as long as ω is swept in the

increasing direction, i.e. ∆ω
def
=+ve.

At super-critical speeds Ω > Ωc (fig. 4.9)

In the stationary xy-frame: At Ω = 500rad/s > Ωc, H
d
xx(s) and Hd

yx(s) have pole-zero

maps (fig. 4.7) that are similar in layout to those at Ω = 200rad/s < Ωc. Naturally, the

upper-half s-plane poles are further separated to reflect the better separated BWD and

FWD modes with λ∗
b , λf , hence the stronger claim that H(ıω) behaves like a quasi-SDOF

as ∆ω p
⊢⊣

is traversed (4.7). Therefore, at Ω = 500rad/s, Hd
xx(ıω) and Hd

yx(ıω) have very similar

phase ∠H(ıω) and magnitude |H(ıω)| characteristics to those at Ω = 200rad/s, albeit with

different (more separated) resonant frequencies.

In the rotating ξη-frame: Point FRFs, at supercritical speeds, are perhaps the most

interesting, due to the significant change in layout of point TF Hξξ(s) pole-zero map. In

the upper-left-quarter s-plane:

• Hξξ(s) (and Hηξ(s)) now has pr:4 ≡ (λf − ı500)∗ ≡ p∗r:2 and pr:3 ≡ (λb − ı500)∗

consecutively, both corresponding to CW modes (3.47b). pr:2 that was significant

at Ω < Ωc moved below the ℜ-axis, since at Ω > Ωc, ℑ(pr:2) ≡ ℑ(λf − ı500) < 0

and, unlike its complex-conjugate pr:4, does not have a significant effect on H(ıω)
∆ωe

.
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Figure 4.9.: FRFs in stationary (1st row) and rotating (2nd row) at Ω > Ωc ⇒ Ω > ωf

• Hd
ξξ(s) does not have complex zeros in-between consecutive poles at Ω > Ωc, which

is atypical of point TFs; instead, two real zeros of opposite sign o2 ≡ ℜ(o2) ≡ −o1

(3.57a).

Accordingly, both Hξξ(ıω) and Hηξ(ıω) exhibit resonances around ωe = −(ωf − 500) and

ωe = −(ωb − 500) consecutively, while neither exhibits an anti-resonance. At ω = 0,

|Hd
ηξ(ı0)| > 0 and ∠Hd

ηξ(ı0) = −π, as for sub-critical speeds, due to the -ve gd
ηξ. On the

other hand, unlike the sub-critical case, ∠Hd
ξξ(ı0) = −π because of the +ve real zero vector

∠(
−−−−→
ı0 − o1) = −π. As ω increases up-to ωe:1 ≈ 120rad/s, ∠Hd

ξξ(ıωe:1) ≈ −π does not change

much ∵ ∆∠(
−−−−→
ıω − o1)

ω:[0⊲ıωe:1]

= −∆∠(
−−−−→
ıω − o2)

ω:[0⊲ıωe:1]

, and ∠Hd
ηξ(ıωe:1) ≈ −π

2
as in the Ω < Ωc case. On

sweeping the frequency range ∆ωe = [ωe:1 ⊲ ℑ(pr:4) ⊲ ℑ(pr:3) ⊲ ωe:2], both ∠Hd
ξξ(ıω)

∆ωe

and

∠Hd
ηξ(ıω)

∆ωe

trace out two quasi circles in © direction, each representing two semi-SDOFs

with overall changes: ∆∠Hd
ξξ(ıω)

∆ωe

≈ −2π ≈ ∆∠Hd
ηξ(ıω)

∆ωe

, and leaving ∠Hd
ξξ(ıωe:2) ≈ −π and
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∠Hd
ηξ(ıωe:2) ≈ −π

2
, which reflects the two poles (pr:4, pr:3) without complex zeros in-between.

4.1.2.3. Peculiarities of point FRF in the rotating frame

Minimum or non-minimum? That is the question All TFs encountered thus far are

minimum-phase TFs, with the exception of Hd
ξξ(s)∀Ω > Ωc due to its +ve real zero or:1.

However, ∀Ω < Ωc, Hd
ξξ(s) is strictly minimum-phase since all its poles and zeros are in

the left-half s-plane. This is an intriguing situation, not only because stable physical

systems generally have minimum-phase TFs, but mainly because this particular TF shifts

characteristics from minimum-phase to apparent non-minimum-phase as Ω exceeds Ωc. It

is interesting to understand the cause of this behaviour and its implications on FRFs.

Point TFs almost always have complex-conjugate zeros in-between their complex-

conjugate poles and, although in a noticeably different layout that affects its FRF markedly

(fig.4.10), Hd
ξξ(s) is no exception at Ω = 200rad/s < Ωc. On the +ve frequency axis, ωr:3
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Figure 4.10.: Partial Fractions of point FRF in ξη-frame at sub-critical speed

and ωr:2 have switched the relative location of their corresponding stationary-frame modal

frequencies ω3 and ω2, hence ωr:3 > ωr:2 whilst their modal fractions terms maintain the

same residues H3
xx and H2

xx of their corresponding xy-frame λf and λ∗
b respectively. As

a result, the ξη-frame FRF scenario differs from that in the xy-frame in two interesting

respects:
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• The complex zero or:1 that is reflected on Hd
ξξ(ıω) as an anti-resonance in-between

the two consecutive resonances, occurs when ∠ H3

ıω−pr:3
≈ 0 and ∠ H2

ıω−pr:2
≈ π.

• The frequency of anti-resonance is far from ωint—where the two dominant PFs have∣∣∣ H2

ıωint−pr:2

∣∣∣ =
∣∣∣ H3

ıωint−pr:3

∣∣∣ with virtually opposite phases—as the other PFs of λr:1,4 are

of comparable magnitude.

At Ω > Ωc Things are different (fig.4.11) for Hd
ξξ(ıω) as ωr:2 and ωr:4 switch places, being

-ve and +ve respectively, whilst maintaining the same xy-frame residues H2
xx, H

4
xx (4.8).

Consequently, PFs of λr:3,4 are the magnitude dominant ones in-between resonances on
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Figure 4.11.: Partial Fractions of point FRF in ξη-frame at supercritical speed

the +ve frequency range. They intersect at ωint where
∣∣∣ H4

ıωint−pr:4

∣∣∣ =
∣∣∣ H3

ıωint−pr:3

∣∣∣, yet with

virtually same phases of approximately 0 and hence add-up as opposed to cancel-out,

resulting in no anti-resonance thereabouts.

4.1.2.4. Identification of modal directionality from polar plots

In order to examine the differing effects of RID on FWD and BWD modes’ stability

using polar plots, it is necessary to identify the dominant mode and its directionality

within a frequency range, which is not explicitly expressed in a polar plot. This is a

simple task for polar plots of analytical models (figs.4.8,4.9), since FRF portions are

PhD thesis 153



4. Analysis of linear RID system

marked clearly to reflect dominant modes over specific frequency ranges, based on modal

analysis results (3.45, 3.47) (figs.4.2,4.3). However, this luxury is not always afforded with

experimentally-acquired FRFs. Fortunately, ‘examining the relative point-quad polar plots

phasing ∠Hd
xx(ıω) − ∠Hd

yx(ıω) [∠Hd
ξξ(ıω) − ∠Hd

ηξ(ıω)] around resonances’ ∆ωpv
⊢⊣

(figs.4.8,4.9)

can establish modal directionality, albeit with some provisos.

Argument Relative phasing of quasi-circles reflects the construction of a modal vector

and its entries relative phasing, which along with +ve sgn(ω), determines the directionality

of the dominant mode in question. Examining the polar plots (figs.4.8,4.9) with a general

topological perspective, it is fair to accept that the (FRF points of) quasi-circles of Hd
xx(ıω)

lags [leads] that of Hd
yx(ıω) by approximately π

2
in the vicinity ∆ωp3

⊢⊣

[∆ωp2
⊢⊣

] where the BWD

[FWD] mode is dominant. Thereabouts, approximation (4.7): Hij(ıω) ≈ Hv
ij

ıω − pv

+ Ev
ij

where Hv
ij = õcv

i b̃rv

j = ÕivB̃vj is most valid, particularly for resonance points. With the

excitation coordinate fixed j
def
= x [j

def
= ξ] for Hd

xx(ıω) and Hd
yx(ıω) [Hd

ξξ(ıω) and Hd
ηξ(ıω)], their

relative phasing reflects directly the relative phasing of Õxv to Õyv, which are the elements

of the vth modal vector r̂v
def
= õcv by (3.39, 3.40). Before concluding on this argument, two

issues have to be verified:

• The relative magnitude of each Ev
ij to its

Hv
ij

ıω − pv

has to be negligible.

• The relative magnitude and phase of Ev elements Ev
xx and Ev

yx is comparable.

both of which are true, particularly for resonance points.

Important physical significance The π/2 relative phasing of point-quad FRFs ∠Hd
xx(ıω)−

∠Hd
yx(ıω) reflects the perpendicular x− and y−directions (figs.4.8, 4.9). This is on ac-

count of phase angles ∠ ~X,∠~Y difference of their corresponding responses in the x− and

y−directions to a single force ~fx.

4.1.2.5. FRFs of complex system representations

The force and response solutions of complex rotor representation are vectors with relative

phase lead/lag that are rotating in the complex plane at ωe, and which represent the real

forces and responses in perpendicular directions, as portrayed in §.3.1.1.3. TFs for xy-

and ξη-frames are derived from (3.10, 3.11) or (3.20, 3.21), with rotating frame TFs:

Hd
c (s) =

1

ms2 +
(
c + ı(2m − G)Ω

)
s +

(
k + (G − m)Ω2 + ıcΩ

)

Hv
c (s) = sHd

c (s)

(4.9)
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Figure 4.12.: FRFs of complex representations at Ω < Ωc in xy- and ξη-frames

Relations between FRFs of real and complex representations can be derived from §.3.1.1.3,

and are reflected on comparing (figs. 4.12, 4.13) with (figs. 4.8, 4.9) respectively.

TFs/FRFs characteristics of complex 2DOF isotropic rotor TFs have no zeros. Their

poles are the two eigenvalues with +ve and -ve modal frequencies. FRF frequency range

extends from a -ve ωe:1 to a +ve ωe:2 so as to cover vicinities ∆ωpb
⊢⊣

and ∆ωpf
⊢⊣

. It is perhaps

peculiar to find stationary frame FRF minima at ωe ≈ 50 > 0 (figs. 4.12, 4.13).

Vector phase Lead or lag? its up to ωe because sgn(ωe) may be +ve or -ve. A +ve

∠Hd
c (ıω) with -ve ωe

def
= lag, i.e. response lags force. Had sgn(ωe) been +ve, a +ve ∠Hd

c (ıω)

indicates response leads force, which is a symptom of an unstable system.
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Figure 4.13.: FRFs of complex representations at Ω > Ωc in xy- and ξη-frames

4.2. Linear-RID-augmented system: Modal analysis and

frequency response

LTI rotordynamic systems that are augmented with linear RID models in accordance with

§3.2.2.1 are analysed here. Linear RID models are viable and can be justified for rotor

joints, which do not endure substantial vibration amplitudes nor exhibit significant relative

slippage at the desired operating speeds. Examples of such joints are Curvic couplings

and tightly-bolted flanged-couplings, but certainly not spline couplings especially when

un-piloted.

4.2.1. Effect of linear viscous RID on stability characteristics

Introducing or augmenting linear viscous RID to the asymptotically stable rotor system

of (3.2, 3.8) as described in §3.2.2.1 introduces/adds new force vectors (3.82-3.84) to (3.2)
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in the xy-frame, which results in overall EOMs:

Mq̈ +
(
C + Ci + G

)
q̇ +

(
K + Kcc

)
q = f (4.10a)

mIq̈ +
(
(c + ci)I − GΩℵ

)
q̇ +

(
kI − ciΩℵ

)
q = f (4.10b)

The complex formulation of which is:

mz̈ + (c + ci − ıΩG)ż + (k − ıΩci)z = fz (4.10c)

representing a 2DOF LTI rotor with destabilising RID. Comparing EOMs (4.10) of this

potentially unstable system with (3.2) those of the otherwise asymptotically stable system,

shows that RID introduces two coefficient matrices Ci and Kcc, each affecting stability

in a contrary manner to that of the other:

1. Stability enhancing Ci: RID coefficient ci adds to the stabilising external damping

coefficient c, hence enhancing overall stability.

2. Stability challenging Kcc: This speed-dependant skew-symmetric stiffness matrix

(3.84) will be shown to enhance the stability of BWD mode and challenge that

of FWD mode, possibly destabilising it at some speed Ωon; with such effects on

stability being progressive with speed. The opposite effect on FWD and BWD

modes’ stability is due to the sign compliance Kcc ∝ G of RID-introduced skew-

symmetric stiffness and gyroscopic matrices as reflected by their complex format

−ıΩci and −ıΩG in (4.10c).

4.2.1.1. RID effect on stability of BWD and FWD modes

EOMs (4.10) result in the real state matrix:

Ǎ = − 1

m




0 0 1 0

0 0 0 1

k Ωci c + ci ΩG
−Ωci k −ΩG c + ci




(4.11)

and its complex version Ǎc, whose BWD and FWD modes’ eigenvalues are:

λb,f =
−(c + ci) + ı

(
ΩG ∓

√(
ΩG + ı(c + ci)

)2
+ 4m(k − ıΩci)

)

2m
(4.12)

The relation of EOM (4.10c) and eigenvalues (4.12) is examined and compared to (3.10,

4.3) that of rotor without RID, in order to identify the terms introduced by RID and their
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effects on modal stability:

1. Stabilising element: RID coefficient ci is added to external damping coefficient c

wherever it exists, which reflects the effect of RID matrix Ci in (4.10), thus en-

hancing the stability of both FWD and BWD modes at any specific speed when

compared to those of rotor without RID.

2. Destabilising element: Stiffness coefficients in (4.10c), including −ıΩci that repre-

sents the destabilising skew-symmetric Kcc, are carried-over unaltered to the square-

root in λb,f (4.12) expression. The -ve imaginary quantity 4m(−ıΩci) introduced in

(4.12) can and usually will alter the sign of imaginary quantity under square-root,

thus reversing its original contributions to ℜ(λb,f ) as explained below.

As with (4.3), the square-root in (4.12) is of a complex quantity ∀Ω 6= 0:

√(
ΩG + ı(c + ci)

)2
+ 4m(k − ıΩci) =

√
a + ıb (4.13a)

where a = 4mk + (ΩG)2 − (c + ci)
2 , b = 2Ω

(
G(c + ci) − 2mci

)
(4.13b)

Accordingly, the square root of (4.13a) results in both a real quantity as well as an

imaginary one, with the latter (multiplied by ı
2m

) contributing to ℜ(λb,f ) in a manner

that depends on sgn(b) being +ve or -ve.

Negative imaginary quantity under square root (4.13) This scenario requires:

2m

G − 1 >
c

ci

i.e. ci >
( G

2m − G
)
c ⇒ b = 2Ω

(
G(c + ci) − 2mci

)
< 0 (4.14)

which is true whenever RID ci is not negligible compared to external damping c. For

example, using parameters (4.2), inequality (4.14) requires that ci ' 0.112c for (4.13)

to have a -ve b, which is reasonably realistic and makes an interesting case to examine.

However, this is unlike the case of rotor without RID (4.4), and formula (A.5b):

√
a + ıb =

√
a +

√
a2 + b2

2
− ı

√
−a +

√
a2 + b2

2
for b < 0

applies to square root of (4.13a) whose resulting imaginary quantity (× ı
2m

):

• Adds to − (c+ci)
2m

in the case of λf , thus contributing positively increasing ℜ(λf )

• Subtracts from − (c+ci)
2m

in the case of λb, thus contributing negatively to ℜ(λb)

The above being exactly the opposite of what happens in the case of the rotor without RID

(4.3, 4.4). Furthermore, since b of (4.13, 4.14) is speed-dependant, ℜ(λb) decreases (more
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negative), while ℜ(λf ) increases with increased speed (fig. 4.14). Although a negative

imaginary quantity under square root (4.13) is most likely to cause an unstable FWD mode

at some Ωon, it is not guaranteed—just like ℜ(λb) of rotor without RID (4.3, 4.4) does

not become +ve ∀Ω. As will be demonstrated (4.20), one condition for RID-instability is

ci >
(

G
m−G

)
c, which dictates a higher ci than that required by (4.14).

Positive imaginary quantity under square root (4.13) This scenario dictates negligible

RID when compared to external damping of an average rotor with gyroscopic effects, or

no RID in a rotor without gyroscopic effects. The system is hence always asymptotically

stable.

4.2.1.2. Conditions for the existence of RID instability

Examining the eigenvalues of rotor with RID as in §4.2.1.1 indicated that a relation

between the ratio ci/c of internal to external damping and the rotor’s invariant parameters:

m,G, k has to be satisfied for RID instability to possibly exist. Provided such relation is

satisfied, RID instability will exist only after a specific onset speed of instability Ωon—the

main concern—due to the speed-progressive destabilising nature of Kcc. Although it is

possible to identify the conditions for the existence of RID instability, namely:

• Relation of ratio ci/c to rotor’s invariant parameters m,G, k, which is the essential

requirement for RID instability to be possible

• Onset speed of instability Ωon, after which RID instability will set in

by examining ℜ(λf ), this exercise can prove to be unduly tedious if not intractable.

Conversely, such conditions are identified below in a fairly straightforward manner using

one of the Routh-Hurwitz criteria.

Which Routh-Hurwitz criterion to use? As the system defined by (4.10) is of small

order, conditions for stability/instability can be arrived at with some degree of easiness

using one of the Routh-Hurwitz criteria. With all system variables m,G, c, ci, k set as

unknown, an expression for Ωon and its relation to ωfu
(FWD modal frequency of the

undamped rotor) can be derived. With the objective of this exercise being to maximise

clarity and straightforward applicability, the question stated above becomes a valid con-

cern. It will be shown that using the Routh-Hurwitz criteria for equations with complex

coefficients to identify Ωon and its relation to ωfu
, based on the relation of ci/c to rotor’s

m,G, k, is the best-suited way forward.
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The Routh-Hurwitz criteria for characteristic equations of real systems are necessary

and sufficient conditions, which if satisfied insure the characteristic equation has roots

with only negative real parts, i.e. stable eigenvalues in the left-half s-plane. The Hurwitz

criterion, which involves checking the sign of 2n Hurwitz determinants that are set-up

using the coefficients of characteristic equation (4.15) for system (4.10):

Ď(λ) = λ4 +
2m(c + ci)

m2
λ3 +

(c + ci)
2 + (ΩG)2 + 2mk

m2
λ2

+ 2
k(c + ci) + Ω2gci

m2
λ +

(Ωci)
2 + k2

m2
= 0 (4.15)

is perhaps the more familiar to mechanical engineers. Even though (4.15) has 2n = 4,

the Hurwitz criterion can be more than a handful here. On the other hand, the Routh

array Ra
(2n+1)×1

for (4.15) does simplify matters by merely checking for sign consistency of

its 5 elements:

+ve Ra1 m2 : λ4

+ve Ra2 2m(c + ci) : λ3

? Ra3 mk + (ωG)2 + (c + ci)
2 − ω2mg

ci

(c + ci)
: λ2

? Ra4 2((ωG)2 + (c + ci)
2)

ω2gci(c + ci) + k(c + ci)
2 − ω2mc2

i

(c + ci)Ra3

: λ1

+ve Ra5 (Ωci)
2 + k2 : λ0

Routh array elements Ra1,2,5 are always positive, while Ra3,4 may be positive or negative

as well as being interdependent, and thus form the criteria for instability, albeit less than

instantaneously obvious.

The Routh-Hurwitz criterion for equations with complex coefficients is not as pop-

ular with engineers as its counterparts for real systems, yet it will yield a more obvious set

of stability criteria that is straightforward to arrive at. This criterion provides a necessary

and sufficient condition for a complex equation to only have roots with positive imaginary

parts, i.e. in the right-half s-plane. In order to utilise this criterion in identifying stabil-

ity conditions for system (4.10), we need to consider a modified complex characteristic

equation (4.16), whose roots’ positive imaginary parts represent negative real parts of the

original complex equation’s roots, as in:

ℑ(λ̀1,2)
def
= −ℜ(λc:1,2)
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This involves assuming a solution for (4.10c) of the form:

z = ~Z1e
ıλ̀1t + ~Z2e

ıλ̀2t

i.e. λ
def
= ıλ̀, which results in the modified characteristic equation:

mλ̀2 −
(
ı(c + ci) + ΩG

)
λ̀ + ıΩci − k = 0

(à0 + ıb̀0)λ̀
n + (à1 + ıb̀1)λ̀

(n−1) + (àn + ıb̀n) = 0 ←֓ n = 2
(4.16)

Accordingly, conditions that satisfy the Routh-Hurwitz criterion for complex equations

when applied to (4.16) are the conditions necessary for the stability of system (4.10).

When applied to (4.16), the Routh-Hurwitz criterion for complex equations requires:

(−1)1

∣∣∣∣∣
a0 a1

b0 b1

∣∣∣∣∣ > 0 ⇒ m(c + ci) > 0 X (4.17a)

(−1)2

∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 0

b0 b1 b2 0

0 a0 a1 a2

0 b0 b1 b2

∣∣∣∣∣∣∣∣∣∣

> 0 ⇒ m(k(c + ci)
2 + Ω2gci(c + ci) − mΩ2c2

i ) > 0 ? (4.17b)

With condition (4.17a) always satisfied, satisfying condition (4.17b) becomes the criterion

for system (4.10) to have eigenvalues in the left-half s-plane.

Conditions for instability Stability condition (4.17b) is conveniently rearranged as:

k(1 + c/ci)
2

m − G(1 + c/ci)
> Ω2 (4.18)

Since condition (4.18) is necessary for the absolute stability of the LTI system (4.10), its

violation: k(1+c/ci)
2

m−G(1+c/ci)
≤ Ω2 results in either:

1. An unstable system (4.10) with ℜ(λf ) > 0 when k(1+c/ci)
2

m−G(1+c/ci)
< Ω2.

2. A marginally stable system (4.10) with ℜ(λf ) = 0 when the operating speed:

Ω =

√
k(1 + c/ci)

2

m − G(1 + c/ci)
= Ωon (4.19)

Accordingly, the system parameters necessary for (4.10) to be unstable can be identified.

In essence, violating condition (4.18) requires two simultaneous conditions:
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1. The fundamental condition of a positive denominator for the left-hand-side of (4.18),

since its right-hand-side as well as the numerator are positive, requires:

m − G(1 + c/ci) > 0 ⇒ ci

c
>

G
m − G (4.20)

without which, RID instability cannot take place in system (4.10).

2. An operating speed that is equal to or higher than the onset speed of instability Ωon,

which is in turn higher than Ωcu
(3.44) the critical speed of the undamped system,

except for the unusual situation of no external damping when Ωon = Ωcu
:

Ω ≥ (1 + c/ci)

√
k

m − G(1 + c/ci)
≥

√
k

m − G
i.e. Ω ≥ Ωon ≥ Ωcu

(4.21)

Onset speed relation to FWD modal frequency based on RID ratio The onset speed

of instability Ωon as expressed by (4.19), which is derived from stability condition (4.17b)

can be related to ωfu
the FWD modal frequency of the corresponding undamped system

that is derived in (3.41) by the simple and convenient relation:

Ωon

ωfu

= (1 + c/ci) (4.22)

Eq.(4.22) states that RID-instability can not set in at speeds lower than the frequency

ωfu
, which increases with speed due to gyroscopic effects as well as dictates that RID-

instability can not set in at sub-critical speeds; see (figs.4.14, 4.15).

Gyroscopic effects favour stability is a fact that is obvious from the instability con-

dition (4.20), the requirement (4.14) of a negative quantity under square-root (4.13) in

eigenvalues (4.12) for the RID-instability to be possible, as well as being an intuitive

notion considering the gyroscopic stabilising effect on a spin-top for instance. For the

unrealistical case of a rotor that is void of gyroscopic effects G = 0, (4.20) dictates this

rotor will inevitably become unstable at some Ωon regardless of how minuscule the RID

coefficient is. On the other hand, the existence of gyroscopic effects G 6= 0 may refute the

possibility of RID-instability altogether if RID ratio to external damping is small.

