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ABSTRACI-

A study is presented of the flow of vibrational power in linear structures during steady-state forced

vibration. The main thrust of the work is directed towards an assessment of some applications

proposed in the literature for vibrational power flow, and the identification of other areas where

power flow methods are applicable.

With the help of basic Electrical Engineering concepts, the vibration analysis of spring-mass-damper

systems is used as a vehicle for clarifying the basic relationships between power, energy and motion

response in vibrating structures. The structures under consideration are presumed to be composed of

substructures connected together at joints. The expressions for power flow are derived in terms of

the frequency response matrices, and the

joints between substructures is examined.

A vibration isolation method proposed in

nature of energy flow via the coordinate directions at the

the literature aims at minimising the time-average power

flow to the structure which is to be isolated. An evaluation of the proposed method is presented. It

is shown that under certain circumstances a reduction of the time-average power flow will not

necessarily result in lower vibration amplitudes and, therefore, the proposed method must be

employed with caution.

One object of the present work is to explore other areas of vibration analysis, outside the context

of Statistical Energy Analysis, where the concept of power flow could be usefully employed. To

this end, a method is proposed for assessing the relative importance of coordinates in the vibration

analysis of connected structures by the Impedance Coupling technique. The method is based on the

assumption that the relative importance of any coordinate at a joint depends on the magnitude of

the energy transferred per cycle via that coordinate direction. The method is applied to a range of

test structures, and the results show that the underlying assumption is sound and that the method

works.

The flow of vibrational power in a simple beam structure is measured using a method proposed in

the literature. The accuracy of the measuring technique is assessed, and some of the difficulties

encountered in its application are discussed.
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Nomenclature

Most of the symbols used in this thesis have been defined in the text. The

following list includes some of the more important symbols and those that

have not been defined explicitly in the text.

a Acceleration

b Width of beam

A Cross-section area; also, a constant

[C] Viscous damping matrix

D A constant; also, Rayleigh’s Dissipation Function

E Modulus of Elasticity

f,F Force

F, Transmitted force

f , Force applied to Structure A

if{* Vector of force amplitudes relating to Structure A

I Second moment of area

10 Second moment of area per unit width of a beam

k Stiffness; also, wavenumber

K Stiffness

[K] Stiffness matrix

Iii Mass per unit length

m Mass

M Mass; also, bending moment

[M] Mass matrix

P(t) Instantaneous power as a function of time

F Complex power

P.” Time-average power

Pal1 Alternating component of instantaneous

^p aI1 Amplitude of alternating component of

power

instantaneous power
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Q Shear force

Q .” Imaginary part of complex power

WQ, Force transmitted to Substructure A in direction of coordinate i

R,(T) Cross-correlation function between the stationary random

processes f and v. The cross-correlation function between two

random processes, x and y. is defined as

I&(T) = E [x(t)y(t + 711 - 1 Sx*b)qlW~~
--aD

S,(w) Cross-spectral density between force f and velocity v. The

cross-spectral density S,(w) of a pair of random processes, x and y,

is defined by
aD

%44 = &
5

Rx y(r)e’jmd r
-aD

where R,(T) is the cross-correlation function.

T Kinetic energy

T.” Time-average kinetic energy

T, Force transmissibility

[T,(cJ)] Force transmissibility matrix

U Potential energy

,1 Time-average potential energy

Velocity

Vibration intensity calculated from input power measurements

Vibration intenssity

Force component of

Moment component

at position x

vibration intensity at position x

of vibration intensity at position x
Moment component of vibration intensity obtained from measurement
Displacement

Displacement vector relating to Structure A

Mobility

Mobility matrix of Structure A

Element in the i”’ row and j’” column

of the mobility matrix of Structure A
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[Z(*‘] Impedance matrix of Structure A

Zf:’ Element in the ith row and j’” column of the

impedance matrix of Structure A. Note that in general Zi:‘#  l/YI:’

E[ ] Denotes the ensemble averaged value of the quantity

in square brackets

Re( ) Denotes real part of complex quantity in brackets

Im( ) Denotes imaginary part of complex quantity in brackets

(...)t Denotes time-averaging

$- Denotes the addition of two component impedance matrices, the addition

being restricted to those coordinates that are common to both

components

Greek letters

a.@ Constants; also used as indices

< Viscous damping ratio

77 Damping loss factor

e Phase angle; also, rotational motion

t Transverse displacement of uniform beam vibrating in flexure

P Mass density

T Time-period of vibration

9 Phase angle

0 Angular frequency

Q” Natural frequency

A A constant

Superscripts

H Hermitian transpose of a matrix

T Transpose of a matrix

* Denotes the complex conjugate
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Chapter 1

INTRODUCTION

The last two decades have seen a steady growth of interest in the use of the

concept of power flow in vibration problems. The bulk of the published work

has been in connection with the development of an approach to vibration

problems which is now generally known as Statistical Energy Analysis

(SEA). The primary variable of interest in SEA is energy rather than one of

the usual vector quantities. Applications of the concept of power flow have

also been proposed in other areas of vibration analysis. These include the

identification of vibration transmission paths, nondestructive testing of

structural components and vibration isolation. The work described in this

thesis is a contribution to the literature on the use of power flow

considerations in vibration problems involving steady-state forced

excitation.

Statistical Energy Analysis

SEA provides a set of procedures for calculating the average responses of

the component parts of a vibrating system in the high frequency regime.

Energy is the primary variable of interest in SEA, and this accounts for the

fact that most of the published theoretical and experimental work involving

power flow has been in connection with SEA. The original formulation of the

SEA procedure is based on the observation that the time-average power flow

between two lightly-coupled oscillators, randomly excited by independent

forces, is directly proportional to the energy difference between the

oscillators [l 1. From this basis the theory was gradually developed to

enable the proportionality between power flow and energy to be applied to

eL .__. .._ __-
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multi-modal structural and acoustic systems.

Since the development of the SEA approach in the early 1960’s the literature

has grown quite rapidly. A number of surveys and reviews have been published

for various audiences [eg 2 - 71; but perhaps the most complete exposition

of the subject to date is the work by Lyon [8] whose book also contains a

very extensive list of references of earlier work.

Although SEA is now a well-established method, there are still several

analytical and experimental problems to be overcome [7]. The validity of

SEA techniques depends on a number of fundamental assumptions, and the

extent to which these are justified in various practical situations is often

difficult to determine. Also, some of the parameters required in the

application of SEA are difficult to obtain in certain situations. Recent

additions to the literature indicate that efforts are continuing to extend

the theoretical basis of SEA, and to develop some of its theoretical and

experimental techniques in a more systematic way. See, for example,

references 9 - 12.

Other applications of the concept of power f l o w

Outside the context of SEA, not much has been published concerning the use

of power flow in vibration problems. Goyder and White [13,14,15]  have

studied the flow of power from machines to built-up structures, and have

proposed a vibration isolation method which aims at minimising the power

flow to the foundation. They examined the nature of typical flexible

foundations and obtained simple formulae for approximating the behaviour of

the foundations. They then used these approximations to study the flow of

,_. __
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power through single- and two-stage isolators to the supporting foundation.

As a follow-up, Pinnington and White [16] have studied the flow of power

through machine isolators to resonant and non-resonant beams. These works

represent a significant contribution to the literature on power flow in

vibrating structures.

Recently, Verheij [17] has also published the results of a study of the

multi-path sound transfer in resiliently-mounted machinery on board ships.

He describes the development of several experimental techniques for

measuring the power flow from shipboard machinery to the surroundings via

various transmission paths.

A question that arises from a study of the literature on the use of power

flow in vibration analysis, outside the SEA framework, is this: Does the

time-average power flow to a component of a vibrating structure provide a

good indication of its level of vibration ? A similar question does not arise

with SEA because the underlying assumptions of the SEA procedure are very

clearly stated. These assumptions concern, among other things, the nature of

the exciting forces, the characteristics of the components and the nature of

the coupling between adjacent components. There is a need for other users of

the concept of power flow to state their assumptions very clearly, and to

examine the conditions under which these assumptions are valid. The proposal

to use the reduction of time-average power flow as a criterion for assessing

the ef fect iveness  of  v ibration isolat ion appears  to  be  based on the

assumption that a reduction of power flow will always be accompanied by a

reduction of the vibration transmitted to the foundation. The validity of

this assumption requires examination. and this is one object of the work

described in this thesis.
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The underlying principle of the use of power flow in nondestructive testing

is quite simple. Since a flaw or damage in a structural component acts as a

location of increased dissipation, it should be possible to detect the flaw

by monitoring the flow of dissipated power in the component when it is set

in vibration. However, the translation of this basic principle into practice

is fraught with many problems, the most significant of which is the

difficulty of measuring power (or dissipation) very accurately. Although

some measure of success has been reported in the literature leg. l&19],

the use of dissipation measurements for flaw detection is not yet well-

established. Brownjohn and Steele [20] have reported an unsuccessful

attempt to monitor the power flow along a steel bar as a possible means of

locating the site of structural damage on the bar. A similar experiment

carried out recently did not yield encouraging results [21].  The use of the

concept of power flow in nondestructive testing is an area that urgently

requires further research.

Measurement of input power and power flow in vibrating structures

The growth of interest in the use of methods based on power flow has been

accompanied by the need to measure power. In principle the input power to a

structure from a vibration generator may be obtained by measuring the input

force and the velocity at the driving-point, and calculating the time-

average value of the product. In practice the measurement of input power

presents several problems. The accurate measurement of force and velocity at

the same point on a structure is difficult. Studies by Brownjohn et al.

[ 2 2 ] have shown that the acceleration measured with an impedance head has

an inevitable error which is proportional to the input force and the square
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of the frequency, and is inversely proportional to the series combination of

the stiffness of the force crystal and its attachment to the structure.

A major difficulty with input power measurements by direct multiplication of

force and velocity signals is that accuracy depends heavily on the correct

determination of phase angles. Ottesen and Vigran [23]  have proposed a

method for measuring input power by direct analogue multiplication and

integration of force and velocity signals whereby the influence of phase

errors is controlled through the measurement of both real and imaginary

power components. Swift and Bies [24] have also described a power injection

device which reduces phase angle errors by matching the mechanical impedance

of the driver to that at the point of power input. The use of this power

flow transducer for the measurement of input power to a plate has been

reported by Bies and Hamid 1251.

In the determination of power from force and velocity, the velocity may be

obtained by electronically integrating the signal from the acceleration

transducer. The velocity signal obtained in this way is much smaller than

the acceleration signal, and is consequently more prone to the influence of

noise. To overcome this problem in the case of random excitation, Fahy [26]

proposed a method by which input power may be determined from the

integration of the cross-correlation between the force and acceleration

signals.

Many attempts have been made to measure power flow through vibrating

structures with varying degrees of success. Noiseux [27]  proposed a method

for measuring vibrational intensity (power flow per unit width of cross-

section) in uniform beams and plates vibrating in flexure. Simple elasticity

L
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theory was used to obtain expressions for the vibrational intensity. The

application of the method is limited by the fact that it requires the

measurement of rotation, a measurement which is quite difficult to make.

Rasmussen [28] has recently reported the use of Noiseux’s method to measure

the vibration intensity in a steel plate loaded with two viscous dampers.

Rotation was obtained from the difference of the signals from two

accelerometers mounted on a block. His results, judged against input power

measurements, were reasonable. However, there is still the need to examine

the accuracy of the method more closely.

Pavic [29] has also formulated methods for making wave intensity

measurements similar to Noiseux’s. The intensities are calculated from data

obtained purely from measurements of kinematic quantities. Spatial

derivatives of displacement are required for the calculations, and these are

obtained by finite differences. The inevitable errors associated with the

application of finite differences to measured data constitute one of the

main shortcomings of the method.

It is analytically possible to determine the power flow through a built-up

structure by using the velocity responses of the assembled structure and the

mechanical impedances of the individual components. However, it is unlikely

that experimentally-determined data will be sufficiently accurate to enable

reliable calculation of power flow. Moreover, for a structure which has

already been assembled it is not easy to obtain the frequency response data

for the individual components unless these have been determined previously.

Goyder [30] has reported an unsuccessful attempt to determine power flow in

a simple connected structure by this method.

.,.
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The increased availability of digital equipment appears to have stimulated

the formulation and application of spectral density methods for the

measurement of input power and power flow in structures; see, for example,

references 3 1, 32 and 33. In their study of power fIow from machines to

resonant and non-resonant beams, Pinnington and White [16] also proposed a

method for measuring the power transmission through spring-like isolators,

using the isolator  dynamic st i f fness  and the cross-spectrum of  the

acceleration signals above and below the isolator. One limitation of the

method is that it considers motion in one direction only. Indeed, this is a

limitation which is shared by many of the methods proposed for the

measurement of power flow in vibrating structures. Very often it is assumed

that the structure moves only in translation at the point of measurement.

Consequently, any power flow due to rotational motion is not accounted for.

In real structures the magnitude of energy transmission due to rotational

motion is seldom negligible. The tendency to assume pure translation is

probably due to the difficulty of measuring rotation accurately.

Object and scope of present study

The initial Chapters of this thesis are concerned with setting out clearly

the basic relations governing the flow of vibrational energy in structures

during steady-state forced vibration. The discussion of the basic relations

begins in Chapter 2 with the classical problem of the vibration of simple

spring-mass-damper systems excited by sinusoidal forces. In Chapter 3 the

flow of power and the transfer of energy in connected structures is

considered. The general expressions for the time-average power flow to the

components of a connected structure are derived, and the flow of energy in

the coordinate directions at the joints between substructures is examined.



-19-

One object of the present study is to explore other areas of vibration

analysis, outside the context of Statistical Energy Analysis, where power

flow considerations could be usefully employed. Thus, in Chapter 4 a method

is proposed for assessing the relative importance of coordinates in the

vibration analysis of connected structures by the Impedance or Receptance

Coupling technique [34].

The vibration isolation method proposed by Goyder and White [13.14.131  and

further studied by Pinnington and White [16] is based on the tacit

assumption that a reduction of the time-average power flow to a structure

will automatically lead to a reduction of the vibration transmitted to the

structure . One object of the present study is to assess the validity of

this assumption for the case of steady-state forced vibration. An evaluation

of the power flow approach to vibration isolation is presented in Chapter 5.

The f low of  power along a s imple beam structure has been studied

experimentally, and the results are presented in Chapter 6. Power was

measured using the method proposed by Noiseux [27].  The accuracy of the

measuring method is assessed and some of the difficulties involved in its

use are discussed.

A substructure approach is adopted in analysing the vibrating systems under

consideration in this thesis. The discussions are generally based on steady-

state forced excitation, although reference is made to random excitation

from time to time. Wherever possible the vibrating systems are described by

their frequency response functions. These functions may be in any one of six

related forms: Receptance, Dynamic Stiffness, Mobility, Impedance,
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Inertance and Apparent Mass. Since there is  some confusion in the

literature concerning the precise definition of some of these terms, it is

necessary to state here that the usage adopted throughout this thesis

follows that by Ewins 1351.
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Chapter 2

POWER AND ENERGY RELATIONS FOR SPRING-MASS-DAMPER SYSTEMS

SUBJECTED TO SINUSOIDAL FORCE EXCITATION

2.1 Introduction

The vibration analysis of spring-mass-damper systems excited by sinusoidal

forces offers a particularly suitable vehicle for introducing the relationships

between power, energy and response in vibrating systems. This chapter

introduces a discussion of the power and energy relations for vibrating

systems made up of a finite number of masses, springs and dampers.

The discussion begins with the classical problem of the vibration of a

simple one-degree-of-freedom system consisting of a spring-mounted mass

and a viscous damper. The expressions for energy and instantaneous power

provide an insight into the transfer of energy back and forth between the

source and the oscillator. The relationships between time-average power,

velocity amplitude and force transmissibility are also examined. It is shown

that, in general, the time-average

reliable indicator of the amplitude

force transmitted to the support.

power input to the oscillator is not a

of response and the magnitude of the

The discussion is concluded by examining the power and energy relations

for multi-degree-of-freedom spring-mass-damper systems. The relationships

between instantaneous power and vibration

undamped dynamic vibration absorber as a

spring-mass system.

response are examined for the

simple example of a multi-DOF

,s::  ~_. __
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2.2 The Simple One-degree-of-freedom System

2.2.1 Kinetic and Potential Energy

Under steady state conditions the velocity response of the one-degree-of-

freedom system in Fig.2.1 is sinusoidal, and may be written as

v(r) = p+oswz (2.1)
The instantaneous kinetic energy, ‘I’, is

T-li”s’f’ - +I y 12cns2wr

This may be written as

This result is shown graphically in Fig.2.2.

Harmonic exciting force, f(t)

1

Mass m

Viscous damping coefficient c

/ / //////
Fig.2.1 One-degree-of-freedom system

(2.2)
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+pq*

3x12~ 2x1”’ Time ,_a

Fig.22 Instantaneous kinetic energy of one-degree-of-freedom system

The kinetic energy is seen to vary sinusoidally between zero and a

maximum value of trnlVl*. with a frequency which is twice that of the

velocity v(t). The kinetic energy as a function of time consists of a

constant component

T, = Jppq* (2.3)

plus an alternating component whose average value is zero. The average

value of kinetic energy is therefore equal to the constant component, T...

