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ABSTRACT

Two contrasting approaches to dynami c analysis exist. They
are the finite-element method, which is an anal ytical technique
that nodels the structure under investigation with a finite
degree- of -freedom nodel - and nmodal anal ysis, where the structure

is actually excited in order to assess its dynam c characteristics

This thesis contains an investigation into both nethods
using specific exanples in order to assess their contrasting nat-
ure. Often the dynamic performance predicted by these nethods
does not coincide. Attenpts to reconcile the differences that
emerge are reviewed initially, and the problemis then rethought
in the context of vector space theory. The analysis is built up
in stages, comencing with a sinple (3x3) matrix exanple, and grad-
ually adding in nore detail as the problem becones understood. The
introduction of vector space theory permts a reassessment of the
techni ques mentioned in order to unify the entire process of iden-
tification, thereby clarifying the objectives and expectations of
research in this area and allowing it to be extended to the case
of viscous danping. A sinple beamis used to illustrate the analy-

sis throughout.
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NOTATI ON

The following is a list of the principal notation used in

each chapter of this thesis. Notation that does not appear here

is defined in the text.

Chapter 1

B(X) . systemmatrix

C . danping matrix

F(t) : force

F(t) + f(A) . Laplace pair

H(A) s transfer function matrix

| » identity matrix

K : stiffness matrix

KINC inconplete stiffness matrix
Ka : analytical stiffness matrix
KFULL : full stiffness matrix

KRED : reduced stiffness matrix

M : mass matrix

NL . analytical mass matrix
MFULL full mass matrix

MRED : reduced nmass matrix

X(t) . displacement

X(t) + x(A) . Laplace pair

a. : ith residue

c . viscous danping coefficient
g . hysteretic danping coefficient
i : conpl ex variable (= v-1)

k . stiffness

- (viii) -
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F(t)

H(A)

o]l

X(t)

.

.
.

+ MBasSs

ith eigenvector

.ith rigid body node

e

.

: second nonent

matri x of eigenvectors

di agonal

matrix of analytical

di agonal

matri x of

matri x of

ith eigenval ue

Laplace variabl e

ith undanmped natura

neasur enent

percentage critica

ei genval ues

anal ytica

frequency

frequency

danmpi ng of

jth measurenent frequency

zero vector

i fi=]
Oi fif]
partial derivative

dynanmi ¢ Young's nodul us

force

transfer

function

identity matrix

stiffness matrix

el ement
mass nat

el ement

rix

mass matrix

di spl acenent

of area

stiffness matrix

ei genvectors

ei genval ues

ith node



danping coefficient
s element (i,j) of flexibility matrix
: stiffness
: elenment (i,j) of stiffness matrix
: element length
mass

: elenment (i,j) of mass matrix

nunber of neasurenment frequencies
conpl ex conjugate of x

: jth eigenvector

..

di stance along beam
: ith eigenval ue
: Laplace variable
: ith natural frequency
percent critical danping of node
: jth measurement frequency
: ith shape function
: matrix of Xs

1 Zero vector

: identity matrix

: basis vector for (U, V)
matrix representation of P

: linear transformation
matrix representation of T
hybrid matrix

: dual of T

—(X)-
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Proj(’l")v,m
Pro J(Tpp. 4
um

Rm

19

Vi

Va

v;].l.

v*

uL
Lv, U

.

standard basis {(1,0,...,0),(0,1,...

(0,0,...1)}
vectors

eigenvector (of T)

coordinate n-tuple representing X- relative

to e basis

transpose of X,

complex conjugate of X

ith eigenvalue

diagonal matrix of eigenvalues
matrix of . 9

transpose of ¢

matrix of y;

projection of T onto subspace vm
projection of T onto subspace ?);nl
zero vector

null space of T

range space of T

vector space

n-dimensional vector space
m-dimensional vector space
orthogonal complement o?/a;;l
algebraic dual space o‘?);
subspace (of V)

space of operators T :2};1 *v';,
space of real n-tuples

space of complex n-tuples

. space spanned by vectors X5

inner product

. norm

linear functional

- (XI) -
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Chapter 4
A,B

.o

matrices or |inear transformations

identity matrix

stiffness matrix

anal ytical stiffness matrix
mass matrix

anal ytical mass matrix

ith eigenvector (node)

ith anal ytical eigenvector
ith eigenval ue

ith natural frequency

ith analytical eigenvalue
diagonal matrix of Ai
diagonal matrix of Aai
matrix of Xy

matrix of X4

zero vector

range space

nul | space

space spanned by Xy i=1,.
space spanned by xaii =1,

wei ghted inner product

danmping matrix
identity matrix
stiffness matrix

mass matrix

- (xii) -
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mass matrix of x
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matrix of Yi

ith eigenvector of (2n*2n) problem

><—
L}
S— ]
(13

Xy s ith eigenvector

->-<-.1— ¢ complex conjugate of X;

y.‘i ¢ jth eigenvector of dual (2n%2n) problem
)‘i : ith eigenvalue

h ¢ matrix of Ai

w, s ith undamped natural frequency

QJ. : jth measurement frequency

9] ¢ diagonal matrix of wy

L] ¢ matrix of x5

ki : ith normalisation constant

Vs, : vector space spanned by [xi] i=1...2n

vector space spanned by [xal] i=1,...2n

Ni
=}
>

6 ¢ zero vector
“ : analytical equivalent of
[.,.] ¢ linear functional
<, s inner product
Chapter 6
E : Young3 modulus
T : second moment of area
N : number of degrees-of-freedom of FE model
M,K - FE (NXN) mass and stiffness matrices
S(y) : cubic spline
S'(y) . first derivative of S(y)
- (xiii) -
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T

second derivative of S(y)

: measured mode

: known values of measured mode

unknown values of measured mode
ith position along beam

mass per unit length

ith measured eigenvalue

zero vector

measurement position
non-measurement position

analytical equivalent
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CHAPTER 1
JNTRODUCTI ON_AND REVI EW

1.1 Prelimnaries

An understanding of the dynamic behaviour of structures
has been sought for many years. This search has been greatly
enhanced by the onset of conputer technology, which has allowed
an ever-increasing degree of sophisticated analysis in order to
gain a fuller conprehension of how structures exhibit vibrational
characteristics. The sorts of structure that provoke interest in
ternms of their dynamc behaviour are extremely varied and far too
nunerous to nention here. However, to cite but a few exanples:
civil engineering structures such as bridges, dans and multi-
storey frames have been investigat ed(5'30’34’41'100). with parti-
cular attention being paid to how the structure would behave in
an earthquake environnment; aircraft dynamcs is another area where
a good understanding is required in order to provide the optinum

design(43)
(48)

; other structures of interest include offshore struc-

(23), mot or cars(l'o), and so on, in a

tures » Space vehicles
seemingly endless list. In order to assess the dynam c properties
of these structures, two nmethods have emerged in recent years wth
which to analyse the problem The first of these nethods is the
finite-el enent method, which has been logically expanded fromits
use in static analysis to incorporate dynam c behaviour. This
technique has now firmy established itself as an extrenely power-
ful nunerical nmethod. A brief review of how it is adapted for use
in dynamic work is given in Section 1.3. The second technique is

nodal testing, in which the structure (or a scale nodel of it) is

Lt R s ana e e wtiow e I sl s U e



actual |y excited and neasurenents of the structure's response are
made in order to assess its dynamic characteristics. Equi pnent
capabl e of these measurements is relatively new and the interest

and amount of activity in the field of nmodal testing continues to
expand at an increasing rate. This fact is demonstrated by the

exi stence of the International Mdal Analysis Conferences, which
began in 1982 and continue to grow in ternms of support and the
quality and quantity of papers submtted. However, nodal analysis
techniques are not being devel oped with the objective of replacing
the long-standing theoretical, finite-element domnated type of
analysis - the two are designed to enhance one another. If both

met hods indicate the sane type of response patterns, then an even
greater confidence that this would be the true resp.nse of the
structure may be asserted. Wth greater control and demands being
put on the design of modern structures, the time whenan FE enal ysis
alone would suffice to indicate the vibrational characteristics of
that structure is rapidly drawing to a close. The nodern dynazicist
needs to be both a good analytical engineer and also a proficient
experimental engineer. This dual role inplies that tw sets of

data will emerge. The ideal situation would be if these two sets
agreed with each other so that the nodal test and the FE anal ysis
may co-exi st and conplenent one another in nutual harmony. However
both nethods have errors attached to them The FE method is an
approxi mation to the real continuous structure with a finite degree-
of -freedom nodel and consequently can never be a perfect represen-
tation of that structure. In addition to this, nodal testing also
has its associated errors. These are concerned with the way in

which data are collected and subsequently anal ysed. However, there

- 2.




exist two insurnountable limtations with test methods. The first
of these is the fact that it is generally not possible to neasure
at all the nodes or degrees-of-freedom required. This is especi-
ally true when one considers rotational motion. The second lim-
tation is that in all but the nost trivial exanple an inconplete
set of data is obtained. That is, the nunmber of degrees of freedom
exceeds the nunber of measured nodes. Despite this, it cannot be
overl ooked that the test measurements do offer the npst accurate
representation of the structure. So, experimentation provides the
best source of information, which is nearly always inconplete
whereas the anal ysis provides a conplete picture but is often
inaccurate. It is prudent, therefore, to try to extract the nost
salient features of both types of approach. The way forward, chink-
ing in general terms, would perhaps be to somehow conbine the two
inan effort to provide a third and optimum set of information
which includes data from the nodal tests and retains the additiona
data available only froman FE analysis. The theme of this thesis

is concerned with problens of this nature

Attenpts to reconcile the contrasting sets of information
that exist between experiment and analysis in the literature are
firstly reviewed towards the end of this chapter. Chapters 3 to 6
set out to reanalyse the problemin the context of vector space
theory, starting initially from an idealistic, oversinplified
exanpl e and gradual |y introducing nore factors as each previous
stage is explained and understood. Vector space theory is a mathe-
matical tool which is an extension of sinple geonetric concepts, so
at each stage of the analysis a vivid picture of the meaning of the

work will bereadily available. Al the expressions previously

- 3-




presented, using a wide range of aI{ernative mat hematical tech-

ni ques, appear in the analysis contained herein - along with

other expressions, previously unseen. The advantage and notiva-
tion for the use of vector space theory is that it sinplifies the
problem into sinple geometric terms, provides a unification for

the whole, and therefore permts an extension to more conplicated
cases where other techniques mght possibly be buried in their own
algebra. As a direct result of the use of this nmethod, cautionary
notes may be injected outlining the limtations and expectations
that will exist, no matter what type of approach is adopted, because

of the very nature of the problem

Chapter 2 presents a |limted investigation into experimenta
and anal ytical methods, using as a test-piece a sinple uniform beam
Sone description of how the beam was anal ysed using experinenta
modal analysis and how a mathematical nodel was fornul ated using
the FE method is given. This serves as an introduction to both
met hods and allows the problemto be set in context with an appre-

ciation of the two contrasting approaches

The principal results and conclusions that are drawn from
the entire analysis are reviewed and discussed in the final chapter
and the thesis draws to a close with a brief discussion of how the
entire line of research stands at present - and where it is likely
to move, as a greater understanding is attained, in the foreseeable

future

1.2 Dynam ¢ Equati ons

For the analysis, we assune that we are dealing with a linear

system so the usual way in which the equations of notion are

-4 -




introduced is via the one degree-of-freedom mass-spring-danper

(25'52’63). The equation of notion is considered in terns

set-up
of forces acting on the body, and witten as

mX(t) + eX(t) + kX(t) = F(t)
where F(t) represents the external force, X(t) the response and its
derivatives with respect to time, and m c and k represent the mass
viscous danping and stiffness of the system For multi-degree-of-
freedom systems with n degrees of freedom the notion is said to be
adequately described (assumng small notion, elastic materials etc.)
by n linear differential equations with constant coefficients,
witten as

MX(t) + CX(t) + KX(t) = F(t).
Now, X(t) and F(t) are displacenent and force n-vectors respectively
and M C and K are (nxn) mass, viscous danping and stiffness matri-
ces. The text of this thesis is concerned with the viscous danping
nodel . This nodel has the advantage that it is mathematically
pl ausi bl e, as opposed to hysteretic danping where the equations of
motion differ and cause difficulties at zero frequency, with a
finite dissipation of energy. Hysteretic danping is often intro-
duced in the light of the observation that danping is independent
of frequency. However, no entirely satisfactory nodel, in the form
of a differential equation, exists to incorporate this and for

l'i ght danping the equival ent viscously danped systemis practically

justifiabl@d

W may take the Laplace transform of the nodel to obtain
(MA2 + CA + K)x(X) = f(X)

that is
B(A)x(A) = £(A)
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where B(X) = MA2 + CA + K

B(X) is known as the (nxn) systemmatrix and its inverse HX) is
the transfer function matrix. So, assuming det|B(A\)| # 0, and
that all the poles lie in the left-hand half-plane (stability con-

dition), we have

H(A) = [B(y] ™2
so that

x(A) = H(A)E())
If we assume that there are no repeated roots, then H(X) may be
witten in partial fraction form as

2n a;

= L

where a; = ith residue of the system

)‘i = ith pole of the system (eigenval ue)

and A = -p.w, + iw./(l - u¥)
11 - 1 1

for the dissipative system Here, w, is the undanped natural fre-

quency of mode i, which is the square root of the ith pole of B
o0 X
with C = 0. WM is the percent critical danping for node i, where

a critically danped systemreturns to a state of equilibriumwth-
out oscillation. The frequency response function, rather than the

transfer function, is obtained by substituting A = iw, thus,

These expressions are derived by Lancaster(ss)

and again at the end
of Chapter 5, in the context of vector space theory. For free vib-
ration, f(A) is put equal to zero so that

(MA2 + Cx + K)x(A)=6.

For consistency, A must adopt the 2n values satisfying the charac-

-6 -
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teristic equation

IMA; +C\ +X[=0 i=1 ... .

The associated eigenvector X4 whi ch-satisfies the equation

MX2 + CA, + K)x. = §
1 1 1

is, inmtrix form for i =1,. . . . 2n, equivalent to
MOAZ + CPA + K¢ = O

where A = diagonal matrix of eigenval ues

¢ = matrix of eigenvectors

If ¢ =0, then we have

MOA = KO,
This is the undanped free vibration equation and when this is sol-
ved, gives the undanped normal nodes X5 rnd the undanped natura
f requenci es uﬁz. Othogonal ity conditions emerge fromthe analysis
which must be satisfied. These are given by

oMo

and o7k = A -
for an undanped system Further developments of this type of analy-

sis are to be found in References (79) and (80)

1.3 The Finite-El ement Method

The onset of the rapid devel opnent of conputer technol ogy
permtted the devel opnent of the FE method so that it now repres-
ents a powerful numerical tool in the analysis of, anmongst others,
dynam ¢ structures. To conplenent this, several texts have appeared
in the literature describing the FE method from first principles
A selection of these appear as References (11), (18), (29), (31),

(71), (85) and (110). It is not the objective here to analyse or

-7 -
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criticise the basic principles of the FE nmethod as it is a too

of proven worth that is now well established

par hn‘
To be brief, the FE nethod is a way of replacing the diff-

erential equations describing the structure by a (possibly large)
set of matrix equations. The natrices are finite-dinmensional ana-
| ogues of the differential (stiffness) operator and the mass. The
matrices are obtained by discretising the structure into nuch
smaller, sinpler elements, whose mass and stiffness properties my
be estimated with the use of localised shape functions of a sinple
pol ynom al nature, in order to derive element mass and stiffness
matrices. These elenmental matrices may then be conbined to form
the global mass and stiffness matrices. If the numbering of the
nodes of the elenments is done in a sensible fashion, these globa
matrices will be banded in nature. Elements are assenbled by
ensuring continuity of displacenent and slope (rotation) at a finite
nunber of points on contiguous groups of elements. The resulting
finite-dinmensional nmodel thus satisfies conpatibility throughout
the structure in this sense, while equilibriumis satisfied only

in a variational or weak sense. The procedure, for this reason

is often referred to as the displacenent nethod. Boundary condi-
tions which occur are incorporated at the assenmbly stage. Accurate
assessnent of the boundary conditions is a crucial,but difficult,
task and caution needs to be exercised to ensure that what is being

modelled reflects the real situation accurately.

In general, two types of nmass matrix may appear. The first
is a consistent mass matrix, so called because its derivation is
arrived at in a simlar fashion to that of the stiffness matrix

The second is a lunped mass matrix, which may be interpreted al nost



1

literally. Al the mass of the strﬁcture s assuned to be concen-
trated at the node points and so this matrix will be usua”Y di a-
gonal and hence will require |ess conputer storage space. The
solution of the equation

MOA =Ko
I's then sought for the first several eigenvectors (starting with
the [owest eigenvalue). The eigenvectors will correspond to the
normal modes of the structure and the eigenvalues will correspond
to the square of the undanped natural frequencies. It is usual for
the danping matrix to be assumed to be negligible when conducting
this type of analysis, so normally only the conservative behaviour

of the structure will be predicted

1.4 Mbdal Testing

The amount of interest and activity that surrounds the field
of modal analysis continues to swell. This is hardly surprising
considering the potential rewards such a method offers. Mdal test-
ing has been in existence nuch i;nger than its name, and dates back
to the early days of vibration neasurement. Its appeal lies in the
fact that it is an experinental technique as opposed to an anal yti -
cal one. A far nore confident appraisal of the dynam c character-
istics of the structure under consideration may be presented if it
has been directly tested rather than artificially nodelled, and the
derived nodel subsequently analysed. O course, the price for deal-
ing with the real world is having to cope with all the real phen-
omena that exist, such as danping, non-linearities etc. However
far fromdissipating interest as a result of these unattractive fea-

tures, the subject continues to expand because of the new and exciting
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chal I enges these problens provide for both the experinmental and
anal ytical engineer. The anmount of literature that has appeared
in the field of experimental nodal'analysis is vast, and there is
far too much for it all to be cited here. The interested reader
is referred to References (3), (67) and (68) for good bibliograph-
ies on the current literature covering all aspects of testing
including results obtained on specific test-pieces. The purpose
of this section is to provide a general overview of the field and
hi ghli ght sonme of the more significant contributions which are of

a nore general nat ure.

The notivation for conducting a nodal test is to extract a

mat hematical nodel of the behaviour of that structure. Ewins(>2237)
suggests that the nodel will be of three possible forns:

1. Response - containing the forced response characteristics

of the structure, usually as functions of time or frequency.