4.2.1.3. Numerical examples of modal analysis for rotor with RID

This section illustrates numerically (figs.4.14, 4.15) the findings of previous sections re-

garding the effect of RID on stability characteristics. The numerical values used for rotor
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coefficients are given by (4.2), whilst varying the ratio of external/internal damping co-

efficients as in: c
ci

= 75(1
0
, 1

1
, 1

2
, 0

1
, 0

2
). Baring the first c

ci
= 75

0
ratio, which is that of

the asymptotically stable rotor taken as reference, all other c
ci

ratios in conjunction with

(4.2) satisfy requirement (4.14) that is necessary for a negative quantity under square-

root (4.13) of eigenvalues (4.12) as well as the instability condition (4.20), which in turn

signifies that RID-instability is possible at some Ωon.

Respectively, (fig.4.14) and (fig.4.15) are the decay parts of eigenvalues ℜ(λb,f ) and

damping factors γb,f corresponding to (4.2), with the aforementioned various c/ci ratios,

plotted against operating speed Ω. Each onset speed Ωon corresponding to a specific c/ci

ratio, at which ℜ(λf ) ≡ 0 and γf ≡ 0, is indicated along with its ratio to the relevant

ωfu
on each plot. Although FWD modal frequencies of the undamped rotor ωfu

are not

presented in full against Ω, they can be checked by the fairly close approximation of ℑ(λf )

against Ω presented in fig.4.2 for (4.2).
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Figure 4.14.: ℜ(λb,f ): Effect of various viscous external/internal damping ci ∪ c

Effect of significant RID on FWD and BWD modes With the basic RID-instability

condition (4.20) satisfied, §4.2.1.1 shows that RID contributes to ℜ(λb,f ) and whence γb,f

in two ways. Part of this contribution is not speed-dependent affecting both BWD and

FWD modes equally, while the other part is speed-progressive challenging the stability of

FWD modes while enhancing that of BWD modes.
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Figure 4.15.: Damping factor γb,f variation with Ω for rotors c ∪ ci = 0, c = ci, ci ∪ c = 0

Stationary rotor Ω = 0 ⇒ −ıΩci = 0: In this case the speed-dependant contribution

of RID to ℜ(λb,f ) is nil, while ci adds to c wherever it exists in (4.12) and affects ℜ(λb,f )

as well as γb,f . Accordingly at Ω = 0:

• For any specific c/ci ratio, ℜ(λf ) ≡ ℜ(λb) and γf ≡ γb

• All c
ci

ratios that lead to the same c + ci, e.g (75
0

and 0
75

) or (75
75

and 0
2×75

), have the

same ℜ(λ) and γ

• ℜ(λ) and γ resulting from c
ci

= 75
2×75

is triple that resulting from c
ci

= 75
0

or 0
75

, which

in turn is half that resulting from c
ci

= 75
75

or 0
2×75

.

Rotating rotor Ω 6= 0 ⇒ −ıΩci 6= 0: The speed-dependant contribution of RID to

ℜ(λb,f ) sets in decreasing ℜ(λb) thus increasing γb for BWD modes, while increasing

ℜ(λf ) thus decreasing γf for FWD modes, which results in a non-uniform damping factor

γb 6= γf at any one speed. With RID effect (−ıΩci) being speed-progressive, so are the

trends of ℜ(λb,f ) and γb,f with increased speed until RID-instability sets in at some Ωon, the

value of which depends on c
ci

ratio. The ℜ(λb,f ) and γb,f trends for this RID-augmented

rotor represent a total reversal compared to those of the reference rotor without RID,

which is also illustrated in (figs.4.14, 4.15).
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The effect of different c/ci external damping to RID ratios on onset speed Both

equations (4.19, 4.22) show that Ωon the onset speed of RID-instability depends on the

ratio c
ci

. In accordance with (4.22), (figs.4.14, 4.15) show that:

• RID-instability cannot set in at sub-critical speeds

• The ratio c
ci

dictates Ωon the onset speed’s relation to ωfu
modal frequency of corre-

sponding undamped rotor; e.g. c
ci

= 1
2
⇒ Ωon ≡ 1.5ωfu

• In the hypothetical case of c = 0 nil external damping: Ωon ≡ ωfu
≡ Ωcu

, regardless

of RID magnitude. Accordingly, both ci =
{

75
2×75 result in Ωon ≡ Ωcu

when c = 0

Tempting but untrue It is perhaps tempting to investigate whether the simultaneous

RID stabilising and destabilising elements annul each other at Ωcu
, with the stabilising

element overwhelming the destabilising one ∀Ω < Ωcu
and vice-versa ∀Ω > Ωcu

, when

the FWD mode would only be stable on account of external damping counter-acting the

destabilising element of RID. Such initiative might be taken up in view of:

• The discussions of §4.2.1.1 on p.157 concerning the two contradicting yet simul-

taneous roles of RID, namely: speed-independent stabilising and speed-progressive

destabilising roles

• figs.4.14, 4.15 which show that any RID value results in Ωon ≡ Ωcu
when c = 0, as

well as give the false impression that damping ratios c
ci

= 1
0
, 1

1
result in identical

ℜ(λf ), γf at Ω = Ωcu
.

Investigating this possibility, both numerically and analytically revealed it to be untrue,

albeit tempting to conclude at.

4.2.2. Effect of linear viscous RID on analytical forced response

This section examines and illustrates analytically the (static load and sinusoidal) forced

response characteristics of RID-augmented rotor model, which can be unstable. FRF

polar plots in the frequency vicinity of an unstable eigenvalue are particularly interesting,

informative and can be used to identify unstable modes as detailed in §4.3. Although

a FRF cannot be actually/experimentally acquired, as well as being undefined, for an

unstable physical system, it is possible to define FRFs for an unstable subsystem that is

part of an overall stable system (§4.3).
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4.2.2.1. FRF polar plots of unstable system with well-separated modes

An unstable dynamic system will have eigenvalue/s with positive real parts, i.e. in the

right-half s-plane, representing unstable mode/s. If any unstable mode is observable

(represented) in a system’s TF, this TF will have right-half s-plane poles that are identical

to the eigenvalues of observable unstable modes. According to §.4.1.2.1, FRF polar plots

are directly related to poles’ and zeros’ locations on the s-plane, which influences polar

plots (fig.4.17) heavily in the case of a system with well-separated modes. A right-half

s-plane pole prhsp, in its frequency vicinity ∆ωprhsp
⊢⊣

, will have an unmistakable effect on the

polar plot of a system with well-separated modes; namely, the polar plot traces a CCW

quasi-circle as ∆ωprhsp
⊢⊣

is traversed, e.g. figs.4.17, 4.18.

Interpretation of CCW polar plots for unstable systems in frequency vicinity ∆ωprhsp
⊢⊣

:

According to (4.6b), a right-half s-plane pole vector will sweep ∆∠(ıωe − prhsp)
ωe:〈−∞⊲∞〉

= −π as

the whole of ıω-axis is swept, thus adding π to ∠G(ıω) in the process (4.5). As discussed

in §.4.1.2.1 for a system with well-separated modes, the FRF polar plot will be heavily

influenced by prhsp in its frequency vicinity ∆ωprhsp
⊢⊣

and the effect of ∆∠(ıωe − prhsp) ≈ −π

is very obvious on ∆∠G(ıω)
∆ωprhsp

≈ π, which translates into a CCW ª quasi-circle polar plot.

If modes are not well-separated, poles will be close in frequency and a CCW quasi circle

may be masked, especially if these two poles are on opposite sides of the s-plane, e.g. in

the case of a Jeffcott rotor without gyroscopic effects. Luckily, most rotors have well-

separated modes, at least the first few ones, and the CCW polar plot characteristic can

be used to identify unstable modes as explained in §4.3.

Polar plot characteristics of unstable RID-augmented rotor As is the case with vir-

tually every rotor, our viscous RID-augmented 2DOF rotor (4.10) has totaly observable

TFs, be they the result of complex (4.23) or real (4.25) representations, which dictates

that system’s eigenvalues are identical to their corresponding TF poles. Accordingly, if

system (4.10) has an unstable FWD mode, then any of its TFs will have a correspond-

ing pole pf
def
= prhsp (fig.4.16), which will result in a quasi-circle on the polar plot that is

traversed in the CCW ª direction (figs.4.17,4.18) as the frequency vicinity ∆ωprhsp
⊢⊣

of the

unstable FWD mode is traversed.

In the following, receptance FRFs of rotor (4.10) are presented using coefficients (4.2)

and Ω = 500rad/s> Ωcu
, whilst varying external/internal damping: c

ci
= 75(1

0
, 1

1
, 1

2
, 0

1
, 0

2
).

Ratios c
ci

= 75(0
1
, 0

2
) result in unstable FWD modes, i.e. pf is in the right-half s-plane

with ℜ(pf ) > 0, while the other c
ci

ratios result in an asymptotically stable system with

pf in the left-half s-plane.
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4.2.2.2. Forced response of complex rotor representation

The xy-frame receptance TF and FRF of complex rotor (4.10c) representation are:

Gd
c(s) =

1

ms2 + (c + ci − ıΩG)s + (k − ıΩci)

Gd
c(ıω) =

1

−mω2 + (c + ci − ıΩG)ıω + (k − ıΩci)

(4.23)

FRF polar plot behaviour According to §.4.1.2.1, polar plots (fig.4.17) will depend

heavily on the s-plane location of pole pairs pb,f (fig.4.16) corresponding to the various c
ci

ratios. Since complex TF (4.23) is completely controllable and observable, each pair pb,f

is identical to the corresponding system’s eigenvalues λb,f . Accordingly (figs.4.14,4.16):

• Mode separation: A specific pole pair pb,f corresponding to one damping ratio c
ci

will have very well-separated pb and pf with no zeros in between.

• Modal frequencies: External/internal damping ratios c
ci

= 75(1
0
, 1

1
, 1

2
, 0

1
, 0

2
) result in

ℑ(pb) and ℑ(pf ) that are virtually invariant for these c
ci

ratios.

• Decay rates: Damping ratios c
ci

have a marked effect on stability and hence damping

rates that are identical to pole real parts ℜ(pb,f )—check (fig.4.14). Since RID is

stabilising to BWD modes, save the reference rotor without RID, they are not

moderately-damped ℑ(pb)
ℜ(pb)

¤ 25 anymore and are heavily-damped with c
ci

= 75(1
2
, 0

2
)

when ℑ(pb)
ℜ(pb)

< 15.

In view of poles’ layout (fig.4.16), the excitation frequency range chosen for receptance

FRF starts from the -ve 1.1ℑ(pb) up to the +ve 1.3ℑ(pf ), ∆ωe
def
= ωe : [1.1ωb ⊲ 1.3ωf ].

Polar plot in BWD modes’ frequency vicinity ∆ωpb
All BWD modes’ poles pb lie in the

lower-left-quarter s-plane, and their vectors sweep ∆∠(ıωe − pb) ≈ π as the -ve frequency

vicinity ∆ωpb
⊢⊣

is traversed. Accordingly, the FRF sweeps ∆∠G(ıω)
∆ωpb

≈ −π a quasi-circle

in the CW © direction, the completeness and size of which depends on the magnitude

|ℜ(pb)|. The BWD mode of reference rotor without RID is moderately-damped with least

|ℜ(pb)|, in which case the FRF sweeps ∆∠G(ıω)
∆ωpb

≃ −π the largest quasi-circle that is most

complete in this group. However, as |ℜ(pb)| increases, the corresponding quasi-circles get

smaller and less complete; a situation that is obvious in the case of most damped BWD

mode resulting from c
ci

= 75(1
2
).

Polar plot in FWD modes’ frequency vicinity ∆ωpf
FWD modes’ poles pf are either in

the upper-left-quarter s-plane representing asymptotically stable FWD modes, or in the
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Figure 4.16.: s-plane with stable and unstable poles based on internal
external

damping ratio

upper-right-quarter s-plane representing unstable FWD modes, depending on the ratio c
ci

.

All pf presented have ℑ(pf ) ≫ |ℜ(pf )| i.e.
ℑ(pf )

|ℜ(pf )|
≥ 112, which leads to the FRF sweeping

quasi-circle in the CW © or CCW ª direction depending on FWD mode stability. As

the frequency vicinity ∆ωpf
⊢⊣

is traversed, a stable left-half s-plane pole vector will sweep

∆∠(ıωe − pf ) ≃ π and the FRF sweeps ∆∠G(ıω)
∆ωpf

≃ −π a quasi-circle in the CW ©

direction, while an unstable right-half s-plane pole vector will sweep ∆∠(ıωe − pf ) ≃ −π

and the FRF sweeps ∆∠G(ıω)
∆ωpf

≃ π a quasi-circle in the CCW ª direction.

Response to static force Unlike Hd
c (s), the TF of reference rotor without RID case,

Gd
c(s) results in a +ve phase shift of the static response to the static load/force:

~Zeı0 =
k + ıΩci

k2 + (Ωci)2
~fze

ı0 (4.24)

This phase shift is solely due the RID-introduced term −ıΩci in (k−ıΩci) of (4.23), which

is similar to that due to gyroscopic effects yet is operative even under static (ıω = 0)

forcing. The phase shift is always positive, i.e. in the direction of rotation that is CCW

ª, due to the sign compliance of gyroscopic- and RID-introduced terms.
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4.2.2.3. Forced response of real rotor representation

The xy-frame receptance TFM of real rotor representation (4.10b) is:

Gd
(s) =

1

|Š|

[
s2m + s(c + ci) + k −Ω(sg + ci)

Ω(sg + ci) s2m + s(c + ci) + k

]
(4.25)

|Š| = s4m2 + 2s3m
(
c + ci

)
+ s2

(
(c + ci)

2 + Ω2G2 + 2mk
)

+ 2s
(
Ω2ciG + k(c + ci)

)
+ k2 + (Ωci)

2

Point and quad FRFs’ polar plots Gd
xx(ıω), Gd

yx(ıω) are presented here for comparison

with experimental results, since those are the ones normally obtained without manipula-

tion from a sine sweep modal test. FRFs Gd
xx(ıω), Gd

yx(ıω) of two RID-augmented rotors, the

first having stable FWD modes and the second with unstable FWD modes, are presented

(fig.4.18) for comparison. These two rotors, which have identical coefficients except for

damping coefficients: c
ci

= 75(1
1
, 0

1
), are selected because of:

• Comparable |ℜ(pf )| real parts of FWD modes’ poles, albeit in opposite half-sides
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of the s-plane (fig.4.16), which dictates similar FRF magnitude plots but markedly

differing polar plots in the FWD mode frequency vicinity ∆ωpf
⊢⊣

. Also, although

|ℜ(pf )| ≪ |ℑ(pf )|, ℜ(pf ) in both rotors is not infinitesimal so the FWD mode-

dominated polar plot portions are not enormous and are easily presentable.

• BWD modes, although more damped than the reference rotor without RID, still

have |ℜ(pb)| ≪ |ℑ(pb)|, so BWD mode-dominated FRF portions are not overly

diminished and are thus readily identifiable in both cases, which does not apply for

coefficients c
ci

= 75(1
2
, 0

2
).

Receptance pole-zero maps’ layout of both RID-augmented rotors are similar to those of

the reference rotor (figs.4.5, 4.7), with very well-separated modes, as well as poles and

zeros. However, there are two obvious exceptions that are due to RID:

• Right-half s-plane poles representing unstable FWD modes of c
ci

= 75(0
1
) rotor.

• Quad TF Gd
yx(s) has a non-zero zero o = − ci

G
,∀Ω 6= 0, as opposed to Hd

yx(s) in (3.26)

that has a zero o at s = 0 (3.56b). Consequently, a static force in one direction will

cause a static deflection in the quad direction, as explained hereafter.

The positive frequency range ∆ωe
def
= ωe : [−0.9ωb⊲1.1ωf ] is selected to examine Gd

xx(ıω), Gd
yx(ıω)

behaviour (fig.4.18) in the frequency vicinities of p∗b , pf—as well as the left-upper-quarter

s-plane Gd
xx(s) zero o1 in between them. Pole-zero maps’ layouts emphasise that both

modes, BWD and FWD, will dominate the FRF within their frequency vicinities (see

§.4.1.2.1). Accordingly, ∆ωe is split into two ranges [ωe:1 ⊲ ℑ(o)] and [ℑ(o) ⊲ ωe:2] so as

to distinguish the corresponding mappings Gij(ıω)

[ωe:1,ℑ(o)]

and Gij(ıω)

[ℑ(o),ωe:2]

by different line weights,

which in turn identifies FRF portions that are influenced by BWD and FWD modes re-

spectively. Meanwhile, the relative phasing of Gd
xx(ıω) to Gd

yx(ıω) FRFs expresses modal

directionality as elaborated on (p.153), and thus reveals the dominant mode, be it BWD

or FWD, over a specific frequency range. Also, the first FRF point G(ıωe:1) is marked by ‘o’

on both magnitude and polar plots so that the direction of phase angle swept ∆∠G(ıω)
[ωe:1⊲ℑ(o)⊲ωe:2]

is evident. Observing fig.4.18, although FRF magnitude plots of both rotors are virtually

identical, polar plots are markedly different depending on the location of pf be it in the

left or right-upper-quarter s-plane:

BWD-mode-dominated FRF portions where ∠Gd
xx(ıω)

Gd
yx(ıω)

≈ −π
2

These are four quasi-

circles representing polar plots of Gd
xx(ıω)

[ωe:1⊲ℑ(o)]

and Gd
yx(ıω)

[ωe:1⊲ℑ(o)]

for each of the two rotors, which

are traversed in the CW © direction since both rotors have BWD mode poles p∗b in the

left-upper-quarter s-plane.
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damping

FWD-mode-dominated FRF portions where ∠Gd
xx(ıω)

Gd
yx(ıω)

≈ π
2

The stable rotor has its

FWD mode pole pf in the left-upper-quarter s-plane, so the two FRF portions Gij(ıω)

[ℑ(o),ωe:2]

are quasi-circles traversed in the CW © direction as expected/usual. Meanwhile the two

mappings Gij(ıω)

[ℑ(o),ωe:2]

for rotor with unstable FWD mode are quasi-circles traversed in the

CCW ª direction on account of pf being in the right-upper-quarter s-plane.

Quad response to static force: ~fie
ı0 ⇒ ~qje

ı0 (4.25) represents the cross-coupling effect

of RID, even to a static load e.g. gravity, provided the rotor is rotating. This is in

agreement with typical literature [86, 177] examples of viscous RID (2.14) and logic of

co-rotating RID follower force for a shaft with viscous stress (§.2.4.2, fig.2.3). Unlike

rotor without RID, a static force fx will cause static deflections in the y- as well as the x-

direction, with such deflections mimicking the direction of rotation as expressed by (4.24).

Equally, a gravity force (in -ve y-direction) will cause static deflections in the +ve x- and
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-ve y-direction.

4.2.3. Appropriate use of ideal Hysteretic RID model

Some authors attempted to study the effect of a hysteretic RID model on stability using

linear eigen-analysis in the stationary frame of reference based on [200]. They reached

the unrealistic conclusion that a hysteretic RID model would have a destabilising effect

from the outset (Ω ≥ 0) and would cause instability in the absence of stabilising external

damping, which is generally unrepresentative of realistic operation.

Hysteretic RID is modelled here as per §3.2.2.1. Its complex notation (3.63) is aug-

mented cautiously to the rotor’s EOMs, which may possibly include linear viscous RID,

in the rotating ξη-frame of reference as:

mIq̈r +
((

c + ci

)
I +

(
2m − G

)
Ωℵ

)
q̇r +

((
k + (G −m)Ω2 + ıd

)
I + cΩℵ

)
qr = fr (4.26a)

Or in Complex format as:

mζ̈ +
((

c + ci

)
+

(
2m−G

)
Ωı

)
ζ̇ +

(
k + (G −m)Ω2 + ı(cΩ + d)

)
ζ = fζ , κ = d

k
(4.26b)

Two important points to state about (4.26):

• These can be used to analyse the system only under the assumption of single-

frequency steady state vibration, which may be forced response or individual modes

• For conciseness purposes, the complex notation of hysteretic RID does not account

for the all important sgn(ω) as in (3.64), which is necessary when considering modes

and FRF-portions with negative frequencies, particularly when analysing a complex

rotor model (4.26b).

The effect of hysteretic RID on modal stability is examined and elaborated using eigen-

values (§4.2.3.1), while points are noted on frequency response analysis (§4.2.3.3) which

is at the heart of stability analysis when used in conjunction with §.4.2.2.1 or §.5.3.2.1.

Since hysteretic RID is only properly modelled via a FR model:

• The truly proper means of assessing stability is via FR techniques such as the

adapted Nyquist criterion presented in §.5.3.2.1 for hysteretic damping (fig.5.4).

• No attempt is made here to study the system in the stationary xy-frame, since

transferring a FRF as in (3.63) is different from transferring a time-domain coeffi-

cient as in ciζ̇, which is a good topic for further research. Rather, the stability of

modes derived in xy-frame is inferred from those derived in ξη-frame, in accordance

with logical relations (3.43, 3.48).
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The results thus achieved are more representative of actual operating conditions, albeit

with an abrupt change around Ωc when frame-transferred FWD modal frequency (ωr:2 =

ωf−Ω) changes sign, which is to be expected on account of sgnω in the hysteretic damping

model (3.64).

4.2.3.1. Eigenvalues-based stability analysis

Although it is common practice to use a complex notation representing hysteretic damping

in stable systems as a more representative damping model as well as for the sake of a more

straightforward analysis, it is well known that such analysis is less than rigourous. For

systems represented in first order state-space form, the real parts of resulting eigenvalues

from (3.30) with positive modal frequencies ℜ(λ) ∀λ with ℑ(λ) > 0 are considered, while

for those resulting from second-order representations as in (3.32), i.e. λ2 = ω2(1 + ıκ), κ

is always considered to be positive implying a stable system.

Effect of complex stiffness on eigenvalues Since EOMs (4.26a) are complex, their

corresponding eigenvalues λr:i∈{1...4}
do not generally occur in complex-conjugate pairs and

are not the complex-conjugates of λrc:1,2 corresponding to (4.26b). This applies equally

to modal frequencies as well as decay constants, and is due to the non-complex-conjugate

contributions of ıd to initially complex-conjugate eigenvalues since sgn(ω) in (3.64) is

not accounted for when considering eigenvalues with negative modal frequencies, i.e. ∀λ

with ℑ(λ) < 0. This situation may cause confusion and lead to conflicting and erroneous

results when assessing modal stability based on eigenvalues, and is hence expanded upon

and exemplified hereafter.

Different contributions of complex stiffness to λ and λ∗ As shown in (3.47), viscous

damping, be it internal or external, contributes to both ℜ(λ) and ℑ(λ) in a complex-

conjugate manner for complex conjugate eigenvalues. Accordingly, should (4.26a) be

considered with d = 0, i.e. linear viscous damping is the only dissipation mechanism,

complex conjugate eigenvalues would be:

λ = σvis + ıωvis and λ∗ = σvis − ıωvis

Similarly, complex stiffness contributes to both ℜ(λ) and ℑ(λ), but in a non-complex-

conjugate manner for complex conjugate eigenvalues due to lack of sgn(ω). Accordingly,

should (4.26a) be considered with hysteretic damping as the only dissipation mechanism,

i.e. c = 0 = ci, eigenvalues with complex conjugate modal frequencies would be:

λ+ω = σhys + ıωhys and λ−ω = −σhys − ıωhys
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Simply stated, if the complex stiffness results in a stable (unstable) eigenvalue with posi-

tive frequency, it will result in a corresponding eigenvalue with negative frequency, which

appears to be unstable (stable). This is synonymous with eigenvalues of a system with

stabilising positive viscous damping coefficient e.g. cẋ, when compared to those of the

same system with destabilising negative viscous damping coefficient e.g. −cẋ.