The power taken

T. From equation

by the mass m is given by the time rate of change of

(2.2). we have

dT-=
dr

-~mjV[*sin2of (2.4)

which is a sinusoid with twice the excitation frequency and zero average

value. Thus, the time-average energy consumed by the inertia element is

zero.
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The time variation of potential energy,  U, is similar to that for kinetic

energy. If we let

x(t) = Ix 1 cos(wt f e)

where 0 is a phase angle, we have the result

u-1iklX)2[1 -t cos2(wt  + 011

The average potential energy is

The time rate of change of potential energy is

dU
- = -ykJXj2sin2(wt  + 8)
d t

(2.5)

(2.6)

(2.7)

(2.8)

which has zero average value. A plot of U against time is of a similar form

to that in Fig.2.2 for kinetic energy.

2.2.2 Instantaneous power and energy

The well-known equation of motion for the one-degree-of-freedom system shown

in Fig.2.1 is

(2.9)mK + CK + kx = f(t)

If each term in this equation is multiplied by the velocity, v(t), we have
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mzv + cv* + kxv -f(r)v(t) (2.10)

Now,

and kvx - $(:&x2)  = f$

The equation of motion (2.9) is therefore equivalent to

(2.11)

(2.12)

(2.13)

This expression is a statement of the conservation of energy. The quantity

cv* represents the instantaneous rate of energy

damper; s(T+U) is the instantaneous rate

inertia and elastic elements; and f(t)v(t) is the

to the system.

In the sinusoidal steady-state, we may write

and

f(t) = $2dwf + F l e-j”)

dissipation by the viscous

of energy intake by the

instantaneous power input

(2.14)

(2.15)

where the force, F, and velocity, V, are complex quantities (with

magnititude and phase) related through the system’s frequency response

functions. The superscript * indicates a complex conjugate value.

Integration of equation (2.15) gives the displacement as
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(2.16)

and the squares of velocity and displacement are given by

S(t) = (2.17)

and
x2(r) = -&VP +V’2c-‘20’  - 2vv )

These equations may be written in the forms

(2.18)

v2(r) = fjVl2+ +(VP)

and x2(t) = &p+ &Rc{ V2P)

The potential and kinetic energies thus become

(2.19)

(2.20)

Tarn,Ivj2+ TRe{ V%f2”} (2.21)

and u - - & + f-p{VPl (2.22)

The first terms in these equations are respectively T, and U, as given

by equations (2.3) and (2.7). The time derivatives are

dT
- = iRe(jomV2c’b)
dr

dU
and - = fRe(;V’t?)

d t

Substituting these into the equation of motion

(2.23)

(2.24)

(2.13), we have
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fclV12 + iRe{(,t + jwm + c)V2iP}  =/(t)v(r)
(2.25)

Using equations (2.14) and (2.15). the right hand side of equation (2.25)

may be written as

/(r)v(r) = iRe(F.V)  + ;Re(FvP) (2.26)

S ince  (k/jo + jom + c) is the impedance of the system, and the

product (k/jo + jom + c)V equals the force F. equation (2.25) may be

written as

f OM) - $1 v I’ + ;R e(F Vd”) (2.27)

The product f(t)v(t) is

the external force f(t).

consists of a constant

& L

the instantaneous power supplied to the system by

Equation (2.27) shows that the instantaneous power

component

Pm" ’TRe(F’V) = +pq2 (2.28)

(which is the time-average value of input power) plus a double-frequency

sinusoidal component which is given by the term

With F as reference phasor, equation (2.28) may be written as

(2.29)

c /



where 9. is the phase angle of the velocity response relative to the

exciting force. Thus, in the language of vector algebra, the time-average

power input may be said to be given by one-half the scalar product of the

force and velocity vectors.

Equation (2.26) may also be written as

fOM) - flF((VJcos~,  + ~IF(IVlcos(2d + 4,)

A plot of the expression for instantaneous power is shown in Fig.2.3.

(2.31)

f

-

~IWl
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Fig.2.3 Instantaneous power as a function of time

Fig.2.3 shows that the instantaneous power is negative during some parts

of each cycle. The area of each portion of the plot below the time axis

represents an amount of energy that is being returned to the excitation

source by the system, this energy having been stored as kinetic and

potential energy. We must note that in general power flows in both
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directions, and the power input to the system is not characterised by a

uniform flow of energy. Since the system contains a dissipative element,

more energy flows into the system than is returned to the excitation

source. The net amount of energy supplied to the system is transferred at

a rate equal to P,.

The value of cos@. characterises the extent to which the system is

damped.  We know that  costi, is zero for 9. = 7r/2, and unity for

#. = 0.  When the system is excited at the natural frequency,

w,=\/(k/m).  the mobility is purely real. #J. is zero and cos$, is unity.

The power input is then limited only by the damping in the system. The

instantaneous power curve lies wholly above the zero axis so that the

cross-hatched portions are just eliminated. Thus at the natural frequency

none of the energy supplied to the system is returned to the source.

When an undamped system is excited at its natural frequency there is a

net amount of energy gained by the system for each cycle, proportional to

the amplitude of that cycle. Since the system contains no energy

dissipating elements the amplitude builds up in each cycle. Steady-state

conditions are never attained, and the system will ultimately ‘explode*

unless the frequency of excitation is changed. For an undamped system

excited away from resonance, the mobility is purely imaginary and cost&

becomes zero. The curve in Fig.2.3 then oscillates symmetrically about the

zero axis, and the average power input is zero.

2.2.3 The Concept of Complex Power

We have seen that when a system is subjected to sinusoidal excitation in

the steady-state, energy may be exchanged back and forth between

excitation source and the system. The term reactive power o r wat ttess

power,  borrowed from Electrical Engineering, may be used to refer to the

- - ---..-.  ., ----_-_--.  .-- -.._. - _
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rate at which this energy exchange occurs.

The reactive power is defined to be equal to one-half the product of force F

and the component of velocity at right-angles to the force. This definition

is natural since the average power, P,,, is equal to one-half the product of

force and the in-phase component of velocity. The average power, according

to equation (2.28). is equal to the real part of i(F”V).  Following the usage

in Electrical Engineering we may regard the complex quantity i(F”V) as a

complex power. The real part of this complex power is the average power

input, which may be referred to as the active power. The magnitude of the

complex power is equal to the amplitude of the double-frequency alternating

component of instantaneous power.

We may write the complex power as

(2.32)

where Q., denotes the quadrature component of the complex power. Using the

relationships V = F/Z = FY, we may write alternatively

(2.33)

The power per root-mean-square force is

&IV  WIW) = y

and the power per root-mean-square velocity is

(2.35)



(2.36)

Thus the complex power supplied per unit rms force is numerically equal to

the mobility, Y; and the complex power supplied per unit rms velocity is

numerically equal to the complex conjugate of impedance. Z .

Returning to  equation (2 .9) .  i f  we substitute  f ( t )  =  FeJYt and

v(t) = VeW, we have

cv +jwbV - -2kv)=F

Taking the complex conjugate, we have

F’BCV*+jd kV’
- - mvj

w2

The complex power may then be written as

P = i(F*V) = iclV12 + jh(g - T,Vi2)

(2.37)

(2.30)

(2.39)

WI2Now, from equation (2.7), T (2.40)

and, according to equation (2.3). +‘I’ = T, (2.4 1)

Also, $'\'= pay . according to equation (2.28). and therefore equation (2.39)

becomes

Of particular interest to us here is the result

(2.42)

_
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QUV = zo(u,- T,,J (2.43)

This result states that the reactive power is proportional to the difference

between the average potential and kinetic energies. In other words. the

reactive power is proportional to the time-average Lagrangian.

If the inertia and elastic elements in the system do not store equal

amounts of energy, on the average, i.e if U,,#T,., then some of the

stored energy is continuously transferred back and forth between the

excitation source and the system. On the other hand if U,=T, then the

inertia and elastic elements merely exchange a certain amount of energy

between them, and the excitation source does not take part in this

interplay. Thus we see that the reactive power is a measure of the extent

to which the excitation source is called upon to participate in the

exchange of stored energy.

2.2.4 Frequency response functions in terms of energy functions

Using the conventional definitions of mobility and Impedance, equation

(2.42) may be written as

Thus we can express the mobility as

w4 = 2P, + isw<Q,,  - TJ
IFI2

(2.44)

(2.45)
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and the impedance as

Z(w) = 2P,” - j4w(U,  - T,)

PI2 (2.46)

Equations (2.45) and (2.46) express the mobility and impedance explicitly in

terms of the power and energy functions if it is assumed that these

expressions are evaluated for unit force and unit velocity respectively?

For a single-degree-of-freedom system, the mobility and impedance become

purely real only when the system is excited at the natural frequency,

d(k/m). Since equations (2.45) and (2.46) become purely real only when

U,,=T,,,  equality of the time-average potential and kinetic energies implies

a condition of resonance.

t The general definitions of mobility and impedance are:

Mobility, yii = (;)~~_o, kfj

and Impedance, zij = (2),-o, kfj

The impedance matrix of a system is equal to the inverse of its mobility matrix:

[Z] = [Y]_’

The mobility, Y,. relating the force and velocity response in any two coordinate directions, i
and j. remains the same irrespective of the number of coordinates used to describe the system.
However, the impedance Z, depends on the particular choice of coordinates, and therefore
impedance data is meaningless unless complete information is given about the system of
coordinates. For the case under consideration here. there is no ambiguity because there is only
one degree of freedom.
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The variation of time-average input power with excitation frequency is shown

in Fig.2.4.

The magnitude of average power input depends to a large extent on the

system’s  capacity  to  diss ipate  energy.  I t  is  therefore  necessary to

investigate the influence of damping. Differentiating equation (2.47) with

respect to the damping coefficient, we have

f& IFI c&P* 2w4c2
d c = T[(k - w*m)* + u*c* - [(k-w*m)*+W*C*]* I (2.52)

The damping coefficient for maximum power input may be obtained by equating

dP,,/k to zero. This leads to the condition

(k - w*mf=  w*c*

Thus, if excitation is at a fixed frequency, maximum power is supplied when

the damping coefficient satisfies equation (2.53). ie when

c- Ik -:2mI

(2.53)

(2.54)

We see from equation (2.54) that the damping coefficient for maximum power

depends on the excitation frequency. If the system is excited at the

undamped natural frequency. maximum power is suppplied when damping is zero.

At other excitation frequencies the damping coefficient for maximum power is

given by equation (2.54). The variation of power input with damping is shown

graphically in Fig.2.5 for the two excitation cases.

,. I .r.
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Frequency

Fig.2.4 Variation of average power with frequency

(a) Excitation at natural frequency

Damping coefficient c -

a!
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(b) Excitation away from natural frequency

Damping coefficient c -

Fig.25 Variation of average power with damping
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An expression for the maximum power may be obtained by substituting the

damping coefficient from equation (2.54) into the expression for input

power, equation (2.47) :

(2.55)

2.2.6 Relationships between time-average power, velocity amplitude

and force transmissibility

Equation (2.28) gives the relationship between time-average power and

velocity amplitude:

If damping is kept

square of velocity

P, = ;clv(2

constant the average power input is proportional to the

amplitude. Thus power and velocity amplitude have a

similar dependence on excitation frequency. A plot of velocity amplitude

versus frequency is similar in shape to that shown in Fig.2.4 for time-

average input power.

The expression for velocity amplitude is

+I
IV’ = J(k -&I)2 + &?c2 (2.56)

The variation of velocity amplitude with damping is shown graphically in

Fig.2.6. For all excitation frequencies [VI decreases continuously as

damping is increased. Thus, except for excitation at the natural frequency,

power and velocity amplitude do not have a similar dependence on damping.



Damping coe.ffkient  c __c

Fig.2.6 Variation of velocity amplitude with damping

The force transmissibility is

(2.57)

The usual plot of transmissibility as a function of frequency ratio is shown

in Fig.2.7 for various values of damping ratio.

oJ I

I Ji
Frequency ratio. o/,+,

Fig.2.7 Force transmissibility as a function of frequency ratio
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Fig.2.8 Variation of force transmissibility with damping

We see that except for an undamped system the force transmissibility is

maximum at a frequency which is less than the undamped natural

frequency. This contrasts with the average power input which always has

its peak at the natural frequency, o, = d(k/m).

The variation of T, with damping is shown graphically in Fig.2.8. If the

excitation frequency is kept constant the effect of variations in damping

depends on the excitation frequency. In the region where (cJ/w,)<~~.

increased damping reduces the force transmissibility. Where (O/O,,)  >\/2,

increased damping increases the transmissibility. Thus, force transmissibility

and average power input do not have a similar dependence on damping.
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2.3 Mult i-degree - o f - f r e edom sp r ing -mass -damper  s y s t ems

23.1 Instantaneous power and energy functions for the general N-dcgree-of-

freedom system

The equation of motion for a system with N degrees of freedom may be

written as

where [M], [K] and [C] are the inertia, stiffness and viscous damping

matrices respectively, and {fl is the excitation force vector. It is assumed

that the system possesses a finite number of degrees of freedom, and that

the displacements are completely specified by N independent coordinates.

We are also assuming that the conditions leading to symmetric inertia,

stiffness and damping matrices are satisfied [36].

The instantaneous power input to the system by the N forces is

(2.59)
q-1

If we premultiply the matrix equation (2.56) by the transpose of the

velocity vector, jviT = (xl’, we have

The energy functions are defined as follows:

(2.60)

(2.6 1)

1 4.
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and

Now,

N N

dU
dT-

N N_. __
1
1 cc

9- l  r -1
N N N N

1

2 c c

dx, I
k9+9yj7  + i

9 - l  r - l
c c
9 - l  r-l

N N

By a similar process we find that

dT
- = Gmfl~vl
d t

Using equations (2.61). (2.64) and (2.65). equation (2.66).

may be written in the equivalent form

N

P(t) = 20 + $(T + U) = c f9v9

9-l

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)

The expression in equation (2.66) is a generalisation of the result obtained

for the simple one-degree-of-freedom system. The functions 2D, T and U

are respectively the instantaneous rate of  energy dissipation, the

instantaneous kinetic energy and the instantaneous potential energy. The

function D is the well-known Rayleigh’s Dissipation Function [37].

____.-  _- _._.--  -- .-- - .-.--. - - __ ___. _
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For steady-state sinusoidal excitation we may write

and

Now,

(2.67)

(2.66)

Vq”r - $(vp + vp’)(vpo’  + v;p)

= ;RqV:, + ~Rc(Y,V#w)
(2.69)

and similarly xdcr - &Re(V&) - &Re(VqV,,~‘)
(2.70)

Substituting into equations (2.61). (2.62) and (2.63), we have for the

energy functions

N Ncc N N

D *mE-
4 cq,VqV; + $R ,d2@’

c c c&v
9-l r-l g-1 r-l

- ~(~v~%I~v})+  $Rc(~2”{V}T[C]{V})
(2.7 1)

N Ncc N N

m,,v,V;  + fRe(#*”
m9rv9v

g-1 r-l c c
q-1 r-1

- f({v)HIMl(V})+~R~~~r{  V}f[M]{~})

(2.72)

N N
- - N N

u l

- 1

-- MU - /I/. W-qK)

(2.73)

. i
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where the superscripts H and T are used to indicate respectively the

Hermitian and the ordinary transpose of the vectors to which they are

appended. We see that each of the energy functions is made up of a

constant term plus a double-frequency sinusoid. In each case the constant

term is the average value of the function. Thus we have

Dav (2.74)

=av (2.75)

(2.76)

For reasons of energy conservation the amplitude of the sinusoidal

component of each energy function must not be greater than its average

value. If this were not so, a physically impossible condition would arise

whereby the instantaneous value of the function would be negative during

some time interval.

Differentiating equations (2.72) and (2.73) with respect to time, and

substituting the results into equation (2.66), we have

N Ncc N N

c*,v*v; + ;Rf?(B’” cc (cqr + iam,, + &v,,
q-l  r-l q-l  r-1

N

= Pm+ ;Re(e-' c F4yQ)
q-1

(2.77)

As in the case of  the simple one-degree-of- freedom system, the

instantaneous power input to the system equals a constant plus an

alternating component of twice the excitation frequency.
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In $2.23 the complex power input due to a single excitation force, F.

was defined to be equal to the complex quantity iF*V.  This definition is

maintained here; but since there are now N forces, the total complex

power is represented by the summation fCF:V,.