2. Modal - a know edge of the principal nodes of vibration,
natural frequencies and danping estimates

3. Spatial - a description of the distribution in space of the

structure's mass, stiffness and danping characteristics

The ease with which each of these nodels may be formulated varies
Model 1 is rapidly established if good measurements are nmade and
the subsequent analysis of the data is conducted sensibly. Mbdel

2 may be extracted from nodel 1, but sonme mathematical constraints
and limtations must be inposed. The evaluation of model 3 from
experinental data alone presents severe difficulties and is usually
conducted with the aid of other information (analytical). Mdel 3

is clearly of nost benefit to the practising engineer, since it

- 10 -




tells him sonething about the physical characteristics of the
structure under investigation, permts a prediction of its response
due to given loading conditions, and nodels 2 and 1 can be derived
directly fromit. Hence the derivation of nodel 3 will be a prin-
cipal concern of this thesis, and for purposes of review at this
stage the various techniques available for the fornmulation of

models 1 and 2 only will be considered

In essence, experinmental modal analysis consists of three

stages:

1 Acqui sition of Data

2. Anal ysis of Data - formulation of nodel 1
3. Curvefit of Data - formulation of nodel 2

Each of these steps requires careful thought and preparation if

the time spent on a nodal test is to be advantageous. The experi -
menter needs to be aware of hie objectives and goals at the begi nn-
ing of the investigation, and not halfway through, in the light of
unforeseen assunptions and avoidable errors. For exanmple, for the
test engineer, one hour spent calibrating a single accel eroneter
correctly wll be, inthe long term infinitely nore advantageous
that two weeks spent analysing data that is inherently wong in the

(95,96) gpserves that the analysis of data is

first place. Stein
a 'right" that has to be 'earned by successfully obtaining valid
data at the outset. He remarks that the actual collection of data
inthe first place is an extrenely inportant stage, since all fur-
ther analysis - if it is to be valid - depends on the accuracy of

the data first acquired. He adds that in a test situation the

equi pment must be assuned to be 'guilty' of generating unwanted

- 11 -
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types of noise and it is for the engineer to convince hinself that
these unwanted neasurenents are sufficiently controlled either by
removing them conpletely or by limting their significance

(36)

Ewins also injected a few words of warning with the results of
his round-robin tests, where many engineers were asked to analyse
and test a sinple structure, and then denonstrated the spread of

opinion in the results obtained by displaying themall sinultane-

ously in graphical form

The type of test that is conducted depends largely on the
type of structure under investigation and the quality of informa-
tion sought. Many authors(37'55’82) have |isted techniques used
in order to extract the data. Anmong the nethods are sine-sweep
testing, randominput, pseudo-random input, nultiple shaker sine
dwel | technique, inpact testing, and so on. These techniques
require the use of electromagnetic exciters, force transducers,
accel eroneters and ot her associated pi eces of equi pment now gener -
ally available. A brief investigation into two of these techniques
(mul tiple shaker sine dwell and inpact testing) is given in Chapter

2.

Once the datahave been collectedHe3 need to be processed.
The first stage is usually anal ogue-to-digital conversion. The
onset of conputer technology and the devel opment of the Fast Fourier
Transform (FFT), first devel oped by Cool ey and Tukey(27) in 1965,
has nmeant that the data can be processed at high speed and presen-
ted in either a tinme or frequency domain in one of the many forns
of presentation available. Again, these techniques and the associa-
ted considerations required for their effective inplenmentation are

becom ng wel | established, and discussion here will be linted to
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that of equi pment available at Bristol University and the experi-

, ences gained fromit, as described in Chapter 2. Having obtained

“the data in this form nodel 1 is said to have been established

This usual ly consists of a know edge of the frequency response
function between excitation |ocation, i, and response neasurement
location, j. The assunption of linearity throughout the structure
infers that if one row or colum of the frequency response matrix
I's know, then the whole matrix can be evaluated. Two software
:packages exist at Bristol University for the analysis of data using

this approach.

Once the data is in this form the next stage is the inter-
esting problemof curvefitting the measured data so that a mathe-
matical function with disposable paranmeters approximates it as
closely as possible. Mich effort has been devoted to this problem

.in recent years, wth analyses being conducted in either the time

or frequency domains. In the time domain, perhaps the two nost

significant methods of paraneter estimation are the lbrahimtine

(53)

domai n technique and the poly-reference conplex exponentia

‘method(a'los)‘ Bot h net hods use the free decay response of the

Tstructure to determne the systems eigensolutions and fit a node

of the form

s 2n At
¢ X(t) =% x;e © {n(t)}
T i=1

gwhere n(t) represents the noise. The poly-reference technique

obtains the free decay responses by an inverse FFT on the obtained

Etransfer functions. It has also been devel oped for use in the
.frequency domai n(28).

-~
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More commonly in the frequency domain, however, the approach
is again to fit the mathematical expression to the data. The ana-
lytical expression used here is as before

2n a

H(iw) = §
k

_k
iw - }‘k

To reiterate, the ak's are known as the residues and contain infor-
mation concerning the node shapes of the structure. However, the
function here is non-linear, with respect to the Ak's,and this
problem may lead to difficulties. Mich discussion upon how this
function may be fitted to the experinental data may be found in

the Iiterature(19:4%,111)

, and consideration of this problemis
given in Chapter 2 with details concerning how the curvefitter was
coded on the PDP 11/34 at Bristol University. Some authors acknow
| edge the fact that the fitting of an analytical nodel requires
that certain paraneters (i.e. natural frequency and danping) need
to be global properties of the structure, but curvefitting does not
entirely confirmthis (especially wth danping), so that globa
curvefitting procedures are introduced whereby all the frequency

response functions are fitted sinultaneously so that only one fre-

quency and one danping estimate is extracted for each node

G her curvefitting techniques include a circle-fit, which
is a single-degree-of-freedomnethod first introduced by Kennedy

(57)

and Pancu , and fits a circle to the experinmentally-obtained
data plotted on a real vs inmginary diagramof the frequency res-
ponse function. The nethod is relatively sinple to i npl ement and
hence its attraction to many anal ysts. However, its use is limted

to well-separated peaks

- 14 -




Ri chardson and Formenti (83) have utilised orthogonal poly~
nonmials in order to remove some of the ill-conditioning of the
non-linear |east squares curvefit and have used these polynonials
to curvefit an expression of the form

m

)

k
b, A
k=0 X

A = iw

where n is set as the nunber of identified roots and mmy be spe-
cified by the analyst. Having solved this problem the residues
are then found by using the usual expression. Qher factors that
are considered are the contribution of nodes outside the frequency
range of interest and how additional terns may be included to acc-

ount for this(lg’lll).

Once conpl eted, a successful curvefit will yield estimates
of the node shapes of the structure and the natural frequency and
danping estimates. This is the nodal nodel (nodel 2). The node
shapes will be, depending upon the conplexity and distribution of
natural frequencies, either real or conplex. Since the function
used to curvefit the data is conplex, in general conplex nodes will
be generated. If danping is small and the natural frequencies are
wel | spaced, the conplex nodes are often replaced by their rea
part, meking the assunption that the imaginary contribution is neg-
ligible. The nodal model may then be used for conparison agai nst

the eigensolutions of the analytical nodel

Anot her area of research in this field which is of signifi-
cance is the use of the Hlbert transformfor the detection of non-

linear systems. |f

- 15 -
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'z-(w) iwt

z(t)e ~dt = X(w) + iY(w)

then X(w)

P
and  Y(w) = %JEXL_S% do

—o
So here the fact that the imaginary part of a frequency response
function may be generated fromthe real part via the Hlbert trans-
formand vice versa is utilised in order to deternine areas of non-
linearity(so'93’102’104). Some work on taking into account non-
linearities in the curvefitting procedure has also been conducted(39).
O her work has al so been undertaken on the determination of struc-
tural defects using nodal test techniques and a know edge of the

mass and stiffness distribution of the structure(1'21).

Overall, nodal analysis is a current area of intense research
and as methods, equi prent and techni ques inprove, so does the con-
fidence in the natural frequencies, danping factors and node shapes
that are extracted using this method. Cearly, if this is the case
sone harmony between the test and the FE anal ysis nust prevail

Correlation of the two is reviewed in the next section

1.5 Correl ati on of Experinent and Theory

One of the key objectives of activity in the area of dynamc
analysis in recent years has been to derive nmeasured mass and stiff-
ness matrices fromthe nodes and frequencies that will have been

obtained froma nodal test, or in other words, to generate nodel 3.

- 16 -
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Ri chardson and Potter(sl),i n an eari} paper, offered an inmmediate
solution to this problem for the danped case. This analysis star-

ted from the expression for the transfer function matrix

H(A) =.Z A -.X- = (MA2 + CA + K)_l.
If Ais put equal to 0, then
2n a. 1
HO) =-7 =2 =K
i=1 N

hence K = {H0) L

Then differentiating with respect to A we have
B'(A)[MA2 + CA + K + HA)[2MX + C =0
and again putting A = 0 gives

H'(0O)X + HOC =10

H(O)™H'(0)X + C = 0
C=- KH(OK
and again differentiating wr.t. %
H'"(A)[MAZ + Ch + K| + H'(A)[2MA + Cl+ H'O)[2MA + O
+ HA)2M = 0
and finally, putting A = 0 again, we have

H"(0)X + 2H'(0)C + H(O)2M = O

HUOR & (" (0)m'(O)K) + H(O) M= 0

HOM = B'(O)kH" (0)k - H(OK

M = K(H'(0)KH'(0) - H—"égz)x

and hence solutions for K C and M are rapidly obtained. The serious

difficulty that exists with this analysis is the initial inversion

of HO0) in order to obtain K. For this to be possible, H0) needs

- 17 -



to be non-singular or, in other words, allthe nodes of the struc-
ture nust have been neasured. |f this is the case, these express-
(38)

ions - and others nentioned in the literature - are perfectly
valid and will provide the correct spatial matrices. In practice
though, when neasurenents are nmade on a real structure, an incom
plete set of data only will be obtained. That is, the number of
measurement positions will greatly exceed the nunber of nodes neas-
ured. W will have a so-called "inconplete nodal nmodel' (nodel 2)
consisting (thinking for the time being of the undanped case only)

of an (mxm) di agonal matrix of eigenvalues (square of the natura

frequencies) A and an (nxm) rectangular matrix of nodal vectors ¢.

(94), in a recent paper, acknow edges this fact and

Starkey
introduces the idea of a generalised inverse in order to circunvent
this difficulty, and proposes expressions of the form

K = o078y LacoToy LoT.

This type of result is attractive because it will satisfy the nec-
essary condition of orthogonality

67Ké = A

and hence, if he had derived a mass matrix in a simlar fashion,
satisfying

MO = |

a conpl ete systemwoul d have energed consisting of two singular
systemmatrices satisfying the two orthogonality requirenents and
hence the eigenvalue equation. However, his analysis fails to

suggest such a system

VWhat is perhaps of nore serious concern here is that the mass

and stiffness matrices obtained by this nethod will have no meaningfu
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interpretation in ternms of mass and stiffness distributions of
the structure. Starkey quite rightly observes that this type of
expression "does not include the subspace perpendicular to the

ei genvectors from the experiments", but yet neglects to clarify
exactly what information is to provide the data for this subspace

(89)

Ross » in an earlier paper, inferred that difficulties may be
encountered when trying to devel op matrices in this way with his
coments: "from the spectral deconposition of a matrix, it is known
that the higher-order eigenvectors determne the outward appearance
of a matrix." He goes on to observe that the | owest strain energy
states determine the outward appearance of the flexibility matrix,
so a flexibility matrix may readily be constructed. Rodden(86),
in a separate line of investigation, reaches this conclusion and

goes on to denonstrate how this is done

However, many authors al so acknow edge the fact that there
is additional information available in terms of analytical mass and
stiffness matrices. |If the analytical nodes and frequencies corres-
pond with those of the test then there is no call to direct atten-
tion to the generation of measured mass and stiffness matrices,
since it is assunmed that these will directly correspond with the
analytical ones. However, the line of action necessary if the two

in some way contradict each other has generated a lot of interest

Much concern was directed to which set of data was correct,
and earlier attenpt5(6’8’46’62'88'97’98) which were made prior to
the devel opnment of nore sophisticated test equi pment assuned that
the nost likely 'correct' piece of data was the analytical mass
matrix, hence efforts were nmade to orthogonalise the neasured data

with respect to the mass matrix so that
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oMo = 1,

and then proceed to correct the stiffness matrix. One of the mjor
criticisms of this type of exercise -is that the 'corrected system
still did not produce the neasured modes, so it was debatable as

to exactly how it had been corrected

Berman and FIaneIIy(lz), in an earlier paper on the problem
consi dered sone inportant points that one needs to be aware of for
this type of analysis. They proposed an expression for an 'incom-

plete’ stiffness matrix given by

T

m
= ¥ Mx. A x.M.
111

i=1

K1ne

Again, however, we may see that the domnant terns the high eigen-
values, were missing fromthe sumation so that the formof this
inconplete matrix may not, in practice, represent any tangible stiff-
ness distribution. They acknow edged this by comenting that "since
the terns containing the higher values of Ai are not included, the
donminant terns of K will be nissing and thus KINC will not resenble
the true K matrix."

Anot her glaringly obvious fact about this type of result is
that the mass matrix also needs to be known in advance. They con-
sider this problem and conclude that the "best information avail-
able as to what the "true' values are, (i.e. elements of the nmass
matrix) is the approximation arrived at by the engineer" or, in
effect, the analytical mass matrix, M. However, again there could
be no guarantee that M, woul d satisfy the orthogonality requirenents
with respect to the measured nodes ¢, It was clear that what was
needed was a best approximtion to the mass distribution followed
by a slight adjustment so that it also satisfied the orthogonality

requirements
- 20 -
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It was not until 1979 that a generalised expression that
satisfied these requirements finally emerged. In his excellent
technical note, Berman(14) describes how a change to Ma i s sought

(AM so that
oT(M + M0 = |,

He sets out to find that AM which has some mininum weighted Euclid-
ean norm within the constraint of this condition. The follow ng

function is mnimsed
e = I e |

and Lagrange nmultipliers are introduced to incorporate the orthogo-
nality constraint to give the follow ng Lagrangi an function
m

b=€+ E )

T
A, (OTAMO - |+ M),
ic1 j=1 —j a’ij

wher e m = ¢TMa<I>.

This equation is then differentiated with respect to each el ement

of AMand the results are set to zero in order to satisfy the mini-

msation and the constraint. This process gives the matrix equation
21t + one” = 0

or AM = -&M3¢A9TM3.

A solution for A (the (mxm) matrix of J\ij) may easily be extracted
as
-1 -1
A=-12m, (1 - ma)ma
so that
-1 -1.T
AM = M_ém_ (I-m)m "0 M,

This result was encouraging insofar as it is:
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(a) ‘close' to the analytical matrix in the sense of a Euclidean
norm

(b) symetri cal

(¢) satisfies the orthogonality constraints.

This inproved mass matrix allows the inconplete stiffness
matrix to be also calculated asdescribed previously. Alternatively,
a simlar method nmay be adopted to correct the anal ytical stiffness
matrix - once the mass matrix has been corrected - as described by

Baruch(7) and Wei(107). The normthat is mnimsed here is

d = i - gm )

Ka is symmetric and can be singular if it includes rigid body nodes
(see below). K nust also satisfy the constraints
K¢ = MoA,

K=KT9

and ¢TK¢ = A

Again, Lagrange nultipliers are introduced to incorporate these
constraints and partial differentiation yields an expression for K

of the form

K=K + MB(OIK & + M)BIM - K 00IM - MOO'K_.
a a a a

So a pattern is energing whereby an analytical nodel is inproved
in stages using the data obtained from the nodal test. In 1983
Berman and hbgy(15) formalised this procedure, calling it AML (ana-
lytical nmodel inprovenent). The method is essentially conducted

in three steps:

1 NL. Ka and the measured nodal displacements and natura

frequencies are used to obtain the 'full' nodal vectors from which

-22 -
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¢ (nxm) is formed (see Section 1.6)

2. Ma and the now known ¢ are used to obtain M which satisfie

the orthogonality relationship between the nodes

3. Ka and the knowmm M ¢ and A are used to obtain K, which is
symetric and satisfies the eigenvalue equation. The Mand K here
do not represent the 'true' mass and stiffness matrices of the
structure, as may be inplied by the notation, but only corrected
analytical matrices obtained using measured information

h(9,10)' in the light of the argunent that it may be

Baruc
the stiffness matrix which is known with nore reliability than the
mass matrix because of "the significantly greater success of the
finite-el ement static analyses (which use the stiffness matrix) as
conmpared to correspondi ng dynam ¢ anal yses (which are both the mass

and stiffness natrices.)"(ls)‘

suggested that the stiffness matrix
may be corrected first and then the mass matrix. Effectively the
roles of the mass and stiffness matrices are reversed. Here
instead of initially normalising the nmodes with respect to the
anal ytical mass matrix so that

x.TM x. = 1,
i a1

as was necessary for the previous case, the nmodes are normalised

so that

- — 2
x; Kaxi = Ai (Ai = Wy ).

The inportant point to note here is that if the structure is not
fixed in space, such as an aircraft or space vehicle, then there
will exist rigid body nodes. These are nodes that have zero fre-
quency and are brought about due to the lack of a fixed reference

Mrﬂ\dl_g

position. There i, a-maximm of six rigid body modes which satisfy
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So, if they are present, the stiffness matrix is singular. They

are orthogonal with the mass matrix; so

R, R i ..
X; ij = 6j i,j=1, .. .6

therefore the mass matrix remains non-singular. Thus, if rigid
body nodes are present, the reverse approach cannot be inplenented
because of the singular nature of the stiffness matrix. The inclu-
sion of rigid body rmodes does not affect the previous formulation
Having understood this, Lagrange multipliers may again be intro-
duced in order to incorporate the necessary constraints. The
expressions obtained in this way for stiffness and mass are given
as

K=K +K& (A - k)k 1ok
a a a

T

and  M=M_+ Kok 1 (I + m)k 10K - K<1>d>TMa - MaN)TK

where k = ¢IK8¢.

Chen and Fuh, in a recent technical note(24), have adopted the idea

of generalised inverse in order to rederive these types of express-
ions and introduce a weighting matrix W but do not succeed in
deriving a general form for an inproved mass or stiffness matrix;
nor, indeed, is it made clear that the mass and stiffness matrices
do not have to be updated in any particular order. The same sort

of comments also apply to 0'Callahan and Leung(73)
(64,75) .

in attenpts to
use established pseudo-inverse techniques
mnd the update expression for mass and stiffness

(16)

Berman, in a nore recent paper , provoked further dis-

cussion With the justifiable observation that an expression of the

- 24 -
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form

K= izl Mxi)\ix;{M
could not identify a K matrix which represents the correct structu-
ral characteristics, since the higher nodes used are those of the
structure and not of the nodel. The nmodes in this expression are
those of the finite-dinensional nodel. The high nodes of the struc-
ture (i=z n) are not the sane as those of a valid model. This effec-
tively neans that the idea that the problemwould be sonehow 'sol -
ved" if only we could neasure all the nodes is a nyth. It is not
possi bl e to neasure the higher nodes of a nodel since these are
anal ytical functions associated with that model and do not represent
any measurable paraneter. Indeed, he quite rightly asserts that the

validity of the nmodel will only cover a frequency range up to app-

roxi mately /(An/z).

One of the notivations for inproving or updating mass and
stiffness matrices is that it then offers the prospect of conparing
an updated mass and stiffness with the original analytical matrices
with the objective of an error analysis to see where the mathemati -
cal model may have been in error in the first instance. An "error
analysis' type of approach need not necessarily yield inproved
mass and stiffness, but may only serve to indicate the areas of
poor nodelling in the nodel. However, the text of this thesis sets
out to denonstrate the close link that exists between error analysis

and rmodel inprovement techniques

In the light of this, Dobson (32) s perhaps a little bold
with his sentiments that "it is not possible to convert differences

bet ween experimental and predicted results into spatial modifica-
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tions within the FE nodel." In his contribution, he proposes the
application of a flexibility error matrix in order to determ ne
which parts of the mathematical nodel are in error. The error
expression is extracted through the expression for flexibility with
t he correspondi ng anal ytical pieces of information being taken

directly from the nodel thus

e =on 1ol _ ¢ p1pT,
a a a
However, limted success is achieved here since, as will be discussed

in Chapter 2, local changes in the material properties of the struc-
ture globally affect the flexibility of that structure, so it may
be slightly optimstic to expect a 'flexibility' error matrix to

i ndi cate areas of poor modelling

An alternative approach is proposed by Sidhu and Ew'ns(gl)

whereby a stiffness error matrix is investigated. This is given
as the different between the exact stiffness natrix and that of

t he model

Rearrangi ng and inverting both sides gives

-1 -1 q,-1
K7 = [1 - K el .