With both dissipation mechanisms operative, EOMs (4.26a) yield eigenvalues that are

not complex conjugates. While the modal frequencies may be made out as approximate

complex conjugates, i.e. ωr:i ≈ −ωr:i+n, the decay constants are certainly not ℜ(λr:i) 6=
ℜ(λr:i+n), considering that:

ℜ(λr:i) = σi
hys + σi

vis and ℜ(λr:i+n) = σi+n
hys + σi+n

vis ≈ −σi
hys + σi

vis

which may be used to identify the different contributions of viscous and hysteretic damping

mechanisms as:

σi
hys = σi+n

hys ≈ ℜ(λr:i) −ℜ(λr:i+n)

2
and σi

vis = σi+n
vis ≈ ℜ(λr:i) + ℜ(λr:i+n)

2

Accordingly, when using a complex stiffness in an eigen-analysis, one should only consider

eigenvalues with positive modal frequencies when assessing stability. This in turn requires

analysing real representation of rotor systems so as to account for all precession modes

being present with positive modal frequencies.

Using complex stiffness with complex rotor representation Should it be interesting

to analyse a rotor’s complex representation, possibly to identify readily eigenvalues corre-

sponding to FWD and BWD modes in the stationary frame λrc:1,2 ⇔ λb,f , some remedy

is necessary so as to handle the problem of assigning ıd sgn(ω). Attempting to include

hysteretic damping as ıd sgn(ω) in EOMs (4.26b) renders the system nonlinear; a situ-

ation that will upset most eigen-solvers. The simple solution is to analyse (4.26b) with

ıd for λrc having positive ıω and −ıd for λrc having negative ıω. As both λrc of (4.26b)

will have negative modal frequencies ıω for speeds Ω > Ωc, using ıd is only necessary at

speeds Ω < Ωc and only for λrc:2, which will then have positive ıω. Failure to abide by

the foregoing may lead to confusion and the erroneous conclusion that BWD modes (as

transferred to ξη-frame) may be unstable, which is untrue.

4.2.3.2. Effect of hysteretic RID on modal stability characteristics

Analysing the eigenvalues with positive modal frequencies of system from (4.26a) as in

§.4.2.1.1 reveals that hysteretic RID affects the stability of FWD and BWD modes—as

inferred from their corresponding modes in the rotating frame—in the following manner:
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• Enhances the stability of BWD modes at all speeds, as does viscous RID

• Enhances the stability of FWD modes at sub-critical speeds Ω < Ωc, but challenges

it at super-critical speeds Ω > Ωc, as does viscous RID

• Unlike viscous RID, the effect of Hysteretic RID is speed-independent so, in the

absence of other speed-dependent dissipation mechanisms, ℜ(λ) varies only very

slightly with speed on account of square-root in (4.13), except around Ωc.

• ℜ(λr:2), reflecting FWD mode stability, changes abruptly around Ωc as sgn(ωr:2)

changes over from positive to negative

Should external viscous damping exist in EOMs (4.26) ce 6= 0, FWD modes may not be-

come unstable at all for comparably small value κ = d
k
, which is a viable thesis. However,

due to the speed-progressive nature of external damping contribution to ℜ(λ) (figs. 4.2,

4.3), FWD modes may become stable at higher speeds after being initially unstable,

which is perhaps unusual. The foregoing states that if FWD modes are to be unstable on

account of hysteretic RID alone, then they will become unstable right after Ωc, which is

not a common scenario case. Accordingly, introducing a small viscous RID coefficient ci

may solve the situation amicably by introducing a speed-progressive destabilising effect.

The above is demonstrated in fig.4.19 for the isotropic rotor of (4.26) with coefficients

(4.2) and variants of hysteretic and viscous RID coefficients. The first set of damping

coefficients in fig.4.19 is perhaps the more representative of actual operating conditions

when FWD modes become gradually less stable with increased speed until RID instability

onset speed is reached.

4.2.3.3. Hysteretic RID model in FRF with negative frequency: ωe < 0

FRFs of complex rotor representations are required for the FR stability analysis in

§.4.2.2.2, 5.3.2.1, 5.3.2.2. These FRFs will have a negative frequency range so as to

account for all modes’ vicinities. In such case:

• The hysteretic RID model must account for sgn(ω) as in (3.64) or,

• Any complex stiffness, be it hysteretic damping K or a describing function k(X)

(A.21) must be replaced by its complex conjugate K∗, k∗(X) as in (3.65), when used

in conjunction with a -ve ω.

It is easy to appreciate the necessity for the complex conjugates K∗, k∗(ζ̄) with a complex

rotor representation, where a -ve ω has a physical meaning, i.e. CW precession: With

a cyclic input ζ(t) = ℜ(ζ̄eıωt) into the complex stiffnesses (K, k), their imaginary part

(d,ℑ(k)) causes their outputs (fhyst(t),F1
ζ (t)) to lead ζ(t) by a phase angle ψ in the CCW
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Figure 4.19.: Effect of hysteretic RID on modal stability

direction of rotation. In other words: steady-state response lags force by ψ. In the CW

precession scenario, steady-state response should also lag force by ψ, which is reflected by

the -ve imaginary parts (−d,−ℑ(k)) in K∗, k∗(ζ̄) to account for the (-ve) CW precession.

Failure to account for ωe < 0 will reverse the effect of hysteretic RID on modal damping

and stability. In the limit, if hysteretic RID is the prominent dissipative mechanism, it

may give a conclusion about stability that is just the opposite of reality.

4.3. Experimentally-Applicable Stability Test: EAST

EAST is an experimental technique developed to assess safely and conclusively the stabil-

ity (and its margins) of a target dynamic system, e.g. an industrial turbine or turbo-engine,

which may become unstable when operated under various steady or transient conditions.

This is accomplished by analysing experimentally-acquired FRFs of the target system

whilst operational, but included as a subsystem in an overall-stable system.

Although proper dynamic systems’ design ought to be within proven safety parameters
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and accordingly avoid most instabilities, their are many situations, e.g. reengineering or

new turbine design, where designers might have not accounted for unforeseeable opera-

tional conditions or might want to test the limits and/or fine-tune parameters of their

design. In such situations, the proof of the pudding is always in the eating, i.e. perfor-

mance and stability of a prototype during actual operation whilst varying operational

parameters and conditions. Should the prototype dynamic system being tested be prone

to instability, the results may range from undesirable to catastrophic.

There may be dynamic systems, e.g. some electronic circuits, where instability during

prototype-testing does not constitute major loss, might not warrant serious safety pre-

cautions and only entails redesign procedures. However, other dynamic systems’—such

as rotordynamic ones, e.g. oxygen and fuel turbines/compressors on the space shuttle—

instability even in a prototype test is not only very costly but also extremely danger-

ous, generally life-threatening and probably catastrophic. In such situations, safe test-

ing/operation is introduced by implementing EAST during prototype experimentation,

which in turn provides a definitive stability appraisal on the off chance of analytical

models/design being inaccurate. Subsequently, EAST may be instrumental in re-design

phases and system parameter fine-tuning, possibly to adjust the levels of stabilising ex-

ternal damping so as to reach an optimum modal stability margin. EAST was developed

on the tails of the author’s experimental findings detailed in §.6.2.2.2.

4.3.1. EAST overview

Analytically, East concludes on target system stability by assessing the stability of system

modes (modal stability) utilising FRF characteristics. EAST is based on examining the

ClockWise (CW/CCW) direction in which the polar plot of an experimentally-acquired

FRF G(ıω) is traversed. In accordance with §.4.1.2.1 and §.4.2.2.1, if the polar plot is

traversed in a CW [CCW] direction as the frequency range ∆ωpv
⊢⊣

in the vicinity of the vth

mode is swept increasingly, this vth mode in question is stable [unstable].

Generally, EAST is applicable to any dynamic system be it linear or quasi-linearised

nonlinear, where the suspected unstable modes can be excited and observed. In so doing,

the analyst using EAST needs to fulfil two essential elements to achieve the above goals:

• Acquire an experimental FRF of a potentially unstable dynamic system. If the

target system is indeed unstable, careful intervention is necessary to render such

exercise achievable.

• Analyse the FRFs to assess polar plot directionality and extract modal values,

especially damping. Confidence in modal analysis yielding unmistakable conclusions

should be ensured.
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both of which are elaborated upon hereafter.

4.3.2. Concept of EAST

Acquiring a FRF of the target system dictates it be excited by some pre-determined and

quantified input (force). Since attempting to excite an unstable system will result in

instability that may be destructive, careful intervention is necessary to make a modal test

feasible, yet without altering the target system dynamics, especially modal damping, or

mask any of its modes. The idea is to acquire a FRF of the possibly unstable target

system represented by TF G(s) whilst incorporated as a subsystem in an overall stable

system Soa with TF Goa(s) that has added external damping, which is sufficient to insure

overall stability (e.g. fig.4.20).

There are two significant issues to consider in realising the concept above, namely: The

manner in which the target system is incorporated in an overall stable system, and the

excitation method.

4.3.2.1. Target system setup as a subsystem of an overall stable system

The objective here is to be able to acquire a FRF of the target system (e.g. Gd
xy(ıω) of

TF G(s)) from output
input

( x
fy

), without the rest of Soa influencing the stand-alone G(s). This

can be achieved by stacking a damper (energy dissipator) array in parallel with excitation

(input) coordinate y on the target system (fig.4.21), thus matching its vibration (output),

whilst splitting the overall input to Soa with TF Hoa(s), i.e. force (input) foa is split as:

• fd into the damper array and

• fy into G(s)

Should the target system with G(s) have an unstable mode, its G(ıω) will exhibit a CCW

polar plot in the frequency vicinity of the corresponding right-half s-plane pole. However,

Hoa(ıω) will exhibit a CW polar plot in the same frequency vicinity on account of the

damper array, which stabilises the overall system, which is exemplified in §.4.3.4.

4.3.2.2. Excitation

In order to acquire the necessary FRFs of the target and overall systems, the latter

needs to be excited by means appropriate to the target system. For a linear target

system, most excitation methods (impulse, step, sine-sweep) are viable, only the data

postprocessing differs, using FFT or FRA methods. However, should the target system

be nonlinear, some form of quasi-linearisation is necessary. Response quasi-linearisation—

controlling/maintaining response amplitude constant in each cycle at different excitation
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frequencies—requires sinusoidal excitation, which like the other signals can be achieved

using a wave generator.

4.3.2.3. Precautions on Damping estimates from a modal test

In the process of acquiring a FRF of mechanical systems, damping that is not inherent to

the target or overall systems may be unintentionally introduced to both. Caution must

be exercised here since this might yield erroneous results, as explained below.

Attachments’ damping is introduced to the target system from the material layer used

to attach force gauges, accelerometers, etc. This sort of damping is seen in the modal

test as inherent to the target system and may erroneously overestimate modal damping

values deduced thus possibly disguising an unstable mode as a stable one. Efforts to

minimise or eliminate attachments’ damping introduce to the target system should be

exercised. One way of eliminating attachments’ damping is to eliminate attachments by

using non-contact excitation and response measurement, e.g. electromagnetic exciters and

laser doppler or proximity probes.

Shaker external damping is introduced to the overall Soa but not the target system if

an electrodynamic (or hydraulic, etc.) shaker is used to excite the overall system as seen

in fig.4.20. Through their dynamics, shakers introduced this external damping, which

compliments the intentionally introduced external damping hence enhancing the overall

Soa stability. Caution is drawn to this issue of shaker-introduced damping. Although

most electrodynamic shakers have heavily-damped dynamics due to the common use of

a spider construction, some new-design shakers do not have this spider construction and

subsequently have relatively minimal if not negligible damping. It is thus unwise to rely

solely on shaker-derived damping to stabilise Soa.

4.3.3. Ideal Use: System modes

Generally, EAST is applicable to any dynamic system be it linear or quasi-linearised,

where the suspected unstable mode can be excited and observed. Ideally however, for

EAST to be undoubtedly conclusive, the target system needs to be totally observable

with well-separated modes; and if nonlinear should not be heavily so. Modal analysis of

this ideal system’s FRFs would:

• Avoid the possibility of an unstable mode being not represented in the TF due

to pole-zero cancellations (§.3.1.4) hence such unstable mode won’t be identifiable

from the FRF.
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• Avoid poles with similar frequencies but in different halves of the s-plane, i.e. one

stable and one unstable pole, annulling each others effect on the FRF as frequency

is swept. An example of such situation is a forward mode unstable rotor without

gyroscopic effects, i.e. Jeffcott rotor when ℑ(λb) ≡ ℑ(λf ) but ℜ(λb)
def
= -ve while

ℜ(λf )
def
= +ve.

• Readily identify the polar plot directionality (CW/CCW) in the vicinity of the mode

in question as the limited frequency range is swept.

• Estimate properly modal values, especially damping that reflects on stability.

4.3.4. Analytical background and application of EAST

4.3.4.1. EAST exemplified using SDOF

EAST, which is applicable to a general MDOF target system with well-separated modes

that is totally observable, is exemplified here using a hypothetical SDOF (fig.4.20) with

damping that could be stabilising or destabilising. The target SDOF has the EOM:
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Figure 4.20.: EAST illustration using a SDOF with possible hypothetical -ve damping

mẍ + cẋ + kx = fx where c
def
=

{
+ve ⇒ stable system

-ve ⇒ unstable system
(4.27)

Fig.4.20 represents system (4.27) with a SISO TF having force fx as input and acceleration

ẍ as output that is integrated sequentially, so as to allow for the overall system Soa

dynamics to be represented. Soa, which comprises the SDOF, the heavy external damper
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with ce and the shaker, has the EOM:

foa =

fx

+fd

+fs

=

mẍ + cẋ + kx

+ceẋ

+msẍ + csẋ + ksx

(4.28)

Stabilising damping in Soa derives not only from the heavy external damper ce, but also

from the electrodynamic shaker cs. The stability of Soa is determined by whether the

overall damping coa = c + cs + ce is positive or negative. Obviously if the target system

is stable with c
def
= +ve, then Soa is definitely stable since ce and cs are both positive.

However, should c be negative, then the stability of Soa depends on whether c < cs + ce

or not. Since it shouldn’t be difficult to design a stable Soa with ce that overwhelms a

negative c, experimental FRFs e.g. Gd
xx(ıω) =

~X(ıω)
~fx(ıω)

and Hd
i (ıω) =

~X(ıω)
~fi(ıω)

may be obtained

using:

• Output x using a sensor on the SDOF

• Practically-measurable inputs e.g. fi = foa − fs or fx using force gauges on the

dividing plate and SDOF respectively

The Target system’s stability may then be assessed from the polar plot of its FRF G(ıω)

in accordance with §.4.2.2.1.

4.3.4.2. EAST applied to a general rotor with RID

Validity The application of EAST to rotors that are susceptible to RID instability under

design-operating conditions should be valid for most realistic rotors since these generally

satisfy the criteria stated at the beginning of §.4.3. This is because such rotors are

essentially not heavily-damped with well-separated modes, which are totally identifiable

from any FRF that is acquired properly. An exception would be when a BWD and FWD

mode have the same or similar frequency at a specific speed; a situation that is simple to

identify from FE analysis and is easily remediable by applying EAST at a higher operating

speed.

Application EAST can be applied to a general rotor with RID from a coupling for

instance as shown in (fig.4.21). Overall input force foa to the overall system Soa is split at

the dividing plate as fd into the stabilising external damper array and fy into the target

system at excitation coordinate y. Response can be measured at another convenient

coordinate x. Naturally, inputs and outputs have to be located appropriately away from

the nodes of all FWD modes and possibly at some anti-nodes. In the block diagram, the

target system is represented by its mobility TF so as to model external damping as a
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simple gain of ce after accounting for the relation between ẋ and ẏ, which would derive

primarily from the rotor’s dominant mode shape ψ at the excitation frequency.
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Figure 4.21.: A proposed experimental setup for EAST on a general rotor configuration

Example: EAST applied to 2DOF isotropic rotor with RID The stabilising external

damper with coefficient ce is stacked in parallel to excitation coordinate x on the target

rotor (fig.3.1) to form the overall stable system Soa. The target rotor described by EOMs

(4.10) has the state matrix Ǎ given by (4.11), while that of Soa is:

Ǎoa = − 1

m




0 0 1 0

0 0 0 1

k Ωci c + ci + ce ΩG
−Ωci k −ΩG c + ci




(4.29)

Numerical values in (4.2) with c = ci = 75, ce = 150 Ns/m and Ω = 800rad/s are used

in this example, which results in a target rotor with unstable FWD modes but a stable

overall system Soa.

Overall force input foa that is applied parallel to the x coordinate is split as fx into

the target rotor with TFM G(s) and fd into the damper array. The resulting receptance

FRFs (fig.4.22) are obtainable experimentally since Soa has TFM Hoa(s) with all poles

in the left-half s-plane, thus Hd
xx(ıω) =

~X(ıω)
~foa(ıω)

for example traces a polar plot with CW

quasi-circles around the frequency vicinities of both BWD and FWD modes (§.4.1.2.1).

However, G(s) has poles of FWD modes in the right-half s-plane, so Gd
xx(ıω) =

~X(ıω)
~fx(ıω)

for example traces a CCW quasi-circle around the frequency vicinity of the FWD mode

(§.4.2.2.1).

182 On Rotor Internal Damping Instability



4.3. Experimentally-Applicable Stability Test: EAST

200 250 300 350 400

10
−6

10
−4

ω

L
o
g
  
|G

d ij
|

Magnitude plot

−ω
b

ω
f

ℑ(o)

G
xx

G
yx

−1 0 1 2

x 10
−4

−5

0

5

10

15

x 10
−5 Polar plot

ℜ(G
d

ij
)

ℑ
(G

d ij
)

Unstable FWD modes
dominated FRF portions

c = 75 = c
i
 , c

e
 = 0

200 250 300 350 400
10

−7

10
−6

10
−5

ω

L
o
g
  
|H

d ij
|

−ω
b

ω
f

ℑ(o)H
xx

H
yx

−2 −1 0 1

x 10
−5

−15

−10

−5

0

5

x 10
−6

Stable FWD modes
dominated FRF portions

c = 75 = c
i
 , c

e
 = 150

ℜ(H
d

ij
)

ℑ
(H

d ij
)

Receptance FRFs of FWD modes unstable (upper) and stablised (lower) rotor in xy−frame @ Ω=800

Figure 4.22.: FRFs of RID-unstable rotor derived from EAST
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Cycles and Forced Response

In this chapter, nonlinear (NL) analysis techniques that are suitable for handling the NL

RID problem are identified, modified and implemented. It will be seen that quasilineari-

sation is arguably the only way forward for NL RID analysis. Furthermore, graphical

prediction tools are needed in conjunction with quasilinearisation for initial guesses, as

well as predicting NL behavioural patterns, e.g. varying precession boundedness.

5.1. Aspects of nonlinear behaviour

Although linear systems are favoured for ease of design and powerful analysis, they are

idealisations justified by Lyapunov’s linearisation method (5.2). However, not all systems

can be linearised comfortably, such as those with friction RID. Some significant differences

between linear and nonlinear RID systems’ behaviour are set out below.

5.1.1. Stability Concepts

5.1.1.1. Local and global stability aspects

These are important to keep in mind, when considering significant deviations from the

nominal operating condition, when NL systems’ stability properties are substantially more

complicated than those of linear(ised) ones. With linear systems, there is no distinction

between local and global stability: A stable [unstable] linear system at a nominal point

is stable [unstable] at any point. However, NL system’s stability in the neighbourhood

of an equilibrium point does not necessarily imply any global property. There may be

many equilibria, some stable and others not, in which case there will be only a limited

region of convergence (domain of attraction) around any equilibrium point which is locally

asymptotically stable.
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5.1.1.2. Limit cycles or Precession

These are periodic oscillations generated within the system, which constitute a sort of

dynamic, rather than static, equilibrium and have no true counterpart in linear systems.

There may be several dynamic equilibria, some are locally stable (bounded) and others

not (unbounded). Possibilities extend from simple periodic LCs to limit sets and on

to the quasi-stochastic behaviour, despite the system’s deterministic nature. Chaos is

particularly prevalent in discrete-time systems, possibly for simple low-order models.

5.1.2. Harmonic response peculiarities

Input forms A linear system’s dynamic properties can be described independently of

its input, using TF or state-space representations. Conversely, a nonlinear system’s be-

haviour, be it stable, unstable, oscillatory or chaotic, may depend crucially on its inputs ;

a scenario depicted in any successful NL analysis technique, e.g. DFM (§.A.2.4.2).

5.1.2.1. Frequency response and jump resonance phenomena

Applying a sinusoidal input to a LTI system can only generate an amplified and phase-

shifted sinusoidal output of the same frequency. With a NL system, however, the output:

• Might be periodic, but will generally contain higher harmonics of the input’s fun-

damental frequency, instead of being purely sinusoidal.

• More generally, may contain subharmonic components of the input’s frequency, or

even incommensurate frequencies, associated with internal dynamical phenomena.

• Exhibits ‘jump resonance’ phenomenon, due to multi-valued frequency-response.

However, the above system is assumed to be non-limit-cycling. RID systems at subcritical

speeds fall into this category, and yet there is hypothetical concern as to whether a LC

might break out as discussed in what follows.

5.1.2.2. External frequencies and limit cycle parameter alterations

If an input external to the LTI subsystem is applied to a nonlinear system capable of

self-oscillation, it will most likely interfere with LC dynamics: initiating, altering its

parameters, or suppressing it altogether.

Frequency response, limit cycle induction and quenching The forced sinusoidal re-

sponse of nonlinear systems is particularly interesting since a variety of modes of opera-

tion may exist and in some cases may be obtained simply by varying the input amplitude.
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Apart from the normal forced response, which may possess unstable solutions, the possi-

bility also exists that the input will excite an oscillation either at a frequency unrelated

or related to that of the input. Not surprisingly investigations of the various situations

proceed rather differently. The variations of gain to a signal through a nonlinearity, which

may be produced by an unrelated second signal, are readily appreciated from the modified

nonlinearity concept (see §7.2.1) so that physical situations where a sinusoidal input may

induce an oscillation, or quench an existing one, are usually easily foreseen.

Incommensurate frequencies quenching limit cycles is a feature that is well docu-

mented (e.g. §A.2.4.4). It is also the basis for the successfully implemented signal stabil-

isation (§7.2.2.2) as well as linearising the highly nonlinear effects of friction (§7.2.2.1),

albeit at high frequencies ratio. The fact that orthotropic bearings result in LTV coeffi-

cients at 2Ω, usually higher than thrice the RID LC frequency, may be advantageous for

avoiding RID precession, and is planned for future investigation (§7.2.1).

5.2. Nonlinear analysis suitable for the RID problem

Unlike linear systems’ analysis, there is not a unified nonlinear analysis or approach

that applies across the whole spectrum of nonlinear systems. Rather, specific groups of

problems have certain approaches that can be applied based on a set of assumptions;

and solutions thus achieved usually correspond to preset functional conditions. A general

nonlinear dynamic mechanical system can be described by:

Mq̈ + Cgq̇ + Kgq + F = f (5.1)

where F is the internal nonlinear force vector resulting from nonlinear elements (springs

and dampers) whose inputs are the coordinates’ relative displacements and/or velocities.

The nonlinear RID problem is that of a MIMO system with at least two nonlineari-

ties. The objective here is to identify and adapt existing analysis techniques, which can

accommodate the system’s 1) Rotordynamic characteristics (§3.1.4) and 2) RID mod-

els/characteristics (§3.2.1.2). With these techniques, we are interested in examining:

1. Absolute stability of equilibrium

2. Self-induced precession or limit cycles (LCs)

• Predict existence of limit cycles or lack thereof

• Characterise the stability of predicted limit cycles

• Identify the parameters of stable limit cycles; i.e. amplitude and frequency
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3. Nonlinear Response to external forcing and its effect on possible limit cycles.

5.2.1. Various types of nonlinearities

Nonlinear functions may arise in dynamic systems’ models either because they are intrinsic

to the nature of the system or because they have been deliberately introduced for a specific

purpose. Because there is a vast variety of possible nonlinearities to be encountered, it is

worthwhile to classify them into some general categories, with features which permit (or

preclude) the application of particular analytical methods.

5.2.1.1. Nonlinear Functions unrepresentative of friction

Simple analytic functions such as powers, sinusoids and exponentials of a single vari-

able, or products of different variables is one common category of nonlinearities. Most

significantly, these functions are smooth enough to possess convergent Taylor expansions

at all points. Consequently, they can be linearised, rendering the full mathematical power

of linear system analysis to hand.