Now, under steady-state conditions we may write

Substituting these into the equilibrium equation (2.58) and cancelling the

exponential factor, we have

Extracting the q” row from this matrix equation, we have

Nco’wm,,  + cw + $Vr = Fq

r-l

Taking the complex conjugate and rearranging, we have

N

F; - c kq, -Mm,, - $v:
q-1

(2.79)

(2.80)

(2.81)

Multiplication by V,/2.  and summation over the index q gives the

complex power:

N

F-5 F;Vq
c
q-1
N N N N

1
N N.

3-

2 cc cq,vqv; - ‘$( m,Y,v; - 5
q-1 r-l cc

q-l  r-J
c c kq,V,O
q-J r-J

(2.82)
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Using equations (2.74),  (2.75) and (2.76). we may write equation (2.62) in

the form

(2.63)

from which we have

pav = 20, (2.64)

and Qm- 2cJ(~oy-Tm~ (2.65)

These results are identical to those obtained for the simple one-degree-of-

freedom system. The real part of the complex power is the time-average

power dissipated by the system, and the imaginary part or the reactive

power is proportional to the difference between the average potential and

kinetic energies. When the average potential and kinetic energies are equal,

the reactive power is zero, and the excitation sources do not take part in

the interchange of stored energy. It can be shown that in the case of

single-point excitation, the amplitude of the alternating component of

instantaneous power is equal to the magnitude of complex power. Consider

the result in equation (2.77) if the system is excited by a single force, F,.

We have

This may be written as

(2.66)
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P = Pm+ qLs(201+*i) ( 2 . 8 7 )

where #, is the phase angle of the velocity phasor V,, relative to the force,

F,. Now from equations (2.82) and (2.83). we have

Therefore equation (2.87) may be written as

and thus the amplitude of the double-frequency sinusoidal component of

instantaneous power equals the magnitude of the complex power.

(2.88)

(2.89)

As in the case of the simple oscillator, there is a simple correlation

between the driving-point frequency response functions and the energy

functions. Suppose there is only a single excitation force, F,. Then

equation (2.83) may be written as

p=’ l+J’, - 2Dm +iyu
m - T,J

F;V, = SD, + j4o(U’, - T,,,,)
(2.91)

(2.90)

or

Taking the complex conjugate of both sides of equation (2.91) we have

F,V; - 4D,- jQo(U,-  TJ (2.92)

Dividing both sides of  equation (2.91) by F,F: = IF,I’, we obtain the
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result

V
f = q,w = SD,  + jWU,-  T,,J

i PiI’

and, dividing both sides of equation (2.92) by V,V: = IV,l’. we get

F
jj  - z,,w = 4Dav -j&W,- T,,,.)

i PiI’

(2.93)

If the functions D,,. U,. and T,. are evaluated for unit force then

equation (2.93) expresses the driving-point mobility explicitly in terms of

these energy functions. A similar interpretation may be given to the

Impedance expression (2.94) on the understanding that the functions D,.

U, and T, are evaluated for unit velocity response. (Here, the system is

being described by a single coordinate, i. so that Z,, = l/Y,,.)

2.3.2 The undamped dynamic vibration absorber

We shall now examine briefly the classical problem of the undamped

dynamic vibration absorber, Fig.2.9, from the point of view of power flow.

I///////d

Main system

Absorber subsystem

Fig.2.9 Undamped dynamic vibration absorber
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The

for

velocity responses are:

the main mass:

v,(t) IFI= --+k2 - rnp’)w sin or

and for the absorber mass:

where

The instantaneous

(2.95)

v2w * -qk20  sin wt (2.96)

A = (k, + k, - w2m,Xk2  - w2m2)  - k: (2.97)

power input to the system by the exciting force is

1 IFI2PW,(t) = -,-+k2-W2m2)sin20t (2.98)

By employing the general  expressions derived in Chapter 3,  the

instantaneous power flow to the main system is found to be

WI2P&Jr) - - -2 A2 w(kl - w2m,)(k2 - 02m2)2 sin 2wt (2.99)

and that for the absorber subsystem to be

11Fi2  3p&(t) - j =W k2m2(k2  - u2m2>  sin tit (2.100)

The power expressions in equations (2.98). (2.99) and (2.100) are pure

sinusoids with twice the

component is due to the

The untuned absorber

For an untuned system,

excitation frequency.

fact that the system

The absence of a constant

is not damped.

k/m, # ke/mn-  When the excitation frequency is

equal to the natural frequency of the absorber spring-mass subsystem, i.e

O*=ks/mr.  the instantaneous power input is zero, according to equation

(2.98). The power flow to each of the subsystems is also zero according to
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equations (2.99) and (2.100). Equations (2.95) and (2.96) show that the main

mass remains stationary, while the absorber mass vibrates with an amplitude

which is determined by the magnitude of the exciting force and the stiffness

of the absorber spring.

When the excitation frequency coincides with the natural frequency of the

main system, i.e c.?=k,/m,.  the instantaneous power flow to the main system

is zero. The energy input is taken up entirely by the absorber subsystem.

.Although  the main system does not take any energy the motion of the main

mass is not zero. The vibration of the main mass is maintained by energy

being transferred back and forth between the mass m, and the spring k,.

The tuned absorber

If the system is tuned, so that w:=wf,  i.e k,/m,=kl/mZ,  then at this tuned

frequency the instantaneous power input is zero. The main system remains

stationary while the absorber mass vibrates as a result of the interplay of

stored energy between the mass m, and the spring k,.

Fig.2.10 is a plot of the amplitude of the instantaneous power flow to the

subsystems of a vibration absorber system with the following parameters:
tm,=20.0kg, mZ= 1 .Okg, k,=5.‘78x  lO’N/m,  k,=225xl O’N/m.  The driving-point and

the transfer mobilities are also shown in Fig.2.11. The point of interest

here is that there is a frequency range, between the two resonances, in

which the velocity response of the main system increases as the

instantaneous power flow decreases. This result shows that we cannot rely on

the instantaneous power flow to a subsystem as a sole indicator of its

response amplitude.

t Note that the vibration absorber system being considered here is untuned, i.e w, f+ Here,
W, = 170rad/s  a n d  O2 = 150rad/s.

* ,
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Fig.2.10 Instantaneous power flow to subsystems of dynamic absorber

0 I..“““‘,‘.“‘.”

-10

-20

7
z -30

--_- Transfer response
- Driving point response

~...~~~~‘~~~~~~~~.I...~~.l..~..r’~....~.~..~~~  ~~~~~~~~~-~~~‘~~~~~~~J~~~~~~~~~‘~~~~~~~~
100 110 120 130 140 150 160 170 180 190 200

Frequency (rod/s)

Fig.2.11  Driving-point and Transfer Mobilities of dynamic absorber
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2.4 Discussion

In this chapter the vibration of simple spring-mass-damper systems has been

examined from the point of view of power flow and energy transfer. The power

and energy relations for these systems have been derived and discussed,

drawing heavily on concepts that are already well established in Electrical

Circuit Theory; see, for example, ref 38.

The study of the one-degree-of-freedom system provides insight into the

nature of energy transfer back and forth between the source of excitation

and the system. By employing the concept of complex power, it has been shown

that the driving-point frequency response functions may be expressed in

terms of the energy functions. This relationship, though notable, is limited

because it applies only to driving-point data and only if unit force or unit

velocity is assumed. By investigating the dependence of time-average power,

velocity amplitude and force transmissibility on frequency and damping, we

have also w shown that time-average power is not always a suitable

indicator of vibration levels.

Broadly speaking, the power and energy relations discussed for the simple

one-degree-of-freedom system are also applicable to more complex systems.

The brief study of the undamped dynamic vibration absorber shows that a

reduction in the instantaneous power flow to a part bf a structure could be

accompanied by an increase of the vibration amplitude of that part of the

structure. This result, which provides further evidence of the unsuitability

of power flow for assessing vibration amplitudes, is not unexpected for

undamped systems since such systems do not require an external supply of
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energy to maintain their vibration. Thus it is easy to conceive of a

situation where the vibration of a particular subsystem is maintained purely

by the interchange of kinetic and potential energy within the subsystem.
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Chapter 3

POWER FLOW AND ENERGY TRANSFER IN CONNECTED STRUCTURES

3.1 Introduction

In Chapter 2 the basic power and energy relations for vibrating systems were

introduced with a discussion of the vibration of simple systems having a

finite number of degrees of freedom. Such systems are composed solely of

rigid bodies which have mass and inertia, and are capable of acquiring

kinetic energy, and massless bodies which can store only potential energy.

The potential and dissipative forces are due to the relative motion between

pairs of rigid bodies. However, vibrating systems made up of components that

are perfectly rigid or without inertia are idealisations of real systems.

The components of real engineering structures have continously distributed

mass and elasticity. This chapter concerns the flow of power and the

transfer of energy in real elastic structures which are presumed to be

composed of subsystems connected together at joints. First, the expressions

for input power are examined briefly for both single-point and multi-point

excitation, and the general expressions for the power flowing to the

components of connected structures are derived. Then some consequences of

power balance considerations are discussed and, finally, the nature of

energy flow in the various coordinate directions at the joints between

connected structures is examined very closely.

k
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3.2 Power input to elastic structures

When a structure is excited by a single force the instantaneous power

input is given by

(3.1)

where f(t) and v(t) are the instantaneous values of force and velocity

respectively. If the exciting force is sinusoidal, then in the steady-state we

may write

and v(t) = $1

where F and V are complex quan

(3.1). we have

(3.2)

tities. Substituting these into equation

P(r) = ;Re{F*V} + ;Re{FVdL"'}

This equation may also be written as

P(r) = ++OSrn + ++oa(2ot  + 4)

(3.4)

(3.5)

where # is the phase angle of the velocity phasor relative to the force.

\Yhen a structure is subjected to sinusoidal force excitation in more than
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one coordinate direction the instantaneous power input is given by the

summation

Y
q-1

N

1=-
2 c

(z?e{F;V,} + Re{FqVqJ2”‘})

q-1
N

=  +?e[ c (FjVq + d”‘FqVq,]
q-1

Now

% = Y,,F, + Y,,F, + . . . . + Y,,“F,

N

(3.8)

(3.7)

Therefore

N N N N

P(r) = +7e[ cc F;Yq,F,  + gzor cc FqJ&fLl
q=l  r-l q=l  r-l

(3.8)

where [Y] is the NxN mobility matrix relating to the coordinate directions

in which excitation forces are applied, and jF{ is the excitation force

vector. Equations (3.4) and (3.8) show that. for both single-point and

multi-point excitation, the instantaneous power as a function of time

consists of a constant component and a double-frequency sinusoid.

By using the relationship

Fq = Zql V, + Zq2V2  + . . . . + zqN V,
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and noting that Re{FiVq)  = Re{FqYi},  equation (3.6) may also be written i n

terms of the velocities and the impedances:

P(1) = + ~Re(~hf{V}T[ZJ{V}) (3.9)

3.3 General expressions for time-average power flow in connected structures

3.3.1 Power flow when coupling is in a single coordinate direction

In Fig.3.1 the two substructures are connected in coordinate j. One external

force is applied in coordinate i. The velocity response of the coupled

system may be written in terms of the system’s mobility matrix and the force

F,:

We may also write

3.10)

(3.11)
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Coupled Structure C

I-
“i

Fig.3.1 Two substructures coupled in a single coordinate

The time-average power flow from substructure A to substructure B is the

time-average value of the product of the velocity at j and the internal

force exerted on B by A. The velocity Vj can be obtained directly from

equation (3.10). However, the internal force exerted on B must be

determined indirectly. We separate the coupled structure into its

component parts and apply equal and opposite forces on the substructures

in such a way that force balance and motion compatibility are satisfied,

Fig.3.2.

I-
“i

I-
“j

Fig.3.2 Coupled Structure separated into component parts

The systems shown in Fig.3.1 and Fig.3.2 are dynamically equivalent since
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the velocit ies  and the resultant  forces  are  the same in both cases .

There fo re  we  may  cons ider  each  o f  the  subs t ruc tures  separate ly .

Considering B alone, we may write

VjFj - -
Yjf )

and. taking A alone we have

(3.12)

(3.13)

The time-average power flow to substructure B is the average of the

product f,(t)v,(t),  and is given by

p(B) =
ov iRe{FjV;}

Using the expression for Fj from equation (3.12) we have

(3.14)

(3.15)

Where there is an external exciting force in the coupling coordinate we

may still follow the same analysis as above. However, when the structure

is broken up into its component parts the forces to be applied to the two

substructures are not equal in magnitude.
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q--z‘ll<r>

I c I-
vi ‘j

I-
‘j

Fig.3.3 Power flow when there is external force in coupling coordinate

In Fig.3.3 the forces Fr’ and FF’ must satisfy the condition

F(.“’ + F?’ = F.
J J J (3.16)

where Fj is the force externally applied in the coupling coordinate. As

before, we obtain the force Fyi from the mobility of B and the velocity

response Vi:

The time-average power flow from A to B is then given by

(3.17)

(3.18)

This is, in fact, the same equation  as that derived for the case IT-here

there is no excitation force in the coupling  coordinate. We note also that
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the velocity V, is obtained from the mobilities of the coupled system and

the external excitation forces:

jf. = y!?F + Y!C’FJ JJ i J’ i (3.19)

3.3.2 The general case of power flow

Fig.3.4 Time-average power flow in the general case

Fig.3.4 shows a coupled structure which has been separated into its two

co rn  ponen t  pa r t s .  Fo r c e s  Q~*‘.Q~^‘....Q!,,“’  and Q\“‘,Q:“‘....Q~“’ h a v e

been applied in the m coupling coordinates so that the resultant force in

each coordinate is equal to the externally-applied force on the coupled

structure. There are n coordinates on substructure B, m of which are

coupling coordinates. Taking substructure B alone, we may write

_,;;, . _., .
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(3.20)

The total time-average power flowing from A to B via the coupling

coordinate directions is given by

m

p(AB) _
av c ;Re{Qyb';}

k-1
(3.2 1)

Now
(B)& = z$v, + zCB)v +

k2 2 . . . . . +  z’%I kn n

zCB’vkl I

Therefore.

k-1 I-1
m II

= ;Re{ cc v;z E’v, }
k-l  l-1

Also,

m Icc v*z(B)vk kl I

k - l  I-1
= iv; (3.22)
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Therefore, pm
ov

(3.23)

where )Vf is the nxl column matrix of the velocity responses in all the n

coordinates of substructure B, and {V,j is the mxl column matrix obtained by

taking only the first m rows of iv{. The matrix [Zr’] is the mxn matrix

obtained by taking the first m rows of the impedance matrix of B.

The total time-average power flowing into substructure B can be obtained by

summing the  contr ibut ions  due  to  a l l  the  forces  Q!“‘, Q~“‘,....Q~“‘,

F (B) F(B):m+, ..... ”

p(B)
o~rotol)  = (3.24)

3.3.3 Some consequences of power balance considerations

Consider a structure C which is made up of two subsystems A and B.

Subsystem A has Q coordinates and B has p coordinates, and the two

subsystems are connected such that the total number of coordinates required

to describe the coupled structure is N. The time-average power flow to the

coupled structure C may written as

(3.25)

The matrix [Z”‘] is the NxN impedance matrix obtained by inverting the

mobility matrix, [Y(“], of the coupled structure, and iv),,, is the column

vector of the velocity responses.

We may also write a similar expression for the time-average power flow to
-

each of the subsystems:

and P(B)  e

ov

(3.26a)

(3.26b)
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xhere [Z(“] = [Y(A)]-‘,  a n d  [ZcB)]  =  [YcB’]-‘,  a n d  t h e  v e c t o r s  jV{,,, a n d

D’L are velocity vectors relating to the coordinates on each subsystem.

Now, equat ions  (3.26a)  and (3.26b)  may be written as

and

(3.27a)

(3.27b)

The sum of equations (3.27a)  and (3.27b)  is

The matr ix  addi t ion impl ied in  equat ion (3 .26)  i s  res tr ic ted to  those

coordinate directions in which the two subsystems are connected. For the

rest of this section we shall use the symbol + to denote this type of matrix

addition.

SON-,  power balance considerations require that the time-average power flow

to the coupled structure be equal to the sum of the power flow to each of

the subsystems, i.e

(3.29)

Consequently we may write

Re({Y}HIZ(C)]ly})  = Re(~V}H[Z’A’+Z’B’)~y)) (3.30)

Although we know from Impedance Coupling  theory (Chapter 4) that the matrix

[Z”‘+Z’B’] is equal t o t h e  i m p e d a n c e  matris  of the coupled system, [Z”)],
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this fact cannot be deduced from equation (3.30). If equation (3.30) is

expanded and the individual terms are examined it will be found that the

e q u a t i o n  r e l a t e s  o n l y  t h e  r e a l  p a r t s  o f  t h e  m a t r i c e s .  T h e

cond i t i on  Re([Z”‘]) = Re([Z’“‘$Z’B’]) is, in fact, sufficient for equation

(3.30) to be satisfied.

