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ABSTRACT

The finite elenent method is applied to the vibration

analysis of axial flow turbine rotors.

Using the axi-symetric properties of the configuration
of such rotors, several new finite elements are devel oped to
describe the bending and stretching of thin or noderately thick
circular plates, and which are characterised by only four or
eight degrees of freedom These elenents incorporate the 'desired
nunber of dianetral nodes in their dynam c deflection functions
and allow for any specified thickness variation in the radia
direction. In addition, the effects of in-plane stresses, which
mght arise fromrotation or radial tenperature gradient, and the
effects of transverse shear and rotary inertia in noderately
thick plates, are readily accounted for. The accuracy and conver-
gence of these elenents is denonstrated by numerical conparison

with both exact and experinmental data for discs.

Maki ng the assunption that blade dynam c |oadings on the
rimof a vibrating bl ade-disc system are continuously distributed,
a method of coupling blade and disc vibration is formulated. For
non-rotating configurations of sinple geonetry an exact solution

for the coupled bl ade-disc frequencies and node shapes is devel oped.




For configurations nmore representative of practical turbine
rotors a finite elenent nodel is detailed; this nodel takes into
account arbitrary disc profile and in-plane stresses, taper and
twist in the blades, and allows for transverse shear and rotary
inertia in both disc and blades where this is thought necessary.
Nunerical calculations are presented which denonstrate the
convergence and accuracy of this finite el ement nmodel on predict-
ing the natural frequencies of both sinple and conpl ex bl aded

rotors.

Consi derabl e effort has been nade to make the conputer
programs devel oped for the numerical calculations in this work
of practical usefulness to the designer, Thus these are given in
some detail, and feature several options which allow flexibility
to calculate disc stresses, disc alone vibration, blade al one
vi bration, and coupled bl ade-disc vibration frequencies; in the
vibration analysis options are available to include effects of
i n-plane stresses due to rotation or thermal gradient, transverse

shear, and rotary inertia
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CHAPTERL

| NTRODUCT! ON

1.1 PRELI M NARY

The stress and vibration analysis of alnost every
part of a gas turbine is of major concern to the designer
The bl aded disc, which transmts torque fromthe blades to the
shaft of the engine, constitutes an inportant part of the turbine.
The problem of optimzing the disc configuration becones nore
significant with the ever increasing demand for higher power
and lighter weight of the gas turbine. The continuing enphasis
on longer life together with reliable and safe operation in
severe environments requires greater accuracy and speed in the
mechani cal analysis of the various parts of the turbine, espe-

cially the bladed disc.

The objective of present day structural design is to
arrive at the nost efficient structure, subjected to certain
constraint conditions, for the specified |oad and tenperature
environnent. In the design of the bladed disc certain geonet-
rical restrictions may be inposed on the profile of the disc by

its functional aspects as well as the geonetry of other parts




of the turbine. In addition, certain behavioural constraints
such as keeping the |owest natural frequency of the disc above
sone specified linmt, may also be inposed. Hence, the design

of the bladed rotor will normally require the accurate analysis
of several trial profiles until the satisfactory one is reached.
It is therefore essential that the designer has available sinple

reliable and accurate nethods of analysis.

In a turbine disc, in addition to the stresses result-
ing from bending, torsion and tenperature gradient, very high
stresses develop due to the centrifugal forces at high speeds.
These stresses constitute the major portion of the total stresses
and are not reduced by the thickening of the disc. Consequently
the material unavoidably works at its limt, and hence the accuracy
required on the predictions of these stresses is very high.
Structural vibrations of the rotor, which mght be torsional, or
radi al , but which are nost predomnantly axial, may also produce
high stresses and lead to fatigue failures which are not under-
stood on the basis of high steady stresses alone. Inorder to
avoid strong resonant vibrations within the operating range of
the machine, itis essential that the designer should be able to
predict accurately the natural frequencies of the rotating bladed

rotor,




The conplexity of the system makes it inpossible to
consider the entire systemwth all its generalities, for the
analysis. In general the component parts of the rotor are
anal ysed separately, and evenso maki ng several sinplifying
assunptions to facilitate the analysis. Invariably both the
disc and the loading are considered to be axisymetric while
anal ysing the stresses. Wien the vibration of the bl aded-
rotor is examned, the problemis sinplified, in nost cases, by
assumng either rigid blades attached to a flexible vibrating
disc, or, nore commonly, flexible vibrating blades attached to a

rigid disc.

The stress analysis of typical rotating discs for
axial flow rotors is quite well understood, and reliable methods
for calculation of steady stresses fromrotation and thermal
| oadi ng are avail abl e. Determ nation of steady stresses
in the blade is also generally satisfactory, although there

remain problens with highly twisted | ow aspect ratio configurations

On the other hand, the determnation of the vibratory
behavi our of Dbladed rotors is less well defined. The effects of
transverse shear and rotary inertia are generally neglected,
| eading to substantial discrepancies with experinental data in
many rotors. More inportant, both experinental and theoretica

studies indicate that coupling between-the blades and the disc




cannot be neglected. It is now increasingly recognized that the
significant vibration of many axial flow turbines involves conbjned
participation by both blades and disc. This coupling between

bl ades and disc can substantially nodify the natural frequencies

of the system (1), is thought to strongly influence the distri-
bution of vibratory stresses in the bl ades (2-5), and can | ead

In some instances to aeroelastic instability (6).

A recent exanmple of fatigue failure of turbine rotor
bl ades resulting from coupling between blade and disc vibration
is described by Morgan et al (7). Fatigue cracks were found
either in the top serration of the fir tree roots or in the blade
form starting at the trailing edge near the root. The resonance
of the first flapwise nbde (IF) with sixth orderexcitationwas
thought to be the nost probable cause. Modifications were made
both to the blade fixings and to stiffen the disc which proved

successf ul

Figure 1.1, taken fromthe above nentioned reference
illustrates the influence of disc flexibility on the frequencies
of the coupled bl ade-disc system especially the first "flapwise"
@ar) and the first "edgew se" (1E) nodes, Here these two sets of
frequencies, obtained experimentally, are plotted against engine

speed and engine excitationorder, for tw different rotors, one




with a thick disc (solid line), and the other with a thin disc
(broken line). These rotors had the same blades. As seen from
the figure, when the disc is thick, disc flexibility has very
little effect on the system frequencies. The reduction in fre-
quencies with speed of rotation is probably due to reduction of
elastic nodulus with tenperature and sone disc effect. In the
operating range of 6000 to 8000 rpm we have only a few resonances
for this rotor. The 1F nodes of the blade areexcited only with
engine orders 6 and 7, and the 1E nodes with engine orders 10, 11,
and 12. But when the disc is thin, within the operating range

we have a large nunber of resonances. In this case we have the

1F nodes with engine orders 2 to 7, and the 1E nodes with engine
orders 9 to 12. Thus the authors state that, "identification of
the failure node was difficult," because of the many resonances
present. It should also be noted that, when the disc is thin,

the 1E nodeexcitedby engine order 8 lies just above the operating
range. Since eight conbustors were present in the engine, engine

order 8 was particularly significant.

In summary, while the designer has available reliable
met hods for determning steady stresses in axial flow turbines,
met hods of determining the vibratory behaviour are nuch |ess
adequate. Any realistic vibratory analysis of practical rotors
shoul d consider the effects of centrifugal and thernmal stresses,

the effects of transverse shear and rotary inertia and the effects



of dynam c coupling between the vibrating blades and the vibrating
disc. It is on these aspects of the vibratory behaviour of

turbine discs, that the work described below is focussed.

1.2 REVIEW OF LI TERATURE

Mich work has been published describing typical stress
and vibration problems encountered with axial fl ow turbine and
conpressor rotors. The publications of Shannon (8), Bl ackwel | (9),
Arnstrong and Stevenson (10), Arnstrong and WIlliams (11), Waldren
et al (12), Goatham et al (13), and Petricone and Sisto (14), and
NASA Technical Report TR R-54 (15) give excellent background and

references to the problens encountered with aircraft power plant,
1,2,1 Stress Analysis of Turbine D scs

Mich of the published work on the stress analysis of
turbine discs deals with plane stress solutions, and three dinensi-
onal treatnents are sparse. The reason for this is that when
the thickness of the disc is small conpared to the radius, the
variation of the tangential and radial stresses over the thickness
can be neglected and, taking nean val ues, satisfactory two dimen-

sional approxi mations can be nmade.




Exact solutions with this plane stress approximation
are available for several non-uniformprofiles. Conprehensive
reviews of early exact solutions of the problemare given in the
classic works of Stodola (16) and Biezeno and Grammel (17).
Several disc profiles suchas exponential, hyperbolic, and conical

radi al thickness variation have been consi dered.

More recently Manna (18) has also treated several

unconventional profiles where the thickness can be represented as

n=h [ 1 = (r/b.) 2/q 9P (1.1)

wher e ho is the thickness at the axis of rotation and b is the
outer radius of the disc, Qg is a positive integer and p is
greater than 2. Such an expression leads to a remarkably w de
range of profiles, and is anmenable to exact solution in terns of

hyper geonetric series.

O the nunerical nethods which have been devel oped,
Donath (19) first devised an approximte nethod where the actual
disc is replaced by anodel consisting of a series of rings of
uni form thickness; and further inprovenment of this nethod was

made by Gamtl (17).

Manson (20,21) and others (22) have al so replaced the
disc by a series of uniform thickness rings, and solved the

governing differential equations by finite difference methods.




This approach has formed the basis of the nost widely used tech-
niques for stress analysis of practical axial flow turbine discs.
Furt her devel opments by Manson (23) extended the nethod to
include el asto-plastic behaviour of the disc material, and,

of course, these methods readily allow for both centrifugal inertia

forces and radial thermal gradients.

Several other techniques have al so been enployed for
nurmerical solution of the plane stress problem Mte (24) has
used stress functions with undeterm ned constants which are
adjusted to satisfy the thermal and inplane boundary conditi ons.
Bogdanoff et al (25) have calculated the stresses in a disc by
nurerical integration of the plane stress equations of classica
elasticity theory, Soo (26) has used a matrix technique for this

probl em

In recent years, requirenents for increased analysis
accuracy and the use of relatively thick disc profiles has focussed
attention on the three dimensional stress distribution present.

The axial stress, neglected in thin disc analysis, can have a
substantial effect on disc burst speed. Haigh and Mirdoch (27)
have considered axially symmetrical turbine wheels of appreciable

t hi ckness for which the thin disc theory gives only approxinate

results. Their analysts is based on three dimensional equlibrium




equations. The solutions are obtained with a digital conputer

by relaxing the two governing equations using stress functions.

Radial flow rotors, while not of inmediate concern in
this work, are increasingly used and present nost difficult problems
in analysing the three dinensional stress distribution present.
Such rotors are generally of asymetric profile. Kobayashi and
Trunpl er (28) have devel oped a solution for the three dinensiona
stress analysis of such asymmetric discs. First the plane strain
problem of a long rotating cylinder is considered. Then the
surface tractions acting on a disc cut off fromthis cylinder are
elimnated by a relaxation procedure enploying Southwell stress
functions. The solutions are obtained numerically using a
digital conputer. Only centrifugal forces are considered, and
extension of this nmethod for the calculation of thermal stress in
the disc is outlined, Swansson (29) has used the two di mensi onal
approach of Schilhansl (30) for the above problemand his results
agree well with those of Kohayashi and Trunpler (28) for certain
cases. Thurgood (31) has suggested further inprovenents of this
method and has studied the effect of including axial deflection
in the analysis; which he found, to have significant effect on the

stress distribution in the disc.

For this asynmetric problemthe finite element nethod

is of considerable interest, and sonme work has been published on
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this problem Stordahl and Christensen (32) have treated the
probl em as axi symmetric and anal ysed the inpeller using a finite
el ement nethod, Chan and Hendrywood (33) have devel oped and
used ring shaped el ements of triangular cross-section in the

analysis of radial flow inpellers.

Besi des the various nunerical methods used, photo-
el astic analysis has also been used in the stress analysis of

rotating discs (34-37).

1,2,2 Vibration Analysis of Turbine D scs

The vibration of turbine discs and of circular or
annul ar plates is characterised by nodes having integer nunbers
of nodal dianmeters and circunferential nodal circles. Mich of the
early work on plates and discs is sunmarised in the texts by

Prescott (38) and Stodola (16).

The vibration of rotating discs has been quite well
understood since the classic work of Canpbell (39) and Stodola (16).
This vibration is also found to conprise wave patterns involving
i nteger nunbers of nodal dianeters and nodal circles, these patterns
rotating forwards or backwards in the disc. The angular velocities

of these waves in the discs are;
forward wave fm/ m revs./second

backward wave - fm/ m revs./second
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wher e fm is the frequency in cycl es/second of the node
with mnodal diameters. |If nowthe disc rotates with angular
velocity @ revs./second, then relative to a stationary obser-

ver we have;
forward wave 2 + fm/ m r evs. / second

backward wave = fm/ m revs./second

The work of Campbell and Stodola established that the
dangerous condition of operation was such that the backward wave

I's stationary in space,

Qn%/m=0 or fp=m 90

Thus a node with m nodal diameters is stronglyexcitedby the

mth order of rotational speed.

The mechani sm by which only the backward wave is
significant is conplicated, and perhaps not yet conpletely
understood, Tobias and Arnold (40,41) are generally credited
with the nost rational explanation to date, and they concluded
t hat unavoi dabl e dynam c inperfections of the disc can account
for the phenomenon, The mgjor task of the designer is to avoid
t he dangerous resonant condition where the backward wave is
stationary in space, This involves the accurate prediction of
the natural frequencies of the disc; these frequencies, while

mai nly dependent on thin disc elastic and inertia properties
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can be substantially nodified by in-plane stresses and transverse

shear and rotary inertia.

Exact solutions forconstant thickness, thin circular
and annular plates are given in the excellent nonograph by McLeod
and Bishop (42). Vogel and Skinner (43) have given nunerical data
for the calculation of the natural frequencies of uniformcircular
and annular plates with various boundary conditions. Leissa (44)

has col |l ected nost of theavailabl enumerical data on this problem

Exact solutions for thin plates of variable thickness
are quite limted. Conway (45) has investigated the transverse
vibrations of sone variable thickness plates when Poisson's ratio
is given particular values. Harris (46) has devel oped an exact
solution for the free vibration of circular plates with parabolic

t hi ckness vari ations.

The transverse vibration of a circular plate of uniform
thickness rotating about its axis with constant angular velocity
has been studied by Lanmb and Southwel| (47,48). They have sepa-
rated the effect of rotation and have solved the vibration problem
of the menbrane disc. Wien both' plate flexural stiffness and
nenbrane forces are operative, the following relationship is used

to get the natural frequencies of the disc
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w?: = w? + w? (1.2)

where w is the |ower bound of the combined frequency of the
rotating disc, ml is the frequency of the membrane disc where
the plate flexural stiffness is neglected, and w2 is the frequency

of the stationary disc in which nmenbrane stresses are absent.

Ghosh (49) has extended this approach to plates of variable
thickness.  Eversman (50) has outlined a solution to this problem
when bothpembrane Stresses and disc bending stiffness are consi-

dered together.

For the vibration analysis of discs having genera
thi ckness profile several nunerical nethods have been used. Refe-
rences to Prescott (38), Stodola (16), and Bi ezeno and Grammel (17)
gives a good summary of early numerical methods based on the
assunption of very sinple deflection shapes for the disc, Perhaps
the nmost successful and widely adopted numerical method is due to
Ehrich (51), who derived a transfer matrix approach. The arbitrary
disc is replaced by a number of annular strips of constant thick-
ness, Every alternate strip is considered to be nmassless, but to
have the local elastic properties of the actual disc. The inter-
medi ate strips are considered to have the local inertial properties
but no elasticity. The effect of in-plane stresses resulting from

rotation is also accounted for. The natural frequencies of the
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disc are found by a trial and iterative procedure using the

residual determnants derived for various boundary conditions.

Anong the other nunerical methods which have been used,
Mte (24) and Soo(26) have used Rayleigh-Ritz procedure. Bleich (52)
has used the collocation nmethod, for the vibration analysis of

circular discs.

Several workers have recently applied the finite
el ement method to the problem Anderson et al (53) have suggested
the use of triangular elements for the vibration anal ysis of
uni form annular plates. Qson and Lindberg (54) have devel oped
and used circular and annular sector elenents for the analysis of
uniformcircular and annular plates, Sawko and Merriman (55) and
Singh and Ramaswamy (56) have devel oped' sector elenments with
sixteen and twenty degrees of freedom respectively and have
applied these elenents in the static analysis of plates only.
Chernuka et al (57) have used a high precision triangular element
with one curved side for the static analysis of plates with curved
boundaries. This elenment is described by eighteen degrees of
freedom and probably represents the nost refined description for
plates with curved boundaries which has been reported so far.
It should.be noted that none of these finite el enent approaches

makes use of the axisynmetric properties of a conplete circul ar
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disc, and all result in a mathemati cal nmodel which is described

by a large nunber of degrees of freedom

Wien thick discs are considered, frequencies cal cu-
lated using thin plate theory differ substantially from experi-
nental values. Three dinensional elasticity solutions should be
used in such situations (58,59). For the analysis of noderately
thick discs and for the higher nodes of relatively thin discs,
plate theories which take into account effects of transverse shear
and rotary inertia can be used. It is well known that both these
effects serve to decrease the conputed frequencies because of

additional flexibility and increased inertia.

Rei ssner (60) extended the classical thin plate theory
to include transverse shear deformation for the static analysis
of plates. A consistent theory for the dynanic behaviour of
plates, including rotary inertia and transverse shear was then
devel oped by Uflyand (61), followed by Mndlin (62), who derived
the bastc sixth order system of partial differential equatfons of
motion along with potential and kinetic energy functions for this
problem He has also given a consistent set of equations relating
monents and transverse shears to transverse deflection and bendi ng
rotations, Mindlin and Deresiewicz (63) have further devel oped

and applied this theory,
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Moderately thick circular plates have been anal ysed by
several investigators. Deresiewicz and Mndlin (64, 65) have
considered the symetrical vibration of circular plates. Callahan
(66) used the Mndlin theory to derive characteristic determ nants
corresponding to eight separate sets of continuous boundary condi -
tions for circular and eliptical pl ates. Bakshi and Cal | ahan (67)
have derived simlar determnants for the vibration analysis of
circular rings (annular plates). Onoe and Yano (68) have followed
a different approach to this problem which they claimis appli-

cable to the higher order vibrations of circular plates.

Very few numerical nethods have been suggested for this
problem Pestel and Leckie (69) have derived transfer matrices for
annul ar strips, which are used to nmodel circular and annul ar discs,
including transverse shear and rotary inertia. This is essentially
an inprovenent of Fhrich's |unped mass nodel. O ough and Felippa
(70) have incorporated a sinple shear distortion nmechanisminto
their refined quadrilateral finite elenent which they have used in

the static analysis of circular plates including transverse shear.

No published work is available, to the knovledge of the
author, on the vibration analysis of variable thickness discs
where effects of transverse shear and rotary inertia are also
included in the analysis, also no one has considered the effects
of in-plane stresses together with transverse shear and rotary

inertia even when the disc is uniform
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In contrast to the many theoretical results published
on the vibration of turbine discs and circular plates, it is
surprising how little experimental data has been published in
the literature, Canpbell (39) in his classic work obtained experi-
mental |y frequencies and node shapes of steam turbine rotors and
has studied the effect of rotation on the frequencies. Peterson
(71) has tested annular and circular discs of both uniform and
stepped sections in connection with the study of gear vibration
Recently French (72) has described experinmentally observed vibra-
tion of gas turbine conpressor discs. This paper does not appear
to have been published in any Journal, however. Mte and N eh
(73) have investigated theoratically and experinentally the
rel ati onship between the state of disc menbrane stress, critica
rotation speed and the frequency spectrumin radially symetric,
uni form t hi ckness, disc problens. Onoe and Yano (68) have obtained
experinental |y several frequencies of relatively small but thick
circular discs, used in nechanical filters, and conpared these

with their analysis method

1.2,3 Vibration Analysis of Axial Flow Turbine Bl ades

Mich work has been published on the vibration analysis
of axtal flow turbine blades and a fairly conplete review of the
probl ens and various anal ytical methods used is given by Dokainish

and Rawt ani (74), Practical turbine bl ades have an aerofoil
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cross-section and possess, in addition to canber and |ongitudina
taper, a pretwist to allow for the variation in tangential velocity
along the span of the blade. Since all these factors conplicate
the analysis, in practice, many sinplifying assunptions are usually
made in the analysis. In nost of the analytical nmethods suggested
for the analysis, the blades are idealized to behave as beans
having radial variation in section properties and pretwist.
Attachment to the disc in the case of "firtree" or "dovetail"

slots is generally considered rigid (i.e, a cantilever bean) or

by means of springs which represent, in some nmanner, the finite
flexibility of the fixing. In the case of pin attachments, the

rotational constraint about the axis of the pin is relaxed (13),

In many cases coupling between bending and tw sting
of the blade resulting from non-coincidence of the centroid and
shear centre of the aerofoil section is ignored. There are
difficulties in determning the shear centre of an aerofoi
section. Bending-torsion coupling can also result from the
fact that the blade aerofoil at the root is not in a plane

parallel to the axis of rotation; this effect cannot be accoun-

ted for with a beam nodel

Considerable difficulty arises in determning the
torsional stiffness, This conprises three contributions.

(a} The St. Venant torsional stiffness
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(b) Additional stiffness due to pretw st,
(c) Additional stiffness due to restrained warping at the

root or at shrouds.

While determ nation of contribution (b) is conplicated, this effect
has been included in nost refined bl ade nodels. The contribution
(c) is particularly difficult to obtain even when conplete warping
restraint is assunmed, and this effect has generally been neglected,
or at best accounted for by some "effective shortening" of the

bl ade.

The effects of transverse shear and rotary inertia on
bl ade frequencies have generally been neglected, This is sonmewhat
justified, because the limtations previously mentioned above
general ly result in unacceptable errors long before the effects

of shear and rotary inertia becone significant.

Beam type nodel s have been successfully used for high
aspect ratio, thin, conpressor blades, and sonewhat |ess success-
fully for high aspect ratfo turbine blades. Calculated frequencies
of engineering accuracy are usually limted to the first three

or so nodes of vibration

The above limtations of a beam nodel becone particu-

larly evident with |ow aspect ratio blading, which is increasingly
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used, and the solution to such problens probably will require
model ling the blade as a curved shell of varying thickness and
curvature. Notwithstanding this, beam type nodels of turbine

and conpressor blades are still wdely used.

Inits sinplest formthe axial flow turbine blade
Is considered to be a tapered beam of rectangul ar cross-section
without pretwist. Pinney (75) has given an exact solution, for
the frequencies and nmode shapes, for beams with certain types
of taper. Perhaps the nost widely adopted nunerical nethod
for nonuniform beans, is the lunped mass method of Myklestad (76).
Leckfe and Lindberg (77) were the first to develop the beam
flexure finite elenent and to denonstrate its accuracy conpared to
ot her conventional |unped paranmeter nethods. Later Lindberg (78)
and Archer (79) developed finite elements for the analysis of
tapered beanms. Carnegie and Thomas (80) have given a method of
anal ysis of cantilever beans ofconstant t hi ckness and |inear

taper in breadth.

Even when a rectangul ar section is assuned for the
bl ade, pretw sting couples bending in the two principal direc-
tions, Rosard (81) has investigated such coupled vibration of
blades, In this analysis the blade is divided into a nunber of

segnents; the mass and elasticity are concentrated at stations,



21

and a transfer matrix nethod is devel oped.

The bending vibrations of a pretwisted beamlead to two
fourth order differential equations. A nethod of solving these two
coupl ed equations is given by Troesch et al (82). Carnegie (83)
has used Rayleigh's energy method to calculate the first frequency
in bending of a pretwisted cantilever beam The static deflection
curve is used in the analysis. Slyper (84) has used the Stodol a
met hod for this problem  Dokumaci et al (85) have used the finite
el enent technique with matrix displacement type analysis, for the
determ nation of the bending frequencies of a pretw sted cantilever
beam  They have derived the stiffness and mass matrices for a
pretw sted beam el enent of rectangular cross-section, Natural
frequenci es and node shapes are obtained fromthe resulting eigen-

val ue problem

Wien the aerofoil section of the blade is considered
t he torsional vibration is also coupled with the bending vibration
of the blade, Mandel son and Gendl er (86,87) have suggested a
met hod of analysis for the probl em using the concept of station
functions, Houbolt and Brooks (88) have derived the differential
equations of the coupled bending-torsion vibration of tw sted
nonuni form bl ades, Dunham (89) has derived the equations of
motion in a tw sted coordinate systemfollow ng the blade | ength

and has used them for the determnation of the first natural
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frequency. Carnegie (80) has used the Rayleigh method to find an
expression for the calculation of the fundamental frequency of the

bl ade.

Perhaps the nost careful and conplete treatment of the
problemis that by Montoya (90) who has derived the governing
differential equations for the vibration analysis of tw sted
bl ades of aerofoil section, including coupling between bending
and torsion. Effect of rotation on both bending and torsion are
also considered. Runge-Kutta nunerical procedure is followed to
solve the problemand the differential equations are converted into
ten first order equations. Assuming unit values to each of the
unknowns at the fixed end, corresponding values are found at the
free end and are conbined linearly, resulting in a set of equations.
The boundary conditions at the free end require the determ nant of
these equations to vanish when the correct frequency value is
assuned. Results obtained when twi st and torsional coupling are
negl ected are conpared with those obtained when these effects are
considered; and it is shown that these effects should not be

I gnor ed,

Wen a rotating blade is considered, the additional
stiffness due to the centrifugal forces should be considered. The
centrifugal forces induce several additional coupling terns 'In the

al ready conplicated equations of notion. The effect of rotation
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on the bending frequencies has been considered by Sutherland (91)
by using a Mklestad type tabular method of analysis. Plunkett
(92) has devel oped matrix equations governing transverse vibration
of a rotating cantilever beam Bending vibrations in a plane
inclined at anygeneral angle to the plane of rotation has been
investigated by Lo et al (93), They have also observed that the
equations of notion contain a nonlinear termresulting fromthe
Corfolis acceleration (94). Equations of motion for a rotating
cantilever blade using Hamlton's principle have been derived by

Carnegie (95).

Jarrett and Warner (96) and Targoff (97) have solved the
problem of a rotating tw sted blade idealizing the blade by a
| unped mass system Isakson and Eisley (98,99) have al so used
Myklestad type anal ysis for cal cul ating the bending frequencies of
pretwisted rotating beanms. The effect of rotation on the torsional
frequencies has been investigated by Bogdanoff and Horner (100, 101)
and by Brady and Targoff (102), Karupka and Baumanis (103) have
derived the field equations for coupled bending-torsion vibrations
of a rotating blade using Carnegie's fornulation of the Lagrange
equations of motion. Cowper (104) has devel oped a conputer program

to calculate the shear centre of any arbitrary cross-section.

VWhen the bl ades are thick, the classical Bernoullin

Eul er beam theory for bending vibrations is known to give higher




24

val ues of conputed frequencies. In such cases transverse shear

and rotary inertia should be included in the analysis. Rayleigh

i nproved the classical theory considering rotary inertia of the
cross-section of the beam  Tinoshenko extended the theory to
include the effects of transverse shear defornmation. Prescott

(38) and Volterra(105) have devel oped various Tinbshenko type beam
nodel s.  Huang (106) has given solutions of Tinoshenko equations for
a cantilever beam of rectangular cross-section. Carnegie and

" Thomas (107) have used the finite difference nethod for the bending
vibration analysis of pretw sted cantilevers including the effects

of transverse shear and rotary inertia.

Among the other published work connected wth blade
vibration; Gere (108) has derived differential equations, for the
torsional vibrations of beams of thin walled open cross~section
for which the shear centre and centroid coincide, including the
effects of warping of the cross-section, Grinsted (109) has
studied the conplex nodal patterns of turbine blades; inpeller
vanes and discs, Ellington (110) has derived frequency equations
for the modes of vibration of turbine blades |aced at their tips.
Pearson (111) and Sabatiuk and Sfsto (112) have discussed the

aero-dynam cs of turbine blade vibration.

As nentioned earlier beam type nodels are not applicable

to low aspect ratio blades. Such blades are generally treated

either as plates (113) or as shells (114).
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1.2.4 Coupl ed Bl ade-Disc Vibration

The existence of coupling between the blades and disc

and its influence on the natural frequencies of bladed rotors

has been denonstrated by both experinental and theoretical studies.

Wth a bladed disc it is found that similar concepts to that of
the unbl aded disc apply; the rotor oscillates in a coupled blade-
disc node characterised by dianetral and circular nodes. The

bl ades being constrained in the disc at the rim wll vibrate in
"bending notion at dianetral anti-nodes, in torsional notion at
nodes, and in conbined bending-torsion el sewhere. The circular
nodes may lie in the disc, but will nore often be located in the
bl ades. This whole pattern nay rotate as in the disc al one case,
and again the dangerous resonant vibration condition corresponds

th

to an m nodal dianeter node exited by the m order of

rotational speed.

The general features of the resonant conditions in a
typical rotor may be illustrated in a Canpbell or interference
diagram Figure 1.2. In this diagramare shown the resonances
predicted assunming rigid blades on a flexible disc, and flexible
bl ades on a rigid disc. For the former assunption the resonances
occur when the n" order of rotational speed is equal to the

frequency of the disc node with m nodal dianeters. For the

SR A rar
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| atter assunption the resonances occur whenever the various
rotational excitation frequencies are equal to a blade natura
frequency. The resonances of the conbined blade disc systemare
modi fied as shown. These resonances again occur when an m noda
di aneter node isexcited by the n%h engine order, and it is
seen that the resulting notion degenerates to essentially disc
vibration with rigid blades at |ow engine order excitationand

hi gh speed, and to blade vibration with a rigid disc at high

engi neexci tationand |ow speed.

The early work reported on the problemis based on
very sinplified nodels. Ellington and McCallion (115) have
investigated the effect of elastic coupling, through the rim of
the disc, on the frequencies of bending vibration using a sinpli-
fied nodel. In this nodel the effect of twist, taper and obliquity
I's neglected and the blades are replaced by uniform blades fixed
to the rimat their roots and vibrating in a plane parallel to the
plane of the disc. For the analysis three adjacent blades are
assumed to be parallel to each other and the portion of the rim
joining themis taken as a straight continuous beam A relation-
ship between three slopes of the beam at the root of three adjacent
bl ades are established and is used in the calculation of the

natural frequencies.

Johnson and Bishop (116) have al so exanmined an idealized
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bl aded rotor consisting of identical mass-spring elenments to
represent the blades, connected to a rigid free mass which
represents the disc. They exanmine the principal nmodes of such
a nmodel "and outline methods for determning the receptances

(dynamc flexibility) of the system

Wagner (2) extended this sinplified nodel, represent-
ing each blade by a single degree of freedom system which has
the sane natural frequency and danping factor as that of a
particul ar node of the blade. These subsystens are attached to

a comon ring representing the disc.

Capriz (117) has devel oped equations for the analysis
of the interaction between the disc and blades. Using available
nurerical methods, "a number of cases of practical interest have
been studied," but, "comparision With experimental results has
put in evidence discrepancies when nodes with |arge nunbers of
nodal dianmeters were considered." No numerical results are pre-
sented in the paper and the paper does not appear to have been

published in a Journal

The first extensive investigations of the problem
appear to be due to Arnstrong (118). Arnstrong et al (1,119)

studi ed the problem by experinental investigation. Arnstrong

carried out experinental tests on nodel rotors with uniform
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discs and uniform untw sted bl ades attached to the disc at varying
stagger angles. Based on approximate receptance relations, he
devel oped a theoretical method for the analysis of the coupled
system and was able to predict satisfactorily the frequencies of
the lower coupl ed nodes of his nodels. The analysis was restricted
to sinple nodel configurations for which receptance relations

could be easily obtained. The application to practical rotors

was outl i ned.

At about the same tine as Armstrong's work, Jager (120)
devel oped a numerical method to predict the coupled system frequen-
cies and node shapes, using a transfer matrix technique based on
a lunmped mass nodel of the disc suggested by Ehrich (51) and a
conventional |unped nass nodel of the blades treated as tw sted
beans. This method was therefore directly applicable to practica
rotors of varying geonetry, and included the stiffening effects
resulting fromrotation. This nethod has been adopted by severa

aircraft engine conpanies.

Dye (3) and Ewi ns (4,5) have studied the effects of
detuni ng upon the vibration characteristics of bladed discs, in
particular the variation in blade stresses which can result when
the bl ades do not have identical frequencies. They concluded that
this effect can result in a variation of vibratory stress from

bl ade to blade by a factor as high as 1.25 approximately,
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Carta (6) describes an aeroelastic instability condition
which is governed by strong coupling between bending and torsion
of the blades resulting fromdisc or shroud dynamc coupling.' This
flutter condition is highly dependent on the coupled bl ade-disc:
shroud node shape, which nust be accurately determned. He assumes
such mode shapes are available froma Jager type cal cul ation (120),
and successfully predicts the instability for a nunber of bl aded

rotors.

Finally, a paper by Stargardter (121), which al so appears
not to have been published in a Journal, describes qualitative
results obtained by vibrating rubber nodels at |ow rotational speeds,
He describes the physical phenonena well, and presents sone intes
resting photographs showing clearly the notions involved wth bl aded

rotors.

1.3 OBJECT OF THE PRESENT INVESTIGATION

Since exact solutions of rotating discs are restricted
to certain sinple geormetry and boundary conditions, numerica
procedures nust be adopted for the analysis of practical turbine
discs and bladed rotors of general geonetry. Although transfer
matri x techni ques have been applied to these problens by Ehrich

(51) and Jager (120), these nethods have two disadvantages. First,
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the use of mass lunping in the mathematical nodel of the system
requires a large nunber of stations to be considered in both disc
and blades if good accuracy is required, particularly for higher
nmodes of wvibration. Secondly, the natural frequencies are obtained
by iterating with the frequency of vibration as a variable, and
seeking the zeros of a frequency determinant, These results in a
requirement for substantial conputing time and storage, and not
infrequently, the nunerical conditioning difficulties with higher

nodes which arise In transfer matrix nethods.

A nore profitable approachwould be to use the finite
el ement technique whi ch has now become firmly established as a
powerful nmethod of analysis, This method allews refinements over
the other nunerical procedures and when applied to the vibration

analysis results in an al gebraic eigen value problem

Al though the circular and annular sector finite elements
devel oped by O son and Lindberg (54) and even triangular el enents
may be used in the vibration analysis of circular and annul ar discs,
the use of these elenents results in an eigenval ue probl em of
considerable magnitude, Inclusion of thickness yariation and
the effects of rotation etc., in these elements would be quite
invol ved. Hence, itis desirable to devel ope sinpler elenents,
particularly suitable for the vibration analysis of turbine discs,

and which take advantage of the nature and geonetry of the problem
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The main objective of this investigation, therefore,
is to develope finite elenents of annular geometry, in which
radi al thickness variation, the effects of in-plane stresses,
and the effects of rotary inertia and transverse shear can be
easily introduced, and to exam ne the behaviour of these elenents

in the analysis of sinple and conplex discs and bl aded rotors.

Attention is to be focussed on devel opi ng nethods of
vibration analysis of rotating discs of general profile and
bl aded discs representative of practical turbine stages. Al though
reliable and efficient nethods are available for the stress
anal ysis of turbine discs, a plane stress finite el enent method
conpatible with the vibration analysis is developed. In the
anal ysis of the bladed rotors, only asinplifiednodel is to be
assuned for the blades and the investigation enphasises the study
of the coupling between the disc and blade motions. A thorough
treatment of the blades in the Iight of the many conplicating
factors involved woul d require substantial anount of additiona

work and hence is not attenpted here.
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CHAPTER 2

VI BRATI ON ANALYSIS OF AXIAL FLOW TURBINE DI SCS

2.1 | NTRCDUCTI ON

In this chapter a finite elenent nmodel which wll
adequately represent a turbine disc having general thickness
profile is devel oped for the vibration analysis of axial flow
turbine discs. The disc is idealized to be both axi symetric
and symmetric about the middle plane. But, any general radia
thickness profile is satisfactorily described by the nodel.
Stiffening effects of in-plane stresses resulting fromcentri-
fugal and thermal |oading and other boundary |oadings, such as
shrinkfit pressure at the hub, and blade loading at the rimare
taken into account. This nethod of analysis which is based on
thin plate theory, is then further extended to include the effects
of transverse shear and rotary inertia, so that the nethod can

be used in the analysis of noderately thick discs

Detailed analysis of stress distribution across the
thi ckness of the'disc is not attenpted; rather, a plane stress
finite element nethod for conputing the average stresses at the

mddl e plane of the disc is developed. \Wile this plane stress




33

finite element nodel has little advantage in accuracy or effi-
ciency over the extensively used finite difference schenes (20,
21), it has the one advantage here of being conpletely compatible
with the anal ysis devel oped for the flexural vibration of the
disc, since many of the matrix relations and operations are

i dentical .

Insection 2.2 thin plate bending finite elenents

having annular and circular geometry and radially varying thickness
and which are particularly suitable for the vibration of thin discs
are devel oped (122). Conpared with other available finite elenents
for this type of problem these new elenents are described by a
remarkably small nunber of degrees of freedom The annul ar el enent
has four degrees of freedom while the circular element has only
two or three. This is achieved by including the nunber of dianetra
nodes in the chosen displacenent function for the element, and in
effect this results in separate solutions for each dianetral node

configuration.

In section 2.3 matrix expressions are derived which
all ow fort he additional stiffness resulting fromin-plane stresses
inathin disc. These assune that the in-plane stress distribution
is known, i.e., precalculated by sonme nmeans or other. In this work
aplane stress annular finite elenent is devel oped and used to

calculate the stress distribution; this appears to be new and could
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be readily extended to handl e buckling problems of discs.

Finally, in section 2.4, two new nethods of incorpo-
rating the effects of transverse shear and rotary inertia are
devel oped, which will allow accurate analysis of noderately

t hi ck discs,

The convergence and accuracy of the finite el enent
model s are in each case critically exam ned by comparision with
exact solutions, where available, and with experinental data,

for both static and vibration problens.

2.2 ANNULAR AND Cl RCULAR THIN PLATE BENDING ELEMENTS
2.2.1 Element Geonetry and Deflection Functions

Figures 2.1 and 2,2 show the annular and circular thin
plate bending finite elements with their associated degrees of
freedom and dianmetral nodes. The annular element is bounded by
two concentric circles and the circular elenent by a single
circle, Any required nunber of dianetral nodes is incorporated

in the elements as follows.

Once the lateral deflection w and the radial slope
@ at any antinode, where ¢ is taken to be zero, are specified,
the deflection and slope at any other point at an angle & from

sone reference antinode can be expressed as, w cos mg and



® cos mE, where m is the nunber of dianmetral nodes. Hence
a suitable deflection function for w, the lateral deflection

of the disc along the radial direction and an antinode, only remains

to be chosen.

Irrespective of the nunber of dianmetral nodes, the

annul ar elenent has four degrees of freedom These are w

l’
;2 , 6-1 , and 52 as shown in Figure 2.1, where 6 is defined
as 6 :-g-z_v, For the circular elenment, as shown in Figure 2.2,

t he nunber of degrees of freedom vary with the number of dianetral
nodes, It should be observed that when mis zero El is zero,
when m is odd ?51 is zero and when mis even both 51 and —8—1
are zero. This indicatesthat while a single deflection function
can be assuned for the annular elenent, three different deflection
functions are to be assuned for the circular element, one for

m= 0, another for m= 1,3,5,...and a third one for m= 2,4,6,...

However, no suitable function could be found for the second case

excepting when m = 1,

The follow ng deflection functions are found suitable

for the different cases nmentioned.

3*
w(r,8)=( a; *toa,r ¥ asr2 + a,r3 ) cos mg (2.1)

for the annular elenent;

w(r,g) =¢( a; + azr2 + a3r3 ) (2.2)

The choice of cos mg in the deflection function can be justified
noting that the exact solution for an axisymmetric plate is of the
form W = f(r) cos mg
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for the circular element with m = 0;

w( r,£) = (ar + a,;r? + a;rd) cos & (2.3)

3
for the circular element with m= 1

wC r,g)=( a1r2 + 32r3 ) cos m§ (2.4)

for the circular element with m= 2,4,6,... where w( r,t )

is the lateral deflection of a point on the mddle surface of the
plate at radius r and angle & neasured from the reference
antinode. The relationship of the deflection functions to those
normal Iy used for a beamelement is evident. The deflection func-
tions for the circular element are chosen considering the fol | ow ng
conditions. For the circular elenment with m= 0 it is necessary
to include the rigid body translation, and with m=1 it is
necessary to include the rigid body rotation about a diameter.

The difficulty with m= 3,5,7,... arises from the need to retain
the linear rotation term but at the same tine ensure that the
circunferential curvature remains finite wnen r = 0. This is

not possible with the sinple formof deflection function chosen.

2.2.2 Henment Stiffness and Inertia Mtrices

The stiffness and inertia matrices of the annul ar
el enment and the three different circular elements are obtained
by substituting the assumed deflection functions into the strain

energy and kinetic energy expressions of the elenents and follow ng
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wel | known procedures (123). For the thin plate annul ar el ement

the strain energy is given by (124), \

1 2r T .
U = 7 J } {x}" [v] {x} r dr dg (2.5)
0 rl
wher e
1 v 0o
wi=p | ! 0 (2.6)
1-v
0 0 5
and
- 8%
31:2
1 3%
xy =1- Tlaa‘: = v 2.7)
T 352
2 w2 W
T 2
oot r o |
Substituting (2.1) for win (2.7)
{x} = I[E] IBd]‘{Ed} cos mE (2.8)

- = ow
— - - — — 2.9
{qd} = [ w; 6, w ) ; 6 Y (2.9)




and

8 -

The matrix

in (2.5)

17
200 r

i

il

r
/2 (g
1

-2

Z@-1 @ -2

de] is given in Table 2.1.

T

4

[3,]

2mtan m&

- 6r
[ (mS - 3)
Ant tan mE

Substituting (2.8)

[E1" [V] [E] [B,] {q )

r cos2 mE dr dg

Therefore the stiffness matrix is given: by

[X,]

or,

h

[K,]

wher e

[k,]

1

T
18,17 k] [B,]

The matrix [kd] is given in Table 2.2

2rr
;7 DTV (8 r cos? mE dr dE

38

(2.10)

(2.11)

T r
rF os T ET (V) LE] (By) r cos® mf dr dz

(2.12)

(2.13)

(2.14)
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The kinetic energy of the annular elenent is given by

27 ¢

1 w (2

T =3 s }ph(r)(-ﬁ) rodr dg (2.15)
0 rl

Substituting (2.1) in (2.15)

21 r e T T )
T = % ;% o n@ {qd}T [B,1° (s} {s} [By) {qy)
0 T
1
r 0052 mE dr dE (2.16)
" Were
{s} = [ 1 r r2 £3]; and the dot denotes tine derivative.

Therefore the inertia matrix is given by

27 T

[Md] = f } p h(r) [Bd]T {S}T‘ {s} [Bd] r c032 m¢ dr dg
i r;
(2.17)
or,
- T 2.18
M1 = (B, [mg] [By] (2.18)
wher e
2r T
[m,] = I % p h(r)' {s}T {s}r (:os2 mE dr dg (2.19)
d 0 rl

The matri X [md] Is given in Table 2.3

In Tables 2.2 and 2.3 the integrals P and Q are.

given by
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r .
P, = On ——— f o) et oar (2.20)
12(1~-v2) r;
and
r 1
q = ©m £ h(r) £t dr (2.21)
r
1
wher e
C=2when m=0 and C=1 when m > 1 (2.22)

The val ues of Py and Qi depend on the function assumed for

h(r). Any desired function can be assumed. |f linear thickness

variation within the element is assuned, then

h(r) = a + Br (2.23)
where
h.r, -~ h,x h, - h
a= ‘*12_ 2L and 8- }:Zfrl (2.24)
2701 2

| f parabolic thickness variation within the element is assumed,

t hen
h(r) = a + Br? (2.25)
wher e
h,r2 - h,r? h, - h
a= li 221; and 8 = i i (2. 26)
r2 - rl rz - rl

The two cases above require the thickness to be known only at the
inner and outer boundaries of the elenent. Any other desired
expressions for h(r) can be assumed and the corresponding val ues

of Pi and Qi eval uat ed.
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The stiffness and inertia matrices of the thin plate

circular elements are derived in a simlar nmanner and these are

given by
o o,T o o}
and (2.27)
31 = (817 (m9] [83]

The matrices [Bg],[kZ], and [mg] and the correspondi ng def -
| ection vector' {qZ} are given in Tables 2.4 to 2.6, for the
three different circular elenents. Here again the integrals B,

and Q are eval uated assumng desired functions for h(r).

These elenent.stiffness matrices [Kd] and inertia
matrices [Mﬁ] can beassembled by conventional nethods to get
the disc system stiffness matrix [KD] and inertia matrix [MD],
for a nodel of the disc conprising several elements. The dynanic

stiffness relation for the disc becones;

{Q) = {IK] -w? DI} {qp) (2.28)
where {q } is the disc deflection vector and '{QD} is the
vector of corresponding generalised forces. For free vibration
of the disc all the terms of {QD} are zero, and Equation 2.28

becomes an al gebraic eigen value problemwhich is solved to yield

the natural frequencies and nmode shapes of the disc. Such a
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cal cul ation woul d be repeated for each dianetral node configu-

ration.

In static problems the inertia matrix [Mb] di sappears
and {QD} is the vector of external generalised forces at the

nodes of the finite el ement nodel of the disc.

Di spl acenent boundary conditions only are applied by
deleting the appropriate rows and colums of the stiffness and

inertia matrices of the disc.

2.2.3 Application to Thin Plate Vibration Problens

The convergence properties and accuracy of the finite
el enents devel oped above for the vibration of thin plates are

exanmi ned by conparing the nondi nensional frequency paraneter

h
A =0 b2 *%o

obtained, wth available exact sol utions. ho and
o]

D, are the thickness and the flexural rigidity of the plates

consi dered. Wen a variable thickness plate is considered, these

are the values at the centre of the plate.

A) For a first exanple, conplete circular plates having
uni form thickness are considered. Wen these plates are nodel | ed
with several annular elenents and one circular element at the
centre as shown in Figure 2.3, the results are restricted to
nodes with m= 0,1,2,4,6, etc., only because of the difficulty

in choosing a suitable deflection function for the circular
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element with odd values of mother than unity. The solutions
obtained for plates with sinply supported, clanmped and free outer
boundaries are given in Tables 2.7 to 2.9, in which m and n are

the dianetral and circular node numbers respectively. These plates
can al so be nodel |l ed by approximating the conplete plate by an
annul ar plate having a very small central hole as shown in Figure
2.3. Only annul ar elements are used in this case and hence results
are obtained for any value of m The results obtained with a
radius ratio a/b = 0.001 for the three cases considered above are
given in Tables 2.10 to 2.12 along with available exact solutions
of conplete circular plates. Conparing results from Tables 2.7 to
2.12 it is seen that the presence of the central hole has only

very small effect and in practical problems the use of annul ar

el ements al one woul d be satisfactory.

Convergence of the solution with nunber of elenents is
seen to be extrenely rapid in all cases and nonotonic from above
as would be expected. Frequencies of engineering accuracy are
obtained with very few elenments; thus the use of nunber of
el ements N = ( Nunber of nodes desired -t 1) will in all cases

give frequencies accurate to approxi mately 2% or better.

In Figure 2.4 the percentage absolute error in the

first six frequencies of the sinply supported plate, calcul ated




using annul ar elenents alone, are plotted agai nst nunber of

el enents used in the nodel

(B) As a second exanple, annular plates of uniform thick-
ness are considered. These are nodelled with the annular elenents
only. Results obtained for plates with radius ratios a/b = 0.1
and 0.5 are given in Tables 2.13 to 2.18 together with the
avai | abl e exact solutions. The remarks made in (A) above regard-
i ng convergence and accuracy of the solution also clearly hold

for these exanples.

©) The third exanple chosen is that of a conplete free

circular plate having parabolic variation in thickness,

h(r) = ho {1 - (r/b)§} , as shown in Figure 2.5, and for which
exact solutions have been obtained by Harris (46), when the plate
is free along the outer boundary. The plate is approxinated by
considering an annular plate with a/b = 0.001 and using only the
annul ar el ements with parabolic thickness variation. The results
are presented in Table 2.19. The effect of using elenents with
l'inear thickness variation instead of parabolic thickness
variation within the elenment is also studied and the results are

given in Table 2.20.

Comparing results of Table 2.19 and 2.20 it will be

noted that convergence is rapid with either nodel, but that while
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t he nodel using parabolic thickness el enents converges nono-
tonically and is an upper bound solution as expected, the conver-
gence of the nodel using linear elenents, where an approximtion \
of the geonetry is nade, is frombelow, at |east for the first
mode, and is not nonotonic for the higher nbdes. Convergence

and accuracy of the finite element solution with true thickness

nmodel ling is quite remarkabl e.

D) In a final exanple, the efficiency of the procedure
usi ng annul ar elenents can be judged by conparision with results
obt ai ned using sector elenments. Such a conparision is made for

a uniformfreeplate in Table (2.21). Ason and Lindberg (54)
nmodel the plate with a grid of three sector elements radially,

and 12 circunferentially. Using symetry their resulting

nodel has 55 degrees of freedom The results obtained with the

3 x 12 grid of sector elenents are conpared with those obtained
using two and four annular element nodels. It is seen that the use
of only two annular elenents, resulting in only Six degrees of
freedom gives nore accurate results than the use of sector elenents.
Moreover the identification of the particular nodes is easier

with the annular elenent. The sector element nodel yields two

val ues of frequency for the (2,0) and (5,0) nodes; these
solutions appear to be associated with nodal dianmeters in the
vibrating plate passing through nodes in the grid nesh, and

passing between the nodes in the grid nesh respectivly.
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It should be pointed out that the use of annul ar
elements will involve solution of the eigen value problem once
for each nodal dianmeter configuration. Notw thstanding this
there remains considerable saving in storage and conputer time
requirements. In addition the use of the sector elements is
ofcourse not restricted to conplete annular and circular plates,

unli ke the annular and circul ar el enents.

Apart from these exanples, where vibration problens
are considered, the elements devel oped here may be applied to
static problens al so, by superposing the solutions obtained by
expressing the applied load in it's Fourier components. The
results of several such studies are briefly described in

Appendi x A

2.3 THE EFFECT OF I N-PLANE STRESSES ON THE VIBRATION OF TH N DI SCS

The stiffening effect of centrifugal and thermnal
stresses is significant in practical rotors, and nust be taken
into account in any realistic analysis. |f centrifugal stresses
only are considered, these are proportional to the square of the
rotational speed, and additional stif'fness terns may be derived
which will also be proportional to the square of the rotationa
speed. Thermal stresses, however, have no relationship with the

rotational speed. This suggests that a nethod of including both
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effects should be fornulated assumng that stresses in the rotor

are already known.

In section 2.3.1 a stiffness matrix is derived which
i s dependent on the in-plane stresses present in the disc. This
matrix sinply adds to the basic elastic matrix equation to give
the total stiffness matrix of the element. The radial and tangen-
tial stress values used in this additional stiffness matrix may
be obtained by any nethod, but in section 2.3.2 a plane stress
annular finite elenent is derived which is used to calculate
these stresses in this work. This has the advantage here being
conpatible with the annular bending elenent, and nmany of the

matrix relations and operations are seen to be identical

The accuracy and convergenceoffirst the nethod of
stress analysis and second the resulting stiffening effect on the
disc vibration, is examned with several numerical exanples in

section 2.3.3.

2.3.1 Additional Stiffness Mtrix for the Annular El enent due to

I n-Pl ane Stresses

When in-plane radial stress 0. and tangential stress

o, are present at the mddle plane of the annular thin plate

£
element, the following additional terns arise in the strain energy
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equation (124), of the annular elenent, Figure 2.1,

ow (2

U = %. FTF o (29428 3£ I hE) rodrod

r= or rz(
(2.29)
Assunming the deflection function, Equation 2.1, as before, and
substituting in the above strain energy expression, additiona
stiffness coefficients for the annular element are readily

derived corresponding to the deflection vector,

T -
{ggb = [w 8 v, 8,1 (2.30)

The additional stiffness matrix is

a

[K3]

= [Bd]T [k31 [B,] (2.31)

where the matrices [B;] and [kzl are given in Tables 2.1 and
2.22 The integrals R, and S, appearing in the elenents of the

mat ri x IkZ] are given by

. r .
R, = anl - h(r) (rr(r) dr (2.32)
Y i .
s, = Cnfr h(r) 0y () dr (2.33)
1

It is convenient to assume linear variations, within the el enent,

of h(r) , or(r) , and,.(r) requiring that the values need only

g
be known at the nodal points.
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assum ng

h(r) = a« + Br ; o.(r) = ¢ + dr ; and og(r) = e+ fr (2.34)

e

t hen
@ = (hyry ~ hyr )/ () = r;) 5 8 = (h, - b))/ (r, - 1)
¢ = (Ur]_rz - chrl)/(r?_ = rl) ;d=(0'r2— Crl)/(rz - rl)
e = (orgla:2 - ngrl)/(rz - rl) s f = (Cg?_ - ogl)/(r2 - rl)
(2.35)
and
oy
R, = Crfr (a+6r)(c+dr) dr (2.36)
ry
T2 4
8, = Cnm fr (a + Br) (e + fr) dr (2.37)
r
1

2.3.2 Plane Stress Finite El enent For Thin Discs

Wien a disc rotates at speed, very high radial and
tangential stresses are generally produced by the centrifuga
inertia force. The presence of radial tenperature gradient can
substantially nodify the total stress distribution and in
extrenme cases has been known to result in buckling at the rim
Shrinkfit pressure at the hub, in certain cases, can also nodify

the centrifugal stress distribution. The result of all these

effects produces an in-plane stress distribution in the disc,
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whi ch changes the flexural stiffness of the disc. The variation
of these stresses across the thickness of the disc is generally

ignored in axial flowrotors.

By taking advantage of the axisymmetric nature of the
problem plane stress finite elements of annular and circul ar
geonetry are devel oped bel ow for use in the stress analysis of
discs. These elenments incorporate radial thickness variation.
Consi stent |oad vectors (123) are used to replace the continuously
distributed centrifugal and thermal |oading, or any other axisym-

metric external |oading on either boundary.