Bilinear nonlinearities are another important class of systems, in which the only nonlin-

ear terms consist of state variables multiplied by input variables, and are thus the simplest

possible generalisation of linear systems, being linear in the state and input separately.

Symmetry, however, is not considered a feature of such nonlinearities. If a system model

contains only analytic nonlinearities, it also admits the possibility of using a special type

of input-output representation, in which the output is expressed as a kind of generalised

power (Volterra) series containing multiple convolution integrals of products of the input

variables evaluated at different times.

5.2.1.2. Nonlinear Functions utilised in representing friction

Piecewise-linear approximation of nonlinearities is a very common and important (for

defining L(x) of damping models p.124) type of nonlinear function, which consists of a

set of linear relations valid in different regions. Such functions are not analytic at all

points, since they contain discontinuities of value or gradient, but have the advantage of

equations becoming linear in any particular region, and thus solutions for different regions

can be joined at the boundaries.

Symmetric SVNL Functions of this type are widely used to model the behaviour of ac-

tuating devices, the simplest of which being ideal relays; a model describing dry Coulomb

friction (3.68) as well. These are continuous in value, although not in slope, but discon-

tinuous functions may also be employed. Although, as mentioned previously, care should
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be exercised when employing discontinuous approximants, they arise quite frequently and

naturally in many applications.

Multi-valued nonlinear Functions (p.116) MVNL are used principally for modelling

hysteresis, gear trains’ backlash, non-ideal behaviour of relay devices, etc. Such relations

consist of two or more branches, together with a prescription for switching from one to

another (e.g. Masing’s rule and L(x)), so output depends on its current value as well

as on the history of input. Thus, a MVNL relation is effectively infinitely-many-valued

and deemed a nonlinearity with memory. From the mathematical point of view, multi-

valuedness does not necessarily raise any fundamentally new difficulty. It does, however,

render state-space formulations substantially more complicated, since the system now has

to be represented by a combination of several (possibly infinite) different state-spaces,

corresponding to the various branches of the nonlinearities. Accordingly, if state-space

formulations have to be utilised, it is preferable to use an alternative description, involv-

ing state-spaces of different dimensions corresponding to sticking and slipping modes, for

instance [36].

5.2.2. Overview: Nonlinear systems stability analysis

The stability theory dates back to the 19th century. Nonlinear stability theory, in par-

ticular, has its origins in the work of Lyapunov [106] and Poincaré [143]—see [71] for a

historical perspective and [126] for comprehensive coverage of absolute stability analysis.

Practical exact absolute stability analysis (§A.2.3) are frequency domain techniques

based on separating the overall nonlinear system SNL

S⊃ {SL,SN} into a LTI subsystem

and a nonlinear and/or time-varying subsystem, in a feedback formulation.

Frequency domain criteria are sufficient but not necessary conditions for stability,

and thus results are often conservative due to the approaches’ generality and minimal

utilisation of N nonlinearities’ characteristics [12].

Suitability of exact methods for RID problem Although it is possible to model a

rotor with RID in a feedback set-up separating sub-systems: 1) RID N
def
= SN from SL

(as well as time-varying parameters) and 2) LTI rotordynamics as in §3.2.2.3, the major

hindrance in finding exact stability analysis suited to the RID problem is the hard and

usually multi-valued character of RID models N . This violates the usual sector condition

(§.A.2, def.A.2, fig.A.1) pre-requisite on all nonlinearities ∀Nij ∈ N .
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Approximate methods largely adopt the general methodology of studying nonlinear

systems, as far as possible, using linear techniques.

Linearisation around some nominal operating point, if possible, is usually the first step

in dealing with a nonlinear system. Assuming that deviations from this operation condi-

tion are not large in practice, linearisation may well be adequate as a basis for analysis

and design over a limited range of operation. Lyapunov’s linearisation method draws

conclusions about the local stability of nonlinear S around an equilibrium state p̂ from

the stability properties of the system’s linear (Jacobian) state matrix Aj approximation.

System dynamics are written in terms of uniformly convergent Taylor series:

ṗ =
∂F

∂p

∣∣∣∣∣
p=0

+ Fhot(p) ≈ Ajp (5.2)

where Fhot represents higher-order terms in p. Lyapunov’s linearisation is a formalisation

of the intuition that NL S should behave similarly to its linearised approximation for

small range motion; and represents the theoretical justification of linear modelling [169].

Tondl [177] used (§.2.4.3.4) system linearisation for absolute stability and response

analysis of a Jeffcott rotor with nonlinear (hysteretic) RID as well as geometric nonlin-

earities. Results were deemed erroneous, on account of possible instability at subcritical

speeds, and blamed on approximations of ignoring higher order terms.

Harmonic balance approximations When exact methods are inapplicable or inconclu-

sive, conclusions about absolute stability may be drawn from LC analysis, which in the

case of RID problem is the HBM or describing function method (§.5.3.1.2, 5.3.2.2).

Frequency response is a useful tool in NL analysis, mainly because the output’s har-

monic content is usually dominated by a few frequencies. It is often sufficient to consider

only the fundamental frequency, in which case the input-output relation is represented

by a nonlinear analog of the transfer function, namely the ‘describing function’, which

depends on the input amplitude. Although this approximation must be used with care, as

it may yield erroneous results, it is capable of predicting many nonlinear effects, including

LCs and jump resonance phenomena. Furthermore, it can be extended to include more

frequencies, to cover other effects such as the generation of subharmonics and LC quench-

ing. The HBM is sometimes referred to as harmonic linearisation, since it constitutes

another example of exploiting linear techniques for NL analysis benefit.
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5.2.2.1. Limit cycle analysis

Exact analysis and criteria are well established for second order systems S ∈ R2, e.g.

the Van der Pol oscillator (a nonlinear SDOF); most celebrated of such criteria is the

Poincaré-Bendixson theorem [62]. These criteria however, do not have generalisations to

systems of order higher than second S ∈ Rl>2.

Limit cycle stability (boundedness) of nonlinear SISO systems (possibly higher order

SNL ∈ Rl>2) that fail the frequency domain absolute stability criteria (§A.2.3) can be

concluded upon using the sector condition (def. A.2) and characteristics of Ak. Ak is the

state matrix of SkL the equivalent linear system of the nonlinear scalar system SNL, and

is arrived at in the following manner:

• On replacing the sector-bounded nonlinearity N (x) ∈ [kl, ku] with k, the equivalent

linear system SkL ensues: SNL ⇒ SkL ⇒ Ak.

• Provided that N (x)
x

→ k{ >kl

<ku
as x → ∞

If Ak is Hurwitz, the only possible form of instability is a stable/bounded limit cycle.

This result [182] for scalar SNL has a multivariable generalisation [11]. There are several

results available, originally by Garber [53] for SISO SNL that were extended for MIMO

SNL [48], which rule out the possibility of limit cycles with certain frequencies for these

systems. Such limit cycle criteria are not compatible with the RID problem as nonlinear

RID models N do not satisfy the sector condition.

Approximate methods do exist for limit cycle analysis of higher order MIMO systems

S ∈ Rl>2, which is the case for all real rotor-bearing systems. There are two popular

approximate methods [79] for predicting limit cycle parameters, namely: The periodic

averaging method and the Quasilinearisation concept (§.A.2.4.2) that is primarily applied

through the describing function method [9, 12, 54, 36].

The averaging method applies to systems of form:

ṗ = ǫF(t,p, ǫ) (5.3)

where ǫ is a small positive parameter and F(t,p, ǫ) is T -periodic and is sufficiently smooth

to possess continuous second order partial derivatives with respect to its arguments p, ǫ.

The method approximates the solution of (5.3) by the solution of the autonomous averaged

system (5.4) that is obtained by averaging F(t,p, ǫ) at ǫ = 0

ṗ = ǫFav(p) where Fav(p) =
1

T

∫ T

0

F(τ,p, 0) dτ (5.4)
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The requirements for using the averaging method, i.e. smoothness and the modelling with

small ǫ as in (5.3), make the method inappropriate for handling the RID problem.

The describing function method (§5.3) however is well suited to the RID problem

as it: 1) Can handle hard and multi-valued N characteristics in MIMO SNL 2) Mainly

targets separable systems {SL,SN}
S⊂ SNL and 3) Essential requirement of rotordynamic

SL having high-frequency-attenuation characteristics is generally well-satisfied.

5.3. Describing Function Method for RID problem

It is strongly recommended to refer to §.A.2.4 for detailed derivations and coverage.

5.3.1. DFM suitability for RID precession and forced response

The DFM can be used in its simple first order truncation guise for the MIMO RID

precession analysis. However, a suitable initial guess (IG) for solving iteratively the NL

algebraic equations is needed to converge at a solution, which is derived graphically as in

§.5.3.2.2. Similarly, the DFM can be used for sinusoidally forced response at subcritical

speeds, with IG derived from LTI system FRFs away from resonances. The same cannot

be said about forced response at supercritical speeds, when precession may well occur,

and at least SSDF have to be implemented for analysis to have any hope of conclusion.

5.3.1.1. The DFM/HBM for general stable MIMO mechanical system

Sinusoidal describing functions and their resulting quasilinear (stiffness or impedance)

models have been used extensively to predict the sinusoidally forced response of a slightly

nonlinear stable mechanical structures that are described by lumped-parameter EOMs:

Mq̈ + Cgq̇ + Kgq + F(p) = ℜ(feıωet) (5.5a)

These systems typically satisfy the frequency ‘low-pass’ characteristic, and would gener-

ally incorporate smooth and hard nonlinearities, e.g. cubic stiffness and friction damping

simultaneously. Although, in principle, the DFM can be applied to NL mechanical sys-

tems exhibiting LCs, e.g. gear trains with backlash; the widely successful DFM application

is concerned with absolutely stable and slightly NL mechanical structures.

The foregoing justifies the underlying assumption that: Response is periodic, if not

sinusoidal, with the fundamental frequency ωe being of predominant amplitude. Response

is understood to contain super- and possibly sub-harmonics of ωe, which are usually
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considered negligible, and first order DFs result in quasilinear stiffnesses k ∈ K:

q ≈ q1 = ℜ(q1eıωet) (5.5b)

Mq̈ + Cgq̇ + Kgq ≈ ℜ
(
(Kg − ω2

eM + ıωeCg)q
1eıωet

)
= ℜ

(
S(ıωe)q

1eıωet
)

(5.5c)

F(p) ≈ F1 ≃ ℜ(Kq1eıωet) where K
def
= K(q1) (5.5d)

which are used to setup the following nonlinear algebraic equations:

S(ıωe)q
1 = f − Kq1 and

(
S(ıωe) + K

)
q1 = f (5.5e)

for the HBM and the DFM respectively. (5.5e) are solved iteratively, using e.g. Newton-

Raphson method and given an appropriate initial guess q1
IG, for each ωe. Typically:

1. At ωe:1 of low FRF, away from the LTI system model resonance, q1
IG

def
= qLTI, where

it is expected that q1
NL ≈ qLTI, and the first frequency response q1

ωe:1
is arrived at

2. For the following frequency ωe:2 at small increment ∆ωe from ωe:1, q1
IG

def
= q1

ωe:1

3. The above steps are repeated until the whole frequency range of interest is covered.

The ‘jump resonance phenomenon’ will reveal itself on comparing the solutions of sweeping

the frequency range increasingly and decreasingly, when (5.5e) will yield different stable

solutions q1
ωe

for the same ωe around resonance. It is worthy of noting that: The DFM

in (5.5e) is more favoured computationally to the HBM, as it reduces system order thus

converging to a solution more efficiently.

5.3.1.2. The DFM for the MIMO NL RID problem

MIMO NL RID systems have inherent characteristics that distinguish them from struc-

tures (§.5.3.1.1) normally handled by the DFM/HBM, namely:

• LC oscillations at supercritical speeds are a common recurrence with RID systems,

which seldom exist separately, except possibly in the unforced isotropic stator case.

• NL RID models have hard characteristics, varying which affects LCs markedly

• A symmetric rotor on anisotropic bearings (3.9) introduces LTV terms of stiffness

(and possibly impedance) to (5.7) leading to oscillations at 2Ω. These have to be

accounted for along with RID precession oscillations at supercritical speeds.

• A typical sinusoidal xy-frame force at ωe translates to two forces at ωe−Ω and ωe+Ω

in the ξη-frame (3.4) and their resulting oscillations, which have to be accounted

for along with those from stator anisotropy and RID precession, if existent.

192 On Rotor Internal Damping Instability



5.3. Describing Function Method for RID problem

• Rotor imbalance translates to static loads in the ξ- and η-directions and results in

constant deflections, which render RID precession oscillations unsymmetrical. This

necessitates the use of SBDF, which is no small feet for Masing’s joints (p.119)

Notes of Caution In order to implement the DFM neatly and effectively, only single-

frequency oscillations should be considered, which is not always possible or prudent.

Inherent multiple frequencies derive from orthotropic bearings, gravity sag, etc. It is

tempting to analyse rotors on orthotropic bearings as isotropic twice; once with each stiff-

ness, to conclude on stability. However, this would prove rather unwise when oscillations

of several frequencies exist, due to the significantly different internal dynamics. Although

this is not addressed here, it certainly should be followed upon.

LC quenching by other-frequency oscillations is frequently observed in NL systems. In

the RID precession case, this might prove rather beneficial as 2Ω oscillations may be easily

introduced via orthotropic bearings. When linear analysis could not explain or justify it

[33], this experimentally observed favourable effect of orthotropic bearings on suppressing

RID precession can be easily explained by this NL phenomenon. However, to reproduce

such observations analytically, LTV terms must correspond to models’ input, i.e. qr for

displacement (fig.3.2) and/or q̇r for velocity (fig.3.3) models. Fortunately, the DFM can

be used for such predictions, albeit in the MIDF guise.

Ignored super-harmonics is another important issue when considering the hardness

of N and the corresponding harmonic content
∑∞

m=1 Fm(τ) of its output F(τ) (A.17).

The ideal relay odd-symmetric SVNL representing Coulomb RID is a good simple ex-

ample, because it is the building block for most NL RID models. The resulting odd

super-harmonics have magnitudes |Fm| = 1
m
|F1| ∀m∈{3,5,7,... } (A.20). Although friction

damping models are a common recurrence in the DFM for general structures, they do not

necessarily have a dramatic impact on the structures’s stability and behaviour. Normally,

a general structure’s FR characteristics would attenuate super-harmonics, so at 1
3

magni-

tude and 3ωe the first super-harmonic is certainly negligible. However, all is not the same

when considering rotor FR characteristics in the rotating frame. Other than the debate

about non-minimum-phase TF characteristics (§.4.1.2.3), the transformed resonances at

−(ωb − Ω) occur at higher frequencies and with higher magnitudes (fig. 4.9), which is a

serious concern as aero-engines have wide operating speeds spectra.

LC predictions in NL feedback systems is one of the principal DFM applications. Ex-

perimentation and simulation show that NL RID can cause ωp-periodic precession, which
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is largely dominated by its fundamental frequency. The low-pass system’s LTI part at-

tenuates significantly higher harmonics mωp to negligible levels. Isotropic rotors’ RID

precession observed in both ξη- and xy-frames can be approximated by single frequency:

qr ≈ qr
1 = ℜ(q1

r
eıωpt) ⇒ q ≈ q1 = ℜ(q1eı(Ω+ωp)t) (5.6)

That justifies first order k (§.5.3.1.3) use in place of the NL elements N of (3.75). It is

assumed: LC oscillations (5.6) may exist, thus F , N of (3.75) are approximated as:

N =

[
Nξ(ξ) 0

0 Nη(η)

]
≈ ℜ

([
kξ(amp(ξ1)) 0

0 kη(amp(η1))

]
qre

ıωpt

)
(5.7a)

≈ ℜ(K(q̄r)qre
ıωpt) = ℜ(Kqre

ıωpt)

⇓
F ≈ F1 ≃ ℜ(Kqre

ıωpt) (5.7b)

It is assumed that RID precession of the autonomous and balanced 2DOF isotropic rotor

is adequately approximated by sinusoids, and (3.86) is approximated using (5.7) as:

S(ıωp)qr(ıωp) = −K(q̄r)qr(ıωp)

(S + K)qr = 0 ←֓
(5.8)

which is pre-multiplied by FRM Hr(ıω) for iterations to converge faster avoiding possible

singularities on account of diagonal K:

(I + HrK)qr = 0 (5.9)

Should there be interest in accounting for imbalance, where:

f = ℜ(feıΩt) ⇒ fr = ℜ(fre
ı0t) = ℜ(fr)

def
= phased vector of constant bias (5.10)

results in ξη-frame constant deflections, the SBDF should be used for displacement macro-

/micro-slip models, which dictates serious reconsideration of Masing’s joints.

NL algebraic equations iterations (5.8,5.9) were solved (Matlab Optimisation Toolbox)

for precession amplitude and frequency qr 6= 0 6= ωp, using an IG of their values. This

IG should be as close as possible to the final solution and is derived from graphical LC

predictions of the complex SISO system (§.5.3.2.2). Eigenvalues of system (5.8,5.9) with

the achieved solution provide a check for predicted precession stability, and should ideally

yield marginally stable modes. Further eigen-analysis are carried out with amplitude (and
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frequency for completeness and added reliability) perturbations of solution. If the system

is absolutely stable [unstable] with positive [negative] perturbations, then the achieved

solution represents a sustainable [unsustainable] precession.

Validity of solutions achieved was assessed using (Matlab Simulink) time-marching

of isotropic- and orthotropic-bearings (3.86, 3.9) rotors with ideal relay representing

Coulomb damping. Results of isotropic rotor were in excellent agreement with simu-

lations. Furthermore, orthotropic-bearings rotor simulations showed similar precession

behaviour, since there are no LTV terms associated with q̇r, which is the relays’ input.

Forced response iterations for isotropic rotors (3.86) with SVNL and DVNL RID were

carried out, after validating the iterative technique against linear RID models, which were

in excellent agreement. As with the general application of the DFM (§.5.3.1.1), iterations

converged successfully at subcritical speeds using IG as detailed (p.192). However, as

speed approached critical, convergence to a solution became rather inefficient and failed

totally just before it and for all higher speeds. This can be related to a jump resonance

and/or the possible coexistence of precession at different frequency. This alters system

dynamics significantly and may involve other issues e.g. LC suppression.

5.3.1.3. Characteristics of RID models’ describing functions

Describing functions for RID models of §.3.2.1.2 (figs.3.2, 3.3) are discussed here.

Real DFs of SVNL RID models (fig.3.2) are used in conjunction with mobility FRFs.

While Coulomb damping (ideal relay) results in a monotonically decreasing krelay(v̄) with

increased velocity amplitude ¯̇ζ, the parabolic damping model results in a non-monotonic

kparab(v̄) having a minimum at some velocity (¯̇ζ = 1.531m/s in fig.5.1). For elaboration

purposes, both krelay, kparab are compared to linear RID ci =75Ns/m, which causes instability

at Ω =800 but not 500rad/s. As shown in §.5.3.2.2, the non-monotonicity of kparab results

in two LC predictions (fig.5.5) which are represented here by its two intersections with
−1

min
(
ℜ(Hv

rc(ıω))
) at Ω =800rad/s> Ωc. The min(kparab) is what causes the second intersection

to reflect an absolutely unstable LC, as kparab increases thereafter.

Complex DFs of DVNL RID models (fig.3.3) are used in conjunction with recep-

tance FRFs. For comparative elaboration, the imaginary linear hysteretic RID (ıd) with

κ =0.025, which causes instability at both Ω =800 and 500rad/s is plotted on fig.5.2. Also,

Coulomb damping is represented by the DVNL relay with hysteresis, and results in a purely

imaginary kcol that decreases monotonically with amplitude X̄. DVNL macro/micro-slip
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Figure 5.1.: Real DFs of SVNL friction models for mobility FRFs

RID models (fig.3.3) yield complex DFs (fig.5.2), whose imaginary parts decrease mono-

tonically with X̄ as with kcol. However, their real parts are non-monotonic exhibiting

maxima, as opposed to the minima of kparab. Conversely with kparab, this suggests the

possibility of two LCs; an unstable first, and a neutrally stable second.

5.3.2. Graphical predictions with complex SISO RID problem

Throughout §.5.3.2, the parameters and numerical values of (4.2) are used.

5.3.2.1. Nyquist criterion adapted for RID instability problem

The Nyquist criterion is a simple semi-graphical method used in control engineering for the

design and stability analysis of LTI SISO real closed-loop feedback system, by investigat-

ing the frequency response properties of the loop TF. This criterion’s use in conjunction

with describing functions is a common and straightforward means of investigating the

existence and stability of limit cycles in a similar system with one nonlinearity. This

method is adapted here to handle the RID instability problem of a complex SISO system
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Figure 5.2.: Complex DFs of DVNL friction models for receptance FRFs

using its analytical or experimental FRF Hc(ıω) prior to introducing RID, be it linear or

nonlinear, in the feedback loop. This is carried out so as to:

1. Prove graphically that RID instability cannot exist at Ω < Ωc sub-critical speeds in

the case of nonlinear RID as well as linear and particularly hysteretic RID.

2. Test for the possible existence of several limit cycles, their stability and properties.

3. Derive initial guesses (IG) for the iterative solution of real MIMO RID system.

4. Elaborate on system’s relative stability or degree of instability, depending on com-

binations of internal
external

damping ratio and coefficients. Accordingly, the method can be

used as a design tool, and can indicate means of enhancing stability if needed.

5. Extend using SBDF to predict graphically the imbalance effect on RID precession.

In order to utilise the simplicity of Nyquist criterion, it is necessary to analyse a SISO

system model, hence the use of complex rotor formulations. Naturally, the multivariable
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rotordynamic systems can be modelled as a fully controllable and observable SISO system

as discussed on p.109. However:

• In order to model RID as a feedback matrix for design and stability analysis pur-

poses, at least two outputs ξ, η need be considered/observed.

• Point TFs (3.28) have +ve real zeros ∀Ω > Ωc (3.57a) thus non-minimum-phase

(§.4.1.2.3), rendering the following simple version of Nyquist criterion inapplicable.

For LTI MIMO systems, there are Nyquist-like criteria (3.88), however, the diagonal

dominance constraint placed on H(ıω) renders the technique not readily amenable.

Nyquist criterion for minimum-phase TFs in real SISO feedback system whose over-

all (closed-loop) TF is:

G(s) =
H(s)

1 + H(s)B(s)
(5.11)

If its loop TF H(s)B(s) has minimum-phase characteristics, then the Nyquist criterion for

minimum-phase TFs, which is a special case of the general Nyquist criterion (§A.2.2),

can be applied. In such case, the criterion requires that locus ΓHB—the plot of H(s)B(s)

corresponding to Nyquist locus Γs, i.e. resulting from mapping Γs
H(s)B(s)−−−−−→ ΓHB—must not

encircle the critical point (sc = −1+ ı0) for system (5.11) to be stable. Since the criterion

was developed for real and proper TFs, only the +ve ıω-axis s : [ı0 ⊲ ı∞] referred to as

Nyquist path needs be considered, which results in the Nyquist plot of H(ıω)B(ıω)

ω:[0⊲∞〉
. In such

case, sc = −1 + ı0 must lie to the left of Nyquist plot as it is traversed.

Adaptations of Nyquist criterion for the complex SISO rotordynamic system in ξη-

frame modelled with linear RID has an overall (closed-loop) TF:

Grc(s) =
Hrc(s)

1 + Hrc(s)Bc(s)
(5.12a)

→֒ Gd
rc(s) =

Hd
rc(s)

1 + sciHd
rc(s)

or Gv
rc(s) =

Hv
rc(s)

1 + ciHv
rc(s)

←֓ (5.12b)

where Hc(s) is a complex TF of the rotor without RID, and Bc(s) is the appropriate

complex representation of linear viscous RID, all in the rotating frame. In (5.12), Grc(s)

can be defined as the overall mobility TF Gv
rc(s), in which case Hc(s)

def
= Hv

c (s) is mobility

TF without RID (4.9) and accordingly, Bc(s)
def
= ci. Alternatively, an overall receptance TF

Gc(s)
def
= Gd

c(s) requires Hc(s)
def
= Hd

c (s), which in turn dictates the suitable Bc(s)
def
= sci RID

modelling. The rotordynamic TFs Hd
c (s), Hv

c (s) have been shown to have minimum-phase

characteristics, so the loop TFs in (5.12), namely sciH
d
rc(s), ciH

v
rc(s) are also minimum-

phase ones. Accordingly, the Nyquist criterion for minimum-phase TFs is conceptually
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viable as well as being an ideal choice due to its straightforwardness. However, because

Hrc(s)Bc(s) is now complex, the Nyquist path and preferably the critical point need be

modified for the successful application of this modified Nyquist criterion:

The critical point sc
def
= −1

Bc(s)
, although not a stringent requirement, is necessary to

identify intersections of −1
k

and Hrc(ıω) when using DF (p.200) for limit cycle analysis.