If the matrix Kgle satisfies the condition
(Kgle)m =0
(i.e. Kgle is small in some sense), the expression in the square

brackets can be rewitten using the binomal expansion as

“1_ -1 _ -l
a

K a

-1 i P |
EKa + ((K‘ae) Ka )

or, to first order
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tions within the FE nodel." In his contribution, he proposes the
application of a flexibility error matrix in order to determ ne
which parts of the mathematical nodel are in error. The error
expression is extracted through the expression for flexibility with
t he correspondi ng anal ytical pieces of information being taken

directly from the nodel thus

e =ontoT - o n1eT,
a a a
However, limted success is achieved here since, as will be discussed

in Chapter 2, local changes in the material properties of the struc-
ture globally affect the flexibility of that structure, so it may
be slightly optimstic to expect a 'flexibility' error matrix to

i ndi cate areas of poor modelling

An alternative approach is proposed by Sidhu and Ew'ns(gl)

whereby a stiffness error matrix is investigated. This is given
as the different between the exact stiffness natrix and that of
t he model

€ =K - Kd

Rearrangi ng and inverting both sides gives

-1 -1 4.1
K = [ - K e]kg .
If the matrix Kgle satisfies the condition
(Kgle)m =0
(i.e. Kgle is small in some sense), the expression in the square

brackets can be rewitten using the binom al expansion as

-1 -1 -1
=K, - K

K a

-1 . P |
EKa + ((KAae:) K, )

or, to first order
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-1, -1 -1
K= K, - K

1

- 2
sKa + 0(e“)

-1 -1
or € = Ka(K - Ka )Ka

k! and Kél are then determned as the flexibility matrices sugges-
ted by Dobson. A similar expression for the mass error matrix may

be derived, of the form

=M (M - MM,
Sidhu and Ewins then go on to denonstrate how these error matrices
may be applied in order to determ ne areas of poor nodelling that
may exist within the structure. Although these error expressions
may | ook very different to the update expressions described previ-
ously, it will be seen through the course of this thesis that the

two are quite closely related

O her work inthis area is directed towards utilising sone
sort of iterative procedure whereby the physical paraneters of the
model are nodified (e.g. El, mass/unit length) to encourage a closer
agreenent between analysis and test. Collins et a1(26) offer a
statistical approach and Chen and Garba(22) enploy a matrix pertur-
bation technique. The advantage of these methods is that the con-
sistency of the nmodel is preserved, but conputational difficulties
and problemformulation |imt the adaptability of these nethods to

realistic structures.

Throughout the analysis of this problem attention is dir-
ected to the undanmped problemonly, and the measured data are assu-
med to be real normal nodes. However, in practice all structures
are danped and will vyield measured nodes which are conplex, often

with significant imginary parts. In this instance, the nethods
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al ready nentioned all cone under quegiion and nearly all authors
tend to neglect this alnost inevitable fact if so-called 'realistic'
structures are to come under scrutiny. Sone authors attenpt to
circunmvent this problemwth proposals for conputing normal nodes
from conpl ex ones(42’54’69'108). The type of approach that is
adopted is usually either the introduction of neasurement noise in
order to facilitate the inversion of a singular matrix, or the
introduction of an hypothesis such as the measured modescan be
represented as a linear conbination of the normal modes of the ana-
lytical system These attenpts tend to be unsuccessful, and can
produce unsatisfactory and unstable solutions. In effect, the
probl em of danping is here eased out of the problemby attenpting
to elimnate its contribution to the set of neasured data, and

hence we return to an artificial undanped environment which is not

truly representative of the real world

The nethods adopted to inprove or update the spatial matrices
describing a systemdiscussed so far do not readily lend thensel ves
to an extension to the dissipative case. One of the principle
objectives of this thesis is to reassess the techniques mentioned
here in order to unify the entire process of identification, thereby
clarifying the objectives and expectations of the research in this

area and allowing it to be extended to the case of viscous danping

The initial introduction of the equations of motion of a
dynam ¢ systemis usually done in terns of the nmass-spring-danper
one-degree-of -freedom system as described in Section 1.2, but by
the time a large systemis being analysed in terns of nodelling or
testing, the danping matrix has usually either been conpletely cast

aside or assunptions are made about its nature (usually proportiona
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danping or estimates gained from previous experience). Sone attenpts
have been nmade to synthesise the concept of Iinear danping(65), but

in general a technique for constructing a FE danping matrix in a
simlar fashion to the mass and stiffness continues to be excluded
fromany analysis. Until a satisfactory method energes for doing
this, experimentation will be the only source of information avail-
abl e concerning the danping characteristics of the structure. Cearly
an unsatisfactory state of affairs will exist if experimentation
increasingly tends towards the extraction of conplex nodes and danp-
ing factors, but yet consideration of the danping matrix is continu-

ally ostracised from any analysis. Fawzy and Bishop(38)

anal yse

the equations of motion of a linear non-conservative system to der-
ive the inherent relationships that exist, with no assunptions being
made upon the properties of the system matrices. However, the ana-
lysis contains only statements of these identities and di scussion
concerning the inplications is not forthcomng. The presentation

of the orthogonality conditions that exist for this type of system

continue to appear in the Iiterature(37'38’42),

(109)

and Zhang and
Lallement realise that if the danped systemis to tend towards
t he undanped system as the danmping tends to zero then a different
normal i sation to the one usually quoted is required so that the

phase shift of the nodes is 0% or 180°.

As nentioned, this thesis is concerned with the viscous
danping nodel. The alternative approach is to consider the hyster-
etic or structural danping approach. This is introduced as a result
of the experinental observation that danping is independent of fre-
quency, Which is not reflected in the viscous danping nodel. The

usual hysteretic, one-degree-of-freedom nodel adopted for transient
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nmotion is

mX(t) + k(1 + ig)X(t) = 0.
This involves a conplex opeartor, so therefore neither the rea
nor the imaginary parts of X alone are solutions. Physically,
there appears to be no logical justification for the inclusion of
the conplex variable in the equation of motion. The nore sensible
model to adopt is an integro-differential equation which uses a
convol ution, thus

mX(t) + k(1 + g*)X(t) = ©

where a convol ution between two functions is given as
t
£2(0) * £2(0) = [ fa(t = D(D)1
0

t
= J fi(1)f(t - T)dT.

0
This fornulation has a Laplace transform of
(A% + wi(l + g(M)))x(A) = 6.
The transfer function is given by

1
AT+ 01 + vy an(y))

H(A)

where the function g(X) =y &n()) iS necessary to ensure a constant
imagi nary part, in accordance with observations. Therefore we have
a frequency response function of

1
—93 + wif(1 + Y lnH%J + 1y 1/2).

H(in) =

Thus, we may observe that hand-in-hand with constant danping is a
change in stiffness. It may be possible, for certain frequency
ranges, to neglect the change in stiffness if yis small, so we

have
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H(iQ,) =

which is the usual form adopted. However, this nodel has the diffi-
culty of an infinitely negative stiffness as frequency tends to

zero, which leads to an unbounded di spl acenent response which is

a totally unrealisable nodel. Attenpts have been made to inprove
this with variations of £n(X), all of which denpnstrate that a
region of constant danping requires a variation in stiffness. Ref-
erence (65) goes on to denonstrate that for the various fornulations
given, the displacenment response for the equival ent viscous nodel is
general |y acceptable, thus justifying the use of the viscously dam

ped nodel for dissipative systens.

Clearly, danping problems are an area where research poten-
tial is vast. Chapter 5 of this thesis considers the (2nX2n) vis-
cously danped problemand the results for the undanped case are
rederived with the analytical danping matrix set to zero as woul d

be anticipated if no analytical danping information is known.

The contents of this section are presented in order to pro-
vide a brief review of the work that has so far been presented on
the problem of verification strategies. It is clearly a key issue
in dynamc analysis, since if sonme sort of plausible agreenment bet-
ween test and anal ysis cannot be procured then the credibility of
one, if not both, of these techniques will be seriously underm ned
and a confident appraisal of the dynamcs of the structure under
investigation will be denied. Early optimsm concerning the app-
arent ease of formulation of measured mass and stiffness matrices
fromdynam c tests was rapidly extinguished. This is not to say

that inconplete neasured matrices may not be derived, but the very
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inclusion of the word 'inconplete' inplies that information is not
avail abl e and the matrices so obtained may not reflect any tangible
mass or stiffness distributions. It is a fact that the mssing
information represents that which is nmost predominant in terns of
mass and stiffness distributions, but which is not readily avail-
able for neasurement by the experinental dynamcist. However, al
is not lost as a result of this, since further information is at
hand in terms of the analytical mass and stiffness matrices. Two

possi bl e courses of action are the use of analytical matrices to

provide the nissing information, and to effectively conplete the

measured matrices with the best information available. Aternatively,

this information may be renoved fromthe analytical matrices in
order to conduct an error analysis with matrices of a conparable

nat ure.

Berman(l6) has quite rightly comented that discussion of
t he physical relationships between an anal ytical nodel and test data
has been rare, and the objective of this thesis is to attain an
understanding of these relationships. The fornulae quoted so far
are thus rederived within the framework of vector space theory in
order to denonstrate how nearly all the analysis proceeds in the
sane fashion, with the same objectives. Reference (16) is rather
| ess optimstic than previous publications, and expresses concern
about some of the limtations that are to be expected. Although
it is wise to proceed with caution, the nature of these limtations
needs to be known. Not surprisingly, they are directly related to
the quality and quantity of data obtained and it is an objective
of this thesis to provide a feel for the sort of expectations one

may anticipate and the anmount of useful information one may expect
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to extract. Discussion of this nature has been restricted because
of its conplexity and therefore the work presented herein has been
directed to a nore philosophical nature, bearing in mnd the situ-
ation that a practising test engineer is likely to encounter,
rather than attenpting a straightforward application, which may
not have been so useful w thout first understanding the problem at

hand.

One of the central issues that is encountered in this analy-
sis is the problemcaused by the fact that measurements are not
usual ly made at all the degree-of-freedom points of the nodel.

This is rarely achievable in practice, since rotational degrees-of-
freedomoften exist in the analysis and equi pment to neasure this
is not available to the experimentalist at present. A compatibil-
ity between a measurednode and an anal ytical one is essential prior
to any analysis of the two, so clearly the problemis of key signi-
ficance and will deny any further devel opnent if adequate consider-
ation is not forthcomng. This fact, and its inportance, is recog-
nised, so that consideration of this problemis set aside and con-
sidered separately in Chapter 6 and thoughts upon this topic by

others are reviewed in the next section.

1.6 Expansi on of Measured Data

A central issue concerning the conparison of neasured data
with analytical matrices is the question of conpatibility. An FE
model , for exanple a damstructure, wll have, say, 1500 nodes, 90%
of which will be internal and therefore inaccessible to neasurement.

Furthermore,a modal test may be expected to identify no nmore than
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perhaps the first 8-10 nodes at, at ﬁbst, 50 nmeasured positions

In order to proceed with a conparison between these two sets of
data, the order of the two sets will. haeto be equal. This invol-
ves either reducing the order of the analytical nodel or conpleting
the measured nodes in sone fashion so that a direct conparison my
ensue. In addition to the problem of the inability to nmeasure
internal degrees-of-freedom there is also the problem of assessing
the rotational notion at the external nodes. The current test

equi pment has the capacity to neasure translational motion only,

so we may see that nuch of the desired information concerning nea-
surenent will be unavailable. This is in addition to the problem
of neasuring the higher nodes as previously mentioned. A reduction
in the size of the nodel is considered undesirable, since it is
advantageous to retain the formand structure of the nodel, so
attention is directed towards the expansion of the neasured nodes

Consi deration of this problemis given in Chapter 6, but is first

briefly reviewed.

In essence, two possible strategies exist for conpleting the
measured nodes. Firstly, some sort of interpolation technique may
be adopted in order to approximte the unknown information, and
secondly the analytical nodel may again be used to provide the
information with sonme kind of expansion process. The theory of

(2,17,90)

splines I's now a wel | -devel oped technique for interpola-

tion purposes, and sone efforts have been made to conpl ete nodesusing

(33) di scusses two-way spline curves for the ana-

these concepts. Done
lysis of the aeroelastic characteristics of aircraft. Hs atten-
tion is focused on the interpolation of node deflections which are

given at the nodes of a structural grid in order to obtain the
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desired information at the nodes of an aeroelastic grid. In general
the two do not coincide so the problem discussed there is simlar to
the one here, though it is usual for’dynamic neasurements to be made
at positions corresponding to a node in the FE nodel. The use of

(49’87). However

surface splines has al so received attention
i nterpol ation techniques have their limtations in any given cir-
cunstances since, although a useful tool, not a great deal of accu-
racy or reliability can be expected because the amount of known
information (as conpared to the amount of unknown) is very sparse

Large, unavoidable errors may energe, especially with the higher

more conpl ex nodes

The use of the mathematical nodel to conplete the node is
often preferred in the literature and is, effectively, the sane as
i nterpol ating using the shape functions from which the nodel is
derived. In a rather different context, consideration at an early
stage was given to reducing the nunber of terns in an FE nodel to
reduce the conputational difficulty experienced in determning the

| ower eigenvectors and ei genval ues for the problen¥47’56).

However ,
the rapid increase in conputer technology has meant that this is
not such a significant problem as before. Guyan(47), in what is
effectively a static analysis, proposes expressions for K and Min
the reduced case as

XpuLL = [K“ Kl?:l Moy = [Mll M12:| 1 = measured

K21 K22 M,; Mz2| 2 = unmeasured
-1
Kppp = Ki1 = Ki12K22Kay

- - - -1,T
NkED =M + (Kz%KTz)TMzz(Kz»%KTz) - (Kzngz)TMu - M12(K22K12)

Using this idea, the reverse process may be inplenmented whereby the

N
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unknown degrees-of -freedom are obtai ned fromthe known ones using
this type of expression

(15)

Berman and Nagy . in a péper addressing the problem for-

mulate it as
[le sz] - Ai[Mll Mzz] x5l = 0
K21  Ka2 M2; M22 X,4

and so ohtain

-1
X, = = (Kgp - AiMzz) (K2y - AiMZI)xxi

| f A =0, then this is equivalent to the Guyan reduction relation-
ship. If A # 0 then this nmethod corresponds to the dynam c con-

(74,76,77,78) o

densation method outlined by Paz and others
drawback with the dynam ¢ condensation/ expansion method is that it
needs to be calculated for each natural frequency w; s and a costly
inversion is involved which, although the method nay be accurate

is also very slow. Proposals whereby this conversion nmay be avoi ded

are presented in Chapter 6 in order for the best full experinmenta

mode to he extracted from the information available

1.7 Qverview
The contents of this chapter have introduced the subject
matter of this thesis. It has identified two methods of approach
for the dynam c assessment of structures, and reviewed sone of the
work that has energed which attenpts to bring the two together in
order to obtain the best approximation of the structure's dynam c
characteristics. Rarely, in the published work, is there any dis-
cussion upon the '"nature' of the problem and confusion often pre-

vails as a result of the apparent lack of success of nethods proposed

- 36 -




7

=,
e
Yo

Chapter 1 has attenpted to highlight some of the nore significant
coments that have hitherto appeared in the literature, and to

outline the motivation of this area-of research

Chapter 2 follows this up with a discussion upon the appli-
cation of the FE method and contains details of nodal tests, both
investigations being carried out on a sinple uniform beam in order
to display the verycontrastingnature of the information extracted
by each method. This is then extended to a consideration of the
contrasting stiffness/flexibility type of data under investigation

in each case

The theory of vector spaces is introduced in Chapter 3 in
order to revisit the problemarmed with these tools. A sinple ana-
lysis of the single matrix case is included. Chapter 4 then goes
on to deal with the undanped problem and this is then naturally
extended to the danped problem in Chapter 5. The difficulties
caused by not being able to measure at all the FE nodes are dis-
cussed in Chapter 6, as already nentioned, and Chapter 7 brings
the entire problemtogether with an overall assessnent in the |ight
of the know edge gained, including reconmendations and proposals

for future work in this area
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CHAPTER 2
PRELIMINARY WORK

2.1 Prelimnaries

Havi ng now established the area of research, nanely the
correlation of experinental neasurements with theory, in the first
instance an exam nation of both techniques in nore specific detai
Is required. To this end, sinple structures are investigated in
this chapter in order to obtain an awareness of the nethods of app-
roach of both theoretical finite-elenment analysis and experinenta
nodal analysis. The contents of this chapter therefore contain the
details of the devel opment of mathematical nodels describing sinple
structures and some of the experimental techniques used for testing
such structures. The purpose of this is to obtain first-hand know
| edge of both nethods and al |l ow sone of the features that nust be
considered during such processes to be highlighted. The chapter
builds to a general discussion upon the contrasting nature of the
two methods to establish some undeniable facts and focus the analy-
sis of the subsequent chapters on the difficulties arising fromthe

real world with its many observable phenonena

2.2 Setting Up an FE MNbdel

The work in this section will be concentrated on sinple
specific exanples. The notivation was to devel op working mat hena-
tical nmodels with which the analysis of the ensuing chapters coul d

be investigated and tested. The structures studied are:

1 uni form cantilever;
2. uni form sinply-supported beam
3. si nply-supported beam wi th non-proportional danping
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and for the remainder of this thesis these will be known as Exanples
1, 2 and 3. The majority of the text of this thesis concentrates
upon the detection of error and inprovenent of mathenatical nodels
of structures, so to go hand-in-hand with these three nodels, alter-
native versions were devel oped which were known to be incorrect,

but were labelled 'the analytical nodel' | requiring inprovement or
adjustment.  Thus, for each of the three exanples there exist two
versions of the mass matrix and two of the stiffness matrix. Those
which correctly describe the structure or the true FE natrices are
sinply called Mand K, and the incorrect analytical versions are
labelled Ma and Ka. Al though experinmental techniques receive att-
ention in this chapter, for the purposes of the devel opment and

i nvestigation of the error expressions and so on in the renainder
of this thesis it was considered prudent to adopt two FE nodel s,

one to represent the analytical environnent and the other to rep-
resent the real world or that which would be measured experimen-
tally. Therefore the additional problems that are encountered when
maki ng good neasurenents are avoided and the two separate problens
may be addressed individually. The thene of this thesis concen-
trates on the second part of this problem or that which is concer-
ned with the course of action required when good experimental meas-
urements disagree with analytical predictions. That is not to say
that the first stage, the acquisition of good measurenents, is in
any way a sinple or trivial task. This problem has received wide-
spread attention and is addressed in this chapter to attenpt to
provoke some constructive discussion upon experinental techniques
for people wishing to verify their mathematical nodel using noda

anal ysi s.
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The "two nodel' approach is defended with the argument that
it would be fruitless to devote time and effort to obtaining good
dynam ¢ measurenents of a structure if one were unaware of what to
do with them once obtained. For exanple, it is often the case
that an experimentalist will neasure conplex nodes of vibration
and yet the analysis in the literature is all too often based upon
real nodes, so already the first dilemma is encountered. The analy-
sis of this thesis starts froma very sinple position and attenpts
to build and expand the theory in stages to arrive at a plausible
assessment, Dby adding in at each stage the increasing difficulties
that woul d be envisaged with the conparison of experinent with
theory. It is subnmitted that by the end of the thesis all the rele-
vant practical considerations have been covered and dealt wth
The use of two mathematical nodels, one for experinment and one for
anal ysis, is the only way eﬁédmvdj Yo« do this. If the devel op-
ment of a theory was attenpted using a nathematical nodel and ex-
perinental measurements then one is sinultaneously confronted with
the problems of curvefitting, interpolation, conplex v normal nodes,
danping estinates, normalisation and so on, at the onset. Each
problemin turn, if it is to be properly understood, needs to be

individually isolated and analysed

Exanple 1 - Uniform Cantil ever

Exanple 1 is a uniformecantilever that is split up into five
finite elements (see Diagram 2.1). For each of the elements, four
shape functions were used whi ch possess either unit displacenent
or unit gradient at either end of the element and 0 di spl acement

or gradient at the ends other than this (see Table 2.1). The
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expressions for mass and stiffness are well established and given

by References (71) and (110)

ki = EIDEOVy

s = [ mu v mey

Performng these integrations for each pair of shape functions
results in the production of the elenent stiffness and mass matri-

ces, thus

KE - f—} (12 6 -12 6
61 402 -60 202
212 -8 12 -60

68 202 -62 402

[ 156 220 54 -13¢]

SN
N
o

229 482 132 3.2
54 132 156  -22%

[-1311 =322 -2211 402 |
For convenience, &, mand EI are set equal to 1. These elenmenta
matrices are then assenbl ed over the five elenments and boundary
conditions are introduced at x = 0 (that is, the first two rows
and colums are elimnated) to give the two global matrices given
by Figure 2.1. The nodes and frequencies of this systemare then
eval uated by solving the equation

KX.l = )\iMxi
where XA = wiz

The anal ytical nodel for this exanple is taken as a cantilever with

- 41 -




—

ey
i
A
g

the second el enent having half the naés per unit length and a
quarter of the second nonent of area of the original (see Diagram
2.2). For this element, the el ement mass and stiffness matrices
are given by

e

K- =[3.0 15 -3.0 1.5
1.5 1.0 -1.5 0.5
3.0 -1.5 30 -1.5
1.5 0.5 -1.5 1.0

and M~ =78 11 27 -6.5
11 2 6.5 -1.51

27 6.5 % -11
-6.5 -1.5 -11 2 J

and the global mass and stiffness matrices are given in Figure 2.2

Exanple 2 - Uniform Sinply-Supported Beam

The same beam el ement was used in this exanple, the only
differences being that, for convenience, the length of the beam
was set to 3.1415926 (m) and different boundary conditions were
i nposed (i.e. translational coordinates at each end elimnated -
see Diagram 2.3). The mass and stiffness matrices for this are
given by Figure 2.3. This has the convenience of ease of conpari-
son with the theoretical nodes which are sine functions with eigen-
frequencies maz (i.e. 1, 16, 81, 256, 625 etc.). The nodes and
frequencies are given in Figure 2.4, with the nodes being normal-

ised so that

o™MS = 1.
It is inportant to realise at this stage that the eigenval ues and

ei genvectors in Figure 2.4 correspond to the solution of the finite
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di mensi onal eigenvalue problem They do not all describe the first
10 nodes of a sinply-supported beam (i.e. the first 10 sine func-
tions), but are nerely épproxinatioﬁs. However, the approximation
Is generally considered to be good for the first n/2 nodes when
arranged in order of ascending frequency, hence the appeal of the
FE method when continuous analytical solutions are not available,
which is the usual practical situation. The analytical nodel for
this example was taken as a sinply-supported beamw th the first

el ement having half the mass and half the second moment of area

(see Diagram 2.4). The analytical matrices are given in Figure 2.5

Exanpl e 3 - Sinply-Supported Beam with Non-Proportional Danpi ng

In this exanple a non-proportional viscous danping matrix
I's introduced where the danping is set at 1% of the stiffness in
the first element and zero everywhere else. The danping matrix is
given in Figure 2.6. The eigenvectors and eigenvalues are now com
plex and are normalised so that

-oIMBA + AOTM® + $1CO = 2A

for reasons expanded upon later. The solution to this problemis

given in Figures 2.7 and 2.8.

The anal ytical nodel was taken to be the sane as in Exanple
2, wth the analytical danmping matrix being assumed to be zero (as
woul d be the nost probable situation). One nmay observe that damp-
ing is relatively small in the first nmode and increases for the
hi gher nodes. The real part of the conplex node approximates the
normal node for the | ower nodes which is an observation often made
in practical situations (see Appendix 1 for a conparison with esti-

mat es obtained using a perturbation analysis). The interpretation
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of the real and imaginary parts of the eigenvalues of this problem

are given later on in this chapter. These three nodels are used
throughout this thesis for prelininary investigations into the

construction of inconplete spatial matrices, error analysis and so

on.

2.3 Experinental Mdal Anal ysis

Two approaches for nodal analysis are generally adopted
They involve exciting the structure at either one point or many
points. Both nmethods are briefly discussed here to outline sone
of the nore inportant points that need to be considered when con-

ducting a nodal test.

2.3(a) Multiple Input Testing

Mil tiple input testing has been in existence for a |onger
time than its counterpart, single input. |ts use was devel oped
rapidly in the mid-60s, principally in the aircraft industry, when
the use of conputer power was not as readily accessible as it is
today. Broadly speaking, nultiple input testing involves the att-
achnment of several electromagnetic exciters to the structure under
investigation, with the objective of exciting one of the norma
modes of that structure by tuning the various force |evels of each
exciter, until a state of resonance is reached. The node is then
measured and the process is repeated for another node of vibration

(1) was perhaps a little anbitious,

Early work on this technique
with attenpts to automate this procedure using an anal ogue nachine
so that the force level of each exciter was controlled automatically,

such that once the process was set in motion the machine would tune
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itself in to a state where it was exciting a normal node and thus
relieve the engineer of any manual adjustments. This nachine was
given the acronym GRAMPA (G ound Resonance Automatic Milti point
Apparatus). The technique envisaged a fully-automated system which
woul d rapidly converge to a normal node and hence reduce the experi-
mental time and the need for expertise in the tedious nanual adjust-
ment of exciter force levels. Despite this, it achieved limted
success and was hanpered by a continual divergence away fromthe

frequency of the node being excited

The consequence of this was to adopt a conpronise situation
where only one exciter is controlled automatically which monitors
the frequency of vibration, but the remaining exciters are adjusted
manual |y until all are tuned into the normal node. This version

was given the acronym MAMA (Manual Automatic Miltipoint Apparatus)(IOI),

At Bristol University the need to devel op MAMA by i ncor por a-
ting conputer technology was identified and an updated version
MAMA- 2, was constructed which utilised a NASCOM ni cro-conputer for
control of the hardware. MAMA-2 utilises up to five el ectromagnetic
exciters which are attached to the structure at five different
locations. The principal exciter, usually fixed at a position of
| arge anplitude of the mode being considered, is set in notion at
the frequency of that rmode. An accelerometer is fixed near to the
principal exciter and a resonance is said to have been established
when a quadrature phase shift has been observed between the force
|l evel and the acceleroneter. The phase angle is nonitored on the
MAMA VDU. Automatic frequency control is them inposed which allows
the frequency of the principal exciter to be automatically adjusted

to maintain a quadrature phase shift while the force levels of the

=
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other exciters are set in notion. fﬁ% force levels of these exci-
ters are then adjusted in turn until a normal node is being excited
The invol venent of the author on the MAMA project was to devel op
software for the automatic frequency control, to conduct sone pre-
limnary tests, and to produce docunentation for its use, a copy

of which appears as Appendix 2. Some useful subsequent results
were obtained using MAMA-2 for the dynam ¢ analysis of concrete

arch dams(103).

Further work on MAMA-2 was not pursued for the purposes of
this thesis. This is because the introduction of conputer techno-
logy for use with this type of equipnment has not greatly enhanced
its potential but highlighted the inherent difficulties of this
technique. The principal drawback with this type of approach is
that sone preconception of the mode shape is required before an
analysis can begin. This is a potentially dangerous situation and
the user nust exercise extreme caution and judgenent to ensure that
he does not inpose his premeditated opinion of what the node shape
shoul d ook |ike upon his interpretation of the observations that
are made. No phase variation on the force input is currently
available on MAMA-2. This neans that real nodes are assumed from
the onset and no facility for accomodating conplex nodes is avail-
able. In real life this situation is reversed. There is invariably
a change of phase between different positions, sonmetinmes small if
damping is light. Therefore a phase variation of as much as #10%
fromquadrature is considered acceptabl e when exciting a norma
node and danping is light. A ready we may observe that an approxi-
mate confirmation of a preconceived node shape is all that may be

expected. In addition, setting up of the apparatus is timne-consuning
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and tricky. The positioning of the exciters needs to be considered

in advance and careful attachment by suspending the exciters is
required. There is no facility for-automating the setting up of
apparatus at present, so these difficulties are inevitably going

to continue to present thenselves. On top of this, sone aut hor s (55)
express concern that prolonged excitation of one nmode may actually
result in structural damage, the very thing that it is desirable

to prevent.

Mil ti point excitation has not benefitted greatly from
advances in conputer technology and at present, in the opinion of
the author, fails to keep pace with the rapid advances being nade
with the single point excitation nethod, which is nuch easier to

set up and inpl enent

2.3(b) Single Point Excitation

Single point excitation techniques have general |y undergone
significant devel opment in recent years due to the fact that they
more readily lend themselves to processing using digital conputer
technol ogy. The nethod assumes a linear structure so that to
establish a picture of the dynam ¢ behaviour of a structure either
an accel eroneter nmeasuring response may be fixed and the excitation
position nmoved to different positions on the structure, or the ex-
citation position is fixed and the accel eroneter nmoved to different
positions. It is nore usual for the latter to be adopted, though
sone caution is needed to ensure that the excitation position does

not coincide with a node of one of the principal nodes of vibration

The response of the structure is alnost invariably neasured

with the use of acceleroneters, but the excitation may be produced
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with either one electromagnetic exciter or an instrumental hammer
Wien conducting a nodal test, perhaps the single nost inportant
consideration is repeatability. If the equi pment can be dismant! ed
calibration checks made and reassmebled with a repeat of the test
producing the same neasurenments, then the confidence in the pro-
cedure and subsequent analysis will grow It is rarely wasted
effort, therefore, to ensure that the apparatus has been set up
sensibly. The attachnent of the equipnent is an inportant consid-
eration. Acceleroneters may be attached using a variety of tech-
niques ranging from hand-held to threaded screws. Cearly, the
more firnly they are attached, the nore confidence will be given to
the reliability of the readings. Electromagnetic exciters, if they
are to be used, are best attached via a thin rod which has the
advantage of being very stiff in one direction (that of the excita-
tion) and flexible in other directions, thereby ensuring that the
exciter does not inpose unwanted additional reactionary forces which
woul d contami nate the readings. The length of the attachnment rod is
inportant: not too long so as to introduce the dynam ¢ behavi our of
the rod into the system butnot so short that the required flexi-
bility in perpendicular directions is not attained. Once the corr-
ect attachment has been chosen and inplenented, the sort of signa
that may be inposed may vary from sine-sweep to periodic random

to random - depending on the test situation and the type of infor-

mation sought.

The general procedure for setting up apparatus, exciting
the structure and dealing with the sorts of problems that need to
be identified (e.g. aliasing, |eakage) are now well docunent ed (37) .

It is not the purpose of this thesis to review these phenonmena in
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any detail since they are now well uh&erstood and hardware has
energed which analyses the data with these problems overcone (e.g

by introducing a w ndow ng technique). The nost significant out-
standing difficulty appears to be the assessment of nodal paraneters
once frequency response function data has been obtained. That is
the devel opment of nodel 2 once nodel 1 has been established. This
Is essentially a curvefitting problem and is necessary if good
modal paraneters are to be extracted for the subsequent conparison
with a theoretical model. Therefore the approach that has been
adopted and inplenented at Bristol is described here, and this is

then supplemented with exanmples using an inpact testing transient

technique which will be described at that stage

2.4 Devel opnment of the Curvefitting Program

If we consider, for the present, a one-degree-of-freedom
system then the equation of notion describing that systemis given
by

mX(t) + cY%t) + kX(t) = F(t).

If we take the Laplace transform of this equation and assune zero
initial displacenent and velocity, we have

(A2m + Ac + k)x(X) = f(A).

That is
(A% + 2uum i + wd)x(X) = (X

Bilo

V\:hel'e 2u1u)1 =

and w? =

8 |»

The transfer function is then given by

- x(A) _ 1
HOO = 53 = 377 Zhoh + of
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where A is conplex and equal to, say, € + iw. W may solve
A2 + 2uuh + wd=0

to get A = - mw + w1 - W3, 7

So, H(X) may be factorised about its poles to give

a’ + ia" a_ - ia"
A+ mw - il - pd) + (A + ey + w1l - uf)

H(X)

Therefore
1= (a + 4a")(& + iw+ mw + iwy1 - pl)
+ (' - 1a")(E + iw+ mw - iwy/T - pi)
and taking real and inmaginary parts gives
l=at+a'mw - a"w + a"wy/1T - uf + a'€ + a'uw
+ a"w + a"wi/1 - 1t
so 1 =2(a'€ + a"yw; + a"wy/1 - 13 )
and 0=a"t+ a"mw + aw-a'wy/I-pl +aw
+a'wy/1T - pf - a"t - a"muw
) 0=aws=sa =0

n -1
and a = 55:77=f=ﬁ?

This is the transfer function for a one-degree-of-freedom system
It is usual for the frequency response function only to be neasured
which is sinply the transfer function measured al ong the frequency

axis. A is replaced with iﬂj where Q, is the jth neasured frequency

J
(j=1, . .. %@, t hus

a’_+ ia" a’ - ia"

H(in) = (in4-u1w1-iw1/1 SN (in + MW 4 /T - pf)

W may al so observe that the real and imaginary parts of the fre-

quency response function are given by

(W - 92) , :
Re(H(i2,)) = (uy =0y Gfumz I =L - M
] j
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and Im(H(IQJ)) = (wf = Qj) " AUfuﬁQj i =1 ... M

These are shown, for a one-degree-of;freedom system in Figure 2.9.
In a simlar fashion, an expression for the frequency response
function may be obtained for a nultiple degree of freedom system
(see Section 5.11) to give

n a

. k 3 , ;
H(lQJ.)=kZ1 in_Ak+in_Tk j=1, ... M
wher e a, = residue of kth node;
N = -y + i/l - g
W = undanped natural frequency of kth node;
u = Z critical danping of kth node.

The purpose of the curvefit is to give the best paraneters for ay
and A, SO that the mathenatical expression given here approxi mates
the measured frequency response function in a mninumleast squares

sense. For the single degree-of-freedom exanple we |et

~

M
€= ) (H, -H(iQ.))
1 d j
wher e H.J = measured frequency response at frequency Qf;
H(iQJ.) = anal ytical frequency response at frequency QJ. Wi th
unknown paraneters a', a", Mi,w.

The mat hematical parameters need to be set so as to make

“E” 22 <i9€>

M _
= jzl {(HJ.— H(IQJ-))(HJ- - H(IQJ-))}

a mnimm A Newt on-Raphson iteration scheme was devel oped to
perform this mnimsation. It possesses quadratic convergence

with a sequence of |inear equations. So,
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S jgl (H - H(mj>)—+a:;l%") (H] - H(iszj»—l—a};im')
= f(a), say,
where a = a', a", p', p"
and p' = - muw, p" = w1 - pi.

The iteration schene to solve f(a) = 0 is given as

£y} 6Py = - £y,
{G(P)} = {Q(P"'l)} _ {Q(P)}.

So, if we have initial estimates of the unknown parameter vector

(0)}. a better approximation is given by {a(o)} + {S(O)} wher e

{a
{6(0)} is the solution of the above equation. The D denotes par-
tial differentiation with respect to the a paraneters. {D(f(a(P)))}
Is therefore a matrix, known as the Jacobian matrix. The scheme

may readily be extended to many degrees-of-freedomw th the nunber
of equations to solve being four times the number of nodes present
Hence, the formal differentiation may be carried out and the itera-

tion procedure applied to provide the best approxinmation to a, and

k
Ak given ag and A,.

This procedure was progranmmed for prelimnary tests on the
Bristol University mainframe conputer. In order to determne its
useful ness, some artificial one-degree-of-freedomtest data were
generated with which to try the program Only an initial estimte
of the pole was required since the initial estimte for the residue
could be found by solving the [inear |east squares problemwth the
pole initial estimte. For the test data the follow ng paraneters
vere set

U = 0.03, wi=4
S0 A=-0.12 + 3.99819953.
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and a' + ia" = 0 - 0.1250562i.

The programwas run using differing initial estimates and the
results are given in Table 2.2. As.can be seen fromthis, conver-
gence is obtained if

-1 < DAWPI NG ESTI MATE < -0.07

3.93 < NATURAL FREQUENCY ESTI MATE < 4.07
That is, fromthis test the indication is that an initial estimte
error of about 40% is good enough for the danmping and an error of
not nmore than 1.75% is required for the frequency. This was con-
sidered acceptable since it is usual for the frequency estimate to

be obtained quite accurately from a nodal test

The Hlbert transformsays that the real and imaginary parts
of an anal ytical function contain the same information (one being
derivable fromthe other using the transforn) so a further test was
conducted to identify whether MIN|Re(H)|?, MIN|Im(H)|? or MIN(|Re(H)|?
+ |Im(H)|?) show any signs of differing stability criteria. The
outcone of this test is summarised in Tables 2.2, 2.3 and 2.4
This showed that using MIN|Im(H)|?> was perhaps not as advisable as
the other two possibilities. It was decided to use MIN|Re(H)|?
since this reduced the amount of data that needed to be processed

by a hal f

In the final prelimnary test some artificial noise was
introduced on the data with the use of a pseudo-random 'variable
2% and 5% noi se was introduced to sinulate actual neasurenments
The outcome of this test is given in Tables 2.5 and 2.6. This
showed that the introduction of noise did not affect the quality
of the convergence, but only increased the number of iterations

required for convergence to be obtained
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Two- degr ee- of - freedom datawere al SO generated to investigate
the useful ness of the algorithmfor identifying close peaks. In
general, the outcome was encouraging, provided that the initial nat-

ural frequency estimates were fairly good

A further devel opment of the curvefitting program was the
inclusion of a NAG(112) |inear Ieast squares algorithm which uses
an inproved version of New on-Raphson iteration. The standard
version may run into difficulties with poor initial estimtes, espe-
cially if the Jacobian matrix ([Xf(a(p)))) Is rank deficient or the
sum of squares is not small near the solution. The nodified tech-
nique i s based on the singular value deconposition of the Jacobian

(70), t hus

matrix

] = p(£aP)y) = U HVT

where S {= diag[sy . . . S, ]} is a matrix of singular values of J
with Si+1 < Si' U and V are (QXQ) and (4nx4n) orthonormal matrices.
Sis then partitioned to provide an iterative algorithmfor the
solution. The use of this routine removes the ill-conditioned
nature of J. The introduction of this inproved version of the
curvefit permtted a relaxing of the fairly severe initial estimate
restriction on the natural frequency and allowed a nore reliable
degree of convergence. The inclusion of the NAG routine was al so
useful insofar as it provides information asto the quality of the
curvefit, indicating whether convergence has been obtained, or how
close the final values are to a mninum or whether divergence has
occurred, thus allow ng the user the option of rerunning the pro-

gram until a satisfactory solution is found
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Two prograns were conpl eted ;?H witten in PASCAL on the
Bristol University mainframe conputer (Miltics), using the FORTRAN
NAG library subroutines. They were’called SDOF, a single-degree-
of -freedom program for well-separated peaks with a fast run tine,
and MDOF, a nulti-degree-of-freedom curvefit program for multiple

cl osel y-spaced peaks with a slower run tine.