The fact that time-average power balance considerations lead to a

relationship involving only the real parts of the coupled and subsystem

matrices reveals a limitation on the information obtainable from time-

average power. This limitation is more obvious if the time-average power

input to the structure is written in terms of the mobilities and the

exciting forces:

PCC)  = fRe({F}H[Yq{~~)
0” (3.31)

For a given excitation force vector, any alteration to the system which does

not affect the real parts of the elements in the mobility matrix will leave

the time-average power unchanged. However, we know that the motion response

depends on both the real and imaginary parts of mobility, and therefore the

time-average power flowing to a system does not define its motion responses

uniquely.

By following a similar recipe but stat-ting  with the alternating component of

power, another equation may be derived relating the coupled impedance matrix

to the subsystem matrices. The alternating  component of instantaneous power

input to the coupled structure is

Similarly-. we may- write for the subsystems

(3.32)
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and
p(B)

alr - fRe({v}~[Z’B)]{v)P’)

The sum of equations (3.33a) and (3.33b)  is then

(3.33a)

(3.33b)

(3.34)

and we may therefore write

Re({V}r[Z(C)]{V}e-f)  = Re({~}r[Z’*‘$Z’B’]{~}~z~f) (3.35)

It is not possible to deduce from equation (3.35) that the matrices [Z”‘]

and [Z’*‘+Z’B’] are equal. Unlike equation (3.30),  however, it represents a

relationship involving both the real and imaginary parts of the matrices. W e

may infer from this that the alternating component of power contains more

information than the time-average power.

3.3 .4  Random Excitation

Expressions for power input

Let a force, f(t) , o f  spec t ra l  dens i ty  SF&). ac t  on  a  s t ruc ture  t o

produce a velocity response v(t). The time-average power input to the

structure may be written as
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(3.36)

Now, by definition, the input-output cross-correlation function is

__

h(7) - E V(Mt + 7)] =
I

s,“(w)cI*nd0 (3.37)

-Q)

where SF”(w)  is the input-output cross-spectral density. Thus the power

input may be written as

(3.38)

where Y(W) is the driving-point mobility of the structure.

An alternative expression for the power input may be obtained by using

the output-input cross-correlation function and its corresponding cross-

spectral density:
QD

pm = 447 = 0) =

I
&,b)d  w

(3.39)

-aD

From equations (3.38) and (3.39) we may write

J
--a0
oa
.

J
--a,

When a structure is subjected to random excitation in more than one

coordinate, the time-average power input may be written as
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(3.4 1)

where m is the number of coordinate directions in which forces are

applied.

Now,

Therefore,

(3.42)

Also,

Therefore,

If the excitation forces

the power input reduces

are uncorrelated then, for rfs, SFF,(w)  = 0, and

to

a~ m

pav = IC( R e( SF,F,(w)  G(w)))dw
-0D  i-1

and since the power spectral density, SF,F,(~), is real, we have
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(3.44)

Expressions fog power flow

I-“itt) I-
“jtt)

Fig.3.5 Power flow when coupling is in a single coordinate

Fig.3.5 shows two substructures, A and B, connected together in coordinate

j to form a coupled structure C. A random force f,(t) of spectral density

SF,F,(w)  acts in coordinate i. The time-average power flow to substructure

B is the average value of the product of the velocity vi(t) and the internal

force, f f”‘(t), exerted on B by A. We may write

W

PE) = E (f Y)(r)v&r)]  =
I

%,@)d w (3.45)
-w

where S,,(W) is the cross-spectral density between the velocity v,(t) and
IJ

the transmitted force  f(IB)(t).  We may def ine a force  transmissibi l i ty

function, T(B)
rj . to relate the transmitted force to the excitation force:

F(B)(W) YjC’(o)T;)(w) = * = -
i yli”w

The spectral density of the transmitted force is

(3.46)

I,
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and the cross-spectral density between transmitted force, ft”‘(t>. and

velocity, v,(t) is

(3.48)

The time-average power flow to substructure B is then given by

(3.49)

Consider a connected structure, C, which has been separated into its

component parts, A and B. The coupled structure is described by a total

of m coordinates, and there are n coordinates on substructure B. Let the

f o r c es  fl”‘, fkn),.....  f!,“’ be the resultant forces exerted on B due to

coupling to A as well to as external excitation. The total power flow to

substructure B is then

(3.50)
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where S$,@) is the cross-spectral density between the transmitted forces

f, and f,.

The matrix of transmitted force spectral densities may be determined as

follows. Consider the situation where the excitation forces are sinusoidal.

Then, we may write

VtLXl = WB'b>l,x,~ ~(9”x* (3.51)

where IF,{,., is a column vector of the resultant forces transmitted to B

in its n coordinates, [Z”‘(w)] is the nxn impedance matrix of B. and

{V(‘){ is a column vector of the corresponding n velocities. Equation (3.51)

may be written as

vf>“Xl - [z’B’~~~l.x,~~~‘~~~l.x,IFjc~~~x,

- [~~~‘(w)l.,,{F:c’},x, (3.52)

[T,?‘(w)]  is a force transmissibility matrix relating the resultant forces to

the m external excitation forces. [Ye”‘] is the reduced mobility matrix

obtained by deleting from the overall system mobility matrix those rows

which do not relate to substructure B. {Ff’i is the column vector of the

external sinusoidal forces acting on the coupled structure. The matrix of

transmitted force spectral densities is then given by

1s $wlnxn = [ TliB)(W)l:X,[s~,~,(0)Lxmt  ~l;‘wlx. (3.53)
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where PF,F,;(w)]  is the spectral density matrix of the external excitation

forces.

3.4 Energy flow via coordinate directions at joints between substructures

In $3.2 it was shown that the instantaneous power input to a structure by

N sinusoidal forces is given by

P(r) = ;Re({F}H[Y]{F})  + ;Re(e@r{F}‘[Y]{F)) (3.54)

This expression represents a summation of the power

acting in each coordinate direction. The power input

due to the forces

due to the force

a c t i n g  i n  t h e  qLh c o o r d i n a t e  m a y  b e  o b t a i n e d  b y  e x t r a c t i n g  t h e

corresponding terms from equation (3.54):

P (4)(t) = lRe(fFiYqF,)  + iRe(dbfFqYg,) (3.55)
r-l r-1

Equation (3.55) shows

coordinate direction is

component of twice the

The constant term is

that the instantaneous

made up of a constant

excitation frequency.

N

power input through any

term plus an alternating

Pz - iRe(zFiYqF,)

r-1

and the alternating component is

N

p 63)
alr = fRe(dWxFqYpF,)

r-1

(3.56)

(3.57)

I. ,, . _ _,
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A plot of equation (3.55) is shown in Fig.3.6 In that figure. @$’ is the

amplitude of the alternatinng component of power. and is given by

(3.58)

_- -- ---

Fig.3. 6 Instantaneous power input in direction of coordinate q

The cross-hatched areas above the time axis, labelled EL:!, r epresent

energy being delivered to the system by the force of excitation. The areas

below the time axis labelled EEL. represent energy that is returned to the

source of excitation by the vibrating structure during each half-cycle. The

d i f f e rence  be tween  EL9,!  and EL:: is energy that is lost in the system

through dissipation, such that the following relationship holds:

where T is the time period of vibration.

(3.59)
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It is shown in Appendix 1 that

and

where

E (d
“rt

l#l = cocl(g$,
01

(3.60)

(3.61)

(3.62)

The foregoing discussion refers to the flow of energy to a structure from

external sources. When considering power input to a structure it is

important to note that the time-average power is always positive. If this

were not so a physically impossible situation would arise whereby the

conservation of energy would be violated. In effect the system would be

returning more energy than that being supplied to it. These remarks apply

also to the total power flowing to any subsystem of a connected structure.

The situation is different when considering the flow of energy in any

individual coordinate direction at a joint between subsystems. In this case

negative values of time-average power are admissible. A negative value of

time-average power in any coordinate implies that the subsystem returns

more energy than that supplied to it in that coordinate direction. The

instantaneous power flow via any coordinate direction is given by equation

(3.55). with the proviso that the forces F,.Fz ,.... F, ,.... F, are the resultant

forces (internal and external) exerted on the subsystem.
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3.5 Discussion

One purpose of this chapter is to set out some of the general expressions

concerning power

$3.3 are meant to

any component of

flow in connected structures. The expressions derived in

indicate the general procedure by which the power flow to

a connected structure can be calculated if a substructure

approach based on frequency response data is adopted. The examination in

$3.4  of the nature of energy transfer in the coordinate directions at the

joints between subsystems lays the foundation for a method, proposed in

Chapter 4. for assessing the relative importance of coordinates when the

Impedance Coupling technique is used in the vibration analysis of

structures.

By using the requirement that the power input to a system be balanced by the

sum of the power flow to each of the subsystems, two equations were obtained

relating the system impedance matrix to the subsystem matrices. The fact

that the basic Impedance Coupling relation (i.e the addition of subsystem

impedance matrices to obtain the overall system matrix) cannot be extracted

from these equations reveals an important difference between the information

contained in power flow data and that represented by frequency response

data. The main ingredients in the derivation of the Impedance Coupling

relation are the imposition of force balance and motion compatibility

between the subsystems. Since power involves both force and motion

(velocity) one might expect to be able to derive the Impedance Coupling

relation by starting from a consideration of power balance. That this is not

the case is not altogether surprising, since power flow contains information

which is specific to the particular excitation forces imposed on the system.

Frequency response data, on the other hand, indicate the input-output

(force-motion) characteristics of the system, and are of a more general

nature.
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Chapter 4

A METHOD FOR ASSESSING THE RELATIVE IMPORTANCE OF COORDINATES

IN THE VIBRATION ANALYSIS OF CONNECTED STRUCTURES

BY THE IMPEDANCE COUPLING TECHNIQUE

4.1 Introduction

One of the commonly-used techniques for the vibration analysis of complex

structures is the method of Receptance or Impedance Coupling [34]. The

method involves the subdivision of the structure into a number of

subsystems each of which is analysed separately to obtain its frequency

response data. The frequency response properties of the complete structure

are then obtained by combining the subsystem data in such a way that

force balance and motion compatibility are satisfied at the connection

points.

At the start of any Impedance Coupling analysis it is necessary to decide

which coordinates are to be included in order to obtain an adequate

description of the dynamic behaviour of each subsystem. In general, six

coordinates are required to describe completely the motion of any point on

a structure . However, inclusion of all six coordinates at each connection

point is seldom practicable partly because it leads to very large system

matrices which may be dif f icult  to handle.  Delet ing unimportant

coordinates reduces the size of the problem, and, where some of the

subsystem data are to be obtained experimentally, big savings may be

made in the time required for mobility measurements. In certain simple
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cases (for example, where the structure is two-dimensional, and motion is

known to be restricted to one plane) it is obvious which coordinates may

be deleted. However, in more complex situations the coordinates to be

used in the analysis are not at all obvious. Previous applications of the

Impedance Coupling technique have shown the difficulties involved in

deciding which coordinates may be excluded from the analysis without

significant loss of accuracy [39]. Computational studies [40] have also

indicated that the accuracy of the analysis may not be improved by

merely increasing the number of coordinates included. The particular

choice of coordinates to be used in the analysis has been found to be of

considerable importance.

In this chapter a method is proposed for assessing the relative importance

of coordinates in the analysis of connected structures by the Impedance

Coupling technique. The method is based on the premise that the relative

importance of any coupling coordinate depends on the magnitude of the

energy transferred in that coordinate direction. Calculations on a number

of simple structures are used to test the validity of this assumption.

4.2 The Impedance Coupling Technique

The practical application of the Impedance Coupling technique involves

three main steps:

(i) Division of the system into subsystems

The determination of the best subdivision is not always obvious, and

may require considerable judgement. Very often, it is convenient to

divide the system into a series of components, each of which has a

distinct geometry or function. It is useful to examine the system for
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planes of symmetry which might

analysis to be made in stages.

(ii) Analysis of each individual

permit a complete 3-dimensional

component, by whatever means is

best suited to it, to obtain

to all points of interest on

A theoretical analysis may

as beams, springs, etc. In

the frequency response properties relating

the component.

be sufficient for simple components such

the case of more complex components,

however, it might be necessary to resort to direct measurement. In

such cases it would almost invariably be necessary to process the

measured data by a modal analysis method [42] before inclusion in

any subsequent analysis.

(iii) Combination of the component response properties to obtain the

properties of the complete system.

The underlying theory of this final step is described in the following

sections. A detailed exposition of the theory of Impedance or Receptance

Coupling may be found in the work by Bishop and Johnson [34]. Examples

of the practical application of the technique to real engineering structures

may also be found in references 39 and 41.

4.2.1 Single- coordinate Coupling

The simplest case of Impedance Coupling arises where two subsystems are

connected in a single coordinate. Consider two single-coordinate subsystems,

A and B. which are to be connected to form a coupled system, C, as

shown in Fig.4.1.

C

xc
Fig.4.1 Single-coordinate coupling
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For steady sinusoidal vibration at a given frequency, the velocities of the

subsystems may be written as

w h e r e  Y, and YI are  the  dr iv ing-point  mobi l i t ies  o f  A  and B

respectively, relating to excitation in the coordinate x.

When the subsystems are connected together to form C, their velocities

must be identical at the connection point, so that

V” = v, = v, (4.2)

Also. by considering force baIance at the connection point we may write

fc =h +fB (4.3)

Dividing through by V,. and noting from equation (4.2) that V,, V, and

V, are identical, we have

fc f” fe-I-

VC V+A VB

Using the definition of mobility we have that

YC’ = Yjl + Y;’

(4.4)

. P’
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For steady sinusoidal vibration at a given frequency, the velocities of the

subsystems may be written as

VA = YJA a n d  V, = YJB (4.1)

w h e r e  Y, and Y, are  the  dr iv ing-point  mobi l i t ies  o f  A  and B

respectively, relating to excitation in the coordinate x.

When the subsystems are connected together to form C, their velocities

must be identical at the connection point, so that

VA = v, = v, (4.2)

Also, by considering force balance at the connection point we may write

fc =h +fB (4.3)

Dividing through by V,. and noting from equation (4.2) that V,, V, and

V, are identical, we have

fc f” fe
-I-

VC V+A VB

Using the definition of mobility we have that

Y;’ = Yj’ + Y;’

. C’

(4.4)
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or. in terms of impedances,

zc = Z” +z, (4.5)

4.2.2 Coupling in more than one coordinate

For the case where the components A and B each has more than one

coordinate, all of which are involved in the coupling process, the mobilities

of each component may be expressed in matrix form, and the velocities of

the components may be written as

The compatibility equation (4.2) becomes

{VI,= WI, = WB

and, the equilibrium equation (4.3) becomes

Now, from equation (4.6). we have

c/L - r*l,‘w),
UIB - Wl,‘~V~,
WC - WJ,‘W),

Substituting into equation (4.8). we have

t*1,w, = ~*l,‘~vI, + w1,‘v1,

(4.6)

(4.7)

(4.8)

(4.9)
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Using equation (4.7), we have the coupling equation

[Yli’ = [VI,’ + [Y&l

OX-. [Zl, = PI, + La, (4.10)

4.2.3 The General Case

The most general case of Impedance Coupling arises where each

component has several coordinates, not all of which are involved in the

coupling process.

A B C

Bf2
Bf3 cf2

Cf ,53::_c 63

BX2 Bx3
I---W

CXl I_ L
c=2 c=3

Fig.4.2 The general case of Impedance Coupling

Consider the simple case where two subsystems, each having two

coordinates, are to be connected in one coordinate to form a 3-coordinate

system as in Fig.4.2. The velocities of the subsystems are given by
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and

(4.1 la)

(4.1 lb)

When the components are coupled together, compatibility requirements

lead to the following equations:

Also, considering force balance in the three coordinate directions we have

Now,

if)” =
WB =

[Yl,'W), - [Zl,{V),

WC -
wl,l~v~*  - LqJVl,
[vl~‘~V~, = [Zlc{Vl,

SO that, using equation (4.12) we have

(4.13)
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I

8’23

Thus, in the general case the impedance matrices of the components have

to be partitioned, all the coordinates at the joints between subsystems

being grouped together. The impedance matrix of the complete system is

then obtained by adding the component impedance matrices in the way

suggested above.
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4.2.4 Coordinate Elimination

By a simple extension of the coupling process described above, the

frequency response properties of a multi-component structure may be “built

up” by a sequential addition of its components. Any coordinates used in

joining two subsystems which are of no further interest may be dropped

from the mobility matrix of the coupled system by simply deleting the

corresponding rows and columns. Consider again the case shown in Fig.4.2.

For the coupled system C we may write

This may be expanded to give

cvl = cwi +  cw2 +  cw3

cv2  = Cy2f,  + Cy22f2  +  Cy2f3

cv3 = Cy3Lf, +  Cy32f2  + Cy33f3
(4.15)

Now, if we are not interested in the response in coordinate cX2.  we may

delete the second of equations (4.15). Furthermore, if the external force f%

applied in coordinate cX, is zero, the second term in each of equations

(4.15) may be deleted. Thus, the reduced description of the frequency

response properties of the coupled system may be written as

(4.16)

Coordinate elimination applied to a mobility matrix does not imply a

reduction in the system’s degrees of freedom. It merely results in a

‘/
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reduced description of the system, and a reduction in the size of the

matrices to be handled in any subsequent analysis.