Consi der the axisymetric stretching of an annul ar

element with inner radius r, and outer radius r, and radially

1 2
varying thickness nh(r) . The geonetry and deflections of the
el enent are shown in Figure 2.6. The strain energy in the el enent

is given by (124),

r

U='}~ LfEh(r'){s:2+ez+2s:e}rdr (2.38)
2 (1 - v2) ry T £ r &

The radial and tangential strains in this case are

= du | - .
e = IF and e = (2.39)

where u is the radial displacenent. Substituting the deflection

function

U(r) = a, + a,r + a;r’ +ar (2. 40)
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in the strain energy expression and follow ng standard procedure
we arrive at the followi ng expression for the stiffness matrix

for the elenent,

Py - T P
corresponding to the deflection vector

{q )"

= [u1 61 u, 92] (2.42)

wher e

The matrics [Bd] and [kg]. are given in Tables 2.1 and 2. 30.

The integrals Q, in Table 2.30 are given by

/ h(r) r’ dr (2.43)

[f linear thickness variation wthin the elenment is assumed, then

h(xr) = o + Br (2.44)
wher e
h.r, - h,r h, - Hh
a = 12—-‘21 and 8 = rz _ r:_l‘ (245)
top T 1 2" "1
t hen,
Ty
Q - ZE ¢ (avBr) £t dr (2. 46)
1-vZ 71
When r, = 0 , the geonetry of the el enent becomes

circular. In this case u, = 0 and the elenent has only three

1
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degrees of freedom and

T

{q} [ 6; u, 0, 1] (2.47)

By assuming the deflection function

_ 2 3
u(r) = a;r + a,r + a,t (2.48)

the stiffness matrix of the elenent becomes,

]T

[Kgo] = [3, [kgoj [B_] (2.49)

The matrices [B ] and [k ] are given in Tables 2.4 and 2.31.
The integrals Q, in Table 2.31 are given by

2
h(r) b ar (2.50)

M R

21 E
Qio = .
1~ v? 1

Agai n when linear thickness variation is assumed within this el enent

h(r) = a + 8r (2.51)
wher e
a=h1 and B = (h, - h,)/r
then
_ 21 E “ i
Qi0 o2 r{ (o + Br) r~ dr (2.52)

The el enent stiffness matrices [Kg] can be assenbl ed
by conventional nethods to get the disc system stiffness matrix
[KBJ. Now, theequilibriuntondition requires the following relation

to be satisfied:;

oy} = [KY {aqp) (2.53)
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wher e {QD} is the vector of generalised nodal forces and {qD}

is the vector of unknown nodal displacenents.

Onl'y displacenent boundary conditions should be applied
by deleting rows and colums in [KS] corresponding to displace-
ments which are zero. Often the turbine disc is considered to be
free at either boundary while analysing the stresses in the disc;
her e [Kg] is not reduced. The sinmultaneous equations given by
the relation (2.53) may be solved by conventional procedures; if

matrix inversion is followed then,

tap) = [B17H gy} (2.54)

Thus all the nodal displacenents are obtained.

The | oad vector {QD} conprises several contributions
Thus the following should be considered.
(a) Rim | oading resulting from bl ades should be added at the
appropriate position of the vector. {QD}. If the number
of blades present is Z each with mass n* and centre

of gravity at radius F% and if the rotational speed

is Q rad./sec., then this loading is Zm*QzRg.
(b) Shrinkfit pressure at the hub results in sone |oading
at the inner radius a and is given by 27 a Uoh(a),

wher e o, is the shrinkfit pressure and h(a) the

t hi ckness at radi us a.
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(c) Distributed centrifugal |oading.

(d) Distributed thermal gradient |oading
For (c) and (d) equivalent consistent vectors of nodal forces are
obt ai nedbyequating work done by the hypothetical nodal forces to

work done by distributed centrifugal and thermal _ [oading

Consider the distributed centrifugal inertia |oading
first. Wen the disc is rotating with constant angular velocity
2 , by, equating the work done by the hypothetical nodal forces

to the work done by the centrifugal force in the annular elenent,

we obtain
T 2 ' 2
{qd} {fc} = [ [ F(r) u(r) (2.55)
0 r
1
wher e
{q )" = [u, 0 u, 8, ] (2.56)
{fc} - consistent vector of nodal |oads.
F(x) = p Q? 2 h(r) dr dg .57)
and
u@ = [ 1 r 2 22 ) (8] {a} 2. 58)
d d '
Substituting for F(r) and u(r) in (2.55)
_ T
{fc} = [B,] {g} (2.59)
wher e
' - [ 8, 85 8, 85l (2.60)
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n
and -

2 \
g, = 2mpR2 f h(r) r' dr (2.61)

1 \

VWhen linear thickness variation within the elenent is assuned, then

h(r) = a+ Br (2.62)
and
h.r., - bh.r h, - h
a= _l_Z_:__Z_l and B8 = ;E_Z_EL (2.63)
| 2~ 1
t hen
r 1
g, = 2102 F (a+Br)r dr (2. 64)
1

When the disc is subjected to axisymretrical radial
tenperature gradient the thernal |oading is replaced by the consistent

vector given below.  For the annular elenent,

g '%‘i o 1 2r 32
r .
= Ju | 11 2 | [Bgd {ag]
eg = LF— 1 T r
= [E] [B4] {q4} (2. 65)

Crr - E 1 v €r _ Ea* T(x) 1] (2. 66)
o 1 - v2 v 1 e 1-v 1
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wher e
a* — coefficient of thermal expansion of the material of
the disc.
. %
T(r) - tenperature at any radius r.
Equating the work done by the tenperature gradient to that by
the consistent |oad vector {£,}
r
27 2 .
: : S T T v
for e e " E" Y [8) B {q )

Orll—-\) [

5o o 7(r) 13,07 (51T {qd}T[]l_J}hm rodr de

= {qt" KB {q) - {qy}t {£,) (2.67)
Now, .
27 2
P _ E T, .T 1 v “
(G1 = 1T (Bl [v J[E] [B,] h(x) r dr dt
1
(2.68)
Therefore
: ‘2
(g, = FZE 0" s T(r) [Et B] r dr dt
l’.‘l -
= 8,]" (g} (2.69)
wher e
{g} = [ g, 8, 8, 85 1 (2.70)
and
g; = ]2_“%0‘: J h() T() r* dr (2.71)

* Note that T(r) is the change in temperature froma stress free
tenperature state.
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Wen linear thickness and tenperature variations within the

el enent are assumed, then

h(x) = a + r (2.72)
wher e
h.r, - h.r h, - h
o= 221 gng p= 2 1L (2.73)
2 1 275
and
T(x) = ¢ + dr 2. 74)
wher e
T.x, - T.r T, - T
1
c= ——;2—:—;3—l and d = 2 1 (2.75)
2 "1 T2 T

and therefore,
r

2
. 2mEa¥*
g =PI L @ ok dn et dr (2.76)
1

‘As already nentioned the load vector {QD} conpri ses
of the above individual contributions where applicable. poy
Equation 2.54 can be solved to obtain the system displ acenent

vector.  The stresses are then calculated as follows. | the

case of axisymetric stretching of the disc the shearing stress

T_, IS zero and hence the stress strain relationship becones,

r§
orr _ _E 1 v er _E o*I(x) 1 2.77)
o 1-v2 |y 1 e 1= 1 o

The last termon the right hand side of the above equation
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vani shes if there is no tenperature gradient. Now the strain vector
can be expressed in terns of the assuned deflection function; which

in effect gives a relationship betweenstrain and the nodal displace-

nments.

] [
r - dr
€ u
r

The above relationship together with Equation 2.77 can be used to

o | [B41 {q,] (2.78)

I
ik o©

get the stresses o and o, at any radius r. In such a situ-

12
ation A{qd} is the deflection vector of the el ement inside which

the point in question |ies.

Cenerally we are interested in the stresses at the
nodal points of the model only, and the follow ng procedure shoul d
be followed. Consider an el enent between nodes i and i+l .
The deflection vector of this elenent is

{qd}T = [ u, 6 u

i i i+l ei+1I (2.79)

This vector is obtained fromthe system deflection vector {qD}.

Now, making use of the relationships (2.77) and (2.78), we get

- - 2 b
o ﬁ v 0 0] |0 1 2r, 3r]
o.. v 100/ |t 1r 2
gl E . i i *
= ' 2 |(B{qy - 25
Gri+l 12 0 0 1 v 0 1 2ri+l 3ri+1 d d 1-v
1 2
- i1 0 0 v O r Lryr Tinn

(2. 80)
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When there is no tenperature gradient in the disc the last term
in the above equation vanishes. These same stresses can be found
using the deflection vectors of the adjacent elements also. Note
that in this case the stresses at a node are uniquely defined
since both u and du/dr happen to be degrees of freedom chosen;
thus there will not be any difference in the values calcul ated

usi ng adj acent el enents.

2.3.3 Nurmerical Applications

The convergence properties and accuracy of the plane
stress annul ar el ement devel oped are first exanm ned by conparing
with exact solutions the values of stresses calculated using these
el ements. Both centrifugal and thermal [oading are considered.

The accuracy of the use of the additional stiffness coefficients
derived for the vibration of rotating discs is then assessed by
conparing frequency values calculated with these coefficients and

the thin plate annular elements, with exact and experinental val ues.

(a) First uniformannular discs with the extreme val ue of
a/b = 0.001 and the nore typical value 0.2, rotating with uniform
angul ar velocity @ were considered. Radial stress coefficients

p = (a%[o'ﬂzbz) x 10% and tangential stress coefficients q = (o, /

pQ2 b2) x 10 were calculated for these discs with the plane




60

stress annular elements, and these are given in Tables 2.25 to 2.28
along with exact solutions. Fromthese results it is seen that
when a/b is very small, 0.001, the finite element results are in
error at the inner boundary and are unacceptable. However, at
points away from the inner boundary, agreenent between finite

el ement and exact solutions is good. For such cases it is neces-
sary to use many elenents, eg. 8 or 16 elenents, in Tables 2.25 and
2.26, and to disregard the stress value obtained at the inner
.boundary. When the value of a/b is increased to 0.2, the finite
el ement results at the inner boundary also become very much cl oser
to the exact values, Tables 2.27 and 2.28. In both cases conver-
gence is rapid and results with engineering accuracy are obtained
with four to eight elenents. In Figure 2.7, the stress coeffici-
ents p "and g calculated, for adisc with a/b = 0.2, using

pl ane stress annular elenents are conpared with exact solutions

graphical ly.

®) For a second exanple, an annular disc with a/b = 0.2
and hyperbolic radial thickness variation (17), h(r) = h(b)/ri,
when i = 1, rotating with uniform angular velocity 2 was
considered. The stress coefficients p and q obtained with
pl ane stress annular elements with |inear thickness variation
are given in Tables 2.29 and 2.30 along with exact solutions.
Agreenent between finite elenment and exact solutions is good and

convergence is rapid with increasing number of elements.
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©) Next, tenperature stresses in two uniform annul ar discs
with a/b = 0.001 and 0.2 were considered. The discs were subjected
to radially varying tenperature gradient, T(r) = T(b) %. Radi a

stress coefficients p = {or/ E * T(b)} x 10} and tangential stress

coefficients q ='{GE/ Ea* T(b)) x 10%, calculated with the plane
stress annular elenents, are given in Tables 2.31 to 2.34, along
with exact solutions. Remarks nmade under (A) above, regarding

accuracy and convergence of results, hold for these cases also.

(§3)) The stresses obtained using plane stress elenents are
now used as initial in-plane stresses in the vibration analysis of
rotating discs. Ignoring bending stiffness of the disc and consi-
dering only the stiffness due to the initial stresses, frequency
coefficients A= @ﬁ/ 2 )2 of the menbrane disc, where w0y I's the
natural frequency of the menbrane disc and 2 , the speed of
rotation, were calculated. The val ues of A obtained,

for a centrally clanped disc, are given in Table 2.35 al ong

with the exact values given by Lanb and Southwel | (47). These
values were also cal cul ated taking exact stress values at noda
points and are given in Table 2.36. A value of a/b = 0.001 was
assuned to facilitate nmodelling the disc with annular elenents
only. In both cases linear variations of the stresses within the

el ement were assuned. In either case the nenbrane frequencies

are calculated within 3% or better using only four elenents
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(E) Finally, the variation of the natural frequencies wth
speed of rotation of a thin annular disc with a/b = 0.5 b =8.0in.
and h = 0.04 in. was studied. Both the disc bending stiffness and
the additional stiffness resulting from centrifugal stresses were
considered together. Natural frequencies © o of this disc rotating
at 0, 1000, .., 4000 rpm calculated using eight thin plate bending
and plane stress annular elenents are given in Table 2.37.  Conver-
gence of results with increasing nunber of elements, for 3000 rpm
-are shown in Table 2.38. The relationship between the natural

f requenci es © of a rotating disc and the harnonic exeitation

frequency ¢ is given by (73)

Z = m Q (2.81)

where m is the nunber of nodal dianmeters and @ is the speed of
rotation of the disc. Mte and Nieh (73) have neasured experi-
mentally values of ¢ for this disc. In Figure 2.8 values of ¢
obtained fromfinite elenment results have been plotted against
rpm for the first node of diametral nodes 0 to 5. The cal cul ated
frequencies lie very close to the experimental points show ng

excel | ent agreement between these results.

2.4 THE EFFECT OF TRANSVERSE SHEAR AND ROTARY | NERTI A ON THE
VIBRATION OF MODERATELY TH CK DI SCS

Conputed frequencies using thin plate theory are always

found to be higher than the experinentally measured ones when thick
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discs and the higher nodes of relatively thin discs are considered.
An inproved plate theory, which considers transverse shear and
rotary inertia, would result in satisfactory analysis when the
discs are noderately thick. The effect of transverse shear is

to produce additional rotation and deflection; and that of rotary
inertia is to increase the inertia. Thus both these effects serve

to decrease the conputed frequencies.

A coefficient «? ,known as shear coefficient, is
introduced to take into account the shear stress distribution
across the depth of the plate." Mndlin (62) has used a value
k2 - n2/12, which is close to the normal |y used val ue of 5/6 for
rectangul ar section Tinoshcnko beam Wen noderately thick uniform
circular and annular plates are considered the frequency deter-
mnants derived by Callahan (66) and Bakshi and Callahan (67) can
be used; however, as nentioned previously, there is'no sinple

exact solution for thick discs of varying thickness.

In this section, a finite element approach is descri-
bed which can readily be used in the analysis of discs with
radial thickness variation. Two new finite elenents, both of
annul ar geonetry and having radial thickness taper, are devel oped.
These elements require additional degrees of freedom totake into
account transverse shear effects. The efficiency of these elenents
I's exam ned by conparing calcul ated frequency val ues wth experi-

mental val ues published by other investigators. For uniformdiscs,
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the exact values are conputed using Mndlin's theory for compa-
rision with finite element results. These exact values use the
met hod of Bakshi and Cal | ahan (67), Since their paper contains
many typographical errors the frequency determnant resulting
for a free annular plate is given along with a brief sunmary

of Mndlin's equations in Appendix B.

In the finite elenent analysis of noderately thick
turbine discs, additional strain energy due to transverse shear
and addftional kinetic energy due to rotary inertia must be
taken into account in obtaining the el ement matrices. For an
annul ar elenent, the conplete strain energy and Kkinetic energy
expressions are given bel ow when these additional energies are

included (62).

1 v 0
1 2r "2 T 4
v =3 f /D {xb} v 1 0 {Xb}r drdg
0 r '
1 0 0 1-v
_ 2
or T2
B 2 T {1 0y , -
t 5 Of é’ltc Gh(x) {Xs} E) I‘J {xs}r drdg (2.82)
wher e
‘Y‘,-I Yr
x I= (2.83)
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and
e
or
gt = |1 e (2.84
r r 3%
1 %
r o T or
and
1 2« r2
T = 5 1 5 o) 5% x ardg
0O r
1
21 2 3. 5y e
1. “ph>(xr) r.2 . E,2
R A vl B v SRR G v R (2.85)
0r
1
wher e
- _ ow . e . 18w 2.86
’l’r = - 3t +Yr ’ ‘vpg r 3€ +Yg ( )

and, Y, and Ve are the additional radial and circunferential

rotations resulting fromtransverse shear.
2.,4.1 Annular Plate Bending Finite El ements Including Transverse
Shear And Rotary Inertia.

(A} Thick Disc El enent-|

In this case, in addition to the total deflections w

and radial rotations Er al ong an antinode at either boundary of
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the annul ar elenent, the radial and tangential shear rotations

?; and 7?€ are taken as additional degrees of freedom Figure 2.9
shows this element with two nodal diameters and the degrees of
freedom consi dered, Hence, the deflection vector, which has

ei ght degrees of freedom is

lag" = Dwy ¥y Yo Y W2 Vg Yoo Yeo ! (2.87)
This fornulation of the element configuration follows closly
that of Pryor et al (125), who recently examned the static
| oading solutions for thick plates using rectangular finite
el ements.  Now, assum ng the deflection functions

w(r,t)=(, + a,r + arz-l-ar3)COS mg

? 1 2 3 4
Yr(r,g) = @5 + a6r) CO0S m§ (2.88)

Yg(r,g) = (a7 + a8r) sin mg

and substituting these into the energy equations, Equations 2.82

and 2.85, we obtain the stiffness and inertia natrices of the

el enent as
t t T .. t t
IKd] = IBdJ Ikd] [Bd]
and (2.89)
mil = (31" [mgl I8])
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wher e
— 3
1 9
Iy I "12 0 0 0 1
0 =1 -2r, -3r; 1 r 0 0
0 0 0 0 1 0 0
[le—k 0 0 0 0 0 0 1 F1 | (2.90)
1 r, T, r, 0 0 0 0
0 =l -2r, -3, | r, 0 0
L 00 It i It f f,0 L 01
and
- 1—1
Ik,] k]
kb = (2.91)
d LT 2]
(k4] d ]

The matrix [k,1is the sane matrix of the thin plate bending
annul ar el ement devel oped in section 2.2.2 and is given in Table 2.2.

The matrices Ik(lij and [kﬁ] are given in Table 2.39, where

r r
E 2 i 2 2 i
P, = Cn ——— [ h3(x) rdr; Q; =Cm6xk?/ h(r) r7dr
1 120-v2) 1, r,
(2.92)
[m.] [0]
o] = r " + [mt] (2.93)
d d
I

0] 10]
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wher e ) :
1 r; ry ry 0 0 0 0
2
0 -1 —Zrl —3r1 1 r1 0 0
0 0 0 0 1 r1 0 0
R o 0 0 0 0 0 1 x| g4
2 3
1 r, r2 T, 0 0 0 0
0 -1 ~2r2 —3r2 1 r, 0 0
0 0 0 0 1 r, 0 0
0 0 0 0 0 0 1 r,
and
~ L]
Ide [kd]
kb = (2.91)
d 1T 2
[kd] [kd]

The matrix [kd]is the same matrix of the thin plate bending

annul ar el enent devel oped in section 2.2.2 and is given in Table 2.2.

The matrices Iki] and Ikﬁ] are given in Table 2.39, where

(2.92)

r2 . r2 i
P, = on —E — f n3() rldr; Q. =Ct6x2f h(r) ridr
i 12(1-v?) r, r,
[m.] [0]
d 1
_[mctl] + Iny) (2.93)

I0] 10}
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wher e [md]is the same matrix of the thin plate bending annul ar
el enent, developed in section 2.2.2, and is given in Table 2.3

The matrix [mi] is given in Table 2.40, where
r2 .
P, = Crf- s B3@)  dr (2.94)
1
Li near thickness variation can be assumed within the el enent

in evaluating the integrals, Equations 2.92 and 2.94.

Wien this element is used the follow ng boundary

conditions should be satisfied.

Sinply supported boundary w= 0
O anped boundary w=20; ﬁ% =0
Free boundary ?; =0

(B) Thick Disc El enent-2

An alternative nmethod of considering the effects of
transverse shear and rotary inertia is to treat separately the
deformations due to bending and transverse shear. The effici-
ency of this approach was first examined in the static bending
anal ysis of thick rectangular plates and this work is described
with sone detail in Appendix C. It is denmonstrated that this
approach has considerabl e advantages for static problens (126).

Bel ow, this method of analysis is applied to the vibration
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anal ysis of noderately thick circular plates. An annular plate
bending element with eight degrees of freedomis developed. In
this elenent, in addition to the deflections and rotations due
to bending, those due to transverse shear are taken to be the

addi tional degrees of freedom

In the formulation of this finite elenment, the contri-

buti ons of bending and transverse shear are separated, thus
w= W o+ W (2.95)

and further it is assuned that the rotations ¢_ and wg are

r

due to bending al one.

b b
= oW = o 13w
Ve = = “5p and ¢£ " r 3E (2.96)

Then the rotations T, and e are due to shear deformation

al one.

0

S
_ ow _ 1 3w
Y, = m e and Ye = " T E (2.97)

Taking these shear deflections and rotations in addition to those
due to bending as degrees of freedom the deflection vector Of

the elenent Is

=
{qd}
{qy) = (2.98)
| o
{qd}
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wher e

T L —1 -
{qd} = [;ﬁi lpr:l Wg 11)r2:l

and

: T
—sd_ s =
tagh = 1wy Tr1

i
~

2]

N
—

Figure 2.10 shows this element with two nodal diameters and the

degrees of freedom Assuming the deflection functions,

(a +ar+ar2+a4r3)cosmg

1 2 3

I

W (r,£)
(2.99)

ws(r,g) (35 f%r-l -a]r2 + a8r3) C0S mg

and substituting in the energy expressions, Equations 2.82 and

2.85, we obtain the stiffness and inertia matrices.

t t,T t t
[Kgd = [Bg1" [k [B]]
and (2.100)
Bl = (8317 [m5] [BS]
wher e
[ [B,] [0]°]
[Bfll = (2.101)
[0] [B,]
d
and - J
[ Ik,] [0] ]
[ksl = (2.102)
[oJ [kﬁJJ
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where the matrices [B ] and [kyl are the sane as those of
the annular thin plate bending element, developed in section

2,2.2, and are given in Tables 2.1 and 2.2. The matrix [kZ]

is given in Table 2.41, where
r

2
Q; = cr k2 | B dr (2.103)
r
1
and
X Im,] [m,] my] (0]
[my] = + (2.104)
Imd] Imd] [0] [0]

where the matrix [md] is the same as that of the thin plate
bending annul ar el ement, devel oped in section 2.2.2, and is
given in Table 2.3. The matrix [m:;] is given in Table 2.42,
wher e

r
2

. =cr & ;1 h@<dr (2.105)
T1

When this'element is used the follow ng boundary

conditions should be satisfied.

Sinply supported boundary =0 s w= 0
d anped boundary =0 ;=0 ; ¥ =0
Free boundary Y. =0
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2.4.2 Nurerical Applications

The efficiency and convergence properties of these
two thick disc elenents are now exam ned by conparing frequency
val ues conputed using these elenents wth experimental data
for both uniformand nonuniformdiscs. In the case of uniform

discs, the exact values are also calculated using Mindlin's

theory for comparision.

(A) The first exanple is a small circular disc 75 nmin
dianeter and 5 mm thick, for which sone of the experimenta
frequencies are given by Onoe and Yano (68). A small hole is
assuned at the centre of the disc with a/b = 0.001. Frequencies
cal cul ated using both thick disc elements are given in Tables 2.43
and 2.44, along with exact and experinental values. Mbdes of
vibration with m= 0to 3 are considered. Conparision of results
in Tables 2.43 and 2.44 shows little difference between results

of Elenent-l1 and El enent-2; and both results conpare well with
exact and experinental data. The disc was conpletely free and
therefore free body nodes exist for m= 0 and 1. |In these cases
convergence is frombelow, atleast for the first node. |In al

the other cases-convergence is from above, as woul d be expected,

and is rapid.

(B) A nunber of fairly thick discs and rings were chosen

as the second exanple, The dinensions of these discs and rings
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are given in Tables 2.45 and 2.46 along with the first frequency
(m=2, n=0) values calculated using these thick disc elenents.
Experinental results are given by Peterson (71) for all these
cases. Conparision of results in Tables 2.45 and 2.46 shows

that when conplete discs are considered both the elenents
performwell and cal cul ated and experinental results are close.
But in the case of rings Elenent-1 gives good results whereas
there is a large difference between cal cul ated and experinenta
values with Elenment-2. Practically there is no convergence with
this elenment. Such poor performance of Elenent-2 may be due to
the difficulty in inposing correct boundary conditions when this

el ement is used

©) As the third exanple two rings with different thick
nesses were chosen. Experinental results for these rings for
m=2and n =0 are given by Rao(27); and are originally due to
Peterson (71). Only Elenent-l1 is used in this case and the

cal culated frequencies are given in Table 2.47 along with exact
and experimental results. The dinensions of these rings are
also given in Table 2.47. Agreenent between the cal cul ated and

experinental results isS good.

) Discs with stepped section and fillets were exam ned
next. Three such discs were considered. Except the web thickness

other dinensions are the sane, Figure 2.11. Only one frequency
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(m =2, n= 0) in each case was calculated and are given in
Table 2.48 along with experinental values. Agreenent between
cal cul ated and experimental values is good. These discs were

model led with five elenents as shown in Figure 2.11

(E) The final exanple chosen is a practical turbine disc.
The dinensions, nmaterial constants and experinentally measured
frequencies for this disc were provided by Dr. E. K Arnstrong
of Rolls-Royce (1971) Ltd. The profile of this disc is given

in Figure 2.12, and the thickness at various radial distances
are given in Table 2.49. This disc was nodelled with 4, 6 and

8 elenents using Element-1, and the mass of castellations
present at the end of the disc was |unped at the outer boundary,
Finite elenent results are given along with experimental frequen-
cies in Table 2.50. Frequencies calculated using 8 thin plate
el ements also are given for comparision. Values calculated with
thick disc elements are in much closer agreement with the
experimental results. It is also perhaps worth noting that the
error between calculated frequencies, with & elenents, and
experinental values is consistently 6% to 8% high; this suggests
the possibility that the nom nal modulus of elasticity used

my be in error.
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CHAPTER 3

VI BRATI ON ANALYSIS OF AXIAL FLOWN TTJRBI NE BLADES

3.1 | NTRODUCTI ON

Since the purpose of this investigation has nore enpha-
sis on the coupling effect between the disc and the array of
blades in a bladed disc, a refined analysis of the blade is not
attenpted here. Mich work has been published on this area, as
was noted in the literature survey in chapter 1, and severa
net hods of analysis of blade al one case are available. Such
met hods consider the blade with its aerofoil section and nost of
the other conplicating factors such as canber, pretw st, |ongitu-

dinal taper, root flexibility etc

In this investigation the blade is idealized to behave
as a beam having arbitrary variations in section properties and
pretwist along its span. It is assumed that the centroidal and
flexural axes coincide, ie the shear centre coincides with the
centroid and there is no coupling between bending and torsion

wi thin the bl ade.

In section 3.2 an idealization of a bl ade segnent

using available beamfinite elenents is outlined. The effect of
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and the presence of other stresses in the blade nodifies substan-
tially the natural frequencies of the blade. Therefore, in
section 3.3, additional stiffness coefficients resulting from
these effects are derived to be included in the bending and
torsional stiffness matrices of the elenent chosen. In section
3.4 a new beam bending finite element with six degrees of freedom
is devel oped; where transverse shear and rotary inertia effects
are taken into account. Finally in section 3.5, the method of

anal ysis of pretw sted blades is described.

Nurerical results showing the effects of rotation,
transverse shear and rotary inertia and pretw st are given along

with other avail able sol utions,

3.2 MODELLI NG OF BLADE SEGMENTS USI NG AVAI LABLE BEAM FI NI TE ELIMENTS

Figure 3.1 shows anonuniform blade element with the
coordi nate systemchosen. Oz is the engine axis and Oy and Ox
are the tangential and radial directions respectively. The ninor
principal axis Qz* of the blade cross-section is inclined at an
angle 6§ to the engine axis Qz. Wen this blade elenent is
consi dered to behave according to Euler-Bernoulli beam theory,
wel | known beam finite elenments described by several authors
(78,79) can be used. In such cases, the elenent has four degrees

of freedomin each principal direction in bending and two in
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torsion. These are, as shown in Figure 3.1, vf,w*, vg and

¢§ in bending along the minor principal direction, wf,e W

*, wk
1 72

and 6§ in bending along the major principal direction and ¢l
and ¢, intorsion. Since there is no coupling between bending
in the principal directions and between bending and torsion, the
el enent matrices are not coupled. Therefore corresponding to

the di splacenent vector,
w3 o [ vk Yx vE k wk 6% wk 0% oF ¢ ] (3.1)
{a5) 1%V 3 92 °1 3
the element stiffness and inertia matrices are given by
1 (o1 [0]

(0] IK] [0]
[ol 101 IK]

[K¥]

(3.2)
M1 1ol [0l
Dl =101 DY) [01
[0] [0l  DgI
where y* and ¢* are defined as
‘b*=_.g_§* and 6*=—-—g—:-q{'* (3.3)

[KZ] and [ME] are the bending stiffness and inertia matrices

along the mnor principal direction, sz] and [M:] are the
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bending stiffness and inertia matrices along the major principa
direction and [Kg] and [ME] are the torsional stiffness and
inertia matrices. Matrices [KZ] and [Kg] are identical and
can be defined by the matrix [KE] in which appropriate val ues
of nmonent of inertia corresponding to the required direction
shoul d be used. Matrices [MZ] and [MZ] are the same when

rotary inertia is ignored and can be defined by the matrix [Mﬁ]-

In Tables 3.1 and 3.2 matrices [Kﬁl, [Mil, [K§] and
[ME] are given for a beam el ement when |inear variations of the
noment of inertia |, the area of cross-section A the torsiona

stiffness KG’ and the polar roment of inertia J are assumed.

3.3 EFFECT OF ROTATI ON

The additional terns arising in the energy expression

of a blade element rotating with angular velocity @ are given

by (90)
*2 )
1 “p oW 2 BV, 2 _1 2 2
U = 3 I A GX{ (—",ax) + (-—,3X3 } dx 5 pQ% [ A (v)” dx

x x

1 1

X X

=2 2

1 39, 2. p&? _ 2 ,
+ > fcx J (ax) dx - 5 s (Imax Imin)(¢) cos 28 dx
*1 X1

(3. 4)

wher e o Is the stress along the length of the blade resulting
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from rotation. It should be noted that since 0z is the engine
axis and Oy the tangential direction, the deflections w and v

are perpendicular and parallel to the plane of rotation. Assu~

mng the deflection functions,

2 3
v () a; + a,x + a4% + a,x

i

2 3
w(x) ab + agx + ax + agx (3.5)

¢ (x) =agt a

10*

which are used to derive the basic beam matrices given in Tables
3.1 and 3.2, and substituting in the above strain energy equation

we arrive at the additional stiffness matrix corresponding to

the deflection vector

{ag)" = [vy ¥ wp 8 ¢ vy ¥y w, 8, ¢, 1 (.6

as

K1 = [331" [T [8]] (3.7)
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wher e
1x, ox XX 0.0 0 0 0 0
0 -1 -2x;, -3xf 0 0 0 0 o0 0
2 3
0 0 0 0 1 x x x 0 0
0 00 0 0 -1 -2x, -3 0 0
B17=[o0 0o 0o 0 0 0 0 0 1 x (3.8)
2 3
1 X, X, X, 0 0 0 0 0
0 -1 -2¢, -3 0 0 0 0O 0 O
2 .3
0 0 0 0 1 X, X, X, 0 0
0 00 0 0 -1 -2x, -3 0 0
o 0 0 0 0 0 0 0 1 x
and
Ca -
(k31 (o] [0]
(1 = | fo] 21 [o] (3.9)
[0l 0]  [x]]

where the matrices [kj], [kva]] and [ki] are given bel ow.

0 0 0 o |
0 RO 2R, 3R,
a =
IK?) 0 2R, 4R, 6R, (3.10)
0 3R2 6R3 9R 4
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S0 51 S, Sy
. s1 Ro+s2 2R1+53 3R2+s4
[kw] = (3.11)
s2 2Rl+33 4R2+s4 6R3+S5
s3 3R2+s4 6R3+s5 9R4+S6
In the above matrices
x2 L X2 .
Ro= fo Ax dx and S, = -0 Q20 A x dx (3.12)
=1 *
and
s s.
g =] 0 . (3.13
Sl R0+82
wher e
X2 i
Ri =/ o, J x~ dx
xl x2
— 2 ~ i
si = -p@0®cos 26 /(1 -T.)x dx (3.14)
X
1
J = (Imax+1min)

It is perhaps worth noting that the deflection vector
{qb} given by Equation 3.6 is different from'{qﬁ} given by
Equation 3.1. The bending displacements and rotations in vector
{qb} are neasured along the engine axis 0z and tangential direc-

tion Oy, whereas those in vector' {qg} are measured along the
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principal directions 0z* and Oy*. The torsional displacements
in both cases are the sane and are along the Ox axis.  Since
the angle § between these two sets of coordinates vary along
the length of the blade the individual elenent matrices given
by Equation 3.2 should be transfornmed to the Qz-Oy coordinates
before adding the additional stiffness coefficients derived

in this section. This transformation is discussed in some

detail in section 3.5.

In evaluating the integrals given by Equations 3.12
and 3.14 linear variations in I, A o and J can be assuned
within the element. For a uniform beam el enent the additional
stiffness matrices for bending parallel and perpendicular to
the plane of rotation and for torsion are given in Tables 3.3

to 3.5, in closed form

3.4 EFFECT OF TRANSVERSE SHEAR AND ROTARY INERTIA

In this section a new beam bending finite el ement
which is conpatible with the Thick Disc Element-1, devel oped
in chapter 2, section 2.4.1, is developed. In the develope~
ment of this elenent transverse shear and rotary inertia are
included, and in addition to the transverse deflection and
rotation the additional rotation due to transverse shear is
al so taken as a degree of freedomin each node. Thus the

el ement has six degrees of freedom
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Al though two other Tinoshenko beam finite el ement
model s devel oped by Archer (77) and Kapur (128) are available
these are not conpatible with the annular Thick Disc El ement-
and thus these are not used here. It turns out, in fact, that
the beam el enent derived hereunder is a marginal inprovenment

in terms of convergence over those of Archer and Kapur.

Figure 3.2 shows a nonuniform blade element with the
coordi nate system chosen. Here again the minor principal axis
0z* is inclinedto the engine axis 0z at angle 6. The degrees
of freedom of the element along the principal directions are
shown in Figure 3.2. The rotations ¢* and ¢* in this case are

defined as

o= - Dayr and ex = _.gf}%*+ym*l (3. 15)

wher e Yé and y; are the additional rotations due to trans-
verse shear corresponding to the mnor and major principa

di rections.

Since, in our case, there is no coupling between
bending in the two principal directions, the bending stiffness
matrices [KZJ and [K:] and the inertia matrices [Mﬁ] and
[Mg] are simlar to each other except that in each case
correspondi ng val ues of section properties are used. Hence the

stiffness and mass matrices for the mnor principal direction
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only are derived here.

The strain energy and the kinetic energy in an
el ement of the blade, shown in Figure 3.2, for the Tin direc-
tion, when transverse shear and rotary inertia are also
considered, are

X

2 X
2
_ 1 3yky 2 1 e
u 7 ! EImin(ax) dx + 5 I kGA (yv) dx (3.16)
X X
1 1
wher e
ov#* *
K = e
v 9x + Yv
yg; -~ rotation due to shear,

k ~ shear constant?,

A - area of cross-section of blade

and
*2 %2 2 By, 2
_ 1 v 1 Ay
T = 5 [ eA (Bt dx + 5 J PL in (at )7 dx (3.17)
X X
1 1
Assum ng the deflection functions
vk(x) = a, + a, X + a x2 + a, x
1 2 3 4
(3.18)

Y$(X)= a5 + a, x

+In view of difficulty in calculating k for an aerofoil section

a value of 5/6 corresponding to a rectangular section is used.
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and substituting in Equations 3.16 and 3.17, we arrive at the

stiffness and inertia matrices of the elenment for the I

direction as

K] = (8,17 [i) (8]
and
pe1 = (8,17 [my] ]

corresponding to the deflection vector

T
{gg*} = [ v] ¥ v§ v§ ¥ v, ]

1 xl xl 3 0 0
0 —2x1 - 3X; 1 Xy
-1 0 0 0 0 1 X
[Bb] = 1
1 x2 x3 0
*2 2 2
2
9 -1 —2x2 —3x2 1 X,
0 0 0 0 1 %,
0 0 0 0 0
0 0 0 0
4R0 12Rl 0
I
36R2 0
Symetrica
5o

min
(3.19)
(3.20)
(3.21)
0"
0
—2R0
(3.22)
—6Rl
Sl
R0+S2




In the above natrix

X X

2 i 2 i
R, = [ ET x- dx and S = [ kGA x~ dx
i x nin | <
1 1
and
S0 sl s2 53 0 0
R0+82 2R1+s3 3R2+S4 —RO -Rl
4R2+S4 6R3+s5 —2R1 —2R2
v
[mb] =
. 9R4+SG —3R2 —3R3
Symmetrica
Ro R
Ry
In the above matrix
X
2 X
i . 2 i
Ri = f pImin x> dx and Si = S pA x= dX
*1 X
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(3.23)

(3. 24)

(3.25)

The stiffness and inertia matrices of the element for

the T direction are derived simlarly and are given by

K1 = 18,17 17 [3,]
and
I¥1 = 181" [m] [3,]

(3. 26)
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The matrices [kgl and [mzl are given by Equations 3.22

and 3.24 when | is replaced by T __ .
m max

in

Linear variations within the element of the area A
(PR , K and J of the blade section can be assumed requir-
mn max”~ G
ing the values to be known only at the nodes. For an el enent
of uniform section the stiffness and mass natrices are given in'
closed formin Tables 3.6, where | is either | . or |

mn max

depending on the direction considered. 2 is the length of the-
element, and u is the radius of gyration for the particular

di rection considered.

The follow ng displacenent boundary conditions shoul d

be applied when this element is used. For the Lin direction

Simply supported edge vk =0
C anped edge vk =0 ; Pk =0
Free edge Y% =0

3.5 VI BRATI ON ANALYSI S OF PRETW STED BLADES

When the blade is pretwisted it is nodelled with
straight elements staggered (inclined) at an angle § to the
engine axis.' For any particular element 6§ is the average
pretwi st angles of the actual blade neasured at the two nodes
of the element. Figure 3.3 shows a pretwi sted blade and the

finite element nodel with two straight elenents.

In this case the individual elenent stiffness and
inertia matrices [Kﬁ] and [Mﬁ], given by Equation 3.2, which
correspond to the deflection vector {qg} whose el enents are

* measured along the element principal directions, should be
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transfornmed to the engine axis (Qz-Oy coordinates). This

requires a rotation matrix [R] relating'{qg} and’ {q.}

{q}} = [R] {q,} (3.27)

Maki ng use of the above relationship the stiffness and inertia
matrices corresponding to the deflection vector {qb} are
gi ven by
K1 = [R17 [K:] [R]
and (3.28)

] = [RIT D] [R]

f

Once this transformation is done the el ement matrices can be
assenbled to get the blade system matrices [K;] and [M.].
Additional stiffness coefficients resulting from rotation

shoul d be added to these matrices only after this transformation.

Figure 3.4 gives the rel ationships between coordi-
nates appearing in the displacenent vectors {g¥} and {qb}.
Making use of these relationships the rotation matrix [R]
is obtained. Wen transverse shear and rotary inertia are
ignored the relationship between the deflection vectors

{qg } and {qb} becones



where

or

{qg}

cos

c 0
0 c
0 0
0 0
-s 0
0 -s
0 0
0 0
0 0
0 0
§ and
R] {q}

0 0
s 0
0 0
0 0
0 0
c 0
0 0
0 0
0 1
0 0
s=sin§

-8

-8

89

(3. 29)
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Rearrangement of variables in {931 carried out to facilitate

assenbling the conplete blade matrices.

Wien transverse shear

and rotary inertia are included in the analysis,

vk
Vi

c

-S

Lat-]

~S

-S

-S

t hen

-8

0 (
0
0
0 C
0 ¢
s O
0 @
0 O
0 0
0 O
0 O©
c 0
0O O
0 01

(3. 30)
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wher e
C = COoS § and S =siné§
or

{gf} = [R] {q,)

3.6 NUMERI CAL APPLI CATI ONS

Nurerical results are presented, in this section
which show the effects of rotation, transverse shear and rotary
inertia and pretw st on the natural frequencies of ynijform

rectangul ar bl ades.

A) ) First, the variation of the first three nondi nensiona

- q . .
frequencies A = gé%%— of a uniformrectangular blade with the

. . . L
nondi nensi onal rotation Q% = Q/é%#— , and the influence of R'L

ratio, where Ris the radius at the root and L -is the length

——

of the blade, on these frequencies, were studied. Values of

for vibration (a) out of plane of rotation and (b) in the plane
of rotation, calculated using four elements, are given in
Tables 3.7 to 3.12. In these calculations, the additiona
stiffness coefficients given in Tables 3.3 and 3.4 are addedto

t he beam bending stiffness matrix.

Boyce (129) has cal cul ated upper and |ower bounds

of A for vibration out of plane of rotation for a few val ues
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of RIL ratios. In Figure 3.5, values of X calculated with
four elenents have been plotted against the nondi mensiona
rotation Q* for the value of RIL = 0.1. Only the first two
modes of vibration are considered. The upper and | ower bounds
given by Boyce for this case lie close to the finite el enent

curves.

(B) Next, the effect of transverse shear and rotary
inertia on the natural frequencies of a uniformrectangul ar
beam was studi ed using the new Tinoshenko beam finite el enent
devel oped in section 3.4. A value of k = 0.667was used and
the ratio u/L, where wis the radius of gyration and L the
l ength of the beam was chosen to be 0.08. Nondi nensiona
frequency parameter A = qjgéggf for a sinply supported beam
and a cantilever beam conputed using 1 to 6 elenent nodels
are given in Tables 3.13 and 3.14 along with exact solutions.
These results denonstrate the accuracy and convergence of the
elements used. Results obtained by Kapur (128) and Archer (79)
are also given for comparision in Tables 3.15 and 3.16. In
Figures 3.6 and 3.7 percentage error versus nunber of degrees

of freedom have been plotted for these three beam nodel s.

©) Finally, the efficiency of nodelling tw sted bl ades
using untwi sted beam el enents was studied. Dokunaci et al (85)

have used beam el ements in which pretwist is incorporated, for

- 2, ALY
this problem They have. conputed frequency paraneters Ak= w-pAL"

EImin
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for uniform rectangular tw sted beans. Here values calcul ated
using untwi sted beam el ements are conpared with those of

Dokurmaci et al and those given by Anliker and Troesch (82) and
Slyper (84). It is seen fromthe results in Table 3.17, that
when the number of elenents is increased the results converge
rapidly to those given by Dokumaci et al indicatingthat in
practical problens use of untwisted beam el ements in nodelling
twisted blades would be satisfactory, thus avoiding the additional
conplication involved in formulating the beam el enent which

i ncorporates pretw st.
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CHAPTER 4

ANALYSI S OF COUPLED BLADE-DI SC VI BRATI ON I N AXI AL FLOWN TURBI NES

4.1 | NTRODUCTI ON

The vibration of a bladed rotor is found to be simlar
to that of an unbladed disc. The rotor oscillates in a coupled
bl ade-di sc node which is also characterised by dianetral and
circular nodes, Figure 4.1. The blades, being constrained in the
disc at the rim wll vibrate in bending motion at dianetra
antinodes, in torsional notion at nodes, and in conbined bending-
torsion el swhere, Figure 4.2. The circular nodes may lie in the

disc, but will nmore conmonly be located in the bl ades

A method of analysis is developed in section 4.2 for
bladed rotors with a large nunber of identical blades. The blade
| oading on the rimare assuned to be continuously distributed
around the rim Wth this assunption, fornulation of an exact
met hod of analysis is possible for rotors of nonrotating sinple
configurations. This nmethod utilizes the exact dynam c stiffness
coefficients for the disc, rimand the blade, and is detailed

in section 4.3.

For rotors of nore general geonetry, a finite el enent

method is developed, in section 4.4, which utilizes the annul ar
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plate bending element for the disc and the conventional beam

el enent for the blades. This nethod includes the effect of a rim
and torsional distorsions in the blades, which are ignored by
other investigators (118,120). Effects of rotation, tenperature
gradient and other in-plane stresses are also considered. The
method is then extended to include transverse shear and rotary

inertia both in the disc and bl ades.

A nunber of nunerical studies are presented, in section
4.5, which examne critically the accuracy and convergence of the
cal cul ated solutions by comparision with experinental data for

bl aded rotors of sinple and conplex geonetry.
4.2 METHOD OF ANALYSI S

4.2.1 System Configuration And Deflections

Figure 4.3 shows the idealized nodel of the rotor and
for analysis purposes the rotor is considered as three distinct
subsyst ens.

(1) The disc web described by thin plate theory,

(2) The disc rimtreated as a solid conpact ring,

(3) The array of blades, each of which is considered to
behave as a bean1described by Eul er-Bernoul |i theory.

Ignoring torsional vibration of the systemabout the oz axis and
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considering only the flexural vibration, the coordinates shown in

Figure 4.3 areassumedto describe the distortions of the subsystens.

Consi dering stations 1,2,...,i in the disc as shown in

Figure 4.3 the deflection vector for the disc is witten as

[, ()
8, ()
v, (E)
6,(£)
[ap(®)] = . (4.1)

L3

wi(g)
8.()

E . l

Considering only the centroidal distortions of the rim the

defl ection vector for the rimis witten as

Y3
[qR(E)] = g- .2)
%

For the blade with stations k, k+L, . . . . the deflection vector

is witten as
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vk(E)

vk+1(€)

¥ (8

w, (E)
[ 1 = | ® (4.3)

8, (5)
wk+1(,€)

ek-(-l &)

6, ()

11 &

Consi der the systemvibrating with mnodal diameters. If & is

the angle neasured from a reference diametral antinode, then for
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the di sc subsystem

I =]

D

{qD(E)} = . cos mf = {ab}cos ng (4.4)

"}3 o, . . etc are the anplitudes of vibration at the

reference antinode. Simlarly for the rim

A\

{qR(E)} = | _ cos mf = 'fai} cos mf (4.5)

(a2
‘

The bl ades are assuned to be fixed to the rimand are
thus constrained to retain their orientation at the root. The
flexural axes are assumed to coincide with the centroidal axis and
hence there is no coupling between bending and torsion within the
blade. Then a bl ade at an antinode i s di splaced in bending only
as shown in Figure 4.2. However because of blade stagger, or
in general, because of the pretwist in the blade, bending my
take place in both axial and tangential planes. A blade at a node
is displaced in torsion only. Blades at any other angular |ocations
experience both bending and torsion. Thus the deflections of a

bl ade at an angle may be witten as
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P e

v, cos m§

wk cos nf

W, cos m§

1

lg(®} = 6, cos mE | = [R] {qz} (4.6)

d)k sin mg

wher e

[c] (o] [0]
fo] = [cl {ol 4.7)
[o} [0} [s]

[r]

where [C] and [S] are diagonal matrices wth diagonal terns

cos m¢ and sin mE respectively, and ;k’ Tp'.k. ey W, Ek,...
are the bending anplitudes of the blade at the reference diametral
antinode, while Ek"" are the twisting anplitudes of the bl ade

at a dianetral node.
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4.2.2 Dynamic Stiffness O The Subsystens

The individual dynamc stiffness matrices are directly

used for the disc and rim subsystens.  Thus,

[D,] K] - w? )]

and (4.8)

[Kg]l = w? [M]

1]

D]

wher e [DD]JKD] and [MD] are the dynamic stiffness, stiffness and
mass matrices respectively of the disc corresponding to the

defl ection vector {qD} and [ DR] ,[KR] and [MR] are the corres-
ponding matrices for the rimwth respect to the deflection

vector {ER} i

The dynamic stiffness matrix [D/] for the vibrating
array of blades may be obtained fromthe stiffness and mass matrices
[KB] and [MB] of a single blade in the follow ng manner, provided
we assune sufficient number of identical blades to be present on
the rotor, such that the resulting loading on the rimcan be consi-
dered to be continuously distributed in a sinusoidal pattern around
the rotor as shown in Figure 4.2. This condition is likely to be
satisfied in typical rotors vibrating-in nodes involving | ow nunbers

of nodal dianeters.

The dynamic stiffness relation for a blade vibrating

at a frequency v and located at a polar angle & fromthe reference
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antinode i S
Q8 1 = [Lxgl - w? 1] ] {qp(8) 3 (4.9)

wher e {qB(g)} is defined by Equation 4.3 and {QB(g)} is the
corresponding force vector. It should be noted that matrices

[KB] and IMEJ are independent of k.

Assuming that the blade [oading on the rotor to be
continuously distributed, the total energy, strain energy and
kinetic energy, of the vibrating blades between the angles &

and £ + dg is

1 Zz T
E =5 77 1@y TR -] {ge)) a
where Z is the number of blades in the rotor. Substituting

for {qB} from Equation 4.6

dE = T

(ST

7= (a7 [R] - e2hg] 1[R] (qg) de

Integrating between the limts £ =0 and £ = 27 we get the

total energy

=
il
o=

¢ % (@t [ K] - w?Dg] 1 {qy) (4.10)
wher e

c=2 if MmO, and C =1 if m >1

Hence the required dynamc stiffness matrix of the vibrating array
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of bl ades corresponding to the deflection vector'{ag} i's

(4.11)

Z
D] = €5 [ IK] - W] ]

4.2,3 Dynam c Coupling O The Subsystens

The dynamc stiffness relation for the conplete rotor

system is obtained by combining the individual relations for the

disc, rim and blade subsystens, taking into account the compati-

"bility requirenents at their boundari es.

The torsion of the blade at the root, ¢k(£),is

related to the axial deflection wk(a);thus

- 1 38
¢k(5) = R % { wk(E)}
= -%2 %k sin mf
Therefore
& = - R % (4.12)

where Ris the radius of the blade-rim attachnent.

The remaining relations ensure conpatibility between

the three subsystens and hence depend on the nature of blade

fixing. Wth the commonly used dovetail or fir-tree attachnent

cantilever blades can be assumed and in such cases the follow ng,

relations hold.
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wi = ;j + ele:j
'e‘lL = ’e‘j = 'e‘k
;;k = ;J - ez‘eI
Ek =0
v, =0

wher e e and e, are the distances fromthe rimcentroidal axis
to the disc-rimjunction and blade-rim junction respectively,

Figure 4.3. Considering such cantilever blades all the coordinates
at stations j and k can be conveniently described in terns of

-‘;i and 51 with the following transformation relations.

;T-j ) 1 - e [ ;1

Ej 0 1 0,

Vk 0 0

Y |= |0 0 (4.13)
;k 1 -(el+e2)

(Y 0 1

[ - R RCete))

This relationship is sufficient to allow assenbly of the dynamc

stiffness matrix of the coupled blade-rimdisc system
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4.3 EXACT SOLUTI ON OF NON- ROTATI NG ROTORS OF SIMPLE GEOMETRY

Wien non-rotating rotors with uniform disc and uniform
bl ades are considered, exact dynanmic stiffness matrices for the
disc, rimand blades can be derived. This resulting solutions
are exact in so far as thin plate theory, Euler-Bernoulli beam
theory and the assunption of continuous blade |oading hold true
and are useful in exanmining the accuracy and convergence of the

finite el enent sol utions.

In such cases the disc dynamc matrix [DD] need be
derived with respect to only the axial deflection ;i and the
radi al sl ope Ei at the outer boundary along the reference anti-
node. Thus the disc deflection vector has only two generalised

coor di nat es.

ECN =[ii ] (4.14)
ei

The derivation of the (2 x 2) dynanmic stiffness matrix for a
uni form annular disc with its inner boundary fixed and the outer
boundary free is given below. Simlar matrices for other boundary

conditions at the inner boundary.can be readily derived.

4.3.1 Dynanic Stiffness O The Disc

The defl ections wi(E) and' ei(E,') have associ at ed

forces, corresponding to sinusoidal distributions of shear force
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and bending nonent around the rotor, and which may be related to
the deflections by a dynamc stiffness matrix for the case of a
uni form thickness disc, either by inversion of the correspondi ng
receptance natrix relation given by McLeod and Bi shop (42), or

directly as foll ows.

Consider a thin annular disc, of uniform thickness h,
clanped at the inner radius a, and subjected to transverse shear
I wt wt

force Vi cos mf e and radi al bending nonent M, cOs m¢ el

around the outer radius b. The governing differential equation is,

2
v oui,e) + & 5 w@,B)) = o (4.15)
st

where w(r,g) is the transverse deflection, pis the material

mass density, and D is the flexural rigidity.

For the case being considered the solution of this

equation is
w(,g) = | PJm(kr) + QY_m(kr) + RIm(kr) + SKm(kr) ] cos m&
= Wr) cos mg (4.16)
wher e
w - vibratory frequency in rad./second,
w(r) - anplitude at an antinode
Jm,Ym - Bessel functions of first and second kind of

i nteger order m
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Im,Km - nodi fied Bessel functions of first and second

kind of integer order m

2
K = (pth )1/4

Using the sign convention established in Figure 4.3

e - W
0 or
_ 32w 1 aw 1 3%
M= =DIL = + vy 5% ¥ 3371
or r o
_ 1 3% 1 3w
M= DA~ [ 33~ 2 3¢ 3
(4.17)
3 9
= ~piXg + 2&5 . 1 M
or or r
3
+_]; 3°w +2_382w]
r° or g2 r’ 32
- 1 3
v o= Q - r 9L Mrt:

Substituting for w(r,g) from Equation 4.16,

0(,g) = - [ PA (kr) + QAz(kr) + RA3(kr) + SA4(kr) ] cos mg
= 9(r) cos mE
Mr(r,g) = - [ PAS(kr) + QA6(kr) + RA7(kr) + SAS(kr) ] cos m§

= ﬁr(r) CcOoS mi
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V(r,§) = -D| PAg(kr) + QAlO(kr) + RAll(kr) + SAlz(kr) ] cos mE

= V(r) cos m& (4.18)

wher e Ay through 4,, are |'inear conbinations of the Bessel functions

of order mand ml-1, given in Table 4.1. Applying the boundary

condi tions
w(a,g) =0 6Ca,g) =0
wb,£) = w, (£) 6(b,g) = 6,(E)
V(b,g) = v, (&) M _(b,8) =M . (€)

and using Equations 4.16 and 4.18 gives,

v, (£) w, (£)
i = [D] * cos m§ (4.19)
Mi(E) Oi(E)

where [D] is the matrix given in Table 4.2

w.

Consider -a unit displacement vector ['_1] is inmposed
)
i

at the reference antinode, at the outer boundary, then follow ng

standard procedure the associated force vector will be,

v, 2m .‘;i 2
1 = s Ip] _ cos” m& b d&. (4.20)
M. 0 ei
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wher e

c =2 if m=0 and C = 1 if m>1

Thus the required dynamc stiffness matrix is given by

(.1 =cr b [D] (4. 21)

D]

4.3.2 Dynamic Stiffness O The Rm

The formul ation of the exact dynam c stiffness relation
for the rim treated as a thin ring is well known (130). For a
thin ring vibrating at frequency w with m nodal diameters, when

shear deformation and rotary inertia are neglected, it takes

the form
v —
N, R 1%
J 3

wher e IDR] is the dynamc stiffness matrix of the ring and is

given in Table 4.3.