2.5 Experi nental |npact Testing

In order to assess the sort of problems likely to be encoun-
tered in practice, a cantilever was tested to gain an insight into
experinmental techniques and to allow an application of the curve-
fitting programto actual measured data. The cantilever that was
exam ned possessed the characteristics itemsed in Table 2.7. It
was clanped to a large concrete block with four beavy-duty screws
running through a thick steel plate, as shown in Diagram 2.5. Five
perspex blocks, for attachment of the accel erometers, were glued on
to the cantilever. The acceleroneters could then be attached using
a threaded screw. The apparatus was set up as in Diagram 2.6. The
i nstrunented hamver contained a force transducer from which the
input was neasured. Inpacts were made at the tip of the cantilever
and the accel eroneter was moved to each of the five locations in
turn. The data was processed on a Solartron 1200 signal processor,
with several averages being taken, and care was taken to ensure a
good coherence (a neasure of repeatability, ranging fromO0 to 1
with 1 being the optimum value). Due to data transfer difficulties
at the time of the test (which have subsequently been overcone),
the measurenents were read off the signal processor (after it had

cal cul ated the real part of the frequency response function) and
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are given in Tables 2.8 and 2.9, for’the first two nodes which

were being investigated. These nunmbers were then fed into the
Bristol University mainframe conputer for further analysis using
the curvefitting software. The results using SDOF for the two

wel | -spaced nodes are given in Figure 2.10, and the nagnitude val -
ues are plotted for conparison with the analytical nodes predicted
froman FE nodel in Figure 2.11. As can be seen, in general a good

agreenent is observed, with the errors being introduced nost prob-

ably because the necessary boundary conditions could not be entirely

satisfied. The analytical frequencies are in good agreement with
those neasured, but there is no analytical damping value wth
which to conpare the neasured ones, which were found to be about

0.2% of eriticsl in both nodes.

For further tests, the cantilever was damaged by sawing a
quite severe notch in it in the second element fromthe fixed end
The test was then repeated, and the neasurenents obtained from the
signal processor for the damaged cantilever are given in Tables
2.10 and 2.11, and the curvefit results in Figure 2.12. Figures
2.13 and 2.14 show how t he ei genval ues have noved as a result of
the introduction of the notch. The most significant observation
Is the increase in damping fromO0.2%to 0.64%in the first node
and 0.47% in the second node. However, although an increase in
danping is indicative that damage has occurred, it is a global par-
ameter, and no information about the l[ocation of the damage can be
expected with this observation. The first two nmodes are replotted
in Figures 2.15 and 2.16, and it can be seen that the first node
has hardly changed, but the second node has becone much nore flex-

ible near the fixed end

- 56 -

R T



TTE

— e

-

The objectives of the cantilejir experiments were as foll-
ows:
(a) todenonstrate the effectiveness of the curvefit program
for establishing measured modes and frequencies;
(b) to illustrate the need for a conprehensive theory for the
detection of errors or poor nodelling
(c) to show that danping values are inportant and are sensitive
to structural changes or inaccuracies, and that any theory shoul d
cater for this, while acknow edging that currently no entirely

satisfactory anal ytical method exists for assessing danping pro-

perties.

The experiments with a sinple cantilever had indicated the
potential use of the curvefitting program Its inplenentation for
larger, nore realistic cases would relieve the experimental engineer
of a subjective assessnent of the frequency response function data
to try to approximte the nodal parameters. The notivation was
identified, therefore, for a further devel opnent of the program
for use on the PDP 11/34 which is a nini-conmputer used in the G vi
Engi neering Department for processing and anal ysis of dynamc test
measurenments.  This involved an entire rewiting of the program
from PASCAL to FORTRAN, a l|oading of the programand associ ated NAG
software onto the PDP 11/34, and an allocation of sufficient conpu-
ter menory organisation to allow the program to run. An inevitable
consequence of this, because of the length of the NAG routines, was
to use single precision instead of double precision. The direct
| oading of data from the Solartron 1200 signal processor has been
devel oped at Bristol University (by nenbers of the Earthquake

Engi neering Research Goup), so a potentially efficient and direct
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procedure for extracting nmodal properties from dynamc tests is

beginning to enmerge, which may either be used in the laboratory
on nodels, with the equi pment directly at hand, or infornmation may
be stored on magnetic tape for subsequent analysis on return to
the laboratory. The user manual for the PDP 11/34 curvefit pro-
gramis given in Appendix 3, with a listing of the two prograns

I n Appendices 4 and 5.

To investigate this, an analysis of sone of the transient
data collected recently from a small suspension bridge (Dolarue)
in North Wal es by menbers of the Earthquake Engi neering Research
Goup was conducted. As an illustrative exanple of the curvefitt-
ing progranmts use for the purposes of this thesis, the first tw
| ateral nodes were investigated once the data had been transferred
onto the PDP 11/34. Data was collected from9 positions along the
bridge. The quality of the data was assessed, and a note made of
the nodes visible in each channel (see Figure 2.17). SDOF was then
used to curvefit each channel for each nobde present and the res-
ults are given in Tables 2.12 and 2.13. The results of the curve-
fit produced estimates of the first two lateral nodes of the struc-

ture, given by the followng two conmplex vectors

Ll = TL2 =

0.11 - 0.003i 0.15 - 0.04i

0.15 + 0.03i 0.34 - 0.02i
0.20 - 0.C0

0.18 + 0.12i 0

0.18 + 0.08i -0.082 + 0.053i

0.125 + 0.025i -0.284 + 0.1574

0.134 - 0.043i -0.246 + 0,173i

0.0072 - 0.0007i] -0.005 + 0,173
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The nmissing elenents are from data éﬁ%nnels where there was excess-
ive noise so as to make any analysis unreliable. The natural fre-
quenci es and danping estimates of these first two nodes were ex-
tracted by taking a weighted nean of the estinmates, weighted by
the subjective assessnent of the quality of the data as given in
Figure 2.17. They are

w1 = 1,69Hz m = 0.60%

w2 = 6,98Hz uz = 0. 69%

[L1] and |L2| were calculated for plotting and are given as

|L1]= IL2]=

0.11 0.16
0.15 0. 34
0.20

0.22 0
0.20 -0. 10
0.13 -0.32
0.14 -0. 25
0 -0. 17

These nodes are plotted in Figure 2.18. As may be observed, the
modes illustrate that the bridge is essentially behaving as a

si mpl y-supported beam in the lateral direction. Some variation
of the global parameters was observed, especially wth danping
This is, to sonme extent, to be expected, as the mathematical node
itself is an idealistic sinplification, and the best option is to
acknow edge this fact and extract the best paraneters which nost
closely reflect the behaviour of the structure. The analysis of
the suspension bridge has been encouraging, with the potentia

advant ages of enploying a curvefit program denonstrated.
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2.6 Conparison of FE Method and Mdal Analysis

Two differing nethods, both enconpassing the sanme objectives,
have been discussed hitherto. One-ts an anal ytical technique, the
other an experimental technique. The validity of both nethods
hi nges upon whet her they predict the same dynamic response, in
terms of the predom nant nmode shapes and frequencies. |f a contra-
diction in the results of the two methods is observed, sonething
is wong with the overall assessment. A calculation of the struc-
ture's dynam c response or internal stresses and so on can no | on-
ger be considered as good enough if the nodes and frequencies pre-
dicted by the nodel used are not directly backed up and verified
with a nodal test on the structure itself. Al too often this
agreement is lacking, and the approach is then either to adopt sone
haphazard trial -and-error adjustnent of the mathenatical nodel to
inmprove it, which usually results in a worsening of the situation,
or to dismss the warnings brought to |ight by a nodal test as
being due to 'experimental error'. As experimental techniques and
expertise grow, neither of these argunents is satisfactory. Sone
t hought must be directed towards reconciling these difficulties
with a nmore fornmal approach that may be inplenented on a nmore rou-
tine basis. No ideal solution to this problemexists. In this
thesis a 'best solution given the circumstances' is presented. It
is possible to extract useful information, but not without first
identifying the contrasting nature of the two nethods and the

inherent difficulties associated with a marriage of the two.

If we conpare the FE nethod and nodal analysis, the first
observation is that the mathematical nodel is built up in terns

of stiffnéss, where the stiffness is defined as
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kij = force at node i due to.ﬁ;it di spl acenent at node
j, all other displacenents being zero
On the other hand, a nodal anal ysis-type of measurement is of a
flexibility nature, where the flexibility is defined as

fij = di spl acenent of node i due to force at node j, al
other forces being zeo.
To measure stiffness we need to apply forces at all the nodes of
the structure to make displacements zero, which is practically
i mpossible. To nmeasure flexibility we need to apply zero forces
at other nodes which is easy - and what is done in practice. So
in a nodal test we are neasuring dynamc flexibilities which are,
fromthe definition, independent of the nunber of degrees of free-
dom The stiffness matrix is not, since all the degrees of freedom
included need to be constrained to be zero. |f we consider the
usual dynamic FE nodel, we have

Kx. = A Mx,
i iTi

and each interpolation function has the same degree of conplexity

of the form

therefore the stiffness matrix i s banded and the order of nunbers

anywhere in the matrix is the same; that is, it is of uniformcom
plexity. Therefore FE stiffnesses are of the order of conplexity
of the highest node. A summation of the form

-

n
) X, %, 7
i =l

wll thus give small contributions if in ascending order of nodes
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This infers that what we neasure in é modal test are not necessarily
those vectors which donminate the form of the mathematical nodel

The | ower eigenvectors are of principal interest, but the higher

anal ytical eigenvectors dictate the outward appearance of the nathe-
matical nodel. This will inevitably restrict the verification or
correction of mass and stiffness parameters using experimnmenta

nodal analysis. A theory that is built up needs to account for

this and take the necessary precautionary steps. The text of this
thesis uses vector space theory to construct a plausible approach,
with the initial inevitable limtations being acknow edged and

accept ed

2.7 Some Uses of the Mathematical Mde

| f agreenment between the FE analysis and nodal test is
reached, then the mathematical nodel is considered to be a good
representation of the structure and can be used for further analy-
sis. This is an extrenely desirable state of affairs, since the
principal nodes of vibration will be known, at given frequencies
with possibly an additional know edge of danping estimates. The
distribution of the structure in terns of mass and stiffness will

al so be knowa,so an accurate assessment will have been nade.

The mat hematical rmodel may be used to calculate the dynamic
response of a structure to a given excitation. The two nethods
in general use are direct integration nethods where the equations
of notion are integrated using a numerical step-by-step procedure,
and the nmode superposition nmethod, where the notion is assumed to
be a linear conbination of the principal nodes of vibration and

the problemis decoupled into n separate linear differentia
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equations by use of a nodal transforﬁ?iion. O the direct inte-
gration nethods, the central difference method (which is essenti-
ally an explicit integration procedure), is perhaps the best-known,
but other popular nethods exist which use an inplicit integration
techni que such as the Houbolt, WIson 8, and Newmark 8 net hods.

The nethods are all useful, and are wel | - docurmented (1) and there-
fore not reiterated here. Some research has been conducted (106

in order to establish which nethod is nmost accurate with the genera
conclusion being that if accuracy is a priority and the quantity of
data is small, the nmode superposition nethod is preferred; but if

the quantity of data is large, the Newmark B method is nost suit-

abl e.

Once the dynami c response of the structure has been cal cul a-
ted, the maxi mum displacenents and internal stresses may be assessed
Areas of high displacement and excessive stress may be identified
and corrected, not necessarily with the addition of extra mass or
stiffer material at that point, but perhaps with a redistribution
of mass that will reduce dynamic novenent. An assessment of the
durability of the structure may be made, and its |ifespan when
subjected to constant loading may be forecast. Alternatively, its
performance may be predicted in an earthquake situation with vio-
lent external loading, and so on. If the exact formof loading is
not known, for exanple wind |oading, a non-determnistic solution
may be sought. In general, a good mathenatical nodel opens the
door to a confident assessment of the structure's likely dynamc
performance, resulting in longer-lasting, safer and cheaper struc-

tures being constructed
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2.0 Sensitivity Analysis

If we have an incorrect nodel and are trying to correct it
by changing some of the parameters,.or have a correct nodel wth
which we wish to estimate the effect of parameter changes, then
it is possible to estimate the change in frequencies and node
shapes as a result of changes in mass and stiffness using a sensi-
tivity first order analysis. W have

(M)\i - K)xi = 6.

[f the mass and stiffness distributions are altered so that M
becomes M+ 8M and K becomes K + 8K then we have

[(M+6M)()\1+6Ai)— (K + 8K)](x; + 6x.) =8

which, to first order, gives

(M)\i - K)chi + (GMAi - GK)xi + MGAixi = 0.
If we prenultiply by xiT then we have
T

giving the change in natural frequency of node i due to the change
in the mass and stiffness distributions. Also, if we premultiply

by ij (3 #i) we have
x.JOMA, - K)ox, + x . J(6MA, - 6K)x, = O
3 WAy i Xy i i

and if we now assune that

g

6x. = U x

I k=1 k7k
kfi

t hen

(L T T
kzl ukxj (M)\i - K)xk + x:j (Gqu —GK)xiz 0
kfi
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T &
or uj()\i —)\J.)+ x‘_j (GMAi —GK)xi= 0;
that is
x T(6MA, - 6K)x. )
b= : 1)‘ i
n x.(8MA, - 8K)x,
SO 6x = J 1()‘1_ A)lx.
SR | i 3 J
jfl

whi ch gives an approximation to the change in node i due to a change

in mass and stiffness.

2.9 Overvi ew

Both the FE method and nodal anal ysis have been investi gated
in some detail in this chapter. Sinple structures have been used
with which to outline the basics of both methods. The contrasting
nature of the two nethods has been observed and the need for the
two to show sonme signs of agreement identified. An illustration
of the application of these nethods has set the scene for the analy-
sis of the follow ng chapters which attenpt to bring together the
two methods to permit a nore unified approach where each nethod
is contributing valid information as to the dynam c performance

of the structure under investigation

- 65 -




‘5{:‘9

1 7 El,m

e

RULRRRRNNNNNS
\

Diagram 2.1

Correct 'Measured Cantil ever

VAN

D agram 2. 2

Incorrect ‘*Analytical' Cantilever

- 66 -




a5 AR

LELRRRRRNRNNS

%
1 . El,m
- ! =
y

Diagram 2.1

Correct 'Measured Cantil ever

ALLLRRRNARNN

Vd
y
D agram 2. 2
Incorrect ‘*Analytical' Cantil ever
- 66 -




il g |

-]

Diagram 2.3
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D agram 2. 4

Incorrect ‘'Analytical' Beam
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Damping Frequency Comverge Nnce ? Number of
Estimate Estimate Iterations
-5 3.998 X
-2 3.998 X
-1.5 3.998 X
-1 3.998 v 8
-0.5 3.998 v 6
-0.1 3.998 Ve 4
-0.07 3.998 e 6
-0.06 3.998 X
-0.05 3.998 X
0.01 3.998 p 3
0.5 3.998 X
-0.12 3.9 X
X
~®.12 3.93 / 7
-0.12 3.95 e 6
0.12 4.05 / 6
-0.12 4.07 / 8
-0.12 4.08 X
-0.12 4.1 X
-0.12 4 v 3
-1 3.93 v 8
-1 4.07 v 7
- 0.07 3.93 X
-0.07 4.07 X

Table 2.2: Convergence Test Using MIN(| RE(H)|1+IIM(H)|1)
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Daml?i tnlg mat e mggﬁl rtgt e Convergence 7| m?::;&t%fons
-1 3.998 X
-0.5 3.998 X
0.1 3.998 v 5
-0.06 3.998 v 6
-0.05 3.998 v 7
-0.04 3.998 / 6
-0.03 3,998 x
-0.01 3.998 X
-0.12 3.92 x
-0.12 3.93 v/ 8
-0.12 4 / 3
-0.12 4.07 / 8
-0.12 4.08 x
-0.07 3.93 / 10
-~ 0.07 4.07 X
Table 2.3: Convergence Test Using M N Ireu))*
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%
Danpi ng Frequency Convergence? Nunber .of
Esti mate Estimate Iterations
-1 3.998 X -
~0.5 3.998 b 4 -
0.1 3.998 v/ 6
=0.07 3.998 X -
-0.06 3.998 X -
-0.05 3.998 x -
-0.12 3.93 X -
-0.12 3.97 X -
-0.12 3. 98 / 6
-0.12 4 / 4
-0.12 4.02 / 6
-0.12 4.05 x -

2
Table 2.4: Convergence Test Using MIN)Im(g)}
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Danpi ng Frequency Convergence ? Nunber of
Estimate Estimate Iterations
-0.06 3.998 X -
-0.07 3.998 v 8
-0.12 4 / 5
0.2 3.998 v >
-0.8 3.998 V4 8

1 3.998 v 9
-1.2 3.998 X -
-1.5 3.998 X -
-0.12 3.92 X -
-0.12 3.93 v 9

- 0.12 4.07 Y 9
-0.12 4.09 X -

Table 2.5: Convergence Test with 2> Noise

Added
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Damping Frequency Convergence ? Number of
Estimate Estimate Iterations
-0.1 4 v ;