When coordinate elimination is applied to the impedance matrix of a

system the effect is rather different. Consider again the case shown in

Fig.4.2. for which we may write

fi = cz,, cv, + $52 Jz + c?,, $3

f2 = $2, CVf + cz2, cvz + &23 cv3

h = $ 3 ,  Cv,  + $32 Cv2 + $33 Cv3

(4.17)

If, for example, we are not interested in the force f, applied in coordinate

cX,. we may remove the second of equations (4.17). Since the impedance

terms cZ,o, cZot  and cZ,,  are, in general, different from zero we may

delete the second term of each equation only if the velocity cVz is zero.

Thus, the elimination of coordinates from an Impedance matrix has the

effect of grounding those particular coordinates.

It must be mentioned that the main subject of this chapter is not

coordinate elimination in the sense that has been described in this section.

We are concerned here with situations where some of the coordinates

taking part in the coupling process must be excluded from the analysis in

order to reduce the size of the problem. The exclusion of such coordinates

will lead to some inaccuracy. The method proposed in the next section

provides a basis for deciding which coordinates may be excluded from the

analysis without severe loss of accuracy.
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4.3 Proposed method for assessing the relative importance of coordinates

It was shown in Chapter 3 93.4 that the instantaneous power flow

through any coordinate at a joint between two subsystems is made up of a

constant term, plus an alternating component of twice the excitation

frequency. The constant term, P,. is the time-average power flow in that

coordinate direction, and is closely related to dissipation, although it is not

entirely dependent upon it. (In an undamped system, for example, the

time-average power flow in any coordinate direction at a joint could be

non-zero if there is a closed circulation of energy, ie energy entering a

subsystem in one coordinate direction and leaving via another in such a

way that the total flow from adjacent subsystems is zero.) The alternating

component of power, P,,,, is a measure of the rate at which energy is

transferred reversibly between the subsystems via that coordinate direction.

The instantaneous power as a function of time is shown in Fig.4.3.

P(q)(r)

Fig.4.3 Instantaneous power flow in any coordinate direction
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Since the transmission of vibration through a structure is the result of the

propagation of energy-bearing waves, it seems reasonable to expect that the

relative importance of any coordinate in the transmission path will be

related to the extent to which it participates in the energy transmission

process. It is proposed that the relative importance of the coordinates at a

joint be assessed by comparing the magnitudes of the energy transferred

via each coordinate direction. The energy transferred, E(‘), is represented

by the greater of the two quantities Ez and EL: in Fig.4.3. and is given

by

E (4)
F(g)

= +[(=-4)cos4+sin#]

where

(4.18)

(4.19)

(4.20)

and, F, and F, are the internal forces transmitted at the joints in the q

and r coordinate directions repectively.

Efq) takes account of the energy that is irreversibly transferred, as well as

the energy that is merely swapped back and forth between the -)_subsystems.

t The method proposed here is based on energy rather than time-average power partly because
time-average power is very heavily dependent on the amount and distribution of damping. A
method based on time-average power is likely to break down when it is applied to systems that are
assumed to be undamped, whereas energy transfer always exists whether the system is damped or
undamped.
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4.4 Some i l lustrative examples

In order to test the underlying asssumption of the proposed method a number

of simple structures were analysed. For each structure a complete analysist

was first carried out, and the energy transfer in each coordinate direction

was calculated over a chosen frequency range. Based on the energy

calculations predictions were made about the relative importance of the

coupling coordinates. Further analyses were then carried out in which

various combinations of coupling coordinates were excluded, and the

responses were compared with those for the complete analysis to see if the

predictions were borne out. The Impedance Coupling computations were

performed using the computer program COUPLE1  [45,46].

4.4.1 Example I

The test structure here consists of two simple Bernoulli-Euler beams

connected together as shown in Fig.4.4. The structure vibrates in one plane

under the action of a sinusoidal force of unit amplitude. The coupling

coordinates are x. y and 8. However, since the excitation is applied at

right-angles to the structure there is no motion in the x coordinate

direction, and therefore x is excluded from the analysis.

Exciting force

1

Beam A

8 L x Transferponse

I I
Beam B

Data: Length of Beam A - 3m

Length of Beam B - 2m

Second Moment of area - 0.16667xItim‘

Cross-section area - 0.20xlC?m

Density of beam material - 7850kg  m-s

Modulus of Elasticity - 20.7x10%mJ

Damping loss factor - 0.10

Fig.4.4 Test structure for Example I

t ‘Complete  analysis’  refers to an fWdYSiS  w h i c h  i n c l u d e s  all the  coordinates  at  the  joints

between components.
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The energy transfer for the two coordinates y and 0. are shown graphically

in Fig.4.5(a)  for the frequency range 0 -
t1000Hz.  The time-average power and

the amplitude of the alternating component of power are also shown in

Figs.4.5(b)  and 4.5(c). It is seen that the energy transfer via the two

coordinate directions are roughly equal. The same is true of the time-

average power and the alternating component of power. On the basis of the

relative magnitudes of energy transfer we would expect that the two

coordinates would be of roughly equal importance. This expectation is borne

out by the fact that when either of the coordinates is excluded from the

analysis the responses differ from the true values by similar amounts; see

Figs.4.6(a)  and 4.6(b). In the case of the driving-point responses,

Fig.4.6(b). the deviations from the true responses become smaller as the

frequency increases. It was found that at high frequencies the exclusion of

both coordinates (ie completely uncoupling the two beams) has very little

effect on the driving-point responses, Fig.4.6(c).  These observations are

explained by the fact that on a damped finite structure there is a frequency

above which the driving-point characteristics are approximately the same as

those of  a similar structure of  infinite extent [43,44]. At high

frequencies the reflected waves returning to the driving-point are heavily

attenuated, and the actual location at which the waves are reflected has

only a small effect on the driving-point response. The implication of these

observations is that when assessing the relative importance of coordinates

misleading results could be obtained if attention is restricted to driving-

point responses alone.

t Note that in Fig.4.5(a),(b)  and (c) the energy or power flow via the coordinates at the joint is
indicated for the individual coordinates. The total energy or power flow is not shown. In the
response plots, Fig.4.6(a),(b)  and (c), the responses are shown for the complete analysis as well as
the responses based on various coupling conditions. Note that the legends used for the response
plots are not meant to be related to those used for the energy plots. This note applies to all the
plots in the rest of this chapter.
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Fig.4.5(a)  Example I - Energy flow in coordinate directions
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Fig.4.5(b)  Example I - Time-average power flow in coordinate directions

1000

5
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Frequency (Hz)

Fig.4.5(C)  Example  1 - Amplitude of alternating component of power

L ,
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Complete Anatysia
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Fig.4.6(a)  Example I - Transfer response
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. . . . . . . . . . . . . ._ y Coordinate  Deleted

.  _ _ _ _ 0 Coordinate  D & t e d
Complete hatye
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Frequency (Hz)

Fig.4.6(b)  Example I - Driving-point response
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Frequency (Hz)

Fig.4.6(c) Example I - Driving-point response of coupled structure

compared with Beam A alone

4.42 Example II

The subsystems of the test structure are identical to those of Example I,

except that this time they are connected together at an angle of lo”, as

shown in Fig.4.7. As in Example I, excitation is applied at the free end of

Beam A, and responses are obtained at both the driving-point and the free

end of Beam B. Here, a complete analysis requires the inclusion of all three

coordinates at the joint. A plot of the energy transfer in each of the three

coordinate directions is shown in Fig.4.8(a)  for the frequency range 0 -

1000Hz. The transfer and driving- point responses are also shown in

Figs.4.8( b) and 4.8(c).

,.
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Excitation

j:hBeam A

e\ X

Fig.4.7 Test structure for Example II

0 c-•

_ rthadino&
. . . . . . ..II.“.“‘..‘.

100 200 300 400 500 600 700 600 900 11

Frequency(&)

Fig.4.8(a)  Example II - Energy transfer in coordinate directions

IO
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Examination of Fig.4.8(a)  shows that, except for the frequency range 450

- 650Hz  approx., the energy transfer in the x coordinate direction is much

smaller than that in the y and 8 coordinate directions. Also, the energy

transfer in the y and 0 coordinate  direct ions are  of  about  the same

magnitude. On the basis of the energy transfer we would expect that the

elimination of the x coordinate will not severely affect the accuracy of the

responses except in the 450 - 650Hz range. Fig.4.8(b)  shows that outside

this particular frequency range the x coordinate may indeed be excluded from

the analysis without any serious loss of accuracy in the transfer response

calculation. Fig.4.8(c)  also shows that the driving-point responses follow a

similar trend to those in Example 1. The exclusion of coordinates has a

smaller effect on the driving-point response as the frequency increases. The

explanation given for Example I applies here.

-1Om

-20

-60

y Cowd’nnte De&ted
z Coordinatr D&ted
Complete Anatlpcs

-901
0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

Fig.4.8(b) Example 11 - Transfer response
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- 2 5

. -_-_- 0 Coordinate Deleted
y Coordinate Deleted
t Coordinate Deleted

100 2 0 0  3 0 0 500 600 700 800 900 10

Frequency (Hz)

Fig.4.8(c)  Example II - Driving-point response

4.4.3 Example III

The test structure here is shown in Fig.4.9. It is composed of two plane

frames which have been joined together at one point and at right-angles to

form a three-dimensional structure. An exciting force of unit amplitude is

applied in the plane of Substructure A as shown in Fig.4.9.

The energy flow via each of the six coordinates at the joint is shown in

Fig.4.10 for the frequency range 0 - 100Hz. Examination of this Figure shows

that the relative magnitudes of energy transfer in the six coordinate

directions are heavily frequency-dependent. This frequency dependence makes

an assessment of the relative importance of the coordinates rather more

difficult than the case of Examples I and II. However, a study of the energy

t r a n s f e r  p l o t  i n  c o n j u n c t i o n  w i t h  t h e  r e s p o n s e  p l o t s ,

__. -. _

.
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Fig.4.1 l(a),(b),(c),(d), hs ows that within any frequency range the effect of

leaving out any coordinate from the analysis is directly related to the

relative magnitude of the energy transfer in that coordinate direction.

Transfer response

Substructure A

Fig.4.9 Test structure for Example III

Data

Cross-sectional Area = 2.0 x lo-* mn
Second moment of area, I, = 1.6667 x lo-’ m’

*, I,, = 6.6667 x lo-’ m’
Density of beam material = 7850 kg me3
Modulus of Elasticity, E =20.7 x 10” Nm-*
Shear Modulus, C = 7.96 x 10” Nm-*
Damping loss fact0r.q  = 0.01
Timoshenko shear coefficient = 0.8497
Torsional constant = 4.5776 x lo-’
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Fig.4.10 Example III - Energy flow in various coordinate directions

The energy transfer in the y coordinate is by far the largest. Thus, when

the y coordinate is excluded there is a very severe degradation of the

computed responses, Figs.4.11 (b) and 4.1 l(d). We must note however that

although y is by far the most important coordinate, Figs.4.12(a) and 4.12(b)

show that a single-coordinate coupling analysis is inadequate for most of

the frequency range. In the vicinity of the last resonance ( 88Hz approx. )

very much less  energy is transferred in the x, z and eY c o o r d i n a t e
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directions than in the other three. Thus, when any of these coordinates is

excluded the responses are still close to those for the complete analysis in

that frequency range. Indeed, Figs.4.12(a)  and 4.12(b) show that an analysis

based on the y, 8, and 0, coordinates alone is sufficient in this frequency

range. The energy transfer in the x coordinate direction increases very

sharply around the fourth resonance ( 54Hz approx. ). Consequently, as may

be seen from Figs.4.ll(a)  and 4.11(c) a marked degradation of the responses

occurs around this mode. For the second resonance ( 25Hz approx. ) the

energy transfer is high for all coordinates except x; and, as may be seen

from Figs.4.1 1 (a),(b),(c),(d), th e exclusion of  any coordinate except  x

results in some loss of accuracy of the responses.

Frequency (Hz)

Fig.4.11  (a) Example III - Driving-point response
with various coordinates deleted
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Fig.4.1 l(b) Example III - Driving-point responses
with various coordinates deleted
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Fig.4.1 l(c) Example III - Transfer responses
with various coordinates deleted
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Fig.4.1 l(d) Example III - Transfer responses
with various coordinates deleted

Frequency (Hz)

Fig.4.12(a) Example III - Driving-point responses
with various combinations of coordinates deleted
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Frequency (Hz)

Fig.4.12(b) Example III - Transfer responses
with various combinations of coordinates deleted

4.4.4 Example IV

The test structure for this example is a plane frame consisting of two

substructures which are connected together at two points, Fig.4.13. The

exciting force is in the plane of the structure, and therefore a complete

analysis requires the inclusion of three coordinates at each joint.
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0.3m

0.3m

Excitation

Substructure A

Transfer response

OSm

0.3m

Substructure B

0.3m

D a t a

Fig.4.13 Test structure for Example IV

Cross-sectional Area = 2.0 x 10“ m*
Second moment of area, I,, = 1.6667 x lo-’ m’
Density of beam material = 7650 kg m-’
Modulus of Elasticity, E =20.7 x 10”’ Nm-*
Shear Modulus, C = 7.96 x 10” Nm-’
Damping loss factor,q  = 0.01
Timoshenko shear coefficient = 0.6497
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Fig.4.14 Example IV - Energy flow in various coordinate directions

The energy transfer in each of the coordinate directions is shown in

Fig.4.14. As with Example III, it is seen that the relative magnitudes of

energy transfer in the coordinate directions vary with frequency. However,

in this example the energy transfer is more evenly distributed among the

coordinates. The inference that may be made after examining the energy plot,

is that no single coordinate (or group of coordinates) is so unimoortant
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that it may be left out of the analysis. A study of the response plots,

Figs.4.15(a),(b),(c),(d),  hs ows that this inference is correct. It is seen

that the elimination of any one of the six coordinates results in some

degradation of the coupled responses. The extent to which the responses

differ from those of the complete analysis may be predicted from the energy

transfer plot. For example, around the fifth resonance ( 93Hz approx.) the

energy transfer in each of the x,, yI and 8, c oord inate  d i re c t i ons  i s

greater than those in the other three directions. Consequently, when any of

these coordinates is deleted the fifth mode is missed altogether. See

Figs.4.15(a) and 4.15(b).

Frequency (Hz)

Fig.4.15(a) Example IV - Driving-point responses
with various coordinates deleted



0, Coordinate deleted
Y, Coordinate deleted
X, Coordinate deleted
Cbnplete  analysis
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Fig.4.15(b) Example IV - Transfer responses
with various coordinates deleted

! --_-
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B+ Coordinate deleted. . . . . . . . . . . . . . Yn Coordinate deleted
-_-_ Xs Coordinate &&ted

Complete analysis
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Fig.4.15(c)  Example IV - Driving-point responses
with various coordinates deleted
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Fig.4.15(d) Example IV - Transfer responses
with various coordinates deleted

4.5 Discussion

The four structures analysed in 94.4 were chosen to represent a spectrum of

cases from which the underlying assumption of the proposed method can be

veri f ied. Examples I and II are relatively simple cases in which the

assessment of the relative importance of coordinates is clear-cut. One

important fact brought out by both examples is that, for very highly-damped

structures vibrating at high frequency, the exclusion of coordinates at the

joints will sometimes have very little effect on driving-point response

calculations. The three-dimensional structure in Example III and the two-

dimensional structure in Example IV represent situations where the relative

importance of the coordinates is not very obv;Ous. Even in these cases there

.,-._ 1,, : . .



-106-

is still a direct correlation between the energy transfer in any coordinate

direction, and the effect on the responses of excluding the coordinate from

the analysis. Clearly, the examples presented here lend strong support to

the basic assumption of the proposed method. It must be mentioned, though.

that sometimes the only conclusion to, be drawn from an application of the

method is that none of the coordinates at the joints is so unimportant that

it may be omitted from the analysis.

The practical application of the method may present some difficulties. In

order to calculate the energy transfer in the various coordinate directions

one is required to know the frequency response properties of the subsystems,

as well as the responses (or internal transmitted forces) when the

subsystems are assembled. This amounts to being required to know the results

of the complete analysis before the analysis is carried out. One possible

way round this difficulty is to carry out a preliminary analysis over

selected parts of the frequency range. On the basis of the results any

unimportant coordinates may be excluded, and the analysis repeated for the

whole of the frequency range. However, this could lead to erroneous

conclusions in situations where the relative importance of coordinates

varies with frequency, as in some of the examples presented here.

There are a number of instances where the application of the method is not

restricted by the difficulty discussed above. These include the situation

where a particular Impedance Coupling calculation has produced inadequate

results, and one wants to find a reason for this. The method may also be

found useful in a theoretical study prior to the coupling analysis of a real

structure. In this case one would apply the method to a similar theoretical

structure, made. up of simple components like beams, springs, masses, etc.
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The results from this preliminary analysis would then form the basis for

deciding which coordinates to include in the analysis of the real structure.