4.3.3 Dynanmic Stiffness O The Bl ade Array

Wien we consider uniform untw sted bl ades, the dynanic

stiffness relation for a single blade vibrating with frequency o
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and | ocated at an angle &€ fromthe reference antinode is
Q1 = [ {q} (4.23)

wher e

| by -

and the matrix [Db] is given in Table 4.4.

In Table 4.4
E G - elastic noduli,
I,, I, - principal mnimmand maxi num second monment of
area of the blade cross-section respectively,
6 stagger angle; angle between the engine axis 0Oz
and the T direction, Figure 3.1
min
KG ~ St. Venant torsional stiffness of the blade
Cross-section,
and /4
1
A, = (22)
1 EIl
1/4
A (&%) /
2 = EL

2
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- (L y1/2
Ay o= (GKG)
P - mass density of blade nmaterial,
J - mass pol ar nonent of inertia of blade section
[ - length of bl ade.

The matrix [Db] is of size ( 5x5 ), since only the five
di splacenents at the root of the blade are involved. This matrix
is readily obtained fromthe receptance relations tabulated for a
free-free beam (131), transformed from local principal axes

through stagger angle &§ to the coordinate system used here.

From Equation 4.11, the dynamc stiffness matrix for
the array of blades is obtained by multiplying that of a single
bl ade by C %3 where Z is the nunmber of blades in the rotor

Hence the dynamic stiffness matrix for the array of blades is

bl = ¢Zn] (4.24)

434Dynamc Stiffness O The Disc-R mBlade System

The dynamic stiffness matrix for the conplete rotor
systemis obtained by conbining the individual matrices for the
disc, rimand blades, taking into account the conpatibility
rel ations given by Equation 4.13. Theresult is a ( 2x2 ) dynamc

stiffness relationship involving only the deflections Wy

A non-trivial solution is obtained when the determ nant of this

and g,
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matrix is zero, and corresponds to the natural frequencies of
the system For nunerical calculations the zeros of the deter-
m nant are sought by iterating with the frequency w as the

vari abl e.

4.4 FINNTE ELEMENT SOLUTI ON OF ROTORS OF GENERAL GEOVETRY

For rotors of general geometry with arbitrary discs
and pretw sted nonuniform bl ades numerical procedures are adopted
to obtain the subsystem dynam c stiffness matrices [DD] and
IDB] of the disc and the array of blades respectively. The
annul ar plate bending finite elenents devel oped in chapter- 2

can be readily used here.

4.4.1 Dynamic Stiffness OF The Disc-Ri mBlade System Neglecting

Transverse Shear And Rotary lnertia

The nethod of anal ysis.described here utilizes the
finite el enent nodel s devel oped for the disc and blade in section
2.2 and 3.2. Thus the matrices [KD] and [MD] of the disc
subsystem appearing in Equation 2.28 are directly used in the

dynamic stiffness relation
oy = 0IRy) - w2l ] {qp)

= Ip;] ' {'cID} (4.25)
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Simlarly for the array of blades matrices [KB] and [MB] from

Equation 3.2 are used here, thus,

Q) = o 2 LK) -0l ] (gy)

= gl {qy} (4.26)

In this analysis, the stations 1,2,..., i considered in section
4.2.1 are the finite elenent nodes in the disc subsystem and hence
"the disc deflection vector {Eﬁ} Is given by Equation 4.4. Simlarly
the stations k, k+l,... considered in section 4.2.1 are the finite
el ement nodes in any of the blades and hence the bl ade subsystem

defl ection vector {qB} is given by Equation 4.6.

The nunber of degrees of freedomin each of these sub-
systems depend on the number of elenents used in each case. The
constraint conditions given by Equation 4.13, now gives the relation-
ships between the degrees of freedom at nodes 1i,] and k, where
j is the centroid of the rim In this analysis, for the rim the
dynam c stiffness relation given by Equation 4.22 is used. The
subsystenms are coupled satisfying the relations given by Equation
4.13 and the foll owi ng dynam c stiffness relation for the entire

systemis obtained.

1ogl = [IKg] - w?[M) 1 {qg) (4.27)
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Wien free vibration of the systemis considered Equation 4.27
reduces to an al gebraic eigen value problem which may be sol ved
by any of the standard procedures. It should be noted that, here,
as in the disc alone vibration problem a set of eigen value

problenms result, one for each dianmetral mode configuration

The use of the annular elenment for the disc makes it
possible toeffectively model discs with any arbitrary radia
profile. Moreover, the initial in-plane stresses resulting from
rotation and radial tenperature gradient and other |oading can
be conputed and their effect on the vibration frequencies of the
system can be taken into account. Simlarly variation in section
properties of the blades, pretwist in the blades, and the effect

of in-plane stresses in the blades are readily included.

4.4.2 Dynamic Stiffness O The Disc-R mBlade System Including

Transverse Shear And Rotary lInertia

In practical rotors the disc is noderately thick and
the use of methods based on thin plate theory may not result in
satisfactory analysis. Therefore, the finite el ement nethod of
anal ysis devel oped is now extended to include transverse shear

and rotary inertia, both in the disc and bl ades.

This analysis is very simlar. to the one described

in section 4.4.1 above for bladed rotors, except, now the rim
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If present is considered to be a part of the disc. Hence, the

whol e rotor systemis divided into two subsystens.

(1) The disc and rim subsystem described by Mndlin's
pl ate theory,
(2) The array of blades, each of which is considered to

behave as a beam described by Ti noshenko beam t heory.

The annul ar Thick Disk Element-I, devel oped in chapter 2
section 2.4, is used to nodel the disc and rim The bl ades are
model [ ed with the Tinmoshenko beam el ement described in chapter 3,
section 3.4, Hence each station in the disc has four degrees of

freedomand at station i these are, Figure 4.4,

{Ei}T ol S (4. 28)

Each station in the blade has seven degrees of freedom and at

station k these afe,

T — — —

{q) = [v ¥ 7T, v N 1 (4.29)

vk %k

(o]
~d

When the subsystens are connected together, the follow ng
rel ationshi ps between the degrees of freedom at stations i and Kk

exist, and these should be satisfied
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Vi - i

‘\Ek 0 0 0 0 0 Ei

Yor 0 o o 0 1 7: 5

;’_1; = |1 0o O 0 o0 ‘fﬁ (4.30)
8, 0 1 0 0 0 _vk

Y . 0 0 1 0 o

% - -rF‘—g 0o o0 1 0

where Ris the radius at the root of the blade

4.5 NUMERI CAL APPLI CATI ONS

4.5.1 Conparision O Exact And Finite Elenment Solutions For Sinple

Nonrotating Rotors

The validity and accuracy of the analysis devel oped in
sections 4.3 and 4.4 have been assessed by conparing numerical
results of the coupled frequencies with experinental data on three
sinple nonrotating bladed disc models. For the first two nodels
experinental data were obtained by M. R W Harris, a senior under-
graduate student at Carleton University. The third nmodel is that

used by Jager (120).

Al'l these nodels are of mld steel and conprise uniform

t hi ckness annul ar discs clanped at the inner radius and uniform
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untwi sted rectangul ar bl ades cantilevered at the outer boundary

of the disc or rim The blades are set at a stagger angle § = 45"
in nodels | and I, and at & = 50" in nmodel I11. The dimensions

and other details of these nodels are given in Table 4.5. Arim

is present in nodels | and Il, but absent in Ill. The first six.
cantilevered blade alone frequencies of these nodels are given in
in Table 4.6. For nodels | and II experinental measurenents of
frequency were made by exciting the nodels using an el ectromagnet.
A barium titanate accel eroneter probe was used to detect resonance
and to identify node shapes. Figure 4.5 illustrates the vibrating

bl aded disc nodels with sand pattern show ng nodal dianeters

Coupl ed system frequencies of thesethree nodels were
calculated by finite elenment nmodels conprising various nunbers of
el enents.  These frequencies were also cal cul ated using the exact
nethod. As already mentioned, these values are exact in so far
the assunption of continuous blade |oadings on the rimis valid
Al'so certain tolerances on the value of the deternmnant, which
shoul d otherwi se be zero, were necessary.. The results of the
finite el ement analysis should converge to the exact values as the

nunber of elenents are increased

The nunerical results for models | and I-1 are given
in Tables 4.7 and 4.8 along with experinmental results. It is
seen that agreenent between finite elenent, exact and measured
frequencies is excellent, and indeed that just two blade el ements

and two disc elements yield the first three to four nodes for any
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given nodal dianeter configuration, wWth engineering accuracy
for these nodels. Convergence of finite element solution is rapid

and nonotonic from above as expect ed.

The first six coupled system frequencies are plotted
agai nst increasing nunber of nodal diameters in Figures 4.6 and 4.7
for nodels | and Il. As the nunber of nodal diameters increases
t he conbined frequencies shoul d degenerate to the cantilevered
bl ade al one frequencies and this is seen to be the case from

these graphs.

In nmodel 111, which was used by Jager, no rimwas present,
so that the blades overhung the disc at the point of attachnent.
In Table 4.9 the numerical and experinental frequencies given by
Jager are conmpared with the finite el enent and exact sol utions
Jager's nunerical nodel conprised ten |unmped nmasses in the disc
and ten lunmped nasses in the blades. Again it is seen that good
agreenent is obtained between the various frequencies; nore
inportant the efficiency of the finite elenment nmodel is signifi-
cantly better than that of the |unped mass nodel. The increasing
di vergence between cal cul ated and measured val ues for the higher
modes may result fromthe inconplete attachment of blades to disc,

since the blade chord is nuch greater than the thickness of the disc
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4.5.2 The Effect OF System Paraneters On The Frequencies O

Simple Nonrotating Rotors

It would be useful, as in nost of the other engineering
probl ens, to nondi mensionalize the system frequencies of the bladed
disc. In view of the unusually large nunber of paraneters involved
this is extrenely difficult. Alternatively the variation of the
frequencies with respect to a selected nunber of paraneters, which
woul d give some qualitative insight to the problem may be studied.

These paraneters may be chosen to suit particular situations

As an exanple, the effects of the follow ng three para-
neters on the frequencies of a bladed disc are studied. The para-

meters considered are,

) ratio, where 2 is the length of the blade and b is

he outer radius of the disc,

(2) bl ade aspect ratqufL3 wher e db is the chord of the

bl ade

(3) stagger angle 6.

Seven different cases of the nodel were studied. In al
these cases the nodel conprises of an uniformdisc wth constant
i nner radius and thickness. The blades, which are uniform and
untwi sted, are cantilevered at the outer boundary of the disc with

a stagger angle. In order to mininise the nunber of paraneters

T N e K I
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the rimis omtted. The thickness to chord ratio is fixed at
8%, which is typical of conpressor blading. Only the outer radius
b of the disc, the length 2 of the blade and the stagger angle ¢
are changed independently. The nunber of blades in the nodel
depends on the chord of the blade, The various dimensions of the
model for the seven cases considered are given in Table 4.10,

and the first four cantilevered blade alone frequencies in Table 4.11.

In all these cases the first four system frequencies
were calculated with the exact nethod for m= 2 to 6. These
frequencies w are divided by the first blade alone frequency wg
and the ratio = are given in Table4.13. Figures 4.8 to 4.10

b
1

show the variation of the first systemfrequency and Figures 4.11 to 4.13

W

the next three frequencies with respect to the three system para-

meters chosen.

From Figures 4.8 and 4.11 it is seen that when the val ue
of g is low, in other words when the blades are shorter conpared
to disc radius, the systemfrequencies are very |ow conpared to the
bl ade al one frequencies, at |lower nunbers of diametral nodes, and
the vibration is controlled by the disc. These frequencies increase
in their values with increasing nunber of diametral nodes and con-
verge to the blade frequencies. Therefore the influence of discis

consi derabl e when short blades are used, especially at |ower values

of m.
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FromFigures 4.9 and 4.12 it is seen that when the
bl ade aspect ratio is lower the system frequencies are |ower than
the blade alone frequencies. In all the three cases considered

the first blade frequencies are in bending in the Imin direction

Therefore with increasing number of nodal diameters the system
frequencies converge to the first blade alone frequencies. But
the higher nodes of vibration of the blades in the three cases are
different nature. Hence convergence of system frequencies are

to the individual blade frequencies in each case.

From Figures 4.10 and 4.13 it is seen that for the first

mode of vibration the system frequencies are |ower for |ower values

of &, the stagger angle. But for the higher nodes this is
reversed and the system frequencies are higher for |ower values of
6 . In the case of first, second, and fourth nodes, where the

bl ade frequencies are bending frequencies, the system frequencies
converge rapidly to the blade alone frequencies with increasing
values of m. But in the case of the third node, where the bl ade
frequency is a torsional frequency, convergence is slow with

increasing value of m.

4,5.3 The Effect O Rotation On The Frequencies O Sinple Rotors

Wien the bladed disc is rotating at speed, the centri-
fugal stresses developed both in the disc and the blades increase

the stiffness of the entire systemand the natural frequencies of
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the bl aded disc are substancially nodifi ed.

In the finite el ement analysis of the bladed disc the
effect of rotation can be readily included, since additiona
stiffness coefficients for the disc and blade el enents are avail able.
The stresses in the disc are calculated including the blade |oading
at the rim The frequencies of bladed disc nodel | were calcul ated
negl ecting transverse shear and rotary inertia, but adding the
centrifugal stiffening effect when the bladed disc was considered
rotating at 3500 rpmand 7000 rpm which are typical speeds of
rotors of simlar dinensions; Unfortunately no experimenta
or other numerical results are available to conmpare the results
These results are given in Table 4.14, along with the results of
the stationary bladed disc. Conparision of results in Table 4.14
shows that variations in the frequencies are considerable at |ower
modes of vibration for each diametral node configuration, whereas

frequenci es of higher nodes are not affected much.

4.5.4 The Effect O Transverse Shear And Rotary Inertia On The

Frequencies O Sinple Rotors

The finite el ement method of analysis outlined in
section 4.4.2, which includes transverse shear and rotary inertia
was applied in the analysis of bladed disc nmodels | and Il1. The

first six frequencies of each of the dianetral node configuration,
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m= 2 to 6, obtained are given in Tables 4.15 and 4.16. These
results shoul d be expected to be |ower than those in Tables 4.7
and 4.8, which were obtained neglecting transverse shear and
rotary inertia in the analysis. Conparision of results in these
tabl es show this to be true except in the case of a few | ower
nodes when m= 2. This discrepancy is thought to be due to

the difference in the models assumed for the rim |n the earlier
case the rimis treated as a thin ring with constant radial slope
fromthe inner to the outer boundaries. In the second case the
rimis assuned to be a part of the disc and hence its radial

sl ope can vary across the rim

4.5.5 Calculated And Measured Frequencies O A Conpl ex Turbine Rotor

The finite elenent method of analysis devel oped for
bl aded discs was also used to calculate the natural frequencies
of a conplex turbine rotor. Experinental results and other data
for this rotor were provided by Dr. Arnstrong of Rolls Royce (1971)
Ltd. The disc of the rotor is the same analysed in chapter 2
section 2,4,2. The dinmensions of the disc are given in Table 2.49
Qher details of the rotor are given in Figure 4.14.  Section

properties of the blades are given in Table 4.17.

Since the conputed frequencies of the disc alone were
satisfactory only when transverse shear and rotary inertia were

included in the analysis, here also these effects were considered




123

The bl ades of the rotor are of aerofoil section and have pretw st
and ot her complicating factors, and therefore the Tinoshenko beam
finite element nodel used in the analysis should not be expected
to give accurate results for the blades. No torsional stiffness
data was nade available for this aerofoil section; thus the effect
of blade torsion is necessarily neglected. The cantilevered blade
al one frequencies calculated with five Tinoshenko beam el enents
are given in Table 4.18. As expected only the first conputed

frequency agrees closely with the experimental val ue.

The rotor was nodelled with 6 Thick Disc El enent-|
and 5 Tinoshenko beam el ements. In both cases |inear variations
of section properties within the el ement were assumed. Details
of the finite elenent nodel are given in Table 4.19. As nentioned
earlier, the error in nost of the disc conputed frequencies is
al most constant and is around 7% This may be due to a higher
val ue of Youngs nodulus E assumed in the calculations. Therefore
here the coupled frequencies were calculated using two different
val ues for Edisc These results are given in Table 4.20 along
with experinental values. The first frequencies of each dianetra
node configuration are in fairly good agreement with the experimenta
results, Deviations in the second frequencies should be due to the
i nadequacy of the blade nodel. Use of an inproved blade model should

i nprove the results considerably.
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CHAPTER 5
SUMMARY AND CONCLUSI ONS

In this investigation of the application of the finite
el enent nethod to the vibration analysis of axial flow turbines,

the follow ng inportant novel techniques have been evol ved.

(1) New finite elenments for the flexure of conplete thin
and noderately thick circular and annular plates (discs)

have been derived, and critically examned for static

and vibration problens.

(2) The formulation of these new disc elenents has been
extended to include the effects of in-plane stresses
such as mght result fromrotation or thernmal gradient.

This aspect of the work is also new

(3) A novel nethod of coupling blade bending and torsiona
vibration wth disc flexural vibration has been fornu-

| ated, which is particularly effective when conbi ned
with the refined nmodelling offered by the finite

el ement net hod.

(4) An exact solution for coupled vibration of bladed

rotors having sinple geonetry has been obt ai ned.
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The significant advantages of these devel opnents

are

(1) By making use of the axisymmetric properties of the
problem the resultingmathematical model is described
by a very small nunber of degrees of freedom conpared
with other finite elenment techniques, with correspond-

ing savings in conmputer storage and time.

(2) The finite element method itself is known to demons-
rate higher accuracy conpared with conventiona
| unped mass nodels, due to a more correct description

of the inertia properties.

(3) A very refined mathematical nodel results, since
i ncorporation of varying thickness in these new
elements is readily achieved. Wth other available
finite element nodels, eg. sector elenents, incor-
poration of thickness variation is difficult -

i ndeed form dabl e.

(4) The formulation of the vibration problemfor the
disc or the bladed disc results in an al gebraic
ei genval ue problem and avoids the numerical diffi-
culties which often arise in the transfer matrix
met hods with higher nodes which have close frequen-

ci es.
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The accuracy and convergence of the methods devel oped
have been critically examned by conparision with exact and/or
experimental data in all cases, and the results obtained denons-
trate the reliability and potential of these methods. In genera
t hese comparisions show excel | ent agreement. The exception,
unfortunately, is the calculations carried out for the one conpl ex
(real) turbine rotor, for which sone experinental data was avail-
able, and which gave sonewhat indifferent results. |In this case
the bl ade nodel was clearly inadequate, and by conparision wth
the precision denonstrated on other test cases, it must be
admtted that the disc alone results are also disappointing.

In fairness, it shouldbe pointed out that these experimenta
data were obtained on a single test, and may not be represen-
tative of the nomnal disc frequencies.' A standard deviation
in test results, amounting to 5%to 7% of the nean neasured
frequencies is not unusual for bladed turbine discs. In the
authors opinion, this particular conparision, while disappoint-
ing, underlines the following further work necessary to clearly
evaluate and inprove the precision of the present bladed disc

model

(1) A need for further careful assessment of the calcul ated
frequencies by conparision with experimental data

on various conplex rotors.
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(2) A need for further refinenent of the blade nodel,
to include, as a first step, coupling between
bendi ng and torsional vibration within the blade

(shear centre effect).
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(a)

2a .

(b

Figure 2.3 Mdelled circular plate. (a) Wth one circular elenent
and two annul ar elements. (b) Wth a small central hole
and three annul ar el enents.
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(a)

(b)

Figure 2.5 Mdelled circular disc with parabolic thickness variation.
(a) Elements with parabolic thickness variation used.
(b) Elements with linear thickness variation used.
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Figure 2.9 Thick Disc Elenent-| with two nodal dianeters and
associ ated degrees of freedom
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Figure 2. 10 Thick Disc Element-2 with two nodal dianeters and
associ at ed degrees of freedom
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Figure 3.2 Blade el enent with associated degrees of freedom
when transverse shear is considered.
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Figure 3.3 Pretwisted bl ade nodel l ed with two straight beam el enents.
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TABLE 2.2
Matrix [kd] of the thin plate bending annul ar el enent.
P__3 (m*+2m2~ P 9 (m*-m?) P—l (m*-4m?) Po (m'-7m2-
2vm?) 2vm?)
Y_n 2 Y_a 2_ Yb_s 2.
P_l(m 2m Po(m 3m Pl(m 4m
+1) 2vmZ42v+2) 6vm2+6v+3)
|
symet ri cal Pl(m‘*-ZmZ— P, (m4-m2-12vm?
oITE 12 i 6vmZ+8v+8) +18v+18)
Pi = —=— [ a3 dr
12(1-v?) ry
P3(ml*+2m2-20vm2
+36Vv+45)
TABLE 2.3
Matrix [md] of the thin plate bending annul ar el enent.
Ql QZ Q3 Ql.
Q3 Q4 Q5
Symetri cal
T, . Qs Qp
g = Crp J h(x)rdr
Ty Q7
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TABLE 2.4

(o]
HE

[kq] and
o]
[md]-°f the thin plate bending circular element with m= 0.

The deflection vector {qg} and the matrices (B

0T = — =
T 1 0 0o
3 1 3
) r 2
[Bd] = r, 2 r,
2 1 _2
3 2 3
| T2 T2 2 ]
0 0 0 ]
k] =| o P, (8v+8) P, (18v+18)
0 P2(18v +18) P3(36v+45)
Q Q, Q,
mg] =] Q Qs Qq
Q Q Q
4 6 7
5 _
r r
E 2 3 i . — 2 ’ i
p =21 ——— [ R¥()rdr; Q =27 | ph{x)r dr

i 12(1-v2) 0 ! 0
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TABLE 2.5

The deflection vector {qg} and the matrices [Bgl. [kgl and

[m31 of the thin plate bending circular element with m= 1.

{qg}T= [_9—1 WZ -6_2 ]

1 0 0o ]
0
2 3 1
LBq] T, -2 T,
|2 )
1 2 _1
"2 73 2
L 2 "2 2]
~ 0 0 0 ]
[k‘;] = 0 Pl(7+2v) P2(18+6v)
0 P, (18+6V) P, (48+16v)
Q, Q, Qs
(o]
[mg] Q, Qs Qg
Qs & Q, |
r r
2 2 s
P, = _TE ! h3(r)ridr ;Q = n/ ph(r)rdr
L 12092 0 0
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TABLE 2. 6

The deflection vector {qg} ant the matrices [BZ], [kzl and

[m&] of the thin plate bending circular element with m= 2,4,6,...

q}?= [w, 8,1

-2 1
rg i
(B3] =
2 1
1:3 r2
. T2 2
§l(m”—2m2—6m2v Pz(m“—m2—12m2\)
o +8v+8) +18v+18)
[kd] =
onm“-mz-lzmzv Py (n*+2m2-20m2v
+18v+18) +36v+45)
b
[mg] =
a3 Qy
TE "2 i i i
B, = ——— h3(@)rdr Q =7/ ph(r)r dr

12(1-v?) 0 0
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TABLE 2.7

Non-di nensional frequency A of a uniformthickness circular plate
sinply supported at the outer boundary, calculated using thin plate
bendi ng circular and annul ar el enments. v=0.33

Nunmber of elenents Exact
n n 1 2 4 8 (42)
0 4,99 4,98 4.98 4.98 4,97
1 39.66 30.20 29.78 29.76 29.70
0] 2 85.78 74.79 74.23 74.13
3 188.33 143.28 138.65 138.30
0 14.68 13.96 13.94 13.94 13.91
1 60.27 52.19 48.65 48.52 48.58
1 2 121.75 104. 15 102.91 102. 82
3 219. 32 193. 34 177. 44 176. 89
0 30. 62 25.85 25. 66 25.65 25.70
1 77.67 70. 50 70. 17 70. 06
2 2 180. 00 137.58 134. 54 134. 33
3 237. 44 219. 23 211.99
0 68. 07 58. 42 56. 93 56. 88 56. 85
1 145. 01 122.79 121. 80 121. 66
4 2 252.82 217.93 206.34 205.92
3 334.98 311.50
0 140.55 101.30 98.21 98.04
1 201.62 187.65 184.12
6 2 475.62 303.76 289.12
3 452.45 415.34
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TABLE 2.8

Non- di nensi onal frequency X of a uniformthickness circular plate;
clanped at the outer boundary, calculated using thin plate bending
circular and annular elenents. v = 0.33

T
Nunber of elenments Exact
m n 1 2 4 8. (42)
0 10. 25 10. 22 10. 22 10. 22 10. 24
1 40. 25 39. 84 39.78 39. 82
0 2 115. 15 90. 12 89. 18 89. 11
3 161. 71 158. 64 158. 26
0 23.66 21.33 21. 27 21. 26 21. 25
1 66.58 61. 10 60. 85 60. 84
1 2 166.07 121.69 120. 25 120. 12
3 218. 37 199.91 199. 09
0 35,21 34.91 34. 88 34.81
1 101.94 85.21 84. 63 84. 64
2 2 156. 19 154.13" 153. 76
3 273. 86 244.10 243. 36
0 74.46 69.83 69. 68 69. 72
1 211.83 141. 22 140. 23 140. 19
4 2 245. 65 230. 20 229.52
3 388. 00 340. 90
0 128.22 114. 77 114. 25
1 437.52 210. 92 206. 33
6 2 345. 70 317. 24
3 518.53 448. 94
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TABLE 2.9

Non- di mensi onal frequency X of a uniformthickness circular plate,
free at the outer boundary, calculated using thin plate bending
circular and annular elenents. v = 0.33

Nunber of el ements Exact
n n 1 2 4 8 (42)
1 9.06 9.07 9.07 9.06
0 2 35.81 38.39 38.50 38.44
3 76.63 88.14 87.86 87.80
4 183.79 156.49 157.11 156.75
1 20.41 20.52 20.51 20.52
2 63.72 60.11 59.88 59.75
1 3 138.10 120.01 119.18 118.81
4 278.11 214,48 198.74 197.96
0 5.27 5.26 5.26 5.26 5.24
1 48,83 35.34 35.28 35.25 35.50
2 2 94,95 84.91 84.42 84.64
3 250.66 154,72 153.64 153.51
0 21.86 21.54 21.53 21.53 21.50
1 88.75 75.43 73.52 73.39 73.45
4 2 183.58 142,66 142,46 142,33
3 297.69 242,91 231.60
0 47.19 46. 92 46. 83 46. 81
1 171. 67 126. 29 122. 42 122. 28
6 2 263. 69 213.50 211.81
3 494. 18 339.32 321. 17




183

TABLE 2.9

Non- di mensi onal frequency X of a uniformthickness circular plate,
free at the outer boundary, calculated using thin plate bending

circular and annul ar elements. v = 0.33
NUnber of elenments Exact
n n 1 2 4 8 (42)
1 9.06 9.07 9.07 9.06
0 2 35.81 38.39 38.50 38.44
3 76.63 88.14 87.86 87.80
4 183.79 156.49 157.11 156.75
1 20.41 20.52 20.51 20.52
2 63.72 60.11 59.88 59.75
1 3 138.10 120.01 119.18 118.81
4 278.11 214.48 198.74 197.96
0 5.27 5.26 5.26 5.26 5.24
1 48,83 35.34 35.28 35.25 35.50
2 2 94.95 84.91 84.42 84.64
3 250.66 154.72 153.64 153.51
0 21.86 21.54 21.53 21.53 21.50
1 88.75 75.43 73.52 73.39 73.45
4 2 183.58 142.66 142,46 142.33
3 297.69 242.91 231.60
0 47.19 46. 92 46. 83 46. 81
1 171. 67 126. 29 122. 42 122. 28
6 2 263. 69 213.50 211.81
3 494. 18 339.32 321. 17
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TABLE 2.10

frequency A of a uniform thickness annular plate,
calculated using thin plate

Non- di mensi onal
simply supported at the outer boundary,

bendi ng annul ar el enents. v =033 a/lb = 0.001
Number of elements Exact
m n 1 2 4 8 (42)
0 4.99 4.98 4.98 4.98 4.97
1 38.80 30.19 29.78 29.76 29.70
o | 2 176.23 85.68 74.78 | 74.23 74.13
3 185.98 | 143.22 | 138.65 | 138.30
0 14.68 13.96 13.94 13.94 13.91
1 60.27 52.18 48.65 48.52 48.58
1 |2 145.10 | 121.70 | 104.15 | 102.91 | 102.82
3 219.33 | 193.29 | 177.44 | 176.89
0 30.29 25. 84 25.66 25.65 25.70
1 165.30 77.63 70.49 70.17 70.06
2 |2 435.67 | 177.93 | 139.53 | 134.53 | 134.33
3 516.70 | 234.47 | 219.21 | 211.99
0 44 .05 41.08 40.02 39.99 39.94
1 381.80 | 106.88 95.23 94.62 94.48
3 |2 907.25 | 200.24 | 177.45 | 169.03 | 168.74
3 1176.41 | 284.08 | 263.93
0 65.46 58.41 56.93 56.88 56.85
1 686.25 | 142.49 | 122.78 | 121.80 | 121.66
& | 2 |1564.89 | 244.90 | 217.89 | 206.34 | 205.92
3 2102.24 | 334.48 | 311.15
0 94.73 78.36 76.34 76.24 76.21
1 | 1077.49 | 172.75 | 153.70 | 151.65 | 151.29
s | 2 |2409.66 | 325.78 | 259.73 | 246.44
3 3290.88 | 389.94 | 361.98
0 131. 44 101. 16 98. 21 98. 04
1 | 1555. 46 201.56 | 187.62 | 184.12
6 | 2 | 3441.95 438.60 | 303.66 | 289.28
3 4742. 59 451. 86 415. 32
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TABLE 2.11

Non- di nensi onal frequency j of a uniformthickness annular plate,
clzmped at the outer boundary, calculated using thin plate bending

annul ar el erments. ,, = 0.33 a/b = 0.001
Nunber of el enents Exact
m n 1 2 4 8 (42)
0 10.24 10. 22 10. 22 10. 22 10. 24
1 40. 24 39. 88 39.78 39. 82
0 2 114. 49 90. 11 89. 18 89. 11
3 528.76 161. 66 158. 63 158. 26
0 23.66 21. 33 21.27 21.26 21.25
1 66. 56 61.10 60. 85 60. 84
1 2 165. 85 121. 70 120. 25 120.12
3 218. 23 199.91 199. 09
0 103.70 35. 20 34.91 34. 88 34.81
1 101. 58 85. 20 84. 63 84. 64
2 2 493. 31 156. 14 154. 13 153.76
3 273.81 244,08 243. 36
0 248.69 53. 47 51.12 51. 04 50. 98
1 138. 14 112.00 111.10 111.09
3 2 1135. 96 199. 49 190. 79 190. 44
3 329.13 291.10
0 450.40 74.35 69. 83 69. 68 69. 72
1 200. 97 141.21 140. 23 140. 19
4 2 2033. 55 245.51 230. 20 229.52
3 386. 85 340. 89
0 709.10 98. 65 91.05 90. 76 90. 82
1 289. 64 174.19 171. 98 171. 87
5 2 3185. 06 294. 20 272. 36
3 447,69 393. 53
0 1024.98 127.91 114. 76 114. 25
1 401. 81 210. 87 206. 33
6 2 4591. 14 345144 317. 23
3 517.78 448, 93
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frequency » of a uniform thickness annular plate,
free at the outer boundary, ca .culated using thin plate bending

annul ar elenments. v = 0.33 alb = 0.001
Number of elenents Exact
m n 1 2 4 (42)
1 9.07 9.07 9.07 9.06
0 2 35.72 38. 38 38.50 38. 44
3 76. 84 88. 15 87. 86 87.80
4 _167.47 156. 41 157. 10 156. 75
1 20. 56 20. 52 20. 51 20. 52
2 62. 75 60. 10 59. 88 59. 75
1 3 129.74 120. 13 119. 18 118. 81
4 278.12 214. 27 198. 74 197. 96
0 5.27 5.26 5.26 5.26 5.24
1 47.21 35.33 35.28 35.25 35.52
2 2 191. 88 94,75 84. 89 84. 42 84. 64
3 245. 65 154. 68 153. 64 153.51
0 12.51 12. 26 12. 25 12. 24 12. 25
1 63. 01 54, 28 53.0'2 52.93 53.00
3 2 430.99 127. 67 112.58 111.99 111. 94
3 265. 01 197. 67 191. 14 190. 72
0 21.84 21.54 21.53 21.53 21.53
1 86. 26 75. 32 73.52 73.39 73. 45
4 2 770. 95 177. 29 142. 66 142. 46 142. 33
3 294. 05 242.81 231. 60
0 33.26 33.11 33.07 33.06 33.06
1 119. 00 98. 89 96. 69 96. 53 96. 43
5 2 1208. 66 225.92 176. 32 175.75 175. 56
3 355. 21 289. 99 274. 96
0 47.09 46. 90 46. 83 46. 81
1 160. 85 126. 13 122. 41 122. 28
6 2 1743.73 262. 33 213. 46 211. 81
3 458. 67 339.13 321. 17
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TABLE 2.13

Non- di nensi onal frequency A of a uniform thickness annular plate,
sinply supported at the outer boundary, calculated using thin plate
bendi ng annul ar elenents. v = 0.3 alb =0.1

Number of elements Exact
m n 1 2 4 8 (43)
0 4.91 4.87 4.86 4.85 4.86
1 33.43 29.82 29.52 29.45 29.41
0 2 95.77 83.37 75.36 74.88 74.85
3 176.72 145.31 143.12
0 14.39 13.90 13.88 13.87 13.88
1 58.65 50.45 48.19 48.03 48.08
1 2 162. 37 113.95 102. 03 100. 67
3 214. 36 178. 39 171. 86
0 27.95 25. 49 25. 40 25. 40 25. 45
1 83. 68 74.73 69. 46 69. 27 69. 23
2 2 332. 49 155. 88 133. 84 132. 37
3 258. 08 231.03 214. 84
0 43. 41 40. 40 39. 96 39.94 39.99
1 128. 17 101. 94 94, 81 94. 41
3 2 589. 09 203. 28 171. 41 168. 27
3 325. 32 280. 64 261.71
0 60. 38 57. 88 56. 88 56. 84
1 192. 81 131. 94 122. 32 121. 73
4 2 932. 38 239. 49 213. 07 206. 07
3 447. 93 329.02 310. 53
0 80. 96 77.79 76. 27 76. 21
1 275.54 165. 71 152. 58 151. 58
5 2 1371. 87 275. 96 256. 92 246. 19
3 614. 90 380. 85 361.12
0 105. 94 100. 17 98. 10 98. 00
1 375. 82 201. 11 185. 86 184. 04
6 2 1907. 00 323. 40 302. 14 288. 97
3 818. 49 437. 80 414. 30
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TABLE 2. 14

Non- di mensi onal frequency A of a uniform thickness annular plate
clanmped at the outer boundary, calculated using thin plate bending

annul ar elenments. v = 0.3 alb =0.1
Number of elenents Exact
m n 1 2 4 8 (43)
0 10. 27 10. 21 10. 17 10. 16 10. 16
1 51. 68 39. 87 39. 65 39.54 39. 49
0 2 105. 67 01.27 90. 53 90. 38
3 253.03 166. 21 164.71
0 22. 64 21.31 21.21 21.20 21. 15
1 126. 95 63. 14 60. 39 60. 10 59.98
1 2 144. 28 119. 30 117.31
3 332. 77 197. 84 193. 43
0 45, 15 34. 70 34.56 34.54 34.53
1 283. 22 93.09 83.84 83.50
2 2 201. 48 153. 20 151. 54 83.44
3 559. 97 256. 34 238. 98
0 83. 44 51. 89 51. 05 50. 99 51.06
1 514. 65 127.73 111. 49 110. 83
3 2 292. 84 191. 92 189. 80
3 899. 12 316. 16 288. 33
0 134. 84 72.30 69. 77 69. 67
1 829. 15 165. 91 141. 00 140. 16
4 2 425.51 236. 25 229. 85
3 1350. 27 373.64 339. 67
0 199. 05 95. 89 90. 95 90. 75
1 1229. 88 212. 79 173.04 171.92
5 2 594. 00 284. 83 272.04
3 1919. 23 432.54 392.52
0 276. 34 122. 80 114.58 114. 24
1 1718. 04 270.79 208. 30 206. 24
6 2 796. 02 336. 24 316. 84
3 2609. 34 495. 64 447. 84
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Non- di mensi onal _ frequency x of a uniformthickness annular plate,

free at the outer boundary,

cal cul ated using thin plate bending

annul ar elenments. v = 0.3 a/b= 0.1
Number of elements Exact
m n 1 4 8 (43)
1 8.83 8.79 8.78 8.77
0 2 35.44 38.18 38.24 38.17
3 89.89 89.62 89.11
4 112.25 159.96 163.01
1 20.50 20.42 20.41 20.49
1 2 61.02 59.39 59.11 58.99
3 133. 17 117. 80 116. 22
4 175.70 195, 53 192. 25
0 5.31 5.31 5.30 5.30 5.30
2 1 39. 38 34.99 34. 96 34.93 34. 86
2 110. 10 89. 63 83. 60 83. 30
3 351. 47 183. 34 152. 11 151. 04
0 12. 49 12. 44 12. 44 12. 44 12. 44
3 1 61.62 53. 24 53.03 52. 97 53. 04
2 152. 80 121. 36 112. 28 111.76
3 611.61 253. 48 191. 11 190. 19
0 21.98 21.85 21. 84 21. 84
4 1 83. 26 74. 45 73. 65 73.55
2 218. 44 155.88 142. 95 142. 49
3 965. 55 310. 02 235.42 321. 35
0 33.69 33.52 33.50 33.50
5 1 106. 91 98. 36 96. 92 96. 77
2 305. 23 196. 83 176. 10 175. 86
3 1416. 29 345. 78 283.59 274. 83
0 47.57 47. 43 47. 40 47. 38
6 1 134. 62 124,92 122.78 122. 60
2 411.76 243. 63 212. 30 211.98
3 1965. 22 382. 73 334. 17 321. 06
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TABLE 2.16

Non-di mensi onal frequency A of a uniform thickness annular plate,
sinply supported at the outer boundary, calculated using thin plate

bendi ng annul ar el enents. v = 0.3 alb =0.5
Nurmber of el enents Exact
mi| n 1 2 4 8 (43)
0 5.09 5.08 5.08 5.08 5.07
1 74. 42 66. 02 65. 88 65. 84 65. 76
0 2 274. 06 228. 44 204. 83 203. 92 203. 23
3 459. 05 427. 62 421. 60
0 11 71 11. 62 11.61 11.61 11. 62
1 78. 35 70.12 69. 93 69. 89 69. 89
1 2 277.19 231. 35 207.98 207. 05
3 460. 64 430. 40 424. 37
0 22.78 22.40 22. 36 22. 36 22.31
1 89. 44 81.57 81.17 81.11 81.13
2 2 286. 58 239. 98 217.30 216. 30
3 465. 36 438. 75 432. 63
0 36.54 35.70 35. 64 35. 64 35.69
1 106. 21 98. 69 97.77 97. 66
3 2 302. 30 254.09 232. 36 231.23
3 473.10 452. 60 446. 25
0 53. 47 52.10 52.04 52.03
1 127.54 120. 24 118. 50 118. 34
4 2 324. 39 273. 35 252. 62 251. 27
3 483. 74 471. 84 465. 02
0 73. 64 71.70 71.64 71.64
1 153. 02 145. 84 143.08 142. 87
5 2 352. 82 297. 38 277.52 275. 89
3 497. 26 496. 29 488. 67
0 96. 74 94. 27 94.19 94.18
1 182.80. 1 175.51 171. 69 171. 44
6 2 387. 69 325. 87 306. 67 304.74
3 513.25 525.77 516. 93




TABLE 2.17
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Non-dimensional frequency X of a uniform thickness annular plate

clanped at the outer boundary,
annul ar el ements.

v =03

alb =0.5

cal culated using thin plate bending

Nunber of elenents Exact
m n 1 2 4 (43)
0 17.76 17. 24 17.72 17.72 17. 68
1 131.10 03. 68 03. 94 93. 85 93. 85
0 2 289. 62 253. 96 252. 34 252. 80
3 736.51 495. 48 490. 03
0 22.21 22.05 22.02 22.02 21.98
1 135. 43 97.19 97. 48 97. 38 97. 32
1 2 292. 39 256. 85 255. 21
3 739. 88 498. 04 492. 64
0 33.04 32.22 32.12 32.12 32.05
-1 148. 12 107. 35 107. 63 107. 50 107. 56
2 2 300. 69 265. 44 263. 72
3 750. 00 505. 72 500. 45
0 48. 17 45. 99 45. 83 45. 81 45. 77
1 168. 39 123. 29 123.27 123.07
3 2 314. 38 279.52 277. 63
3 766. 86 518. 54 513. 37
0 67.49 63. 24 63. 04 63. 02
1 195. 41 144. 11 143. 36 143. 07
4 2 333.30 298.73 296. 58
3 790. 50 536. 49 531. 27
0 91. 22 84. 04 83. 84 83. 82
1 228. 61 169. 35 167. 45 167. 06
5 2 357. 37 322. 67 320. 15
3 820. 76| 559.54 553. 95
0 119. 40 108. 21 107. 99 107. 96
1 267.79 198. 88 195. 61 195. 14
6 2 386. 26 350. 98 348. 03
3 858. 16 587. 64 581. 22




Non- - di nensi ona

frequency *
free at the outer boundary,

TABLE 2. 18
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of a uniform thickness annular plate,
cal cul ated using thin plate bending

annul ar el enent s, v = 0.3 alb = 0.5
Nurmber of el ements Exact
m n 1 2 4 8 (43)
1 9.32 9.31 9.31 9.32
0 2 85.79 91.97 92.29 92.36
3 280.03 250.86 249,53
4 330.95 477.12 486.46
1 17.17 17.20 17.20 17.18
1 2 95.92 96.34 96.27 96.33
3 273.85 253.73 252.74
4 597.97 492.03 490.07
0 4,27 4,27 4,27 4,27 4,28
1 31.50 31.21 31.12 31.12 31.06
2 2 123.79 107.80 107.66 107.52
3 380.23 294 .55 263.73 262.30
4] 11.43 11.43 11.43 11.43 11.43
1 48.40 47.66 47.48 47.46 47.42
3 2 141.73 125.26 124.87 124.66
3 394.27 309.17 279.35 277.75
0 21.08 21.07 21.07 21.07
1 68.40 66.99 66.75 66.72
4 2 164.96 147.74 146.75 146.44
3 414.03 329.17 300. 40 298.57
0 33.00 32.99 32.98 32.98
1 91.96 89.66 89.41 89.38
5 2 192.72 174.59 172.68 172.27
3 439.56 354.26 326.35 324.20
4 47.10 47.09 47.07 47.06
1 119.19 115.74 115.52 115.48
6 2 224.70 205.69 202.61 202.10
3 471.07 384.23 356.73 354.23




Non- di nensi onal

parabolic thickness variation,
variation annular thin plate bending el enents.

TABLE 2.19

frequency » of a free circular plate
model | ed with parabolic thickness
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with

v=03 alb=0.001

Nunber of elenents Exact
m n 1 2 4 8 (46)
0 1 9.55 9.67 9.67 9.67
2 20.16 29. 26 29.80 29.83
3 42.07 54.79 57.79 57. 86
1 1 17.80 17. 80 17. 80 17. 80
2 42,27 41.93 41. 86 41. 86
3 71.12 74.99 73.99 73. 88
0 5.80 5.80 5.80 5.80 5.80
9 1 26.65 25.98 25. 88 25. 88 25. 88
2 225,72 55.78 54,19 53.91 53. 89
3 125.83 91. 90 90. 17 89. 89
0 10.04 10.04 10. 04 10. 94 10. 04
3 1 44,97 34.50 33.98 33.94 33.94
- 2 537.80 75.03 66. 60 65. 99 65. 92
3 157.18 109. 24 106. 45 105. 91
0 14.64 14.26 14. 20 14. 20 14. 20
4 1 75.11 42.72 42.10 42.00 42.00
2 970.90 95,23 79.08 78.09 77.95
3 220,04 128. 16 122. 85 121.93
0 20.60 18.50 18. 34 18. 33 18. 33
5 1 115.48 52.04 50,28 50. 08 50. 06
2 1525.91 115,19 91,72 90. 25 89. 99
3 314.87 150. 22 139. 36 137. 96
0 28.17 22,70 22. 47 22.45 22.45
6 1 165,45 62,57 58. 50 58. 15 58. 11
2 2203.,40 138,97 104,83 102. 47 102. 02
3 436,97 174. 69 155,99 153. 98
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TABLE 2. 20

Non- di nensi onal frequency A of a free circular plate with
parabolic thickness variation, nodelled with |inear thickness
variation annular thin plate bending elements. v=0.3 a/b = 0.001

Number of elements Exact

m n 1 2 4 8 (46)
1 9.33 9.66 9,67 9.67
0 2 18.11 28.94 29.78 29.83
3 41.22 53.07 57 .64 57.86
16.98 17.75 17.80 17.80
1 2 38.56 41.26 41.81 41.86
3 67.72 72.77 73.69 73.88
0 4.73 5.75 5.79 5.80 5.80
2 1 19.32 23.78 25.71 25.87 25.88
2 24,55 52.15 52.88 53.80 53.89
3 123.58 89.30 89.61 89.89
0 7.14 9.84 10.03 10.04 10,04
3 1 36.79 30.99 33.56 33.92 33.94
2 593.60 71.19 64.61 65.76 65.92
3 153.19 106.77 105.53 105,91
0 10. 12 13. 60 14. 17 14. 20 14. 20
4 1 64. 37 38. 49 41. 30 41. 95 42.00
2 1074. 67 91.30 76. 54 17.71 77.95

3 212. 26 125. 85 121.49 121. 93
0 14. 25 17. 13 18. 25 18. 33 18. 33
5 1 100. 74 47. 23 48. 97 49, 97 50. 06
2 1690. 57 111. 09 88. 89 89. 68 89. 99
3 301.91 147. 86 137. 64 137.96
0 19. 57 20.53 22.29 22. 44 22.45
6 1 145. 52 57.10 56. 64 57.98 58.11
2 2442. 14 134. 48 101. 92 101. 76 102. 02
3 417.75 172. 16 154. 25 153. 98
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TABLE 2. 21

Conparision of non-dinmensional frequency X for a uniformfree platé‘
cal cul ated using sector elenents (54), and thin plate bending annul ar
el ement s. v = 0,33

3 x 12 grid Annular elements
sector elements a/b = 0.001 Exact
N=2 N=4
m n D.OF. = 55 D.0.F.=6 | D.0.F.=10{ (42)
L 8.98 9.07 9.07 9,06
0
2 38.12 35.72 38.38 38.40
1 20. 24 20. 56 20. 52 20. 52
1
2 62.75 60. 10 59. 75
0 5.91; 5.94 5.26 5.24 5.24
2
1 36.01 35.33 35. 30 35.50
0 12.98 12. 26 12. 25 12. 25
3
[ 54. 28 53.02 53. 00
0 23.02 21.54 21.53 21.50
4
I 75.32 73.52 73.45
0 34. 18; 34. 44 33.11 33.07 33.10
5
1 98. 89 96. 69 96. 43
|




TABLE 2. 22

Mat ri x [kz] of the thin plate bending annul ar el ement
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2 2 2 2
m S__l m S0 m% S m 82
2 2 2
R +m Sl 2R2+m 52 3R3+m33
4R, + m? S 6R, + m? §
Symmetrical 3 3 4 4
2
9RS + m S5
7:2 r,
R, =Cr [ rih(r)dv(r) dr ; S, = ¢t [ r'h(r)o, (x) dr
1 r i i r S
1 1
TABLE 2.23
Mat ri x [kg] of the plane stress annul ar el ement
Q_, a1+ v) Q, a + 2v) Q a1 + 3v) Q,
2(1-l~\))Ql 3(1+\))Q2 4(l+v)Q3
(5 + 4v) Q (7 + 5v) Q
Symetri calt 3 4
(10 + 6v) Qg
21E 1'2 i
Qi = S h(r) £~ dr

1-v2 T1




TABLE 2. 24
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Mat ri x [ki] of the plane stress circular elenent

21 +v) Q 3(1+WQ, 4 (1 +V)Q
(5 + 4\))Q3 (7 + 5v) Q,
Symmetrical (10 + 6v) Qq
e 2 1
Q S h(r) ¢ dr




Radi al stress coefficients p = ( o /p Q%2 ) x 10% for a

TABLE 2. 25
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uni form annular disc rotating with constant angular velocity @

alb =0.001 v =03
Nunber of elenents
r/b 1 2 4 8 16 Exact
0.001 4428 4475 4536 4604 4652 0
0. 063 4096 | 4107
0.126 4055 | 4058 | 4059
0.188 3978 | 3979
0.251 3864 | 3865 3866 | 3866
0.313 3720 | 3720
0. 376 3543 | 3543 | 3543
0.438 3333 | 3333
0.501 3091 | 3091 | 3092 3092 | 3092
0. 563 2818 2818
0. 625 2512 | 2512 2512
0. 688 2174 | 2174
0. 750 1803 1803 1803 1803
0.813 1401 1401
0, 875 966 966 966
0.938 499 499
1. 000 -1 0 0 0 0 0




Tangenti a

stress coefficients

TABLE 2. 26

199

= (g lp0%?) x 10% for a
uni form annul ar disc rotating with constant angular velocity Q

alb = 0.001 v=20.3
Nunber of el enents
r/b l 1 2 4 8 16 Exact
0.001 ‘ 5153 5332 5594 5960 6473 8250
0. 063 | 4114 4116
0. 126 4087 4087 4088
0.188 4041 4041
0.251 3975 3976 3976 3976
0.313 3892 3892
0. 376 3790 3790 3790
0.438 3669 3669
0.501 3530 3530 3530 3530 3530
0.563 3372 3372
0. 625 3196 3196 3196
0. 688 3001 3001
0. 750 2788 2788 2788 2788
0. 813 2556 2556
0. 875 2306 2306 2306
0.938 2037 2037
1. 000 1750 1750 1750 1750 1750 1750




Radial stress coefficients p = (Cao_/p Q?b2 y x 10%for a

TABLE 2.27
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uniform annular disc rotating wWith constant angular velocity &

alb=0.2 v=03

‘-Number of elenents

/b 1 2 4 8 16 Exact
0.20 | 2023 | 965 | 316 77 15 0
0.25 1391 | 1392
0.30 2074 | 2084 | 2085
0.35 2437 | 2438
0. 40 o555 | 2503 | 2508 | 2599
0. 45 2640 | 2640
0.50 2504 | 2599 | 2599
0.55 2497 | 2497
0. 60 2247 | 2335 | 2346 | 2347 | 2347
0. 65 2157 | 2157
0.70 1932 | 1932 | 1932
0.75 1676 | 1676
0. 80 1392 | 1392 | 1392 | 1392
0. 85 1081 | 1081
0.90 745 | 745 | 745
0.95 384 | 384
100 | -314 | -4 -2 0 0 0




TABLE 2.28
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Tangential stress coefficients q =( o fo 2262 ) x 10" for a

uni form annular disc rotating with constant angular velocity @

alb=0:2v= 0.3

Nunber of elenments

r/b 1 2 4 8 16 Exact
0. 20 8736 | 8s79 | 8413 | 8343 { 8324 | 8320
0. 25 6781 | 6782
0. 30 5907 | 5909 | 5910
0.35 5346 | 5346
0. 40 4931 | 4940 | 4941 | 4941
0. 45 4624 | 4624
0. 50 4356 | 4356 | 4356
0. 55 4117 | 4117
0. 60 3869 | 3890 | 3893 | 3893 | 3893
0. 65 3677 | 3677
0.70 3463 | 3463 | 3463
0.75 3247 | 3247
0.80 3027 | 3028 | 3028 | 3028
0. 85 2802 | 2802
0.90 2570 | 2570 | 2570
0.95 2329 | 2329
1.00 1978 | 2066 | 2079 | 2680 {2080 | 2080




202

TABLE 2. 29

Radi al stress coefficients p = ( o, /o 9262 ) x 10" for an

annular disc with hyperbolic radial thickness variation rotating
with constant angular velocity @. a/b =0.2 v =03

Nunber of el enents

r’'b 1 2 4 |. 8 16 Exact
0.20 1105 507 167 41 8 0
0.25 883 880
0.30 1427 1423 1420
0.35 1771 1767
0.40 2003 1999 1992 1988
0.45 2121 2117
0.50 2184 2176 2173
0.55 2169 2166
0.60 2107 2127 2113 2107 2105
0.65 1995 1993
0.70 1840 1836 1834
0.75 1632 1631
0. 80 1398 | 1389 1386 1385
0.85 1099 1098
0.90 773 772 771
0.95 405 405
1.00 -220 - 26 1 0 0 0




TABLE 2.30
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Tangential stress coefficients q = ( g /09252 ) x 10* for an

annul ar disc with hyperbolic radial

wi th constant angular velocity Q.

thi ckness vari ati on
alb=0.2v =0.3

rotating

Nunber of el ements

r/b 1 2 4 8 16 Exact
0. 20 5783 4979 4912 4951 4974 4985
0.25 4070 4079
0. 30 3582 3602 3609
0.35 3334 3340
0.40 3103 3150 3164 3169
0.45 3043 3047
0.50 2934 2944 2948
0.55 2853 2856
0. 60 2638 2724 2751. 2759 2761
0. 65 2657 2659
0.70 2537 2543 2546
0.75 2416 2418
0. 80 2248 2266 2272 2274
0.85 2111 2113
0.90 1927 1932 1934
0.95 1735 1737
1,00 1403 1449 1499 1514 1519 1520




Radi al stress coefficients p = '{or/Ea*T(b)} x 0% for a

TABLE 2.31

uniform annular disc with linear tenperature gradient.

alb=0.001 v=03
Nunber of elenents
r/b 1 2 4 8 16 Exact
0.001 3575 3612 3662 3717 3755 0
0. 063 3112 | 3121
0.126 2910 | 2912 | 2914
0,188 2705 | 2706
0.251 2496 | 2497 | 2497 | 2498
0.313 2289 | 2289
0.376 2081 | 2081 | 2081
0. 438 1873 | 1873
0.501 1664 | 3.665 | 1665 | 1665 | 1665
0.563 1457 | 1457
0. 625 1249 | 1249 | 1249
0. 688 1041 | 1041
0. 750 833 833 833 833
0.813 624 624
0.875 416 416 416
0.938 208 208
1. 000 -1 0 0 0 0 0
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TABLE 2. 32
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Tangential stress coefficients q = { o{’/Ea*T(b)} x 10* for a

uni form annular disc with linear tenperature gradient.

alb = 0.001 v

0.3

Nunmber of elenents

r{b 1 2 ‘ 4 8 16 Exact
0.001 4157 4301 4512 4808 5222 6657
0. 063 2909 2911
0.126 2494 2494 2494
0.188 2078 2078
0.251 1661 1662 1662 1662
0.313 1245 1245
0.376 829 829 829
0.438 413 412
0.501 -4 -3 -3 -3 -3
0.563 -420 -420
0. 625 - 836 - 836 - 836
0. 688 -1252 | -1252
0. 750 -1668 | -1668 | -1668 | -1668
0. 813 -2085 | -2085
0.875 -2501 | -2501 |-2501
0.938 -2917 | -2917
1.000 | -3334 | -3333 | -3333 | -3333 | -3333 |[-3333




Radi al stress coefficients p = { o /Ea* T(b)) x 10% for a

TABLE 2. 33

uni form annular disc with linar tenperature gradient.

a/b = 0.2 v=20.3
Nunber of elenents
r/b 1 2 4 8 16 Exact
0.02 1362 650 213 52 10 0
0.25 832 833
0.30 1202 1209 1210
0.35 1370 1371
0.40 1387 1413 1416 1417
0.45 1396 1396
0.50 1332 1333 1333
0.55 1244 1244
0. 60 1069 1128 1135 1136 1136
0. 65 1015 1015
0.70 884 884 884
0.75 147 147
0.80 602 604 604 604
0.85 457 457
0.90 307 307 307
0.95 155 155
1.00 -212 -28 -1 0 0 0
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TABLE 2. 34
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Tangential stress coefficients q ={c£ [Ea* T(b)) X 1% for a

uniform annular disc with |inear tenperature gradient.

alb = 0.2 v=0.23
Nunber of elements
a/b 1 2 4 8 16 Exact
0.20 5169 5063 4951 4904 4892 4889
0.25 3555 3556
0.30 2677 2679 2679
0.35 2018 2818
0.40 1466 1471 1472 1472
0.45 993 993
0.50 555 556 556
0.55 145 145
0.60 - 263 - 249 - 247 - 247 - 247
0. 65 -626 -626
0.70 -996 -996 -996
0.75 -1358 | -1358
0.80 -1716 | -171.5 -1715 | -1715
0.85 -2068 | -2068
0.90 -2418 | -2418 | -2418
0.95 -2766 | -2766
1.00 -3180 | -3120 -3112 | -3111 | -3111 |-3111
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TABLE 2. 35

Frequency coefficients X for a centrally clanped circular nmenbrane
disc when stresses calculated using finite elenents are used at the
nodes of the finite element nodel and |inear variations of stresses

are taken within the elements. v = 0.3 a/b = 0.001

Nunber of elenments Exact

m n 1 2 4 8 (48)
0 0.8624 0.9799 0.9977 0.9999 1.00

1 4.188 5.343 5.799 5.917 5.95

! 2 13. 340 13. 779 14. 076 14. 20
3 29. 685 25. 370 25. 514 25.75

0 1.941 2.197 2.310 2. 340 2.35

1 7.098 7.885 8.574 8. 848 8.95

’ 2 17. 498 18. 061 18.561 18. 85
3 37.994 31.284 31.554 32.05

0 3.391 3.752 3. 969 4.030 4.05

1 12. 294 10. 880 11. 750 12. 144 12.30

3 2 23.219 22.290 23. 466 23. 85
3 54. 763 B8.116 38.123 38.70
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TABLE 2. 36

Frequency coefficients » for a centrally clanped circular nmenbrane
di sc when exact stresses are used at the nodes of the _fi nite elenent
nmodel and linear variations of stresses are taken wWithin the elenents.

v=03 a/b = 0.001

Nunber of el enents Exact
m | n 1 2 4 8 (48)
0 0.791 0. 963 0.992 0.998 1.00

1 3. 843 5.261 5.763 5.905 5.95

: 2 13.185 13. 680 14.038 14. 20
3 29. 281 25. 175 25. 429 25.75

0 1. 803 2.188 2. 309 2. 340 2.35

1 6. 317 7.796 8. 564 8. 848 8.95

2 2 17. 148 18.012 18. 556 18. 85
3 36. 493 31. 125 31.538 32.05

0 3,187 3.750 3. 969 4.030 4.05

1 10, 742 10. 837 11.750 12. 144 12. 30

3 2 22. 883 22.891 23. 466 23.85
3 51, 045 38. 068 38. 122 38.70
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TABLE 2. 37

Frequencies in Hz. of a rotating annular disc, calculated using 8
thin plate bending annul ar el enments, and the variation with speed

of rotation. 6
a/b = 0.5 b=80in, h=004in, E=230x 10" psi,

pg = 0.283 1b/in>,v =0.3

Speed of rotation in rpm
m| n 0 1000 2000 3000 4000
0 79 81 86 93 103
0 1 515 517 522 530 541
2 1477 1479 1483 1491 1502
3 2917 2919 2923 2931 2942
0 81 83 91 102 116
1 1 525 527 533 542 555
2 1488 1489 1494 1502 1514
3 2928 2930 2934 2942 2953
0 89 94 108 127 150
9 1 556 558 566 578 594
2 1519 1521 1527 1537 1550
3 2961 2963 2968 2977 2989
0 112 119 140 168 200
3 1 607 610 620 636 659
2 1573 1575 1582 1594 1610
3 3016 3018 3024 3034 3048
0 155 164 188 222 263
4 1 679 683 696 717 746
2 1648 1651 1660 1674 1694
3 3094 3096 3103 3115 3131
0 216 226 252 291 338
1 772 77 793 819 854
5 2 1746 1750 1760 1778 1802
3 3194 3197 3205 3218 3237
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TABLE 2. 38
Frequencies in Hz. of a uniformannular disc rotating with
3000 rpm calculated using thin plate bending annular elenents.

alb =05 b=280in, h=004in, E=30x 10° psi,
pg = 0.283 1b/in3, v = 0. 3.