1 3.998 v 11

-1.2 3.998 X

-0.07 3.998 v q
-0.06 3.998 X

-0.12 4.07 \/ 10

-0.12 4.08 X

0.12 3.93 v 10

-0.12 3.92 X

-0.12 4 \/ 6

Table 2.6 Convergence Test with 5 % Hoise

Added
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Total Length of Cantilever 0.545m
Density of Steel 7850 kg/m3
Cross-Sectional Area 0.000256m2
' 12 2
Young's Modul us (Edynam' ¢) 0.168825x10"“ N/m
Second Monent of Area 5.46133x10° p®
El 922 No?
Mass/ Unit Length 2.0096 kg/m
First two Analytical Frequencies :~
W, = (1.875)2 [[EL\ = 253.52 £.= 40.35 Hz
1 4 1
ml
2 JfE1
W, = (4.694) — \ = 1588.926 f.= 252.88 Hz
2 4 2
ml
Table 2.7: Cantilever Paraneters
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CHAN 1 CHAN 2 I C%AN 3 CHAN 4 CHAN 5
PEAK; 40. 44 40. 36 40. 4 40. 44 40. 48
COHERENCE : 0. 945 0.98 Q.991 0.993 0. 984
VALUE: 82. 969 46. 811 }39.489 28. 936 13. 876
FREQ.
38. 96 -4.9471 -5. 0647 -2. 8054 - 1. 4097 -0. 47234
39.12 -5. 6487 -5.8991 -3.124 -1.624 -0. 53952
39.4 - 7. 5447 -7.6189 ~4.2896 -2.1398 -0. 69049
39.6 -9.6938 -9.478 -5. 5237 -2.7256 -0. 86591
39.8 -13. 225 -11.718 -7.4224 -3. 7499 -1.1631
39. 88 -14.806 -12. 537 -8. 4223 -4.353 -1.3345
39.92 -16. 277 -12. 861 -9. 0396 -4.7249 -1.4412
39. 96 -17. 407 -12.987 -9.6196 -5.1765 -1. 5669
40. 04 -20.2 -12. 472 -10. 737 -6. 1646 -1.8961
40. 08 -21.779 -11.513 -11. 338 -6. 7466 -2.0985
40. 12 -23. 657 -9. 4229 -11.382 -7.3716 -2. 3577
40. 16 -24.603 ~6.5182 -10. 869 -8.0276 -2.6876
40. 2 -24. 532 -1. 6036 -9.5708 -8.481 -3.0793
40. 24 -22. 277 5.9795 -6. 6433 -8. 543 - 3. 5393
40. 28 -17. 336 16. 164 -1.5438 -7.7363 -4. 0598
40. 32 -6.6777 29. 838 7.584 -5. 0461 -4.3911
40. 36 13.112 41. 256 14. 305 0. 9599 -3. 8501
40. 4 47.672 41. 359 34.107 8. 8345 -2.5746
40. 44 82. 238 16. 202 27.051 24. 381 9. 88382
40. 48 25.53 8. 2891 8. 0098 15. 303 10. 68
40. 52 19.718 14. 403 10. 933 6. 5811 6. 0942
40. 56 21.797 11. 802 9.97855 7.3408 3. 9404
40.76 12. 773 8. 644 6. 3667 4.323 1. 9454
40. 88 10. 49 7.4102 5.2927 3.4679 1. 4599
41. 4 5. 8464 4. 6501 3.0514 1.8376 0. 71487

Table 2.8: Mde 1, Undanaged Cantilever
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CHAN 1 CHAN 2 C&N3 CHAN 4 CHAN 5
PEAK: 254. 4 (254.5) 254.5 254.8 255.2
COHERENCE: 0. 961 (0.805) D. 953 0.9621 0.978
VALUE: 21. 048 (0.879) 12. 027 18. 768 16. 04
FREQ
247.6 -0. 9661 0.16492 1. 0276 1.1816 0. 55869
250.9 - 1. 3497 0.23122 1.9476 2.2123 1. 055
251.9 -1.184 0.25914 2. 5487 2. 9696 1.3674
253.2 2.2014 0.43575 3. 6652 4.741 2.1814
253.5 4. 896 0.50119 3.6934 5.4153 2.5197
253.6 6. 2554 0. 55936 3.5735 5. 5806 2.6515
253.7 7.667 0. 62256 3. 3463 5.6294 2.7815
253.8 9.4824 0.59705 3. 0592 5.8052 2.9302
253.9 11. 56 0. 65585 2. 5466 5.833 3.1338
254 13. 564 0.71732 1. 7685 5. 6453 3.3359
254.1 15. 494 0.7735 0. 79926 5.1963 3.5619
254.2 17.781 0. 80829 -0.5261: 4.6572 3. 7667
254.3 19. 561 0. 83804 - 1. 8453 3.4939 3.9728
254. 4 20. 591 0. 83502 -3.7168 1.8231 4.2349
254.5 20.723 0. 81613 -5.4993 -0. 37421 4.3291
254. 6 19. 666 0. 74387 -7.1399 -3.3022 4.3142
254.7 17. 399 0.58768 -8.7072 -6. 8184 4.1738
254.8 14. 234 0.38391 -9.1982 -10341 3.433
254.9 11. 485 0. 15859 -9. 0404 -12. 956 2.2074
255 9.4878 0.24712 -8. 1436 -14.158 -0. 15563
255.1 8. 4658 0.45612 -7.0012 -13.676 -3. 6637
255.2 7. 8342 0. 31898 -6. 2095 -11. 923 -8.6073
255.3 7.1919 0.27951 -5.7288 -10. 199 -11. 472
255.4 6. 6667 0.25172 -5. 3416 -9.2983 -12. 437
255.5 6. 2209 0.20411 -4.9771 -8. 4604 -11. 072
255.6 5. 8003 0.34639 -4.6284 -7.7852 -9.2148

Table 2.9: Mde 2, Undamaged Cantil ever
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CHAN 1 CHANZ“&AN3 ICHANlo CHAN 5
PEAK: 39.3 39.2 39.2 39. 4 39.6
COHERENCE: 0.983 0.9716 '0.9538 0.979 0. 96307
VALUE: 30. 451 20. 625 15. 673 10. 264 6. 3083
FREQ
33.2 -1.1442 -0.9873 -0.6535 | -0.3377 -0. 13404
35.2 -1.9073 -1. 6942 -1.1128 | -0.56015 -0. 22077
36. 3 -3.209 -2. 8994 -1.9062 | -0.93527 -0. 35872
37.3 -4.5706 -4.1399 -2.757 -1. 3606 -0. 49023
37.9 -6. 8576 -5. 3784 -4.1084 | -2.051 -0. 6918
38 -7.4512 -6.2449 | . -4.405 -2.2113 -0. 74823
38.2 -8.7441 -7.031 -5.0742 | -2.6661 -0. 87317
38.4 -10. 123 -7.3528 -5.6831 | -3.1171 -0. 99075
38.5 -10. 525 -7.1108 -5.8137 | -3.3247 -1.0748
38.6 -10. 592 -6. 3193 -5.5642 | -3.4504 -1.1773
38.7 -10. 02 -4. 6541 -4.8015 | -3.5121 -1.2703
38.8 -8.6577 -2.0813 -3.5011 | -3.3517 -1. 3492
38.9 -6. 1904 1. 7095 -1.4089 | -2.9252 -1. 4483,
39 -2. 2609 6. 4409 1. 4785 -2.1515 -1. 5474
39.1 3.5518 11.533 5. 1602 -0. 89761 -1. 6217
39.2 11.23 16. 052 9. 2822 1.0089 -1. 567
39.3 19. 851 18.143 12. 766 3.7203 -1.1978
39.4 26. 74 15. 647 13.542 6. 9675 -0. 3201
39.5 25.145 8.1118 9. 9473 9. 5845 1. 4704
39.6 8. 6528 2. 0551 3. 0889 7.8262 4,531
39.7 5. 1616 7. 4436 3. 9548 1.0778 4. 9365
39.8 8. 8013 5. 6843 4.7986 3.1932 1.532
40 7.5613 5. 0286 3. 9302 2. 4734 1.3961
40.9 4.2227 3. 1454 2. 3604 1.4158 0. 65842
41.8 3.0021 2. 3497 1.7095 4.0009 0. 45059
$4.6 1. 6877 1. 3943 0.99072 | 0.55722 0. 24804

Tabl e 2.10: Mde 1, Damaged Cantil ever - 79 -
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CHAN 1 cuaN 2 | @aw 3 | cuan 4 CHAN 5
PEAK: 249. 6 249. 4 249. 4 250 251.2
COHERENCE: | 0. 92102 0.90329 | 0.93878 | 0.9934 0. 93964
VALUE; 9. 1452 0. 45525 4.978 9. 8443 6. 4326
FREQ
240. 4 -1.0365 0.024813 | 8.498793 | 0.81329 0. 3373
242.6 -0.076561 | 0.025161 | 0.68118 1.1332 0. 47319
244. 6 0.1319 0. 05896 0. 86719 1.5684 0. 65204
246 0. 60767 0.11713 0.87778 2.0747 0. 83609
246.8 1.3035 0.18723 0. 63422 2. 4191 0. 98251
248 3.7332 0. 3607 -0.73953 | 2.7981 1.2312
248. 2 4.3962 0.3736 -1.1533 2.7538 1. 2822
248. 4 5.176 0. 39963 -1. 6592 2.6699 1. 3109
248. 6 5. 9575 0. 42499 -2. 1558 2.3994 1. 3205
248.8 6. 7893 0. 43054 -2.7101 1. 9709 1. 3331
249 7.6611 0. 42439 -3.2581 1.3763 1.2919
249. 2 8. 4131 0. 41939 -3.7515 | 9.59247 1.2129
249. 4 8. 8911 0. 40229 -4.1768 -0. 46367 1.1171
249. 6 9. 1362 0.35121 - 4. 3486 -1.8209 0. 96353
249. 8 8. 9385 0. 26375 - 4. 4749 -3.5394 0. 84262
250 8. 3047 0.13882 -4.1274 -4.9265 0. 26497
250. 2 7. 3555 0. 21502 -3.7231 -6. 2852 -0. 29849
250. 4 6. 228 0.18322 -3.3143 -7.375 -1.074
250. 6 4.9958 0. 1804 -2. 9569 -7.7791 -1.9302
250. 8 4.1002 0.18816 -2. 6589 -7.6062 -2. 8901
251 3. 4355 0.1738 -2.4766 -6. 9553 - 3. 8437
251.2 3. 0641 0. 15743 -2.335 -6.1116 -4. 668
251.4 2. 79 0. 15678 -2.1849 -5.353 -5.3008
251. 6 2.5588 0. 15932 -2.0603 -4. 8208 -5.5872
253. 8 1.2623 0.11879 -1.2756 -2.5385 -2.1213
259. 2 0. 60873 0. 10083 -0. 6904 -1.2298 -0.91141
- 80 -
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DAMPI NG $ CRITICAL DAMPED UNDAMPED
CHANNEL NATORAL NATURAL REAL PART | MAG. PART ERROR
FACTOR
DAMPING FREQUENCY EREOQUENCY OF RESI DUE OF RESI DUE
B (-0.1) (6.35) 31.69) (1.70) (0.11) (0.02) 7
(o4 -0.023 1.37 1.695 1.695 0.11 -0.003 3
-0.016 -0.914 1.70 1.70 0.149 0.03 3
-0.0022 0.128 1.683 1.683 0.06 0.04 2
F -0.017 1.03 1.67 1.67 0.18 0.12 3
G -0.018 1.05 1.68 1.68 0.18 0.08 3
H -0.0012 0.071 1.7036 1.70 0.125 0.025 2
-0.0012 0.071 1.717 1.717 0.1338 -0.043 3
J -0.0015 0.085 1.700 1.700 0.0072 -0.0007 2
Table 2.12: SDOF Curvefit Results (1L)
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CHANNEL DAVPI NG 7 ORI TI CAL 52:5;;1 E’:?G“F:ZED REAL PART | MAG PART CRROR
FACTCR FACTOR FRECLENCY FRECLENCY OF RESIDE | OF RESIDUE

8 -

c -0.09 1.31 6. 96 6. 96 0. 04 -0.15 0

D -0.051 0.72 7.00 7.00 0.02 -0.34 3

E -0. 056 0. 80 7.02 7.02 0. 00 -0. 20 3

- _ P
6 -0.034 0.48 6. 97 6. 97 -0. 053 0. 082 g

H -0. 069 0. 99 6.98 6. 98 -0. 157 0. 284 6

1 -0. 034 0.48 7.01 7.01 -0.073 0. 246 3

J -0.029 0. 43 6. 89 6. 89 -0.0173 -0. 005 g

Table 2.13: SDOF Curvefit Results (2L)
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MASS MATRIX
002 0.012-0.002 0.000 0.000 0.000

0.000 0.000 0.000 0.000']
012 0.467 0.000 0.081-0.012 0.000 0.000 %.OOO 0. 000 0.000
0

-0.002 0.000 0.005 0.012-0.002 0.000 0.000 0.000 0.000 0.000
.000 0.081 0.012 0.467 0.000 0.081-0.012 0.000 0.000 0.000
0.002 0.000 0.000 0.000

.000 0.000 0.000 0.081 0.012 0.467 0.000 0.081-0.012 0.000
.000 0.000 0.000-0.012-0.002 0.000 0.005 0.012-0.002 0.000
.000 0.000 0.000 0.000 0.000 0.081 0.012 0.467 0.000-0.012

0.
0.
0
8.000-0.012-0.002 0. 000 0.005 0.012-
0
0. 000 0.000 0.000 0.000 0.000-0.012-0.002 0.000 0.005-0.002
0

.000 0.000 0.000 0.000 0.000 0.000 0.000-0.012-0.002 0.002,

STIFENESS MATRIX

6.37 -15.20 3.18 0.00 0.00 0.00 0.00 0.00 o0.00
-15.20 96.75 0.00 -48.38 15.20 0.00 0.00 0.00 o0.00
3.18 0.00 12.73 -15.20 3.18 0.00 0.00 0.00 o©0.00
0.00 -48.38 -15.20 96.75 0.00 -48.38 15.20 0.00 0.00
0.00 15.20 3.18 0.00 12.73 -15.20 3.18 0.00 o0.00
0.00 0.00 0.00 -48.38 -15.20 96.75 0.00 -48.38 15.20
0.00 0.00 0.00 15.20 3.18 0.00 12.73 -15.20 3.18
0.00 0.00 0.00 0.00 0.00 -48.38 -15.20 96.75 0.00
0.00 0.00 0.00 0.00 0.00 15.20 3.18 0.00 12.73
| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.20 3.18

-]
CLWULNOOOO0O0O0O

.00]
.00
.00
.00
.00
.00
.00
.20
.18
.37

Figure 2.3: Correct (Measured) Mass and Stiffness Mtrices of a Uniform Simply-Supported

Beam
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A
EIGENVALUES
[
1. 00021
16. 05306
82. 29164
267. 93070
769. 94872
1604. 32752
3401. 01224
6860. 57149
12427. 70447
16168. 92315
Ei genvector number.. 1 Ei genvector nunber.. 3
0. 79805530 - 2. 42965342
0. 46908518 -0. 77117777
0. 64564030 0. 75080420
0. 75899576 0. 47661407
0.24661265 1. 96563090
0. 75899576 0. 47661407
-0. 24661265 - 1. 96563090
0.46908518 -0. 77117777
-0. 64564030 - 0. 75080420
- 0. 79805530 2. 42965342
Ei genvector nunber.. 2 Ei genvector nunber.. 4
-1. 60101553 3. 29392705
-0. 76135436 0. 49465689
- 0. 49474101 - 2. 66484296
- 0. 47054287 -0. 80037166
1. 29524877 1. 01787944
0. 47054287 0. 80037166
1. 29524877 1. 01787944
0. 76135436 - 0. 49465689
- 0. 49474101 - 2. 66484296
-1.60101553 3. 29392705
Figure 2.4: Correct (Measured) Mdes and Frequencies Of a

Sinply Supported Uniform Beam
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Ei genvector nunber.. 5 Ei genvector nunber.. 8
-4.91819602 -12. 33800175
0. 00000000 0. 63554701
4.91819602 -3. 81265222
- 0. 00000000 0. 39278965
-4.91819602 9. 98165310
0. 00000000 -0. 39278965
4.91819602 9. 98165310
- 0. 00000000 -0. 63554701
-4.91819602 -3. 81265222
4.91819602 -12. 33800175

Ei genvector nunber.. 6 Ei genvector nunber.. 9
6. 81740864 -16. 24231073
-0. 45028622 0. 25314256
-5.51539945 -13. 14030541
0. 72857840 0. 40959327
2.10669513 -5. 01915004
-0. 72857840 0. 40959327
2.10669513 5. 01915004
0. 45028622 0. 25314256
-5.51539945 13. 14030541
6. 81740864 16. 24231073

Ei genvector nunber.. 7 Ei genvector nunber.. 10
-9. 08402648 13. 01232356
0. 72247637 0. 00000000
2.80711856 13. 01232356
-0. 44651495 0. 00000000
7.34913180 13. 01232356
-0. 44651495 0. 00000000
-7.34913180 13. 01232356
0. 72247637 0. 00000000
-2.80711856 13. 01232356
9. 08402648 13. 01232356

Figure 2.4 (cont.)
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MASS MATRI X

0.001 0.006-0.001 0.000 0.000 0.000 0.000 0.000 0O.000 0.000
0.006 0.350-0.010 0.081-0.006 0.000 0.000 0.000 0.000 0.000
-0.001-0.010 0.004 0.012-0.001-0.010 0.000 0.000 0.000 0.000
0.000 0.081 0.012 0.467 0.000 0.081-0.012 0.000 0.000 0.000
0.000-0.012-0. 002 0.000 0.005 0.012-0.002 0.000 0.000 0.000
0.000 0.000 0.000 0.081 0.012 0.467 0.000 0.081-0.012 0.000
0. 000 0.000 0.000-0.012-0.002 0.000 0.005 0.012-0.002 0.000
0. 000 0.000 0.000 0.000 0.000 0.081 0.012 0.467 0.000-0.012
0. 000 0.000 0.000 0.000 0.000-0.012-0.002 0.000 0.005-0.002
0. 000 0.000 0.000 0.000 0.000 0.000 0.000-0.012-0.002 0.002

STIFFNESS MATRIX

[ 3.18 -7.60 1.59 0.00 0.00 0.00 0.00 ©0.00 0.00 0.00]
-7.60 72.56 -7.60 -48.38 7.60 0.00 0.00 0.00 0.00 0.00
1.59 -7.60 9.55 -15.20 1.59 0.00 0.00 ©0.00 0.00 0.00
0.00 -48.38 -15.20 96.75 0.00 -48.38 15.20 0.00 0.00 0.00
0.00 15.20 3.18 0.00 12.73 -15.20 3.18 ©0.00 ©.00 0.00
0.00 0.00 0.00 -48.38 -15.20 96.75 0.00 -48.38 15.20 0.00
0.00 0.00 0.00 15.20 3.18 0.00 12.73 -15.20 3.18 0.00
0.00 0.00 0.00 0.00 0.00 -48.38 -15.20 96.75 0.00 15. 20
0.00 0.00 0.00 0.00 0.00 15.20 3.18 0.00 12.73 3.18

| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.20 3.18 6.37_

Figure 2.5: Incorrect (Analytj.,;) Mass and Stiffness Matrices of a Uniform Sinply-Supported

Beam




DAMPI NG _MATRI X

™ 0. 064
-0. 152
0. 032
0. 000
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Figure 2.6: Danmping Matrix for a Uniform Sinply-Supported Beam with

Non- Proportiona

Danpi ng




TN

&
EIGENVALUES
-0.00024 + 1.000109
-0.00024 +i -1.000109
-0.01229 +1 4.007036
-0.01229 +i -4.007036
-0.09466 +i 9.076626
-0.09466 +i -9.076626
-0.30394 +i 16.384171
-0.30394 +i -16.384171
-0.768027 +i 27.790997
-0.768027 +1 -27.790997
-1.333621 +i 40.146059
-1. 333621 +| -40.146059
-2.299626 +i 59.217929
-2.299626 +{ -59.217929
-4.617110 + 87.723826
-4.617110 +i -87.723826
-40.916446 +i 99.577774
-40.9 16446 +i -99.577774
-1.570939 +i 121.357080
-1.570939 +i -121.357080