FRFs used directly be they experimentally or analytically-derived (§.4.1.2.5), instead of

ΓHB(ıω). This elucidates the following significant opposites between super and subcritical

speeds with direct implications on stability in each case. At Ω < Ωc:

• Hrc(ıω) has +ve ıω for its quasi-circle around (ωf − Ω), where sc
def
= −1

k
is required.

• The mobility Hv
rc(ıω) has both quasi-circles around the -ve(ωb −Ω) and +ve(ωf −Ω)

on the same right-hand H-plane on account of the TF’s zero o
def
= s = 0.

The Nyquist path to cover the entire ıω-axis: 〈−ı∞⊲ı∞〉 as in §.4.1.2.5 and §.4.2.2.2
since poles/zeros of complex TFs are generally not complex conjugates.

Adapted Nyquist criterion for absolute stability analysis of linear RID system Figs.5.3,

5.4 use the ξη-frame mobility Hv
rc(ıω) and receptance Hd

rc(ıω) FRFs respectively at the sub-

critical Ω = 200rads/s and the supercritical Ω = 500, 800rads/s speeds against the relevant

critical points sc. Whilst FRFs at 500/800rads/s have -ve ω, the 200rads/s FRFs have a +ve

ω range surrounding ωf − Ω and reflected in the corresponding quasi-circle.

Viscous RID: Criterion validated against instability conditions of §.4.2.1.2, which

were modal-analysis-validated and exemplified in §.4.2.1.3 and figs.4.14, 4.15. Fig.5.3

shows sc
def
= −1

ci
(-ve real) for viscous RID against mobility FRF. Obviously, Hv

rc(ıω) will

never encircle −1
ci

at any Ω < Ωc as both its quasi-circles are on the right-hand H-plane

with +ve real axis. For Ω > Ωc, absolute instability might occur depending on ci and

min
(
ℜ(Hv

rc(ıω))
)
, which in turn depends on Ω, c, ωfu

—see (4.22). Figs.4.14, 5.3 are in

agreement, indicating stable operation at Ω = 500 > Ωc and absolute instability at

Ω = 800 > Ωc for ci = c = 75, thus validating the criterion.

Hysteretic RID: Criterion validates eigen-analysis of §.4.2.3.2. As elaborated in

§.4.2.3.3, the hysteretic RID model must account for sgn(ω) as in (3.64), i.e. replaced

by its complex conjugate −ıd (3.65) when used in conjunction with -ve ω FRF portions.

Fig.5.4 shows the -ve imaginary sc
def
= −ı

d
≡ −1

(ıd)∗
for two hysteretic RID κ = d

k
=0.2 and

0.25. The +ve imaginary sc
def
= −1

ıd
suitable for the +ve ω FRF portion at Ω = 200rads/s is
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Figure 5.3.: Nyquist criterion adapted for complex linear viscous RID system mobility
FRFs in ξη-frame: The effect of sub/supercritical speeds on instability

not shown for clarity. It is clear that Hd
rc(ıω) at any Ω < Ωc will never encircle the relevant

sc as it lies in the opposite (upper/lower) half-H-plane to where the corresponding (+ve/-

ve) ω FRF portion (indicated by quasi-circles) lie; as is exemplified by Ω = 200 < Ωc.

At supercritical speeds Ω > Ωc, absolute instability might occur depending on 1
ıd

and

min
(
ℑ(Hd

rc(ıω))
)
. While κ = 0.25 renders both supercritical speeds’ operation unstable,

κ = 0.20 renders neither unstable, of course in turn depending on Ω, c, ωfu
and possibly ci

if accounted for as should be in the FRFs. Figs.4.19, 5.4 are in agreement, thus validating

the approach adopted for hysteretic RID in §4.2.3.2.

5.3.2.2. Extended Nyquist criterion for RID precession predictions

It is assumed here that RID precession (LC) is the only oscillation taking place in system

(fig.3.5), and that it can be adequately approximated by a single-frequency sinusoid.
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Figure 5.4.: Adapted Nyquist criterion for complex hysteretic RID system receptance
FRFs in ξη-frame: Infeasibility of instability at subcritical speeds

DF LC predictions assume an unbiased sinusoidal input into SVNL or DVNL RID

models, as would exist in a perfectly balanced unforced rotor. Precession and its stability

predictions at two super-critical speeds as well as the impossibility of RID precession at

subcritical speeds are illustrated and discussed. Only FRF quasi circles around ωf −Ω are

shown (figs.5.5, 5.6) as it will be obvious these are the only regions necessary for analysis,

which explains why RID precession occurs at frequencies close to ωf .

By (5.13, 5.14, 5.16), RID precession is predicted to exist if there is an intersection

between loci Hrc(ıω) and −1
k∗ (for -ve ω) in the complex H-plane, both of which can be

plotted independently since they depend on different variables. Precession frequency and

amplitude are obtained from these independent variables’ values at points of intersection.

Furthermore, conclusions about precession neutral stability or instability are arrived at

graphically from the direction in which −1
k∗ crosses Hrc(ıω) as amplitude increases, reflecting

the Loeb condition [112]. Graphically, this can be rationalised by considering amplitude
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perturbations. A small amplitude increase should take the predicted stable [unstable]

limit cycle into the region of stable [unstable] system configuration in accordance with

the normal Nyquist criterion (figs.5.3, 5.4). Accordingly, if −1
k∗ crosses Hrc(ıω) from in-

side the quasi-circle to outside as amplitude increases, then the predicted precession is

neutrally stable, otherwise it is unstable. Since the DF method is approximate, any

results and conclusions arrived at from the extended Nyquist criterion should be scruti-

nised thoroughly. Most significantly, the actual existence of a predicted limit cycle would

rely on the nature of loci intersection. If the −1
k∗ and Hrc(ıω) loci cross perpendicularly,

then it is certain the predicted LC will exist. As Loci move away from perpendicular to

semi-tangential intersection, the possibility of predicted LC diminishes.

SVNL DF predictions apply to relative velocity-only RID models (fig.3.2), which may

be used to represent spline couplings especially un-piloted ones. Input to and output of

the RID SVNL model are related and approximated by their first order components:

ζ̇(t) = −Hv
rc(s)Fζ (t)

1storder truncated: ¯̇ζ cos ωt = −ℜ
(
Hv

rc(ıω) k(
¯̇
ζ)

¯̇ζeıωt
)

←֓

and rearranged as: Hv
rc(ıω) =

−1

k(
¯̇
ζ)

(5.13)

SVNL RID models result in +ve real k(
¯̇
ζ), thus locus −1

k(
¯̇
ζ)

will always be on the -ve real

axis of the H-plane, where intersection with Hv
rc(ıω) may occur. Accordingly (fig.5.5):

• Precession can not occur at subcritical speeds, since there are no intersection points

on account of FRF (both quasi-circles) existing solely in the right-half H-plane.

• At supercritical speeds, all loci intersections are perpendicular at min
(
ℜ(Hv

rc(ıω))
)
,

reflecting imminent LCs with ω ≃ ωf − Ω ∀Ω > Ωc. When transformed to the

stationary xy-frame, these LCs translate to FWD mode precession at around ωf .

Whilst Coulomb damping models yield DFs krelay(
¯̇
ζ) that are monotonically decreasing with

increased ¯̇ζ (see §.5.3.1.3, fig.5.1), the parabolic model yields non-monotonic kparab(
¯̇
ζ) that

exhibits a minimum
(
min(kparab(

¯̇
ζ))

)
, which suggests an unstable LC on account of more-

than-linearly increasing k and hence force. Coulomb damping results in one neutrally

stable LC prediction, as its −1

krelay(
¯̇
ζ)

intersects once with Hv
rc(ıω) moving from within the

FRF quasi-circle outwards, i.e. from unstable to stable regions. On the other hand, the
−1

kparab(
¯̇
ζ)

locus intersects Hv
rc(ıω) twice predicting two LCs, one stable and one unstable. As

velocity amplitude increases from 0 to ¯̇ζ ≤ 1.531m/s, −1

kparab(
¯̇
ζ)

decreases along the -ve real

axis, and then flips direction and increases along the -ve real axis ∀ ¯̇ζ > 1.531m/s. The first
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Figure 5.5.: Graphical prediction of SVNL RID precession: Bounded and unbounded

LC is viewed as neutrally stable, because a small increase in ¯̇ζ along the −1

kparab(
¯̇
ζ)

locus

moves the system into a stable region as with Coulomb damping. However, the second

LC is predicted to be unstable, because a small ¯̇ζ increase moves the system into the

unstable region.

To elaborate, consider the specific kparab characteristics in fig.5.1, which shows the im-

portant flip point ‘min(kparab(
¯̇
ζ))’ at ¯̇ζ = 1.531m/s. A small ζ̇ perturbation (e.g. 0.1m/s) up to

but below 1.531m/s, results in the first stable LC. If a significant ζ̇ perturbation (e.g. 1.6m/s)

is experienced, the second absolutely unstable LC will kick in. This scenario is exemplified

for Ω = 800rad/s in fig.5.1 where LCs intersections are easier to visualise.

DVNL DF predictions apply to displacement RID models with nonlinear stiffness and

damping characteristics (fig.3.3), which are representative of rotors with tight couplings.

Input to the DVNL model is ζ(t), which is approximated as ζ(t) ≈ ℜ(~ζeıωt). As elaborated

in §.4.2.3.3 and applied to Hysteretic RID p.201, k(ζ̄) must account for sgn(ω), i.e.
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replaced by its complex conjugate k∗(ζ̄) when considering -ve ω:

ζ(t) = −Hd
rc(s)Fζ (t)

1storder truncated: ζ̄ cos ωt = −ℜ
(
Hd

rc(ıω) k(ζ̄) ζ̄eıωt
)

←֓

accounting for sgnω : Hd
rc(ıω) =

−1

k(ζ̄)
∀+ve ıω and Hd

rc(ıω) =
−1

k∗(ζ̄)
∀-ve ıω

(5.14)

Coulomb damping is a DVNL without stiffness—relay with hysteresis—with a purely

imaginary kcol, which yields identical LC predictions as the ideal relay’s krelay in (fig.5.5),

and is included in (fig.5.6) to elaborate the must of accounting for sgn(ω).
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Figure 5.6.: Graphical prediction of DVNL RID precession: Probable or unlikely

Complex DFs (fig.5.2) of DVNL RID are non-monotonic, exhibiting maxima as opposed

to the minima, which suggests the possibility of two LCs; an unstable first jumping to a

neutrally stable second at higher ζ̄. However, because −1
k∗(ζ̄)

is now complex as opposed to

purely real or imaginary, intersections with Hd
rc(ıω) do not occur perpendicularly. Fig.5.6

shows the first intersections to be almost tangential, thus predicted LCs’ have a virtually

nil probability of existence. The second set of predicted LCs’ intersections has a better

chance of actually existing, albeit far from imminent. Such predictions are in line with
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actual tight-couplings rotors’ behaviour, and thus far more realistic than SVNL or linear

RID models.

SBDF predictions assume a biased LC sinusoidal input into displacement DVNL RID

models, as would exist in an unforced rotor with imbalance f̄ζe
ı0 ⇒ ζ̄0e

ıψ. Since, imbalance

has ‘zero’ effect on mobility Hv
rc(ıω), LC analysis (5.13) of SVNL RID models (fig.3.2)

is unaffected. SBDF use with extended Nyquist criterion is detailed (5.15, 5.16) but

not implemented as the effect of bias ~ζ0 on hysteresis-derived MVNL has to be studied

carefully. Input to MVNL RID models is ζ(t) ≈ ~ζ0 + ℜ(~ζeıωt):

ζ(t) = Hd
rc(s)

(
fζ −Fζ (t)

)
(5.15a)

ζ0 = ℜ
(
Hd

rc(0)
(
f̄ζ − k0(ζ0,ζ̄) ζ0

))
, ζ̄ cos ωt = −ℜ

(
Hd

rc(ıω) k(ζ0,ζ̄) ζ̄eıωt
)

(5.15b)

→֒ Hd
rc(0) =

ζ0

fζ − k0(ζ0,ζ̄) ζ0

and Hd
rc(ıω) =

−1

k∗(ζ0,ζ̄)
∀ -ve ıω ←֓ (5.15c)

The first of (5.15c) yields a functional relation between between bias and sinusoidal inputs,

ζ0 = F (ζ̄), which is used in conjunction with the second of (5.15c) to define:

k̃(ζ̄) ≡ k(F (ζ̄),ζ̄) ≡ k(ζ0,ζ̄) ⇒ Hd
rc(ıω) =

−1

k̃∗(ζ̄)
∀ -ve ıω (5.16)

which, in turn, is used in a similar fashion to (5.14) and fig.5.6.

Summing up conclusions It has been shown that whirling cannot occur at Ω < Ωc for

any of the RID models presented. However, Coulomb and the assumed parabolic RID

models always predict an imminent LC for any remotely reasonable rotor at Ω > Ωc, on

account of an infinite k(ẋ = 0) (fig.5.1) due to lack of flexibility. In this case, MVNL micro-

slip models portray a more realistic scenario, where whirling might occur depending on

LTI properties, an may be avoided totally by increasing the stabilising external damping

level. On the other hand, the micro-slip models used cannot account for the experimental

findings of MTI (§.2.3.5) where ℑ(k(x)) assumed a curve of higher than quadratic order.

The proposed parabolic RID model, when stacked in series with a stiffness as in the

bilinear element (3.69), should go further to better emulate MTI results, which is planned

for future investigation.

5.3.2.3. Forced response and Jump phenomenon

Assumes a sinusoidal input into displacement/velocity RID models, as would exist in a

forced perfectly balanced rotor without LC f̄ζe
ıτ ⇒ ζ̄eı(τ+ψd), ¯̇ζeı(τ+ψv). Input to DVNL
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RID models is ζ(t) ≈ ℜ(~ζeıωet) used with Hd
rc(s) and ζ̇(t) ≈ ℜ(~̇ζeıωet) used with Hv

rc(s):

ζ(t) = Hd
rc(s)

(
fζ (t) −Fζ (t)

)
and ζ̇(t) = Hv

rc(s)
(
fζ (t) −Fζ (t)

)
(5.17a)

→֒
(
Src(ıω) + k(ζ̄)

)
ζ̄ = f̄ζe

−ıψd and
(
Vrc(ıω) + k(

¯̇
ζ)
) ¯̇ζ = f̄ζe

−ıψv ←֓ (5.17b)

Of course k∗ is used ∀ -ve ıω. In contrast with the LC scenario, frequency is now a

given parameter, associated with the external force and not generated within the system.

Solving the NL algebraic equations thus yields a kind of generalised frequency response

(FR) for the closed-loop system.
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In this chapter, experimental validations for the analytical work developed are presented:

• The follower force rationale (§.2.4.2) is demonstrated using modal parameters.

• The RID micro-slip behaviour (figs.3.3, 5.2) is demonstrated through stationary

and rotordynamic modal testing using damping estimates of quasi-linearised FRFs.

• The effect of linear RID on FWD and BWD modal (§.4.2.1.1) and FRF (fig.4.17)

characteristics is demonstrated using controlled-response sine sweep modal tests.

• The stabilising effect of increased linear RID coefficients at subcritical speeds (fig.4.15)

is demonstrated on increased subsynchronous vibration amplitudes.

• The largely speed-independent nature of RID, emphasising an appropriate mix of

linear hysteretic and viscous RID coefficients (fig.4.19), is demonstrated.

• The CCW Nyquist plot is presented as the basis for EAST as well a demonstration

of the effect of unstable right-half s-plane poles (4.6b, figs.4.16 ,4.17).

6.1. Experimental Set-up

The experimental set-up was built with two objectives in mind:

1. Fulfil the ROSTADYN project requirement of providing experimental estimates of

RID, using different joints, in isolation from external damping mechanisms under

rotating and non-rotating conditions. That was fairly straightforward, as described

later, utilising vertical rotors of the same global geometry with different joints.

2. Allow for a flexible and versatile approach to control those variables (§.1.1.2.2)

believed to influence the RID instability/whirling behaviour. Accordingly, an ex-

perimental parametric study on the effects of changing these variables was to be

conducted: 1) To verify results of previous analytical research hypothesising on

the effects of such variables, and 2) to observe the, as yet, unstudied thoroughly

variables, with an objective to develop a model representative of their behaviour.

207



6. Experimental validations

As such, this research would have been rather experimentally oriented. However, due to

ROSTADYN partners changes of interest regarding responsibilities for experimental and

analytical work, the author’s efforts were redirected to concentrate more on analytical

aspects of the phenomenon and cut down on the experimental investigations. The previous

experimentation plan is mentioned (§.6.2.4) briefly for possible future use.

6.1.1. Safety, applicability and limitations

Safety considerations are of paramount importance while experimenting with instability

phenomena of rotors since a lot of kinetic energy is involved. A means of enhancing safety

could be to lower the natural frequency of the rotor, and hence the critical speeds around

which we are interested in observing the rotor (with lower kinetic energy from rotation)

behaviour, which eventually leads to a safer operation. On the other hand, that would

have implicated a rather lengthy and slender rotor whose handling and operation would

be unrealistic.

A satisfactory compromise between safety and a test rotor that is representative of

a real rotor has been reached with a natural frequency and critical speeds that can be

tolerated when the safety devices are operative. Orienting the rotor vertically avoided

its running in bearings, which would introduce significant external damping that could

mask (prevent) the RID instability at speeds close to the critical speed. This, on the other

hand, introduced the limitation of not observing the rotor in a horizontal orientation or the

effects of stator asymmetries. Other limitations included: the un-accounted-for friction

damping introduced from fastening the quill to the rotor’s upper end, and from tightening

the accelerometers- and force gauge-mounted rider bearing—introducing damping from

the ball bearing and from the variable friction due to the un-precise torque applied to its

fastening nut—to the rotor’s bottom end (fig. 6.4); and the inability to observe the rotor’s

free behaviour above critical speed without forcing. The latter limitation resulted from

the necessity of the shaker to act as a damper due to the strong unbalance, inadequate

straightness of the rotor and misalignment of the shrink fits. The strong amplitude of

unbalance synchronous vibration caused by the non-precise fabrication of rotors, made the

extraction of the forced subsynchronous vibration frequency component rather difficult,

and hence distorted the FRF Nyquist plots above the critical speed.

6.1.2. Test pieces

The philosophy adopted for test pieces design was to be able to run a quasi-realistic

rotor post critical, at around half the maximum speed of the driving motor without com-

promising on safety while maintaining the functionality of the friction joints in flexing.
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The macro geometry of the rotors was arrived at using the FE package ANSYS and an

in-house rotordynamic analysis package developed under a concurrent BRITE/EURAM

project (fig. 6.1). After several trial and error attempts to comply with safety, applicabil-

ity, physical constraints and market availability, the shaft diameter was selected to be 20

mm. The three discs were manufactured to the same dimensions for convenience.

The middle disc was intended to:

• Be the main source of Gyroscopic effects especially at the first bending mode, hence

the shifted location from mid span.

• Place the various friction joints at a rotor station with a relatively large displacement

in the first forward bending mode (fig. 6.2).

The three discs were required to:

• Provide three balancing planes for two rigid body modes and one bending mode.

• Remove the first mode shape nodes away from the central disc and friction joint by

placing two heavy masses at the ends of the shaft.

• Provide for vibration monitoring stations using probes without cascading to avoid

cross-talk.

According to the FEA results, the first FWD mode-shape remains virtually unchanged

with increased (sub- and supercritical) speed and modal frequency. The almost speed-

independent mode-shape feature is a requirement to ensure the unchanged response

amplitude—resulting from applying controlled excitation to the bottom end of the rotor,

while running at different speeds—at specific points along the rotor. This is especially

important at the mid disc, where the friction producing joint was located. The modal

properties of the flange-coupled rotor were virtually identical to those of the reference

rotor (fig. 6.3).

6.1.3. Rotordynamic Test rig

Vertical rotors’ operation (fig. 6.4) was recommended to avoid their running in bearings,

thus eliminating a significant source of external damping, and lending credibility to the

assumption that experimentally estimated system damping was a fair measure of RID. A

flexible quill was also used to minimise damping introduced from the drive motor.
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Configuration The rotor was vertically hung at its end tap (fig. 6.3) by a laterally-

flexible quill that is driven by a brush-less DC servomotor. An electromagnetic shaker

provided excitation (input), which was generally controlled and measured off a force

gauge. Two accelerometers in quadrature orintation (perpendicular directions) measured

response (acceleration) signal. Both excitation and response were applied and measured

at the lower end of the rotor utilising a rider bearing to ensure avoiding modal nodes.

The Quill was intended to bear the rotor weight and to be the drive link between motor

and rotor while maintaining sufficient lateral flexibility to de-couple the lateral vibration

of the rotor from the lateral stiffness of the rig’s truss and motor. Although the 0.9 mm

diameter silver steel quill was strong enough to bear the rotor’s weight and inertia at low

acceleration, it often sheared under torsional fatigue at one of its ends where screw heads

were welded. The quill diameter was increased to 1.1 mm, 1.6 mm, 2.1 mm and finally to

2.35 mm, with which systematic experimentation was carried out.

Safety Two sliding blocks, each housing a controlled variable diameter snubber bearing,

were the main safety feature providing for orbit limitation and fail-safe operation. Initially,

the snubber bearings were to be used as fast clamp-on devices in case of failure; and were

modified, subsequently, to be used as bearings (when lubricated) while running the rotor

up to the required speed and through the critical speed. That was to avoid the possible

amplitude build-up—due to rigid body modes on commencement of rotation, and due

to resonance at the critical speed—which could not be accommodated without sufficient

external stiffness.

6.1.4. Hardware

The rig control system is PC-based, selected for its low noise power supply unit so as

not to interfere with measured signals, with software developed for communication via

the two serial ports and the PCI DAQ1 cards. The control software for the main drive

motor and the stepper motors controlling the snubber bearings was written in MS Qbasic

for the possibility of easy alterations by other users. The motors operational parameters

and commands were downloaded via the two serial ports. The use of the DSP and DAQ

cards, intended for excitation signal generation and vibration monitoring respectively, was

postponed in accordance with the change in research plans.

Motors and drives :

Main (drive) motor: SEM HD70 brush-less DC servomotor with resolver

1PCI:Peripheral Component Interconnect, DAQ:Data Acquisition, DSP: Digital Signal Processing

210 On Rotor Internal Damping Instability



6.1. Experimental Set-up

Main motor drive & control board: HMK+ELGO 1306 servomotor amplifier

Snubber control motors: Two RS high torque/resolution stepper-motors

Stepper-motors control board: RS dual-axis stepper-motor control board

Excitation and response pick-ups

For sine sweep tests One B&K force gauge and two B&K accelerometers in perpendic-

ular directions, were mounted on a small aluminium frame, housing a small ball bearing

that was interference-fitted to the end of the rotor (fig. 6.4). The frame was prevented

from rotating by the shaker’s stinger which was attached to the force gauge.

Bentley Nevada capacitance probes for prospective horizontal rotor rig:

Six 11 mm dia.; 5mm Peak-Peak max. linear sensitivity : two per disk perpendicular to

disc face. Intended to be in quadrature around the circumference to monitor the rigid

disk (one nodal diameter) mode.

Two 8 mm Dia.; 2mm Peak-Peak max. linear sensitivity : 16 mm stagger along shaft

length to avoid cross-talk. Intended to sweep monitor the lateral shaft vibration.