One area in which the proposed method could be employed is the

interpretation of frequency response data in order to decide what vibration

control measures are necessary. Quite often one is required to compare

rotational and translational mobility data. Such a comparison is difficult

because rotational and translational mobilities have quite different units.

The results presented in this chapter suggest that this comparison could be

done on the basis of energy transfer. Another possible application of the

method proposed in this chapter is vibration path identification. By

processing the frequency response data to obtain the energy transfer in each

of the coordinate directions along various transmission paths one should be

able to assess the relative importance of the vibration transmission paths

in the structure. The potential applications of the proposed method warrant

further study.

r
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Chapter  5

AN EVALUATION OF THE POWER FLOW APPROACH TO

VIBRATION ISOLATION PROBLEMS

5.1 Introduction

The ob ject  of  v ibrat ion iso lat ion is  to  reduce  vibrat ion levels ,  and the

criterion for defining the effectiveness of a vibration isolation excercise

depends on the particular type of problem. Traditionally,  two types of

isolation problems are considered:

(i) The requirement to reduce the transfer of vibration from a machine to

the foundation or supporting structure on which it

case the effectiveness of the isolation excercise is

the reduction in the magnitude of the dynamic forces

machine to the foundation.

(ii)The requirement to isolate a piece of sensitive

is mounted. In this

defined in terms of

transmitted from the

equipment from the

vibration of its supporting structure. The main objective of isolation in

this type of problem is to reduce the amplitude of the motion transmitted

to the sensitive equipment.

In recent publications [13,14.15], a vibration isolation method has been

proposed which aims at minimising the time-average power flow to the

structure which is being isolated. The main attraction of the method appears

to be the fact that it combines both force and motion in a single concept.

However, the proposal to measure the effectiveness of vibration isolation in

terms of the time-average power flow is based on the assumption that a

reduction in power flow will always be accompanied by a reduction in the

magni tude of transmitted force or motion, and thus an improvement in

h
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isolation. There is a need to test this assumption, and in this chapter an

evaluation of the proposed method is presented.

The discussion

as represented

mounted on a

is centred around a single-stage vibration isolation system

in Fig.5.1. The system consists of a rigid machine of mass M,

flexible foundation of mobility Y,, via a massless spring of

stiffness K,. An external sinusoidal force of constant amplitude and

frequency acts on the machine. Two simple approximations for the foundation

characteristics are considered, namely, a simple one-degree-of-freedom

system and a semi-infinite beam. The influence of some of the system

parameters on the time-average power, transmitted force and motion response

is investigated.
Excitation force. Fe

LJ Rigid Machine, M,

’ Isolator spring of stiffness 4

.

Fig.5.1 Single-stage vibration isolation system
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5 . 2  E x p r e s s i o n s  f o r  time- a v e r a g e  p o w e r  f l o w ,  v e l o c i t y  a m p l i t u d e s

a n d  f o r c e  t r a n s m i t t e d  t o  t h e  f o u n d a t i o n

The time-average power flow to the foundation of the isolation system shown

i n  Fig.5.1  is [15]

w h e r e  wf r li,/M,

The amplitude of the foundation’s velocity response is

lY,llFI
151 - /l-($)2 +jwM,Y/]

and thnt of the m a c h i n e  i s

IV’/ +it)llFI
Ivml = ]I- ($2 +jwMmY,]

The magnitude of the force transmitted to the foundation is

IFIlFJ - ]I-($2 +jwMmY,]

(5.2)

(5.3)

(5.4)

5 . 3  I n f l u e n c e  o f  c h a n g e s  i n  t h e  m a c h i n e - i s o l a t o r  s u b s y s t e m

By inspection of equations (5.1).  (5.2) and (5.4).  it  is seen that provided

the foundation mobility is not altered. any change in the machine-isolator

subsystem which result s in a reduction of the power flow to the foundation

will be accompanied by a reduction in velocity amplitude and transmitted

force.

---..._ __. -. _
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The foregoing conclusion may also be arrived at by the following argument.

For the purposes of dynamic analysis we may separate the machine-isolator

subsystem from the  foundat ion,  and impose  force  balance  and mot ion

compatibility at the connection point so as to ensure dynamic equivalence to

the coupled system, Fig.5.2 . The time-average power flow to the foundation

is then given by the following alternative expressions:

and

P
0” = flF,lzRe{Yf}

$4 Y/l
P6lY  = +A IY,I'

Fig.5.2 Vib ra tont’ isolation system separated into components parts

(5.5)

(5.6)
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It is immediately obvious from equations (5.5) that if the characteristics

of  the foundation are  kept  constant,then  the power fiow is  direct ly

proportional to the square of the transmitted force amplitude. In view of

equation (5 .6)  a  s imilar  remark appl ies  to  the foundation velocity

amplitude.

5.4 Influence of changes in the characteristics of the foundation

In order to investigate the influence of changes in the characteristics of

the foundation it is necessary to assume a form for the foundation mobility.

Two assumed forms for the foundation characteristics will be considered in

turn, namely. a one-degree-of-freedom spring-mass-damper system and a semi-

infinite beam.

5.4.1 One-degree-of-freedom approximation for foundation behaviour

We shall assume that the foundation behaves like a spring-mounted mass with

hysteretic damping, i.e

Yf -
iw

Kl - w2M, + jK,q, (5.7)

where XI, K, and qr a r e the mass,  st i f fness  and damping loss  factor

respectively.

Our attention will be restricted to an investigation of the influence of the

damping loss factor of the foundation. The influence of the foundation

characteristics depends quite heavily on the frequency of excitation, and we

shall now consider two cases.

e
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5.4.1.1 Case where the excitation frequency coincides with the natural

frequency of the machine-isolator subsystem.

If o = oO, equations (5.1), (5.2) and (5.4) become

and

Equation (5.9) shows that at this frequency the magnitude of the foundation

velocity is independent of the foundation mobility. Therefore IV,1 remains

(5.3)

(5.9)

(5.10)

constant as the damping loss factor of the foundation subsystem is varied,

Fig.5.3(a).

t
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Loss factor of foundation, qf c

Fig.5.3(a) Variation of foundation velocity with damping



-114-

The modulus of mobil ity,  [Y,[,  decreases as the loss factor of the

foundation is increased and, consequently, in view of equation (5.10). the

magnitude of the transmitted force increases as shown in Fig.5.3(b).

LOSS factor of foundation, vr

Fig.5.3(b)  Variation of transmitted force with foundation damping

The time-average power flow to the foundation is proportional to the ratio

RejY,j/IY,(’  as may be seen from equation (5.8).

Rev-,) Km
Now, IY,I' = w (5.11)

and therefore the time-average power varies linearly with the damping loss

factor as shown in Fig.5.3(c).
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Loss factor of foundation, qr

Fig.5.3(c)  Variation of time-average power with foundation damping

Figs.5.3(b)  and (c) show that a reduction of the power flow due to a change

in the level of damping will be accompanied by a reduction of the force

transmitted to the foundation. However, the foundation velocity amplitude

will remain unchanged, according to Fig.5.3(a).  Therefore at this excitation

frequency, w = wo, the amplitude of the foundation velocity cannot be

attenuated by reducing the time-average power if this reduction is brought

about by altering the foundation damping.
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5.4.1.2 Case where excitation frequency is much greater than the natural

frequency Df the machine-isolator subsystem.

Consider the situation where (w/o,)~ >>l, and o2 < K,/M,. The loci of the

complex quantities of interest in equations (5.1). (5.2) and (5.4) are shown

in Fig.5.4(a).  (The influence of damping on the mobility of the simple

oscillator with hysteretic damping is set out graphically in Appendix 2$ By

inspection of  equation (5.1), (5.2) and  (5.4), and with the help of

Fig.Q[a),the influence of foundation damping may be determined. The power

flow, velocity amplitude, and transmitted force are shown graphically in

Figs.5.4(b),(c) and (d) respectively.

Locus of,  l-(~)'+jwM,YI

Real Axis

Fig.5.4(a) Loci of various complex quantities as damping is varied



Loss factor of foundation, ‘If -

Fig.5.4(b)  Variation of time-average power with loss factor

Loss factor of foundation, vf -

Fig.5.4(c)  Variation of foundation velocity with damping

Fig.5.4(d)

LOSS factor of foundation, vf -

Variation of transmitted force with damping
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It is seen that any reduction in power flow achieved by varying the amount

of damping in the foundation will result in an increase of either the

transmitted force or the velocity amplitude. Therefore an improvement in

vibration isolation cannot necessarily be obtained by using alterations in

the foundation damping to reduce power flow.

5.4.2 Semi-infinite beam approximation for foundation characteristics

Very often, when the modulus of the driving-point mobility of a damped

complex structure is plotted against frequency on a log-log scale, the graph

is found to be approximately a straight line in the high frequency range. In

such cases the modulus of the mobility may be written approximately as

Iy(w)l = Awb

where A and b are real constants.

The phase characteristic corresponding

is [47]

4w - p

(5.12)

to a mobility modulus of this form

(5.13)

and the mobility is then given by

Y(w) = A ob[cos(~)  + j sin(?)] (5.14)

A semi-infinite beam is an example of a structure whose mobility modulus
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eshibits straight line characteristics when plotted on a log-log scale. The

mobility of a semi-infinite beam is [48]

Y = (Ez&*)-~(l  -j) (5.15)

This may be written in the same form as equation (5.14), with A and b given

bY

EZE3  -IA=(--_  4

4 )
and b = -4 (5.16)

We shall now consider the power flow to a foundation which possesses the

characteristics of a semi-infinite beam, restricting

influence of the flexural stiffness, EI, of the beam.

our attention to the

We shall first dispose of the case where the frequency of excitation

coincides with the natural frequency of the machine-isolator subsystem. In

this case l-(w/w,)’ = 0, and equations (5.1), (5.2) and (5.4) may be written

as

and

1 WY,)
p&D = p1202qyf,2

= !T(EE)’

p--l = g
m

(5.17)

(5.18)

(5.19)

The time-average power flow and the transmitted force amplitude are
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proportional to the fourth root of the flexural  st i f fness  according to

equations (5.17) and (5.19). Thus, if the time-average power is reduced by

altering the flexural stiffness of the foundation the transmitted force will

decrease. However, equation (5.18) shows that the foundation velocity is

independent of the flexural stiffness and, therefore, if _ an attenuation

of the velocity is desired it cannot be obtained by reducing the power flow

in this way.

T h e  m o r e  g e n e r a l  c a s e  w h e r e  w # w0 is not very easy to deal with

analytically Therefore we shall consider a specific example with the

following parameters: M, = ZO.Okg,  w0 =  ZOOn,  Ei = 58.875kg/m.  T h e  time-

average power, velocity amplitude and transmitted force have been computed

for a range of flexural st i f fness  values at  excitat ion frequencies  of

CJ = 0.5~4 a n d  w = 1.591w,, with an exciting force of unit amplitude. The

r e s u l t s  a r e s h o w n g r a p h i c a l l y  i n Figs.5.5(a),(b),(c)  a n d

Figs.5.6(a),(b),(c).  A study of the plots for each of these two particular

cases would again show that if the flexural stiffness is altered in such a

way that the power flow is reduced, a reduction of transmitted force or

velocity amplitude is not always assured. Therefore, in the design of a

foundation of this sort, the flexural stiffness which gives the least time-

average power will not necessarily provide the best vibration isolation.
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Fig.5.6(a)  Time-average power flow to foundation (w=1.591wO)
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5.5 Discussion

It was shown in 55-3 that provided the characteristics of the foundation

are kept constant, the time-average power flow is directly proportional to

the squares of foundation velocity and transmitted force amplitudes. This

result is not as useful as it would appear because it is not applicable if

the machine interacts with the foundation with more than one degree of

freedom. Consider a vibrating system composed of two subsystems, A and B,

linked together in n coordinate directions, Fig.5.7, with the external

exciting forces applied to subsystem A alone.

n coupling coordinates

Fig.5.7 Subsystems linked in n coordinate directions

The time-average power flow to subsystem B may be written as

(5.20)

where  [Y(B)] is the mobility matrix of B, relating to the n coupling

coordinate directions, and )FI is a vector of the forces transmitted to B.

This expression may be written more explicitly as

P, = $F,12Re{ YE'} + +2/2Re{Y~'}  + . . . . . + $Fn12Re{  YE’}

(5.21)
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This expression may also be written in terms of the velocity responses and

the impedances of subsystem B:

(5.22)

Equation (5.21) is difficult to interpret on account of the fact that there

are now many more transmitted forces to be considered. If the dynamic

characteristics of subsystem A are altered in such a way that the time-

average power flow is reduced, it is not certain that all the n transmitted

forces will be simultaneously reduced. It is more likely that some of the

forces will actually increase while others decrease in magnitude. There will

then be the di f f iculty  of  deciding whether or  not  the alteration in

subsystem A has improved or worsened the situation. The foregoing remarks

also apply to the velocities, in view of equation (5.22).

The case where the reduction of  t ime-average power is  achieved by

alterations in the characteristics of the foundation was considered in $5-4.

It was necessary to assume a form for the dynamic characteristics of the

foundation. Two such assumed forms were considered, namely, a one-degree-of-

freedom system and a semi-infinite beam. The results show quite clearly that

a reduction of the time-average power flow to the foundation will not always

be accompanied by a decrease in the amplitudes of the force and velocity

transmitted to the foundation. Therefore, we may conclude that the design of

machinery support structures on the basis of power flow alone will not

necessarily provide good vibration isolation.

). _ ./ ‘
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The time-average power supplied to any subsystem of a vibrating structure is

equal to the average rate at which energy is being lost in that subsystem.

This power loss is made up of the dissipated power, P, (ie power converted

to heat by damping mechanisms), and the power radiated into the surrounding

air or other fluid medium, Pr..,. It may be argued, on the basis of energy

conservation, that if the power flowing to the subsystem is reduced then

less power will be available for sound radiation. However, the effect of a

reduction of time-average power will depend quite heavily on how the power

reduction has been brought about. It is possible to conceive of a situation

in which the power radiated remains unaltered even though the total power

flow (equal to Pdi, + P,,) has been reduced. Consider the vibration problem

shown schematically in Fig.5.8. Let us suppose that we are concerned about

sound radiation from the receiver which is plate-like and supports only

waves propagated via the transmission path. If, in an attempt to reduce the

total time-average power flow, the power dissipated in the receiver alone is

reduced, the result could well be an increase of the radiated power.

Source

Transmission Path

S

, .

Receiver

Fig.5.8 Schematic representation of vibration problem
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The use of power flow considerations in sound radiation problems requires

considerable caution and judgement. Even in situations where the analysis

shows that an abatement of sound radiation will result from a reduction in

the time-average power flow, care must be taken to ensure that all the

significant transmission paths have been accounted for. It has been shown,

for example, that for large resiliently-mounted engines at medium and high

frequencies the sound transmission through the surrounding air can be more

important than the transmission through a good resilient mount [49]. A

vibration isolation excercise which is successful in reducing the structure-

borne power could well result in more power being transmitted through the

acoustic path.

The analysis presented here has been restricted to steady-state sinusoidal

excitation at discrete frequencies, and we have been concerned with

vibration responses in specific coordinate directions only. We have not

considered situations where the excitation forces are random and

distributed; nor have we considered spatial-average responses. These

considerations belong to the realm of Statistical Energy Analysis (SEA). The

literature on SEA suggests that the basic conclusion of this chapter is

equally applicable where the excitation force field is random. The design of

vibration isolation systems for random force excitation on the sole basis of

a reduction in the power flow is not likely to be satisfactory unless the

whole isolation problem is considered within the context of SEA. Outside the

framework of SEA there is no simple relationship between power flow and

vibration response.
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Chapter 6

MEASUREMENT OF TIME-AVERAGE POWER FLOW

ALONG A SIMPLE BEAM STRUCTURE

6.1 Introduction

The measurement of vibrational power flow in structures is of interest as a

means of identifying vibration transmission paths. The instantaneous power

flow across any section of a vibrating structure during steady-state forced

vibration consists of an active component, which is the time-average power,

and a reactive component which is sinusoidal and has twice the excitation

frequency. For the purpose of identifying vibration transmission paths it is

the active component of power which is of interest to us. By measuring the

magnitude as well as the direction of the time-average power flow at various

positions over a structure the major paths of energy transmission can be

identified. A decision can then be made on the appropriate vibration control

measures that are needed. These measures could involve, for example, the

application of damping materials along the transmission paths to absorb the

energy.

One of the methods available for the measurement of vibrational power flow

is that due to Noiseux [27] who proposed a method for measuring the

vibration intensity (time-average power flow per unit width of cross-

section) in uniform beams and plates vibrating in flexure. Suprisingly,  his

method has received little attention until recently [28]. In this chapter

we present the results of the measurement of vibration intensity along a
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simple beam structure using Noiseux’s technique. Signal processing was done

with the Bruel & Kjaer Sound Intensity Analysing System Type 3360. The

object of the tests was to check the accuracy of Noiseux’s technique, and to

assess its acceptability for routine measurements in simple beam structures.