Number of elements
m n
2 4 8
0 91 . 93 93
1 535 530 530
0 2 1844 1502 1491
3 5500 2976 2931
0 100 102 102
1 548 542 542
1 2 1854 1514 1502
3 5508 2987 2942
0 126 127 127
1 584 578 578
2 2 1883 1548 1537
3 5533 3021 2977
0 167 167 168
1 643 637 636
3 2 1933 1605 1594
3 5573 3078 3034
0 222 222 222
1 723 718 717
4 2 2003 1686 1674
3 5630 3158 3115
0 291 291 291
1 825 820 819
5 2 2093 1790 1778
3 5703 3261 3218




TABLE 2. 39
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Matri ces [ké] and [kczlj of the Thick D sc El enent-|

P_,m?(2-v) P_, 2m? P_,m(m?-vtl) | p_ m
P_, (m*-1) P, a*+a?v P_;m@®-1) B g (m?~1)
v-1)
P00n2v~2v—2) PlZOmZv Pom(mz-V—B) le(m2-2v—2)
-2v-2)
Pl (2m2v-m? P2 (3n2v-m? le (m2—5—4\)) sz (m%-6v-3)
~6v=3) ~9v-9)
1 1 1
P_l-i(mz-—mz\) Poi(mz-—mz\) P__l?)_m(3—\)) Pom
+2)+Q; 1)+,
P _];(mz_mz\, P —]:m(3+\)) P.m(14+V)
12 02 1
+HiMHA)HQ,
P -l-(2m2+l P 1n?4+Q
- -12 0" T2
metrica
Sy _v)'*‘Ql
2
Pym™,
E i 2 2 i
P, = cm——— / h3()rtdr Qi = Crmk4G J h(r)rdr

i

12 (1-v?) I,

1




TABLE 2. 40

Matri x [mcll] of the Thick Disc El enent-|
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2 2 2 2
P_lm Pom le sz 0 0 P0 le
p. (14n2)| P.(24m%) P.(3m°) -P,| ~P, | P.m | P.m
1 2 3 1 2
P 42y | P, (64m?) | 2P ~2p Pm | P.m
3 ' 4 2 3 2 3
2
P5(9+m) —3P3 —3P4 P3m P,m
P1 P2 0 0
Symmetri cal P, 0 0
) Py
P3;
r
P, = C'vr-L I n3@) ri dr

i er
1




TABLE 2.41

Matri x [k(si] of the Thick Disc Elenent-2
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2 2 2
Uy m Qo™ Qo Q) n’
o, n®) |, 2m®) | o (¥
2 2
Q, Gm?) | q, (6t
r
2 i 2
Qi =Cmk2 f  h(r)rdr Qs (9+m)
r
1
" TABLE 2.42
Mat ri x [mz] of the Thick Disc El enent-2
2 2 2 2
P,m Py m P, m P, m
7 2 , )
b ‘§1+m ) P, (24m“) P, (G+m")
r 2 2
2 P, (4tm") P, (6tm")
Pi = Cr —l% J h?’(r)ridr 3 4
1 PS (9+m2)
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TABLE 2. 43

Frequencies in Hz. of a uniformcircular plate calculated using Thick
Disc Element-1. a/b =0.001; b =37.5nm h=5nm E= 22000 kg/ m2 ;
p = 7.85 and v = 0. 3.

Number of Elenents | Thin

' plate | Experi-
m n 1 2 4 8 | Exact * soln. | nental.

1 6766 1837 7943 7950 7949 8213 7767
0 2 23421 | 30540 | 31222 | 31297 | 31278 | 34848 | 30698
3 | 153450 | 63350 | 65651 | 64310 | 64141 79593

1 15050 | 16875 | 17419 | 17440 | 17408 | 18603 ( 17012
1 2 55174 | 45134 | 46786 | 46417 | 46246 | 54169

3 | 332367 97409 | 89537 | 82941 | 82183 | 107708

0 4781 4774 4765 4754 4742 4754 4620
2 1 37746 | 29627 | 28883 | 28797 | 28714 | 32202 | 28117
2 | 119687 | 73842 | 63216 | 62101 | 61901 | 76731

0 11100 | 10855 | 10823 | 10784|.10738 | 11105 10505
3 1 50683 | 43797 | 41635 | 41438 | 41265 | 48046
2 | 202583 | 96747 | 80979 | 78333 | 77973 | 101476

* Calculated using Mndlin's plate theory.
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TABLS 2.44

Frequencies in Hz. of a uniformcircular plate cal culated using Thick
Disc Element-2. a/b = 0.001; b =37.5nm h=5m E = 22000 kg/m® ;
p = 7.85 and v= 0. 3.

Nunber of Elenents Thin
plate | Experi -
m n 1 2 4 8 Exact*| soln. | mental

il 6594 7423 7948 7955 7949 8213 | 7767

0 2' 10341 13289 29948 31297 31278 34848 30698
3 52618 60020 64141 79593

1 15414 16905 17457 17481 17408 18603 17012
1 2 53869 | 42678 46300 | 46387 46246 54169
3 321156 93328 82498 82519 82183 | 107708

0 4787 4785 4784 4784 4742 4754 4620

2 1 39835 29050 29011 28986 28714 32202 28117
2 142438 68329 62535 62276 61901 76731

0 11139 10898 10890 10889 10738 11105 10505
3 1 52104 42738 41883 41830 | 41265 | 48046
2 274801 87648 78990 78687 77973 | 101476

Cal cul ated using Mndlin's plate theory.




The fundanenta

TABLE 2.45

frequency (m = 2, n
plates and rings calculated using Thick D sc Elenent-|

=0) in H.
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of thick uniform

E = 30 x 106 psi pg = 0.283 v =0.3
Dimensions(in) Nunber of El enents Experi-
mental
a b h 1 2 4 8
Disc 0.0% 6.4375 | 3.5 | 36061 3542 3524 35i6 3450
Disc 0.0* 9.375 3.5 11862 1845 }1836 | 1831 | 1880
Di sc 0.0* 5.1875 | 3.5 | 5162 | 5032 |5009 | 4999 | 5100
Ri ng 5.375 6.4375 | 3.5 | 1315 | 1303 | 1292 | 1289 1350
Ri ng 5.375 6.4375 | 1.5 | 924 923 | 915 913 920
Ri ng 8. 3125 9.375 3.5 | 635 632 | 629 [ 628 640
Ri ng 8. 3125 9. 375 2.5 | 570 568 564 563 575

* Snal |

val ue assumed so that a/b = 0.001




TABLE 2. 46
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The fundanental frequency (m=2, n=20) in Hz. of thick uniform
plates and rings calculated using Thick Disc El enment-Z

E= 30 x 106 psi pg = 0.283 v=203
Dimensions (in) Number of Elements Fxperi-
mental
a b h 1 2 4 8
Disc 0.0% 6.4375 3.5] 3630 | 3627 | 3627} 3627 3450
Disc 0.0% 9.375 3.5) 1872 {1871 | 1871} 1871 ] 1880
Di sc 0.0* 5. 1875 3.5 5191 |5188 | 5188 | 5188 | 5100
Ri ng 5.375 6. 4375 3.5 2237 2237 | 2237 | 2237 1350
Ri ng 5.375 6. 4375 1.5 1071 |[1071 | 1071| 1071 920
Ri ng 8.3125 9.375 3.5] 1075 |1075 | 1075| 1075 640
Ri ng 8.3125 9.375 2.5 793 | 793 | 793 793 575
* Smal | val ue assumed so that a/b = 0.001




TABLE 2. 47
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FrequenciesinHz. of rings calculatedusing Thick Disc El enent-2.
E= 30 x 106 psi

pg = 0.283 v =203
m N Dimension(in) Yumber of El enents
T Exact* | Experi -
a b h 1 2 4 8 ment al
210 09| 709 | 703 | 701| 799 | 720
s | o 0.6215
1964 | 1963 |1953 [1950| 2089 | 2000
210 Lo [1453] 1450 (1436 1432 1429 | 1470
.5
310 2001 | 3996 |3970 |3962| 3954 | 4050
4.12! 5. 1875
210 1267 | 1855 |1a37 [1832] 1828 | 1900
2.5
§ 10 5020 | 4997 |4949 |4934 | 4923
210 1978 | 1951 |1929 |1922| 1918 | 1980
3.5
3 10 5088 | 5030 |4964 |4943| 4930
2|0 244 | 444 | 441 | 44c| 408 435
; 3,620
0 1238 1238 [1233|1231| 1307 | 1250
2 |0 924 | 923 | 915| 913| 912 920
L.5
30 2610 | 2607 |2593|258E| 2586 | 2850
1.375 | 6.4375
2 || 0 , 1215 | 1210 |1201| 119¢| 1195
2.5
3 40 3420 | 3410 |3385(3377| 3371
2 10 1315| 1303 |1292|1285| 1286 | 1350
.5
3 3566 | 3538 |3504|3494| 3487

Cal cul ated using Mindlin's plate theory.




TABLE 2. 48

Frequencies in Hz. of stepped discs.

E = 30 x.100 psi pg = 0.283 v=0.3
Finite
m h El enent * Experinent a
2 2.5 3093 3030
2 1.5 2416 2310
2 0.75 1668 1600
% Five Thick Disc E enent-l used.
TABLE 2.49
Thi ckness of the turbine disc at various radii
Radi us h Radi us h Radi us h Radi us h
(in) (in) (in) (in) (in) (in) (in) (in)
7.50 | 1.025 6.08 0.625 4.53]0.910 2.80 1. 200
7.39 1.025 5.89 0. 650 4.33 |[0.945 2.38 1.395
7.25 0.790 5.70 | 0.680 4.12 0.980 2.11 1.700
7.10 0.590 5.50 0.725 3.89 1. 020 1. 80 2.180
6. 95 0. 480 5.30 | 0.770 3.66 1. 050 1.38 2.220
6.72 0.474 5.08 0. 805 3.43 1.095 0.90 2. 650
6. 45 0. 550 4.92 0. 840 3.20 1. 140
6. 26 0.590 4.72 0. 875 3.00 1.170
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TABLE 2.50

Frequencies in Bz. of an actual turbine disc, calculated using thin
pl ate bending annul ar elenents and Thick D sc El ement-|

E =312 x 106 psi pg = 0.281 v =0. 3
m n Ei ght Nunber of
thin plate Thick Disc El enent-| Experi- | Percent- *
el ement s ment al age error
4 6 8
1 1737 1696 1707 1590 7.35
0 2 5590 5585 5618 5240 7.20
3 11521 11340 11401
1 2962 2899 2894 2685 7.80
1 2 7714 7710 7632
3 14708 14022 13810
0 1177 1135 1109 1114 1048 6. 30
9 1 5323 4835 4749 4761 4392 8.30
2 12485 10471 10292 10294
3 22565 18510 16960 16927
0 1805 1746 1702 1711 1625 5.30
1 7315 6529 6389 6431 5926 8.50
3 2| 16174 13205 12889 12976
3 27903 23220 20229 20307 )
0 2668 2534 2478 2482 2357 5.30
y 1 9436 8260 8089 8112
* 2 19480 15923 15214 15279
3 32542 26677 23136 23264
0 377s 3503 3436 3440 3256 5. 65
5 1 11880 10121 9947 9960
2 23001 18830 17585 17618
3 37197 30170 26055 26135
0 5118 4627 4552 4556 4298 6. 00
6 1 14608 12100 11919 11931
2 26805 21797 20026 20047
3 42203 34094 29067 29100
0 6683 5886 5805 5810 5460 6.40
9 1 17561 14196 13971 13984
2 30847 24737 22534 22553
3 47610 38428 32141 32151

* Error in eight element solution.



222

TABLE 3.1

Bending stiffness and inertia matrices of a beam el ement when
linear variations in | and A are assuned within the el enent.

6 (1+a) -2 (1+2a) -6 (1+a) ~20.(2+a)
EL,
_— 22 (1+3a) 2001420) 22 (140)
43
6 (14a) 22 (2+0)
I
7
[0 Il
22 (3+0)
36+1208 —2(7+158) 27(1+8) 2 (6+78)
2 .
PA, & £ (3+58) 4 (7+68) - 202(1+8)
420 R R N '
1204368 2 (15+78)
Ay o
TR iz
;—§(5+38)

Subscripts 1 and 2 refer to values at node 1 and node 2

of the element respectively.
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TABLE 3.2

Torsional stiffness and inertia matrices of a peam el ement when

linear variations in KG and J are assuned within the el enent.

%1+ K2 - Kgy + Kgp)
_G
2%

- (KGl + Kcz) Ky * Ky

33, +J, 3, + J,
oL
12

5+, 3, + 33,

Subscripts 1 and 2 refer to values at node 1 and node 2

of the elenent respectively.




TABLE 3. 3

Addi tional bending stiffness matrix, resulting fromuniformrotation @ , for a uniform beam
el enent for bending in the plane of rotation.

{50401+252(02—01 {—4201—42(02—01) {-—50401—252(02-01) (-42014-130:)2,
+156a} -220.}4% +540}
{56cl+14(02-01) {4201+42(02—01) {—1401—7(02—01)
+40,} 22 -130}2 -~3a}22
_A_ » 2
420 @ = %0 {504cl+252(02—cl) (4201+22u)9.
oy = stress at node 1 of elenent
g, = stress at node 2 of el enent +156a}
Symetri cal {56cl+42(02—cl)
+40}22

%t




4208

Addi tiona

el ement for bending out of the plane of rotation.

TABLE 3.4

bending stiffness matrix, resulting fromuniformrotation @

, for a uniform beam

504Gl+252(02—dl) {—4201—42(02—61)}2 —50401—252(02-01) -42012
- 2 " - Tl - - 2
{5661+14(02 cl)}l {4201+42(02 ol)}l { 1401 7(02 cl)}z
o1 = stress at node 1
g, = stress at node 2 50401+252(02—cl) 4chz
Symmretri cal )
{5601+42(02—01)}2

YA
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TABLE 3.5

Additional stiffness matrix resulting fromuniformrotation @

for a uniform beam elenment in torsion.

a+ 28 -a+ B
- o+ B a+ 28
= 8J
o 22(01+ 02)
I 1153 i
B 6 (x B 1m‘ n) cos 26

stress at node 1 of the elenent

Q
i

stress at node 2 of the elenent

Q
1



TABLE 3.6
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Stiffness and inertia matrices of an uniform Ti noshenko beam
el enent of length 2 in Sending.

12 6% 6% -12 6% 6%

492 322 -64 292 322
- [3+%)22 -6% 322 (3+%)z2

El o
I oy = -GAL 12 ~6% ~62
EI
_ 492 322
Symetrica

(3+3)22
156 (22+ 22+ 54 (-13-F (~13+
+5048 428) 9 2528)% ~5048 428)% 2528) ¢

(4t (4t - (13- (-3~ (-3-F
568)22 218) 22 428) 22 148)422 218)22

(4+ (13- (-3 (-3
) 1268)22 2528)% | +218)82 |+1268)2%2
=

e B=(y) 156 (-22 (-22
u - radius of gyration +3048 ~428)4 ~2528)%

b+ 4+
Symet ri cal 568)422 218)22

(4+
.126B8) 42




Frequency coefficients A

, for the first node of vibration of a rotating beam for vibration out of

TABLE 3.7

pl ane of rotation, calculated using four beamfinite el enents.

QF

R/L 0 0.1 0.2 0.5 1 2 5 10 20 50 100

0.00 | 3.516 | 3.518 | 3.523 | 3.557 | 3.678 | 4.126 | 6.407 | 11.12 21.00 | 51.09 | 101.6
0.02 | 3.516 | 3.518 | 3.523 | 3.559 | 3.683 | 4.141 | 6.467 | 11.26 | 21.28 | 51.83 | 103.1
0.05 | 3.516 | 3.518 | 3.523 | 3.560 | 3.689 | 4.164 { 6.556 | 11.36 | 21.70 | 52.91 | 105.3
0.10 | 3.516 | 3.518 | 3.524 | 3.563 | 3.700 | 4.201 | 6.701 | 11.78 | 22.39 | 54.67 | 108.8
0.20 | 3.516 | 3.518 | 3.525 | 3.569 | 3.721 | 4.275 | 6.982 | 12.41 | 23.69 | 58.03 | 115.6
0.50 | 3.516 | 3.519 | 3.527 | 3.585 | 3.784 | 4.489 | 7.764 | 14.12 | 27.23 | 67.04 | 133.7
1.00 | 3.516 | 3.520 | 3.532 | 3.612 | 3.886 | 4.824 | 8.913 | 16.57 | 32.26 | 79.78 | 159.3
2.00 | 3.516 | 3.522 | 3.541 | 3.666 | 4.083 | 5.432 | 10.84 | 20.61 | 40.46 | 100.5 | 200.7
5.00 | 3.516 | 3.529 | 3.567 | 3.823 | 4.622 | 6.936 | 15.20 | 29.55 | 58.51 | 145.8 | 291.4

8¢¢



TABLE 3.8

Frequency coefficients i, for the second node of vibration of a rotatfng beam for vibration out
of plane of rotation, calculated using four beamfinite elenents.

Q%

R/L 0 0.1 0.2 0.5 1 2 5 10 20 50 100

0.00 22. 06 22. 06 22.07 22.10 22.20 22.62 25. 39 23.41 54.57 125. 4 246.6
0.02 | 22.06 | 22.06 | 22.07 | 22.10 | 22.21 | 22.64 | 25.47 | 23.66 | 55.17 | 127.0 | 249.8
0.05 | 22.06 22.06 22,07 | 22.10 | 22.21 | 22.66 | 25.60 | 34.04 | 56.07 | 129.3 | 254.6
0.10 | 22.06 | 22.06 | 22.07 | 22,10 | 22.22 | 22.70 | 25.81 | 34.66 | 57.52 | 133.2 | 262.3
0.20 | 22.06 | 22.06 | 22.07 | 22.11 | 22.24 | 22.78 | 26.22 | 35.86 | 60.32 | 140.5 | 277.1
0.50 | 22.06 | 22.06 | 22.07 | 22.12 | 22.30 | 23.00 | 27.42 | 39.23 | 67.97 | 160.4 | 317.1
1.00 | 22.06 | 22.06 | 22.07 | 22.15 | 22.40 | 23.38 | 29.31 | 44.24 | 78.99 | 188.8 { 374.1

2.00 { 22.06 | 22.07 | 22.08 | 22.19 | 22.59 | 24.10 | 32.73 | 52.75 | 97.19 | 235.3 | 467.5

5.00 | 22.06 | 22.07 | 22,11 | 22.34 | 23.16 | 26.16 | 41.24 | 72.23 | 137.7 | 338.0 | 673.6

62C
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TABLE 3. 10

Frequency coefficients A, for the first node of vibration of a rotating beamfor vibration in the
plane of rotation, calculated using four beamfinite el ements.

R/L 0 0.1 0.2 0.5 1 2 5 10 20 50 100

0.00 [3.516 |3.516 }3.517 |3.522 |3.540 {3.609 |4.006 |4.863 |6.396 |10.48 117.87
0.02 |3.516 |3.516 |3.517 |3.523 [3.544 13.626 |4.101 |5.165 |7.279 |13.64 |24.99

0.05 |3.516 [3.517 |3.518 [3.525 ([3.551 [3.652 |4.240 |5.588 [8.432 [17.32 32.89
0.10 |3.516 [3.517 |3.518 |3.528 |[3.563 |[3.694 |4.461 6.229 [10.06 [22.12 }42.92
0.20 [3.516 |3.517 |3.519 [3.533 |3.584 |3.778 [4.874 17.344 |12.71 |29.45 |57.94
0.50 [3.516 |3.518 |3.522 [3.550 |3.649 [4.019 [5.940 9.963 |18.48 |44.66 |88.74
1.00 | 3.516 |3.519 |[3.526 [3.577 [3.755 [4.390 |7.378 |13.21 [25.31 |[62.16 {123.9
2.00 [3.516 |3.521 |3.535 |3.632 |3.958 |[5.050 |9.621 |18.02 |35.17 |[87.13 }{174.0

5.00 | 3.516 [3.528 |3.562 |3.590 |[4.512 |[6.641 |14.36 |27.80 |[54.99 [136.9 |273.7

1¢¢



TABLE 3.11

Frequency coefficients X, for the second node of vibration of a rotating beamfor vibration in the
pl ane of rotation, calculated using four beamfinite el enents.

Q*
R/L 0 0.1 0.2 0.5 1 2 5 10 20 50 100

0.00 | 22.06 | 22.06 | 22.07 | 22.09 | 22.18 | 22.54 | 24.89 | 31.88 | 50.77 115.0 | 225.4
0.02 | 22.06 | 22.06 | 22.07 | 22.09 | 22.18 | 22.55 | 24.97 | 32.15 | 51.42 | 116.7 | 229.0
0.05 | 22.06 | 22.06 | 22.07 22.09 | 22.19 | 22.58 | 25.10 | 32.54 | 52.38 | 119.3 | 234.1
0.10 | 22.06 | 22.06 | 22.07 22.10 | 22.20 | 22.61 | 25.32 | 33.19 | 53.93 | 123.4 | 242.5
0.20 | 22.06 | 22.06 | 22.07 | 22.10 | 22.22 | 22.69 | 25.74 | 34.44 | 56.91 | 131.3 | 258.4
0.50 [ 22.06 | 22.06 | 22.07 | 22.11 | 22.28 | 22.92 | 26.96 | 37.94 | 64.96 | 152.4 | 300.9
1.00 [ 22.06 | 22.06 | 22.07 | 22.14 22.37 | 23.29.| 28.88 | 43.10 | 76.42 | 182.0 | 360.5
2.00 | 22.06 | 22.06 | 22.08 | 22.19 | 22.57 | 24.02 | 32.35 | 51.80 | 95.11 | 229.9 | 456.7

5.00 | 22.06 | 22.07 | 22.10 | 22.33 | 23.13 | 26.08 | 40.94 | 71.54 | 136.3 | 334.3 | 666.1

et



TABLE 3.12

Frequency coefficients A, for the third node of vibration of a rotating beam for vibration in the
plane of rotation, calculated using four beamfinite el ements.

Q%
R/L 0 0.1 0.2 0.5 1 2 5 10 20 50 100

0.00 | 62.18 | 62.18 | 62.18 | 62.21 | 62.31 | 62.70 | 65.39 | 74.11 | 101.2 | 203.7 | 385.4
0.02 | 62.18 | 62.18 | 62.18 | 62.21 | 62.31 | 62.72 | 65.48 | 74.44 | 102.1 | 206.3 | 390.6
0.05 | 62.18 | 62.18 | 62.18 | 62.21 | 62.32 | 62.74 | 65.62 | 74.93 | 103.4 | 210.1 [ 398.4 |
0.10 | 62.18" | 62.18 | 62.18 | 62.21 | 62.33 | 62.78 | 65.86 | 75.74 | 105.6 | 216.4 | 410.9
0.20 | 62.18 | 62.18 | 62.18 | 62.22 | 62.35 | 62.86 | 66.33 | 77.32 | 109.9 | 228.2 | 434.8
0.50 | 62.18 | 62.18 | 62.18 | 62.23 | 62.41 | 63.10 | 67.71 | 81.85 | 121.6 | 260.2 | 499.0
1.00 | 62.18 | 62.18 | 62.19 | 62.26 | 62.51 | 63.49 | 69.94 | 88.80 | 138.7 | 305.5 [ 589.8:
2.00 | 62.18 | 62.18 | 62.20 | 62.31 | 62.71 | 64.27 | 74.17 | 10.1. 0| 167.0 | 379.1 ( 737.3;

5.00 | 62.18 | 62.19 | 62.22 | 62.46 | 63.30 | 66.54 [ 85.41 | 130.2 | 230.3 | 540.5 | 1061

€€e



TABLE 3. 13
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Frequency coefficients A for a vibrating sinply supported Ti noshenko

beam cal culated using the present nethod.
N 1 2 3 4 5 6
Nunber of degrees of freedom Exact
Mode No. i
4 7 10 13 16 19 (128)
1 9.405 8. 684 8. 652 8. 647 8. 646 8. 645 8. 645
2 27.508 27.106 27.017 26.988 26. 960
3 49,701 49,573 48. 336 47.967 47.680
4 78. 145 87.410 72.476 70. 359 68. 726
TABLE 3. 14
Frequency coefficients A for a vibrating cantilevered Ti nbshenko beam
cal cul ated using the present nethod.
N 1 2 3 4 5 6
Nunber of degrees of freedom Exact
Mode No. 3 6 9 12 15 18 (128)
1 3.304 3.286 3.284 3.284 3.284 3.284 3.284
2 21.590 16. 009 15. 567 15.512 15.498 15. 494 15. 488
3 65. 361 40. 490 36. 650 34.821 34.482 34.382 |34.301
4 82.112 59. 845 57.934 55.036 54.219 53. 652




Frequency coefficients

TABLE 3. 15

N 1 2 4
Exact
Nunber of degrees of freedom| (128)
Mode No. 4 8 16
g 1 9.45 8.672 8.646 8.645
\; 2 30.843 28.577 27.021 26.960
5 3 52.198 48.041 47.680
4 74.236 . 70.871 68.726
N 1 2 4
Exact
Number of degrees of freedom (128)
Mode No. 2 4 8
A
g 1 10. 620 8. 831 8. 688 8. 645
E 2 48. 583 39. 098 28. 218 26. 960
§ 3 77.010 54. 073 47. 680
4 93. 897 85. 271 68. 726

235

A for a sinply supported Timoshanko beam

P —



Frequency coefficients A for a cantilevered Ti noshenko beam

TABLE 3. 16

N 1 2 4
Exact
Number of degrees of freedom (128)
Mode No. 4 8 16
x 1 3.297 | 3.285 | 3.284 | 3.284
—
¥ 2 19.432 | 15.577 | 15.498 | 15.488
A
N/ 3 37.005 | 34.403 | 34.301
4 61.644 | 54.003 | 53.652
N 1 2 4
Exact
Number of degrees of freedom (128)
Mode No. 2 4 8
o 1 3.322 | 3.294 3.286 | 3.284
§ 2 26.569 | 16.147 15.712 | 15.488
g |
£ 3 54. 494 36.515 | 34.301
4 86. 711 59.842 | 53.652

236
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TABLE' 3. 17
Frequency coefficients A for retwi sted cantilever bl ades.
Nunmber of El ements Ref . Ref . Ref .
dp +

by | 6% n 2 3 4 5 (85) (82) (84)

111.8767 | 1.8770 | 1.8771| 1.8772[ 1.8774 | 1.87

212.6459 | 2.6413 | 2.6398 | 2.6391| 2.6379 | 2.63

2 30°| 3 14.7325 | 4.7231 | 4.7223| 4.7230 4.7281 | 4.73

4 16.5668 | 6.5806 | 6.5667 | 6.5501 6.5535 | 6.55

111.8798 [ 1.8822 | 1.8830 | 1.8834 1.8843 | 1.88

2 12.6282 | 2.6118 | 2.6065| 2.6041| 2.6004 | 2.57

2 60" 314.7868 | 4.7836 | 4.7947 | 4.8017| 4.8210 | 4.82

4 16.3333 | 6.4186 | 6.3885| 6.3739| 6.3587 | 6.35

141.8841 | 1.8903 | 1.8923 | 1.8932 1.8957 | 1.89

2 12.6046 | 2.5698 | 2.5592 | 2.5546| 2.5485 | 2.54

2 90°] 3 |4.8736 | 4.8753 | 4.9040| 4.9199 4.9591 | 4.95

: 4 16.0617 | 6.2273 | 6.1754 | 6.1543| 6.1397 | 6.12
111.8769 | 1.8774 | 1.8776 | 1.8777| 1.8781 1.87
2 13.6961 | 3.6566 | 3.6424 | 3.6358| 3.6245 3.62
4 30" 3 [4.7691 | 4.8069 | 4.8282| 4.8401| 4. 8672 4.90
4 |8.1375 | 7.7646 | 7.7162 | 7.6912| 7. 6802 7.70
111.8770 | 1.8775| 1.8777 | 1.8779| 1.8777 1.87
2 [4.5688 | 4.4123 | 4.3616 | 4.3390| 4. 3066 4.26
8 30" 3 [5.3353 | 5.5446 | 5.6404 | 5.6893| 5. 7855 5.76
4 |8.5350 | 7.8317 | 7.7798 | 7.7583| 7.7827 7.75

111.8770 | 1.8776 | 1.8778 | 1.8779| 1.8772 | 1.88

2 {4.6465 | 4.5229 | 4.4779 | 4.4573| 4. 4432 | 4.42

16 | 30" 316.7043 |7 .1723| 7.4609 | 7.5523| 7.5752 | 7.53

4 19.3475 | 7.9112 | 7.7894 | 7.8206( 8.2287 | 8.22

t+ Results obtained using fivepretw sted beam el enents.

* § is the total

pretwi st angle id this case.




TABLE 4.1

Functi ons Alto ALy

AL (x) = -‘;—‘ J ) -k I &)
A0 = 2 Y () - K Y (%)
AyG) = 2L GO+ kI G

AG) = T Kn(x) - kK G0

AS(X)=cl Jm(x) + c, Jm+1(x)

A6(x) =c Ym(x) + Cq Ym+l(x)
A7(x) = ¢, Im(x) - ¢4 Im+l(x)

Ag(x) = ¢, Km(x) + 5 Km_l(x)

[

Ag(x) cy Jm(x) + c (x)

5 Imt1

Alo(x) = ¢, Ym(x) + Cg Ym+l(x)

All(x) c Im(x)-{-c I (x)

6 7 "mtl

Alz(x) = ¢ Km(x) - cy Km+l(x)
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¢ - mm1) 2(I-V) _ k2
B r
n(m~-1) (1-v) + .2
c2 _ 2 k
r
_k(@1-v)
€3 7 r

- mk?? + (1-v) (L-m) o°

€4 = 3
r

k3r3 + kr(1-v) m2

3
r

i
1

mk’r? 4 (1-v) (1-m) m?

% = 3

r
o k3r3 - kr(1-v) m2
7= 3

r




239

TABLE 4.2
Matrix [D]
P1A9 (kb) - Q].AlO (kb) PlAS (kb) -~ Q1A6(kb)
5 + RlAll(kb) - SlAlz(kb ) + RlA7(kb) - SlAg(kb)
Am
PyA (kb)) = QyAc(kb)
Symmetri cal
+ R2A7 (kb) - SZAB (kb)
Y (ka) I (ka) K (ka) I (ka) I (ka) R (ka)
Pl = Az(ka) A, (ka) A4(ka) Q = Al(ka) A3(ka) A, (ka)
A2 (kb) A3 (kb) A4 (kb) Al (kb) A3 (kb) A4 (kb)
Jm (ka) Ym (ka) Km (ka) Jm (ka) Ym (ka) Im (ka)
Rl - Al(ka) Az(ka) A4 (ka) Sl = Al(ka) Az(ka) A3(ka)
A1 (kb) A2 (kb) Al+ (kb) Al (kb) A2 (kb) A3 (kb)
Y (ka) T (ka) R (k,g) I (ka) L5 (ka) R (ka)
P, = A, (ka) A3(1ca) A, (ka) Q, = Al(ka) A3(ka) A4(ka)
T (kb) 5 (kb) K (kb) I (kb) Im(kb) Km(kb)
Jm(ka) Ym(ka) Km(ka) Jm(ka) Ym(ka) Im(ka)
R, = Al(ka) Az(ka) A4(ka) Sy = Al(ka) Az(ka) A3(ka)
Jm (kb) Ym (kb) Km (kb) Jm (kb) Ym (kb) Im (kb)




TABLE 4.2 (Conti nued)

Jm(ka)
Al(ka)
Jm(kb)

Al(kb)

Ym(ka)
Az(ka)
Ym(kb)

Az(kb)

Im(ka)
A3(ka)
Im(kb)

A3(kb)

Km(ka)
A4(ka)
Km(kb)

A4(kb)
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TABLE 4.3

Dynanic stiffness matrix [DR] of a thin circular ring.

C‘IYROO

GKG m4 m2
(EI_Z t 5y (EIZ + GKG) —3
m RO RO
m2
—2 -In_
w? (A + JZ 2)
R
o}
- 2 2
(Elz + m GKG)/ R,
Symetri cal
~w2 J
X
~ elastic nmoduli,
-~ nmonent of inertia about z axis,
- St. Venant torsion2l stiffness of the ring section,
~ centroidal radius of the ring,
- Area of cross-section of ring,
I - moment of inertia about z and x axes of ring section,
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TABLE 4.4
Matrix [Db]
A coszd A, cos’s (A;,-B ) sin5 cos§| (A ,~B.,) sind cos§| O
11 12 11 B11 12 712
. 2
+Blz sin §
2 . .
A,, COS"8 (Alz—Blz) sin6 cos§ (AZZ—BZZ) siné cos§ 0O
+B sin26
22
2 2
All sin”é§ A12 sin™é )
2 2
+Bll cos § +B12 cos §
. . 2
Symetri cal A,, sin 8
0
_ 2
+B,, COS 8
CJ.l
N A3 : cos Alz si nh xlz + sin klﬁ cosh xlx ,
11 171 cos kll cosh 7\12, +
N AZ : sin Alz si nh Alz :
12 1 "1 * cos xlz cosh Al£+ 1
N . cos Alz si nh Alz - sin Alz cosh Alz :
22 = L "1 cos)\lﬂ, cosh )\lSL i- 1
Repl ace I, by I, and Ay by Ay in the above expressions
to obtain Bll’Blz and 322.
iy = OK; A4 cot Ajt
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TABLE 4.6

244

First six cantilevered bl ade al one frequencies of nmodels | to IIl.
Model I Model II Model 111
Mode No. wb Type wb Type mb Type
(Hz) (Hz) (Hz)

1 116 Bl 439 B1 342 Bl
2 729 Bl 2427 T 1173 B2
3 931 Bz 2750 Bl 2206 B1
4 1250 T 3511 B2 3498 T
5 2042 Bl' 7281 T 6178 Bl
6 3749 T 7702 Bl 7354. B2

B1 - Bending in the Imin di rection

B, - Bending in the | _ direction

T - Torsion
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TABLE 4.7

Cal cul ated and experimental frequencies in Hz. of bladed disc
nodel 1.

E=29x 10° psi  pg= 0.283 1b/in> v =0.3
fode} Nunber of disc and blade elenent:s{ Exact | Experi -
m| No i 2 3 4 ment al
1 112 112 112 112 112 113
2 323 321 320 320 320 326
2 3 1071 746 743 741 740
4 [ 1251 1156 1153 1151 1150 1123
51 1388 1293 1276 1270 1263
6| 3851 2482 2080 2072 2056 2094
1 116 115 115 115 115 115
2 602 598 589 589 589 581
3 3 1130 750 147 746 745 754
41 1370 1275 1258 1252 1244
5 1782 1749 1720 1715 1712 1687
6 4619 2531 2148 ' 2144 2130 2159
1 117 116 116 116 116 116
2 760 711 708 707 706 695
4 3 1140 778 777 776 776 766
4 1374 1279 1261 1255 1247
51 2727 2378 2024 2013 1998 2010
6] 5724 2888 2820 2814 2807 2792
1 117 116 116 116 116 116
2 836 729 726 724 723
51 3| 1145 829 828 828 828
41 1375 1280 1262 1256 1248
51 3945 2458 2051 2040 2025 2041
6| 7142 3923 3843 3737 3662 3610
1 117 116 116 116 116 116
2 876 733 729 727 726
6| 3| 1147 862 861 861 861
41 1376 1280 1262 1256 1248
5| 5279 2473 2058 2048 2033 2067
6 8761 4457 4116 3949 3738
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TABLE 4.8

Cal cul ated and experinental frequencies in Hz. of bladed disc
nmodel IT.

E=29 x 10%psi  po= 0.283 1b/in> v = 0.3

fode| Nunber of disc and bl ade el enent:s| Exact|Experi-

m| No. 1 2 3 4 nental

1 347 345 345 345 345 350

2 580 577 576 576 576 587
21 3 2292 2214 2207 2205 2203 2112

4 2679 2493 2458 2446 2430

5 4308 2816 2803 2797 2794 2781

6 7193 4761 4705 4689 4676 3958

1 427 426 425 425 425 423

2 1161 1157 1156 1156 1156 1157
3 3 2678 2493 2459 2447 2431

4 2981 2818 2805 2800 2797 2893

5 4332 2971 2968 2966 2965

6 7693 5671 5629 5619 5610

1 436 434 434 434 434 436

2 1912 1880 1878 1877 1876 1802
41 3 2685 2500 2466 2454 2438

4 3838 2828 2816 2811 2808

5 4441 3936 3933 3932 3931 3789

6 8558 7121 6964 6945 6924

1 439 437 436 436 436 436

2 2494 2375 2360 2355 2347 2228
5 3 2713 2535 2509 2501 2492

4 4238 2859 2849 2844 2842

56410 5294 5278 5273 5269 5018

6 9880 8664 7645 7715 7290

1 440 438 437 437 437 436

2 2654 2472 2439 2427 2412 2458
¢ 3 2936 2680 2666 2661 2659

4 4287 2952 2946 2944 2942

5 7167 7061 6902 6872 6827 6551

6 11691 8716 7947 7713 7336




Cal cul ated and experinent al

TABLE 4.9

frequencies in Hz.
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of bl aded di sc nodel

E =29 x 10° psi pg = 0.283 1b/in> v = 0.3
fode |Number of disc and bl ade el enent:s| Exact Jager [120)
Cal cu- | Experi -
m| No. 1 2 3 4 lated | nmental
1 157 155 154 154 154 154 164
2 466 463 463 463 462 450 430
2 3 1032 1008 1005 1004 1003 1005 985
4 2979 2120 2107 2103 2099 2040 1930
5 3860 3187 3151 3138 3128
6 4929 3610 3559 3542 3519
1 226 225 225 225 225 230 237
2 522 521 521 521 521 515 490
3 3 1277 1267 1266 1265 1264 1270 1215
4 3082 2224 2214 2210 2208 2145 2050
5 3866 3534 3494 3479 3461
6 5036 3760 3729 3717 3706
1 275 273 273 273 273 276 280
2 598 596 596 596 596 599 585
4 3 1661 1579 1575 1574 1573 1600 1500
4 3283 2376 2370 2366 2364 2275 2200
5 3885 3613 3563 3545 3523
6 5261 4422 4372 4364 4358
1 304 298 298 298 298
2 678 667 666 666 666
5 3 2043 1823 1814 1812 1811
4 3561 2621 2618 2614 2611
5 3956 3668 3617 3600 3578
6 5734 5193 5099 5088 5081
1 321 313 312 312 312
2 760 728 726 726 126
6 3 2331 1957 1946 1943 1941
4 3717 2935 2924 2918 2912
5 4174 3768 3719 3702 3682
6 6623 5928 5811 5798 5786
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TABLE 4. 11

First four cantilevered blade alone frequencies of cases 1 through 7.

E =29 x 10° psi og = 0.283 v =03
Mode Case Nunber
No. 1,2 and 7 3 4 5
1 71 Bl 161 Bl 40 Bl 80 B1 321 .
2 447 B2 1007 Bl 252 Bl 503 % 1198 T
3 799 T 1198 T 502 B2 | 1004 B2 2013
4 892 B2 2008 B2 599 T 1198 T 3594
B, - Bending in the Lin direction B, - Bending in the |I_ direction
T - Torsion

6%¢



Coupl ed frequencies in Hz. of

by the exact method.

TABLE 4.12

cases 1 through 7,
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cal cul ated

E =29 x 10° psi pg = 0.283 1b/in> v =
Mbde Case Nunber

m| N | 1 2 3 4 5 6 7
1 69 | 137 40 79 130 70 68

)| 2 212 | 220 | 186 210 | 375 | 186 250
3 462 | 947 262 510 | 901 | 452 483
4 796 | 1054 597 880 | 1202 | 795 797
1 71 155 40 80 225 71 70

i | 2 348 402 2.1 430 442 308 387
3 169 | 1030 287 529 | 1193 454 526
4 798 | 1200 597 | 1022 | 1281 797 798
| 71 158 40 80 272 71 71

.| 2 419 607 248 | . 496 553 395 | 427
3 501 | 1040 327 685 | 1205 459 602
4 798 | 1201 508 | 1192 | 1700 798 799
1 71 159 40 80 291 71 71

o | 2 437 784 250 500 680 | 436 437
3 554 | 1056 357 808 | 1212 487 661
4 798 | 1203 508 | 1197 | 2034 798 799
1 71 159 40 80 300 71 71

5| 2 442 905 251 502 799 443 | 441
3 600 | 1092 378 a67 | 1221 531 | 703
4 798 | 1208 598 | 1197 | 2054 | 798 | 799




TABLE

4.13
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Frequency rati os m/w? of the first four nodes of cases

1 through 7
Mode Case Nunber
m | No 1 2 3 4 5 6 7
1 0.9718 {1 0.8509] 1.0000} 0.9875] 0.4050] 0.9859{ 0.9577
9 2 2.986 1.367 | 4.650 2.625 1.168 2.620 3.521
3 6.507 5,882 6.550 6.375 2.807 6.366 6.803
4 |11.211 6.547 {14,925 111.000 3.745 1.197 1.225
1 1.0000 | 0.9627| 1.0000}{ 1.0000} 0.7009 | 1.0000| 0.9859
3 2 4,901 2.497 6.025 5.375 1.377 4,338 5.451
3 6.606 6.398 7.175 6.613 3,717 6.394 7.409
4 111.239 7.453 |14.950 {12.775 3.991 1.225 1.239
1 1.0000 {0.9814) 1.0000} 1.0000} 0.84741 1.000 1.0000
4 2 5.901 3.770 6.200 6.200 1.723 5.563 6.014
3 7.056 6.460 8.175 8.563 3.754 6.465 8.479
4 111.239 7.460 |14.950 [14.900 5.296 1.239 1.254
1 1.0000 | 0.98761 1.0000}| 1.0000] 0.9065| 1.0000] 1.0000
5 2 6.155 4,870 6.250 6.250 2.118 6.141 6.155
: 3 7.803 6.559 8.925 110.100 3.776 6.859 9.310
4 |11.239 7.472 114.950 }14.963 6.337 1.239 1.254
1 1.0000 | 0.9876] 1.0000f 1.0000( 0.9346§ 1.0000] 1.0000
6 2 6.225 5.621 6.275 6.275 2.48% 6.239 6.211
3 8.451 6.783 9,450 {10.838 3.804 7.479 5.901
4 |111.239 7.503 114.950 |14.963 6.399 1.239 1.254




TABLE 4. 14

Variation of frequencies (in Hz.) of bladed disc nodel
with speed of rotation.

252

E = 29 x 10° psi og = 0.283 1b/in> v = 0.3
Mode Speed of rotation in rpm.
m | No. 0 3500 7000
1 112 140 200
2 320 327 347
2 3 741 773 858
4 1151 1158 1178
5 1270 1271 1273
6 2072 2106 2205
1 115 145 208
3 2 589 596 612
3 746 775 860
4 1252 1252 1252
5 1715 1724 1750
6 2144 2174 2266
1 116 145 209
4 2 707 729 761
3 776 791 861
4 1255 1255 1255
5 2013 2045 2136
6 2814 2822 2844
1 116 146 209
5 2 724 756 827
3 828 834 866
4 1256 1256 1256
5 2040 2075 2173
6 3737 3754 3761
1 116 146 210
6 2 727 760 848
3 861 865 881
4 1256 1256 1256
5 2048 2083 2182
6 3949 3955 3962




253

TABLE 4. 15
Frequencies in Hz. of bladed disc model | calculated including
transverse shear and rotary inertia.
£ = 29 x 10° psi g = 0.283 Ib/in’ v =0.3
Number of disc
m Mode No., and blade elements Experiment
2 3 4
1 112 112 112 113
2 332 328 327 326
) 3 744 740 739 }
4 1165 1157 1154 1123
5 1293 1275 1269
6 2481 2076 2063 2094
1 115 115 115 115
2 596 592 589 581
3 3 750 744 743 754
4 1274 1256 1250
5 1734 1705 1700 1687
6 2520 2140 2132 2159
1. 116 116 116 116
2 710 705 703 695
A 3 772 768 766 766
4 1277 1259 1253
5 2357 2014 2000 2010
6 2823 2744 2738 2792
1 116 116 116 116
2 728 723 722
5 3 815 811 809
4 1278 1260 1254
5 2445 2043 2029 2041
6 3719 3646 3585 3610
1 116 116 116 116
2 731 727 725
6 3 843 839 838
4 1278 1260 1254
5 2460 2050 2037 2067
6 - 4342 4075 3939
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TABLE 4. 16
Frequencies in Hz. of bladed disc nodel Il calculated including
transverse shear and rotary inertia.
E =29 x 10° psi og = 0.283 1b/in v -0.3
Number of disc .
m Mbde No. and bl ade el ements [Experi men
2 3 4
o 1 353 351 350 350
2 582 579 578 587
2 3 2360 2276 2255 2112
4 2430 2455 2443
5 2788 2769 2763 2781
6 6428 4463 4408 3958
1 426 425 425 423
2 11.58 1152 1149 1157
3 3 2493 2458 2446
4 2783 2767 2761 2893
5 3034 3006 2989
6 7113 5395 5347
1 434 434 433 436
yA 1839 1827 1820 1802
4 3 2501 2466 2454
4 2790 2773 2768
5 3894 3878 3868 3789
6 8132 684.9 6744
1 436 436 436 436
2 2295 2273 2264 2228
5 3 2528 2495 2484
4 2801 2786 2780
5 5118 5080 5072 5018
6 8655 7680 7653
1 437 437 437 436
2 2443 2410 2399 2458
6 3 2631 2603 2593
4 2832 2817 2811
5 6655 6521 6493 6551
6 8709 7843 7676
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TABLE 4. 17

Section properties of tae turbine blade

Radi us Area I . I )
nin max
(in> (in%) (iny (inh )
8.182 | 0.1196 0.0005994 0. 007063 10. 32
8.780 | 0.0960 0. 0004300 0. 005400 16. 00
9.390 | 0.0771 0. 0002736 0. 003857 22.71
10.050 | 0.0630 0. 0001700 0. 002800 29. 50
10.720 | 0.0461 0. 0000822 0. 002048 32. 27
TABLE 4. 18

Cal cul ated and neasured frequencies in Hz. of the turbine blade
5 Ti moshenko beam el enents used in the cal cul ations.

E = 29.3x 10° psi pg = 0.283 1b/in> v =-0.3
Mode No.| Calculated}Experiment
1 1151 1150
2 3553 2560
3 5482
4 12108




Di mensions and section properties at nodal

el enent nodel of the turbine

TABLE 4. 19
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points of the finite

DI SC
Node Radius | Thickness
(in) (in)
1 0.900 2. 650
2 2. 380 1.395
3 3. 430 1. 095
4 5.700 0. 680
5 6. 950 0. 480
6 7.390 1. 025
7 7.836 1. 025
BLADE
Node Radius Area Imin Inax 8
(in) (in%) (in*) (in®y ©)
1 7.836 0. 1350 0. 0007400 0.007400 8.00
2 8. 182 0.1196 0. 0005994 0.007063 10. 32
3 8. 780 0. 0960 0.0004300 0. 005400 16. 00
4 9.380 0.0771 0. 0002736 0. 003857 22.71
5 10.050 0. 0630 0. 0001700 0. 002800 29.50
6 10.855 0.0435 0. 0000720 0. 001900 32.30
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TABLE 4. 20

Cal cul ated and experimental frequencies, in Hz., of the turbine
rotor. 6 disc elements and 5 bl ade el enents used in the cal-
cul ations.

pg = 0.281 (disc) , pg = 0.283 (blade) v =0.3 B, = 29.3x 106 psi

Calculated
Experiment
m Mode No. Ed = 31.2 psi Ed = 28.4 psi
x _10° x_10°

1 700 669 618
2

2 1168 1166

1 1010 974 860
3

2 1208 1197 975

1 1131 1126 1044
4

2 1523 1466 1290

I 1143 1142 1173
5

2 1947 1877 1563

1 1146 1146
6

2 2308 2237 1871
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APPENDI X A

APPLI CATION OF THE THI N PLATE BENDI NG ELEMENTS

TO STATI C BENDI NG ANALYSI S OF C RCULAR AND ANNULAR PLATES

A 1 | NTRODUCTI ON

The annular and circular thin plate bending el ements
devel oped in Chapter 2, although primarily devel oped for the
vibration analysis of turbine discs with radial thickness vari-
ations, can be readily applied in the static bending analysis of

axi symetric circular and annul ar pl ates.