SOLARTRON analysers driven by ICATS software (MODAQ) :

SOLARTRON 1254: Sine Sweep with controlled response or input force

SOLARTRON 1220: for hammer testing and FFT monitoring during Sine Sweep testing

Charge amplifier GW 4 channel rack

Shakers :

LING Electronics LDS V408 22LbF 0.5” Pk-Pk

GW M20b ;virtually zero axial damping and stiffness,1.5” peak to peak: Intended for

nonlinear modal properties investigations.

DAQ and DSP National Instruments cards :

DAQ AT-MIO-64E-3; 333 kHz. Sampling frequency, 32 dual ended channels, full software

control (no Jumpers): For acquiring and sampling probes and transducer output.

DSP AT-DSP-2200 ; 51.2 kHz sampling frequency per channel, 256 Kwords onboard

RAM: Intended for uninterrupted signal generation and Real time signal processing

Dampers Two B&K Aero-viscous dampers intended to investigate the effect asymmetric

external damping when using the GW friction-less shaker.
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6.2. Experimental Modal Analysis and Testing

6.2.1. Standard Modal Testing

6.2.1.1. Investigative benchmark Modal Testing

A damping-less simple beam was suspended at its first mode nodes and modal tested

(hammer and sine-sweep) to:

• Gain insight into the difficulties of modal testing virtually undamped systems, e.g.

reference rotor with soldered discs. Hammer testing proved to be rather tricky,

especially with a hard nib to excite higher modes.

• Investigate the effect of suspension on damping estimates. The resulting FRFs

along with software used yielded 0.05% hysteretic damping estimates, which were

indicative of zero-damping benchmark as well as an estimate accuracy threshold.

• Investigate the differences of FRFs and modal values obtained via hammer- and

sine-sweep-testing.

The TURBOMECA ∆2 rotor supplied (without blades) was examined for representa-

tive RID values and nonlinear behaviour of an actual industrial rotor. This helicopter

aero-engine is built-up of five short segments, held together by Curvic couplings and a

tie-bolt.

As expected, the ∆2 rotor exhibited both cyclic asymmetry and relatively low linear

damping (0.45% hysteretic). Damping and asymmetry were least at the design tension of

the tie bolt. On loosening the tie bolt, asymmetry was more pronounced and the rotor

exhibited a typical friction damping behaviour.

6.2.1.2. Reference test rotor

The rotor, with un-soldered shrink-fitted discs (fig. 6.3) was examined whilst stationary:

Analytical modal characteristics validated The rotor was suspended horizontally by

long elastics at its first bending mode nodes. Hammer-testing showed it had the modal

frequencies and shapes it was designed for (figs. 6.1, 6.2, 6.3, 6.5). It also presented the

reference rotor as very lightly damped (0.1% hysteretic); since hammering did not exercise

the shrink fit’s nonlinear damping properly.

212 On Rotor Internal Damping Instability



6.2. Experimental Modal Analysis and Testing

In vertical orientation frequencies of the reference rotor have virtually unchanged when

suspended by the quill at its upper end (fig. 6.4). Although the rotor upper end was close

to being an anti-node for all modes, the quill’s high lateral flexibility de-coupled the rotor

modes from the rig successfully.

Nonlinear RID characteristics of test rotors (reference and flange-coupled disc rotor—

fig. 6.3) where examined, while hanging by the quill at their upper end, using controlled

force and response sine sweeps applied at their bottom end (fig. 6.4). A very fine frequency

step (0.01 Hz.) was needed to have at least 5 FRF points between half power points, since

the test rotors were very lightly damped.

Modal tests with controlled response and with controlled force revealed the nonlinear

nature of the rotor’s damping. The equivalent damping estimate increased with increased

vibration amplitude (fig. 6.6) and hence was concluded to be resulting from joint friction

(the shrink-fit). This is typical micro-slip friction behaviour (figs.3.3, 5.2), where damping

estimates increase with increased amplitude, up to a peak and then decrease on further

increase of amplitude, depending on the regions of micro/macro slip. The equivalent

damping estimate, in the reference rotor, could never be made to reach its peak value and

drop down again on increased amplitude. This is because the vibration amplitude could

not be increased beyond the shaker’s 0.5 inch Pk-Pk; a value that is not excessive for a

long, unrestrained structure as a hanging rotor. Damping estimates for both the reference

and flange-coupled rotors were very close which led to the conclusion that the major source

of rotor damping was the disc shrink-fit. Rotor joints’ micro-slip friction behaviour has

been demonstrated previously (§.2.3.5) [185] using static and dynamic (modal) tests on

non-rotating rotors.

6.2.2. Rotordynamic Modal Testing

Testing rotating rotors validated FE model results at various speeds (fig.6.5), and corrob-

orated modal (§.4.1.1.2, fig.4.4) and FRF (§.4.1.2.1, fig.4.8) characteristics.

6.2.2.1. Friction RID effect on experimentally acquired modal characteristics

FRFs exhibited the expected gyroscopic split as separated 1st FWD and BWD modes of

increasing and decreasing resonant frequency respectively (fig.6.5). However, no beating,

sub- or super-harmonics of forcing frequency were observed during experimentation.

The RID follower force effect Contrary to the case of rotor void of RID (§.4.1.1.2,
fig.4.4), modal damping estimates increased for the BWD mode and decreased for the

FWD one as speed was increased, albeit mildly, while the reverse was true for receptance
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peak at both modes. This is in tandem with the findings of (§.4.2) demonstrating the effect

of linear RID on FWD and BWD modal (§.4.2.1.1) and FRF (fig.4.17) characteristics.

These modal constant and damping estimates are considered measures of the follower

force increased strength with speed; counteracting external damping for FWD modes and

complementing it for BWD modes (§.2.4.2) at sub-critical speeds.

The nonlinear character of friction RID corroborates linear predictions Increased

damping with response-controlled amplitude was exhibited in both BWD and FWD modes.

Increased amplitude of quasi-linearised FRFs at subcritical speeds resulted in an increased

equivalent hysteretic damping ℑ(kmicro). This reflects the stabilising effect of increased

linear RID coefficients at subcritical speeds (fig.4.15), demonstrated here on increased

subsynchronous vibration amplitudes. The largely speed-independent nature of RID, fur-

ther emphasised by modal damping results of (fig.6.9), dictates an appropriate mix of

hysteretic and viscous RID coefficients (fig.4.19), resulting in qualitative agreement with

eigenvalues when hysteretic RID κ is increased.

6.2.2.2. Modal tests at supercritical speeds

FRFs at supercritical speeds exhibited a counter-clockwise (CCW) Nyquist plot, which

was loosely termed negative damping, explained by (4.6) §.4.1.2.1, exemplified ( §.4.2.2.3,
fig.4.18) and was the basis for EAST (§.4.3). However, no subsynchronous precession (LC)

was observed, which is related to the forcing frequency LC-quenching (§.5.1.2.2).

The CCW Nyquist plot was discovered on examining its sense of direction—tracing

indices of FRF points, evaluated at increasing frequency increments—which turned out

to be CCW (fig.6.7). Examining the real and imaginary parts of acquired FRFs (fig.6.8),

all with similar quasi even-symmetric real parts but with positive imaginary parts at sub-

critical speeds and negative imaginary parts at supercritical speeds, confirmed the CCW

Nyquist plots representing unstable modes.

The validity of negative damping reference to a CCW Nyquist plot is based on the

hypothetical SDOF EOM with a negative damping coefficient (4.27). This EOM will

result in a dynamic stiffness with negative imaginary (quadrature stiffness) term, i.e.

response (output) leads force (input), which does not exist naturally in a stand-alone

physical system. The resulting receptance FRF will thus have the usual even-symmetric

real part and a positive (as opposed to the usual negative) odd-symmetric imaginary part,

and will trace a CCW polar plot, which applies equally to the ıω [−ω2] phased mobility

[accelerance]. Negative damping is hypothetical on two counts: 1) Baring perpetual

devices, by definition, damping is never negative; 2) Negative damping implies an unstable

system, of which an FRF cannot not be experimentally acquired.
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Physical interpretation and explanation of CCW Nyquist plot Experimentally, a mea-

sured FRF (figs.6.7, 6.8) exhibiting a CCW Nyquist plot simply means that the system

measured (first FWD mode) has more energy than that of its input (shaker excitation).

This extra energy is postulated to flow from the shaft rotation (rigid-body-mode) into its

first FWD mode. This scenario reflects an unstable system whose transfer function has

at least one pole in the right-half s-plane, thus its FRF should have been impossible to

measure experimentally, yet has been obtained successfully. The whole test rig (including

the truss, motor and shaker, as well as the rotating rotor) was clearly stable. However,

as elucidated in (§.4.3.2, 4.3.4 and figs.4.21, 4.22), the FRF acquired was that of the

de-coupled rotor subsystem, since the quill isolated the rotor from the whole structure,

and the excitation and response measured where those of the isolated rotor. The rotor

subsystem contributed a destabilising influence, that was overwhelmed by the stabilising

external damping from the heavily damped shaker. The CCW Nyquist plot proved the

possibility of unbounded instability due to RID, had there been no added external damp-

ing from the shaker, but could not characterise the instability adequately on account of

complex nonlinear dynamics.

6.2.2.3. Follower force represented by modal values at different speeds

Caution when using traditional modal analysis for said representation should be exercised

in conjunction with rotating rotors as the mode shapes-dependant modal constants are

consequently speed-dependent. As soon as the rotor rotates, the modal constant is about

halved between the FWD and BWD modes; a reasonable consequence of the zero-speed

bending mode being the summation of the zero-speed FWD and BWD modes.

Although our FEA results showed that the first bending mode shapes at different speeds

(fig. 6.2) are virtually identical, modal constants of FWD modes increased minimally,

while those of BWD modes decreased notably on increasing subcritical speeds well below

critical. Accordingly, the summation of modal constants of both FWD and BWD modes

at one speed keeps decreasing, with increased speed, from the zero-speed modal constant.

We can adopt the foregoing rationale of the destabilising [stabilising] effect of RID on

FWD [BWD] modes, along with the FEA results, so as to rationalise the contrary-to-

standard behaviour of the experimentally acquired FRFs.

The decreasing modal constant of the first BWD mode of decreasing frequency with

increased speed, which is expected to have increasing receptance, is postulated to be the

result of the increased stabilising RID effect. The opposite happens for FWD modes which

ought to have a decreasing receptance with increased speed, yet their modal constant is

virtually invariant at speeds well below the first critical. Furthermore, the FWD modal

constant increased significantly on approaching the critical speed, and more dramatically
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at supercritical speeds. Further insight into modal constant changes with speed is re-

quired before a concrete method for quantifying the follower force destabilising strength

is reached.

6.2.3. Systematic experimentation

Some of the relevant observations from the systematic experimentation conducted at

Imperial College (1994-97), are described briefly here. The ROSTADYN team at Imperial

College carried out modal tests on both the actual built-up ∆2 turboshaft rotor and several

simpler test specimens representing some of the components on an industrial rotor, e.g.

shrink fits, flanged couplings and a Curvic coupling.

6.2.3.1. Standard modal tests on stationary test rotors

These were in general agreement with those of MTI (§.2.3.5) [185]. Curvic couplings

produced very low damping coefficients. These were practically amplitude-independent

when the coupling halves were properly mated and fastened with their high tension Tie

bolt, which is analogous to the TURBOMECA ∆2 rotor. Shrink fits produced relatively

higher damping estimates in comparison to Curvic and flanged couplings, particularly at

higher amplitudes. When the shrink-fitted discs were soldered on the shafts, the damping

level dropped to around 0.015% hysteretic (about 10% of its original value), and was fairly

linear.

6.2.3.2. Rotordynamic modal tests

These showed a systematic decrease [increase] of damping estimates and increase [decrease]

of resonant amplitude for FWD [BWD] modes with increased speed (fig. 6.5). This trend

was more pronounced in the case of the shrink-fitted disc, which exhibited the CCW

Nyquist plot at 2300 rpm, ≈500 rpm above critical. The RID destabilising effect generally

grew with speed, with receptance and damping values serving as its measures, and would

overcome the external damping from the shaker leading to total instability of the system.

6.2.3.3. Reservations on experimental results

Experimental results acquired by the ROSTADYN team ought to be considered with

several reservations in mind, primarily due to the less-than-satisfactory test rotors fabri-

cation. Accordingly, the speed-dependence/-independence of damping estimates for the

shrink-fitted and Curvic-coupled rotors, are to be considered in a trend-observing manner.

Furthermore, analytical limitations of software used, which was not suitable for analysing
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very lightly-damped structures that might be unstable, yielded inconsistent modal pa-

rameters at supercritical speeds.

Imperfect fabrication of test pieces The test pieces used were sourced from tubes/bars

stock suppliers, and fabricated at Imperial workshops:

• Discs cut-out and shrink-fitted or solder-welded onto the shafts (bars) supplied

• Tie-bolts holding the two part-shafts (tubes), each with one mating-part of the

coupling soldered on—Curvic coupling parts were manufactured at Turbomeca.

Imperial workshops are not specialised in precision shrink-fits and solders of discs on

shafts; this being a rather intricate procedure that is important to:

• Minimise force and moment imbalances resulting from geometric (let alone mass)

off-centring and askew discs (not in a plane perpendicular) with shaft axis.

• Avoid any shaft distortion due to cooling and/or heating

• Ensure proper and uniform interference of the joint with the shaft

The above factors influence RID instability behaviour rather seriously, and should be as

enforced as possible for successful parametric experimentation, which was not the case.

The dominant imbalance vibration component speeds just above critical, resulted in

distorted Nyquist plots. Improper fabrication of the Curvic-coupled rotor emphasised the

unfavourable effects of lack of above factors strongly. This first rotor could not be run

safely at a supercritical speeds, and displayed severe instability destroying the rotor, the

shaker, the snubber bearings of safety devices and even the drive motor was affected.

Improper fabrication is also the reason why the second Curvic-coupled rotor could not be

tested super-critically (fig. 6.9).

Improper shrink-fits There was no control on, or estimate of the amount of interference

between the shaft and the shrunk-on discs, or its repeatability with other shrunk-on discs.

Indeed, while experimenting with the rotating flange-coupled rotor, the lower (short) shaft

part of the rotor fell off, disconnecting from the part of the flange coupling that was

shrunk-fitted onto it.

The cooled discs had to be fitted rather quickly to specified points on the length of the

shaft, which left no time for adjusting precisely the plane of the disc to be orthogonal to

the shaft axis. This not only resulted in moment unbalance, but also, resulted in the non-

uniform interference of the joint along its 20 mm of length, which impacts significantly

on macro/microslip characteristics. As for flanges-coupled two-shaft rotors, the flanges

planes’ non-orthogonality yielded a bent rotor with a slope discontinuity at the coupling.
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Improper soldering Soldering discs onto shafts solved some of the shortcomings of

shrink-fits like the non-uniformity of interference and joint looseness, along with elim-

inating the shrink-fits as a source of friction damping, hence allowing for the study of the

other friction sources. Soldering also introduced a different set of shortcomings such as:

1) Heat effect on shafts’ straightness, and 2) Scruffy solder finish at joint interface with

shaft contributing to imbalance, asymmetry, and decentred askew discs. In order for the

solder to overcome the problem of non-uniform interference, the disc had to be bored at

the centre to a diameter that is wider than the shaft diameter so as to allow the solder

to flow all the way through. Centring the disc—without necessary jigs—and keeping it

orthogonal to the shaft axis was a difficult task to achieve. The result of this exercise was

a bent Curvic coupling rotor with a slope discontinuity at the coupling.

Bent rotors Other than the aforementioned causes of a bent rotor, the following also

contributed to the lack of straightness of the shaft. The tie-bolt used with the Curvic

coupling rotor, to keep its two parts together, was tensioned by turning the nut at its end.

The tension in the bolt was estimated based on Young’s modulus and the pitch of the

thread on the bolt. The tension in the bolt was varied by varying the number of turns of

the nut. This means of tension estimation is rather rough and it is believed that a higher

bolt tension than the cylindrical shaft could withstand was achieved, with the result of

buckling the cylindrical shaft.

The shafts used were circular bars sourced from bars’ stock supplier, thus not well suited

for rotordynamic instability studies. They were simply not straight enough, especially

when considering the distorting effect of cutting long bar stocks (20mm dia.) to lengths

of about 800 mm.

Software limitations The software used (MODAQ) to control the FRA (SOLARTRON

1254) and acquire the experimental data (accelerance and phase angle), was well suited for

the application. The software used to analyse the acquired experimental data (MODENT

& MODENT NL), although highly specialised and suited for the experimental modal

analysis of most structures, was not well suited for the application because of:

Very lightly damped rotors Using any available experimental modal analysis package

would have not been well suited for the estimation of the rotors modal damping; where the

margin of error in the estimate may well be around 50%. This is because, even with a very

fine frequency step of 0.01 Hz., there could be a maximum of five FRF points between and

including the half-power points. This renders the estimation procedure very dependent

on the analyst’s choice of points to fit a circle through so as to acquire estimates modal

parameters.
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Software not prepared to deal with a CCW Nyquist plot hence the circle fitted to the

Nyquist plot will be, literally, far removed from the measured points, resulting in modal

estimates that are, probably, not very representative of the vibration characteristics. Mi-

nor alterations to the software can solve this problem.

6.2.4. Future plan for flexible experimentation

Although the experimental work covered in this chapter demonstrated various aspects of

the RID instability phenomenon, the work plan was less than rigourous with some short-

comings, e.g. fabrication inadequacies; and it fell short of examining numerous aspects,

e.g.: anisotropic bearings effect on suppressing precession, as well as the effect of other

system parameters. This calls for a flexible experimental programme, which replicates

the instability behaviour (§.1.1.2.1); and allows for investigating the numerous parame-

ters (§.1.1.2.2) affecting it, as well as implementing dither linearisation/stabilisation with

fast modal control algorithms derived from geometric (Clifford) algebra.

The intent is to start with observing parameters influencing RID whirling, whilst iso-

lated from external damping using non-contacting excitation/measurment and develop a

model for it. Close experimental scrutiny of free- and various forced-response levels whilst

controlling those variables believed to influence RID and its effects precession, would have

portrayed adequately the different mechanisms behaviour. Suitable RID models would

then be adapted, compared and validated for representative response prediction against

experimental results, using both frequency and time domain analysis.

Vibration monitoring would be via sets of inductance probes positioned at different

shaft stations (initially the discs)—in at least three non perpendicular directions in the

plane perpendicular to the rotor axis—to observe the stations’ orbits. A sliding staggered

set of probes, or alternatively, a Laser Doppler Vibrometer would be used to scan the shaft

under stationary or stable rotation tests, so as to extract the mode shape and hence, the

amplitude of vibration and bending moment at the joint. Monitoring would be in a range

of speeds extending from below the first to above the second critical speeds.

Excitation and level control would be initially from the high-amplitude friction-less

shaker to investigate the character of nonlinear friction damping. Later, Active Magnetic

Bearings (AMBs) would have been used not only for excitation but also for controlling

some of the variables mentioned previously. AMBs provide the capability of software

controlling the input force and bearing stiffness and damping along with vibration re-

sponse. As such nonlinear and more importantly rotating forces can be applied to the

rotor along with studying the effects of asymmetric nonlinear support properties on insta-
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bility with minimum effort and no hardware alteration. This could have been very useful

in simulating the effect of rotating damping forces that are generated in a flexing rotating

rotor hence separating the various effects resulting from the uncontrollable true RID. That

should enable the proper validation of the models by representing isolated damping mech-

anisms rather than observing the collective effect of all operative damping mechanisms.

Despite the obvious advantages of using AMBs, their price can be prohibitive (£50,000 /

pair).

Avoidance of shrink-fit imperfections Care should be exercised so as to avoid such

imperfections by not using a shrink-fit for interference. Rather, a circular wedge whose

clamping force on the shaft can be varied continuously using a threaded ring, is to be

used instead.
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Figure 6.1.: FE model and Campbell diagram of the test rotors’ macro geometry
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Figure 6.2.: 1st FWD Mode shape and frequency of reference rotor at various speeds:
0, 600, 1800, 3000, 3600 rpm. Modes’ ID numbers may vary slightly for each analysis
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Figure 6.3.: Plain and flange-coupled test rotors
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Figure 6.4.: Test rig, quill and rider bearing
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Figure 6.5.: FRFs of the test rotor at increasing speeds from stationary to supercritical
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FRF
file name (e.g. KJ2x1x) and its controlled parameter are coloured as corresponding plot.

Figure 6.6.: Flanged-rotor: Controlled FRFs exhibit typical friction damping behaviour
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Figure 6.7.: Overlaid Nyquist plots of stable and unstable mode-dominated FRFs
Experimental FRFs at sub-(600) and supercritical(3600) speeds of flanged rotor. The
unstable mode-dominated FRF traces a CCW Nyquist plot emulating a -ve damper.
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Figure 6.8.: ℜ & ℑ parts of stable and unstable mode-dominated FRFs at various speeds
Flanged rotor FRFs at 0, 600, 1200, 1800, 3000, 3600 rpm. The -ve imaginary parts of
FRFs at supercritical speeds 3000 and 3600 rpm, elaborate their CCW Nyquist plots.
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Figure 6.9.: Modal damping at various speeds: Curvic-coupling rotor controlled FRFs
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Rotor Internal Damping instability, which was the first recognised over a century ago, has

become a formidable problem for supercritically-operated rotating machinery. Currently,

even regular rotors, let alone advanced aero-engines, are of an increasingly assembled

design encouraging joint slippage, and hence RID whirling. For the purposes of effective

design: the simplistic, unrepresentative or industrially-inapplicable analysis tools; and

empirically-implemented hardware fixes, are no longer sufficient. It was concluded that:

• Accurate and efficient, linear and nonlinear, analytical techniques for parametric

design evaluations, coupled with

• Appropriately implemented RID models, yielding representative predictions of whirling

behaviour, and finally

• Safe and conclusive experimental stability testing of operational rotor prototypes.

are in virtual absentia, yet are required to live comfortably with RID whirling, as opposed

to totally avoiding it. Consequently, these main issues were addressed by developing the

basis of three applicable analytical techniques, which were corroborated experimentally.

Further extending the functionality of these techniques and applying them to actual rotors

is proposed for future work, along with implementing dither system linearisation and

stabilisation; being the logical consequence of NL analysis developed.

7.1. Developments and Contributions

Analytical and experimental contributions in this work are meant to address the current

industrial problem (§.1.1.1.4) with RID and cover most of its related gaps (§.1.1.3), inline

with the defined research scope (§.1.2).

7.1.1. Main industrially-applicable techniques basis

Three analytical techniques are developed, along with their several leading and peripheral

contributions, and corroborated experimentally. They form the basis, which is to be

expanded upon and fine-tuned to arrive at industrial and research tools for the design,

testing and analysis of RID systems.
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7.1.1.1. The extended Nyquist criterion: Graphical predictions of RID whirling

This is a frequency response method (§.5.3.2) borrowed from control engineering, modified

to suit the complex SISO nonlinear RID problem in the rotating frame, and extended to

be used in conjunction with the DFM. The Nyquist criterion is adapted (§.5.3.2.1) to the

problem for whirling stability analysis (§.5.3.2.2). Amplitude-dependant curves (derived

form complex-conjugate DFs) of several RID joint input-output models (as opposed to

geometric modelling) are used to assess their effect on whirling behaviour.

This technique may be used for parametric studies of both joint characteristics and

rotordynamics, including the necessary level of stabilising external damping to avoid RID

whirling. Although exemplified using a simple 2DOF rotor, it should be applicable to

industrial rotors, whose FRF in the rotating frame can be acquired either analytically or

experimentally. As compared to time-marching analysis (TMA), this technique:

• Avoids coding and analysing a masing-type joint model, which is costly in TMA.

• Provides immediate visual appreciation of system’s behaviour, hence allowing for

intuitive parametric changes, which will yield an acceptable system in very few

trials. This, as opposed to the brute force of TMA, which dictates numerous blind

runs just to get a stable system, albeit the final verdict for system performance, in

which case one final run is sufficient.

• Requires comparable set-up time and toil for any rotor (2-20,000DOF) to that of a

2DOF rotor TMA.