Figure 2.7: Eigenvalues of Uniform Sinply Supported

Beam wi t h Non- Proportional Danping
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A

EIGENVECTOR 1

.79804828 +i
.46908380 +1
.64564659 +

.75899742 +|
24661641 +|

.75899871 +i
-0.2466123 +1
0.46908733 +1
-0.64564295 +|
-0.79805911 +1

O o oo o

-0.0008845
-0.0002342
.00058926
.00007504
.00037269
.00021499
.00006760
.00016825
-0.0001983
-0.0003033

Cooooopo

EIGENVECTOR &

L 2.42874327
*.0.77215438  +

-0.74863749  +1
-0.4763304 +i
-1.96975738 +1
-0.4776535 +1
1.96667746  +I
0.77161587 +1I
0.75249932 +i
-2.43188841 +i

-0.0839267
0.00500067
0.11453139
0.01286049
-0.0644648
-0.0174445
0.00142318
0.00472798
0.03338632
-0.0350207

EIGENVECTOR

.79804828 +1
46908360 +i
.64564659 +1
75899742 4§
24661641 +
.75899871 +i
-0.2466123 +i
0.46908733 +1
0.64564295 +1|
0.79805911 +i

O o oooo

0.00088454
0.00023428
-0.0005892
-0.0000750
-0.0003728
-0.0002149
-0.0000676
-0.0001682
0.00019833
0.00030338

EIGENVECTOR

2.42874327 +lI
0.77215438 +|
-0.74663749 +|
-0.4763304 +i
-1.96975738 +1
-0.4776535 +|
1.96867746 +|
0.77161587 +
0.75249932 +1
-2.43188841 +|

0.0639267 1
-0.0050006
-0.1145313
-0.0128804
0.06446482
0.07 744456
-0.0014231
-0.0047279
-0.0333863
0.03502075

EIGENVECTOR

1.60063222 +1
0.76134713 +i
-0.4953804 +|
-0.4707129 +i
1.29532791 +i
0.47055460 +i
1.29561779 +1
0.76149596 +1
-0.4947652 +1
1.60135284 +1

0.01694926
0.00234402
-0.0200945
-0.0044576
-0.0008148
-0.0006742
0.00944367
0.00308637
0.00036550
-0.0078835

EIGENVECTOR

-3.29436566 +i
-0.4986783 +1
2.66829007 +i
0.80342192 +

-1.01336236 +1

-0.80096786 +i

-1.02520948 +1
0.49429990 +i
2.66944398 +|

-3.29673638 +i

0.11675713
-0.0419077
-0.2252383
0.02867941

0.18483988
0.00263282
-0.1600463
-0.0095409
0.09219724
-0.0603341

EIGENVECTOR

1.60063222 +|
0.76134713 +1
-0.4953804 +1
-0.4707129 +}
1.29532791 +1
0.47055460 <+
1.29561779 +i
0.76149596 +1
-0.4947652 +1
1.60135284 +|

-0.0169492
-0.0023440
0.02009450
0.00445760
0.00081480
0.00067424
-0.0094436
-0.0030863
-0.0003655
0.00788358

EIGENVECTOR

-3.29436566 +i
-0.4986783 +1
2.66829007 +1
0.80342192 +i

-1.01336236 +i

-0.80096788 +i

-1.02520948 +|
0.49429990 +i
2.66944398 +i

-3.29673638 +|

-0.1167571

0.04190775
0.22523833
-0.0286794
-0.1848398
-0.0026326
0.16004631

0.00954094
-0.0921972
0.06033418

Figure 2.8: Eigenvectors of Uniform Sinply-Supported

Beam wi th Non- Proportional Danping
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EIGENVECTOR 9

&

EIGENVECTOR 13

-4.86309617 41 0.39 156067 | 7.70823039 +  -2.14134378
-0.0073714 #i  .0.0929540 |-0.70891578 +I  0.06993765
4.99524698 +  -0.1671134 |.4.13874081 +1 -2.51285774
0.004 16455 +  0.10009398 | 0.52118352 +|  0.12679480

-4.96310114 +  .0.1318510 |-7.41866311 +  0.88296407
-0.002442 1 4 .0.0655089 | 0.43007458 +I  -0.0836168
4.94454322 4+ 0.19429566 | §.02361606 +i  1.10993801
0.00112707 +i  0.03277538 |.0.75347279 +i  -0.0240873

-4.93327299 41 -0.2371513 | 2.72496814 +I  -0.4750263
4.92948488 +i  0.25 128642 |.9.50646662 +i  -0.4889860

EIGENVECTOR 10 EIGENVECTOR 14

-4.86309617 4+ -0.3915606 | 7.70823039 +i  2.14134378
-0.00737 14 4 0.09295406 |-0.70891578 +I  -0.0699376
4.99524698 I  0.16711345 |-4.13874081 +i  2.51285774
0.00416455 +i  -0.1000939 | 0.52118352 +1  -0.1267948

-4.96310114 4+ 0.13185100 |-7.41866311 +  -0.88296407
-0.002442 1 41 0.06550899 | 0.43007458 +I  0.08361688
4.94454322 4 -0.1942956 | §.02361606 +i -1.10993801
0.00112707 +  -0.0327753 |.0.75347279 +i  0.02408733

4.9332 7299 #1  0.23715136 | 2.72496814 +I  0.47502833
4.92948488 +I  -0.2512864 |.9.50646662 +I  0.48898806
EIGENVECTOR 11 EIGENVECTOR 15

-6.49884647 +1  0.62921861 | 7.45324447 41 -6.24122905
0.44238085 +i  -0.0979085 |-0.68625485 +i  0.06868798
5.80399407 +  0.79627146 |-2.10000870 +I -6.14541687

-0.74090650 +i  0.03594341 | -0.2104462 +1  0.21590885

2.21029950 +  -1.11377107~ |14.29690639 +  -2.24227152
0.74023466 +I  0.03015839 | 0.54679930 +I  0.08123459

2.09483630 +  0.65224691 |-9.82439128 +I  1.56820700
-0.4568743 +i  -0.0366172 | 0.64951987 +I  -0.047 1842
555398970 4l  -0.0785197 | 5.86043927 +i  1.72043321

.6.87061007 +  -0.1729018 |14.36016423 +i  0.94252876
EIGENVECTOR 12 EIGENVECTOR 16

6.49884647 41 -0.62921861 | 745324447 +i  6.24122905
0.44238085 +1  0.09790854 |-0.68625485 41~ -0.0668879
5.80399407 4 -0.79627146 |[~2:10000870 +#F 6.14541667

-0.74090650 +I  -0.0359434 | -0.2104462 + — -0.2159088
-2.21029950 +I  1.11377107 |14.29690639 +i  2.24227152
0.74023466 1  -0.0301583 | 0.54679930 +1 ~ -0.0812345
-2.09483630 +i -0.6522469 1 |-9:82439128 +1  -1.5682070C
-0.4568743 +1  0.03661729 | 0-64951987 #1  0.04718420
5.55398970 +1  0.07851970 | 5.86043927 #1  -1.72043321
5 87061007 +1 - 017290180 |14.36016423 +1  -0.94252876

Figure 28(cont.)
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&
EIGENVECTOR 17 _
26.675420 11 +i -9.61793553
0.52915315 +i 0.54295220
19.83261166 +i - 1.57958265
0.44551446 +i 0.05151553
-7.30067665  4i 5.91671735
0.16257968 +i -0.1486024
-0.1552809 +i 4.16051563
0.01957921 +i -0.1018729
1.75767996 +i 0.99315436
1.88679567 +i -0.2395551
EIGENVECTOR 18
26.67542011 +i 9.61793553
0.52915315 +i -0.54295220
19.83261168 4i 1.57958265
0.44551446 +i -0.0515155
-7.30067665 +i -5.91671735
0.16257968 +i 0.14860240
-0.1552809 4i -4.16051563
0.01957921 +i 0.10187293
1.75767996 +i -0.99315436
1.88679567 +| 0.23955516
EIGENVECTOR 19
-0.70964409 +i 4.21619012
0.25471659 +i -0.0495710
2.61180108 i 3.74569192
0.25902052 4i -0.0729415
9.01791709 +i 2.16618231
0.19218298 4i -0.0616198
14.44910849 +} 0.53144312
0. 10207651 +i -0.0349668
17.98876480 +i -0.64014133
19.21658627 +i -1.06414531
EIGENVECTOR
-0.70964409  ai -4.21619012
0.25471659 +i 0.04957 103
2.61180108 +i -3.74569 192
0.25902052 s4i 0.07294152
9.01791709 i -2.16618231
0.19218298 +i 0.06161981
14.44910849 +i -0.53144312
0.10207651 +i 0.03496687
17.98876480 +i 0.64014133
19.21658627 +i 1.06414531

Figure 2.8(cont.) .

- 93 -

e s s e



Real part of
Frequency ¢
Response
Function

Imaginary

part of o

. Frequency
Response
Function

.

—

Figure 2.9



o

"1

1

T

Figure 2.10: cCurvefit Results -Undamaged Cantilever
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A
DAMPI NG
U.D. FREQ.| D. FREQ FacTor | 2R RE M
MODE 1
M| 40.37 40. 37 -0.0741 | 0.183533 | 2.29445 5. 491102
()| 40.2847 | 40. 2846 -0.10312 | 0.255711 | 2.3507 4. 022547
(3)| 40.3287 | 40.3285 -0.0984 | 0.244 1.192357 | 3.181806
(4)] 40.385 40. 3849 -0.07612 | 0.1884 0.655109 | 1.866827
(5)| 40.4498 | 40.4498 -0.0468 | 0.1158 0.22195 0. 610550
MOCE 2
(1)| 254.325 | 254.324 -0.582144 | 0.228897 | 11.852656 | 2.656811
(2)| 254.25595 | 254.25443 | -0.879 0.345723 |0.694002 | -0.102144
(3)| 254.454 | 254.4539 | -0.53189 | 0.209032 |-2.77474 | -5.603733
)| 254.6978 | 254.6974 | -0.46166 | 0.181258 |-3.480396 | -7.888621
(5)| 255.133 | 255.172 -0.32878 | 0.128847 | -2.48746 | -4.706277
MODE 1
MOD PHASE |l
5. 951193 67. 32 2
4. 659042 59. 698 1. 5657
3. 397882 64. 457 1.1419
1. 978436 70. 663 0. 6649
0. 64964 70. 022 0.2183
MODE 2
MOD PHASE In|
12. 14677 12. 634 2
0. 70147 0. 1155
6.25308 243. 65 -1. 02958
8.62227 246. 19 -1.41968
5.323203 242. 14 -0. 87648




‘Measured

Measured

Mode 1

Analytical

Mode 2

Figure 2.11
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A
i
. U.D. FREQ.| p.Freq. | DAMPING % CRIT. RE IM
i FACTOR "
T MXDE 1
(1)] 39.1696 39. 16874 -0. 26283 0.671 3. 03679 7. 376032
- |
i (2)] 39.00954 39. 008466 0. 289495 0.742112 2.475344 5. 630936
T (3)] 39.084196 | 39.083144 -0. 289495 0.733691 1.681678 4, 275594
(4)] 39.274357| 39.2735 -0.252542| 0.643021 1.011412 2. 409633
(5)] 39.524173| 39.523832 -0.164121] 0.415242 0.458141 0. 873377
- MODE 2
(1)| 249. 4656 249. 46269 -1.21668 | 0.487717 11. 20954 0.74112
P (2)] 248.4981 248. 49744 -1.68177 0.676749 0.708874 0.106716
[ (3)| 249.03436| 249.03689 -1.31323 | 0.527346 | -4.66496 -4, 45960
(4)]| 249.94155] 249.9392s -1. 07594 0.428338 | -5.15853 -9, 31251
.
(5)] 251.03272 | 251.03022 -1.12062 0. 446405 -4, 647265 -5.79940
|
b MODE 1
MOD PHASE Il
[ 7.9767124 67.622 2
6. 1509974 66. 2698 1.442238
4. 5944254 68. 5292 1.151959
- 2.6132901 67. 23 0. 6552298
! 0. 9862456 62. 32 0.2472812
7 MODE 2
* MOD PHASE In|
11. 234 86. 21739 2
i 0.71686 81. 4388 0.1276
6.45368 226. 29 -1.1489549
10. 645817 241.016 -1.8952852
I 7.4316995 231.3 -1.3230727
I Figure 2.12: cCurvefit Results -Damaged Cantilever
[
- 97 -




—

—

)

-1

-0.3

A
X
(? X X 3{*"'=’ QB(
1 ]
-0.2 -0.1

Figure 2.13: Mde 1 -Pole Location
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Figure 2.14: Mde 2 -Pole Location
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g
A C D E F G H I J h -Position
[ ] = > > E~ B [ ) = | 4
a << < << < < << < << < e
g :- S 2. :- :: a = 2 < & -Data
= a a a A a 8 a2 a a I

ESTI MATED FREQUENCI ES

ESTI MATED RANGE

FI RST LATERAL (1L) 1. 64 1.3 = 2.2
SECOND LATERAL (2L) 6. 95 6.5 = 7.6
CHANNEL QUALITY CF DATA NODES VI S| BLE
(10=good 1=poor)
DB. DAT 1 (1L)
DC. DAT 3 1L (2)
DD. DAT 6 1L 2L
DE. DAT 5 L 2L
DF. DAT 10 1L
DG. DAT 8 1L 2L
DH. DAT 7 1L 2L
DI.DAT 6 1L 2L
DJ. DAT 6 L 2L
Figure 2.17: Suspension Bridge Data
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Mode 1L W= 169 H M= 0.60 2

”®
Mode 2L W = 6. 96 Hz /‘&t 0.69 %
Figure 2.18: Suspension Bridge Mdes
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CHAPTER 3

THEORETTCAL DEVELOPMENT

3.1 Prelimnaries

The first two chapters of this thesis have set out to review
and analyse some of the theoretical and nmathematical considerations
of dynamc analysis. As a result, some unanswered questions have
emerged, principally the dilemma that occurs between the conparison
of theoretical results using a method such as finite-elenments and
experimental results which energe as a result of nodal tests. In
the literature, some formal attenpts have been made to directly
conpare and anal yse the two sinultaneously, but the efforts have
been far from exhaustive. No effort has been made with regard to

the conparison of neasured conplex nodes with analytical, real mat-

rices.

It is the opinion of the author that the reason for this
has been the lack of an adequate mathematical tool with which to
anal yse the problem Matrix algebra, on its own, could never rev-
eal the underlying fundanentals of the problem and so results
obtained will nearly always need to be viewed with scepticism. The
introduction of vector space theory as a possible tool with which
to analyse the problem offers the prospect of a nore fundanenta
grasp of the situation and provides a good framework in which to

argue and justify results obtained

However, prior to the analysis, the necessary groundwork

needs to be laid and fully understood. It is by no neans the

objective of this thesis to offer a conpr ehensi ve survey of the
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techni ques and ideas of vector space theory: on the contrary, the
number of ideas needed to pursue the-remainder of this thesis

with a full understanding is surprisingly small. So that this
volume may stand as a conplete entity in its own right, the necess-

(66)

ary definitions will be quoted and expanded upon, bearing in

mnd the objectives and goals of the ensuing chapters.

3.2 Fundanent al s

The nost direct way to introduce vector space theory is with

the definition of a vector space.

Definition 1

A vector space Vis a set of elenents called vectors with
an operation called addition, and an operation called scalar nulti-

plication which satisfy the follow ng axioms:

(a) Addition Axioms: To every pair of vectors x,yEV, t here
corresponds a unique vector x +y E V", the sumof x and y such
t hat
(i) x+y=y+Xx (comutative |aw):
(ii) (xty) +z=x1t (yt z) (associative law;
(iii) there exists a unique zero vector 8 U such that
x + 0 =X Vxe#(identity element for addition);
(iv) for every vector x there exists a unique vector (-x) E
such that x t (~x) = 6 (additive inverse): the vector

X + (-y) isnormally witten x -vy.

(b) Scalar Multiplication Axionms: To every scalar a and every

vector x £ U there corresponds a unique vector GxE UV such that

- —

(v) a(Bx) = (aB)x for every scalar B;

-~ 105 -
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(Vi) Ix=x x =84 x el

Vii a(x + =ax + ay;
(vii) a(x +y) YU (distributive |aws)

(viii) (a + B)x = ax + Bx.
One can easily show that the vector -1x is the vector (-x) of
axiom (iv).

Thus, if we consider the space of real n-tuples and | et

x = (1,62, . . . . & )andy=(Ni,N2,....0). Ve define
x +y = (51 + N1, 52 + N2y eees & & nn)
and ax =(a§,,a52,...,a£n).

This concrete definition of addition and scalar nultiplication on
ordered n-tuples satisfies the axioms for a vector space, as is
easily verified. The zero vector is (0,0,. . . . 0). This space is

general |y denoted by Rn. The next thing to define is a subspace.

Definition 2

A non-enpty subsetw of a vector spacev is called a sub-
space of Vs Wis itself a vector space under the rules for addi-

tion and scalar nultiplication as defined for V.

Possi bl e pictorial representations for vector spaces and

subspaces are:

(1) (ii)
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For nuch of the analysis we will be concerned directly with
inner product spaces. An inner produce space is denoted by
(v, <.,.>) and consists of a vector space UV and an operation

between el ements of that vector space called an inner product.

The definition of an inner product is as follows.

Definition 3

An inner product on a vector space Vs a scalar val ued
function <x,y> defined for all ordered pairs of vectors x,y € vV

and which satisfies the follow ng axions:
i _ = 1%
(1) <xX,¥y> = <y,x> 4 X,y € V;
(i) <ax + By, z> = a<x,z> + B<y,z>;
(i) <x,x>>0; <x,x>=0if, and only if, x=8,
The follow ng property follows fromaxions 1 and 2:
(iv) <x, Yy + 6z> = ?<x,y> + 6<x,z>.
The bar denotes conplex conjugate. Thus, if we consider the space
of conplex n-tuples ( Cn) t hen

e, = x'p

<x,y> =
i

T

This al so allows us to introduce the normof a vector, given by
1 n ]
lxll= <xood = [ 5 ;)
. 1
i=1

For the analysis of the undanmped problem a real inner prod-
uct space will be required, often called a Euclidean space. This
I's because the operators involved (typically matrices) are symmet-
ric and positive-definite, allowing an analysis using real arith-

netic. For the danped problem the space and its dual will be
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analysed. This will be nentioned |ater.

Next we need to define a basis. in which to describe elenents

of the vector space. This is defined as:

Definition 4

A set, s, of linearly independent vectors is an algebraic

basis for the space Vit [s] = U’, i.e. s spans the whole space

124

Thus for Rn' if we have n vectors x..li =1 . . . nany

other vector may be expressed as a l|inear conbination of these vec-

tors, viz:
n
x= 1 @x
i =l
where the o, are scalar rmltipliers[xi] i=1, . ..nis said to

span the whol e space ® n° A vector space does not have a unique
basi s; however, the number of vectors in any basis for UV iis uni-

que. Ve will primarily be concerned with a basis of eigenvectors.

Definition 5

The dimension, di mU, of a vector space is the number of
el ements in any basis.