Here a few exanpl es have been chosen to show the
accuracy and use of these elenents in such static analysis.
Wien plates with axisynmetric |oading are considered, annular
and circular elements with m= 0 are to be used, Loads which
are not axisymetric can also be considered if they can be
expanded into Fourier series, In such cases each Fourier compo-
nent is considered seperately and for the ith conponent el ement s
with nodal dianeters m= i are used. Required nunber of'
Fourier ternms are taken and the individual contributions of

deflection etc. are superposed together to get the conplete

solution of the problem
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A. 2 NUMERICAL APPLI CATI ONS

The first exanple is the axisymretric circular plate
with radial thickness variation subjected to uniformload g,
shown in Figure A.1. Annular and circular elements with m=20
are used and the load q is replaced by consistent load. The
central deflection and bending nonents obtained are given in
Table A.1, along with exact solutions. Plates with ho/hl = 1.0
and 1.5 are considered. The sane problemis solved by consi-
dering annular plates with a/b = 0.001, and using only annul ar
el ements, The results are given in Table A 2. Conparing
results of Table A1 and A,2, it is seen that when the plates
are approximated by annular plates with very small inner radius
the bending nonents obtained at the centre are not accurate,
whereas they are not nmuch affected at points away fromthe

centre,

The second example chosen is an axi symmetric annul ar
plate with variable thickness shown in Figure A,2. The naxinum
deflection for this plate with b/a = 1,25, 2, and 5, obtained
with nodels with annular elements are given in Table A3 with

exact solutions.

*Axisymmetric plates with nonsymmetric |oads can al so

be considered, As already nentioned these |oads are expanded
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in Fourier series and each Fourier conponent is considered
separately. A uniformannular plate fixed at the inner radius

a and free at the outer radius b, and subjected to a single
concentrated load P at a point on the outer boundary as shown in
Figure A3 is considered. Deflection under the |oad obtained
for this problem using annul ar elenents are given for plates
with a/b =0.5in Table A 4 along with exact . solutions.
Humber of Fourier conmponents taken for the cal cul ations were

11, 21, 51, and 101. The results show that the nunber of Fourier
conmponents taken has nore influence on the results than the
number of elements used. 0lson and Lindberg (54) have used
sector elenents to solve this problemand their results are

given in Table A 5.

The next exanple is a clanped circular plate wth
a single concentrated load P applied anywhere in the plate,
as shown in Figure A4, The plate is approximated with an
annul ar plate with a/b = 0.001. The deflection under the |oad
when the first 21 Fourier conponents of the |load are taken are
given in Table A 6 with exact solutions and solutions obtained
by Ason and Lindberg (54) using sector elenents. The load is

applied at a point with radius ratio c¢/b = 0.5.

A 3 DI SCUSSI ON

The nunerical exanples considered show that for
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axi symmetric plates, although sector elenents (54,55,56) and
triangul ar elements (57) can be used in the static bending
analysis, the use of annular and circular elenents offer sub-
stantial conputational advantages since the nunber of degrees
of freedom involved are nuch less than the other cases. At

the same time there is no loss in accuracy. The relative ease
with which radial thickness variation can be taken into account
when annul ar and circular elenents are used is an added advan-
tage. Eventhough a set of problens equal to the nunber of
Fourier components taken, are to be solved in the case of |oads
which are not axisymetric, still use of these elements offer

conmput ational advantages in ternms of storage and time.

But the application of these elements are |imted

only to conplete axisymretric circular and annular plates.
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Figure A1 Crcular plate with radial linear thickness variation.
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Figure A .2 Annular plate with radial.linear thickness variation.
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Figure A 3 Uniform annular plate |oaded with a concentrated | oad
at the outer boundary.




264

7 !
A P %
/] L~
/ L/
7 , -
/]

7 e
] .___.C___.l L~
A -

s b

Figure A4 Uniformcircular plate |oaded with a concentrated | oad
anywhere on the plate.
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TABLE A1

Defl ections and bending moments of sinply supported plates under
uniformpressure g, nodelled with one circular and several annul ar
thin plate bending el ements.

hg Number of el enents Exact
i r (124)
2 4 8 16
Ehg
W — 0 | 0.7391 [0.7383 |0.7383 | 0.7383 | 0.738
max , 4
gb
) 0 | 0.2147 [0.2060 | 0.2038 | 0.2033 | 0.203
M /qb
r b/2| 0.1599 |0.1543 | 0.1528 | 0.1525 | 0. 152
1
0 | 0.2147 [0.2060 | 0.2038 | 0.2033 | 0.203
Mt/qbz b/2| 0.1775 [0.1763 | 0.1759 | 0.1758 | 0.176
b | 0.0955 [0.0942 | 0.0939 | 0.0938 | 0.094
Eh3
Ve 0 | 1.2660 |1.2660 | 1.2660 | 1.2660 | 1.260
4
ab
0 | 0.2689 |0.2593 | 0.2577 | 0.2574 | 0.257
Mr/ qb2
b/2| 0.1927 |0.1799 |0.1772 | 0.1766 | 0. 176
1.5
0 | 0.2689 |0.2593 | 0.2577 | 0.2574 | 0.257
Mt/qbz b/2| 0.1760 |0.1730 | 0.1724 | 0.1722 | 0.173
b | 0.0588 |0.0556 | 0.0545 | 0.0541 | 0. 054
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TABLE A. 2

Defl ections and bending nmoments of sinply supported plates under
uni form pressure q, nodelled with annular thin plate bending elenents
only with a/b = 0.001.

h
E—O— Nunber of elements Exact
r (124)
2 4 8 16
Ehg
Yax 0 0.7389 | 0.7384 | 0.7383| 0.7383 0.738
qb* N -
0 0.1639 | 0.2111| 0.2191| 0.2220 0.203
M _/qb?
1 b/2| 0.1595 | 0.1542 | 0.1527 | 0.1524 | 0.152
0 0.0073 | 0.2275| 0.2709 [ 0.2935 0.203
M /qp? | b/2|0.1774 | 0.1762| 0.1759| 0.1758 | 0.176
b 0.0955 1 0.0942 | 0.0939 | 0.0938 ~0.094
Eh}
Voax 7 0 1.2650 | 1.2650 | 1.2650 | 1.2650 1. 260
+
ab . -
0 | 0.2202 | 0.2713 | 0.2783 | 0.2814 | 0.257
M /qb2
1.5 r b/2|0.1925 } 0.1797 | 0.1771 | 0.1765 | 0.176
0 0.0693 | 0.3099 | 0.3478 | 0.3731 0. 257
Mt/qb2 b/2]0.1758 | 0.1729 | 0.1723 | 0.1721 | 0.173
b | 0.0588 | 0.0556 | 0.0544 | 0.0541 | 0.054
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TABLE A. 4

Deflection coefficient w
a single concentrated | oad,

DP for a uniformannular plate with
cal cul ated using thin plate bending

annul ar el ements.
Nunmber of El enents
Exact
n* 2 4 8 16 (124)
11 0. 047737 0. 047785 0.047789 0. 047789
21 0. 049910 0. 049960 0. 049964 0. 049965
0. 050718
51 0. 050537 0. 050591 0. 050595 0. 050596
101 0. 050616 0. 050682 0. 050687 0. 050688

n* -~ nunber of Fourier terms

TABLE A.5

Deflection coefficient w, ..
a single concentrated | oad,

DP for a uniformannular plate with
cal cul ated using sector elenments (54).

Sector Element | ND.F. W D/P Exact
Gids (124)
1x6 19 0. 050896
2x12 74 0. 051372
0. 050718
3x18 165 0. 051027
4x24 292 0. 050885
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TABLE A 6

Defl ection coefficient w D)P of a uniform circular plate with a
single concentrated load P applied any where in the plate. ¢/b = 0.5

Nunmber . wD/P
of N.D.F. n*
Elements Finite element | Exact (124)
2 6 21 0.0104559
4 10 21 0.0109955
8 18 21 0.0111291
12 26 21 0.0111483 0.0111906
2x4* 18 - 0.0113155
hx6* 63 - 0.0112715
6x8* 133 - 0.0109738

* Sector element grid (54)

n* - nunber of Fourier termns
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APPENDI X B

VI BRATION OF Cl RCULAR AND ANNULAR PLATES W TH

TRANSVERSE SHEAR AND ROTARY | NERTI A

B.1 | NTRODUCTI ON

Based on Mndlin's Plate theory (62), which takes
into account transverse shear and rotary inertia, Callahan (66),
and Bakshi and Cal | ahan (67) have derived frequency determ nants
for circular and annular plates with various boundary conditions.
These determ nants can be used in the calculation of natural
frequencies of nmoderately thick circular and annul ar plates.
A brief summary of the theory as applied to annular plates is
given here with the frequency determnant of a free-free annular

plate.

B.2 MNDLIN S PLATE THEORY

Wien transverse shear and rotary inertia are considered,
the governing differential equations, in polar coordinates, of a

vibrating plate is

i 4 s w =0 (8.1)
1

wher e Wy and w, are conponent parts' of the total deflection w

2
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and W, is a potential function giving rise to tw st about nornmal

to plate; and

. _ L
81,2 = 2 sb{ (R+S) + | (R-s>?—+4ao‘+]z}

85 = 2@ -s )/ (1-v) (B.2)

62 =p wlh /D
R = h2/ 12 : S =D /2 Gh ;D= E h3/ 12¢( 1 ~v2)

E, G v are the Young's nodulus, the shear nodulus and Poisson's

ratio, respectively, and k2=w2/12

Now,
VRV o+ W
‘Pr=(°1“1>g*+<°z-l>;¥+% ’?«;3'
(B.3)
‘p‘&:("l'l)}l"%J’ (“2"1)%3‘;‘?‘ ::3
wher e

- (82, §2 b _g71y 1
Oy 02_(6,61)( R 6;.-S )

The above equations give the deflection and rotations of the plate,

and the plate stresses are given by the follow ng relations.
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o oY,

- r v —=
Mr:'-'DIBr +r(lpr+ 9k ) ]
Y 3y
- 1 & _r
MS—D[r(‘prJ‘- 3t ) + v or
(B.4)
ay Y
M._ D - ., _x_ &
=2 ah (v + )
Qr K r or
12
Q =« Ch Gt )

Now, f? is always positive for positive values of w ; but 62

L
and 6% are positive only when v < w , where w is the frequency
of the first thickness shear nmode of an infinite plate, and is

given by, w = (G /p) 1/2/ h

Hence, the nost general solutions of Equations (B.1), for an

annul ar plate when w < w ‘are

- 2 1 1 :
w, = I {a J (6)40b Y (r 61)} ( cos mg + sin mg)
n=0
- 9 2 g 2 ' ;
w, = 1 { at T (r62)+mem(r 62)}( CoS m& + sin mf)
n=0
t
= % 3 3 ' :
wy = 1 { a’ Im(r63)+mem(r63)}(cos mE + Sin mg )
nm=0
(B.5)
wher e a;:n br’; (i=1,2,3.) are arbitrary constants,
VPR SR and kK are Bessel functions of order m
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(a;>2= | 625 8302 = | 57

Substituting (B.5) into (B.4) we arrive at expressions for
the plate stress components involving the six arbitrary constants
i i

b (4 =1,2,3.).

am m

B.3 ANNULAR PLATE WTH FREE BOUNDARI ES

Let us consider an annular plate with both boundaries

free, as an exanple. Then on both boundaries where r = a and

r = b.
Qr = MrE = Ml’.‘ = 0 (B.6)
Now,
1,1 1.1 2.2 ., 2 .2 .,
Q = a Am (slr) + bm Bm (alr) + amAm (62r) + b B (621:)
3 3 t 3 3 \
a_ Am (63r) + bm Bm (63r)
_ 11 1.1 2 2 ., 2 .2 ..,
Mrz; = a_ Cm ((Slr) + bm Dm (Glr) + a_ Cm .(Gzr) + bm Dm (621:)
3 3 ”
1.1 ,., 1.1,
a_ Cm (63r) + bm Dm (631:)
1 1.1 2 .2 . 2 2 .
= + §
Mr a Em (611') + bm Fm (Slr) + a Em (621:) bm Fm ( 2r)

(8.7)
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Where the expressions A;, B%, etc., (i = 1,2,3) are conmbnations

of Bessel functions and are given in Table B.I.

Wien the above expressions are equated to zero when r =a
and r = b, satisfying boundary conditions (B.6), we get a set of
homogeneous si mul taneous equations. Nontrivial solution of these

is obtained by equating to zero the follow ng deterninant.

AT(5,2)  BI(6;a) A2sta)  Bl(sra)  Adsla) B (sla)
A:l(élb) Bi(élb) Ai(ééb) anl(aéb) Ag(cséb) Bi(ééb)
clsa) lesja)  cAsja)  pl(sga)  Cl(sja)  Dl(s3a)
clesp) ples) 2y pAeepp)  Caeeyp) D)
BL(sya)  To(62)  EL(8ja)  Fo(8)a) E2(8la) o (84a)

1 1 2,4 2, 3 36t
Em(ﬁlb) Fm(Glb) Em(ﬁzb) Fm(sz) Em(63b) Fm( 3 )

3,8
Por other boundary conditions simlar deterninants

are readily derived. Simlar procedure is followed when a circul ar

plate is considered. This problem has been treated by Cal | ahan (66).
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The natural frequencies of the plate are obtained by
systematic searching of values of w which nake the value of the
appropriate frequency determ nant corresponding to the required

boundary conditions, zero.
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TABLE B.1
ALG) = o) J1G) k2GR BLGe) = oy ¥'GO) «20h
AZ(X) = o, I'(x) ¢2Gh Bz(x) = g, K'(x) k2Gh
m 1 ™m m 1l m
3k =~ B 2 3¢y = I 2
AmCX) = Im(x) k4Gh B~ (x) - Km(x) k“Gh

€G3 = [G~D{ 237G - #4611 aD

2
C G = [ (o,1{ 2 1) ;2;“1% (x)} 1(~v)D
2
Qo) = -3 [ TG - LI + le () 1(1-v) D

DG = [(o-1){ = ¥!(x) - ‘fz Y G} 1 (1-u) D

Di(x)=[(cz-1'){1n£1<1;(x)—5 ré( MY 1TawDb

2

D260 = - 5 [ KIG) -+ K'G) + fangx) ) (l-u) D

BOG) = [0 -1 MG + 2 e - 5 0,697 1D
2

B2G) = [(0,mDATN )+ 210 (o) -Tpog1 o

B26) = [ -2 1o + %) 10 10-9 D

, 2 .
PG = (0D Y6 + Y v - —"—’:—2- Y 3} 1D
2

F;(x) = (0,11 K'G) + YKUG) - "—‘:-5 K 9} 1D

B = [ -2 K (%) * 5 K0 1 (1) D
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APPENDI X C

FINITE ELEMENT ANALYSIS OF TH CK RECTANGULAR PLATES
I N BENDI NG

Cc.1. | NTRCDUCTI ON

Pryor and Barber (125) have devel oped a twenty degree
of freedomrectangular element for the bending analysis of
rectangul ar plates including the effects of transverse shear.
In"the formulation of this elenment, in addition to the total
deflection w and rotations ¢ and ¢Y normal |y considered
in plate bending, the average transverse shear strains ?;
and ?& are taken as the additional degrees of freedom
Nunerical results presented denonstrate good agreement with
Rei ssner theory, and a substantial inprovement over previous

formul ations (133,134).

In the exact analysis of problens based on Reissner
theory, Salarno and Gol dberg (135 ) have separated the contri-
butions due to bending and transverse shear. Such an alternative
approach, when used in the finite element formulation, offers
significant conputational advantages. Following this approach, a

( 12 x 12 ) shear stiffness matrix is derived which is used

[
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seperately to yield the transverse shear effects.

Since the notations used here are different from those
used el sewhere in this work, a separate list is given at the end of

this Appendix.

c.2. FINTE ELEMENT FORMULATION

The governing equations of the Reissner theory give

the following relations for the stress resultants, (124),

3¢

X, o,y o, %
Mo = Dlgg + vy *ogen 9
3¢ o¢
X vl
MY=D[_5§X+\’—3-{<‘+—ZEHQ] (C.1)
3
M = _ D(-v) [a¢x + q‘)y]
Xy 2 ay X
wher e
. e
qSX T T & t kGh
(c.2)
Q
6, = -2 o
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Inplicit in the theory is the value k = 6/5 accounting
for the variation in transverse shear strain across the section
Equations C. | and c.2 together with the equilibrium

relations, result in the governing differential Equation

229y y2q (c.3)

This equation has been solved by Salerno and Col dberg
cl 35 ), and these exact solutions were used for conparison

purposes with the finite element nethod in reference (125)

In Equations C.1 the tenn 2%% g arises from

consi deration of the transverse normal stress o,. The effect of
the stress is not accounted for in the finite elenent fornulation of
Barber et al or in the following, Accordingly, dropping this

term but retaining k = 6/5, results in the governing Equation

(C.4)
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It may be noted that solutions to Equation C 4 can
be obtained by mnor nodification of the Salerno and Gol dberg
solutions, and that these nodified solutions should be used to
assess the finite element nethod which discounts the effects of

transverse nornal stress.

In the finite elenent fornulation to be described it
s assumed that the contributions of bending and transverse shear

to the plate deflection w, may be separated ; thus

wo=w 4w (C.5)

Further we assume that that the rotations ¢, and

¢y can be obtained fromthe deflection resulting from bending

only; thus,
= . 3w
bx "X
(C.6)
¢ ___3wb
y 3y
The resulting relations for the stress resultants become;
2 b 2 b
3w d W
My =-D[ + v )
ax> ay?
2h 2b
I\/bz—D[—--—----a"q2 + v 3w2]
oy 9x
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32 b
M =D (- W
Yy (1-v) P
Gh 3’ €.7
Qx = Tk ox
Gh 3w
Qy = - k ay

Thus the bending and tw sting nonents are these given
by classical thin plate theory. The strain energy relations for

the deforned plate are then,

U=3 5 [uw)T 0] [u] dxay+ 2 s/ (w7 (61 [ugd ax dy

(Cc.8)

{D]

il
o
<
o
o
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[ul = [ wi w; 1
and
{(C.9)
™ Gh/k 0 |
[G] =
0 Gh/k

The effects of bending and transverse shear On the
deflection are thus uncoupled and the contributions of €ach may

be cal cul ated separately.

Consi dering bending contributions first, for the
rectangul ar el ement shown in Figure C.1if we take as deflection

function,

W= xy ey v2 %3 x2y xy2 y3 Py xy3 1w (€.10)

and as generalised co-ordinates the nodal deflection vector,

[;b]T = [ w: W}Ei w?i ] i=1, 2, 3, 4 (Cc.11)
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there results the well known stiffness matrix for thin plate
bendi ng obtained and studied by many workers (123). Such
el enents may be assenbled and solved in the usual way to yield

the contribution of bending to the total plate displacenent,land

to give stress resultants according to thin plate theory,

In the same way we take for the transverse shear

def | ection,

W o=l xy x2xy v2 %3 x%y xy? ¥ $3y xy® 1 [ 1) (¢.12)

together with the nodal deflection vector,

w,]™ = [ w; w w., ] i=1,2 3, 4 (C.13)

and by substitution in the energy relation for transverse shear
Equation c.8 , a (12 x 12) shear stiffness matriz |s obtained for
the element, This matrix is given In Table C. 1. These shear
stiffness matrices may now be assembled and solved in the usual way
to yield the contribution of transverse shear to the plate tota
deflection, and to give the stress resultants Q, and QY’

Equation C. 7 .

The boundary condition constraints to be enforced with

the bending el ement contribution are those normally considered.
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In the shear stiffness contribution the following will apply

for the edge condition

For an edge x = constant,

O anmped and Sinply supported

wo o . wS 40 and w$=0
X y

(C.14)

and

Free

WS #O0; wo=0 and wv° = 0
X Y

Bef ore examining the nunerical application of this
proposed method, two significant conputational advantages will be
noted, which result from separating the effects of bending and
shear, First for a given finite element mesh two sets of
si nul taneous equations must be solved, corresponding to the assenbl ed
matrices obtained fromthe (12 x 12) bending and (12 x 12) shear
el ement matrices. However these resulting sets of equations are

of much |ower order than that which nust be stored and sol ved
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using the (20 x 20) finite element fornulation of reference (125 ).
For example, a 6 x 6 mesh used to solve a simply supported quarter
plate systemwll involve two (147 x 147) matrices by the nethod
described here, conpared with a single (245 x245) matrix using

the nethod of reference (125 substantial advantages in conputing

time and storage are evident with the present method. Secondly,

the deflection of the plate can be witten, (135 ), as

W = [ a +8 (h/a)2 ] qa[‘/Eh3 (C.15)

max

in which the coefficient a derives fromclassical thin plate
theory, while B8 gives the additional deflection resulting from
transverse shear.  Thus for a given aspect ratio (b/a) of the
plate, it is necessary to calculate o and g for one thick-
ness only; the effect of transverse shear in a plate of identica
aspect ratio, but differing (h/a) ratio is then readily obtained

from Fquation C.15.

c.3. NUMERI CAL  APPLI CATI ONS

To exam ne the accuracy and convergence of the nethod,
the central deflection of a uniformthickness, unifornly |oaded,
simply- supported square plate has been calculated for various
finite el ement neshes. Using symmetry the nodel conprised a

quarter plate systemhaving N el enents per side, where N was
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varied from1l to 6. The value k = 6/5 was used, and thus the
Solution to Equation C. 4 obtained by nodifying those obtained
in reference (135 ) have been used to conpare with the finite
element results. The cal cul atedval ues of the coefficients

« and B, Equation ¢.15, are given in Tables C2 and C3 in
Table C.2 a consistent |load formulation has been used, while in
Table C.3 lunping of the distributed |oad at the nodes has been
used. Good agreement with the exact values is obtained.
Convergence of the shear contribution with a consistent |oad
formulation is extrenely rapid, and indicates that the use of
preci sion bending elenents woul d be nost profitable to increase the
accuracy of the bending conribution. Wth lunmped |oading of the
nodes, convergence of the shear contribution is nuch slower, but
it is interesting to note that the bending contribution is indeed

inproved for this particular bending el enent.

In Table C 4 the deflection coefficient for
a uniform simply supported square plate of various thicknesses
is given, and conpared with the results given in reference (125)
exact values, obtained from Equation 3 in reference (135)
this case a 6 x 6 finite el enent mesh has been used for the
quarter plate system and the value k = 1 suggested in reference
enpl oyed. Agai n agreenent between the various solutions is good,
but it is worth noting once nore the advantages in conputing tine
and storage, and in the use of' Equation C 15 for different thickness

when assessing the proposed method.



C. 4 NOTATI ON

[al, [b]

b, s

ws
[Wb]
[wg]

Xy, ¥y 2

o, B
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vectors of constants;

subscripts and superscripts denoting bending
and shear;

flexural rigidity of the plate;

modul us of elasticity of naterial

shear nodul us of nmaterial

t hi ckness of plate;

constant denoting resistance of section to
war pi ng;

nmonent stress resultants;

transverse shear stress resultants;
transverse uniform distributed pressure;
strain energy;

total deflection of plate;

deflection of plate due to bending;
deflection of plate due to transverse shear;
nodal displacenents due to bending;

nodal displacements due to transverse shear,
coordi nates' of plate element; subscripts
denoting partial differentials;

deflection coefficients due to bending and

transverse shear:.
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Yys Yy - average transverse shear strains;

2 32

2

'axz sy
v - Poisson's ratio;
oy - normal stress in the z direction;
byr by - total rotations of sections X = constant
y

and y = constant.
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Figure C.1 Rectangul ar plate shear deformation el ement.
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TABLE C. 2
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Coefficients w ma Eh3/qa4 for central deflection of a uniformy
| oaded sinply supported square plate. v=0.3 k = G5

Cl assi cal | Rei ssner

Theory Theory Finite El ement
N Eqn. C. 4 (consistent | oad)

a B a % error B % error

1 0. 05529 24.6 0. 2259 -1.7
2 0. 04726 6.5 0.2300 0.0
3 0. 04566 2.9 0.2299 0.0

0. 04437 0. 2299
4 0. 04509 1.6 0. 2299 0.0
5 0. 04483 1.0 0.2299 0.0
6 0. 04469 0.7 0.2299 0.0
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Coefficients w ma Eh3/qa4 for central deflection of a uniformy
| oaded sinply supported square plate. v=0.3 k = G5

Cl assi cal |Rei ssner

Theory Theory Finite El ement
N Eqn. C. 4 (consistent | oad)

a B a % error B % error

1 0. 05529 24.6 0. 2259 -1.7
2 0. 04726 6.5 0. 2300 0.0
3 0. 04566 2.9 0. 2299 0.0

0. 04437 0. 2299
4 0. 04509 1.6 0.2299 0.0
5 0. 04483 1.0 0.2299 0.0
6 0. 04469 0.7 0.2299 0.0




Coefficients

wpax Eh3/qal
| oaded sinmply supported square plate.

for

TABLE C. 3

central
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deflection of a uniformy

v=0.3

k = 6/5

Cl assical |Reissner Finite El enment
Theory Theory (Lurped | oad)
iqn. C. 4
o B a % error B % error
0.03763 -15.2 0.2226 -3.2
0. 04302 - 3.0 0.2161. -6.0
0. 04378 - 1.3 0.2230 -3.0
0. 04437 0.2299
0. 04404 - 0.7 0. 2259 -1.7
0. 04416 - 0.5 0.2273 -1.1
0. 04422 - 0.3 0.2281 -0.8
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Coefficients wpax Eh3/qa* for central deflection of a uniformy

| oaded sinmply supported square plate. v = 0.3 k =1.0
Rei ssner Finite Elenment
h/a Theory Pryor et al Present Met hod
@135) (125) Const. Load Lunped Load

0.01 0. 04439 0.04423 0.04471 0. 04424
0.05 0. 04486 0. 04469 0. 04517 0. 04470
0.10 0. 04632 0. 04612 0. 04660 0. 04612
0.15 0. 04876 0. 04852 0. 04900 0. 04850
0.20 0. 05217 0.05186 0. 05235 0.05182
0.25 0. 05656 0. 05617 0. 05666 0.05610
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APPENDI X D

DETAI LS OF COMPUTER PROGRAMS

D.1 | NTRCDUCTI ON

For nunerical calculations several FORTRAN programs
were witten and nmost of the calculations in this investigation
can be done with one of the prograns described here. Several
options, which facilitate the use of these programs either for
the analysis of the entire rotor systemor the conponent parts,
are given. Furthernore these programs can be easily nodified
to neet particular requirenents. Conplete listings of the
prograns are given in section D.4. Brief description of the
prograns along with the definition of input and output variables

are given below. Use of the various options are explained.

D. 2 FORTRAN PROGRAM FOR THE ANALYSIS OF ROTORS OF SI MPLE

GEOVETRY ~ PROGRAM |

D.2.1 General Description

This programwas witten for the numerical calcu-
| ations involved in the exact method of analysis of rotors,

described in chapter 4, section 4.3. Hence the use of this
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programis restricted to rotors of sinple geonmetry. In this
program a systematiciterative search is nmade for the val ues of
the natural frequency w of the system which makes the val ue

of the frequency determinant of the systemto be zero. Cfcourse

specified anmount of tolerance is allowed on this condition

In principle the value of w can be initiated with
zero, as the starting value, and the iteration continued wth
some specified step size until a change of sign in the value
of the determinant is noticed. Then the step size may be
reduced and this procedure repeated until a very small step
size is reached. But this procedure requires considerable
anount of conputer tine if the initial step size is small. For
that reason if the initial step size is increased, it is very
likely that some of the natural frequency values are m ssed.
Thi s happens because of the conplex behaviour of the value of
the frequency determinant with the change of w. As seen in
Figure D.I, the value of the determnant sone times junps from
- e to + « and again changes sign within a very snall incre-
ment of w. Since the elenments of the determnant contain
conbi nati ons of trigonametric, hyperbolic and Bessel functions

it is inpossible to foresee such junps.

Because of the above reasons this programis nmade to

utilize approximte frequency values of the rotor obtained from
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finite element analysis. Thus this programis mainly used for
refining and assessing the accuracy and convergence of the

finite element results.

The follow ng procedure is followed. First, a range
is specified within which the exact frequency is expected to lie.
Then the approxi mate frequency corresponding to a particular
mode of vibration is read in. The iterations are perforned with
a small step size, within the range. Wen a change of sign of
the value of the frequency determnant is noticed, it is checked
whether there was a junp fromeither side of infinities. If this
did not happen, then the step size is cut down and the iterations
continued until the allowable step size is reached. If ajump
had taken place then the iterations are sinply continued until
change of sign is again noticed. This procedure is repeated for

ot her nodes.

A flow diagramof the programis given in Figure D 2,
whi ch shows how the input data is provided and how the iterations
are performed. The notation used in this flow diagram are
expl ained below in section D.2.2 along with the variables used

in the program

D.2.2 Input and Qutput Variables

Brief descriptions of the input and output variables

used in PROGRAM-1 are given below in their order of appearance
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297

Correspondi ng symbols used in the flow diagrans

are given imediately follow ng these variables where applicable.

I nput and rel ated

ALL

FAC(N)
FI(N)
SM

ALGW

ND

NC

IRNG
ED
EB

o]

Lo}

-

-

-

vari abl es.

al lowabl e error in the value of Bessel functions
given as a factor.

N (factorial N).

1

function QN =1+ 5+3+ ... +

Wi
Z =

initial step size.

factor used to get the final allowable step
size where the iteration is stopped.

factor used to multiply the approxi mate
frequency to get starting val ue.

factor used to multiply the approximte
frequency to get the final value beyond which
iterations are not carried out.

starting value of nodal dianeters.

final value of nodal diameters.

requi red nunber of frequencies in each noda
di aneter case.

rim option.

Youngs modul us of disc material

Youngs modul us of blade naterial



R@GD
R@B
PRD
PRB

RD$
D
BB
BD
BL
BANG

ER
RPR

PRR
RJ

R Z
RLX

El

E2

AFR(,)
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mass density of disc material.

mass density of blade material.

Poi sson's ratio of disc material.

Poisson's ratio of blade material.

i nner radius of disc.

outer radius of disc.

t hi ckness of disc.

wi dth of bl ade.

depth of bl ade

| ength of blade.

bl ade stagger angle.

nunber of blades in the rotor,

Youngs nodul us of rimnaterial.

mass density of the rimmaterial.

Poi sson's ratio of the rimmaterial.

the rimcentroidal radius.

St. Venant torsional stiffness of the rim section.
moment of inertia of the rimsection about 0z axis.
moment of inertia of the rim section about oOxaxis.
di stance between the inner boundary and the
centroid of the rim

di stance between the centroid and the outer
boundary of the rim

area of cross-section of the rim

approxi mate frequencies of the rotor.



299

Qut put vari abl es

M m - nunber of nodal dianeters.
n -~ node nunber.
FF W, trial value of the frequency.
NIT i - nunber of iterations.
AFR(,) w, - refined frequencies.

D.2.3 Subroutines Used |In PROGRAM 1

The subroutines and functions used in PROGRAM | are

gi ven bel ow.

(1) Mai n program
MAI N- 1

(2) Subroutines used to obtain disc dynamic stiffness matrix.
EXTDSK
DETERM

(3) Functions used for the conputation of the values of Bessel

functions.

FACT
PHI
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D. 3 FORTRAN PROGRAMS FOR THE ANALYSIS OF ROTORS OF GENERAL

CEOMVETRY - PROGRAM~-2 and PROGRAM-3

D. 3.1 General Description

For the stress and vibration analysis of rotors of
general geonetry two programs, PROGRAM 2 and PROGRAM 3, were
witten. Roth of these are based on the finite el ement method
of analysis of the rotor described in chapter 4. Theeffects of
transverse shear and rotary inertia are not considered in
PROGRAM Z, whereas these effects are considered in PROGRAM 3.
Also in the latter the rimof the rotor, if present, is consi-

dered to be a part of the disc.

In both these prograns all the necessary input
statenments are included so that input data closely describing
rotors of general geometry can be fed in. The materials of the
disc, rimand blades may be of different materials. The prograns
are featured with several options which allow the user to either
consi der the entire rotor or the parts. Also the effect of
rotation and tenperature gradient can be included when they are

thought necessary.

The neaning and use of the various options available
in these prograns are given below. The symbols used here are the

same used in the programns. A flow di agram is given in
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Figure D.3, showing how the input data are provided and the

synbol s used in this diagram are explained along with those

used in the prograns in section D.3.3.

D.3.2 Options Available In PROGRAM 2 AND PROGRAM 3

(1) 1pT -~ Ceneral option.
val ue description
1 Vibration of the disc alone is considered.
2 Vibration of the blade alone is considered.
3 Vibration of the bladed disc is considered.
4 Stress analysis of the disc alone is considered.

(2) IRNG =~ Rimoption

val ue description
0 No rim present.
1 Arimis present.
(3) ITED - Disc thermal gradient option
val ue description
0 No tenperature gradient present.
1 Tenperature gradi ent present.

(4)1STB - Blade initial stress option.
val ue description
0 Bl ade has no initial stresses.

1 Bl ade has initial stresses.
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(5) IEDE - Blade general option.
val ue description

1 Vibration of a single blade in the principal
directions and in torsion are considered
seperately.

2 The coupl ed bendi ng-bending vibration of a
pretw sted blade is considered.

3 The vibration of a single or group of blades

with or without initial stresses is considered.

D.3.3 Input and Qutput Variables

Brief descriptions of the input and output variables
used in PROGRAM 2 and PROGRAM 3 are given below, in the order of
their appearance in the prograns. Corresponding symbols usedin
the flow diagrans are given inmediately follow ng these variables

where applicable.

Variabl es used in PROGRAM 2 and PROGRAM 3

IPPT i - general option.
I RNG i "= rim option.
NF n - nunber of frequencies to be calculated for each

di ametral node configuration.

PMGA Q

speed of rotation in rad./sec.
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ND m, - final value of nodal diameters.

MDS mg - starting value of nodal dianeters.

NDE Ng - nunber of disc elements.

ITED i% - tenperature option of the disc

ED E; - Young's modulus of the disc material

RPD pd -~ mass density of the disc material

PRD vg - Poisson's ratio of the disc material

ALD ag - coefficient of thermal expansion of the disc
material .

SRl o, - radial stress at the inner boundary of the disc.

SR¢ op, - radial stress at the outer boundary of the disc.

NTD ~ nunber of degrees of freedomin the disc.

R(1) r(i) - the radii at the inner and outer boundaries of

all the disc elenments' takenin increasing order.
T(I) h(i) - the thicknesses at the inner and outer boundaries

of all the disc elenents taken in increasing order.
TE(I) T(i) - values of tenperature at the inner and outer boun-

daries of all the disc elenents taken in increas-

ing order.
NBE N, = nunber of blade elenents.
NB Z - number of bl ades present.
| STB ik~ blade initial stress option.
| BDE i - bl ade general option.

NSB - nunber of stations in the bl ade.




NTB

EB Ep,
RPB (N
PRB Vi
BX(I) (i)
BB(I1) I;(1)

BD(I) Iz(i)

ARA(T) A(i)

BKG(I) K, (1)

ANG (T)
siql)
ER
RER

PRR

RRI
RRY
RTI
RTH
RTEI

RTE®

Addi tiona

El

E2

§(i)
o(i)

E
T

or

1

304

number of degrees of freedomin the blade.
Young's nodul us of blade material.

mass density of blade material.

Poi sson's ratio of blade material.
distancees Of stations in the blade fromthe root.
I,in of the blade at the stations considered.
I, Of the blade at the stations considered.
area of cross-section of blade at the stations.
St. Venant's torsional stiffness of the blade
section at the stations.

pretwi st angles at the stations.

initial stresses in the blade at the stations.
Young's nodul us of rimmaterial.

mass density of rimmaterial.

Poisson's ratio of rim material..

coefficient of thermal expansion of rimmaterial.
inner radius of rim

outer radius of rim

t hi ckness of rimat inner radius.

t hi ckness of rimat outer radius.

tenperature at inner radius of rim

tenperature at outer radius of rim

vari abl es used in PROGRAM 2 al one.

- distance frominner boundary to centroid of rim

di stance fromcentroid to outer boundary of rim




Rl zZ I, - moment of inertia about 0z axis of rim section.

RI X I, - nonent of inertia about Ox axis of rim section.

RJ KG - St. Venant's torsional stiffness of rim section.

Addi tional variables used in PROGRAM 3 al one.

SCD kd = 1/x2, where x2isshear constant of disc.
SCR kr = 1/x2, where «2 is shear constant of rim
SCB kb = |/k , where k is shear constant of bl ade.

D.3.4 Subroutines used in PROGRAM-Z and PROGRAM 3.

The subroutines used in PROGRAM 2 and PROGRAM 3 are

divided in to the follow ng sections.

(1) Main prograns.

(2) Subroutine calculating the blade subsystem matri ces.

(3) Subroutine calculating the disc subsystem matri ces.

(4) Subroutine assembling the subsystemnmatrices in to the
system matrices.

(5) Subroutine calculating the stresses in the disc.

(6) Subroutines used to solve the eigenval ue problem

(7) Ceneral purpose subroutines.

Sections (1) to (4) are different for the two prograns,
whereas sections (5) to (7) are the same for both the programns.

The subroutines used in these sections are given bel ow




Section

PROGRAM 1

MAI N2
BLADE
D SC

SYSTEM

I NLSTR
El GVAL
MAX

QUI CK
| NVT
ASMBLE
SYSLGD
REDUCE
TR MUL

MATMUL

PROGRAM 2

MAI N3
THKBDE
THKDSC

THKSYS
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jumg

. S~/

A - value of frequency
det erm nant.

Figure D.I Variation of the value of the frequency deternm nant
with increasing values of trial values of w
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START

v

Read x,y,S,a,ms,me,nr,iR
and details of disc and blade

Read details of rim

Lo

Read gy val ues |

l

m = m+l

=
i
ju

lterate ' ;
4 and print out val ues of"
w. When satisfactory. EXIT

Figure D.2 Flow diagram for PROGRAM I .



ENTER

j--|
Read 5 g
Nb’z’is’ib’Eb’pb’vb’kb
Read e x(1),1 =1 to N+l 5 I, (1), 0 =1 to N4
i,i ,n ‘ B
@ Q R I,(1),i =1 to N +1; A(i), i=1to N+l

b b

=1 to Ng+l; 6(i), 1 =1to Nb+1'
Read
o™ L
Read § - applicable only to {ber
Nyg»d PROGRAM~3 s
T §
Ed’pd’vd’ad’kd’oa,qb ] ]
i = ? . ’
S . . ‘Read @
i i= ¢ ‘ ‘ a(i), i=1] to N+ 7
. } \ a! ?
= 1 =7
Read i=1,4 v R
r(i), 1 =1 to2xN,
h(i), 1 = 1 to 2xNy @—O
o=
Read details of rim

Figure D.3 Flow diagram for PROGRAM 2 and PROGRAM 3, showi ng how the input data is provided.
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D.%4 PROGRAM LI STI NG

D. 4.1 Subroutines used in PROGRAM 1

2k 3k ok ok ok ok 2k 5k ok 3k k ok ok ok sk sk sk ok K e ok 3k ok s koo ok s ok 3k Sk 3k ok ok 3k ok vk ok o ok sk 3Kk ok Sk ok oK 5k ok ok ok

* *
* MAINI -- MAIN PROGRAM OF PRIGRAM-I ¥
* *

ok ok ok ok o sk ok o o ok 3 ok Kk Sk oK ok o ok K ok K K ok ok oK o ok K ok K ok ok ok ok ok o ok o ok ok ok ok sk ok ke ok ok ok
* THI'S PREGRANM.REFINES THE APPREXIMATE FREQUENCIES =*
* BF A BLADED R8T8R USING THE ' EXACT METHZD® *
* THE DIMENSISNS OF aALL THE ARRAYS ARE FIXED AND XNg *

*

* CHANGES ARE NECESSARY AT ANY TIME °,

******************************************************
DIMENSIGN S$(2,2),C(2,2)

DIMENSICN AFR(0/10,10)

COMMEN PI1,PRD,ED,TD,AK,BK,RDI,RDO,CDL,FCC
CZMMBN/ZNE/FACCO/60),F1 (0/60),ALL.

ALL=0.1E-10

3 Ok 3 3k 3k 3k 3K e oA ok sk sk 3K vk 3k sk Sk Sk ok vk e ok ok ok ok vk ok ke ok ok ok 3k ok Sk Sk ok 3k ofe ok Sk ok 3k sk ok ke o ok vk ok sk Xk ok
*  CALCULATE AND ste¢RkeE THE VALUES @¢rF FACTZRIALS AND x
* THE PH FrFuNCTICN FZR VALUES 0oF N FReM O T@ 55 ° *
Sk ok 3k 3k 3 oK 3k ok Sk ok s 3K ok Sk ok 3k ok Sk koK 3Kk 3 3K 3K ko ok oK 3k 3K oK S 3K ok 3k ok ok ok 3k % ok sk sk 3k ok Ok ok sk sk ok %k ok ok
DZ 18 1=0,55

FACCI>»=FACT (1)

FICI)>=PHIC(CI)

CONT INUE

PRI NT 7

NZP=0
************************************************#*****
* READ IN VALUES ¢F INITIAL -STEP SIZE aND FACTORS *
* FOR FINAL STE? SIZE anub RANGE ¥
sk 3K 2R 2k ok K oK K ok 3R K 3k 3k oF 3k ok sk ok 3k ok sk >k R K 3k o A X sk ok 3k ok ok 3k ok K ok sk K ok sk ok sk sk ok ok ok sk ok ok ok sk ok ok
READ 10.,S¥,ALCY,X¥X,YYY

PRINT10,SM,ALEY , XXX, YYY

2k 3k ok o ok ok ok 3 ok oK ok % sk ok sk sk sk Ok sk sk ok 3k ok 3k ok K 3k sk ok ok K ok ok ok ¢ sk ok 3k %k ok ok ok 3k K ok ok sk sk 3k ok ok %k ok
* READ | % IT IAL AND FINAL NUMBERS OF NSDAL DIAMETERS %
¥ TO BE CCNSIDERED, THE NUMBER 9F FREQUENCIES T BE x
% - CALCULATED AND RING grTiCN *
A ok ok sk ok 3k >k Sk o Sk sk % ok 3k sk ok e ok sk ok ok K 5K K ok ok sk ok ok ok sk 3k Ok ok oK S gk oK 3K 3K sk ok Sk K sk ok o ok 3 ok ok ok %k
READ 11.,NDS,ID,NC, IRNG

PRINT11,NDS,ND,NC, IRNG
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e o ok o ok ok %k ok ok ok ok ek sk sk s ke ok ok Ok S ok sk sk ok ok K K %< v ok ok 3k 3k K ok ok o o 3K %K 9Kk 3k 3Kk Xk ok o ok %k ok ok
* READ IN VALUES 2FTHE DISC AND BLADE ELASTIC *
*  C@NSTANTS AND D IMENSIONS *
Sk sk o sk ok ok ok o ke ak ok ok ol ok ok ok 3k 3k ok ks R ok Sk 3k 3K ok ok 3k ok R ok ke ke ok oK sk ok oK ok ok X oK K ok ok K ok ok ok ok sk sk %k
READ 12,ED,ED

PRINT12,ED,E3 . ,

READ 12,R0D,REB '

PRINT12,RED,RE3

READ 10,P2D,PR3

PRINTI0,PRD.,PR3

READ 10,8DI,RDG,TD

PRINT!0,RDI,RDG,TD

READ 10,B3,BD,BL,BANG,Z

PRINT!10,BB,BD,3L,3ANG,Z

RRR=RD0J

E1=0.0

E2=0.0

IF(IRNG.EQ.0>GO TG 19
*************************************f****************
* |F RIM IS PRESENT, READ IN THE VALUES OF THE ‘RIM =%
* ELASTIC CZNSTANTS AND DIMENSIONS o
L33 S ES TS EELFSET I LRSS S S S FITIEFETESEEEESTEEELEIELEERES S SE
READ 12,ER,R¢R, PRI

PRINT 12 #ER,RCR, PR

READ 10,RR,RJ,RIZ,RIX,E1,E2,RA
PRINTI0,RR,RJ,RIZL,NIX,EL,E2,RA

RRR=RR+E2

Al =1.0/3R

A2=A1 *ill

A3=A1 *A2

A4=A1%A3

AS=Al1 *A4

GR=0.5%ER/ (1 .0+PRR)

CONTINUE

o oK 2k ok sk ok sk oK vk K 3k ok vk ok sk ok ok ok ok vk 0k ok Sk o Sk ok ok ok sk ok e ok Sk ok ok 3k ok ok ok ok ok sk ok sk ok ok sk ok ok ok skook ok
* READ Il THE VALUES @F THE APPPRZXIMNATE FREQUENCY %
* VALUES FZX THE SPECIFIED VAL'JES OFNGDALDIAMETER *
sk ok ok koK ok e ok ok 3k ok ok ok 3k ok ke sk o sk vk 3k ok ok sk kK ¢ ok K 3k sk ok ok ok ok 3k ok sk 3K 3K 3K ok oK o ok 3k 3k sk 3k 3k ok ok ok %
READ 6, ((AFR(1,J),J=1,NC),1=NDS,ND)
PRINT6,((AFR2(1,J),J=1,HC),1=NDS,ND)

x2=1.0 /RAR /IR

PI=3.1415%2653589793

CCC=2.0%P1

B1X=3D*88%x33%33/12.0

BlY=33%xBDxBD*3D/12.0

BJ=33#233¥33*3D%(1./3.~.21%BB3/BD*(1.-33/BD*BB/3D*33/BD*x3B/2D/12.0°

CD=SQRT(SART(I12.0*RE&D* (] «0-PRD*PRDI/ED/TD/TD))
CX=SAORT(SANT( 12. 0*R03/EB/3B/23R)Y)
CY=SQRT(SQRT (12 .0%RC3/E3/BD/BD)Y)
CT=SCRT(2.0%REB*(1.0+PR3)I/EB)

BA=BANG=PI1/180.0

SNA= SIN(3A)
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CSA= CES(3A)
RSNA=E2*SNA
RCSA=E2%CSA

SAS =SHA*SNA
CAS=CSA*CSA

RS =RSNA*RSNA
CRS=RCSA*2CSA
PQ=0.5/(1.0+PR3)
PRI NT 3

M=NDS -1

CENT INUE

sk ok ok Sk ok ok ok ok sk Mo 3k sk Rk ok ok ok ok ok %k sk o s ok ok s e o s ok ok o sk ok ok sk 3k s ok 3k sk sk sk ok ok o ok ok S ok ok ok ok sk
*  SELECT THE MUMBER @F N2DAL DIAMETERS *
**************************************#***************
M= M+ ]

IF(M.GT.ND) G& T 90 , - )
PRINT 1 ‘

AN=M

AN2 =AN*AN
AN4 =AN2 *AN2
PRINT 5
FF=0. 0O
FCC=0.5
IF(M.EQ.0) FCC=1.0

IFC(IRNG.NE.0) CI=2.0%PI*FCC*RR

N=0O

CEZNT INUE

NIT=0

AM=5M

s sk ok o sk sk Sk o ok S ok Sk ok sk sk ok sk sk ok e sk ok ok sk ok sk ok ok sk 3k ok ok 3k ok sk sk K Sk oK 3k ok ok oK ok 3k 3k %k ok 3k oK 3K ¥ % %
* SELECT THE !NUMBER ¢F N@DAL CIRCLES *
5K 3k 3 2 %k Ok koK 2k e ok K 3k N sk ke ok o ok ok 3k oK vk sk ok ok Kk Y sk ok 3k ok 3k Sk ok 5K ok ok 3k vk 3k ok ok 3k o ok ok ok 5k o ok >k ¢
N=N+1

XN=N

IF(N.GT.NC) GZ& TEZ 20
******************************************************
* SET L@WER AND UPPER LIMITS FZR ITERATIEN *
ok ok 3k o v S ok Sk ok 3K ok 3K ok XK 3K K 3K 3K %K K SR K 3K Sk 3K 5k Kk 3K 5k 3K ok 3k ok 5K 2k 3 3k 3k sk 3K ok vk ok ok Sk 0K %R sk oK o sk ok ok 3k
FF=¥XX%AFI (M, N)

2ZZ2=YYY*AFR (11, 1)

CENTINUE

sk ok sk sk sk ok ok 3k ok ok sk ok Sk OF sk sk ok ok ok s ok sk 3k >k 3k 5k 3k oK % 3K sk ok o ok ok %K ok 5k 3k 3k 3k 3K 3k %K 5k 3k %k %k skoR %k ok %

*

% SPCIFY STE? S1z=
ok ok 3k ok o 3k % 2k Sk > ok oK ko op >k >k %K ok ok ok o ok >k ok 5k 2k ok 3k ok ke ok o vk 2k ok ok oK A ok ok ok 5k >k ¢ %k %k 2k ok 3k %k %k %
STEP=AM

& 19 37

CONTINUE

FF=XXY*AFR (M,N)

AM=AM40 . 5

STEP=Al

IF(STEP.LT.0.05) GC T@ 30

CeNTINUE
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***#**************************************************
* SPECIFY TEE ALLGVA3LE STEP SIZE T¢ END ITERATIZN =*
******************************************************
ALLBW=ALOW*XN

KK= |

KKK= 1

CONT INUE

FF=FF+STEP

CCNTINUE
**%***************************************************

*  START 1TERATING ' *
ook o ok ok o ok ok oK ok ok ke ok K ok ok sk ok sk ok ok e of ok e o ok ok ok sk ok ok K 3K 3K 3K oK ok K K Kok koK K oK ok oK K Kk
NIT=NIT+!

IF(NIT.GT.500)GaT@g. 30

NGP=N@P+1

XY=FF

IF(FF.GT.222) G& T® 33

FR=FF*CCC

SFR= SQRT (FR) . N

CDL=CD%*SFR

AK=CDL*2D1

BK=CDL#*RD@
****************************#*************************
* CEMPUTE THE DYNAMIC STIFFNESS C@ZEFFICIENTS FER *
*
******************************************************
CALL EXTDSX(C.,M) ST
******************************************************
*  CegMPUTE THE DyYnaMIC STIFFNESS C@EFFICIENTS F2R *
¥ ARRAY @F BLADES *
******************************************************
CXL=CX*SFR !

CYL=CY*SFR

CTL=CT*FR

CXR=CXL=*3L

CYR=CYL*3L

CTR=CTL%*3L

SNX= SIN(CXR)

SNY= SIMN(CVR)

CS¥= CES(CXR)

CSY= C@S(CYR)

SNT= SIN(CTR)

CST= C@s(CTR)

SHX=S INH(CXR )

SHY=S INH(CYR)

CHX=C@SY(CXR )

CHY=COSH(CYR)

DX=EB*Z*FCCH#BIX/(CSX*CHX+1.0)
DY=EB*%Z*FCC*BIY/(CSYxCHY+1.0) )
PX=-DX*CXL*CXL*CKXL* (CS¥*SHX+SNX*CHX)
PY=-DY*CYL*CYL*CYL*(CSY*SHY+SNY*CHY)
RX=DX*CXL*+CXL*SNX*SHX

RY=DY*CYL*CYL*SNY*SHY

TX=DX*CXL*(CSX*SHX-SN¥*CHX)
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TY=DY*CYL*(CSY*SHY-SNY*CfiY? -
AT=-PQx3J*CTL*SNT/CST*Z*FCC*EB
’RMA=0 .0
RMB=0.0
RMC=0.0 '
IFCIRNG.EQ.0) GO T@ 45"
******************************************************
*x |F A RIM IS PRESENT CZMPUTE THE DYNAMIC STIFFNESS x
* COEFFIC IENTS FOR THE RIN *
ek K 3R ok sk koK 3k ok ok ok ok ks sk ok sk ok ok 3k S ok ok ok ok sk ok sk 3k ok sk vk ok sk 3k ok sk sk 3k sk ok ok sk sk ok sk ok ok ok sk
RMA=CR*(ER*RIZ+GR*RJ/AN2 ) *ANA xA4 ~CR*¥FR*¥FR*RER % (RA
o+ 1 Z *AN2HA2 Y
RMB=CR*(ER*RIZ+GR*RJ)I*AN2 *A3
RMC=CR* (ER*RIZ+AN2*GR*RJ) *A2 ~CR*FR*FR*ROR*(RIX+R1Z) °
45 CE@NTINUE
DO 50 I=1,2
D@ 50 J=1,2 .
50 S¢1,J)=0.0
Sk 3k 5K S sk S sk sk Sk vk ok ok ok sk 3R SR oK sk sk o ok 3k ok 3 sk 0k sk sk sk sk 3k sk e sk ok sk sk ok sk K o ok ok 3k ok s ok sk sk ok Sk ke sk ok
*  CEMBINE THE SUBSYSTEM MATRICES TO GET THE SYSTEM *
* DYNAMIC STIFFNESS MATR IX , *
sk Sk >k K ok K kK sk ok ok sk ok sk ok sk ok 3k sk Sk o 3K K kK o oK sk sk 3K Sk s ok Xk 3k ke 3K ok 3K ok Sk ok sk sk 3k sk sk ok 2k sk sk ok %k ok ok
AZ=SAS*PX+CAS*PY+AN2 *X2 *AT +RNMA
BZ=-E2%SAS*PX-E2%CAS*PY+SAS *xRX+CAS #RY+RIB-AN2 %X2 *AT *E2
CZ=5RS*PX+CRS*PY+SAS*TX+CAS*TY-2.0%E2%SAS *RX T
.-2. O *E2%CAS*RY+RMC+AN2%X2 *AT *E2*E2
SC1,1)Y=C(l,1)+A2 )
$SC1,2)=C(1,2)~-E1%AZ+BZ
S(2,2)=C(2,2)+EI1*E1 #¥AZ-2.0%E1 *BZ+C2Z
Sk 3 3 sk ok sk s ok ok ok o ook 3k o e 3K vk Sk ok Kk 3k ok R i 5k sk 3k ok 5K Sk 3k sk sk sk ok sk ok 3k sk ok ok sk Sk sk sk ok ok ok sk sk
* CALCULATE THE VALUE @FTHE FREQUENCY DETERMI NANT *
oKk 3k o 3k 3k ok o 3k ok 3k ok ok ok e %k sk K SR o ok Sk 3 ok K ok 3k sk 3k vk 3k sk ok 3k Sk 3k 3 ok 3k 3k sk vk ok Sk 3Kk ok Sk ok >k X ok sk sk
DET=S(1,1)%5(2,2)-5¢1.,2)%5(1,2)
IF(XK.EQ. 19 G3 TO 75
ok oK ok o ok 3k ok A o o sk 3k ok ok o ok 3k ok ke sk ok ok sk oK 3k %k ok 3K ok 3K ok sk sk ok ok ok ok ok ok ok sk ok ok ok ok ok oK ok ok ok %k ok K 3k
* CHECK IF VALUE @FDETERMINANT CHANGES SIGN *
**********?*******************************************
AAA=ABS(PVY+ABS(DET 9
BBB=AB3S(PUY+DET9 '
IF(AAA.NE.3BB 9 KKK=2
DIF=ABS (PV)+ABS (DET)
75 PVU=DET
KK=2
| F(KKK.EQ. 19 GZ TG 40
IF(STEP.LT.AM) G€ TgZ 80
FF=FF-STEP
DIFA=DIF
STEP=ALLOV
KK=1
KKK =1
G8 TO 52
80 DIFB=DIF

1

ALY
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******************************************************
* CHECK IF VALUZ OF DETEMINANT JUMPS FREMONE E N D T@x*
* THE @THER ENDOF INFINITY *
******************************************************
IF(DIFA.LT.DIFB)>G8 T O 25

AFR (M, 1) =FF

2k ok o ok ok ko sk sk sk ok sk sk ok ok o oje sk sk Sk sk sk Sk S ok ok o ok ok ok sk sk sk ok sk sk ok sk 3k ok sk sk sk ok ok ol ok ok ok ok ok 5k
* PRINT 2UT THE RESULTS UYHEN SAT ISFACTARY *
******************************************************
PRINT 15,M,N,FFLNIT

G3TB 30

0 C@NTINUE
******************************************************
* PRINT EUT SUMMARYZF ALL THE RESULTS -
3k 2k >k ok ok koo sk sk sk e Sk ok ok s ke sk ak ok ke ok ok 3K 3k ok ok 3K K 3k o Sk o 3k ok ok ok ok sk ok ol ok Sk %k 3K sk o Sk sk sk sk sk ok sk ok T
D@ 95 IJK=1,5

PRINT 3 , ‘

PRINT10,RDI,RD2,TD

CIFCIRNG.NE.O) PRINTI0,RR,RA,ELl,E2 R

pRINTlO;BB)BD)BL;BANG)BN

PRINT 2, (CAFR(I,J),J=1,NC),I=NDS,ND)

Ge TO 16

CALL EXIT

FORMAT (/7777 )

FORMAT (/6F12.4)

FORMATC(IHL!,5X," EXACT S@LUTIZN ~-~FREQUNCIES IN CPS.'//)

FORMAT (3X, 46HNZDAL DIA MEZDE NO FREQUENC IES ITERATIONS)

FERFAT(6F10.4)

FORMAT (1H1.,5X, "VIBRATIONGF BLADED DISC -- EXACT S@LUTIZN'

o/ /55X, "INPUT DATA’ //) .