7.1.1.2. Experimentally applicable stability test: EAST

EAST is developed to assess safely and conclusively the modal stability (and its margins)

of a target rotordynamic system, which may become unstable when operated under various

conditions. This is accomplished by analysing experimental FRFs of the quasi-linearised

target system whilst operational, but included as a subsystem in an overall-stable system—

§.4.3.

7.1.1.3. The proper use of ideal Hysteretic RID model

Hysteretic RID, appropriately implemented with sgnω for frequency response and Eigen/

modal analysis in the rotating frame, is presented in §.4.2.3. With the proper mix of

viscous and hysteretic RID coefficients, eigenvalues-based stability predictions §.4.2.3.2
are realistic, albeit abrupt around the critical speed, and in tandem with experimental

observations. This is as opposed to the unrealistic and possibly erroneous results from
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industry standard Hysteretic RID models [200]. Necessary Hysteretic RID model adap-

tations for the more appropriate frequency response stability analysis (§.4.2.2.2, 5.3.2.1,

5.3.2.2), which involves negative frequency ranges, are presented in §.4.2.3.3.

7.1.2. Peripheral contributions to main techniques

These are necessary tools developed for use in conjunction with the main techniques.

Relation of Eigensolutions in stationary and rotating frames (3.48) used to:

• Relate analysed modes in the rotating frame to FWD/BWD modes in the stationary

frame and conclude on their stability. Essential for complex stiffness RID.

• Arrive at the critical speed expression (3.44) for rotor with gyroscopic effect

Complex stiffness use in conjunction with negative frequencies is necessary for the

analysis of complex representation of rotors with (Hysteretic or describing functions) RID

in the rotating frame, as well as other mechanisms analysis. Complex conjugates of said

stiffness are to be used with negative frequencies for appropriate phasing (p.175).

Nyquist criterion adapted for RID instability problem Adapted for complex SISO

transfer functions with negative frequency poles, to handle complex stiffness feedback, as

opposed to real SISO minimum phase TF (§.5.3.2.1).

The effect of different RID models on whirling behaviour patterns (§.5.3.2.2) is im-

portant to have in the background whilst designing or analysing a RID system. While

properly implemented linear RID models cause absolute instability after an onset speed

(fig.4.19), nonlinear RID models have a markedly different effect on sustainable whirling.

Dry friction (SVNL) models (fig.3.2) will always result in whirling at any speed above

critical, regardless of external damping (fig.5.5). While Coulomb damping yields stable

whirling, a parabolic model yields initially stable whirling, which may take another un-

bounded solution as in the case of spline couplings, depending on external disturbances

(p.203). Conversely, microslip (DVNL) models (fig.3.3) may yield a vaguely sustainable

whirling or may not altogether (fig.5.6) depending on external damping.

7.1.2.1. Leading contributions to main techniques

Identification of modal directionality from polar plots §.4.1.2.4 along with its physical

significance classify modes to conclude on their stability, and avoid confusion with unstable

modes-dominated FRF portions that have distinctive characteristics.
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Right/left-half s-plane poles and zeros effect on FRF angle sweep explains (4.6)

their influence on FRFs mappings (fig.4.5), especially the counter-clockwise (CCW) polar

plots around unstable poles in the right-half s-plane (§.4.2.2.1).

Polar plot FRFs of an unstable rotor are CCW quasi-circles in unstable modes’

frequencies (§.4.2.2.3) vicinities, on account of well-separated and moderately damped

modes, which are frequently mistakenly assumed to reflect negative damping !

7.1.3. Experimental contributions

Other than analytical confirmations, contributions to existing experimental work are:

Stabilising effect of increased subsynchronous vibration amplitude on both BWD

and FWD modes, corroborated the effect of increased hysteretic and viscous RID coef-

ficients. Increased amplitude of quasi-linearised FRFs at subcritical speeds resulted in

an increased equivalent hysteretic damping ℑ(kmicro). The experimental modal damping

results of (fig.6.9) are in qualitative agreement with those of linear Eigenvalues (fig.4.19),

when hysteretic RID κ is increased.

The CCW Nyquist plot (figs.6.7,6.8) is not only an interesting demonstration of the

effect of unstable right-half s-plane poles (4.6b, §.4.1.2.1, figs.4.16 ,4.17); but is also

the basis for EAST method to identify experimentally the existence of instability—under

safe operation—and possibly quantify its strength and behaviour on varying its influencing

parameters. An increased receptance and a decreased damping estimate suggest a stronger

instability in the super-critical region, or a more pronounced effect of the follower force

in overcoming external damping in the sub-critical region.

RID micro-slip behaviour during a rotordynamic test was demonstrated using damp-

ing estimates of quasi-linearised FRFs at increased response amplitudes and various speeds

(figs.6.6,6.8). Rotor joints’ micro-slip friction behaviour has been demonstrated previously

(§.2.3.5) [185] using static and dynamic (modal) tests on non-rotating rotors.

Follower force rationale presented for RID in §.2.4.2 as destabilising [stabilising] to

FWD [BWD] modes with increased speed was demonstrated (§.6.2.2.1, 6.2.2.3, fig.6.5)

using modal damping and constants from quasi-linearised modal tests at various sub- and

supercritical speeds. When finally developed, this approach (§.6.2.2.3), should be equally

applicable to the follower force rationale of any self-induced instability mechanism.
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7.1.4. Fundamentals’ elaboration

RID-specific analytical expressions and conclusions

Linear viscous RID

• Effect on BWD and FWD modes stability is elaborated in §.4.2.1.1 and derived from

analysing (4.14) the imaginary expression (4.13b) under square root in eigenvalues

(4.12) of complex rotor representation

• Conditions for RID instability (§.4.2.1.2) in terms of damping ratio internal
external

relative

to system parameters (4.20), and operating speed (4.19, 4.21) are arrived at using

Routh’s array and Routh-Hurwitz criterion for complex equations (4.16, 4.17)

• Onset speed of instability is expressed in terms of the undamped FWD modal fre-

quency and internal
external

damping ratio (4.22), for intuitive design purposes, and is exem-

plified (figs.4.14, 4.15) along with expressions above.

• Gyroscopic effects deter, and may totally avoid RID instability (p.162)

• Static (4.24) as well as dynamic forced response is affected by RID (§.4.2.2.2)

Other RID models

• Hysteretic Vs. viscous RID effect on BWD and FWD modal stability (§.4.2.3.2)

• The assigned parabolic friction model (fig.3.2) explains (p.203) spline coupling RID

whirling behaviour (fig.5.5) jump from stable to asymptotically unbounded.

• Microslip friction models (fig.3.3) explain the possible avoidance of tight couplings

RID whirling or its behavioural (fig.5.6) change from unstable to stable/bounded.

• Incommensurate 2Ω-frequency quenching a LC explains the experimentally-observed

favourable effect of support anisotropy (3.9) on suppressing RID instability (p.193).

• No proper RID model predicts instability or whirling at subcritical speeds (§.5.3.2)

Critique of RID analysis

• Suitability of various NL analysis to the RID problem (Ch.5): Characteristics of

both linear rotordynamics and NL RID models dictate the use of quasilinearisation.
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• The erroneous conclusion of hysteretic RID being destabilising at any speed even

subcritical [200] derives from utilising it in a similar manner to viscous RID in the

stationary frame. The basis of such analysis, as per (§.2.4.2) leading to (2.32), is

invalid without accounting for sgnαh in (2.45), which is inappropriate (§.2.4.6.2)

when considering subcritical operation, BWD modes or even non-circular whirling.

Hysteretic RID is a complex frequency response model that is not best suited for

stability analysis except with serious caution (§.4.2.3). Also, unlike viscous RID that

is constitutively represented by real coefficients that can be transferred seamlessly

between frames of reference, the single-frequency hysteretic RID model needs to

account for multiple-frequency responses on reference-frame transfer.

Rotordynamic contributions

• Modal directionality classified §.3.1.3.1 p.103

• Eigen-analysis closed-form expressions of 2DOF rotor with gyroscopic effect in sta-

tionary and rotating frames (§.3.1.3.2) leading to critical speed (3.44)

• Invariance of modal vectors in stationary and rotating frames (3.51)

• Modal damping factors characteristics in stationary and rotating frames §.4.1.1.2

• Peculiarities of rotor point transfer function and FRF in the rotating frame §.4.1.2.3.

• Effect of complex stiffness on eigenvalues p.173

7.2. Proposed future work

Extending the functionality of techniques developed herein, and expanding into the field of

dither system linearisation and stabilisation, being their logical consequence, is proposed

for future work. Other than the necessary corroborations, experimental work as detailed in

(§.6.2.4), is planned on rotors with modifiable friction joints, and utilising non-contacting

DAQ/DSP and control systems

• emphasising Active Magnetic Bearings for profiled signal stabilisation and orthotropic

stiffness/damping variations

• and implementing fast geometric algebra-derived modal control algorithms.

as well as to formalise the follower force quantification via modal constants and damping,

and EAST parameters. Another issue worthy of consideration is the effect of shearing

rotor segments on RID whirling behaviour.
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7.2.1. Extended Nyquist criterion with modified nonlinearities

As it stands, the extended Nyquist criterion (§.5.3.2.2) can handle SVNL/DVNL RID

models using DFs, which assume a single sinusoid. Naturally, all rotors exhibit some

imbalance and support-anisotropy reflected by rotating-frame LTV coefficients, both of

which result in biased sinusoidal inputs into the RID joint. As pointed out (§.A.2.4.3),

the MIDF of MIMO RID systems should be able to handle such scenario, albeit with some

complexity. However, the MIDF analysis will face the same problem of DFM MIMO anal-

ysis, namely: arriving at an initial guess for iterations of whirling solution and stability,

which was one of the main reasons for developing the extended Nyquist criterion.

The functionality of extended Nyquist criterion is to be enhanced, so as to handle a

further biased sinusoid, thus solving the above problem. This would be accomplished by

using what is termed a modified nonlinearity NM , which yields a single DF kM for N
with multiple inputs, usually biased dual sinusoids. Consequently, k∗

M is used in a similar

manner as k∗ with LTI complex rotor FRF in the rotating frame. The concept of NM

started with the SBDF (5.16) and is easily extended to bias plus unrelated dual sinusoid,

which usually are a LC and a forcing sinusoid. Basically, N (x) having k(x) is modified by

another input (e.g. bias) to another nonlinearity NM(x́) characteristic, for which a single

DF kM can be derived when excited by a second sinusoid.

Applications of the two-sinusoidal input describing function (SSDF) and the incremental

describing function (IDF), which include aspects such as the induction and quenching of

limit cycles, jump resonance, signal stabilisation and sub-harmonic oscillations have been

researched thoroughly. The SSDF, a special case of MIDF, is of significant importance

for the forced RID problem or that with time-varying coefficients. For incommensurate

frequencies, the SSDF is proven to be the same as the DF of NM(x́). The IDF, a special

case of SSDF, is the DF for one of the sinusoids as its amplitude tends to zero. Again the

incommensurate frequencies case gives the same result as kM as well as the DF for the

bias in the SBDF as the bias tends to zero.

This proposed enhancement is necessary to:

• examine the effect of orthotropic supports, yielding LTV terms, on altering LC

parameters or quenching it altogether as discussed (§.5.1.2.2)

• probe the possibility of LCs at subcritical speeds (§.5.1.2.2) due to sinusoidal forcing

• furnish the base for its logical extension: signal stabilisation using dither (§.7.2.2.2).
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7.2.2. Dither system linearisation and stabilisation

The SSDF, kM and other theories show how the DF for a particular signal is modified by

the presence of another signal and the marked effect this can have on system behaviour.

The introduction of external signals to modify nonlinear system performance is therefore a

logical consequence of such observation. High frequency dither signals have been used for

about fifty years to compensate for the effects of coulomb friction, dead zones in hydraulic

valves and hysteresis effects. The dither signal is normally introduced immediately prior

to the nonlinear element, whose response to the system signal is to be varied, and is

chosen so that a negligible component of it is fed back to the nonlinearity.

The major disadvantage of introducing dither is the excessive wear it may cause to

system components. However, dither is required at a high frequency for two reasons: 1)

to ensure that the amount of perturbation it causes to the desired system outputs, and

thus also feeds back to the nonlinearity input, is small; 2) to justify substitution of the

modified nonlinearity for the original characteristic in transient calculations, the dither

frequency should be several times higher than the signal component frequencies.

7.2.2.1. System linearisation

Even if the system is known to be nonlinear, its initial design is based on a linearised

model, and one then has the problem of assessing how actual nonlinearities will affect its

performance. Although nonlinear behaviour may be acceptable, it is generally undesir-

able since it can cause performance degradation and instability. If this is intolerable, one

approach is to inject dither into the nonlinear element, with the aim of effectively smooth-

ing it out, so that the system behaviour becomes more nearly linear. This is effected by

causing the operating point to sweep repeatedly over a certain range around its nominal

position, on a timescale much shorter than that of system dynamics. This technique is

often profitably employed for the purpose of linearising the highly nonlinear force-velocity

effects of friction.

There are three main dither w(t) forms, which induce a kind of averaging of the non-

linearity, depending on the nature of the oscillatory signal:

(1) Square-wave dither is the simplest, where w(t) takes constant values W and −W

alternately, each being held for a half-period To

2
, with To much smaller than system time

constants. As a result, the effective value of F , the output of the nonlinear element, can

be written as F̆ = N (x+W )+N (x−W )
2

, i.e. the arithmetic mean of the values corresponding

to the two levels of the dither signal.

(ii) Sinusoidal dither w(t) = W sin(2πt
To

) is another simple possibility, where again To is

chosen so small that the angular frequency 2π/To is much greater than any other involved

in the operation of the system. In this case, the effective value of F is its average over a
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complete period of the dither oscillation, namely

F̆ =
1

2π

∫ 2π

0

N (x + W sin θ)dθ

which can also be regarded as the bias component of a Fourier expansion in multiples of

the dither frequency. The approximation thus corresponds to the neglect of all harmonic

terms, including the fundamental.

(iii) Triangular-wave (saw-tooth) is another popular dither signal, where w(t) varies

linearly with respect to time from −W to W and then back again. Because of the

constancy of ẇ on each upward and downward sweep, averaging over t is equivalent to

averaging over w, and so the effective value of F becomes

F̆ =
1

2W

∫ W

−W

N (x + w)dw

which is independent of the speed at which w actually changes. Thus, it is not in fact

necessary that the times taken by the two linear sections of the oscillation should be the

same, provided that the total period To is small enough, in the same sense as before.

However, if N (x) is multivalued, the upward and downward averages may be different,

and then F̆ is given by their weighted mean value, with weighting factors proportional to

the durations of the corresponding sweeps.

It follows from the discussion of the effect of artificial dither that ideal-relay (Coulomb

friction) characteristic, as well as various hysteresis effects, can be manipulated. Thus a

practical means for altering the properties of a feedback loop is that of simply changing

the waveform of an additive dither signal. In two of the three cases shown, the effect of

this dither is to linearise the nonlinearity for small input signals, the triangular dither

providing a larger linear region than the sinusoidal dither.

7.2.2.2. Signal stabilisation

Since injecting dither has the effect of altering the nonlinear system characteristics, it

is reasonable to expect that limit cycles in nonlinear systems can be turned on, altered,

turned off, and, in general, controlled by proper choice of dither waveshape. The use

of dither to turn limit cycles off is referred to as signal stabilisation. Oldenburger et al.

[134, 135, 136, 137], was among the first to discover this phenomenon experimentally, and

subsequently provide analytical justification, after extensive investigation.

Investigation of signal stabilisation via describing function theory can be executed as a

two-stage process. First, by use of kM theory, the dither and original nonlinear element N
are replaced with an equivalent nonlinear element NM whose form implicitly accounts for
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the presence of dither, but which no longer explicitly displays the dither signal. Second,

the resulting system is made the object of a DF analysis to reveal the presence or absence

of a limit cycle (§.5.3.2.2).

Analysis is subject to the usual DF and kM limitations, such as the assumption of a

single time-invariant loop nonlinearity, the absence of nonlinearity subharmonic genera-

tion, and satisfaction of the filter hypothesis. In addition, it is a convenience if only a

negligible amount of dither returns via the feedback loop to the nonlinearity input. As a

rule of thumb, Oldenburger et al. suggest that the dither frequency be at least ten times

the highest possible limit cycle frequency, an assumption that is readily verified during

analysis. This is roughly the same rule of thumb which ought to be used in design of a

limit-cycling system, where the frequency ratio of 10 there refers to limit cycle frequency

over highest significant input frequency. The analytic study of signal stabilisation as

described above is contingent upon our ability to determine DFs kM for the equivalent

nonlinear element NM under consideration. No difficulty is likely to arise in obtaining

NM itself. Occasionally, kM can be readily determined analytically, as in the case of the

ideal relay, and can also be done for odd polynomial nonlinearities.
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A.1. Complex formulations

In rotordynamics, it is often beneficial to use the complex notions:

z = x + ıy and fc = fx + ıfy (A.1)

A.1.1. General complex EOMs

With the notation of (2.4), we can rewrite (3.1) as:

Mf z̈ + Mbz̈∗ + Cf ż + Cbż∗ + Kfz + Kbz
∗ = fc (A.2a)

where

2Mf = (Mxx + Myy) − ı(Mxy − Myx)

2Mb = (Mxx − Myy) + ı(Mxy + Myx)

2Cf = (Cxx + Cyy) − ı(Cxy − Cyx)

2Cb = (Cxx − Cyy) + ı(Cxy + Cyx)

2Kf = (Kxx + Kyy) − ı(Kxy − Kyx)

2Kb = (Kxx − Kyy) + ı(Kxy + Kyx)

(A.2b)

and the sub-matrices of (A.2b) (e.g. Kxx,Kxy ⊂ Kg; Myy,Myx ⊂ M) are related to their
main matrices in (3.1) by:

M =

[
Mxx Mxy

Myx Myy

]
, Cg =

[
Cxx Cxy

Cyx Cyy

]
, Kg =

[
Kxx Kxy

Kyx Kyy

]
(A.2c)

A.1.2. Complex formulation for isotropic rotors

Isotropic rotors can be viewed as those rotors whose response directionality is the same
as their rotating excitation directionality. Whence in (A.2), isotropic rotors have:

Mb = Cb = Kb = 0 (A.3a)

which leads to

Mxx = Myy = M1 Mxy = −Myx = M2

Cxx = Cyy = C1 Cxy = −Cyx = C2 (A.3b)

Kxx = Kyy = K1 Kxy = −Kyx = K2
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Introducing (A.3) to (A.2) results in:

Mcz̈ + Ccż + Kcz = fc (A.4a)

where
Mc = M1 − ıM2, Cc = C1 − ıC2, Kc = K1 − ıK2 (A.4b)

A.1.3. Formula for the square root of a complex quantity

√
a + ıb =

√
a +

√
a2 + b2

2
+ ı

√
−a +

√
a2 + b2

2
for b > 0 (A.5a)

=

√
a +

√
a2 + b2

2
− ı

√
−a +

√
a2 + b2

2
for b < 0 (A.5b)

where a and b are real quantities that can generally be +ve or -ve.

A.2. Adapted Control theorems and applications

A.2.1. The Principle of the Argument: A Mapping application

The “principle of the argument” is a well known mapping theorem (Th.A.1) in complex
variables theory, on which the Nyquist stability criteria, as well as EAST, are based.

Theorem A.1 (The “principle of the argument”) can be stated as:
Let H(s) be a single-valued rational polynomial function, e.g. (3.53), with l poles and u
zeros in the s-plane (e.g. fig.4.7). Let Γs be an arbitrary closed path in the s-plane that

does not go through any poles or zeros of H(s). The mapping Γs
H(s)7−→ ΓH yields the closed

locus ΓH , which encircles the origin of the H-plane as many times ‘Ne’ as the difference
‘ue − le’ of H(s) zeros and poles that are encircled by Γs in the s-plane:

Ne = ue − le ; where 0 ≤ ue ≤ u, and 0 ≤ le ≤ l

A point or region in a complex plane, e.g. s-plane or H(s)−plane, is said to be encircled
by a closed path if it is found inside the path. The Γs path can be traversed in an
arbitrarily chosen direction, i.e. CCW ª or CW © directions. Depending on the numbers
of encircled zeros and poles, ue and le, N can be +ve (-ve) indicating that ΓH is traversed
in the same (opposite) direction as Γs. For FR analysis purposes, (part of ) the imaginary
ıω-axis of the s-plane can be considered as a segment of a closed path Γs that encircles
the entire right- or left-half-s-plane, which is comprised of the infinite ıω-axis ω∈〈−∞,∞〉

and a semi-circle of infinite radius. Then we can adopt concept (A.1) [92]:

Concept A.1 (An enclosure concept) A point or region is said to be enclosed by a
closed path if it is encircled in the CCW direction; or equally, if the point/region lies to
the left of a path when that path is traversed in the prescribed direction e.g. fig. 4.5.

Accordingly, the ıω-axis with ω:〈−∞⊲∞〉 encloses the left-half-s-plane.
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FRF features of minimum-/non-minimum-phase (real) TFs (H
min

and H
nmin

) are stated

here as the +ve ıω-axis is swept from ı0 to ı∞ only, i.e. ω : [0⊲∞〉. Since the poles/zeros
of real TFs occur in either complex-conjugates or real format, the FRF

Hij(ıω) = |Hij(ıω)|eıψ(ıω) =
q̄ie

ı(ωt+ψ)

f̄jeıωt
where ψ = ∠Hij(ıω) = tan−1 ℑ(Hij(ıω))

ℜ(Hij(ıω))

of Hij(s) with p1,...,l, o1,...,u has these magnitude |Hij(ıω)| and phase shift ∠Hij(ıω) features:

1. The total phase variation ∆∠H
min

= −π
2
(l−u), excluding poles and zeros at the origin

(p, o ≡ s = 0)

2. Phase angle at ω = ∞ : ∠H
min

(ı∞) = −π
2
(l − u), while ∠ H

nmin
(ı∞) 6= −π

2
(l − u)

3. The absolute magnitude: |H
min

(ıω)| 6= {0,∞} ∀ω 6= {0,∞}

4. For H
min

; |H
min

(ıω)| ⇔ ∠H
min

(ıω) which is not necessarily the case for H
nmin

5. Both H
min

, H
nmin

have a slope of log-magnitude curve as −20(l−u) db/decade at ω = ∞

The above features are elucidated by the heuristic arguments and illustrations of §.4.1.2.1.

A.2.2. The general Nyquist criterion

The stability of a real LTI SISO closed-loop feedback system whose overall TF is:

G(s) =
H(s)

1 + H(s)B(s)
(A.6)

requires its characteristic equation to have no roots in the right-half s-plane. Since the
characteristic equation is arrived at by setting the denominator: 1 + H(s)B(s) = Ď(s) = 0,
the stability condition is equivalent to requiring that the 1 + H(s)B(s) has no zeros in the
right-half s-plane.

In examining whether the above stability condition is satisfied as an application of ‘the
principle of the argument’ (Th.A.1), the general Nyquist stability criterion:

1. Sets a closed path (Nyquist locus) Γs defined to be a semicircle with an infinite
radius and the entire ıω-axis 〈−ı∞⊲ ı∞〉 for a diameter so as to encircle the entire
right-half s-plane.

2. Examines the resulting ΓĎ locus that is mapped Γs
Ď(s)7−→ ΓĎ into the Ď(s) plane.

According to (Th.A.1), locus ΓĎ must encircle the s-plane origin (s = 0) a number of
times Ne = −lrhsp that is equal to the number of Ď(s) poles in the right-half s-plane, and
in the opposite direction to that of Γs, for system (5.11) to be stable. Alternatively and
similarly, the number and direction that critical point (sc = −1 + ı0) is encircled by the
mapping ΓHB of loop TF H(s)B(s) can be considered.
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A.2.3. Practical Absolute stability criteria

Definition A.2 (Sector condition) A continuous scalar function N of x that is a real
SVNL is said to be sector bounded N (x) ∈ [kl, ku] if there exists two non-negative numbers
kl and ku such that

x 6= 0 ⇒ kl ≤
N (x)

x
≤ ku (A.7a)

klx
2 ≤ xN (t, x) ≤ kux

2, ∀t ≥ 0,∀x ∈ [x− . . . x+] (A.7b)

if (A.7) holds ∀x ∈ (−∞,∞) then the sector condition holds globally.