6.2 Theory and measuring method

One way of describing the net flow of vibrational energy at a given point in

a vibrating structure is by the vibration intensity vector, w. The

magnitude and direction of the intensity vector are defined such that the

time-average power flow per unit width in any given direction is equal to

the projection of the intensity vector, w, on this direction. A formulation

of the vibration intensity for a uniform undamped beam is now presented.

This formulation follows that presented by Noiseux [2’7] up to the point

where the vibration intensity transducer is considered.

Consider a uniform

in flexure. The flow

and a shear force,

beam lying with its axis in the x direction and vibrating

of energy along the beam is due to a bending moment, M,

Q, as shown in Fig. 6.1.

Y* k

Fig.6.1

_ .

Shear force and bending moment acting on beam cross-section
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L

it

fve shear

-x

Fig.6.2 Dynamics of beam element - positive sign convention

The shear force and bending moment acting on the cross-section whose normal

is in the +ve x direction are shown in Fig.6.1. Under the sign convention

indicated in Fig.6.2,  the Bernoulli-Euler beam theory gives the following

bending moment-curvature relationship:

&M=EIa

while the shear force is given by

Q a'[= -EIa

(6.1)

(6.2)

where E is the hiodulus of Elasticity and I is the second moment of area. The

rotation is related to the flexural  displacement, (, by

e ,i!i
ax (6.3)

_, .
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and the angular velocity is

(6.4)

I’he total intensity in the +ve x direction along the beam ist

w,-<-Q(>,+<-Mb,
= Wxf + WX” (6.5)

where (.....), denotes time-averaging, and the shear force and bending

moment are calculated per unit width of the beam; w,, and w,, are the force

and moment components of intensity respectively. For waves in the free-field

(see Appendix 3), the partial derivative of equation (6.1) may be written as

so that M- -Elk21

IThere  k is the wave number which is given by

(6.6)

(6.7)

and iii is the mass per unit length of the beam.

It can be shown (see Appendix 3) that if the free-field solution alone is

considered. the force and moment components of intensity are equal, ie

W,I = w,,. Equation (6.5) may then be

w -2wX xf - %wl

-2-C-MB>,

I__. .

written as

T Note that under the sign convention adopted here
opposite directions. The same relationship applies to

(6.8)

the rotation 8 and the moment M are in
4 and Q.
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and using equation (6.6) we have

wI = 2 < Bk=&b, (6.9)

= 2 < Bk2ti tdr2>, (6.10)

where B = EI = z (evaluated per unit width) and h is the thickness of the

beam.

For a pure sinusoidal vibration at an angular frequency, w, the integral in

equation (6.10) is equal to -T/G?,  so that

w x-
*

= _,J-- < &>,
(6.11)

W

Thus the measurement of  the vibration intensity  boi ls  down to  the

measurement of the rotational velocity and the transverse acceleration of

the beam. The transducer used to measure these quantities is shown in

I‘ig.6.3.  It is modelled on the vibration intensity transducer used by Bruel

& f\jacr 1281, and consists of two accelerometers rigidly glued onto a small

aluminium block. . .
f 1

I

Fig.6.3 Vibration intensity transducer
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The rotational velocity is obtained from the difference of the two measured

accelerations:

(6.12)

w h e r e  Ar i s  the  dis tance  between the  acce lerometers .  The  t ransverse

acceleration. r, is found from the mean

Substitution of these into equation (6.11) yields

(6.13)

(6.14)

The implementation of this equation is done in the B&K 3360 Sound Intensity

Analysing System, a block diagram of which is shown in Fig.6.4.

l/3-octave
Preamplifier * ADC! t digttal  f i l t e r

bank

. .
E

Ar \f

113. octaw
Preamplifier -C ADC -b- digital filter Avemging

c i r c u i t  ----) ux

i
bank

- -

Fig.6.J Signal processing in the B&K 3360 Sound Intensity Analysing System
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6.3 Theoretical study of test s t r u c t u r e

The most important feature of Noiseux’s technique is the assumption that the

force and moment components of intensity are equal. Indeed, the quantity

that is actually measured in a test is the moment component, w,; the total

intensity is simply taken to be equal to Zw,,. For a uniform lossless  beam

the relationship wX,=w,, is strictly true only if measurements are made in

the free field. However, even where the measurements are not made in the

free field it is found that the force and moment components of intensity are

approximately equal under certain conditions. For example, if we consider

the near field of a semi-infinite beam excited at the tip, the force and

moment components of intensity are practically equal at distances greater

than a half wavelength from the point of excitation. (See reference 27 and

Appendix 3.) In order to ensure that our chosen test structure was amenable

to the measuring technique a theoretical study was carried out.

6.3.1 The test structure and its model

The structure chosen for the study described in this chapter consisted of an

aluminium beam one end of which was of 5-layer sandwich construction. The

damping layers were of PVC and the constraining layers were of sheet steel.

Details of the structure are given in Fig.6.5.

The test structure was modelled theoretically as a simple Bernoulli-Euler

beam with constrained layer damping applied at one end. The frequency

response data were computed using the program COUPLEl,  and the computed and

the measured driving-point mobilities are shown in Fig.6.6 and Fig.6.7

respectively. The exciting force is applied at the undamped end of the beam.
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1 t is seen that a t low frequencies the theoretical model describes the

behaviour of the actual structure quite accurately. At higher frequencies

the measured mobility differs from that computed for the model in its

detail, but th e general characteristics are similar. Because of the fact

that viscoelastic materials have properties which vary with frequency,

temperature and dynamic strain level [51], the model was not expected to

compare with the measured characteristics more favourably than this and, in

any case, an exact model is unnecessary for this kind of study. All that is

required is for the model to have the same general dynamic behaviour as the

real test structure.

Mild Steel

PVC

Structural
Aluminium \ I

Total length of beam = 126mm
Width of beam =  36.lmm
Thickness of beam = 6.35mm
Span of constrained layer damping = 465mm
Thickness of PVC layer = 3.2mm
Thickness of constraining layer = 1.6mm

Fig.6.5 Details of test structure

.___ _ _ .._ .d -.__ . ..-- . - -
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Fig.6.6 Computed driving-point mobility of test structure

Frequency (Hz)

Fig.6.7 hieasured driving-point mobility of test structure

_-
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6.3.2 Corn pu ted results

The moment component of intensity, w,,. was calculated as a percentage of

the total intensity, vu, for various distances along the beam. The variation

of the ratio wrm/wS with distance is shown graphically in Fig.6.6 for three

excitation frequencies. Fig.6.9 also shows the variation of this ratio with

frequency at various distances. Roughly speaking, these plots take the form

that would be expected for a semi-infinite beam; see Appendix 3. The ratio

w,,/w* increases from zero to an ‘overshoot’ value of about 60% before

settling to a value of about 50%.The ratio then remains steady up to a

certain distance from the sandwich portion of the beam. The span over which

the ratio remains steady at 50%depends  on the frequency; the higher the

frequency, the longer the span.

m0umey 630~~-

- rnpluncy POOHX-

8.00 0.05 0.10  0.15  0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

Distance ( m )

Fig.6.6 Computed variation of ratio w,,/w,  with distance from driving-point
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Frequency (Hz)

Fig.6.9 Computed variation of ratio w,,/w, with excitation frequency

6.4 Experimental results

6.4.1 Set-up for vibration intensity measurements

The set-up for the vibration intensity measurements is shown in Fig.6.10.

The beam was suspended from its damped end, and the excitation was applied

at the undamped end. The input force and the driving-point response were

measured using the Solartron Frequency Response Analyser. The signals from

the vibration intensity transducer were fed through charge amplifiers into

the B&K Sound Intensity Analysing System Type 3360. The main component of
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the B&K 3360 System is the Sound Intensity Analyser Type 2134. which is

primarily designed for acoustic intensity measurements and is basically a

digital frequency analyser with two input channels. The 3360 System measures

sound intensity over the 3.2Hz  - 1OKHz frequency range in octave and third

octave bands, and displays the results in real time.

When the B&K 3360 is used for acoustic intensity measurements the

computations are based on the two-microphone method [52], employing a

finite difference approximation for calculating the particle velocity from

the pressure gradient and hence the acoustic intensity. The use of the B&K

3360 for vibration intensity measurements is possible only because the

mathematical expression for vibration intensity, as represented by equation

(6.14), is of the same form as the corresponding expression for acoustic

intensity.

The B&K 3360 displays results in octave and l/3 octave bands, and since the

experiments involved only pure tones, it was necessary to choose each

excitation frequency to coincide with the center  frequency of one of the l/3

octave bands. During the calibration of the system various known signals

were fed from an oscillator into the analyser, and the intensity readings

were checked against the calculated values. The readings from the display

unit were  found to be exactly equal to the intensities calculated from the

known signals.

. . I
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h’ig.6. 0 Set-up  f o r  v i b r a t i o n  i n t e n s i t y  m e a s u r e m e n t s

Sound Intensity Analysing
System B&K 3360
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As a further check on the accuracy of the signal processing in the Intensity

Analyser ,  a  ser ies  of  tes ts  was  carr ied out  in  which the  s t ructure  was

excited at a constant frequency, and the intensity was measured at a fixed

point along the beam for various magnitudes of input intensity. The input

intensity was calculated using equation (6.15) in $6.4.2, and one typical

set of results is shown graphically in Fig.6.11.  The ratio w,/w,,  was  found

to be approximately constant for each set of tests.  This result provided

further evidence of the accuracy of the Sound Intensity Analysing System. It

also boosted our confidence in the measuring technique.

Input Intensity (mW/m)

Fig.6.11. Measured variation of w, with input intensity, W,,,

L
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6.4.2 Variation of  intensity with distance from driving point

The structure was excited at a fixed frequency of 315Hz, and the intensity

was measured at various distances from the point of excitation. The object

of this test was to verify the theoretical predictions of $6.3.2.  Ideally,

the whole test should have been carried out with the input power held

constant, but this was not practicable owing to the need to turn off the

input when changing the position of the vibration intensity transducer.

Therefore, in addition to the intensity, w,, along the beam, the force and

acceleration at the driving point were also measured, and the input

intensity. w,,, was calculated. The measurement of input force and response

represents an additional source of error which makes interpretation of

results a bit more difficult. Fortunately, as will be argued later, this is

not a significant source of error here. The variation of the ratio w’
xr( IWI,

is shown graphically in Fig.6.12, and may be seen to be similar in form to

that for the ratio w,,/w, (from theoretical analysis), Fig.6.6, except that

tthe deviations from the mean value of 50%are wider.

The input intensity was calculated using the expression

wi* = &-IuIIFIsinB (6.15)

where b is  the width of the beam, F is the input force, a the acceleration,

and 8 the  phase  angle  between force  and accelera t ion.  The t ransducers  used

for  the measurements  were new. Since calibration facilities were not readily

a v a i l a b l e  t h e  m a n u f a c t u r e r s ’  s e n s i t i v i t y  d a t a  w a s  u s e d .  H o w e v e r ,  a  m a s s

c a l i b r a t i o n  t e s t  [35] y i e l d e d  a n  i n e r t a n c e  s c a l e  f a c t o r  o f  u n i t y  w h i c h

helped to boost confidence in the manufacturers’ data.

t wx’nl is the measured moment component of intensity. The damping between the driving point
and the point of intensity measurement is negligibly small. Therefore the total intensity, w,, al any
location should be equal to the input intensity, win, hence the comparison between the ratios
wlm/wi,  (from measurement) and w,,/w, (from theoretical analysis).
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Fig.6.12 Measured variation of intensity with distance from driving-point

The main source of error in input power measurements is the phase angle. If

0 is \-cry small, sin0 is very sensitive to errors. The error sensitivity of

sirlO decreases as 8 increases from zero to 90” and so the influence of phase

angle errors depends on the size of the angle being measured. In this

particular test the phase angle was of the order of 20” (with small

variations as the intensity transducer was moved from one measurement point

to another). A phase angle error of the order of 3% (well within the

accuracy of the Solartron 1170)  will produce a corresponding error of less

than 3% in the input intensity. Thus in this particular case the effects of

errors  in the mcasurcmcnt of input power are unlikely to be significant. The
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slight deviations of the ratio wiW I
w,, from the expected value of 50%are

due to errors in the measurement of vibration intensity, w,. along the beam.

70 '....'...,.."..".,...".'.','."'."',"'~".7'

60 -

Frequency (Hz)

Fig.13 Measured variation of intensity with excitation frequency

6.4.3  Variation of  intensity  with excitat ion frequency

The vibration intensity was measured at a fixed point along the beam for

various excitation frequencies. Again, the object was to verify the results

of the theoretical study. Unfortunately, owing to the need to choose the

excitation frequencies to coincide with the center frequencies of the l/3

octave bands on the Analyser display unit, the number of possible excitation

frequencies  was very l imited.  Furthermore,  at  high frequencies  the

wavelength will be very small, and the base area of the transducer will have
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to be very small in order to obtain reasonably accurate results. During the

tests it was observed that at high frequencies (greater than about 1200Hz)

the signals from the intensity transducer were quite noisy, and this was

thought to be due to the flexibility as well as the base area of the

intensity transducer. It was therefore decided to limit the tests to

frequencies below 1000Hz.

The variation of the ratio w’A
w,, is shown in Fig.6.13 for a measurement

50cm from the driving point. Examination of the corresponding curve in

Fig.6.9 shows that, theoretically, the ratio wJM
I

w,, should remain constant

at about 50%. Fig.6.13 shows that for all the eight frequencies for which

measurements were made the ratio remains within ZO%of  the expected value.

This comparison is quite good, considering that in this test the phase

angles were such that errors in the determination of input intensity could

not be discounted.

6.5 Discussion

The errors in the experimental results presented in the foregoing sections

may be classified into two broad groups as follows:

(i) errors arising from the inherent limitations of the measuring

technique; and

(ii) errors caused by the difficulty of measuring the required kinematic

quantities accurately.

We shall now discuss these sources of error with a view to assessing the

suitability of the method for routine application to beam structures.

The main inherent source of error is the assumption that the force and
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moment components of intensity are equal. This assumption is satisfied

exactly only if the free-field solution alone is considered. However, there

are many situations where the relationship wX,=wXm  is approximately true

even in the nearfield. An example of this is a semi-infinite

measurements are made at a distance greater than a half-wavelength

tip; see Appendix 3. The results of the theoretical study of

beam if

from the

our test

structure lead us to the view that in practice the assumption that wI(=wXm

is not as restrictive as it appears. This view is reinforced by the results

of computations carried out for a number of finite beams. A typical set of

results is shown in Fig.6.14.

Distance from driving point (m) -

Fig.6.14 Computed variation of ratio w,/w, along finite beam

.
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Fig.6.14 shows the variation of the ratio w,,/w* with distance for a beam lm

long and of 40mm x 1Omm cross-section, excited by a force at the tip. The

beam is of mild steel and a damping loss factor of 0.01 is assumed. It is

seen from the :figure that provided the measurements are made at a high

enough frequency and at a distance not too close to the ends of the beam,

reasonable estimates of the vibration intensity can be obtained by assuming

w,, = w,ln. The higher the frequency the longer the span over which reasonable

measurements can be made. It is important to note that beyond a certain

distance from the driving-point  the ratio  w,,/w,  becomes  negat ive .

Therefore. measurement beyond this distance will result in errors in the

direction as well as the magnitude of the intensity.

Equation (6.11) shows that the measurement of intensity reduces to the

determination  o f  t h e  r o t a t i o n a l  v e l o c i t y ,  8, a n d  t h e  t r a n s v e r s e

acceleration, {. The accuracy of vibration intensity measurements depends on

how precisely these quantities can be measured. Transverse acceleration can

be measured very accurately with an ordinary linear accelerometer. However,

the rotational velocity cannot be measured easily because rotational

transducers for routine vibration measurements are not yet available. In our

experiments, the transverse and rotational motions were determined from the

mean and difference of the signals from two ordinary linear accelerometers

mounted on a block. One shortcoming of this method is that an error in one

of the measuring channels will result in errors in both ,$ and 8. When these

are subsequently used in the calculation of intensity the error is further

compounded. Small accelerometer sensitivity errors and phase mismatch of the

measuring channels will have a significant effect on the accuracy of the

vibration intensity. There will also be problems when measurements are made

near nodes and antinodes. In the vicinity of an antinode  the rotation is
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small. and consequently the signals from the two accelerometers will be

nearly equal. Signal processing involving the difference of two quantities

which are nearly equal is prone to errors. A similar remark applies to the

transverse acceleration in the vicinity of a node.

A number of mobility measurements were made in an attempt to assess the

extent to which the shortcomings of the vibration intensity transducer have

affected the accuracy of the intensity measurements. The accuracy of

transverse measurements was checked against a measurement made with an

ordinary accelerometer. The transfer mobilities measured by the two methods

are shown in Fig.6.15. It is seen that the intensity transducer compares

very well with the ordinary accelerometer.