FCRMAT (8F10.3) 1

F@RIMAT (1615)

FORMAT (4F20.9) : \
FERMAT (/2(6X,137,3X,F13.4,110) '
END
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SUBROGUTINE DETERM (AA, N.DY

******************************************************
* THIS SUBREUTINE EVALUATES THE VALUE D 8F THE *
* DETERMINANTEF ARRAY AA (N,N). *
* BEFORE ENTERING THE SU3RCUTINE DEFINE ALL THE *
* ELEMENTS ZF ARRAY AA *

ok oK ok o ok 3 ok sk o 3k Sk 3k 3K ok ok o 3k 2k oK ok R %k 3k k3 ok ok ok ok 3k ok ok 3 Xk 3K ok ok ok K ok ok ok 3k ok ofe 5K ok 3k ok K ok ok %k
DIMENSIGN AACAL4),ACL,4)
D@ 200 1=1,N
D@ 200 J=1,N
200 ACI,JY)=AACI,J) .
D=10
K=l
1 C@NTINUE ~
,KK=K+ 1
1S=K
IT=K
B= ABS(A(K, X))
DB 2 I=K,N
DZ 2 J=K,N
IFC ABS(ACI,J))-BY2,2,21.
21 1S8=1
IT=J
B= ABSC(A(I,J))
2 CONT INUE
IF(1S$-X)3,3,31
31 DO 32 J=K,N
C=ACIS,J)
LACIS,I)=A K, )
32 A(K,J)=-C
3 CBNT INUE
CIFC IT-KD4,4,41 .
41Dg 42 1=K,N :
C=AC1,IT)
ACILITY=ACILK)
42 ACI,K)=-C
4 CENT | NUE
D=A (K, K)*D
IF(AC(K,K))5,71,5
5 CEZNT INUE
DO 6 J=KK,N
AK,JI=A(K, JI/ACKLKD
. DO 6 1=KK,N
W=A LK) *A (K, D)
ACI,Jd)Y=ACl,J)~-VW
6 CONTINUE
K=KK
IF(K-N)>1,70,1
70 D=A(N,N)*D
71 RETURN
END
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SUBRQGUTINE EXTDSK(C,M>

s 3K o ok 2k ok 3K ik sk oK oK ok ok Ak ok ok ok ok kO 3 oK ok o A ok ok ok ok ok ok ok sk ok sk ok sk 3K 3k oK 3k ok K oK 3K ok ok kK oK % % K
*  TH' S suBaauUuTINE CALCULATES THE EXACT STI FFNESS *
* MATRI X cCc¢2.,2) gF AN unirFgam DI SC, CLAVPED AT THE *
* | NNER BeunDaARY AND FREE AT THE gUTER BOUNDARY *
3k o ok 3k ¥ ok sk ok ok sk ok e ok 5K ok ok R ok ok 3 ok ok ok sk 3k ok Sk ok sk K ok K K 3K ok ok K 3K K % oK K 3K ok ok K ok 3k %k % ok K
DIMENSION ac4,4),C(2,2) -

COMMEN PI1,PR,ED,TD,AK,BK,RDI,RDE,CDL,FCC

L=M+1

D=TD*TD*TD/12.0/ (1 «0-PR*%PR)*ED

A2=CDL*CDL

A3 =A2*CDL v

Sk ok 33 sk ok ok sk ok sk sk ok ok sk s ok stk sk ok ok of ok ok ok ok ok sk sk of s ok sk ok ok ok ok sk sk ok ok Sk oK 3K ok ok oK 3k 3k ok ok ok ok %
*  CALCULATE AND sT@gRE ALL THE BESSEL FUNCTIONS T@ *
* BE USED LATER - *
sk ok ok s o ok 3k 5k e sk ok 3k oK ok ok ok sk sk ok ok 3 3k ok 3k oK ok 3l s ok ok ok ok ok o 3 ok 3K sk K 3k 3k K K ok Sk ok oK 3K sk ok K ok
AJM=XJIN (M, AK)

BJdM=XJN (M,BK) '

AJL=XJN(L.,AK)

3JL=XJN(L.BK)>

AYM=XYN (1, AK, AJIM) N
BYM=XYN(M,BK,3JM)

AYL=XYN(L,AK,AJL?) -

BYL=XYN(L,BK,BJL)

AlM=XIN(i,AK)

BIM=XIN(M,BK)
AIL=XIN(L,AK)
BIL=XIN(L,BK)
AKM=XKN (MLAKSAL )
BKM=XKN (M BX, B IM)
AKL=XKN (L,AK, AIL )
BKL=XKN(L,BK,3IL)
AM=M

AR =AM*AM
RI2=RDI*RDI
RI3=RI2xRDI
RE2=RDZ*RDE
R@3=RE2*3DO
AX=AM/RDI
BX=AM/RD2
BY=AM*(AM~-1.)%(1.-PR)/RE2-A2
BZ=AM* (AM-1.)%(l .-PR)/RB2+A2
AA=CDL%*(1.-PR)/RDI
B3=CDL* (! .-PR)/RD3
AN] =AX*AJM-CDL*AJL
AN2 =AX*AYM-CDL*AYL
AN3=AX*AIM+CDL*AIL
AN4=AX*AKM-CDL*AKL
BN! =BX*BJM-CDL*BJL
BN2=5X*BY!M-CDL*BYL
BN3=3X*3IM+CDL*BIL
BN4=BX*BKM~CDL*BKL
, BN5=BY*3JMN+BB*BJL

" BN6=3Y*BYM+BB*BYL

BN7=BZ»BI1M~-BB*31IL
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BNB=BZ*BKM+BR*BKL :
BP=(-AN*A2*R82+(1.-PR)*(!.—AM)*AMZ)/R®3

BQ=( AM*A2*RC2+ (1 «~PRIY*% (] . -AM)Y*AM2)Y/R0O3

BR= (A3 *ii03 +CDL*RDZ%(1l.-PR)I%*AM2)I/RB3
BS5=(A3*R03~CDL*RD@% (1l «=-PR)*AM2) /303
BN23=B3Px%3JM+33*3JL

BN24=3P*BYM+3R3%BYL

BN25=30%BIM+3S*31L,

BN26=30%BKl1-BS *3BKL
******************************************************
* CALCULATE ANDSTE@RE THE VALUES @FtHEDETERMINANTS*V
* APPEARING IN THE DYNAMIC STXFFIJESS MATRIX OF DISC *“
******#***********************************************
ACl,1)y=adM '

ACl,2)=aYH B '
ACl.3)=A1M

ACl,4)=AKM

A(2,13=AN!

A(2,2)=4N2 "
A(2,3)=AN3

A(2,4)=AN4 , ’
AC3,1)=BJM '

A(3,2)=BYM '
A(3,3)=BIM /

A(3,4)Y=BKM

Al4,1)=8NI

A(4,2)=8BN2

AC4,3)=3N3

AC4,4)=374

CALL DETERMCA,4,DM)

A(l,1)=AYM

ACl,2)=A1M

AC(Cl,32=AKM

A(2,1)=AN2

AC2,2)=AN3

A(2,3)=AN4

A(3,1)5>=BYN

A(3,2)=31IM

A(3,3)=8BKM

CALL DLETERMC(CA,3,DNMPA)

ACl,1)=AJdM

£(2,1)=AN1

AC3,1 H>=BJM™

CALL DETERM(A., 3, DMP3)

A(l,2)=AY}N

A(2,2)=aN2

A(3,2)=3YM

CALL DETERMCA, 3 ,DNMPC)

ACl,3)Y=A1NM

AC2,3)=A13

AC3.,3 y=BIM

CALL DETERM(A,3.,DMPD) .
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ACl,1)=AYM

ACl,2)=A1M

A1, 3)=AKN

A (2,1)=AN2

AC2,2)=AN] |

A(2,3)=AN4

A(3.1)=BN2

A‘(3)2)=BN3

A(3,3)>=DBu4

CALL DETERM(A,3,DMSA) .
ACl,1)=AdM

AC2,1)=ANI _

AC3,1)=3N1 .
CALL DETERM(A,3,DMSB) .

ACl,2)=AYH

A(2,2)=AN2 :

A(3,2)=BN2 _ 3

CALL DETERM (A, 3 , DMSC ) '

A(1,3)=A1IM .

A(2,3)Y=AN3 -
A(3,3)=BN3

CALL DETERNM (A, 3, DIMSD)

sk ke ok ok ok ok ol 3 ok sk sk sk sk ik ok 3k ok ok sk sk sk oK i ok sk ok K 3 ok 3K ok ok Kk ke sk kR sk sk ok sk sk ok K oK 3k kR KOk kK OK
* CALCULATE THE VALUES &F THE ELEMENTS @F THE DISC *
% DYNAMIC STIFFNESS MATRIX *
s sk 3k ok ok S ok 3 s o oK 3K 5K 3K S 5K 3K 28 3 3K ok 3K K 3k ok 3k 3k K ok ok ok 3K ok ok ok ok sk ok s sk ok sk ok Sk ok sk sk sk R ok ok sk ok R
CZNST=~D/DMx*xPI1*%RDEC%2 .0%xFCC .
C(l..1)=C8.‘JST*(DMSA*B:\‘-Z3—DMSB>I<BN24+DMSC*81\125-DMSD*BN26)
C(l1,2)=CENST* (DMPA*BN23~-DUFB*RN24+DMPC*BN25~DIMPD*BN26)
C(2;2)=CGNST*(DMPA*BNS--DMPS*BN&»+DHPC*BN'I—DMPD*BNS)
RETURN

END
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FUNCTIEN PH (N

o 3k ok ok ok o sk s ok ok ok ok ok ok ok o sk vk ok ok ok ok 3k sk ok sk ok Sk 5Kk ok 3k ok ok 3K 3k sk ok ok oo S ok sk i ok sk sk v v ok ok ok o ok
¥ PHIM=1+1/2+1/3+eee- 1/N *
Sk e ok 5 2k 5k K ok ok of ok Ok ¢ ok sk ok dk Sk ok ok ok Sk of sk 3 ok ok ok ok oK ok ¢ K 3k sk ok ok ok sk sk ok ok K K ok ok sk ok ok X
PHI=0.0

IF(N.EQ.0) RETURN

DO 10 I=1,N
XI=1
PHI=PHI+!.0/X1
RETURN
END .
by
FUNCTIZN FACT(N)
ke 3k e 3K ok Sk skok sk ok ok sk ok 3k ok ok ok ok ok sk ok ok oK K 3 3K oK oK oK K ok % ; :
* THIS FUNCTIGN CALCULATgé*;AC¥5§TKS*ﬁ**************f
;zé;jﬁfg*************************f********************
IF(N.EQ.0) RETURN
DO 10 I=1,N
Al=1
FACT=FACT %Al
RETURN

"END
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FUNCTI®N XIN(N.X) . '
******************************************************
* TIITS FUNCTI ON CALCULATES MEDIFIED BESSEL FUNCTI ON s
x . OF THE FIRST KIND OF | NTEGER grRDER N AND REAL *
*  PARAMETER X *
******************************************************
COMMCN/ENE/FAC(0/60),FIC0/60),ALL

XIN=0.0

K=-1

K=K+ , _
XX=(X/2.0) %% (N+2%K) /FAC (K) /FAC (N+K)

XIN=XIN+XX S

ALLEYW=A3S (XIN)*ALL N
IF(ABS(XX)+GT.ALLZW) GB T2 10 \

RETURN

END

FUNCTIEZN XJNN,X)

33k ok 3 sk sk sk ok ok sk sk ok sk sk ok sk sk sk ke 3k ok sk e ok K 3k 3k 3k 3k 3R ok 3k sk sk ok e ok 3k 3k ok 3k sk oK sk ok ok ok vk ok sk s ok sk ok
* THIS FUNCTI1on CALCULATES 3ESSEL ruwncTiIign OF THE *
* FIRST KIND ¢F INTEGER ORDER N AND REAL PARAMETER X
****************%*************************************
COMMEBN/ENE/FAC(O/60),F1(0/60),ALL

XJN=0.0 ' .

K=-1

K=K+ A
XKX=(X/2.0)*+%(N+2%K)/FAC(K)/FAC (N+¥X)
XJIN=XJIN+XX*(~1.0)*%K

ALLECW=ABS (XJN)*ALL ‘

IF(ABS (XX)>.GT.ALLRY) GE TO 10

RETURN

END
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FUNCTIEZN XYN ¢(N,X, XINX)
N o o ok o 3K sk ok ok Sk sk Kk sk ok K K % ok ok i R ok Xk e ok o ¢ sk 5k ok ok ok ok Sk vk sk ke sk ke ok e ok ok Aok Sk 3k ok ok Xk ok ok
% THISFUNCTIZN CALCULATES BESSELFUNCTIONGF SECCND*
* KIND OF INTEGER ORDER N AND REAL PARAMETER X *
*  XJNX IS THE EESSEL FUNCTI@I3F THE SAME TYPE AND *
. % SHKEULD BE DEFINED BEF@RE ENTERING *
she >k 3k ko 3k o koo ek sk ik ook 3k ok sk ok sk sk 3 sk ok ok Sk ok 5k ok Sk 3k sk ok o R 3K oK oK ok sk ok o ok ok oK ok ok oK K K ok Xk ok ok
COMMECN/ONE/FAC(O/603,F1(0/60),ALL .
PI=3.141592653589793
EC=0.5772 1566490 1533
XKYN=2.0/P1%( LBG(X/2.0)+EC)*XJINX
XX=0.0
IF(N.EQ.0)G8 TO 15
NN=N-1
DO 10  I=0,NN )
10 XX=XX+FAC(li=1-1 Y% (X*0.5)%*(2%I-N)/FAC(I)>
XYN=XYN=-(1.0/PI)*XX
15 CONTINUE
K=-1
IF(N.EQ.0) K=0
20 K=K+1 . .
YY=1e0/P1%(~1e0)%*K*(FIC(KI+FI (N+KD))I*(0%5%X)** (2%K+N)/FAC (K)
L /FACIN+IO
XYN=XYN-YY _
ALLBW=ABS(XYN) *ALL .
IF(ABS(YY).GT.ALLZY) GO T@ 20 .
. RETURN
END

FUNCTIECN XKEN(N,X,XINXD
s ok ok ok st s ok sk oie ok ke ok ok sk ok ok ok ok ok St s ok sk ok ok sk ok ok sk o sk sk sk Ok ok ok sk ok sk Ok ok oK oK ok ok ok Ok ok Ok ok ok ok Ok ok
* THIS FUNCTIZN CALCULATES MODIFIED BESSEL FUNCTIZN %

% @F THE SECCND KIND 2F INTEGER 8RDER N AND REAL *
%  PARAFETER X *
* XINX IS THE BESSEL FUNCT I18NG@F THE SAME TYPE AND =x
* SH@QULD 2E DEFINED BEF@RE ENTERING £

Sk s ok sk ok sk Sk 3 R i e Sk sk 3ROSR Sk S0 RO Sk vk sk o R S A ke Kk ok ok e sk sk Sk o oI ok S ok sk ok ok ok sk ok sk ok ok sk ok ok
COMMBN/BNE/FACCO/60),FI1(0/60),ALL
EC=0.577215664%01533
XEN=(=1 0 )kk(N+1 )% ( LOG(X*%0.5)+EC)*XINX
XX=0.0
IF(N.EQ.0) GO Tg 15
NN=N-1
DG 10 I=0,NN
10 X¥=XM+(-1.0)*%*I*FAC(N-1-1 )% (X%0+5)%*%(2*I~NI/FAC(I)
XHN=XKN+0.5%XX
15 CEZNTINUE
K=-1
IF(N.EQ.0) ¥=0
20 K=K+1
YY=0e5%(=140)%*Nk (05X k% (N+24K)*(FI(KI+FI(K+N))/FAC (K)/FAC (N+K)
KEN=XKN+YY
ALLBY=A35(XKN> *ALL
IF(ABS(YY).GT.ALLCW)YGB TO 20
RETURN
END
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D.4.2 Subroutines (xsed i n PROGRAM-2

H
A}
.

2K ke o 2k ok ook S ok 3K o of sk ok b ok Sk ok ok ok ok ok ok o ok ok 3 3 K kK e sk K 3k oK ok K 3k ok ok 2K ok ok sk ok ok 3k ok 3K 3 oK ok

* N
* MAIN2 ~-- MAIN PREGDAM ZF PRICGRAM2 S *
* ' . *

*****************************$**********#*************
* THIS IS A GENERAL PREGRAM T@ BE USED IN THE
ANALYS1S @F BLADED ROTBRS. TRANSVERSE SHEAR AND
ROTARY INERTIA ARE IGNEZRED 3GTH IN THE DISC AND
THE BLADES. ¢pTICZHNS FACILITATING THE USE OF TH S
PR3GRAM FR THE VIBRATIEN AMNALYSIS @F EITHER THE
ENTIRZ ROTEZR SYSTEMER ITS CEMPINENT PARTS NMAY E*
SPECIFIED. VARIABLEDIMENSIEZNS ARE USED REQURING*
THE CHANG ING €F TEE DIMENSIZNS GNLY | N THE MAIN *
PREGRAM AT ANY T IME AND SPECIFYING THE APPR@P?IATE*'
VALUES @FNMSI AND ts2
***%********XV*******#*w******************************
DIMENS IEN H)4;24);SM’?Q;QQ)JSKB(3O;30),SM3(30)30)
DIMENSIEN R(24),T(24),TE(24),4W(24),P(24)

* ¥ K H ¥
* % ¥ ¥ %

DIMENS IGN BB (24),BD(24),8X(24),51G(24),ANG(24),ARA(24)Y,BKG (24 )

DIMENSIGNSGR(24),5GT (24 )

DIMENSIEN D(24,24),F(24,24),3C24),C(24),X(24)
DIMENSIEN ERR(24),37(24),88(24),89(243,FR(20,10)
COMMBN/EPTICN/ICPT,IRNG,ITHD,ITED,ITHB, IST3
COLNMEN/ENE /AN, AM2 , A4 , ANPR
COMMEN/TYE/51,52,853,54,CK¥D,CHR,CMD,C CMR,LCCLCCC,L,CKLCP,CT

CGiHGN/THT:/ 2 DI1,RDE,RR1,BRP,RTILATEC,EL,E2,R1Z,RIX,RJ,RASSTR

CO MMON/FQUR/PILED,ER,E3L,RED,RER,REB,ALD,ALR,PRD,PRR,PRA

15

Cgk'ﬂu/rIVu/JRI SR@,0MGA
CeMMEN/SIX/CONST 1, NF

EQUIVALENCE (S¥,F)

MS1=24

MS2=30

CONTINUZ
***********************#******************************
*  READ GENERAL SPTION,RIM GPTIGN,AND WUMBER GF *
¥ FREQUENCIESREQUT | RED FZR EACH DIAMETRAL N3DE. *
o Kk K X ok 2K kK ok o ok sk sk sk ke ok sk 3K 3k Ok ok K ok 3k %k ok Sk sk ok o ok 3k oK Sk oK K B K 3K sk ok 3k ok oF b K ok K K
READ 121169’[‘ Ixﬂl\:\:):uF

PRINT12, 16PT,IRNG,NF

%ok 2k ok K Rk K ok Xk dkok ok ok ok ok ok K ok ok of ok ok sk s ok 3k sk sk sk ok sk sk K sk R ok 3k vk ok %k 3k o vk ok K ok ok sk ok ok sk ok sk %k
* READ SPEED OF ROTATIONOF THERZTEZR IN BAD./SEC. %
%k 3 ok 3k 3k ok ok ok Ak ko ok ok R ok ok ok ok ok 3Kk XK K ok %k 3k Ok ok 3k 3k %k ok ok 3k ok ok 3k ok ok o ak o ok 3 3k ok o K ok ok ok
‘READ 6, ZMGA '

PRINT6..OMGA

o>
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G2 T0(20,50,20,21),10PT
e ok ok ok 3k ok ok sk Sk o ok K A ok K ok ok K K K 3k ok 3k ok ook o ok kK o OK 3ROk Xk 0K oK ok ok ROk ok o ok ok ok %

"% © READ FINAL AND STARTING VALUES CF N@DAL DIAMETERS x

sk sk oK ok ok ok K ok ok ok o ok ok ok e Sk K 3o ok R R R 3Kk kR ok ok ok oK R ok kR R ok kX ke k3K kiR K R o KR R R ok
READ 12,UD,MDS

PRINTI2.,1D,MDS

Sk A 3K ¢ oK bk sk ok 32 o 3k ok ok 3k sk s ok Pk ok 3K ke Sk v SR R ok ROK KOR 3 e ok s s s ok Sk ok ok ok o ok ok ok sk ok ok
% READ NUMB3ER ¢F DISC ELEMENTS, DISC grTIBNS, DISC %
*  MATERIAL PREPERTIES., AND BAUNDARY LZADINGS. .
ke sk sk ok sk ok sk sk sk ok S sk sk 3K ok ok s sk sk ok S ok ok ok K ok R Sk Ok ok K ok ak oi¢ ok o ok sk o ok e K ok of 3 ok KOk sk ok ok ok ok

21 READ 12 ,NDE,ITED

49

. 50

PRINT 12, NDE,ITED

READ 6,ED,RED,PRD,ALD ;
PRINT6,ED,R28D,PRD,ALD

READ 10,5R1,SR¢

PRINT10,SRI,SRE

NSD=NDE+1 _
NPD=2%lDE ,

NT D=2%NS5D
sk sk ok 3k sk oK 3K o Sk K 3k koK Sk 6 K K oF ok 3K OF 3K oK ok o ok sk ke ook sk ke s ok ok ok R oK o oK o ok ok 3Kk sk ok ok ok ok %
* READ DISC DIMENSIZNS' *

****************»*************************************
READ 10, (R(I>,1=1,NPD)
PRINT!IO, (R(I)X,I=1,KNPD)
READ 10, (T(1),1=1,NPD)
PRINTI!10,(T(I),1=1,NPD)
RDI=R(1)
RDE =R (NPD)
IF(ITED.EQ.0)GE TG 4 9
READ 10, (TECI),I=1,NPD)
PRINTI0,(TEC(I),1=1,NPD)

G2 TZ(70.,50,5C,70>,16GPT
C@NT INUE
******************************************************
% TRTEAD NUMBER @F 3LADE ELEMENTS, NUMBER €F BLADES, *
% AND BLADE @PTIZNS. %
*x******xy****xx**********>********>*X*********k******
READ 12,NBE,NB,1573,13DE »
PRINTI2,1BE,NB, ISTS3, ISDE

MNSB=N3E+1

NTB=5%N53
**x***#**X*******x************************************
* RZAD BLADE MATERIAL PREPERTIES *
**x**w*x+x****xa»*********x**x*******x********x***x*»x
READ €,Z3,R083,7R3

PRINTG, 5910“31?33

s Sk oK 3 o ok ok K ok 5K oK ok 3k ok ok ¥ o ok oK 3 o ok 3 oK 5K 3 3 ok ok o 3 ok ok 3k ok ok ok stk ok ke sk sk sk ok ok ok Rk -

* READ BLADE DIMENSISNS . *
****x%x****************x**********************x*****%*
READ 10, (3¥CIY,I=1,NSB)
PRINTI10, (BX(I),1=1,HSB)
READ 10.,(BB(I),I=1,N53)
PRINT!10,(B3¢(1),1=1,NSB)
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READ 10, ¢(3DCI1),I=1,N53)

PRINT!10,(3DCI),I=1,N53)

READ 10, (BKG(1),1=1,NSB)

PRINTI0,(3KG(1),I=1,N88)

READ 10,(ARACI),1=1,NS3)

PRINTIO0, (ARACIY,I=1,NSB)

READ 10, (ANG(1),1=1,NS3)

PRINTI10, (ANG(I),1=1,NSB)

IFCISTR.EQ.1) READ 6,(SIG(1),1=1,NSB)

IF(ISTS.EQ.1) PRINT6, (SI1GCIY,I=1,NSB)

IF (IRNG.ZQ.0)G2 TO &0
**************&***************************************
* |F RIM IS PRESZNT, READ THE RIMMNATERIAL PRYPER- x
* TIES, DIMENSIONS, AND ELASTIC PRGPERTIES %
******************************************************
READ 6,ER,RZR,PRR

PRINT6,ER.ROR,PRR

READ 10:3%1,3R%,RTI,RTO,RTE],RTED
PRINT10,R3RI,RRO,RTILRTC,RTE1,RTEQ
READ 10,E1,E2,R1Z2,RIX,RJ,RA
PRINTI10,Z!,E2,RIZ,RIX,RJ,RA . ,
T(NPD+1)>=RTI

T (NPD+2)=RTE

TE(NPD+1)=RTEI

TE(NPD+2 )=RTEZ"

R(NPD+])=RR1

R(NPD+2)=RR¢

CONTINUE

PI=3.14159265358979

CBNST=0.5/P1

S1=1./3.

52=l 0/60

S3=1e/7s

S4=1./9.

GO TG (95,€85,85,95),1¢PT

CENTINUE
***********************}******************************
* CALCULATE BLADE SU3SYSTEM ST IFFNESS AND MASS *
*  MATRICES AND STERE THEM %
¢ sk 3k 3% 5k ok 3 ok K 3K 3K ok sk 3k 3K o s sk i ok sk S % sk ok ok sk ok ok ok sk 3K ke Sk 3K 3R 3R 5K K ok sk 0K R R ok ok o Sk ke sk kb ok

-

CALL BLADE(SK3,S8MN3,B%X,38,83D,ANG,S1G,ARALBKG,NBE, I3DE, M52)

GZ TC(95,90,95),108PT

CENTINUE

ok Sk 3k sk Sk ok ok 5% 3k 3k 3K N 3k 3K 3k sk 3k ok 3k ok 3k ok 3k 3¢k sk K K ok Kk Ok 2k ok ok a7 ok ok ok Ok ok ok ok ok ok of ok ok Kk ok ok ok %k kK
*  COMPUTE BLADE FREQUENCIES ACCORDINGTZ T H E BLADE x
*  GEMNERAL OPT 1 £NS *
ok 2k < ok Sk sk sk ofe d SR o S K oK A 3k ok i Sk ok 3k sk 2 3K e 3k 3K sk ok sk ok ok s ok 3k ok 3k ok ok ok ok 3 ok o koof ok ok ok ook Xk
IF(IRNG.NE.0)GE T2 102

| JK=1

M=0

IF(I3DE.NE.1) GC5 T8 94

D@ 91 I1=3,2%NS3

11=1-~2
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D2 91 J=3,2%*NSB
JJ= J-2 .
SK(11,dJd)=SK¥3(1,J)
91 SHM(II,JJ)=SM3(1,Jd)
N1=2%NSB-2
PRINT 1 ) .
CALL EIGVAL(SK,SM,D,F,FR,B,C,X,ERR,B7,B8,B9, IJK,NI,MS.1)
DE 92 I=2%N53+3,4%NSB
I11=1-2-2%NS3
DO 92 J=2%NS3+3, 4 *NSB
JJd=J~2-2%NS3 \
SKCII,JJd)=SKB(I,dJ) ’
92 SM(II1,JJd)=SM¥N3(1,Jd) .
PRINT 2
CALL EIGVAL(SK,SM,D,F,FR,B,C,X,E]R,B7,B8,39,1J,NI,M5D
D2 93 1=4%NS3+2,NT3
I1=1-1-4%NSB
DO 93 J=4*}153+2, NT3
JJd=J-1-4%NS3
SK(11,JdJ)=SKE3¢1,J)
93 SM(II,JdJY=SMB(I,J)
N1=NSB-1
PRINT 4
CALL EIGVAL(SK,SM,D,F,FR,B,C,X,ERR,B7,88,89, 1JK,NI,M51)
GO TG 15
94 IF(IBDE.NE.2)YGOTZ 97
N}M=NT3
DZ 195 I=N3E,1,~1
11=5%]
. CALL REDUCE(SK3,NM, I I, 1,MS2) ,
CALL REDUCE (SMB,NM,11,1,1452)
NM=KNM~- I
195 CZNT INUE
DO 96 I=5,4%*NSB3
11=1-4
DZ 96 J=5,4*NSB
JJd=d-4 /
SK(II,JJ)=SK3(I,dJ)
96 SM(I11,JJ)=SIB(1,J)
NI=4*NS3-4
PRINT 5
GO T¢ 99
9'7 CONTINUE
“30 981=6,NT3
I1=1-5
DO 98& J=6,NT3
JJ=J-5
SK(I11,JJd)=SK3(1,dJ)
‘98 SM(II1,JJ)=SM3(I,J)

Nl =NTB-5
PRINT 7 .

99 CALL EIGVAL(SK,SM,D,F,FR,B,C,¥X,ERR,B7,B&,B9,1JK,N1,HS1)
Ge Te 15
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CENTINUE

CK=2.0%PI»ED/ (1 .0-PRD*PRD)

CP=2.0%PI*3¢D*BNGA*IMGA ;
CT=2.0%PI+ED*ALD/ (! .0-PRD)

ok ok K ok Sk % ¥ o sk sk s ok ks ik ok ok ok sk o ok ok ok R 3k sk sl ok o o ok ske sk ok ok ok ok ok v s 3k ok i Dk 3 ke vl vk ok sk sk ok e
* CALCULATETHE INITIAL STRESSES INTHE DISC DUE TOx*
x  ROTATICN, TEMPERATURE GRADIENT, AND @THER BOUNDARY*
*  LEADINGS %
Sk 3K ok ok 2k ok sk ok < e %k k sk i 3k Sk 5k ok sk ok ok ok sk e ok vk sk ok ok ok ik ok ok sk sk ok Ak ok ok sk ok vk sk o ok ke K Sk oK ok ok ok ook
CALL INLSTR(SK,R,T,TE,W,P,SGR,SGT,NSD,MS1)
IFCIOPT.ZQ.4)GE T2 15

NT=NTD

IFCIZPT.EG.3) NT=NTD+NT3-5

STR=0 .5%(SGT (NPD=-1)+SGT (NPD))*RA

GETZ 105

CONTINUE

READ 10.,SR8

PRINT10,SRY . ,
STR=RER*RA*BMGA*ZNGA*(RRI+E] Y% (RRI+EI)+SRE* (RRI+E1)
NTD=2

-

NT=NTD+NTB-5 \

CONT INUE ,

1 JK=1

M=MDS-1

IF(IEPT.EQ.3) Z=NB

CONTINUE

sk 3 ok sk sk 3k sk sk o 3k 5k 3k 3k sk ok sk ok vk sk ok ok s ok ok ok sk sk ok R Sk ok ok 3K Sk 3k ok ok 3 3 3K 0K oK 3k vk 3K oK R kR sk ok kook
* SELECT NUMBEREF NGDAL DIAMETERS *
sic ok 3k ¥ sk sk 3k 555k ok ok ok ok ok ok sk ok s oK sk ok ok o ok ok sk sk ok 3k ok ok ok sfe sk ok 3k sk 3k Sk sk ok 3k K SR R OR ok KOR SOk Rk
M=M+ 1

PRINT 3,M

FAC=1.0

IF(M.EC.0) FAC=2.0

IF(I0PT.NE.2) CKD=FAC*PI*ED/ (! .0-PRD*PRD)>/12.0

IFCIGPT «NE.2) CHD=FAC*PI*R@D

IFCIRNG.EQ. 1 YCKR=FAC*PIx(RRI+EL)
IF(IRNG.EQ. 1 )CMR=FAC*PI*(RRI+E!)

IFCIEPT.NE.1) CC=Z4FAC/2.0 -

IFC(IGPT.NE.2) CCC=FAC*PI

AN=M

AM2=ArxnM

AM4L =AN2 *AN2

A6 =AM A*AV2

IFCIEPT . NE.2) ANPR=AM2*PRD

DG 110 1=1,NT

DO 110 J=1,LNT

SK(1,J)=0.0

St(1,d2=0.0

sk ok sk ok sk ok Sk s 3k sk sk Ok 3 Ok 3 ok ok 3K sk ok sk ok sk ok ok 3k sk sk sk ok K 3K sk ok ok sk ok ok ok ok vk 3k ok o ok ok ok o o Sk Ok 3K
% -CALCULATE DISC SUBSYS5TEM STIFFNESS AND MASS *
* MATRICES ANDSTEZRE THEMN *
******************************************************
CALL DISC(SK,sSMsR,T,SGR,SGT,NSD,MS1)
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3 3k ok ok 3k K o ok oK ok 3k ok ok ok 3k ok ok ok ok 5 ¥ ok ok K ok sk ok ok ok ok sk ok ok ok sk Sk ok vk Sk 3k sk ke sk ok ok skoko koK ke Skokok
/

* GET THESYSTEMSTIFFNESS AND MASS MATRICES FROM *
* THE SUBSYSTEMMATR ICES *
****#*************************************************

CALL SYSTEM (S¥,s51;SKB,SIMB,NTD,NTB.M51,M52)

,000

***************X*******x******************************

* APPLY B@UNDARYCONDIT IONS *

st ok sk sk sk oK oK ok ok Sk ok sk oK s SRR sk R R R R K T | g R R R Rk ok ke ok ke ok ok ok ok ok ok ok ok ok kR kR Kk Rk Rk ok ok
CALL REDUCE(SHK,NT,1,2,MMSD .
CALL REDUCE(SUM,NT.,1,2,M51)

NI=NT-2

***************#********“*****************************

* S@LVE THE CZIGEN VALUE PRZBLEM AND GET THE SYSTEM*
* FREQUENCIES
*************ﬂ******************xx******************x*

CALL EIGVAL(SK,SM,D,F,FR,B,C, X;E?‘?:B? B8,B9, IJK,NI,MS1,
IF(M.LT.NDYGE TY 100 :
G2 TO 15
‘200 CALL EXIT . - .
1 FORMAT(1HL1,5%, ' BLADE SENDING FRE EQUENCIESINI-MINDIRECTICN' //)
2 FGRMAT(1Hl, S?:, ‘'‘BLADE BENDING FREQUENCIES INI-MAXDIRECTIBN'//)
3 F@RMAT (///26HNUMBER OF NODAL DIAMETERS=,12///)
4 FORMAT (1 H1,5X, '"BLADE TCRTIENAL FREQGUENCIES'//)D
5 FERVMAT(I1H1,5%, 'TWISTED BLADE BENDING FREQUENCIES'//)
6 FERMAT (4F20.10)
7 FERIMAT (1 Hl 5¥%, ‘BLADE FREQUENCIES WITH INITIAL STRESSES'//>
10 FORVAT (BF 10 .79
11 FERMAT(/BE13.6)
12 FEGRMAT (! 615 9 N
END

N
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SUBRQUTINE BLADE(SKB,SMB,BX,BB.BD,ANG,S1G,ARA,BKG,NBE, IBDE,L)
e ok e ok ok ok oK oK ok oK o o oK ok ok 3 o oK sk ok oK oK ok sk oK oK oK ok oKl oK o 3K K oK o 3 ok ok i ok ok ok ok sk ok ok ok oK K ok K
* TH'S supreuTINE CALCULATES THE BLADE SUBSYSTEM *
* STIFFNESS MATRIX SKB(L,L) AND mMASS MATRI X SMB(L,L)x*
# TRANSVERSE SHEAR AND ROTARY | NERTIA ARE IGNZRED *
* ADDITIGNAL STIFFNESS DUE T@ |INTIAL STRESSES CAN *

% ALSO BE | NCLUDED *
sk sk o o4 ok oK ok ok ok oK koK oK o s Ik K oK oK sk ok o ok K o oK oK ok ok ok o ok ok sk ok Sk sk ok Sk o ok e ok ok ok ok ok ok ok K
DIMENSION SKB(L,LLY,SMB(LL,L),EK(IO,10),EM(10,10)

DIMENSION R(10,10),B(10,10),C(10,105,D(10,10)
DIMENSION BX(L),BB(L),BD(L),ANG(L),SIG(LY,ARA(L),BKG (L)
COMMBN/EPTIZN/18PT,IRNG, PTHD, ITED,ITHB. ISTB
C@MMBN/FOUR/PI1,ED,ER, EB,RED,ROR,ROB,ALD,ALR, PRD,PRR,sPRB
COMMEN/FIVE/SRI.,SRO,CMGA
“RX(I,AI)Y=ALFS*ALFA*XX(I+1,AI+1.0)+(ALFS*BETA+BETS*ALFA)x*
o XXCI1+2,A1+2 . 0)+BETS*BETA*XX(I+3,A1+3.0) _
SX(I1,A1)=RZB*ZNMGA*FMEA* (ALFA*XX(1+1,AI+1.0)+BETA*XX(I+2,A1+2.0))
XXCI,AL)=(BX2*%x]-BXl*x*xI)/Al
NTB=5%(NBE+1)
D2 10 1=1,NTB
DO 10 J=I ,NTB
SKB(1,dJ>»=0.0 :
10 StiB(1,J)=0.0 -
PRINT 1
K=0
20CENT INUE
Do 15 .1=1,10
DB 15 J=1,10
B(l,J)=0.0
EK(1,J)>=0.0
EM(1,J)2=0.0

IS R(1,J>=0.0
sk ok sk ok ok o 3k S sk ok oK ok sk ok 3k ok 3 ok ok ok sk ok ok ke ok ok ok ok sl ke sk ok o ok ok ok stk s 3Ok ok skl ok ok ok ok 3k K R koK

* SELECT THE NUMBER K 8F THE ELEMENT AND GET THE *
* VALUES @FSECTISN PRGPERTIES ©F THE BLADE AT *
% ENDS @F THE ELEMENT. *
sk sk sk ok ok 3 3k ok ok 3 %K kK % K % 3K 3k ok o sk ok 3k sk ok s ok ok ok ok ok 3k ok 3k ok 3k ok oo ok o o ok vk sl vk ok ok ol 3k ok ok K %k Kok
K=K+1

KPl =K+

BX1=BX(X)

BX2=BX(KP1)

PRINT 2,K,BX1,BX2

ARA1 =ARA (K).

ARA2 =ARA(KP!)

ANG 1 =ANG (¥)

ANG2=ANG(KP 1)

BA=0.5%(ANG 1 +ANG2)

SN=SIN(BA/18Q.0*P1)

CS=CBS(BA/180.0*P1)

’
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BMI1=33(K)

BMIZ2=33(KP1)

BMX1=BD (XD

BMX2=3D (KP! )

BJ1l=3KG(K)

BJ2=BKG (KP1)

EL=BY2-BX1

XK1=E3=x311 1 /EL/EL/EL

XK2=E3*3MI2/EL/EL/EL

YK =E£B*3MX1/EL/EL/EL

YKZ2=E3%BMNX2/EL/EL/EL )

ZK1=G3%3J1/2.0/EL :

ZK2=(GB*3J2/2.0/EL

XKMI=RE3xARAI *ZL/420.0

XM2=RELB=ARAS*EL/420 .0

ZM1 =R03%x(BMI1+3KYD)*EL/12.0

ZM2=RB3+ (3MI2+BMX2)Y*EL/12.0

******************************************************
CALCULATE THE RETATICN MATRIX R . X

*******?1’(****************.******************************

R(l,1)>=CS »

R(2,2)>=CS N

R(4,753=CS .

R(5,3)=CS

R(6,4)>=CS

R(7.,8>=CS

R(8,9>=CS

R(1,3)=SN

R(2,4)=SN

R(3,8)=5}N

R(4,9)=8N

R(3,1)>=-5N

R(6,2)=-3N

R(7,6)=-SN

R(8,7)=-SN

R€9,5)=1.0

R10,10)=1 .0

******************************************************

* CALCULATE THE ELEMENT ST | FFNESS MATR IX EX *

***************************?k**************************

EXC(1,1)=6.0%XKl+6.0%XK2

CER(I,2)=-2  0*%ELxXK] -4 JO*EL*XK2

EX(1,3)=-6.0%%XK]~6.0%3K2
EX(l,4)==4.0%EL*XK] -2 «Q*EL#XK2
EK(2,2)=EL*EL*XK1+3 +0xELAEL#XK2
EX(2,3)= 2 «O%EL*NK1+4 .0%EL%XK2
EK(2,4)=SL*EL*¥I(] +EL*EL*XK2
EK(3,3)=6.0%XK]+6.0%XK2 |
EK(3,4)= 4 .0%xEL*XK! +2 O*EL*XJ}?
EK(4,4)=30*EL*EL+XK] +EL*#EL%XK2
EK(5,5)=6.0%YKI] +6 . 0*YK2

LEs]
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EK(5,6)2=-2.0 xEL*YK 1 -4.0 *EL*YX2
EK(5,7)==-6.0%YKl-6.0%YK2

EK(5, 8)~—4 O*EL*YK! -2 .0*%EL*YK2
EK(6,6)=C *EL*Y} 1+30*%EL*EL%YK2
EK(6,7)= 2.0%xEL#YK] +4 0%EL*YK2
EK(6;8)=EL*EL*YKI+EL*EL*YK2
EKC(7,73=6.0%YKI +6.0%YK2

EK(7,8)= 4 0%EL*YH]I+20%ZL*xYK2

EX(8,8)=3.0%ZL*EL+YK] +EL*EL*YK2

EXC 9, 9)=ZKI+ZK2

EX(9,10)=-ZK! ~-ZK2

EK(10, 13>=ZK1+ZX2 '

ke ok ok o o ko ok SR 3K ok K K 3K ok sk ok oK ok ok ok ok Sk ok ok sk ok ok 3k ok sk sk oK 3K oK sk ok ok oK ok ok ok ok ok ok ok o ok ok ok ok Ok
* ‘CALCULATE THE ELEMENT MASS MATRIX EM *
oK ok ok ok oK ok sk ok ok ok ok Ok R ok ok ok sk sk sk ok ok i ok oj R Ok 9 ok 3k ok 3k ok sk ok 3Kk ok Sk ok Ok 3k sk ok ok of ok ok

" EMCls 1 D=36.0%XM1+120.0%XM2 -

30

EM(l,2)=~70%EL%YM1~-15.0%EL*XM2
EMC(I,30=270%XMl1 +27 0 %XM2

EM(l,4)= 60*%EL%XM1+7.0%ELxXM2
EM(2,2)=1.5%EL*EL*XM1+2 «S*EL*EL*XM2
EM(2,3)==7.0%EL*%XM] -6 .0*EL%xXM2
EM(2,4 >=-1 +S*HEL*EL%XM!1 -1 « S*¥EL*EL*XI2
EM(3,3)3120.0%XM1 +36.0%XNM2"

EM(R,4%= 15 0*%EL*¥M1+7 O%EL%XM2

"EMC(4,4)=2.5xEL*EL#XM] +] « S*¥ELXEL*XN2

EM(5,5)=36.0%XM1+120.0%XM2
EM(S,6)==7 . O*%TL%AXM1 ~15.0%EL%XM2 '
EM(5,7)=27 05X +27 « O%X1i2

EM(5,8)= 6+ OXEL*XM1 +7 « D *EL%XM2

“EM(6,6)=1.5%EL#ZL%XM1+2 « SHEL*EL*XM2

EVi(6,7)=~T7TO*%xEL#XWT] =6 s OxZLxM2 . ; -
EM(6,8)=~15%EL*EL%xXM1~] . 5%EL*EL%XM2
EM(T7,7)=120.0%XMN1+36+.0xXM2

EM(7,8)= 15.0%EL%XM]1+7.0xEL*XM2 :
EM(8,8)=2.5%EL*EL%XMl +] « SZL*EL#XM2

EM(9,9)=3.0%Z11 i-2?12

EM(9, 1 0)=2M1+2M2

Et1(10,10)=2MM1+3.0%ZMN2

DG 30 I=1.,6

I11=1+1

DO 30 J=11.,10

EXC(J, 1 X=EKCI], J)

ZICd, 1H=EHC1, J)

R FEF ST ES TR EE LSS EEEEFIEEEL LRSI FESSET TS FEE T TS F
¥ STZRE THE ELEMENT MATRICES INTZ THE 3LADE SYSTEM x*
. MATRICES IN THZ APPREPRIATE POSITIZNS ACCERDING TO*
* THE 3LADE. GZWERAL €PTIZN *
sk ke ok ok o ok ok ok ok ok ok ok ok ok K 8 ¥ ok o ok ok ok ok ok 3 o ok ok sk i A e o ok ok ok ok ok ok ok ok oK 3K 3k 3k ok o ok 3K ok e oF ok
IFCIBDE.NEW1 ) GE TE 32

KK=2* (-1 ‘

CALL ASt JLL(SKB)EK)K}()}(1<)1)4)10 L)

CALL ASHULE(SVI3LEMLKKLKK,1,4,10,L)

KK=2% (MN3E+1)+2%x (K=1)

CALL ASHMBLE(SKBL,EK,KK,KK,5,8,10,L)»

CALL ASNBLE(SMB;EH;KK;KK;S;S;IO;L)
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KK=4%(NBE+1)+17- 1
CALL ASVBLE(SKB,EK,KK,XK,9,10,10,L)
CALL ASMSLE(SN3,EM,KK,KK, 9, 10, 10,1 -
IFC(K.LT.N3EYGOB TG 20 :
RETURN L
2 C@NTINUE
CALL TRINMUL(R,E¥K,C,D,10,10,10,10:10)
CALL TRIMULC(R,ENM,C,D,10, 10, 10,1010
IF(ISTB.EQ.0) GO TO 50
35 3 ok 3k vk ok 3k 3K sk ok ok kK 3 ok ke 3k 3k sk sk ke o sk s i A ok sk ok S K ok sk sk ok ok >k ok sk sk ok sk ok ke skook ok 3R sk ok sk ok kook
* CALCULATE THE®3 MATR IX *
sk e 3k e 3k ok ook oK oK ok 3k sk R K oF 5 ok 3 3k ok sk ok sk sk ok ok sk ok s ok ke ok sk ok sk sk ok ok ok ok ok sk ok ok ok ok ok K oK K K K
Bel,1)=1.0
B(l.,2)=8X1
BC(l,3)=3%X1%3X1
B(l,4)=3X1%*BX1%B8X]
8(2)? )-'-"'1 .0
B(2,3)=-2.0x%3X1 I ,
B(2,4)=-3.0%B¥1xBXI
B(6,1)>=1 .0 ,
B(6,2)=8BX2 _ 3
B(6,3)=BX2%3X2
B(6,4)=BX2%BK2%BX2
3(7)2>=-1 .0
B(7,3)==2,0%3%X2
B(7,4)==3.0%xBX2*BX2
B(5,9)=] .0 »
B(5,10)=3X1
B(10,9)=1.0
BC10,10)=BX2
D@ 25 1=1,2
DEZ 25 J=1.,4
B(I+2.,d+4)=8B1,J)
B(I+7,Jd+4)=8(1+5,4J)
CALL INVT(B,10,10)
sk >k ok 3k sk Sk ok o b S ok sk s sk st sk vk sk ok vk ok sk Sk vk ok R ok sk Sk 3k Sk st ok oK sk ok oKk sk ok S ok Sk ok sk sk R o ok R sk 3k
* CALCULATE ADDITIZNAL STIFFNESS VALUES IF INITIAL *
*  STRYESSES ARE PRESENT *
Sk ok 3K 3 3k ok 3k ok ok k3K ok ok Sk sk ok i Sk sk ok 3 3k sk S i ok ok ok 3R ok oK Sk ok 3k ok sk ok ok ok ok sk sk ko sk sk ko sk ok R skok ok
SIGI=SIG(X)
SIG2=5IG(KP1)
ALFS=(3%2xS51G1-3X1%SIG2)/EL
BETS=(S51G2-S1G1 >/EL
ALFA=(3Y2%ARA1 ~-BX 1 #ARA2 >/EL
BETA=(ARA2-ARAD) /EL
ALIU=(3¥2%BMI1-3XI*311I12)/5L
BETU=(B3M12-31MI1>/EL
ALIWV=(3X248BMX1-3BX1%3MX2 >/EL
BETV=(3MX2-BlMX1) /EL
D2 35 I=1,10
D¢ 35 J=1.,10
R(I,JY=0.0
R€1,1)=-5X¢0,0.0)
R(1,2)=-5X(1,1.0)
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R(1,3)==5X(2,2.0)
R(l;4)=-5.\’<3;3.0)
R(2,2)=R%X(0,0.0)-5%(¢2,2.0)
R(2,3)=2.0%RX(1,1-0)-5X%X(3,3.0)
R(2,4)3=3.0%R1(2,2.0)-5X(4,4.0)
R(3,32=4.043X(2,2.0)-SXC4,4.0)
R(3,4)=6.0%0X(3,3.0)-5X(5,5.0)
RC4,4)=9.0#R%(4,4.0)-5SX(6,6.0)
R(6,6)Y=3X(0,0.0)
R(6,7)=2.04R%¢1,1+:0)
R(6,8)=3.0xRX(2,2.0)
R(7,7)=4.0%R%X(2,2.0)
R(7,8)=6.0%23(3,3.0)
R(E,8)=9.0%RX(4,4.0)
RC 9,9)=-RC3*CMGA*EGA*CES (2. 0*3A>*<&ALFU+ALFU>*7X<1,1.o>+b TW+
SBETUY*XX(2,2.0))
R(9,10)=-REB*CMGA*GMGAXCBS (2. O*BA)*((ALFW+ALFU)*VX(2 2. 0>+ ETW+
eBETU)Y*XX(3,3.0))
R(10,10)=-REB*CMGA*ZMGA*CBS (2. *BA)*((ALF7+ALTU)*XX(3 3.0)+3ETYW
eBETU)I*XX(4,440))
.ALFS*ALFJ*KY(I,I.0)+(ALFS*BETJ+BETS*ALFJ)*YX(2 2.0)
e+ (BETS*3ETJ)*XX(3,3.0)
DO 40 I=1,9
II=1+1
D¢ 40 J=11,10
40 R(J,ID=R(1,dD
CALL TRIMUL(B,R,CsD,10,10,10,10,10)
D@ 45 1=1,10
DO ‘45 J=1,10
45 EKCI,J)=EKCILJII+RCILJID
50 KK=5%(X-1)
CALL ASMBLE(SK3LEK,KK,KK,1,10,10,L)
CALL ASM3LE(SHBLEM,MIGLKK, 1, 10,10,L)
IF(K.LT.N3E) G@ T& 20
RETURN
FERMAT(1K1,//5¥, "BLADE DIMENSIZNS'//)
FCRUAT(5X,15,8F8.3/)
FZRMAT(SS13.5)
END

W N s
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SUBREUTINE DISC(SK,SMLR,T,SRR,STTLNS,L)

sk o i ok ok ok o ok 3 o sk ok sk ok ke s ok ok Sk ok ok ok Sk oK ok sk ok ok sk sk ok sk ok s KOk ok ok kK o 3k % sk ok ok ok ok oKk ok o
* TH' S susxcUTINE CALCULATES THE ELEMENT STl FFNESS =
* AND ASS MATRICES AND SsTegreES THE VALUES 1NT@ THE =*
x DI SC SU3SYSTEM MATRICES SKC(L,LYAND SML,L) *
¥ THE ADDITIZNAL STI FFNESS C@EFFICIANTS DUE TO *
= |NITIAL STRESSES SRR(L)Y AND STT(L)Y ARE ALSO E:
*  CALCULATED anp ADDED TO THE RENDI NG STI FFNESS. *
¥ SHEAR DEFSRMATIZNS AND ROTARY |INERTIA ARE IGNZRED.x
* VWH LE ENTERING THE SUBRGUTINE ZERZ ALL THE TERNS =
* BF THE MATRICES SK AND si. I NIl TI ALI SE ALL THE *
* TERMS @F THE RADIUS aND TH CKNESS VECTZRS R AND T.*
ke sk ok 3k 3K Ok ok ok sk 3 ok ok s ok sk ok 3k ok ok ok ok sk ok ok K ok ok ok ok of sk ok ok oK ok ok Sk ok ok ok kK ok sk ok Sk sk oK ok ok oK ok
DIMENSICN SKC(LLLY,SMC(LLL)LR(LY,TC(L)

DIMENSIGN SRRCLILSTT(LYSESCa,4) ) _
DIMENSICN EXCALA4YL,EVMCL,4),BUL,4),0C4,4),DC4,4)
COMMEN/GPTICN/IZPT,IRNG, ITHD, ITED, ITHB, ISTB
CeMMEN/BNEZAN, P2, P ,P3 N
CGMMGN/TWG/SI;SE;SS;SQ,CKD,CKR,CMD;CMR;CC,CCC;CK;CPJCT
C@MM@N/FZUR/PI;ED;ER;EB;R@D;R@R,RGB;ALD,ALR;PRD;PRR,PRB
K=0 ‘
N=NS§-1

PrR=PRD

CEBNTINUE

3k 3K sk 3K 3k 3% sk ok 3 ok 3K 3k 3k oK 3k K ok K oK i 3K ok ok sk Siofe ok sfe ok ok ke s ok 3k sk Sk ok sk o ok 4 ok ok ok ok ok 3k sk ok ok Kok 3k
* SELECT THE NUMBER K OF THE ELEMENT *
sk 3k ok sk 5k 3k 3% ok % ok ok %K K Kk 3K 3k sk ok sk 3 ok Sk sk sk ok 3 ok ok 5k ok ok ok ok ok ok ok ok 3¢ 5K 3k ok ok 3k ok ok sk sk ko kK
K=K+1

Kl=2%K-1 .