Equations (A.7) imply that N (0) = 0 and xN (x) ≥ 0 so N lies between xkl and xku in
the first or third quadrant of (fig.A.1).

k u
x

k l
x

x

N (x)

Figure A.1.: Sector bounded nonlinearity N (x, t)

The most general Lyapunov analysis had provided some satisfactory results for a few
systems, usually SISO with simple polynomial-type nonlinearities N . However, there was
not a systematic solution procedure for the types of N that were actually encountered,
which could be applied in a straightforward manner. One nonlinear system, based on an
auto-pilot problem, which received intensive study in the former USSR is the feedback
SISO SNL (fig.A.2). Letov [99] and Lur’e [105] initially used a Lyapunov function to
handle this Letov-Lur’e problem. However, it was not until Popov’s work [145] in 1960 on
this problem, using frequency domain methods for practically applicable stability analysis,
that a theory of nonlinear system design began to emerge.

Figure A.2.: Letov-Lur’e problem: A nonlinear SISO feedback system
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SISO analysis Utilising frequency response methods for autonomous systems, Popov’s
work [145] spurred renewed interests in the stability of nonlinear systems. Several theo-
rems that were proven using functional analysis followed, allowing stability to be ascer-
tained for the autonomous system with a bounded input f(t) i.e. BIBO stability.

Popov criterion Using Lyapunov’s direct method, Popov [146] provided a simple suffi-
cient stability criterion for SNL of fig.A.2. The Popov stability criterion is formulated in
terms of a modified frequency response LP (ıω) for SL, and N ∈ [0, ku] (def.A.2). Popov
Locus LP (ıω) = ℜ

(
H(ıω)

)
+ ıωℑ

(
H(ıω)

)
is a distorted version of the Nyquist locus. This

stability criterion requires that LP (ıω) lies to the right of a straight Popov line that passes
through the point (−1

ku
, ı0). Restrictions when using Popov criterion are:

• SNL has to be autonomous

• SL
def
= Hurwitz, i.e. strictly stable and controllable

• single-valued N in sector [0, ku < ∞] as in (A.7)

Even if RID N is SVNL, as in Coulomb damping, N belongs to the sector [0, ku = ∞].
Even a softer approximation of Coulomb damping ⇒ ku ≈ ∞, which renders the method
useless, as it is already rather conservative.

The circle criterion Like Popov’s criterion, the circle criterion can be proven using the
integration by parts procedure for finding a Lyapunov function. This criterion, however, is
a more direct generalization of Nyquist criterion to nonlinear systems. Here, the critical
point − 1

k
in Nyquist criterion is replaced by (blown up to) a circle with diameter on

negative real axis of the complex plane from −1/ku to −1/kl, with respect to which the
Nyquist theorem is applied. Also, proof using functional analysis methods allows for the
conclusion on BIBO stability for non-autonomous SNL. However, this criterion is more
conservative [169] than Popov’s and requires N ∈ [kl, ku] (A.7).

Practical MIMO system analysis being extensions of their SISO versions, are frequency
domain-based separating SNL into SL,SN in a feedback set-up. The MIMO analysis,
which is even more conservative than for SISO [12], will thus depend on characteristics

of subsystems SL and SN
def
= N as well as those of Nij ∈ N . Important characteristics

of H(s) representing the LTI SL are: Positive realness PR/SPR, normality and diagonal

dominance; which were discussed in §3.1.4. Important characteristics of SN
def
= N , the

nonlinear block in feedback loop, are: Diagonality of N and sector conditions (A.7) of
each Nij ∈ N . Dynamic and high frequency attenuation properties of each Hij ∈ H(s),
as well as the superharmonic frequency content in output Fi from each Nij are important
characteristics for the approximate harmonic balance methods.

Considerable efforts were devoted to extending several SISO absolute stability criteria
to MIMO systems. Successful attempts were largely those with the feedback N being
diagonal, i.e. i 6= j ⇒ Nij = 0, as the otherwise limited criteria for a general N are overly
conservative [12]. The first two of such extension results were those of Jury and Lee [77],
and Falb et al. [50]. Recent results largely present extensions or different interpretations
of such results so as to obtain less conservative ones [12]. The Jury and Lee result is an
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extension of Popov criterion to MIMO systems with diagonal N where each Nii satisfies
the sector condition. The result of Falb et al. is a simple extension of the eigenvalue
criterion for the stability of MIMO LTI systems, to SNL with sector condition imposed on
the diagonal N . A further restriction is that the TFM H describing SL must be normal.
Papers [113] followed to show how to apply this method to systems were the normality
condition can be levied. Popov developed a multivariable generalisation of his work on
the Lur’e-Letov problem for which he coined the title “Hyper-stability” [147]. The MIMO
feedback loop could accommodate N block with nonlinear time-varying entries. However,
a SPR condition must be imposed on the TFM H .

A.2.4. The approximate Describing Functions Method

A.2.4.1. Time periodicity and Fourier series approximations

The exploitation of time periodicity is widely implemented in dynamic system analy-
sis, and leads straightforwardly to frequency-domain descriptions, via Laplace or Fourier
transformation, of LTI systems. Although oversimplicity is sacrificed where nonlinear
systems are concerned, the technique is no less important, albeit in an approximate sense,
since periodic phenomena (e.g. limit cycles) are among the more prominent features of
said systems. Fourier series is the natural framework for analysing periodic behaviour,
e.g. the periodic scalar function F(τ), which is represented by the simple infinite series:

F(τ) = a0 +
∞∑

m=1

am cos mτ + bm sin mτ = a0 +
∞∑

m=1

Fm(τ) (A.8)

a0 =
1

2π

∫ π

−π

F(τ)dτ , am =
1

π

∫ π

−π

F(τ) cos mτdτ , bm =
1

π

∫ π

−π

F(τ) sin mτdτ

Fourier series (A.8) is rather important for nonlinear system analysis because it:

1. Decomposes the general periodic output F(τ) into a set of terms, each retaining its
sinusoidal form under the operation of any linear system element.

2. Is naturally amenable to an approximation scheme by truncating to n-finite series.

Fn(τ) = a0 +
m=n∑

m=1

am cos mτ + bm sin mτ (A.9)

which generates the best approximation of F(τ) by minimising the mean squared-error:

mean (e2) =
1

2π

∫ 2π

0

(
F(τ) −Fn(τ)

)2

dτ where e = F(τ) −Fn(τ) (A.10)

Furthermore, a general class of almost-periodic functions is defined by the generalised
Fourier series in which terms have arbitrary frequencies of the form:

F(τ) = a0 +
∞∑

m=1

am cos ωmt + bm sin ωmt (A.11)

where the frequencies ωm may be incommensurable. This extends the method to cover
situations where signals are approximated by a combination of sinusoids of unrelated
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frequencies, which is naturally appropriate for analysing oscillations in periodically- (or
almost-periodically) forced nonlinear systems.

The foregoing leads to the Harmonic Balance Method (HBM) or the Describing Func-
tion Method (DFM) for the approximate analysis of periodic phenomena, where every
dynamic variable is approximated by a finite sum of periodic terms, usually a single si-
nusoid, possibly with a constant bias. Any nonlinear component of the system is then
approximately represented by its action on sinusoids just as though it were linear, so
that the method involves a kind of quasi-linearisation. These methods can be generalised
beyond the strictly periodic case, since the foregoing does not prerequisite all the terms
in Fourier series being at multiples of the same fundamental frequency.

A.2.4.2. Quasilinearisation and Describing functions

The basic idea is to represent a nonlinear element by a kind of ‘transfer function’, derived
from its effects on sinusoidal input signals or combinations thereof. Quasilinearisation is a
choice to represent (replace) the nonlinear element model N by the best equivalent linear
gain k = k(x) approximation, that is optimum in some sense of error e minimisation.
With F being the output of the nonlinearity N that is subjected to input x:

F = N (x) ⇒ F ≈ kx ⇒ F − kx = e (A.12)

The optimum value of k will depend on:

• The criterion of optimality, i.e. the criterion chosen for defining the best approxima-
tion. The usual criterion is one that minimises the mean squared error.

• The form of the input x, i.e. sinusoidal, random, bias and combinations thereof

• The nonlinear characteristic N

Naturally, as k is an approximate representation, the error e will vanish only when x is
a constant (bias) input or when N is actually linear. This notion can be extended to N
having multiple input signals x1×n = {x1, x2, . . . , xn}.

F = N (x) = N (x1, x2, . . . , xn) (A.13)

In such a situation each input is represented by a separate equivalent gain k1, k2, . . . , kn

with kj = kj(x̄) = kj

(
amp(x1), . . . , amp(xn)

)
, j = 1, . . . , n.

F ≈ k1x1 + k2x2 + · · · + knxn (A.14)

Describing Functions are the relationships that yield gain k for nonlinearity N (§.A.2.4.3).
This concept of quasilinearisation is the basis for both: 1) The HBM, which describes

nonlinearities’ output of specific frequencies by an external quasilinear force vector, and 2)
The DFM, which describes nonlinearities by their (internal) quasilinear stiffness elements
k ∈ K matrix. The latter being the more numerically efficient method.

Input signal assumptions With the HBM/DFM, input and output must be treated
consistently, i.e. if the input is taken to be a pure sinusoid, the Fourier series (A.8) for
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the output should be truncated (A.9) at first order m = 1. By the foregoing, the form of
input x to a nonlinear element N must be known in order to obtain a quasilinear model
k for N . This is rarely the case since a NL system x is a function of: 1) Characteristics of
nonlinearity N , 2) External inputs to the system (forces f), as well as 3) LTI frequency
attenuation characteristics. Accordingly, a specific input form must be assumed.

Assigning a certain form of input signal x to N for NL systems’ behavioural predictions
is an issue of particular importance, and one that develops from observation and experi-
ence. Most real systems, especially slightly nonlinear mechanical systems, have transfer
functions with good high frequency attenuation (low-pass) characteristics. Since low-pass
filtering of any periodic signal tends to make it sinusoidal, periodic signals within the
system might be (rightly) expected to be approximately sinusoidal at the input to N .
Also, low-pass filtering of any random signal tends to render it more Gaussian. Accord-
ingly, there are three basic forms of a nonlinearity inputs that are assumed for Describing
Functions calculations, namely: 1) Bias (constant), 2) Sinusoid and 3) Gaussian random.
Generally, it is necessary to assume various combinations of these basic input forms for
Describing Functions calculations. Our main concern is with nonlinearities having pure
sinusoidal input for RID self-induced precession analysis (DF), pure sinusoidal plus bias
inputs when considering the effect of imbalance (SBDF), and dual-sinusoid for combined
forced response and limit cycle analysis (SSDF).

Describing Function Definitions are outcomes of attempts to extend linear FRF anal-
ysis to NL systems. Describing functions may be defined as complex ratios of constants
and sinusoids, or more generally, via correlation and mean squared-error criteria. The
latter two definition criteria are applicable to deterministic and random inputs.

The most widely used Describing Function is the DF defined for a single sinusoidal input
into N , e.g. x(t) = ℜ

(
~Xeıτ

)
. The complex ratio k of output’s fundamental component F1

to the sinusoidal input X̄ cos τ was the original definition of a DF, due to the physically-
motivated extension of FRF technique, i.e k is a complex stiffness:

k = k(X̄) =
F1(τ)

X̄ cos τ
=

F̄1eı(τ+θ1)

X̄eıτ
=

~F1

X̄
≡

~F1

~X
(A.15)

Minimising (A.10) yields k that is identical to that defined by the complex ratio. Also, it
is important here to define a sinusoid’s amplitude probability density function ℘(x):

℘(x) =
(
π
√

X̄2 − x2
)−1

(A.16)
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A.2.4.3. Describing Functions evaluation

Effect of N symmetry and SVNL characteristics on Fourier series coefficients Con-
sidering an N with input X̄ cos τ and periodic output F(τ) Fourier-expanded as:

F(τ) = a0 +
∞∑

m=1

Fm(τ) (A.17a)

Fm(τ) = am cos mτ + bm sin mτ = ℜ
(
(am − ıbm)eımτ

)
= ℜ

(
~Fmeımτ

)

~Fm = F̄meıθm , F̄m = | ~Fm| =
√

a2
m + b2

m

θm = arctan

(
ℑ( ~Fm)

ℜ( ~Fm)

)
= − tan−1

(
bm

am

)
(A.17b)

Deductions about the series’ coefficients are made depending on symmetry and SVNL:

Odd symmetry if F(τ) is an odd function of x(t), then changing τ → τ + π changes
x → −x and F → −F , which implies that am = bm = 0 ∀m = 0, 2, 4, . . . in both SVNL
and DVNL. Otherwise, am and bm can be non-zero only if m is odd.

Even symmetry if F(τ) is an even function of x(t), then reversing the sign of x(t) leaves
F(τ) unaltered, and am = bm = 0 ∀m = 1, 3, 5, . . . (odd m)

SVNL F(τ)
def
= single-valued function of x(t) ⇒ am = 0∀ even m , bm = 0∀ odd m.

In the above scenarios, if the input is unbiased sinusoid (no constant term), the DFM
approximation will only be consistent if the output is also unbiased, which is ensured only
if the nonlinearity has odd symmetry. However, there is no need to assume a SVNL, since
a DVNL is allowed for by the presence of both sine and cosine terms in the output.

RID models (§.3.2.1.2) fall in the odd symmetric SVNL/DVNL class where:

N (x) = −N (−x) for SVNL with input x
def
= v relative velocity (fig.3.2)

N+(x) = −N−(−x) for DVNL with displacement input (fig.3.3), when:

F = N+(x) for dx
dτ

> 0 where N+(x)
def
= Nr(x)

F = N−(x) for dx
dτ

< 0 where N−(x)
def
= Nu(x)

(A.18)

Accordingly, only odd symmetric nonlinearities are considered. However, it is useful for
further analysis to define the symmetric odd Nℜ(x) and even Nℑ(x) averaging functions:

Nℜ(x) =
(
N+(x) + N−(x)

)
/2 and Nℑ(x) =

(
N+(x) −N−(x)

)
/2 (A.19)

The DF is the Describing Function for N having a sinusoidal input x(t) = ℜ
(
~Xeıτ

)

which will not be phased, without loss of generality, as x(t) = X̄ cos τ with ψx = 0.
Accordingly, we only consider the fundamental sinusoid of the output F1(τ).
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For N being SVNL all bm = 0, hence k
def
= real, a0 = 0 and ∀ am∈{m=1,3,... }

am =
4

π

∫ π/2

0

F(τ) cos mτdτ

k(X̄) =
F1(τ)

X̄ cos τ
=

a1

X̄
=

4

X̄π

∫ π/2

0

F(τ) cos τdτ (A.20a)

or alternatively, in terms of input x: =
4

X̄2

∫ X̄

0

xN (x)℘(x)dx (A.20b)

For N being DVNL a0 = 0 some bm∈{m=1,3,... }
6= 0 hence k

def
= complex.

am =
2

π

∫ π

0

F(τ) cos mτdτ , or a1 =
4

X̄

∫ X̄

0

xNℜ(x)℘(x)dx (A.21a)

bm =
2

π

∫ π

0

F(τ) sin mτdτ , or b1 =
4

πX̄

∫ X̄

0

Nℑ(x)dx (A.21b)

k(X̄) =
2

X̄π

∫ π

0

F(τ)e−ıτdτ =
ℜ

(
(a1 − ıb1)e

ıτ
)

ℜ
(
X̄eıτ

) =
a1 − ıb1

X̄
(A.21c)

Here, ℑ(k) = ± ∆
πX̄2 , b1 = ∓ ∆

X̄π
where ∆

def
= area inside DVNL loop, in tandem with linear

damping. The ± sign reflects the CW/CCW loop traverse directionality respectively.

The SBDF is the immediately obvious generalisation of the DF, where the input to N
is assumed to be a biased (plus constant) sinusoid, the output is approximated by its
fundamental sinusoid and a constant, and the the SBDF has two components k0 and k.

x(t) = X̄0 + X̄ cos τ , F(τ) ≈ a0 + F1(τ) ⇒ k0 =
a0

X̄0

, k =
~F1

X̄
(A.22)

where both the real k0 and the complex k are functions of X0 as well as X̄:

k0(X0, X̄) =
1

2πX̄0

∫ π

−π

F(X0 + X̄ cos τ)dτ and

k(X0, X̄) =
1

πX̄

∫ π

−π

F(X0 + X̄ cos τ)e−ıτdτ (A.23)

or written in terms of input x, using the averaging functions:

a0 =

∫ X̄

−X̄

Nℜ(x + X0)℘(x)dx and (A.24)

a1 =
2

X̄

∫ X̄

−X̄

xNℜ(x + X0)℘(x)dx , b1 =
2

πX̄

∫ X̄

−X̄

Nℑ(x + X0)dx

As in the case of DF: if N def
= SVNL then k is real, while if N def

= DVNL then ℑ(k) = ± ∆
πX̄2 .

Also, the optimum linear model for SVNL is: N ≈ ~Xk(X0, X̄) + X0k0(X0, X̄).
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Several inputs into a nonlinearity The above formulations can be generalised further,
by retaining more terms in the Fourier series and defining higher-order (HODF) and
multiple-input (MIDF) describing functions.

HODF are used in an attempt to improve accuracy, particularly for hard N e.g. Coulomb
friction, which may yield notable commensurate superharmonics. Generally, the increased
accuracy achieved does not justify the significant mathematical complications incurred,
which diminishes the DFM attractivness [51].

MIDF are used to analyse systems with incommensurate frequencies e.g. from precession
combined with forced response or oscillatory terms at 2Ω (3.9) from anisotropic bearings,
or gravity sag at Ω/2. MIDF are useful in such applications where some prior idea as to
the frequencies, which are likely to be significant, is at hand. An alternate version of the
MIDF is the describing function matrix, obtained by truncating an infinite matrix which
relates the infinite-dimensional vectors formed from the Fourier coefficients of the input
and output signals, respectively. The almost-periodic, rather than periodic, output raises
major difficulties in computing the generalised Fourier coefficients, unless the nonlinearity
has a simple analytic form.

A.2.4.4. MIDF illustrates Limit cycle quenching in Van der Pol oscillator

If an external input is applied to a limit-cycling system, it will generally interfere with the
dynamics and alter the LC parameters, or even suppress it altogether. To demonstrate
this, the Van der Pol oscillator is arranged in the configuration of fig.A.2, with the forcing
sinusoid f(t) = f̄ sin ωt entering at the input to the linear component. The EOM is:

ẍ + ǫ(3x2 − 1)ẋ + x = ǫf̄ω cos ωt (A.25)

which is just Van der Pol’s equation with a forcing term. Now, if the driving frequency ω
is unrelated to the LC frequency ωl, it is reasonable to take the approximation

x(t) ≈ Xl sin ωlt + Xe sin(ωt + ψ) (A.26)

x3 ≈ 3
4
Xl(X

2
l + 2X2

e ) sin ωlt + 3
4
Xe(2X

2
l + X2

e ) sin(ωt + ψ) ←֓ (A.27)

Hence, applying the HBM to terms at frequencies ωl and ω, we obtain:

[H−1(ıωl) + 3
4
(X2

l + 2X2
e )]Xl = 0

[H−1(ıω) + 3
4
(2X2

l + X2
e )]Xee

ıψ = f̄

where H−1(ıω) =
ı

ǫ

(
ω − 1

ω

)
− 1

so that the first equation gives ωl = 1 (assuming Xl 6= 0), and X2
l + 2X2

e = 4
3

whence, by
substitution into the second equation,

{
1

ǫ2

(
ω − 1

ω

)2

+
(9X2

l

8
− 1

2

)2
}(2

3
− X2

l

2

)
= f̄ 2
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after eliminating ψ. It is thus clear that, for any given value of ω, there is a bound on
the magnitude of f̄ for which a solution of this type is possible; if this bound is exceeded,
then the only possibility is that Xl = 0 in which case the component of the solution at
the LC frequency disappears entirely. This is sometimes expressed by saying that, for a
certain range of values of the input amplitude and frequency, the limit cycle is quenched.
In that case, the only remaining component, in this approximation, is at the frequency of
the driving signal, and its parameters can be calculated by applying harmonic balance at
this frequency alone.

A.2.4.5. Describing Function Method precautions

The DFM is an intuitively appealing, convenient and relatively simple analysis technique,
particularly when using the simple first order DFs, which:

• gives the designer a relatively quick appreciation of the systems behaviour

• indicates methods by which systems may be modified to meet performance criteria

Difficulties with the Describing Function Method include:

• The DFM/HBM for MIMO systems involves solving a set of nonlinear algebraic
equations (5.5e) iteratively, which requires an initial guess solution (IG). Although
this initial guess can be derived from LTI system FRFs for forced response, especially
away from resonances, it is not readily available for LC analysis. In such situations,
reliance on graphical techniques is necessary, which are not in abundance for MIMO
systems and manipulations such as those in §.5.3.2 are necessary.

• Solving the system of NL algebraic equations may yield several solutions, and it is
necessary to investigate their stability. In so doing, various perturbations’ possibil-
ities must be considered.

• Existence of a stable solution does not guarantee its actual occurrence as the actual
solution depends on initial conditions and history as well as system parameters.

• Experience is a powerful ally, due to lack of precise methods for estimating solutions’
accuracy.

The validity of Describing Functions approximations is important to bear in mind
on account of limitations, which arise from their approximate nature. The DFM depends
crucially on the irrelevance of the neglected higher harmonics, and can thus be expected
to perform best when the:

• Nonlinearity is smooth, which does not really reflect RID models

• LTI system component has ‘low pass ’ characteristics, which is generally satisfied

The latter condition means that the pass-band of the linear element, regarded as a fil-
ter, should be narrow enough to effectively suppress response/LC components of high
frequency, thus excluding all signals at multiples of the fundamental frequency.
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Limit cycles predictions reliability Unless some system low-pass condition is satisfied,
not only will the quantitative estimates be unreliable, but it is quite possible the DFM
predicts LCs which do not exist, or fails to predict those which do. In order to make the
predictions more reliable, it is necessary to take into account further details of both linear
and nonlinear system elements. This is achieved by constructing ‘error bands’ around
intersecting loci, to allow for the effects of truncating the Fourier series.

Assessing LCs stability using the DFM may be regarded as more unreliable than their
existence, since this involves not only Fourier series truncation, but also assumptions
the DFM is still valid even when applied to exponentially growing or decaying signals.
Generally, such predictions ought to be regarded as rough indications of what to expect.
Often however, it may be clear on other grounds whether or not an oscillation is likely to
be stable, and if this expectation is reinforced by graphical predictions, then it should be
reliable; otherwise, a deeper analysis is called for, which is usually no easy matter.

Limit sets predictions as opposed to LCs, e.g. strange attractors, is another avenue
where the DFM fails because they cannot be practically represented by simple harmonic
balance approximations. Nevertheless, some indication of their presence may be provided
when there are multiple solutions, suggesting several LCs. If these lie close together, they
may not actually exist as such, but are some form of chaotic behaviour.

A.2.4.6. Notes and references

The DFM is covered in many texts, particularly detailed treatments being found in Gelb
and Vander Velde (1968) and Atherton (1975). Several authors, notably Mees (1972)
extended the DFM to incorporate multiple harmonics. Prediction of oscillations in feed-
back systems with several nonlinearities can be found in Freeman and Barney (1963),
and Gray and Taylor (1979). Construction of error bands in the DFM graphical formula-
tion is detailed by Mees (1984). Examples where the describing function approximation
fails have been given by Holtzman (1970), Rapp and Mees (1977) and Mees and Sparrow
(1981). The determination of limit cycle stability, for both free and forced systems, based
on the so-called incremental describing function (IDE) can be found in Choudhury and
Atherton (1974). A study of forced systems, including the topics of jump phenomena, sub-
harmonic oscillations and the suppression of limit cycles, is contained in Lawden (1967).
Incidentally, the occurrence of subharmonic solutions, in the large-parameter form of Van
der Pol’s equation, provided the setting for the earliest studies of chaotic behaviour, by
Cartwright and Littlewood (1945) and Levinson (1949).
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