-10 I

J_--_ Ordinaq  7’ra~~erse  Accelerumeter
-  V i b r a t i o n  Infenstty  7hnsducer

- 7 0 I
10 100 1000

Frequency (Hz)

Fig.6.15 Comparison of transverse mobility measurements

- ‘cr.
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In the case of rotation the measurements were compared with those of a new

rotational accelerometer which is still  under development? Since the

rotational accelerometer has not yet been calibrated properly it cannot be

used  to  judge  the  accuracy  o f  the  v ibra t i on  in tens i ty  t ransducer .

Nevertheless, one cannot fail to note the fact that the comparison between

the measurements obtained from these two quite different transducers is

fairly good. This observation, together with the fact that the intensity

transducer measures transverse motion quite accurately, suggests that in our

vibration intensity measurements errors caused by the shortcomings of the

intensity transducer were not very severe.

: - - - -. New Rotational Acccleromefrr
: -  Vabraltin  Intensity tkansducw

- 5 0 I
10 JO0

Frequency (Hz)

JO00

Fig.6.16 Comparison of rotational mobility measurements

t A new rotational accelerometer is currently being tested. It is. in fact, an ordinary
accelerometer which has been modified so that it is sensitive to rotation rather than
translation. That the accelerometer is sensitive to rotation has been established. What is now
required is a suitable method for calibrating it.
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The main conclusion which may be drawn from all our theoretical and

experimental results is that Noiseux’s method for vibration intensity

measurements is quite accurate as far as beam structures are concerned. The

requirement that measurements be made in the free field is not very

restrictive. In practice, accurate results will be obtained provided that

measurements are not made too close to the boundaries and sources of

excitation. A more likely source of error is the measurement of rotation.

Efforts to find a simple and accurate method for the measurement of rotation

should continue.
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Chapter 7

CONCLUSIONS

Various aspects of the flow of vibrational power in structures have been

considered in this thesis. The main conclusions will now be discussed with

some suggestions for further research.

In Chapter 2 the basic power and energy relations for vibrating systems were

discussed with a study of spring-mass-damper systems, drawing on well-known

concepts in Electrical Engineering. By studying the dependence of time-

average power, velocity amplitude and force transmissibility on frequency

and damping for the simple oscillator, it was shown that an increase of the

time-average power does not necessarily lead to a higher amplitude of

vibration response, and vice versa. A brief study of the undamped dynamic

vibration absorber system also showed that a reduction in the instantaneous

power flow to any part of a vibrating system could be accompanied by an

increase ‘of its amplitude of vibration. The conclusion to be drawn from

these observations is that vibrational power flow is not a suitable sole

indicator of vibration response levels.

The general procedure for calculating the power flow to the components of a

connected structure was indicated in Chapter 3. It was shown that the basic

Impedance Coupling relation cannot be derived by considering power balance

alone. This result is evidence that power flow data are of a less general

nature than frequency response data. The flow of energy in the various

coordinate

discussed.

a method

Impedance

directions at the joints between connected structures was also

This discussion set the scene for the proposal, in Chapter 4, of

for assessing the relative importance of coordinates when the

Coupling technique is used in the vibration analysis of connected
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structures. The method is based on the assumption that the relative

importance of any coordinate is determined by the magnitude of the energy

transferred in the direction of that coordinate. The proposed method was

tried on a range of test structures, and it was found that there was always

a direct correlation between the magnitude of energy transfer in any

coordinate direction and the effect on the responses of excluding that

particular coordinate from the analysis. The conclusion that may be drawn

from this is that the underlying assumption of the proposed method is sound

and that the method works.

The frequency response data for the structures studied in Chapter 4 were

generated theoretically. One way of carrying this study further would be to

apply the meth’od to structures whose data have been determined

experimentally. The object would be to find out whether or not measured

frequency response data are accurate enough to be used in the application of

the method. Two possible applications of the proposed method which require

further study were mentioned in Chapter 4. The first is the comparison of

rotational and translational mobility data, a comparison which is difficult

because of the different units involved. It is being suggested that this

comparison could be done on the basis of energy transfer. The other

application is the assessment of the relative importance of various

vibration transmission paths in a structure. This assessment could be based

on a computation of the energy transfer via each of the groups of coordinate

directions involved.

An evaluation was presented in Chapter 5 of a method proposed in the

literature for designing vibration isolation systems. The proposed method

aims at reducing the time-average power flow to the foundation. By studying

the simple machine-isolator-foundation problem, it was shown that the method

is applicable only where the machine interacts with the foundation with one
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degree of freedom, and any reduction of power flow is brought about by

altering the characteristics of the machine-isolator subsystem alone. A

number of examples were considered where a reduction of the time-average

power flow results in an increase of the amplitude of the force and motion

transmitted to the foundation. The method is not applicable where the

machine interacts with the foundation in more than one coordinate direction.

This is because power, being a single scalar quantity, cannot be directly

related to response amplitudes except in situations where the motion

response can also be represented by a single quantity. The conclusion is

that the design of vibration isolation systems on the sole basis of a

reduction of time-average power flow does not guarantee successful isolation

and, therefore, the proposed method must be applied with great caution.

Several methods have been proposed in the literature for the measurement of

vibrational power flow in structures. The method due to Noiseux has been

used for measuring the vibration intensity (time-average power flow per unit

width of cross-section) in a simple beam structure. The experimental and

theoretical results presented in Chapter 6 lead to the conclusion that

Noiseux‘s method is quite accurate as far as beam structures are concerned.

The requirement that measurements be made in the free-field is not very

restrictive in practice, and problems with the method are more likely to

arise from the difficulty of measuring rotational motion accurately.

Noiseux’s method is also applicable to uniform plates, and it is suggested

that a theoretical and experimental study be carried out along similar lines

to those in Chapter 6. There is also a need to carry out an experimental

study of the practical use of vibration intensity measurements in vibration

path identification. However, such a study should be preceded by efforts to

find an accurate method for the routine measurement of rotational motion. In

our experiments rotation was obtained from the difference of the signals

c
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from two linear accelerometers. Further studies are required to assess the

accuracy of the two-accelerometer method of measuring rotation. Efforts to

develop a simple rotational accelerometer should also be stepped up.

It has been intended to provide an answer to the following question: Is the

power flow method any better than the well-established methods based on

frequency response data? In order to answer this question it is helpful to

consider briefly the nature of the information contained in the two types of

data. Frequency response data are of a very general nature in the sense that

they represent  the input-output  ( force-motion)  characterist ics  of  a

structure for the particular coordinates under consideration. The main

app l i ca t i on  o f  f r equency  response  data  i s  in  the  cons t ruc t i on  o f

mathematical  models  of  test  structures for  use in further vibration

analysis. One such analysis is the prediction of the dynamic characteristics

of a complex structure by using the models of its component parts.

Mathematical models may also be used to predict the response of structures

to various combinations of excitation forces and to study the effects of

modifications.

In comparison with frequency response data, power flow data are less general

because they relate to the particular excitation forces prevailing. The

information obtainable from power flow depends on the particular form in

which the data is presented. Perhaps the least useful form arises when the

data is given as a single scalar quantity representing the total time-

average power flow to a structure. It is not possible to obtain from this

data any detailed information about the dynamic characteristics of the

structure; nor is it possible to learn much about the excitation forces. A

more useful form of power flow data is a set of vibration intensity vectors

giving the magnitude and direction of the time-average power flow per unit

width at a number of points over a structure. In this form, the data could
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be used to determine the locations of high energy dissipation and to

identify vibration sources and transmission paths. At the present time it

may be argued that methods based on power flow data do not offer any

significant advantage over the more traditional methods. However, the use of

power f low and energy in vibration problems outside the context  of

Statistical Energy Analysis is in its infancy and, therefore, a definitive

comparison with other methods is premature. The potential of power flow

methods is quite considerable and lies mainly in the area of diagnostics.

Unlike mobility properties, power flow characteristics may be obtained from measurements made

when a structure is in service and is vibrating as a result of forces prevailing under operating

conditions. In such a case, power measurements could p r o v i d e  i n f o r m a t i o n .

a b o u t  t h e  r e l a t i v e  s t r e n g t h s  o f  e x c i t a t i o n  s o u r c e s  a s  w e l l  a s  t h e  p a t h s  b y

w h i c h  v i b r a t i o n  i s  b e i n g  t r a n s m i t t e d .  I t  m a y  b e  a r g u e d  t h a t  i f  t h e

mathematical model of a structure has been formulated, the forces causing

the vibration may be determined by using measurements of the actual

vibration levels of the structure in service. However, the determination of

excitation forces in this way is very difficult in practice. But for the

immense measurement difficulties, power flow could provide an easier way of

assessing the relative magnitudes of excitation forces. As measurement

techniques improve we can expect to see a gradual realisation of the

potential of power flow methods.

In parts of this thesis arguments have been put forward against the use of

power flow in certain vibration problems. The intention has not been to

suggest that methods based on power flow and energy are inferior to other

more traditional methods. There are certainly many uses for power flow data,

as exemplified by the method proposed in Chapter 4. Further research is

required to identify other ways in which power and energy may be used in

vibration problems. What is being urged here is  that  any proposed

applications should be based on results that have been proved analytically

or experimentally and not merely assumed.
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APPENDlX  1

DETERMINATION OF VARIOUS AREAS UNDER INSTANTANEOUS POWER CURVE

Determination o.f I?,,_

The area labelled E,, in Fig.lA is the same as the cross-hatched area in

Fig. 1 B.

Fig. 1A

Fig. 1B

The curve in Fig. 1B is of the. form $o,r~~~2wt  . The time t, is given by
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The total area under the curve from -t, to t, is

4

A  - 2  ;,,,,cos2wt  d t
I
0

L
= 7 sin 2ut,

Now, sintut,  = J(1 - cos220tl)  =’

Therefore

A =

Also, the area of the unshaded portion under the curve is

Therefore the area of the shaded portion is

where

Determination o.f E,.

The area E, may be determined by using the fact that

and therefore

tdl B= ~*cosl#t+ -$(sin@-4cos$)

a,,
= T((* -4)cosf$ + sin4)

. ..a  Ii ,_
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APPENDIX 2

THE INFLUENCE OF DAMPING ON THE MOBILITY OF THE SIMPLE OSCILLATOR

The mobility of the simple l-degree-of-freedom spring-mass system with

hysteretic damping is

Y = iw
k-w2M  +jkq

where M, k and q are respectively the mass, stiffness and hysteretic damping

loss factor.

The real and imaginary parts of the mobility are

Re{Y) = (k
wh

- w=M)= + k%+

IrniY) = (k
wfk-w=M)
- w=M)2  + k%$

Consider a plot of the mobility on the complex plane. We wish to trace the

locus of the mobility as the damping loss factor is increased from zero to

infinity, with the frequency being kept constant. We assume that the locus

is circular with centre at (  0. w/2(K-c.?M)) and radius o/2(k-c/M).  If this

assumption is true then the following condition must hold:

Re2 + (Im - 2(&;2,j,f) )2=(&$$

where Re=RelY{, and Im=ImjY{
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The above condition is equivalent to

Now Re2+Im2=( wkv
(k - w2M)2  + kh$ )2 + ((k

w(k  - w2M)
-wW)2+  kh+ )2

= w2k2T2  + w2(k - w2hq2
[(k - 02M)2 + k2$]2

W2

= (k - w%f)2 + k2$

W

= Im’(k - w2~)

as was to be shown.

The locus of the mobility is shown in Figures 2A, 2B and 2C for the three

possible excitation cases.

L ,
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Fig.ZA

Excitation

below Resonance

Fig.2B

Excitation

at Resonance

Fig.2C

Excitation

above Resonance

Real Axis

? increasing

Real Axis
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APPENDIX 3

ANALYSIS OF VIBRATION INTENSITY IN UNIFORM BEAMS

For a uniform undamped beam vibrating

complex representation of the transverse

[(x, 1, w) = BW’[_4,(w)P + A*(w)ey
+ B,(w)-**  + B2(w)k’]

in flexure at a frequency w, the

displacement is [53]

( 3 - I )

where A,, AZ, B, and B, are complex constants and k is the wavenumber.

Free-field solution

The free-field solution is represented by the first two terms of equation

( 3 - l ) :

[(x, (&) = A,(upX + A,(wP
(3-Z)

where the time factor epc has been omitted.

The transverse velocity iS

v = gf = jw[A,(w)e+=  + A&op]

(3-3)

and the shear force associated with the wave is

Q =+I($)

= -k3EI~"j[A,(w)e-i~=--A,(,)Bk*J
(3-4)

where E is the Modulus of Elasticity and I is the second moment of area.
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Thus the force component of the intensity is’

Wxf = -b < Re(Q  jRe{v}  >,

= -&Re{  Qv*}

= + l&‘o( IA, I2 - (A212) (3-5)

where b is the width of the beam and I, is the second moment of area per

unit width.

The rotational velocity is

ix * “(3)
at ax

= jw[-jkA,(w)e-jkx + jkA2(w)BkX]

= kw[Al(w)e-ikx  - A2(w)Bkx]

and the bending moment associated with the wave is

iu =E,$

= -E 1 k2[A,(w)P’  + A2(W)BkX]

(3-6)

(3-V

Thus the moment component of the intensity i s

WXltl
= -hRe{Mr}

(3-6)

The force and moment components of the intensity are therefore equal.

tKote  that under the sign convention adopted (see Chapter 6) the shear force Q is in the -ve y

direction, and hence a negative sign is introduced in the expression for the force component of

intensity. A similar remark applies to the moment component of intensity.
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Semi-infinite beam

Consider an undamped semi-infinite beam excited at one end x=0. Since there

are no reflected waves travelling in the -ve x d i rec t i on  the  complex

amplitude of the transverse displacement is

hw) = A,e -jk= + Ble-kx

and the amplitude of the transverse velocity is

Now

tix,w)  =jw[Ale -ikr + B,e-ks]

8%
82 = k’bA,e-P= _ B, e-kX]

and therefore the shear force associated with the wave is

Q = -El($) = -E~k3~A,e-jkx_B,e-k’]

(3-9)

(3-10)

(3-11)

(3- 12)

The force component of the intensity is then

Wxf = -&l?e{QV’}

= -&Re{-EIt)VA,e*“- B,e-“I(-j;j[A;d’*  + BIe-kX]}

= E I,k 3w
-----Re{(jAle-~kx-

2 B,e-“)(jA  ;dk” + jB ;eVkx) f

= Ez~3Y~~(-~~,~2~j~~,~2~‘2k'-j~,~~~~kx~k*-~~~~~~kx~~ik'}

E Iok30= TR e{ IA, I2 + eokx~B,A  ;a” i- B~A,e-ik”]} (3- 13)

Now write A, = IA,ItibA and B, = lB,18”

so that B,A; = IA,B,IB(+~J  = IA,B,IB*

and B ;A, = IA,B, (e-j(@‘a-*A)  = IA,B, /e-j*

where d=Mg-@A)

__
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Then equation (3-13) may be written as

W E Z,,k3w
xf = y--R e{ IA, 1’ + e+‘lA,B,  I(jY”+*) + e+itx+‘))}

= *((A,\‘+ emkXIA,B,I[cos(kx  + @)-sin(kx  + #)I)

The bending moment associated with the wave is

M = El2 = -E]k2[A,~-~kx-BB,e-kx]

and the rotational velocity is

,wk[Ae-jk*
I - jB,evkx]

The moment component of the intensity is therefore given by

Wxm = -&Re{Mh;}

E I,k 3w
= - R  e( IAle-‘j”

23

- B,e‘-‘“1  [A ;8’” + jB ;e-‘“1 }

S !!$_f!fRe{lA,12  -jlB,12emzk' -B,A ;emkxdkX  +jB;A~e~kxe~kx}

_ E bk30R  e( ,Al12  _ e+lA,B,)[d(“+~)  -.jg(kx+*)  ]}

- E’f3w(lA,)2-e-kx IA,B,I[cos(kx  + dd - sidkx  + d])

The total intensity is then

w ‘Wx *f + wxm = Elok3wlA,12

(3- 14)

(3- 15)

(3- 16)

(3- 17)

(3- 18)

I f  the  only  escitation  present is  a force F at x=0, then

A, z B, =
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and the total intensity is

4F I’
W=ZElok’x

and the components of the intensity are

W
4

= ?[I + e-kx(coskx-sinkx)]

and
Wrm = !$[I -e-kX(coskx-sinkx)]

The variation of the ratios

that at distances greater than

beam the two components of

1 =o
0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1 d

I

0 .“o’

(3- 19)

(3-20)

( 3 - 2 1 )

wx/ W

wx and 5 is
x

a half-wavelength

the intensity are

shown in  Fig.3A. It is seen

(x7; > from the tip of the

practically equal.

Wxm

/

T-

-_ -. -\
_

--_

37 2 2lr
kx (Wavenumber X D istance)-

Fig.3A. Variation of components of intensity for semi-infinite beam