K2=2 %K

5 35 ok 2K ok 3k 3k 3k 3k 3K ok 5k ik oK 3k sk ok 3K ok o S ok ok o i sk o ok ok ok S ok ke s sk ok ok ok Sk sk o oK Sk 3k oK ok ok sk oK ok ok ok i ok
* CET THE VALUES gr RADIUS aAnD TH CKNESS AT N@DES *
sk 2k vk 2 ok 2 3k ok ok 2k 3k ok % sk ok 3K ok ok 3k sk sk sk SRk oF ok sk stk sk ok sk ol s ok i sk o ok 3k ok ok 3k ok ok ok o8 ok e ok kK
RiI=R(K1)

R2=R(¥K2)

TI=T(KI1)

T2=T (K2)

DO 40 I=1.,4

D2 40 J=1.,4

B(Il,J)=0.0

EX(I,dJ)=0.0

Ercl,Jd>»=0.0

DD=R2-R1

D1=DD*DD

D2=D1*DD

"ALFA=(R2%*T1-R1*T2)/DD

BETA=(T2-T1)>/DD

X1 =ALFA*ALFAX*ALFA*C¥D
X2=ALFA*ALFA*BETA*CKD
X3=ALFA*3ETA*BETA*xCKD
X4=BETA*BETA*BETA*CKD

o>
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sk sk k sk 3k ok 3k oK 3K oK oK oK 3 ok sk oK 2K oK K oK K % ok sk ke sk ok ok ok 3k ke ok 3 oK o sk ki s ok K ROk ok oK ok ok ok ok
* CALCULATE THE 'B' MATRIX *
ke sk sk sk ok K ok ok ok 3k sk oK 5K oK oK 3K oK 3K oK oK ¥ ok 3 3 3K 3 3k 3k ok 3k 3k sk e ok ke 3k ok ook ok 3k ok sk ke ok ok sk ok ok o oK 3k ok Xk
B(ls1)=R2xR2%(R2-3.%R1)/D2 )
B(1,3)=RI1*R1%(3.%R2=R1)Y/D2

B(1,2)= RI*R2x%R2/DI

BCl,4)= Ri xR1%R2/DI

B(2,1)=6.%31%R2/D2

B(2,3)=-B(2.,1) '

B(2,2)==-R2%(2.0x%R1+R2)/D1

B(2,4)==-R1*(R1+2.0%¥R2)/Dl

B¢3,1)=-3.%x(R1+R2)/D2

B(3,3y==-B(3.,1)

B(3:2)= (RI+2.%xR2)/D)

B(3,4)= (2.%R1+4R2)/DI

BC4,13)=2./D2

B(4,3)y==-B4,1) . S
B(4,2)==-1.0/D1 N
B(4,4)=B(4.,2)

Al =R1%R2

AZ=Al *Al

A3=R2-R1

A4 =R2 *a2 -R1xx2
AS=R2%%3 -2 1%%x3
A6=RE %*4 -] %4
A7=R2*%5-R| %x*5

AE=R2 *%6-R | xx6
AQ9=R2x%xT7 -1 *xx%x7
AlO=R2*%x&-R1*%xx%x8

Al 1=R2%%x9-R1*%xx%0
Al2=R2%*]10~-R1*%%10 .

C5=ALOG (R2/R1) -

El=X1%.5%A4/A2+X2%3 « *xA3 /A1 +X3*3 *xCS5+X4*A3
E2=X1*%A3/A] +X2%3 « *C5+X3*3 « *AJ+M¥ 4%« S*A4Y
E3=X1%C5+22%x3+*%A3+X3%1 .5*A4+X4%x5]*%A5

E4=X1 %A3+X2 %] .5*%A4+X3*xA5+X4%.25%46

ES=X] #e 5#AL+X2HAS+ X3 % s TEXAE+KA% « 2%AT

E6=X1 *¥S ] HAS+X2 %, T5F¥A6+XI %k 6FAT +XU4 %S 2%AH
E7=X]1%e25%A64+X2% e 6kAT+X3% « 5xAB+X4 %53 *A9

sk ok 3k sk sk 3K ok oK 3k oK sk 3k 3Kk ok KK K sk ok R oK sk ok ok ok of sk ok sk ok sk ok ok sk ok ok sk skofk ok ok ok ol o ok sk ok kR K
% CALCULATE THE *'SHMALLK* MATRIX %
she sk 3k >k 3% 3k 3 3§ 3K ok 3k sk sk sk s sk oK o K K S sk sk sk e sk ok ok 3k sk ok 3k ok ok ok ok ok Sk ok k ok ok %k sk ok ok ok ok ok ok ok Rk
EXCLL1I)=El%(Pl+2.%P2-2..%P3)

EK(¢]l,2)=E2%(P1-P2)

EK(2,1)=EKC(1,2)

EX(1,3)=E3%(Pl-4.%P2)

EKC(1,4)=E4% (Pl ~T.%P2~-2.%P3)

EXC4,1)=ZKC1,4)

EX(2:2)=E3%(P1~2.%P2+].)
EK(2,3)=E4%(P1~3¢%P2-2.%P3+2.%PR+2.)

EK(3,2)=EK(2,3)

EKC(2,4)=E5% (Pl -4 .%P2+3.~6.%P3+6.%PR)

EXKC4,2)=EK(2,4)

EK(3,3)=ES*(P1=2.*%P2+8.-6+%P3+8.%PR)

.« <r
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EX(3,4)=L6%(P1-P2+]8.-12.%P3+18.%PR)
EK(4:3)=EX(3.,4)
EXC(4,4)=ET%{P1+2.%P2+45.-20.%P3+36.%PR)
CA=(R2*#5]R (K Y-RI*SRR(K2))/DD
DA=(SRR(K2)~SRR(K1>)>/DD
EE=(RZHSTTU(KIY»=-RI*STT(K2)>)>/DD
FF=(STT(X2)-STT(K1))/DD
X1=CCC+ALFAXEE*P2

HK2=CCCxP2x (ALFA*FF+BETA*EE)
X3=CCC+BETA*FF %P2

El =X1%C5+X2*A3+0.5%X3*%A4

E2=X1 *A3+0.5%xX2*A4+51 %xX3%*A5
E3=0.5%X1 %84+5 ] *X2*%A5+0.25%xX3*A6
E4=5S]1%X]1 %A5+0.25%X2%A6+0 «2%X3*AT
ES=0.,25%X] %A56+0 .2%X24%AT+S2*%x X3 %A8
E6=02%X]*AT7+5S2%X2*xA8+53*xX3*AT
E7=82%X] xAB+53%X2%A9+0.125%X3*Al10
X1=CCCxALFA*CA
X2=CCC#(ALFA*DA+3ETA*CA)
X3=CCC*BETA*DA s
Fl=0e5%X]%A4+S 1 %X2%A5+0.25%X3*A6
F2=S1%X1%A5+4025%X2*%A6+0 2%NX3*A7
F3=0.25%XI*xA6+0.2%X2xAT+S2%X3*A8
FA=0.2%X]1 %AT7+52 *X2*xA8+5 3% X3 *A9

F5=82#%X] xAB+S3%X2%A0+0 1 25%X3%xA10 .

sk k3 ok ok 3k oK 3K sk ok ke 8ok o sk sk oK i sk ok sk oK K ok s sk sk sk o sk sk ok sk sk ok ok sk ok sk sk sk sk K 3k % ok ok ok ok ok ok
% CALCULATE ADDITIONALSTIFFNESSFSR INITIAL STRESS %
Sk sk s o o7 ok sk ok sk 3k o ok Sk 3k sk sk ok sk sk ok sk ok Sk SOk 3k sk sk K ok st ok 3K ok Sk sk sk ok 3 ok oK o 3K 3k ok K K 3k ok ok ok ok
ES(C1,1)=E1l

ES(1.,2)=E

ES(1,3)=E3

ES5Cl,4)=E4

ES5(2,2)=E3+F1

ES(2,3)=E4+2 0xF2

ES(2,4)=E5+3.0%F3

ES5(3,3)=E5+4,0%F3

ES(3,4)=E6+6.0%F4

ES(4,4)=E7+9.0%F5

ES(3,1)=E5(1,3)

ES(3,2)=E5(2,3)

ESCa,1)=ES(1.,4)

ES(Q:Z)ZES(E)Q)

ES(4,3)=E5(3.,4)

D@ 45 1=1,4

D@ 45 J=1.,4

EKCILJI)=ERK(I,JY+ES(1,J)

ALFA=ALFAxCNMD N
BETA=3LTA%CMD

% ok o ok ok o ke ok ok Ok oF ok oK ok k ok sk S ok o ot ok ok ko ok ok ok K 3K ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok oK K K K
* CALCULATE THE'SNHNALLM'MATRIX *
o 3k sk vk ok ok ke ok sk ok ok ok ok Sk ok ok oK 3k K ok sk ok i 3Ok S sk 3k o 3k ok ok sk ok 3k ok sk ok sk ok ok 3k ok ok ok ok ok %k ok ok 3k %k 3k %
EMNCL,1)=ALFA%.5%A4+BETA*S 1 *AD

EMC1,2)=ALFA%XS] *AS5+BETA*.25*A6
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EM(1,3)=ALFA*.253A6+BETA* .2 %A7
EMC(l,4)=ALFA*.2%AT7+BETAXS2%*A8
EM(2,1)=51(1,2)

EM(2,3)=EMC1.,4)
EM(2,4)=ALFA*S2*AE+BETA*S3%A0
EM(3,13=EMC1,3)

EM(3,2)=EM(2,3)

EM(:BJS)-’-E”(QJLI)
EM(3,4)=ALFA*S3*A9+BETA%.125%A10
EMC4, 1)=EMNUL,4)

EMC4,23=EM(2,4)

EMC4,3)=EM(3,4)

EMC4,4)=ALFA%« 125%A10+BETA%S4%A1 ]
******************************************************
* CALCULATE THE STIFFNESS AND MASS MATRICES *
******************************************'************
CALL TRIMUL(B)E {:C)D)LIJA)AJAJA) -

CALL TRIMUL(BLEM,;C,Ds4,4,4,4,4)

KK=2% (¥X~1)

B

'*****************************'*************************

* PUT THE ELEMENT MATRICES INT® SUBSYSTEM MATRICES *
e 3 3fe sk ok 2k sk ok ok sk ok o ok ok ok ek sk Sk sk skl ok sk ok ok ok e ok ok ok K 3k 3K K oK ok 3 oK ok 3 3 of sk 3k ok 3k ok %k
CALL ASVMBLE(SK,EK,KKLKK,1,4,4,L)

CALL ASUVBLE(SM,EM,KK, KK, 1,4,4,L) : ,

e ek e o ok ok sk R sk ok ook 3k sk Kk Sk ok Sk ok ok Sk s oy sk ok Sk sk ok 3k ok sk 3 ok sk sk K oK ok ok sk ok ok ok ok 3k ok kokok
* GO BACH AND REPEAT CALCULATIGNS FGR @OTHER ELEMENTS*
3 24 2K ok ok 3 ok ok ok ok sk e ook ok ok sk ok ok 3Rk ok ok ok ok ok R oK 3k ok sk K 3K ok S ok ok 3k 3K ok sk ok Ok ok sk ok ok ok ok
IF(K-N>30,50,50
CONTINUE

RETURN

END

AR+
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SUBROUTINE SYSTENM(SK,SM,SKB,SMB,L,NTD,NTB,L,LL)

3 34 3k 34 3 ok ok ok ok ok ok 3 3k ok e ok ok Sk ok ok o ok S o ok sk o 5K ok ok ok ak ok ke ok ok 3k ok ok Kk ok ok ok ok 3k 2k K K K K ok kK
%* T H | S SU3RCUT INE ASSENBLES THE STIFFNESS AND MASS * -
* MATRRICES €F THE THREZ SU3 SYSTEMS INT@ THE SYSTEM x
*  MATRICES « THE MATRICES RX(2,2)ANDRM(2,2)8F THE*

* RIMSUBSYSTEMARE CALCULATED BEFZRE ASSEMBLING. *
% THE DISC SUBSYSTEMMATRICES SK(L,L> A N D Sri(L,L) %
* ARETHEWMSELF USED AS SYSTEMMATRICES. <%
* BEFORE ENTERING THE SUBRCUTINE INITIALISE ALL THE x*:

* TERMSOGF T H E SUBSYSTEN MATRICES SK,SMsSKB,AND SKB.x*
S ok sk Sk S ok ok 3 i Sk 3K K K ok R 5K 3K 3 3k ok A ok sk ok ok 3 22 3k 3K 0k 3 3K K ok 3k ok vk vk vk ok ke kK ok v o ok O ok ok K K K 3k
DIMENSIOH SK(L,LY,SMCL,LY,SKB(LL,LL),SMBC(LL,LL)

DIMZNSION DXC10,10),DMC10,10),T(10,10),CC10,102,DC10,10)
DIMENSICN R}((2;2)aRM(2;2);CR(Z;E);DR(Z;Q);TT (2:2)
COMMON/EPTIBN/I0PT,IRNG, ITHD, ITED, ITHB,1STB
CONMMEN/ZHNE/ZAMS AVS 5 AMA » ANMPR
CeMMBN/TVD/S1,52,53,54,CKD,CKR,CHMD,CMR,CC,CCCLCKX,CPLCT
COMMON/THRE/RDILRADOB,L,RRILRRES,ATILRTC,E1L,E2,R1Z,RIX,2JsRALSTR
CZMMBN/FQUR/P1, ED, ER,EB,RED,ROR,RE3,ALD,ALR,PRD,PRR,PREB
IF(IZPT.EQ.1) GO TO 35 *

RR=RRO

IFC(IRNG.EQ.0) RR=RDO

DO 101=1,10

DZ 10 J=1,10

DKCI,J)=SKB(1,dJ)
DMCI,JY=SMB(I,Jd) S
TCI,J)Y=0.0

sk sk sk o sk ok i sk ok 3iosk vk ak sk sk i Sk e sk 3 ok sk ok sk ok 3K 3k o 3 ok ok ok 3 o1 ok 98 sk 3k 3k 3K oK ke 3k ok o ok ok ok sk ok ok k%K ok

- %

* APPLY THE CZNSTRAINT CZNDITIENS TO THE BLADE *
% SUBSYSTEM MATRICES. 1 *
3k 3% ok sk i o ok ok s ok ok ok ok S ok ok 3k ke >k ofe ok 3k s ke o st ok ok sk ke ok ok ok ok sk ok ok ok 3k e 3K ok ok oK v ok ok ok ok ok ok K
T(3,1>=1.0 ]

T(3,2)=-E1-E2

TC4,25=1.0

T(5,1)>=-AtN/RR

T(5,2)=AN/RR*(E1+E2)

T(7,43=1.0

T(E553=1.0

T(9,6>=}1.0

T(10,7>=1.0

CALL TRII’.UL(T;DK;CJDJIO)?)10) 10, 10>
CALL TRIMUL(T,DI,C,D,»10,7,10,10,100
DB 15 1=1,10 .
DE 15 J=1,10

C(I,J)=SK3(1,dJ)

DC I, J>=5113(1,d)

DO 20 I= 1,7
II=1+3
D2 20 J=1,7
JJ=J+3

SKB(II1,JJd)=DK(I,dJ)

20 SM3(II,dJdJI)=Dl(I,J)




OO0

Qo

Qo0

30

. ' 339

4 ok ok ok R N Ak sk ok ok ok ok ok 3k 3Kk sk ok ok ok ke Sk K sk sk ok ok ok sk o ok o 3k ok ok 3k ok ok 3k 3k ok ok ok 5K ok ok ¢ ok sk sk ok ok
* ASSENM3LE THE DISC AND BLADE MATRICES INT@ THE *
* SYSTEM MATR ICES . *
3 3k ok 3k v ok ok ok ok 3k sk sk ook ok ks sk ok sk ok ok 3k sk ok sk sk sk sk ok ok 3k 3k e ok o ok sk sk sk ok sk ok ok K >k ok ok o sk oK ok ok
DB 30 I=4,NTB

II1=1+NTD-5

D5 30 J=4,NTB

JJ= J+NTD-5

SKCII,JdJI=SK(II,Jd)+CC*SKB(I,J)
SMCII,JJI=SM(II,JJI)+CC*SHBCI,J)

D& 351=1, 10

DO 35 J=1,10

SKB(1,J)=C(1,d) ,

SMB(1,J)=D(1,dJ)

35 CONT INUE

IF(IRNG.EQ.0)G2 TO 50

3k 3k 3ok 3fe ok 3 ok sk ok ok sk ok ok ok ok ok ok Sk 3K ok sk ok sk ok o o of ok ok ok ok oF ok ok 3k 3k oK 3k 35 K K 3k ok ok ok ok ok
* CALCULATE THE RIM MATRICES %k
e 3 3k e ke 3ok ok ok ok ke ke ok ok 3k ok 3k sk sk K 3K ok 5K ok ok ok sk sk ok ok oK Dk ok K oK ok 3k 3k 3k 3R 3k sk o o ok 3 3k ok ok ok ok ok

Al=l «0/(RRI+ELD 3

A2=A1%A1"
A3 =A2 %A1 )

A4=A3%A]

AR=0.5%(RRE-RRII*(RTG+RTI)
GR=0.5%ER/ (! .0+PRR)

RK(1,1)=CKR*(ER*RIZ+GR*RJ/AM2 ) *AMA*A4 +AM2*A2 xSTR*CKR

40
SO

RK(1,2)=CKR*(ER*RIZ+GR*RJ)*AM2*A3
RK(2,1)=RK(l.,2)

RK(2,2)=CKR*(ER*RIZ+AM2%GR*RJ) A2

RM(1,1)=CMR*RER*(RA+RIZ*AMZ2%xA2)

RM(1,2)=0.0

RM(2,1)=0.0

RM(2,2)=CHMR*RER. *(RIX+R1Z)

TTCl,1)=1.0

TT(1,2)=-E1

TT(2,1>=0.0 ;

TT(2,2)=1.0 ’

CALL TRIMUL(TT,RX,CR,DR,2,2,2,2,2)

CALL TRIMULC(TT,RMsCR,DR,2,2,2,2,2)

3K o ok ok o 3k 3k SR K ok Sk 3K sk ok ok stk of 3k 3k K K ok o ok S ok sk sk sk 3k K K 3k s sk ok ok 5 ok sk ok ok 3k sk sk sk ok sk ok ok ok
* ASSEMBLE THE R I M MATRICESINTZ2 THE SYSTEMMATRICESx
3 3 sk ok sk ok % s ok sk ok ok ok sk ok sk of ok 35 3k sk ok Sk oK ok sk o5 o 5k ok ok ok ok 3k ok sk ok 5K 3 3K 3 3k oK o ok ok 3k ok oK 5K 5K %k
DO 40 I=1,2

II=NTD-2+1

DG 40 J=1,2

JJ=NTD=-2+J

SKCIT,JJ)=SKCI1,JJ)+RKCI,J)
SMCII,JdJdI)=SMCI1,JJdY+RN(I,J) !

RETURN
FORMAT(5X,1I5,5E13.6/)
N D
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D.4.3 Subroutines used in PROGRAM-3

1

sk sk 5k 3 5k ok ok ok sk 3k 3K 356K ok ok sk K oK 3K 3K S ok ok 5 5k ak 3k ok sk sk 5k 3k K 3K ok ok 3k K 3 3K K 5K oK 3K ok ok % K 3k %k K kK

* : - . : *
* MAIN-3 <« MAINPROGRAM OF PROGRAM3 %
* *

Sk ok sk sk ok s ok ok ok Sk ok o sk sk ok ok ok ok ok ok sk ok sk sk sk sk ok s sk Kk ok o sk e sk sk sk sk ok o 3k 3k ok o ok sk ok ok ok sk ok
* THIS IS A GENERAL PREGRAMTE BE USED INTEHE *
* ANALYSIS CF ZLADED RZTERS. TRANSVERSEZ SHEAR AND
RECTARY INERT IA ARE INCLUDED3STH IN THE DISC AND *

*
* BLADES. 3PTICZNS FACILITATING THE USE OF THIS *
* PRECRAMFZR T HE VIBRATIGN ANALYS 1S OF EITHER THE *
* ENTIRE RCTER SYSTEMER | T S CYMPZNENT PARTS MAY 2E %
* SPECIFIES. VARIABLE DI MENSIZNS ARE USED REQUIRING %
*  THZ CHANGINGEZF THE DIMENSIECNS GHNLY | N THE MAIN %
*  PREGRAM AT ANY TIMEANDSPECIFYING THE ADDW.@”‘?IATE*

* VALUES SF MSIANDNMS2.
sk >k 2k 3k 24k ok ok ok o o 2% f 3 oK ok ok ok ok K ok ok Sk ok Sk K R or 3ok ok 3K 3R sk oK 3K oK Sk 3R Ok 3R K ok 3k ok KK 0k KOk

DIHMENSIEZN 5¥(49,49),5M49,49),5K3(¢(35,35),503(35,35)
DIMENSIEN RC49),TC49)Y, TEC49)Y,W(45),P(49) -~

DIMENSICN B32(49),ED(A%),3X(49),SIC(49),ANG(49),ARA(49),BKG (49)

DIMENSIEGN SGR(49),5GT (49)

DINMENSION DCAD,L9),F(L9,49),BC49),C(49),X049)
DINZISION ZRR(49),37C49),38049),39¢49),FR(20,10)
CeMMEN/EPTION/1CPTLIRNGL,ITHDLITED,I TH3, 1 STB
CeMMEN/BNE 7AMLATI2 , AM4, ALPR

CoMMEN/TYW2/51,52,53,54,CKD,CKR,CIMD,CMR, CC, CCC, C¥, C?, CT, CSD,CSR

COoOUNIN/THERE/ADI,ADE,RRILRRZLRTILRTELELILERZ,RIZLRIXLRJ

x

CeHMCl/FEUR/PLI,EDLER,E3L,RED,RUERL,RE3,ALD,ALR, PRD,PRR, PR3,

CEeNMEN/FIVZ/53RIL5R0,2H0A
COMNCN/S I X/CEHST LM, NF
EQU IVALZNCE (S¥LF)

MS1=49

MS2=35

CCHTINVE

Sk 3k 3k o ok ok sk ok sk ok sk S sk Sk sk 3k 3k 5K %k 5k sk ok ok ot ok o oK ok ok oK oK ok 3k ok 3k 3k K 3k 5K ok ok ok ok 3k ok o ok ok ok %k ok K %k kK
* READ GENERAL ZPTICGN, RIMEPTIGCH, AND NULBERCQCF *
*  FRERUENICIZS RTNY IRED FEREACH DIAMETRAL NEDE. %

***$*****************»********************************
READ 12, 1G6PT,IRIIGLNF '
PRINT 12, IGPT;IRuu,NF




aaQ

acaQaQo

(@]

OO OO0 (@]

(@]

20

21

49
50

) . . - 341

ke ok ok ok sk ok 3k 3k ok ok K S5 o K stk K ok Sk ok S f o e ok O koK o ok ok o ok ok ok 3k ok ok o ok f ok ke ok ok ok ok ok koK sk
* READ SPEED £F RZTATISN €F THE R3TZR IN RAD./SEC. %

© ok ok %k %k ok ok ok oK ok ok 2 K Sk ok ok ok ok % ok ok oK ok o 3k ok ok Sk K sk 3k k K % ok K ok k ok ok ok ok oK 3o ok 3 o R Sk e Sk ok sk k

READ 6, 0NGA _ s
PRINTS.,EMGA A

GO T2(20,50,20,21),18PT :

sk sk ok i sk ok o sk sk oKk 3K ok sk o sk ok sf ok b 3k ok 3k o ok sk ok ok Sk ok Sk 3K sk ok Sk 3K K vk ok o of ok sk ok K ok 3k ok kR 5k Xk kX
% READ FINAL AND STARTING VALUES- 0F NZDAL DIAMETERS *

.**»%*******n**********$+****************************¥$‘

READ 12,MND,1DS .

PRINTI12,ND,NMDS )
**xax****x***r*******wx**x**x**************x******xx**
* READ NUMBER @F DISC ELEMENTS., DISC @PRPTIZNS, DISC *
x MATERIAL PRZPERTIES AND BEZUNDARY LEOADING. *
******x****«x***X*****XX*****XX#**********************
READ 12,0NDELITED :

PRINTI2,NDELITED .

READ 6,ED,RED,PRD,ALD,SCD
READ 10,SR1,5R¢ : . ‘ ) R - : .
PRINTIO,SRILSRY

NSD=NDE+] _ _

NPD=2*MNDZ . .

NTD=4*1SD ' - -

IFCIRNGNE<0) WTD=4%(NSD+1)

ke ok 3 ok 5 kK ot o ok 3K sk ok sk sk oKk ok ok 5K 3K 3k sk oK ok oK oK K ok sk 3 o sk sk ok ok sk ok ok ok sk ok ko ok ok 3k oK K oK Sk ok K
% REZAD DISC DIMEINSICNS . *
e 3k sk o sk sk ok sk oK SK 3k ok o 3K ok 35 s 3K 3K K 3K sk o ok 38 3k ok 3K 3k ok sk 3k OK sk ok ok 3K 3k ok ok 3 3K ok o ok oK ok o o ok ok ok ok
READ 10,(R(I),I=1,NPD) :
PRINTIO,(R(1),1=1,NPD)

READ 10,(T(I1),1=1,NPD)>

PRINTIOL(T(1),1=1,NPD)

RDI=R((1) ‘

RDO=R(NPD)

IF(CITZD.EQ.0) G@ TE 49

K % o 3. sk 3k K ok ok s 5k 3 34 o5 o ok >k ok 3k 3k 3K 5K ok 3 ok ok ok 3 ok 5k o 3 s sk dk K ok ok ok ok 3K 3k 3K ok kK sk kK ok 3K 3 K K K
* READ TEMPZRATURE GRADIENT. 6F THE DISC *
Sk 5k 3k 3k ke ok oF ok ok ok ok ok o ok ok ok ok ok ok ok ok oF a3 o ok ok ok o ok ok 3 % 3k o ok ok 3 ok ok 3K 3 3§ oK oK %K %K sk 3K k Sk ok ¥ K %k
READ 10, (TECI),1=1,NPD)

PRINTIOL(TEC(ID), I=1,NPD)

GE TL(70,50.,50,70),12PT N

CONTINUE -
****xx****x*»x*******»xxx******x********xx******x*****
%  READ NUNMBER 2F 3BLADE ELENENTS, NUMBE 9F DBLADES., *
* AND 3LADLE 7ZRPTICNS *
3k ok ok 5% sk ok sk 3 ok 3k ok o sk ok ok ok ok ok o 5k ok ok 3k %k ok ok % ok sk 3k 3k 3k ok s ok 3% ok ok ok sk sk ok sk 3k ok oK Ok 3§ ok ok ok K %k
READ 12,NBELN3,1S5T3, 13D

PRINTI2,NS JHJ;LJTB;I”“L

NS3=ll35+1

NT3=7%S3

3K ok o 5K 5§ 3 ok o ok 5k ok ok ok s ok s ok ok koK ok sk s ok 3ok ok ok ok ok 3k oF 3k ok ok sk 3k ok 2k ok ok 3k ok ok kK ok ok ok ok oF o K
* REZAD BLADE MATERIAL PROPERTILES *
s 3k ok ok 35 ok 3k ok ok ok oF R ok ok Kk 3k ok o ok ok b ok ok ok o 3k ok ok ok sk ok ok S ok ok sk ok sk ok ok ok ok ok ok Kok ok ok ok K
READ 6,E3,R413,PR3,5CH

RIVTOJEB)TGL)PRB)SCB
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******************‘************************************

* READ ZLADED IMNEMNSIONS *
***************%**************************************
READ 10, (2X(1),1=1,NSB)

PRINT1O, (3%(1 >, 1=1,NSB)

READ 10, (33(1>,1=1,H53)

PRINTIO, (B3(13,1=1,083)

READ 10,(3DC1),I=1,N58).

PRINTIOL(BD((I1>,1I=1,NS3)

EAD 10,(ARA(I),I=1,NSB)

PRINTIOL (ARACI),LI=1,NS3)

READ 10,(3KG(I),I=1,N58)

7

80

€5

PRINTIO,(BXG(I),1I=1,N5B)
READ 10, (ANG(I),I=1,N83)
PRINT10, (ANG(I),I=1,NEB)
IF(IST3.E2.13) READ 6;(SIG(I)) I=1,NSB)
IF(IST3.20.1) 'D“INT();(SIU(I);I-—I;NSB)

0 IFCIRNG.Z2.02G2 T2 80
_***************ﬁl**************************************
* IF 213 1S PRESENT, READ . THE RIM MATERIAL PRUPER-
% TIES, DIMENSICLNS AND ELASTIC PRIPLRT IES *
******************************************************
READ 6,ER,RCR,PRARLALR,SCR

PRINTS,ZRsRER,PRR,ALR,SCR

READ 10,RRILRRI,RTI,RTEZ,ITE I, RTE3
PRINTIO0,RRI,RRCLATILRTE,RTEI,RTEDL

T(NPD+1)>=RTI

T (NPD+2)=RTE

TE(NPD+1)=RTEI

TE(NPD+2)=RTE®

R(NPD+1>=3711

RCNPD+2 )=RRJ

CONTINUEL

PI=3.1415926535&8979

CENST=0.5/P1

S1=1./3.

S52=1./0. !

S3=1/7.

S4=1./2.

G2 TG(95,85,E5,95),1€2T

CoONTINIZE
****%**’F**********************************************
* CALCULATE ZLADE SUBSYSTENM ST IFFNESS AND MASS *
*  MATRICZS AND S5TZRE THENX *
sk 5k sk ok ok sk ok sk ok ok oK Sk ok 3K sk Sk >k 3y K S sk oK 3 ok K K 3K K 3k ok 3 ok k ko ok o ok o sk ok sk 3k 3Kk 3k ok ok vk ok oK K Xk
GALL TEK3DE(SX3,SH2,3%,83,3D,ANG,S16,ARA,BKG,N3E,13DE, N52)
G2 T9(95,90,95>,1¢2T

CUNTI‘J‘J\J

IF(IRNG.NZ.0)Y GO TG 95 .

3 o 5k sk sk 3k sk o 2 ok oF 3k 5k sk sk sk ok 5k 3k ok oK ok 2K oK ok 3K ok Sk 3% ok 3K koK oK K ok Sk 3 % ok 3k ok ok Kk ok ok ok 3 ok K R KK
* COMPUTE BLADE FREQUENCIES ACCCRDINGTO THE B LADE *
* G ENERAL OPT I £INS
******************************************************
I1JK=1

=0
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IFCIBDE.NE.1)GE TO 94
Dg 91 1=3,3%N53~1
I11=1-2
DO 91 J=3,3%NS3-1 ,
JJI=Jd-2
SHCII,JJ)=5K3(1,d)
91 SHCII,JJd)=SMB(I,Jd)
NI =3%}S3-3
PRINT |
CALL EIGUAL(SK,SM,D,F,FR,B,C,X%,ERR,B7,38,B9,1JK,N1,MS1)
D@ 92 I=3%xNSB+3,6#NSB-1
11=1-2-3%NS5B .
DZ 92 J=3%1S3+3,6%NS3~1
JJ=J-2-3%NS3
SKCI1I,JJ)=SK3¢1,d)
92 SM(II1,JJ)=SM3(I1,dJ)

PRINT 2 : o
CALL EIGVAL(SX,SM,D,F,FR,B,C,X,ERR,B7,B8,B9, IJK,NI,MS1)
D@ 93 I=6xNS3+2,NTB . | -
I1=1-1-6%NSB ) N

DZ 93 J=6%NS3+2, NTB , s

JJ=dJ-1-6%NS3
SK(I1,JJ)=SK3(1,J)

93 SM(II1,JJd>=5H3(I,d)
N1=NS$3-1 ]
CALL EIGVAL(SK,SNM,D,F,FR,B,C,X,ERR,B7,88,B9, IJX,N1,M51)
GZ TO 15

94 IF(I3DE.NE.2) GO TO 97
MM=NT3
DO 195 I=N3E,1,-1
I1=7xI
CALL REDUCE(SKB,NMs 11, 1,152)
CALL REDUCE(SH3,NM, 11,1,M52)
NH=N-1

195 CONTINUE v
CALL REDUCE (SX3,MNN,6%NSB-3,1,152)
CALL REDUCE(SNB,NM,6%NSB=3,1,152)
CALL REDUCE(SH3,IM-1,4,2,1152)
CALL REDUCE(SNB,NM-1,4,2,152)
CALL REDUCE(SH3,NM-3,1,2,1152)
‘CALL REDUCEZ(SMB,Ni{-3,1,2,15)
N1=NM-6
PRI NT 5
GBTE 99

97 CUNTINUE
NM=NT3
CALL REDUCE (SK3,Nif, 7*NSB-1, 1,0852)
CALL REDUCE(SHB,MM,7T*NS3=-1,1,M52)
CALL REDUCE(SK3,NM-1,7*NSB-4,1,152)
CALL REDUCE(SNI,NM-1,7=xN53-4,1,152)
CALL REDUCE(SKB3,NM-2,4,2,H52)
CALL REDUCE (SHB,NN-2,4,2,452)
CALL REDUCE(SH3,NM-4,1,2,M52)
CALL REDUCE (S!B, NH-4, 1,2,1S2)
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N 1=NM-6

PRI NT 7

CALL EIGVAL(SKB,SM3,D,F,FR,B,C,X,ERR,B7,38,B9,IJK,N1,1M52)
Geg TG 15

CZNTINUE

CK=2.0%PI%ED/(1.0-PRD*PRD) -
CP=2.0#P1*ROD*DMMCA*CMHGA K )
CT=2.0%PI*ED*ALD/ (1 .0-PRD)

sk ot ok sk ok ok ok sk i ke ke K ok oK oK 3K K K K ok 35 oK 3k ok ok ok ok ok sk ok ok ok ok ok ok sk ok K oK oK KoKk R skt ok ok
* CALCULATE THE INITIAL STRESSES IN THE DISC DUE TS *
* ROTATION, TEMPERATURE GRADIENT AND ZTHER BZUNDARY *
* LEADINGS *
ok o sk ok ok ok sk ok ok 3k ok ok 3k K of 3K ok sk ok oK o ok sk sk sk ok ok ok Sk ok ok o ok ok ok K ok ok ke ok ok KK oK kK Kok K
CALL INLSTR(S¥,R,TLTE,W,P,SGR,SGT,NSD,NS1)
IF(10PT.EQ.4)> CALL EXIT

NT =NTD

IF(IPPT.EQ.3) NT=NTD+NTB-6

IJX=1 -

M=MDS-1

IFC(ICPT.EQ.3) Z=NB . *

CONTINUE
sk sk 3k 3k sk o ok sk sk Sf ok ok ok sk ok ok 3 Sk ok ik ok ok ok of sk o sk ok o sk sk ok 3k ok ok Stk Sk skok Sk ok ok ok ok koK ROk K K

*  SELECT nNumMBER OF_ NgpAL DI AVETERS *
3k >k 5k ok ok sk ok 3k 5k Sk K ok sk of sk ke sk sk ok sk sk o K ok K XK Sk sk e ok ok ok ok sk sk sk ok ok Sk sk 3K ok %k sk ok i ok vk ok Sk ok ok
=M+ 1

PRI NT 3.M

FRC-1.0

IF(M.EQ.0) FAC=2.0

CKD=FAC*PI%*ZD/(l.0-PRD%PRDY/12.0:

CMD=FAC*xPI%xRZD

IFCIRNG.EQ«1) CKR=FAC*PI*ER/ (1l .0-PRR*PRR)Y/12.0
IF(IRNG.EQ.1) CHR=FAC*PI%*R2ZR

IF(IZPT.EQ.3) CC=Z*FAC/2.0

CCC=FACx*PI .
CSD=0.5%xPI*FAC*=ED/SCD/ (1 .0+PD)

IECIRNG.NED) CSR=0.5%PI*FAC*ER/S5CR/ (1 ..0+PRR)

AY.=11

AM2 =AM*AN

AMA=AMZ *AM2

AMbH =All4 *AM2

AMPR =Al2 *PRD

DZ 105 1I=1,NT

pe 10.5 J=1,HT

SK(1,J)=0.0

SHCI,J)=0.0

sk ok ok 35 5k ok 340 o sk sk ok 3k sk ok ok K 2k ok i 3k ok 3k 3k ok ok ok ok sk sk 3K 3k 3K K ok sk sk ok ok ok ok ok K ok sk ok ok ok ok kR ok R T
*  CALCULATE DISC SUBSYSTEN STIFFNZSS AND MASS *
*  MATRICES AND STERE THELN *
sk 3k ok ok sk ok ok ok ok k3 ok o ok o ok ok ok sk o sk 3k ok ok 3k sk sk k Sk 3Kk 3k 3k sk ok 3k ok ok 3k %k ok ok ok ok ok ok ok ok ok ok
CALL THEHDSC(SK,SMsR,T,SGR,S5GTLNSDLI1S1).

* -

~
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sk >k 3k 3k 35 ok ok sk ok ok o ok ok sk sk ok s sk sk ok ok K ok ok ok sk ok ok sl ok ok ok ok ok ok 3K ok 3k sk vk ok sk o k3K ok kK ok Sk sk ok K
x GET THE SYSTEM STIFFLESS A N D MASS MATRICES FREGM *
* THE SU3SYSTEMMATR I CES *
>k sk ok ok o ok ok sk ok s ok ok ke i sk sk ok % S s i ok ok o ok ok ke sk K K ok ok o Ko e K 3k K 3k 3k 3k 3k K ok 3K K 3 K ok 3K ok ok
IFCIOPT.EQe3) CALL THHSYS(S3K.SM,SKB,SMNB,
.CC,RDA,RIILNTD,NTBLMS,1M52)

L2 FFEFEEFFETEILEEFEE TS S LSS S ELITEETETEILTEEFEEEETEEELESE TS ST
sk APPLY B2UNDARY CENDITIECNS . *
IR F S S FEELT LTS FEFEFIZTILELFETS PSS EZTF LSS EEEREEE LSS S RTS
CALL REDUCE(SK,NT,NT-1,1,MSD

CALL REDUCE (SM,NT-NT-1,1.0S1)

IFCIGPT.EQ.1)GZTE 110

CALL REDUCE(SK,NT=-1,NT=4,1,MS1)

CALL REDUCE(SM,NT-1 ,NT-4, 1 ,1S51)

CALL REDUCE(SH,NT-2,1.,2,M51)

CALL REDUCE(SH,NT-2,1,2,M51)

N1=NT-4

GBTZ 120

CONTINUE ,

“ C A L L REDUCS(SK,NT=-1,3,1,MS1)

CALL REDUCE(SM,NT=1,3,1,MS1)

NI=NT-2

CONTINUE

3K 3k o ok ok 3k vk K ko K ok ok ok sk 0k 3K 5K ok Sk 3K sk s sk sk ok ok Sk ok sk 3k sk sk ok ok sk sk ok ok ok oK sk ok ok sk ok sk sk sk skook sk
* SOLVE THE EIGENVALUE PRE3LEMAND GET THE SYSTEM *
*  FREQUENCIES "
Sk o ok e sk o 3R 3K Sk oK sk sk sk ook ok sk ok 0k B i 3K sk v ok ok ok sk sk 3k 3Kk 3¢ ok 3k 3k ok K Kk Sk ok 3R ok 3k ok o sk sk ok sk Kok ok ok
CALL EIGVAL(SK,S5M,D,F,FR,3,C,X,ERR,B7,88,39, IJK,N1,151)
IF(M.LT.NDYGEZT@ 100

GO TG 15

CALL EXIT T
FORMAT(1HI1,5X, 'BLADE BENDING FREQUENCIES INI-MINDIRECTICN'/Z/)
FORMAT(1H!,5X, ‘BLADE BENDING FREQUENCIES IN I-MAX DIRECTIGN'//)
FERLAT ¢///, 2THNUNMBER OF NEDAL DIAMETERS =, 13// )
FCRMAT(1HI,5X,* BLADE TZRTICNALFREQUENCIES'//)
FZRMATCLIHILSXL 'TYISTED BLADE 3END I NG FREQUENCI ES ‘7))
FZRMAT(4F20.10)

FORMAT(1H1,5%, ' BLADE FREQUENCIESWITHIN IT IAL STRESSES '//)
FERMNAT(EF10.6)

FZRMNAT(/EE13.6)

FERMATC(1615)

END

4>
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SU3REUT INE THKIDE (S5K3,S5MB,3X%,33,3D,ANG,S1G,ARA,BKG,NBE, IBDE, L)

**%******x*a*x*******a******X*<x*******************k**

% THIS SUBRCUT INE CALCULATESTHE BLADE SU3SYSTELI

X

* STIFFNESS MATRIX SHB(L,L)Y ALD MASS MATRIX SMB(L,L)I*
* TRANSVERSE SHEARANDROTARY INERT IA ARE INCLUDED *
* ADDITICGHALSTIFFNESS DUE TZ INITIAL STRESSES CAN *

* ALSO BE INCLUDED

.

**%**************************»*********x**************

DIMENSIONSKB(L,L),SM3(L,LY,EKC 14, 14),EMC 14, 14)
DIMENSIEGNR(LA,143,3C14,14),C¢14,145,D(14, 14)
DIMENSICKN B¥(L),BB(L)Y,BD(L),ANG(L)»SIG(L)

COMMBN/FCUR/P1,ED,ER,EB,ROD,R0R,R03,ALD,ALR, PRD, PRR, PR3, 5CB
COMMUN/F IUL/’SRI , SRE.,EHMGA
RYCILAID=ALFS*ALFAXXX(I+1,A1+1,0)+ (ALFS*3ETA+BETS*ALFA)*

o XX (142 )AI+200)+ ETS*BETAXXX(I+3,AI+3.0)

SK(I,AI)=REB*CIGA*TMGA* CALFA*YY (I+1,AI+1.0)+BETAXXX(I+2,A1+2.0))

XS (I1,AI)=YYY* (ALFA®XX(I+1,AI+1 ,0)+BETA%XX(I+2,A1+42.0))

XRCI,AL)=XXX# (AL*¥XX (I+1,AI+1.0)+BERXX(1+42,A1+42.0))
XXCI1,AI)= (BX2 %] -BX1%xI1)/Al

NTB=7%(NBE+ 1)

DG 10 I=1,NT3

DEC 10 J=1,NT3

SK3(1,J)=0.0 - ,

SIB (1, J)=0.0

PRINT 1

20CZNT INUE

15

K=0

DO 15 I=1,14

Do 15 J=1,14
B(1,dJ)=0.0
EX(I,J2=0.0
ENM(I,J)=0.0
R(1,J3=0.0

sk ok 3k s 3 o 5f ok o ok ok 3k sk 3k ok 3k 5k oK oK ok 3k oK ok 3K ok 3 3Kt oK 3 sk sk ok 3 5K oK 3k ok sk ok s 3k ok 3K K sk o ok ok ok sk ok

* SELECT THENUM3ERKEZF THE ZLEMENT AND GET THE

*

*  VALUES OF SECTIZNPREPERTIZS OF THE BLADE AT TEE *

* ENDS Z2F THZ ELENENT

*

sk sk ok 3k sk sk ok sk sk sk ok ok sk sk ok ok 3K K 3k sk sk sk sk ok sk K sk Sk ROR 3 3k ok ok ok ok ook oKk sk ok 3k Sk 3k Sk ok ok ook kok ok

K=K+1

KP 1=K+ 1

BY1=BX (X)
BX2=3X(KP1)
ARA1=ARA(K)
ARA2=ARA(KP 1)

ANG 1 =ANG(K)
ANG2=ANG (KP1)
PRINT 2,¥,3%1 ,3M2
SIGI=S1G(K)
SIG2=51G (K1)
BA=0.5%(ANG 1 +ANG2)
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SN=SIN(BA/1E0.0%P1)

CS=CGS(3A/160.0*%PI)
GB=0.5%E3/(l ,0+P]D)

Bi411=B3(K)

B I12=B3(KP1)

BMX1=3BD (10

BIX2 =BD (KP 1)

BJ 1 =BKG(K)

B J2 =3KG(KP 1) .

EL=BY2 -3X1
ALFS=(3¥2%51G1-BX1%51G2)/EL

BETS=(51G2-SIG! )/EL

ALFA= (BY2*ARA1 =BX1*ARA2)/EL

BETA= (ARA2-ARAL} /EL-

ALFJ=(3¥2x%3J1-3X1*BJ2)/EL

BETJ=(3J2-8J1 )/EL

ALIU=(BX2%3M1 1 -BX1%BMI2 >/EL

SEIU=(BMI2-BMIl >/EL

ALIWU=(3X2*x3BMX1-BX1*3MX2 )/EL

BEIV=(BMX2 -3MX)/EL
************************#*****************************

Ry

*  CALCULATE THE ‘3’ MATRIX *
o sk sk ok o oK o s s o ok ok ok K Rl sl sk ok R oK R s ok oK KK HOK R ok e sk ok K ok sk ok RO K
Bll,1X=1 .0

"B(l1,2)=BXl}
B(1,3)=3X1x*BXl
BCl,4)=BX1*3X1%xBX!
B(2,2)=-1.0
B(2,3)=-2.0%3Xl
B(2;4)=~3~O*BX1*BX1
B(2,5%=1 .0
B(2,63=3X]
B(3,5=1 .0
B(3,6)=BXl
B(4,1)=1.0
B(4.,2)=3¥X2
B(4,3)=3¥2%x3X2
B (4,4)=3X2%3BX2xBX2
8(5,2)=-1 o .
B(5,3)=-2.0%3X2
B(5,4)=~-3.,0%xBX2x%3X2
B(5,5)=1 . 0O
8(5,6)=B¥2
B(6,5Y=1 .0
B(6,6)=3X2
D¢ 25 1I=1.,6
11=1+6
DO 25 J=1.,6
JJ= J+6
25 BC11,Jd)=8(1,dJ)
B(13,13)=1.0
B(13,14)=38Xl
B(14,13)=1 .0
BCla,14)y=B22
CALL INVT(3,14,14)

-4
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sk sk 3 s ok sk % 3ok Sk sk K ok sk ok k ok ok ok 3k o o ok o ok o sk ok i Sk B ok ok sk ok ok 3 sk Ak ke otk ok ook sk Kok sk ok ok
* CALCULATE THE RETATIEN MATRIX R : *
sk sk ok 4 ok 3% ok o s ok ok oK K ok ok ok ok 3 sk 5k sk ok 3k ok oK ok ok ok s ok 3k Kk ok f ok ok Sk oK ok ok K ok ok KOk ok kR ok Ak ok ok R ok
R¢l1,1)=CS '
R(2.,2»=CS
R(3,3)=CS
R¢4,83)=CS
R(5,9)=CS
R(6,1012=CS
R(7,4)=CS
R(8,5)=CS
R(9;6)=vS
R(10,11)=CS
R(10,11>=C5
Re11,12)=CS
R(12,13)=CS
RCI,4)Y=5N .
R(2,5>=SN ’ -~
R(3)6)=S”
R(4,11)=8N
R(5,12>=5N
R(6,13)=5N
R(7,1)==-8N
R(8,2)=-5N
R(9,3)=-5N,
R(10,8)=-SN
Rl 1;9)=-SI\3
RC12, 10)=-SN
R¢13,7>=1 .0
R(l4,14)=1 .0

sk sk sk sk sk 3k ok ¢ ok 35 2k sk sk sk sk ok Sk sk ok sk ok i sk sk i 3k koK ok K oK 3ok ook ok ok s ok oK ook 3 sk ok Sk ok sk ok
% CALCULATSE THE ELEMENT STIFFNESS MATRIX EK . *
sk ok s sk 3k 3k ok 5k ok sk ok 5K i o ok ok 3 3K e S K Sk 5K o 3k sk 3k ot ok 3 oK K % 3k oK 8 3K K o O 356 ok ok K ok K Sk 3k ok oK K %k kK
KKK=0
AL=ALIU
BE=3E1U
1=0
J=0
XXAX=ED
YYY=G3/5CB

30 C2NT INUL
KEK=KKK+1
EXCI+3, J+3)=4.0%xX¥R(0,0.0)
EXCI+3,J+4)=12.0%XR(1,1.0)
EK(I+3;J+6)=~2.0*XR(O;O.Q)
EX(1+4,J+4)=36.0%¥R(2,2.0)
EXCI+4,J+6)=-6.0%XR(1,1.0)
EK(I+51J+5)=XS(O)O~O)'
EX(I+5,d+6)=XSC1,1.0)
EXCI+6,0+6)=XR(0,0.0)+X5(2.,2.0)
IF{KXKK.ZQ2.2)G0 TY 3 5
1=6
J=6 ¢

i e et o+ o s o 4 s oo <
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AL=ALIV

BE=BEIV

G@ T@ 30
35 CONTINUE

EKC14,14)=GB% (ALFJ*XX (1, 1.0)+3ETJ*XX(2,2.0))

3k o ok Sk sk sk SR 3k Ok ok sk sk ok KO 3k ok K sk sk e ok ok i sk o v sk ok ok ok ok Sk ok s ok sk K K sk 3k ok sk ok ok o kosk Kok ok ok

* CALCULATE THE ELEMENT MASS MATRIX EM _ *

3 3 ok sk o 3k sk S K sk ok sk 3K Sk ok 3k 3K 3K 3 3k 5K 3K K 5k ok 5k 3K ok ok ke sk ok ok ok ok 3 ok K ik 3k 3 KOk ok sk ok sk koo

KKK=0 ST

I1=0 ’ -

J=0

AL=ALIU

BE=BEIU

XXX=R0B

YYY=REZ3

‘
.

- 40 CONTINUE

KKK=KKK+1
EMCI+1,J+1)=%5¢0:0.0)
EMCI+1,Jd42)=XS(1.,1.0)
EM(I+1,J+3)=%5¢2,2.0)
EI"J(I+1)J+4)=XS(3J300)
EM(I42,J+42)=X5(2,2.0)+XR(0,0.0)
EM(I+2)J+3):XS(3)300)"‘200*)(”.(1)100)
EM(L42,J+4)=XS(4,4.0)+3.0%XR(2,2.0)
EM(142,J+5)==-XR(0,0.0) :
EM(I+42,J+6)==XR(1,1.0)
EMCI43,J+3)=XS5(4,4.0)+4.0%%XR(2,2.0)
EM(I+3,J+4)=X5(5,5.0)+6.0%¥R(3,3.0)
EMCI+3,J45)==-2.0%xXR(1,1.0)
EM(I143,J+6)==-2.0%7VR(2,2.C)
EM(I4+4,J+4)=XS5(6,6,0)+9.0%XR(4,4.0)
EM(1+4,J+5)=-3.0%XR(2,2.0)
EMC(I+4,J+6)==3.,0%xXR(3,3.0)
EMCI+5,J+5)=X2(0,0.0)
EM(I+5,J+6)=>R(1,1.0)
EM(I+6,J+6)=XR(2,2.0)
IF(KKK.EQ.2) GO TG 45
AL=AL IV
BE=BEIV
I=6
J=6
GBT@ 40

45 CENTINUL
AL=C(ALIU+ALIU)Y%R23
BE=(BEIU+3EIV)%RE3
EMC(13,13)=AL*X¥X(1,1.0)+BE%xXX(2,2.0)
EM(13,14)=AL%xXX(2,2.0)+BE%xXX(3,3.0)
EMCL4, 1A =pAL*XX(3,3.0)+BE*xXX(4,4.0)
D¢ 50 I=1,13
11=1+1
D8 50 J=11,14
EK(Jr 1)=EXK(I, J)

50 EM(J,I)=EMC(I,Jd)
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CALL TRIMULKBLEK,C.D, 14, 14,14, 4,14

CALL TRIMUL(B,EM,C,D., 14, 14, 14, 14, 14)
******************************************************
* STPRE THE ELEMEINTHMATRICES | NT¢® THE BLADE SYSTCEM=*
*  MATE ICES IN THEE APPREZPRIATE PZSITIGNS ACCORDING T2
* THE BLADE GENERALCGPTIEN *
sk s 3K sk ke o 3K of sk ok K sk ok 3¢ 3k ok s e ok sk ok ok o ok of Sk >k ok ok s ok 3 ok ko ok Sk ok ok ok sk K koK Ok R R ok 3 ook ok ok
IF(IZDE.NLZ.1)COB TY 60

KK=3% (K- 1)

CALL ASNHZLE(SKEB,EK, XK., I, 1 -6, 14, L)

CALL ASHMBLE(SMBLEM,KX,KKs1,6,14,L)

KK=3% (NBZ+]Y+3%x (K~1)

CALL ASHM3LE(SHBLEK,HK,XKKsT7s12,14,L) .

CALL ASM3LE(SHB,EM,KK, KK, 7, 12, 14,L)
KK=6%(NBE+1)+1{-1

CALL ASMBRLZ(SKBLEKLKK,¥K,13,14,14,L)

CALL ASMBLE (SMB,EV, K> KKs 13, 14, 14,L)

IFC(K.LTNBEYG@ TG 20

RETURN

CENT INUE

CALL TRIMUL(R,EZK.C,D, 14, 14, 14, 14, 14)

CALL TRIP‘?UL(R;EI‘?JCJDJ]Q:14:1‘3;14: ]_4)

IF¢griga.E2.0.0) GO TO 80 '

D2 70 I=1.,14

DZ 70 J=1.,14

B(I,J>=0.0

R(1,J)=0.0
******************************************************
* CALCULATE ADDITISNALSTIFFNESS VALUES IF INITIAL *
* STRESSES ARE PRESENT *
B(l,1>=1.0

B(l,2)=8X

B(1,3)=B3X1xBXl

B(l,4)=3X1%3X1*xBXl

B¢2,2)=-1 .0

B(2,3)=-2.0%3Xl
B(2,4)==-3.0:%3X]*BXI
B(2,5>=1.0
B(2,6)=3Xl
B(3:s5)=1.0
B(3,6)=3X

B(4,7)=1 @ o

B4, E)=3X1

‘B(4,9)=3N1*2¥X1

B(4,10)=3X1%x3X1*x3Xl

B(5,8)=1.0

B(5,9)=-2.0xBX! .
3(5,10)=-3.0%B>1x%3X

B(5,11>=1.0

B(5,12)=3Xl

B(6,11)>=1.0

B(6,12)=3X!

B(7,13>=1.0

«t>
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B(7,14)=BX1
B(&, l)=l .0 ¢
B(8,2)=BX2
B(E,3)= JX"»BX2
B (8,4)=B%2 aBX2 xBX2
B(%,2)=-1 .0 o d
B(9,3)=-2.0%3X2 e
B(9,4)=-3.0%3BX2%3X2 o
.B(9,5)=1 . O
B(9,6)=3x%2 -
B(l10,5)=1.0
B(10,6)=BX2
B-f-11,7>=1.0
B(l1l,8)=3X2
B(11,9)=8X2%BX2
B(11,10)=BX2*BX2%BX2
B(l12,8y==1.0
B(12,9)=-2.0%BX2 . .
B(12,10)=-3.0%BX2%BX2
B(12,11)=1.0 - >
B(l2,12)=38X2
B(13,11)=1.0
B(13,12)=8X
B(14,13)=1.0
BC(l4a,4)=3%2
R(1,1)=-SX(0,0.0)
RCIJZ)’:—SX(IJI-O)
R(1,3)==5X%(2,2.0)
R(l;4)=~SX(3;3.0) -
R(2,2)=RY(0,0.0)-5¥(2,2.0) !
R(2,3)=2.0%EX(1l, 1 .0)-SX(3r3.0)
R(2,4)=3.0%R¥(2,2.0)-5SX(4,4.0)
R(3,3)=4.0%R¥(2,2.0)-5SX(4.,4.0)
R(3,4)=6.0%R%(3,3.0)-5%X(5,5.0) .
R(C4,4)=9.0%RX(4,4.0)-5SX(6,6.0)
R(818)=RX(01000>
R(E,9)=2.0%R3(¢1,1.0)
R(E,10)=3.0%2X(2,2.0)
R(9,9>=a.0x3xc2,2,o>
R(9,10)=6.0%3X(3,3.0)
RC10510)=9.0*RX(4,4.0)
RC13,13)=-RCB*BMGA*ZIGA*COS (2. O*BA)*((ALF”+ALFU)*X (1,1.0)
o + (BETW+BETU)*NX (2.2 .0))
W(l3;14)~—.cpACXGAxuqu*CBS(B.*BA)*((ALFV+ALFU)*XX(2;2.O)+(BET¥+
«BETU)*XX(3,3.00)
RC14,14)=~-203%2MGA*BHGA*COBS (2 . xBAY* ((ALFW+ALFU) *XX(3,3.0)+(BETV+
BETU »*XX(4,4.0))
e +ALFS*ALFJ5 01 »1.0)+ (ALFS*BETJ+BETS*ALFJI *¥XX (2,2 . 0)
« +BETS*BETJ*¥X(3,3.0)
CALL TRIIUL(.B)RJC;DJIAJ14)14;1“;14)
DO 80 I=1,14
D¢ 80 J=1.,14
EKCI,J)=EKCI,JI+R(IJD
60 CGNT INUE
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KK=7#% (K- 1)
CALL ASH3LE(SKB,EK, KK, XK, 1, 14,14,L)
CALL ASNBLE (SM3, EM, KK, KK, 1, 14, 14,1L)
IF(K.LT.N3EXGE TO 20

RETURN

FORMAT(IH 1, //5X, '"BLADE DIMENSIGNS'//)
FORMAT (5%, 15, 8F8.3/)
FERMAT(7E13.5)

END , ,

3

ey
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SUBREUTINE THXDSC(S5K,SM,R,T,SRR,STT,N5D, L)

RS S S EEE SIS EEEEEEEEEEEEEEEEEEE S EREEESE R E LS TSR R
* THISSUBRCUTINE CALCULATES THEELEMENT STIFFNESS
%* AND MASSMATRICES AND STGRES THE VALUES INTO TEE
* DISC SUBSYSTEMMATRICES SK(L,L) AND Si(L,L)

THE ADDITIGNAL STIFFNESS CGEFFICIENTS DUE T@
INITIAL STRESSESSRR(L) AND STT(L) ARE ALSO
CALCULATED AND ADDED TBTHEBENDING STIFFNESS .
TRANSVERSE SHEEARANDROTARYINERT IA ARE INCLUDED.x
BEFORE EZNTERING THESUBRGUTINE ZERO ALL THE TERMSx
OF THE MATRICESSK AND SM. INITIALISE ALL THE *
* TERNS ZFTHE RADIUS ANDTHICKNESS VECTOR R AND T.
*******‘41*********fkl************************************
DIMENSIEN SK(L,L),SM(L,L),R(L),T (L)

DIMENSIZN SRR(L),STT(L),ES(8,8)

DIMENSIGN EX(8,8),EM(8,8),3(8,8),C(8,8),D(8,8)
CoMMEN/@PTILH/18PT,1RNG, ITHD, ITED, ITH3, ISTB
COMMON/BNE/AM,P2,P1,P3
COMMZN/TYWE/S1,52,53,54,CKD,CKR,CMD, CMR,CC,CCC,CKK,CPLCT,CSD,CSR
C@MMBN/F@UR/P 1, ED, ER,E3,R8D,RUR,RBB,ALD, ALR, PRD, PRR,PRB,5C3

K=0

NS-NSD'

IE(IRNG.EQ. 1 YNS=NSD+ 1

N=NS-1

PR=PRD . )

CKX=CKD

CM=CHD

CS=CSD

CONT INUE

2 sk ok ok sk sk koo ok ok ok sk ok ok 3k 3Kk sk 3k K ok ok Sk K 3k 3k i ok e ok ok ok ok ok ok ok 3k sk sk K oK ok ok ok ok ok ok ok ok K

* Ok % F K KX

¥ X X X k¥

* SELECT THENUMBERXCEZF THE ELEMENT *
>k ok sk ok ok ok sk ok ok Ok K Ok 3k ok ok ok 3k 3k ok 3K 3K K K 3k sk sk 3k 3 3k %k 3K oK sk ok ok 3K K ok 3 oK % k k3 ok sk ok ok ok sk ok ok Rk
K=X+1

Kl=2%K~1

K2 =2*K

Sk 3k K ok 3k oK ok ok 3 sk K ok ok sk ok ok e ok ok ok s sk o ok ke sk ok ok ok Sk ok ok sk ok sk ok o ok sk ok i ok sk sk ok ok koo ok KO ok ok
* GET THE VALUES @2F ‘RADIUS ANDTHICKNESS AT NZ2DES *
35 ok S5 ok ok ok 3K A 3k K oKk o ok ok sk ok ok ok s ot ok ok ok 3k Sk sk ok 3 s ok sk ok ok ok ok 3¢ ok ok ok ok ok sk ok ok ok ok ke KOk ok ok ok
R1=R((KI)D

Re=R(K2>

TI=T K1)

T2=T(K2).

DO 40 1=1.,8

DO 40 J=!1.,8
B(1,J)=0.0
EX(1,dJ)=0.0
EMCILJ)=0.0
IF(K.NE.NSD)Y G2TB® 42
PR=PRR -
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P3=PRR*P2

CK=CKR , e
CM=CHMR - ’ - o
CS=CSR

CONTINUE

DD=R2«R1 ' ‘
DI=DDx%xDD

D2=D1%*DD

ALFA=(R2%T}|-R1%T2)/DD

BETA= (T2-T1)/DD

XI=ALFA*ALFA*ALFA*CK

X2=ALFA*ALFA*3ETA*CK

X3=ALFA*BETA*BETA*CK

X4=BETA*BZTA*BETA*CX

sk sk sk sk sk o sk >k 3K 3K K 3 ok 3k ok 3K ok ok ok 5k sk ok ok ok oK oK o k ok s 3k sk ok 3k 3k 3k oK kK 3k ok ok ok K o ok ok ok sk ok ek kok
* CALCULATE THE *'B' MATRIX - *
s sk sk ok S ok sk ok ok 3K % 5K 3k s ok ok 3K ok ok o ok 3K oK ok ok sk sk sk ok ok ok sk ok % K 3k oK ke ok ok ok ok ok ok K ok ok ok sk ok ok kR
B(l,1)=1.0

B(l,2)=Rl

B(1,3)=R1x%R1 3
B(l,4)=RiI*R1=%Rl1

8(2)2)=“1 .0

B(2,3)=-2.0%R1 .
B(2,4)=-3.0*R1%R1

B(2J5):1 .0

B(2,6)=R1

B(3,5)=1 .0

3(3,6)=R1

B¢4,7)=1.0

B(4,8)=R1

B(5,1>=1.0

B(5,2)=R2 N

B(5,3)=R2%R2
B(5,4)=R2+R2%R2
B(6)2)="1 .0
B(6,3)==2.0%R2
B(E,4)=-3.0%R2%R2
B(6,5)=1.0
B(6.,6)=R2
B(7,5)=! .0
B3(7,6)=R2
B(8,7)=1.0
B(8,8)=12

CALL INVT(5,8,8)
sk 3k ok ok 3k ok ok sk sk ok ko sk skook ok ok K Ok ok ok ok k sk sk sk i sk sk sk ok ok 5k 5k 3k 3k 3k ok ok ok Sk 3k 3k % ok o ok ok ok ok % %k K %k
* CALCULATE THE 'SHMALLK'MATRIX "k
sk 2k 3 3k ok ke sk sk ok sk Sk ok Sk sk ok ok oK Sk 5 K dk ok ok ok ok ok ok 3F ok sk ok ok a3k 3k 3k ok 3 >k 3Kk ok ok 3k % 3k kK ok oK ok %k %k ok %k
Al =R1x*R2

A2=A1 *Al

A3 =R2-RI

AL=R2%%2 -] *%2 .

AS=R2%*x3-R1*%%3

AG=R2*%x4 -1 *%4

AT=R2**5 -1 *%5




AB=R2*%6~R| x%6 o
A9=R2 k%7 -R 1 *%x7
AlD=R2**5-~R| %x%x8
Al 1=R2%%9~R) *%9
Al2=R2xx10-RI%x%x10
C5=ALBG (R2/R1)
El=X1%.5%A4/A24X2%3 « *A3/A1 +X3*3 « *C5+X4*A3
E2=X1*A3/N1+X2%x3 + *CS+X3*3 « *AZ+ X4 %k « 5%A4
E3=X1 *C5+X2 %3 « kA3 +X3*] « 5xA4+X4%x5 ] *A5
E4=X]1 *A3+X2*1 «5*A4+V I *A5+X4 % 25%A6
ES=X1 %« 5%A4+X2%xA54+ X3 % 7T5%A6+X4% « 2%A7
E6=X] *S] *AS5+X2 %+ T5*xA6+X3 %+ 6%xAT+X4*x52%AH
E7=X1%.25%A6+X2%. 6 *+AT+X3 % . 5xAB+X4%S3 *AQ
EK(1,1)=E1%(Pl1+2.%P2-2 +%xP3)
EK(1,2)=E2% (Pl ~-P2)
EK(1,3)=E3%(Pl-4.%P2)
EK(1,4)=E4%(P1=-7.4%P2~-2.%P3)
EK(2,2)=E3%(P1-2.%P2+1.)
FEK(2,3)=E4% (Pl -3 .%P2-2.%xP3+2.%PR+2.)
EX(2,4)=E5% (Pl -4.%P2+3+-6.%P3+6¢%PR)
EK(3,3)=E5%(P1-2.%P2+8+.-6.%P3+8.%PR)
EK(3,4)=E6%(P]l-P2+18.-12.%P3+]8«%PR)
EK(4,4)=E7%(P1+2.%P2+45,-20.%P3+36.,*%PR)
EKC1,5)=E2%(2.0%xP2~P3)>
EK(1,6)=E3%2.0%P2
EKCIl,7)=E2%(P2*AM-AM*PR+AM)
EK (1., 8)=E3*P2=*Al]
EK(2,5)=E3*x(P2-1.0)
EX(2,6)=E4*(P2+P3-PR-1.0)
EK(2,7)=E3x(P2*xAM~AM)
EK(2,8)=E4%(P2%AM~AM)
EK(3,5)=E4%(P3-2.0%PR~2.0)
EK(3,6)=E5%(2.0*P3-4.0%PR~4.0)
EK(3,7)=E4%(P2xAM-AM%PR-3 .0*xAl)
EK(3,8)=E5%(P2%xAM-2.0%AM*PR-2.,0%AM)
EK(4,5)=E5%(2.0%P3-P2~-6.0%PR~-3.0)
EXKC(4,6)=E6%x(3.0%P3-P2-9,0%PR-9.0)
EKC(4,7)=E5%(P2*%AM~-5.0%AM~4 « D xAM*PR)
EX(4,8)=E6%(P2*xAM-6.0*xAM*PR~3 .0%AM)
EK(5,5)=E3%(1.0~0.5%P34+0.5%P2)
EX(S5,6)=E4%(] 0+PR-0.5*%P34+0.5%P2)
EK(S,7)=E3%(1.5%AM=-0.5%AM*PR)
EK(5, 8)=E4%All
EK(6,6)=E5%(2.,0+2.0%xPR-0.5%P3+0.5%P2)
EK(6,7)=E4% (1 « S*AL+0 . 5*%AM%PR)
EK(6,8)=ES5%x (AM+AM*PR)
EK(7,7)=E3%(P2+4+0.5-0.5%PR)>
"EK(7,8)=E4%P2
EK( 8, &) =E5%P2
Xl =ALFA*CS
X2=BETA*CS
El =X1*%0.5%A4+X2 %51 *A5
E2=XI*S1*A5+X2%0.25*%A6
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E3=X1%0.25*%A6+X2%0 «2%A7

EK(5,5)=EK(5,5)+Z1

EK(5,6)=EK(5,6)+E2

EK(6,6)=EK(6,6)+E3 .
EX(7,7)=EK(T7,7)+E!

EK(7,8)=EK(7,8&)+E2

EK(8,8)=EK(8,E)+E3

oK ok s ok ok ok sk ok ok ok sk ok ok ok sk ok K ok K K 3K sk ok ok ok f 3k sk ok ok sk ok sk K ke sk sk sk sk ok ok Sk ok K K KOk K Ok sk %k ok Ok K
* CALCULATE ADDITIONAL STIFFNESS F2R INTIAL STRESS
s ok 3 o sk o 3% 3 o ok ok o ok 3 3K ok oK 3K oK R o sk s ok o ok o o ok ok 3K ok 3K K ok K 2k 3k 3k sk 3k ok 5K 3K K ok oK K ok ok K ok ok
CA=(R2*%SRR(K!)-RI1%SRR(K2))>)/DD

DA= (SRR (K2)~SRR(KX!1)>)>»/DD

EE=(R2*STT(K1)-RI*STT(K2))/DD

FF=¢(STT(K2)>~-STT(K!1)>»)>/DD

X1=CCC#HALFA*EE*P2 -

X2=CCC#P2* (ALFA*FF+3ETAXEE)

X3=CCC*BETAXFF*xP2

El=X1*%C5+X2*A3+0.5+X3*%A4

E2=X1*A3+0.5*%¥X2*%A4+S51*X3*xA5
E3=0.5%X] *A4+5]1 *X2*xA5+0 .25%xX3 *A6

E4=S1 X1 #A5+0.25%X2%A6+0 « 2% X3 %A7

CES=0.25%X]1 *xA6+0 .2 %X2%xAT+52%X3*A8

E6=0.2%X] xA7+S2 %X 2%A8+8S3 X3 %A%
E7=82%X]*%A8+S3*X2%A9+0.125*%X3*%Al0
X1 =CCC*xALFA*CA
¥X2=CCC*(ALFA*DA+BETA*CA)
X3=CCC*BETA*DA N
Fl=0.5%Xl*%A4+S51%X2+A5+0.25*%X3 %A
F2=5]1%X1*%A5+0.25%X2%xA6+0 . 2*%xX3 A7
F3=0.25%X%1 #A6+0 2%M25xAT+S2 X3 *xA8
Fa=0.2%X]1 *AT+S2%X2*xA8+5S3*X3 A9
FS5=82%X 1 *A8+53*xX2%xA9+0.125%xX3*%Al10
ES(1,1)=E1

ES(1,2)=E2

ES(1,3)=E3

ES(1,4)=E4

ES(2,2)=E3+F1

ES(2,3)=E4+2.0%F2
ES5(2,4)=E5+3.0%F3
ES(3,33=E5+4.0%F3
ES(3,4)=E6+6.0%F4
ES(4,4)=E7+9.0%F5

ok 3k ok 3K ok ok ok ok ok < ok K bk K K ok 5k 3k oK 3k 3k sk 3k 5k ok ok Sk ok ok ok ok ok Sk ok ok ok 3k % ok o 3k ok s ok ok ok 3k Sk ok ok ok 3k %k
*  CALCULATE THE *SMaLL |I1' MATRIX *
Sk 3k 2k ok 3k ok o ok ok 3R 3 ke ok ok vk SR S i s 3K ok 3 vk 3k K ok 2R ok ok ok K ok ok R 3k ok Sk 3k ok ok ok ok 3k ok ok Sk 3k ok oK ok ok s %k K
X1=CM/12.0*ALFA*ALFA*ALFA
X2=CM/12.0%*ALFA*ALFA*BETA*3.0 -
X3=Cl/12.0*ALFA*BETA*BETA*3.0

X4=CM/12 .0%BETA*BETA%*BETA

ALFA=ALFA*CM

BETA=BETA*CM

EM(1,1)=ALFA*.5%A4+BETA*S | *AS
EMC1,2)=ALFA*xS 1 *AS+BETA*.25%*A6
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EM(1,3)=ALFA*.25%A6+BETA* .2%A7
EM(1,4)=ALFA%.2%A7+3ETA*S2%A8
EM(2,2)=EM(1,3)
EM(2,3)=EM(1,4)
EM(2,4)=ALFA*S2+AB+BETA*S3*A9

CEM(3,3)=EM(2,4)

EM(3,4)=ALFA*S3+A9+BETA*.125%A10
EMU4,4)=ALFA*. 1 25%A10+BETA*S4*A1 )
E3=X1#C5+X2%A3+0.5%X3*A4+5] *X4*A5

E4=X1 %*A3+0.5%X2%A44+5 1 *X3*A5+0.25X4*A6
ES5=0.5%X1 %A4+5]1 *X2%AS5+0.25%X3*A6+0.2%X4*%A7
E6=5S] X1 *¥A5+0 :25%X2*A6+0 2 X3 *kAT+S2*X4%A8
E7=025%X] %A6+0 . 2%X2*AT7T+S2%X3I*AE+53 xX4*A0
EB8=0.2%X1*kAT+52%Y2%xA8+53#X3%xA0+0.125%xX4*A10
E9=52%X] *kAB8+S3%K2*xA9+0.125%xX3%A10+S4xX4%A11l

EM(1,1)=EMC1,1)+E3%P2
EMC1,2)=EM(1,2)+E4%P2
EM(1,3)=EM(1,3)+E5%P2
EM(C1,4)=EM(1,4)+E6%P2

"EM(2,2)=EM(2,2)+E5%(1.0+P2)

EM(2,3)=EM(2,3)+C6*(2.0+P2)
EM(2,4)=EM(2,4)+ET%(3.0+P2)

CEMC3,3)2=EM(3,32+E7%(4.0+P2)

EM(3,4)=EM(3,4)+EE%(6.0+4P2)
EMC4,4)=ENM(4,4)+E29%(9.0+P2)
EMC1,7)=EM(1,7)+E4%AM
EMC1,8)=EM(1,8)+E5%AM
EM(2,5)=EM(2,5)-E5
EM(2,6)=EN(2,6)-E6
EM(2,7)=ENM(2,7) +E5 %Al
EM(2,8)=EM(2, 8) +E6%AM
EM(3,5)=EM(3,5)-2.0%E6
EM(3,6)=EM(3,6)-2.0%E7
EM(3,7)=EM(3,7)+LE6%AM
EM(3,8)=El5(3,8)+E7 *AM
EMC4,5)=EM(4,5)~3.0%E7
EMC4,6)=EM(4,6)~3.0%E8
EMC4,T7)Y=EM(4,7)+ET7%AM
EMC4,8)=EM(4, 8)+E&%AM
m:nm\wVHmZAw\mV.*.mw
EM(5,6)=EM(5,6)+LE6
mvuﬂo.‘@v“mxno.‘@uxvm.w
EM(7,7)=EM(7,7)+ES
EM(7,8)=EM(7,8)+E5
EM(8,8)=EM(8,8)+E7

DB 45 1=1,7

I1=1+1

D@ 45 J=11.,8
EX(J,I)=EK(I1,dJ)
EM(J,1)=EMCI,Jd)
CONT INUE

357
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* CALCULATE THE STIFFNESS AND MASS MATRI CES *

******************************************************

CALL TRIMUL(B,EK,C,D,8,8,8,8,8)

CALL TRIMUL(R,EM,C,D-8,8,8,8,8)
*******************x*x**%****$**************x****»****
* PUT THE ELEMENT MATRICES INT® SUBSYSTEM MATRICES *
*******************************************x**********
KK=4%(K=1)

CALL ASMBLE(SK,EK,KKsKK,1,8,8,L)

CALL ASM3LE (SM, EMLKKLKX, 1, 8,8, L)
**********&»*x********x*******************************
* ~ G@ BACK AND REPEAT CALCULATIONS FOQR @THER ELEMENTSx
******************************************************

IF(K-N>30,50,50

50 CONTINUE

RETURN
END

-3
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SUBREUTINE  THKSYS (SK,SM,SKB,SMB,CC,RDE,RRE,NTD,NTB,L,LL)
**********************************'********************

% THIS SUBREUT INE ASSEMBLESTHE STIFFNESS AND MASSx*

* MATRICES ¢F THE TW® SUB SYSTEMSINTGTHESYSTEM  *

%- MATRICES. THE DISC SUBSYSTENSMATRICESSK(L,L) AND*

* SM(L,L) ARE THEMSELF USED AS SYSTEM MATRICES. *

% BEF@REENTERING THE SUBROUTINE INITIALISE ALL THE =

* TERNS @F THE SUBSYSTEM MATRICES SK,SM,SKB,AND SMB %
******************************************************
DIMENSIBN SK(L,L)»SM(L,L),»SKB(LL,LL),SMB(LL,LL)
DIMENSICNDK( 14, 14),DM(¢ 14, 147, T(14,14),CC14,14),DC14,14)
CoMMBN/GPT | 2N/ | ¢PT,IRNG,ITHD,ITED, ITHB,ISTB | x
CeMMZN/BNE/AM, AM2 , AM4 , AMPR

RR=RDJ = =

10

1F (IRNG «NE.0O) RR=RRE ) -
DZ 10 I=1,14 .

DO 10 J=i.,14

DK(I,J)=SK3(1,J)

DM(I,dJ)=5M3(¢1,J)

TC1,J>=0.0 . .
******************************************************
* APPLY THE CZNSTRAI NT CZNDITIEZNSTG THE BLADE *
*  SUBSYSTEMMATR I CES .
****>Z<*************************************************

*

T3,5%=1 . O

T4, 1)=1 .0

T(¢(5,2>=1.0 )
T(6,3)=1.0 '

T(7,1)==-AM/RR

TC(7,4>=1 0

T(E,6)=1.0

T(9,7>=1 .0

«TC10,8>=1 .0

15

DO 20 J=t,12 '

TC(l1,93=1 .0

T¢C12,10>=1 .0

TC13,113=1.0

TCla,12)=1 .0

CALL TRIMUL(CT,DKXsC,sD, 141 12, 14, 14, 14D
CALL TRIMUL(CTLDM,CsD,14,12,104, 14, 14)
D3 15 I=l.,l4
DO 15 J=l,14
CCl,Jd)=8KB(I1,Jd)
D¢(I1,J)=5M3(1,d)
D232 20 I=1.,12
I11=1+2
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JJ=J+2

SKB(I1,JJ)=DKX(1,dJ)

SMB(II,JJ)=DM(I,J)

sk o ok sk sk sk ok ok ok ok ok ok ok s ok ok ok ok ok oft 2k 3k Sk sk ok sk KOk ok o ok 3K ok ok v ok 3 3k sk ok ok ok ok sk ok ok ok ok ok sk
# ASSEMBLE THE DISC AND BLADE MATRICES | NTO THE *
* SYSTEM MATRICES *
3k 9 ok ok ok ok ok ks ok sk s sk sk R ok sk i ok sk sk ke ok ok sk sk sk i sk sk sk sk ok ok sk ok Rk Sk Ak ok 3R ROK R koK R ok ok Xk ke
1I=1+NTD-6

DO 30 J=3,NTB

JJsJ+NTD~6

SK(II,JJI)=SK(I1,JJ)+COCx5KB(I,dJ)
SMCITLJJI=SMCI1ILJJ)+CC*SMB(I,d)

[X) 35 I=1,14

DO 35 Jd=1,14

SKB3(1,d)=C(I,d)

SMB(I,dJd3=D(I,d)

RETURN

END S

>
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D.4.4 Subroutines Used Bothin PROGRAM-2 and PROGRAM-3

SUBRBUT INE INLSTR(SK,R,T,TE,W,P,SGR,SGT,NSD,NMS)

*******************X**********************************
*  THISSUBRCUT INE CALCULATES RADIAL AND TANGENTIAL *
* STRESSES SGR(L) AND SGT(L) AT THE NZDALPOINTSOGF *
* AN AXISYHMETRICHNEN UNIFOGRM.DISC WITH 29X WITHZUT *

* A RIM DUE TOUNIFORMROTATIEN AND AXISYMMETRIC *
% TEMPERATURE CGRADIENT TEC(L) *
YHILE ENTERING THE SUBRCUTINE INITIALISE ALL THE %
TERMS ¢F THE RADIUS VECTSRR(L), THE THICKNESS *
% VECT@GR T(L), AND THE TEMPERATURE VECTGRTE(CL) *

sk s 3k ok 3k ok sk sk sk sk sk i 3 i ok sk oK sk ok sk sk sk sk ok ok ok 3K 3 sk ok ok ok ok kK ok o ok ok ok ok K sk ok ok sk skook ok ok ko
DIMENSIBN SK(MS,MS), W (1MS),P(MS),R(MS),T(MS),TEC(HMS)
DIMENSIBN SGR(MS)H»SGT (M5)

DIMENSION EK(C4,4),3C4,4),C4,4),D(4,4)5,EP(4),EE(4)
COMMEN/BPTIZN/IOPTLIRNG,ITHD,ITED,ITHB, ISTB
CUMMBN/TWE/S51,52,53,54,CKD,CKR,CMD,CMR,CC,CCCLCKLCPLCT
COMIEN/FOUR/P1,ED,ERLEB,ROD,RER,RZB,ALD,ALR, PRD,PRR, PRB
COMMBN/FIVE/SRI,SRO

NS=NSD

IFC(IRNG«EQs1) NS=NSD+1

NN=2 %NS

DG 20 I=1,NN

P(IY»=0.0

DB 20 J=1,NN

SK(I,J2=0.0 N
PRINT 3

K=0

N=NS -1

PR-PRD -

CONTINUE
N
s st o sk ok ok ok ok oK o o oK S o sk K ok sk K sk ok ok ok ok ok ok K K ok o Sk K 3k ok S K ok ok sk sk ok sk ok ok stk ok ok Kok ok

% SELECT THE NUMBERX OF THE ELEMENT *
sk sk sk >k o3 ok sk ok 3k sk ok 5 sk sk % ok 3k sk sk sk 3k ok sk sk ok 3K 3K ok sk 35k 3k ok ok K ok ok ok ok K o8 ok ok ok ok ok 3¢ s ol oK K sk ok ok
K=K+1

IF(K.EQ .NSD)Y PR=PRR

Kl1=2*I<-1

K2=2%K

******************************************************
* GET THE VALUES OF RADIUS AND THICKNESS AT N@DES  *
******************************************************
RI=R(KI )
R2=R (K2)
T1=T (K1)
T2=T (K2)

KK=2%(K~1 )
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Do 40 1=1.,4
DO 40 J=1,4 ,
B(Il,J)=0.0

4 0 EX(I,J)=0.0
DD=R2-R1
D1 =DD=*DD
D2=D1 *DD
ALFA=(R2*T1-R1*T2)/(R2-R 1)
BETA=(T2-T1)/(R2-R1)
Xl =aLFA*CK
X2 =BETA*CK
IF(K.EQ.NSD) X1 =X1*ER/ED* (!l .0-PRD*PRD)/ (1l «0-PRR*PRR)
IF(K.EQ.NSD)Y X2=X2%ER/ED%(] «0-PRD*¥PRD)/ (}l .0~-PRR*PRR)
B(l,1)=R2xR2*x(R2-3.*%R1)Y/D2
B(l,3)=R1%R1*%x(3.*R2~-Ri>/D2
B(l,2)=-R1*R2*%R2/D1
BCl,A4)=-R1 %Rl *xR2/D!
B(2,1)=6.xR1%xR2/D2
B(2,3)=-B(2,1?
B(2,2)= R2*(2.0*%xR1+R2)3/DlI
B(2,4)= RI*(R1+2.0%R2)/D!
B(3,1)=-3.%(R1+R2)/D2
B(3,3)»=-3(3,1>
B(3,2)=-(R1+2.%R2)/Dl
B(3,4)=-(2.*R1+R2)/D!
BC4,1)= 2./D2
B(4,3)=-B4,1) -
B(4,2)= 1.0/D}
Bl4,4y=B4.2)
Al=R1%xR2
A2=A1%*A]
A3 =R2-R1
AL=R2*%*%2-R | x%2
AS5S=R2%*%x3-R1 %x%3
A6=R2*¥%x4 -] k%4
A7 =R2%x%5-R 1 %x%5
AB=R2%x5-R| %x%x§
AG=R2%xxT~-R1 %xx%x7
C5=ALGBG (R2/R 1D
El =X1%C5+X2*A3
E2=X1%A3+X2x0.5%A4
E3=X1%0.50%A4+X2 %S| *A5
E4=X]1 %S *A5+X2%x0.25*A6
ES=¥1%0.25%A6+X2*%x0.2*A7
E6§XI*O.2*A7+X2*SZ*A8
E7=%X] *S2%A8+X2 %53 *A0
sk vk ok o Sk ok ok ok ok k3 3k ok 0k ok ok sk sk sk ok oK 3k Sk 3K vk Ok Db 3K 3K %k X sk 3k 3K ok 5Kk ok Kk ok ok Sk ok ok ok s sk sk sk sk ok oK %k ¥
* CALbULATE THE SHMALL 'SHMALL K'* MATRIX - *
****************************************************'**
EK(l,1)=E1l
EK(1,2)=E2%(l 0+PR)
EK(1,3)=E3%(1.0+2.0%PR)
EKCY,4)=E4%(1 .0+3.0*PR)
EK(2,2)=E3%(2.0+2 «0*%PR)
EK(2,3)=E4%(3.0+3.0%PR)
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EK(2,4)=E5%(4.0+4.0%PR)

EX(3,3)=E5*%(5.04+4.0%PR)

EK(3,4)=E6%(7.0+5.0*%PR)

EXC(4,4)Y=ET%(10.0+6.0%PR)>

EK(2.,1 Y=EK(1,22

EX(3,1)=EK(1.,3)

EX(4,1)=EK(1.,4)

EK(3,2>=EK(2,32

EKC4,2)Yy=EK(2,4)

EK(4,3)=EK(3,4>

Y 1=ALFA*CP

Y2=BETA*CP

IF(K+EQ.NSD)Y Y1=Y1*ROR/RED

IF(K.EQ.NSD)Y Y2=Y2*ROR/RED
******************************************************‘
* CALCULATE CYNSISTANTLZADVECTERFOR RETATIEZN - %K
******************************************************
EPCIY=YI %S *A5+Y2%0.25%Ab
EP(2)=Y1%0.25%xA6+Y2%0 « 2%A7
EP(3)=Y1#0.2%xAT7+Y2*52*AE
EP(4)=Y 1 %52*xAG+Y2*53xA9
IFCITED.EQ.O0) GO TG 42 )

5k sk ok 3k sk 3k 5k 3k 3K ok ok K s 3k sk ok K ok o sk s sk sk ok oK sk ok kK sk ok 6 3K ok K ok oK 3K ok >k 3k K ok K oK 3K ok 3K R K kR 2ROk ok
* GET THE VALUES EFTENMPERATURE AT NODES *
3 ok sk 3k sk sk Ak sk ok ok sk K 3K 3k Sk ok sk sk o 3 K sk ok ok 3 sk ke ok sk ke o ok 3k sk ok e sk sk sk 3k koK ok 5k ok R K kOR RoR Rk
TEl =TE (K1) :

TE2=TE(K2)

PRINT 2,X,R1,R2,T1,T2,TEl,TE2

ALFT=(R2%TEl~-R1*Tz2)/DD

BETT=(TE2~TE}l >/DD

Z1=aALFAxALFT*CT ? N
Z2=ALFA*BETT*CT+3ETAXALFT*CT

Z3=BETA*BETT*CT

IF(K.EQ.NSD)Y Z1=Z1 *xER/ED*ALR/ALD

IF(K.EQRWNSD)Y Z22=Z2%ER/ED*ALR/ALD

IF(K.EQ.NSD) Z23=Z3%ER/ZD*ALR/ALD
******************************ﬁ.‘***********************
% CALCULATE C3NS ISTANT LZAD VECTOGR FGR TEMPEZRATURZ *
s 3k 5k 3% 5k >k 5k ok ok ok ok 3 ok sk sk % ok 3k 3K sk ok sk ok ok s sk ok sk ok KK kK oK 3k ok 3k 3k sk ok ok Rk ok o K ok o R ok Skok Rk K
EP(IY=EP(1)+21 #A3+Z2%0.5%xA4+23%S]*A5
EP(2)=EP(2)+2]1 *A4+22%2 . 0%5 1 *A5+23%0 . 5%A6
EP(3)=EP(3)+21 *A5+22%0 . 75%A6+23%0 « 6%A7
EP(4)=EP(4)+Z]1 %A6+Z2240 . 8*xAT+Z3%2 «0%S1 %A

GG TY 43

CZNTINUZ

PRINT 2,K,RI,R2,T1,T2

D3 45 1=1.,4

DO 45 J=1.,4

C(I,Jd)=80Jd,1)
***’l‘-**************************************************
* CALCULATE LZADVECTERAND STIFFNESS MATRIX *
******************************************************
CALL MATMUL(CCLERPLEE,4,4,4,1,4)

CALL TRIMULCBLEX,C.,D.,4,4,4,4,4)
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s o o sk sk sk ok ok ot ok 3k sk ok ok ok Kok ok ok o ok o oK oK oK R ok ok kR o ok ok ok ok K ok K R ok Sk ok ok ko ok ok
* PUT THE ELEMENT MATRICES INTEC SU3SYSTEM MATRICES x
3k ok ok ok o ok sk ok ok ok ok ok kK kK 3K K R R OK 3K Sk sk ke sk R ok KR ok Kk sk K s sk skoOk ok sfokok koo ok kO Ok
. CALL NSNMBLE(SK,EK, KXs KK, 1,4,4,M5)
CALL SYSL@D(P,EE,KK,4,4,M5)
sk ok ok ok ok ok ok ok ok ok sk of ok 3k ok 5K ok K ok oK Sk oK K ok K K oK ok R ok ok ko K ok ok K ok sk ok sk sk ok OlOR Ok ok K ok ok
*  G@B3ACK AND REPEAT CALCULATIONS FOR GTHER ELEMENTSx*
sk ok ok 3 st ok ok ok ok o ok ok 35k sk ok sk ok ko oKk sk ok stk ok Sk ok sk o ok o ok ok 3K ok sk ok R R ok ok ok ok ok ok
IF(X~N)30.,50,50

* 50 CONT INUE

PCl)=P(1)+8R]1
P(NN-1 >=P(NN-1 )>+SR0O
CALL INVT ¢SK, NN,MS )
CALL MATMUL(SK,P,W,NN,NN,NNs1,MS)
******************************************************
% CALCULATE STRESSES AT NZDES@F EACH ELEMENT *
******************************************************
PRI NT 1
D@ 60 K=1,N
E=ED N
PR=?RD
ALFA=ALD . g
IF(K.EQ.NSDY E=ER
IF(K.EQ.NSD) PR=PRR
1F(K.EQ.NSD) ALFA=ALR
CS=E/ (1 .0-PR*PR)
KI=2%K=-1
K2=Kl+1
K3=K2+1
Ka=K3+1

SGR(K1I)I=CS* (W (K2)+PR*W (K1 )»/R(K1))
SGR(K2)=CS % (W (K4 >+PR*W (K3)/R(K2))
SGT (K1 3=CS* (W (KI1)/RK1I+PR*WV(K2))
SGT (K2)=CS* (W(K3)/RIK2)Y+PR*W (K4))
IF(ITED.SQ.0) GG8TO 60
SGR(KI1)I=SGR(K1)-CS*ALFAXTE(K] )* (1 .0+PR)
SGR(K2)1=SGR(K2)~-CS*ALFA*TE(K2)* (1 ,0+PR)
SGT (K1)=SGT (K1) ~CS*ALFA*TE(KI )% (1.0+PR)
SGT (K2)=SGT.(K2)-CS*ALFA*TE(K2)*(l ,0+PR)

60 PRINT 2,K,SGR(K]! ),SGR(K2),SCT (K1 ),S5GT(K2)

RETURN
1FERMAT (1 H1,//75X, " STRESSES IN THE DISC *//2X,'ELEMENT
«RADIAL STRESS TANGENTIAL STRESS'//)

2 FORNAT(/2X,15,8E13.5)
3 FOBRMAT (1H1,/5%, ‘DISC DINENSIENS'//)
5 FORMAT (4E13.6 >
10 FERUAT(2X,5E13.6)
END
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SUBROUTINE EIGUVAL(SK,SML,DL,FL,FR,B,C,X,ER,B7,88,89, IJK.,NI1,L)»

LS S S E RS EE S EE SIS EISERSELSESEETEEEEEEEE LTI S TS

* THIS SUBREUTINE SOLVES THE EIGEN VALUE PROBLEW *
* RELATE3 TO THE VIBRATIZNPRCBLEMCBNSIDERED. *
*  SK(L,L) AND SM(L.,L) ARE THE STIFFNESS AND MASS *
* MATR I CES GF THE VIBRATING SYSTEM AND THESE SHOULD =
* BE DEFINED BIZIFERE ENTERING THE SUBROUTINE. ALL THE*
* OTHER ARRAYSANDVECTCRSNEEDNGT BE DEFINED.

* IJK = THE P3S IT IZNCF THE ELEMENTOF THE MODAL

* VECTGRWHICH IS KEPT AS UNITY WHILEITERATING. *
* NI - SIZE €F THE ARRAYS SK AND S o *
* L ~DIMENSIEN GIVEN T@ SK AND &M *

A 3R 2k sk o ok ok sk skofe ok ofe ke ok S ok e sk 3K ok ok ok ok ok ok 3 s vk ok sk ok ke sk ok 3k ok ok ok R ok o ok 3k oK ok ook ok ok Kk ok

DIMENSICN SK(LLL),SM(L,LY,DC(L,L),F(L,LY,B(LY,C(L),»X(L),ER(L)

DIMENSIECN B7(L),38(L),39¢(L),FR(20,10)
CeMMBN/SIX/CBNST»MrKK

ALLBY =0 .0000000 1 T

MA=M+1

IF(N] «LT.KK) KK=NI1

e 3R 3k o ok i ok ok ok ok ok ok ok oK 3 e sk sk ok ok st sk ok ok Sk ok ok 3K 2K 3 3 3K 35 oK 3k oK 3K ok 3K sk 3k 3k 5K ok % 3k 3k oK ok K oK
* F@RM THE DYNAMICSTIFFNESS MATRIX D(L,L) *
k2% ok ok 3k 3k ok ok ok o ok ok sk ok Sk sk sk ok ok K 3k ok ok >k 3k >k K 3k 3¢ 3K sk 3Ok 5k sk sk ok ok ke sk 3k Sk ok 3k ok ok sk koK ok K ok K
CALL INVT(SK,NI,L) .

CALL MATMUL(SK)SM)D)NI)N,])NXJNIJL)

sk 2k ok ok i sk ok ok 3 sk sk K ok sk ok sk 5k >k ok 3k sk sk K skt ok sk ok sk sk sk sk sk sk o sk ok sk ok sk sk sk ok sk ok ok sk sk o ok ok ok ok
* SPECIFY MAXIMUM NUMBER @GFITERATIONSBEYSNDWHICH *
* ITERAT 18NSHEZULD BE STEPPED *
3k ok 356 ok sk 3 3 o 3 sk o o ok ok ok % sk ok oKk ok ok K ok ok sk ok 3 3k 35 o sk ok K ok sk ok sk sk 3k ok ok 5K K oK ok ok ok sk Xk ok ¢
M1=95

DO 30 I=1,Nl

X(I>»=1.0

CcId=1.0

MM =0 :

Mr=MM+1

NI=0

LN=7

LL=LN

=k 3k 3k 3 3k sk ok sk 3 i Sk ok ok ok sk ok 3k sk ok 3 3k sk i sk sk ok sk sk Sk ke ik 3k 3k 3k ok 3K sk 3K sk 3K 3K K ok 3k ok ok 3k ok 3k ok 3k ok ok Kk
* S T A R T ITERATIOGN *
e 3k 3k 3 sk ok 3 ok 3k sk Sk sk ok R 5K ok 3k k3 ok 3k ok K e vk 3k dk >k 5k ok 3k >k 3k sk ok ok ok koo ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok
NI=NI+1

ML=LL+1

NN=MNL+1

DE 31 I=1,NI

B(1>=0.0

D2 31 K=1,NI

B(I)=B(I)+DC(I,KY*C (KD

3ok 3k ok 5k sk ok 3Ok ok K ok sk ok ok ok ok ok ok K sk sk ok sk ok sk sk ok sk 3k 3K o ok %k ok K 3K 3K %k 3k 5K ok 3k 3K ok ok 3k 3k sk ok sk ok ok
* EVERY SEVENTHITERATICNGE TG THE QUICK REZUTINE *
* ND REFINE THE ASSUNEDVECTGR' *
3 sk o ok 3k ok ok 3k sk ok ok ok % 3k Sk ok O ok Sk 3k ok i 3 ok sk e ok Sk ok sk otz ok K sk K Sk K ok ok 3k ok o ok ok ok 3k Rk ok ok ok ok Xk
IF(NI-LL)51.,52,53

IF(NI-ML)S1.,54,55

IF(NI-NN)S1.,56,51
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DO 44 I=1,N! 1
B7(I)=B(C(I)

CCIy»=8CI>

GeTB 50

54 D% 45 I=1,N1

45

5

46
60

61
62
51

90

32
320

43
49

42

B8(I»=B(1)
CcIdx=BI1)
GO TO 50 [

6 DY 46 I=l,NI

BOCI>X=3(1)

CONT INUE

CALL MAX(B,3MAX,MILNI1,L)

B(M1)>=0,.0

CALL MAX(3,BMAX,HW2,NIl,L>

CALL QUICK(B7.,B8,B9,C,X,NI1,Ml,M2,L)
LL=LL+LN

GO TE 50

-BMAX=ABS(B(IJK)Y 9

DZ 32 I=1.,N1

B(I>=B(I)/BMAX

ERC(II=B(I>-C(I)

CALL MAX(ERLERMAX,M3,N1,L)D

3k >k 3k 3k ok ke o ok 3k o 3 ok ok sk ok o ok ok ok ok ok o ok ok ok sk o ok ok ok sk ok o ok e 3ok ok Sk ok ok ok ok ok ok sk ok ok s siok ok
* CHECK CZNVERGENCE *
3k sk ke >k ke 3k ok o sk 3K Sk oK sk sk R ok sk o o sk ok sk ok Sk oK sk ok ook ok ok ok ok ok ok sk Ok sk ok s o ok ok 3k sk o K ok ok koK
ERMAX=2.0*ERMAX/ (ABS(B(I39)+A35(C(M32) 9

IF(ERMAX.LT -.ALLEW) GE TG 4 2

DB 49 I=1,NI

CCI»=B(I)

IF(NI-MIDS50.,50,42

CONT INUE’

ke 3K ok 3 ok ok 3k ok 3 oK ok oK sk ok ok ok ok ok ok ok sk ot ok o oK sk ok ok sk ok sk o ok ok ok sk sk ok ok ok sk sk ok ok sk ok ok ok ok sk sk ok
* PRINTEUTFREQUENCY VALUE AND THE MZDALVECTER *
3¢ 3k 3k 5K 3K ok ok ko kR 3R ok ok ok ok ok o sk ok ok ok sk ok sk ok ok ok ok ok ok ok oK Sk 3k ok 3K ok ok K oK Ok 3 K 3 3K K oK 3 ok
PRINT 80,NM,NI

FREQ=CEZNST/SART (BMAX)

FR(MALMMO=FREQ

PRINT 81,FREDQ

PRINTS83

PRINT 84,(3C1),I=1,N1 9

DO 65 I=1,NlI

CCI>=0.0

DO 65 K=1l,NI

65 C (I 9-C (I)+3(KI%SM(K, 1)

66

67

ALFA=0.0

D8 66 I=1,NI!
ALFA=ALFA+C(I)>*B (1)
BETA=50GRT(ALFA9

D& 67 I=1,NI
B7T(1)=B(I)/BETA




IF(MM-KK)>59, 100, 100

59 DB 68 1=1,NI
DB 68 J=1,NI
F(1,J3=0.0 P

68 F(l,J)=F(1,J>+3(1XxCJ)
G=BMAX/ALFA
****************:{:*************************************
%* FORM THE NE:! DYNAMIC STIFFNESS MATRIX K
************************************#ﬁ*****************
DO 69 I=1,N1
D@ 69 J=1i )Nl

69 D(I1,J)=DCI,J)-G*F(I,J)
DB 95 1=1.,Nl

95 CCI)X=X(I)
GO TO 150

100 RETURN

80 FBRMAT (5%, MEDE NUMBER = 212,4X,'ITERATIGNS =',13/)

$1 F@RMAT (5%, "FREQUENCY IN HZ.=',El4.8/) )

83 FORMAT (20%, '*MODAL VECTIR'/)

84 FE@RMAT (/ 5X,SE13.6)
END
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SUBRGUT INE I NVT(A,N,L)

o 3o i oKk oK ok K K K ok ok ok ok b ok 3Kk ok oK ok ok K ok KO sk SR K sk kK ok ok K ok ok ok ok ok o KO ot 5k
*  THIS SUBRCUT INE INVERTS THE MATRIX ACN,N)Y AND *
* ST@RES THE INVERSE IN THE SAME MATRIX *

3K oK ok 3 3 Sk ok ok e ok i ok Ak ok e sk ok ke ok ok ok S sk ok ke ok ke Sk 3k ok o ok ok ¢ ok K ok ok oKk ok sk ke Kk K S ok ok ok ok K k¢
DIMENSIEGN A(L,L)Y,INDEX(100.,2)
15=1 ,
D3 108 I=}1,N
108 INDEX(I,1)=0
11=0
109 ANAX=-1.
DO 1101=1,N
IFCINDEXCIL1))110,111,110
lil D@ 112 J=I,N
IFC(INDEX(J,1))112,113,112
113 TEMP=A3S(ACI,J))
IF(TENMP=-ANAX) 112,112, 114 -
114 IRGY=1

ICoL=J

"AMAY=TEMP ; )
112 C@NT INUE -
110 COBNTINUE

1S=1S+1 ’

10  FORMAT(I6,E13.6) .
IF (AMAX)225,115,116
116 INDEX(ICEL,1)=IRGY
IFC(IROW~ICOLI1IO, 118,119 . .
119 D@ 120 J=I,N . S -
TEMP=A(IR2Y, J) { S -
ACIROW,J)=ACICIL,J)
120 AC(ICZL,J)=TEMP
II=11+1
INDEX(II,2)=1CCL
118 PIVBT=ACICBL, ICEL)
ACICOL,1COLY=1.
PIVGT=1./P1VGT
DO 121 J=1,N
121  ACICEL,J)=ACICOL,J)*PIVET
DG 122 1=1,N
IF(I-1COLY123,122,123
12: TENP=AC I ICCL)
ACI,ICOL)Y=0.
DB 124 J=1,N _
124 ACI,JY=ACI,J)-ACICOL,J)*TEMP
122 CONTINUE
GO TO 109
125 ICOL=INDEX(11,2)
1ROW=INDEX(ICCL, | )
DO 126 I=1,N
TEMP=AC1,IRQY) :
ACI,IROW)I=ACI,ICEL)
126 ACI,ICCL)=TEMP
I1I=11-1
225 IFCI1)125,127,125
115 PRINT 150
150 FO@RMAT (110, 10HZERG PIVBT,/)
127  CONTINUE
RETURN
END
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SUBRGUTINE MAX(A)Z)MJNJL)
LSS S EIEEEEES LS LSS ST SESEEEEIEIELELTERFE S SRS S LT T TS

* THIS SUB3ROCUTINE FINDS @UT THE ABSZLUTE MAXIMUM *
"* - Z AND PESITICN M OUF THE ELEMENTS €F THE VECTER *
AN *

EEEEE T EE SRS EESFIEEEEEE TS EEEEEELEEEETEEETEEESETET S

.DIMENSIZN ACL) )

Z= ABS(ACLD))
M=

193] 2 I=2,N
Y= ABS(A(I)Y)
IFCY-232,2:3
Z=Y

M=1

CONTINUE
RETURN

END

SUBRBUTINE QUICK(B7,B8,B89,A,B,N,HM1 ,M2,L)
PSS 3T FHESIIETFEFEFSETTIELTLTELITERES S FEZTEES LTSS LSS 2T
* THIS SUBRYUTINEREFINES THE MODALVECTORFZR QUICK*

*  CENVERGEINCE *
9 3 o 2k o 3k sk ok ok k% o ok Sk ke sk sk ok ok ok KOk ok ok ok ok ok ook sk sk ok sl ok sk sk ok sk ok Ok sk ok ok ok ok sl ok ok
DIMENSIZN B7(L),B8(LY,BO(L),A(L)Y,B(LD

DR=B& (M1 237 (M2>-B7 (M1 )*B&(M2)

Al =39 (M1H)*x38(M2)-BB (M1 Y*B9(1M2))/DR
A2=(BO (M1 )BT (M2)~37 (M1 )*B9(1M2))/DR
A3=0.5*SART (A2%*2 -4 %Al )
C1=0.5+A2+A3

C2=0.5%A2~-A3

D 10 I=1,N

ACI>=39(1)-C2*B8(I
B(I>Y=39(I>-Cl*B&(1

RETURN

EIID ,

SUBRZUT INE MATHMUL(A,3,C,MNA,NALMB,NBLL)D

k*****************************************************

¥ THISSUBRGUTINE IMULTIPLIES THE MATRICES A  AND B *

« AONDTHE RESULTING MATRIX ISSTEZRED IN THE ARRAY C *
¥ MA - NUM3ERCF ROWS IN MATRIX A *
¥ NA -~ NUMBER CF COLUNMNS I N MATRIX A *
« MB - NUMBER 2F ROWS IN MATR I XB *
¥ N3 - NUMBER €F CCLUMNS IN MATRIX B *

******************************************************

BIMSNSION ACLLL),B(L,LY,C(LLL)
D@ 5 I=1,MA

D 5 Jd=1,NB

C(1,J)=0.0

DB 5 K=1,NA

C(1,d)=CCLl,Jd)+ACIL,KI*B(K,J)I
RETURN :
END
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SUBROUTINE TRIMUL(A,B,C,D,NMA,NA,MB,N3,L)
******************************************************
* TH'S sU32¢uT INE PREMULTIPLIES THE MATRIX B BY THE =
* TRANSPOSE GF A AND THEN PaSTMULTIPLIES THE PRODUCTx
* BY THEE MATRIX A AND GIVES THE RESULTING MATRI X *
*  STBRED IN THE ARRAY B | TSELF

*  MA - NUMBER 9F REUWS IN MATRIX A

*  NA - NUMBER OF CZLUMNS IN MATRI X A

¥ MB - NUMBER OF rRgws IN MATRIX B

* NB - NUMBER 2F Cc3LUMNS IN MATRIX B
**************************************#*************&*
DIMENSION ACL,LY,B(L,L),CC(L,LY.D(L,L)
D2 10 I=1,MA

Cd>1d=aC1,d)

CALL MATMULCC.,B.D,NA,MA,MB,NB,L)
CALL MATMUL(D,ALB,NA,NB,MA,NALL)
RETURN

END

¥ O X KX %

SUBRGUTINE REDUCE(A,NsL,K,M)

3k K 2k ok ok 3k 3k 3K 0K 5k sk sk sk sk ok 3k ok sk ok sk sk sk sk Kook sk sk ok ok sk ok e sk sk sk sk ok ok sk ok K 3k sk sk ok oK sk ok sk sk ok sk
* TH' S sUBRgUTINE REDUCES THE SIZE OF THE ARRAY A *
* FRBM ( N X N ) T8 ¢ N-K X N-K > BY scgring OQUT *
¥ REWS AND CZLUMNSFREM L TZ L+K *
3 33 oK ok ok ok sk ok sk sk st s sk sk sk K S R >R 3 ok ok ok ok sk sk i ok sk ok ok 3k 5K 3k oK ok ok 3K sk sk sk ok 3K 3k 3k ok sk sl sk sk kK ok
DIMENSICN A(MLM)

NM1 =N~-¥K .

DB 10 I=L,NMI1

DZ 10 J=1,N

1I=1+K

ACIL,Jd)=ACI1,d)

DE 20 I=1,N

D& 20 J=L,NIil

JJd=J+K

A(I)J)=A(11Jd>

RETURN

END

e
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SUBRCUTINE ASHM3LE(A,B,M,N,KS,K,LL,L)

Sk 3k o 3 ok ok 3k ok ok ok sk ok ok ok s sk K K ok 3K s sk sk Pk sk Sk sk 3k ke ok Sk sk sk ok vk o ok K sk s ROk Kk ak 3K ok oK ok ok sk sk ok ok
x TH'S SUBRGUTINE ASSENM3LES THE ELEMENT MATRIX *
*  B(LL,LL) INTZ THE SYSTEM MATRI X A(L,L> *
ok sk sk ok ok ok Ak Sk vk K ok o ok s o 3k %k o3k K ok sk oy ok ok ok ok ok ok sk ok sk o ok o sk sk ok 3k ok ¥ >k >k ok vk ok ok ok ok ok sk ok
DIVMENSION ACL,L)>,B(LL,LL)

D2 10 I=KS,X

MM=144 | -KS +1

DO 10 J=KS,K

NN=N+J-KS+1

A O, NN DY ==A LN B (L1, )

RETURN

END ,

SUBROUTINE SYSLZD(A,B,M,NN,LL,L)
******************************************************
* TH'S SUBRGUTINE ASSNHBLES THE ELEMENT L@gaD VECTZR *
* B(LL) INT¢ THE SYSTEM L3AD VECTOR A(L)
******************************************************
DIMENSIEN A(L),B(LL)

D2 10 I=1,NN

MM=M+1

Aasn =A@y +3 1)

RETURM

END