W shal | be concerned mainly with vector spaces having a
finite basis, i.e. finite dinmensional. The dinension of the vector
space will be typically n (din{v) = n) where n is the number of
elements in the FE nodel.

| deal |y we wish our basis sets to be orthonormal with respect
to the inner product. By orthonormal we mean (typically for eigen-

vect ors)
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T O |
and <X x> T XK E (EH? =1

where the X, are basis vectors. |If we have a weighted inner prod-
uct, involving a positive definite transformation (see below) the

orthonornality conditions are given as

<X, ,X.2, = X. =
xl,xJA —1—A)—(J 0

T
> = 4
XyaXg P AT X Ay

L]
-

where A is such a transformation. Thus a set of eigenvectors, Xg

i =1 ... mwll define a subspace l}; and the orthogonal conple-
L . . .

ment spacéutn will be spanned by Xgod = mel, . . . n, since al

the vectors in one subspace are nutually orthogonal to those in the

other. So we may say
L
Vv, -V, e VU,
where @ denotes the addition of two subspaces when the intersec-

tion is equal to the null (enpty) space. Thus
L
dim( 17n) = dim(Um) + dim(‘l]'m ).

We may now introduce synmetric positive-definite operators of the
formT :173 + )}; where, relative to an orthonornal basis, Tis
represented by a square, symetric positive-definite matrix array
(T). T is a linear transformation where a linear transformation

is defined as

Definition 6

The function (or mapping)

T:V*V
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A
is called a linear transformation of Uonto itself if
(i) T(x + y) =Tx + Ty;

(i)  T(ax) = aTx ¥x € UV and all scalars a. Tis a symetric
transformation if

<x,Tx> = <Tx,x> ¥x
and T is positive-definite if

<x,Tx> = <x,x>, > 0 ¥x £ 6

T
The principal concern of this thesis will be the formulation of
projected forms of T so that

Proj(Mqy 2 U+ v,

That is, Proj(T) can only operate on and produce vectors that

Um
lie within the subspace Vm. Then, for x evm

(Proj(T)wj_ngx = Proj(Tx).L}
m

that is, the conponent of Txin Um and for x ¢Vm

(Proj(T)lfl%x = 0.

The projected transfornations behave exactly the sane as T in the

subspace onto which they have been projected and map everything out-

side that subspace to zero. W need sone nore definitions:

Definition 7

The range space of T, IP\(T), I s the subspace of vectors pro-

duced after the operation of T on vectors in Un: R(T) is a sub-

space of UJ .

Definition 8

The null space of T, JU(T), is the subspace of vectors which

map to zero when operated on by T: §\(T) is a subspace of Un.
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Wenmay say that

p(Proj(T) vm) = dim(R(Proj(T)vm)) =m
and v(Proj(T) v_m) = dim(n(Proj(T) vm)) =n-m

However, it is not true to say that

T = Proj(T) Vm® Proj(T) Vn‘;

1
since the effect of T in mapping vectors from U’m to U’m and

vice versa will have been elininated. This nmay be illustrated wth

a partitioned matrix

Ty, and T, are not included in the sumof the two projections.

In order that a full understanding of the undanped problem
is gained, an initial analysis of the single matrix case

(I -Dx; =8

or T¢ = ¢A

will first be studied, with (where appropriate) a (3x3) symetric

matrix exanple
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L
T=[3 -1 0]
-1 2 1I
0 1 3J j'

Then, as a prelimnary study for the danped case, a single unsymm-

etric matrix will be studied.

3.3 Change of Basis

Before attenpting to approximate T using its eigenvectors
and eigenvalues, it is essential to realise that T is nerely a
matrix representation of the linear transformation T. Although
the linear transformation is fixed, its matrix representation can
take on many forns, depending upon the basis (axis system in
which we choose to describe it.

For exanple, T maps the point A(1,1,1) to B(2,0,2) and T
is represented using the standard basis e; = {(1,0,0),(0,1,0),(0,0,1)}.
However, wemay choose to describe T using an alternative basis
bi = {(1,1,0),(0,1,1),(1,0,1)}. These are the coordinates of the
new basis vectors (axes) b, relative to the old basis e; which is

the only way we can describe them

Alternatively, we nmay choose to describe the vectors e in
terms of the vectors b, which are then as follows: {(1,-1,1),
i(1,1,-1),3(-1,1,1)}. Relative to the new basis b, the point 4 is
now 4(1,1,1) and Bis (0,0,2). To deternine the formof T relative
to this new basis we nust transform the coordinates of T.

Tvew BASIS © {old basis in terms of new basis)

X IOLD BASI S X (new basis in ternms of old basis}

with
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{old basis in ternms of new basis} = {new basis in terns of old basis) .
So o
1 - -
1 1 1]|-1 2 -1[11 1 0
1-11J0-1 310 1 1
1 2 -1
= @ 'Q 'ﬂ
T is the sane operator, that is it still maps the ponnt & to the

poi nt B, but because we have chosen to represent it using a diff-
erent basis set by it appears conmpletely different and is no
|l onger symmetrical. The loss of symmetry is a result of choosing
a non-orthogonal basis. In nearly all cases the basis vectors

are nerely rotated and so remain orthogonal, and hence preserve
symetry.

Furthernore, if we choose to represent T using a basis set
of eigenvectors, T is diagonalised with the diagonal terns being

the ei genval ues.
[1//6 2//6 1/v6|[ 3 -1 o][i//6 1/V/2 1//3]

V2 o0 -1/VZ||-1 2 -1{|l2//E6 0 -1/V3
1//3 <1//3 1//3]| 0 -1 3] (16 -1/V2 1/V3

TEIGENVECTOR BASIS =

= |1 0 0
0 3 0
1 0 4

1
TEIGENVECTOR BASIS = ° Z0LD BASI S@

A{diagonal matrix of eigenval ues).

TEIGENVECTOR BASIS

So, any operator T is nmerely a "stretching' in three directions
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(that of the eigenvector) by a given anount (that of the eigen-

val ue) . L

3.4 Approxi mating the Single Symretric Operator

The first objective is to approximate T in terms of a basis

of an inconplete set of eigenvectors and eigenvalues. The problem

may be posed as

(nXn) (nXn) (nxn)
T = Tm + Tr
4 1 1
act ual restriction ofr remainder
operator to subspace spanned

by first m eigenvectors

W know that the operators T : L7n + 7/}5 thensel ves forma vector
space (which we shall denote as JZ( L;;l{p)and on this space we

may define an inner product as
— T -
<A,B> = tra A'B, (tra = trace)
and the normwll be

8.2

1 43

e~

n
[[Al]2= <a,A> = tra ATa = §
i=1 j

which is a Euclidean norm
A suitable basis for this space are the n P, operators,

wher e

P. = x.x,
- - ==

and the x; are the eigenvectors of T.

They are a suitable orthonormal basis since

To y =
<Pi,PJ.> tra[gi_lij} =0

T, , _ T T, _
tra{P;P} = tralxx;xx;} = 1

and <P.,P.>
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The p, are symetric and of rank 1. They are projection matrices

in the sense that

P.x. = x.
—i=i =

and -PI-)f = 8.
Thus, the first n1gi matrices will be a suitable basis in which to

descri be ’_fm,

In order to extract the best approximation to the required matrix

T, the norm
m
IIT - 121 uP ||
needs to be mininmsed. This means finding that point in the sub-

space spanned by the P, i =1, . . . mwhich is nearest to Tin the

sense of the given norm

m
So £ = ” T - 2 Ulpluz
i=
) )
=<T - YupP, T - u.P.>
i=1 * 7 j=1 17

m m
<T,T> - § ugP,T> - 1

u.<T,P.>
i=1 j=1 J J

m m
+ U_.u_.<P.,P_.> .
121 j=21 3t

To minimise, We differentiate with respect to W

<P..T> - <P.,P>=0.
so, P1'T j£1 UJ ity



—]

-

o

R

T T
= X. = Ax.x.'= A,
<P1.,T> = tra 13(_.11.1 tra 1)f1)-(1 A
m i
and ! w.<P., P> = u
=1 S i

so the best approximation to T is obtained if

m
hence T = § A, x. x. .
- =i

If m=n then we may call this the spectral expansion of T

n
T= ) A x, x.T = <I>M>T.
- i=1 11 —1
For the sinple, illustrative exanple, we have
T=[3 -1

o]
-1 2 —1|
lo -1 3
with eigensol utions
x = (1; 1//6(1,2,1)),
x, = (3; 1//2(1,0,-1))
and  x3 = (4; 1//3(1,-1,1)).
So, the spectral solution for T is given by
=31 2 1] +3(1 0 -1 e5f1 a1
0 -1 1 -1
0 ll -11

2 4 2 0 0
1 J

Qur best approximtion to T, if know edge of the first two eigen-

1 2 1 -1

vectors only is available, is therefore:

1 3 _ 1 _
T =21 2 1] +3[1 o -1 =35 1 A]l
2 4 2 0 0 0 1 2 1]
1 2 1 -1 0 1 -4 1 SJ
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Al though we have % of the necessary information for the

construction of T, the form of Im ks very different to that of

T. '_I‘mrepresents the projected solution of T, which will, hence-

forth, be witten as Proj(T) vm to nake this point apparent. It

is a projected solution in the sense that it only operates on vec-
tors in the subspa[3 into \hich it has been projected. Al others

are mapped to zerd?| Exany| es are

. 1
Proj(T)., I3 =15 1 -4[3] =8
v, 3
3 1 2 1{]-3
3 4 1 s|| 3
1 NP
Proj(T) 2l == 5 1 -4][2] = F[-1] = || - 3] |1
JUL U 3 3 I 6 |
[ 1 1 2 11 7 2| o’
3 4 1 5113 | 8] 1) [-1]
1 [ 1[2—’5——7-'1-3’1‘+1§'1'
Tftf=1l3 -1 0 -’ ]'6 3
3] -1 0 12 13J3131 -3 2 0 -1
8J 1 | -1] [ 1]

So we can see that on the subspace that Proj(T)v, is restricted
m

to, it operates exactly as T. Thus Proj(T)v may be considered
m
as the shadow caused by T by shining a |light onto the subspace Um

Tx
AVA /1
/7
/
/
/
~N
~
vy N
" PrOJ(T)I’hx
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SO Proj(l)v knows not hing about j-1}.
m

1

The projection operators 31 4re of key significance here.
For an inconplete set of eigenvectors we may define a projection

opeartor P with range Um as

m
T

X,

=i

P = ¢! =
|

X.
| &

where ¢ is an (nxm) inconplete matrix of eigenvectors. P has the

following attractive properties:

Px =6 = ml, . . .on

Anot her inportant point is that P is idenpotent. That is, over
the space to which it is restricted, it is equal to the identity

operator, so

T

P2 = 06106l = 96! =P

and P=1on Um.

Therefore, to formulate the projected solution of T on the subspace

of known eigenvectors (m we need to performtwo operations:

(a) Premultiply T by P in order to ensure that inmages in the
known subspace only are produced.
(b) Postmultiply T by P in order to ensure that it operates

only on vectors in the subspace and maps others to zero.

W have

Proj(I_)v = PTP
m

[}
<
©
=3
©
>

"
>
=
°

[
1

Lea3

>




&
which is the same result as obtained earlier. Diagrammatically,

this may be expressed as .

VL 104

For the sinple exanple we may say that

di m (§v{(proj(1)v_rr)I = 2 = rank(Proj(I),, )
di m n(Proj(E)un)l =1 = nullity(Proj(’_T_).v_m).

This sinple but key idea provides the tool with which to
analyse the entire problemand will be the central theme in nearly

all the subsequent analysis

3.5 The Approximation and Its Uses

The analysis so far has described how, if only a [imted
nunber of the eigensolutions of T are available, the matrix can be
approximated in terms of these solutions. The resultant matrix is
singular and is a projected solution of the true matrix L. V& may
if we wish, want to conpare the projected matrix with an analytica

mtrix, T,. However, it would be foolhardy to engage in a direct

conpari son since Proj(l)tkm and T operate on different spaces
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(]]m and })n respectively). A nore definitive error analysis
woul d be obtained if ProJ(D‘U’m wege conpared with Proj (Ia)'lfm'
wher e Ia had been projected onto the same subspace as T. An iden-

tical procedure for projection is involved,

Proj(T,)q, = PLP
m

= OOIT ¢oT
-—4a

so that

€ = Proj(T
rOJ(_)Vm
- oA - ¢Tga¢)¢T

- Proj(T,) .,
m

For exanple, if Ia is given by

T =[3 -1 0] (recalling that [T = 3 -1 O}
12 a1 -1 2 -1
0 -1 8 0 -1 31
T, ..T 1 .
then  &¢ IaQXD =3 21 -1/{3 -1 O0f;2 1 -1
1 2 1]}-1 2 -1 1 2 1
-1 1 20 -1 8Jl-1 1 2
1
=5/ 20 -2 -2
-2 11 13
-22 13 35

so that

s 5 10 5{~1 \ o
§ -5 ~0/2 Y§ =) ~2
10 <10 <20 2 -2 94 .

The bottom right-hand corner indicates the largest error which,

with aconparison of Ia and T, may be seen to be the case.
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Al'ternatively, Ia may be projected onto the orthogona
conpl ement space and then directly.added on to Proj(l)hﬁf Since

this projection would operate entirely in the orthogonal conple-

nent space, its addition to the projected solution will not affect

its properties. The appropriate operator here is given by

(I-0") =( -P

so that

(I -P)x; = X - x =9 =1 ...
and (1 - P)ii =X 1=ml, . . . n
\\¢ have

Proj(T, )t = (I = P)I(I - P)
m
T T
= (1 ~ @1)T (I - ¢0°)
T 4o T T T
= 00T 00 + T - T 00 -0 T.

For the exanple,

Noll o]
r‘
foun
o
[}
—
w

|
.—l
(o]

Projgg'£’¢ =
m

-17 17 -17

1
17 -17 17]

So the 'hybrid solution, TH, I's given by

-]
1]
a-]

3Dy, @ Proj(F)ye

“&l1s 3 g+ l17 -7 ow
3 6 3 17 17 -17

12 3 15| L1moa17o17



- R

&

=% 32 -14 5| = | 3.56 -1.56 0.561
- 14 23 - 14 ~1.56 2.56 -1.56 |
5 -14 32|] o0.56 -1.56 3.561

whi ch woul d be consi dered the best approximationtoT, given the

information available. W observe

@)  Th1,2,1) = (1,2,1)

(b  1%(1,0,-1) = 3(1,0,-1)

© T,y = Ha,

(@ T(L-1,1) = %1,2,1) - 2(1,0,-1) + 3(1,-1,1)

L oo H i
verifying that the restriction of T to'UVm behaves as 1%.

3.6 The Unsymmetric Oper at or

The analysis so far has pertained to the inner product space

(1)6,<.,.>) where the inner product has been defined as

<x.,Xx,> = .xT.v..z
[N =i=j

o~ D

£.1.
1 11

i
where the gi's and the ni's are the elenments of X, and X, respec-
tively. |If we now wish to extend the analysis to consider the
unsymretric case (with a direct analogy to the danped problen we
have

(I - Dx' = 8
where T is now (nxn) and not symetrical. W will need to use
instead of an inner product on 1);, the linear functional on the

primal space ])B and its al gebraic dual ]}h*. In order to clarify

the situation we require sone new definitions
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Definition 9

A linear transformation £ from a vector space V' into the
vector space of real (or conplex) scalars is said to be a linear

functional on 1}“.

We also need to define a suitable basis for this |inear

functional .

Definition 10

Let {x',. . . x"} be a basis for l); and | et Y. be the linear
functional on l?h, defined by yj(xl) = 63,] =1, . . . n, then
{y1, y }is a basis forl%;*; it is called the dual basis of
C o Yy

{x'}.
The new basis defines the al gebraic dual of 1}h,denoted by
. . . . i finite~
Un*’ which is |30m)rph|c to Vn, That is, they are both finite
di mensional of dinension n and isonmorphic to (indistinguishable

from the space of conplex nunbers t:n-

The value of the linear functional is usually represented

- - i _ i
yj(xl) = LYJ-.X] =[x ’yj]

There is no conplex conjugate here, as for the inner product. Ve

have

T: ],?n + -Lyh
T @ U* '1);* (see diagram overl eaf)

wher e I}h* denotes the dual space for T and T' is the dual of T

If T has a matrix representation T relative to a basis in I)h then
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T has a matrix representation T relative to the dual basis in
1};*. So, in general for the danped problem the analysis requires

the use of two basis sets, one for each of the isomorphic spaces
V¥ and U *.

For the ensuing analysis we assune that the eigenvalues for
T are distinct and the problemis diagonisable (Which generally

reflects the case for |ight danping). W have
(AiI-T)xi=e i=1, .. .n
] — PR
and (AiI -T )yj =8 i=i,. ..
sot hat
i i
g =0,
<oy ] = 6,
if the eigenvalues are suitably normalised, and
i = 1 = Aél.
[Tx Yj] = [x',T YJ‘] i j

So a vector z € I)h = ))B* can be witten as

or as
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In the same manner as before, we méy now introduce projection nat-

rices
i T
P o= xyy
so that
P.)-z1 = xl,
L P
P.xj =8,
2 —3
- -

and P PJ = 6.

-1
T_ iT
Also  P,"= y;x
so that
T —
- li = 11'
T _
—i 1_] - e'
T 2 _ 2
(Ei ) - __i
and P.TP. T =€,
_l _J

We may al so say that

)
P.
i=1 *

is a projection of 'U‘n onto Vm al ong V:‘, wher e 7)’"‘ is the sub-
space of )fn spanned by the first meigenvectors [xi]’ i =1,

We have no inner product here so the concept of orthogonality is
extended to normed spaces with the synbol 1l representing an anni-

hilator, as in Reference (60).
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It is plain to see that

n n 2
_E. = ): PIT = I.
izl Y i=1
[f we |et
1 T
Py = XY
then P..2 =0 unless i = |
“13
= i k
and gijgk 0 i#
= Pi j =k
D
and Py ¥4
as above.

2

The E'lj are n“ independent basis vectors for the space

Z( v;, 7)n) and hence we may wite

I 1 ECTE ST
T = a.. P..= Q.. X Yy,
T yo1 e MR gL 50 BT
whence
k n ( Tyt T Xy
[yg.Tx'] = i f jzlalj L, ¥y =
n
T i
= 1 oo (5 x) = ey
i=1
k
but [yl,Txk] = Akél
k

hence Qg = Akél .

So I:ZAi

. —i
i =

which is analogous to the result obtained for the symetric case.

Again, We may consider this as the spectral expansion of T.
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[f we |et
m .
P = Z xll.T
] - <4
i=1

ot

we have

PTP

Proj(T)qg
n

on'Ton!

N

[x}] i=1,...m

[xi_] i =ml, . . .on

with RR(Proj(T),, )
m

R(PrOj(T)vm)

]

Havi ng thus established an anal ogous framework with which to anal yse
the danped or unsymmetric problem error and hybrid matrices my

then be calculated in a simlar fashion to that of the symetric

probl em

3.7 Overvi ew

The analysis has denonstrated that matrices are nerely
representations of nore fundamental objects called linear transfor-
mations. A linear transformation may take on several matrix dis-
gui ses depending on the basis (axis system in which we choose to
describe it. Since, for the followi ng analysis the basis inplied
is usually the standard e, basis {(1,0,...,0),(0,1,...,0)..
(0,0,...,1)) the formal distinction between the operator and its
representation with respect to this basis will be omtted. |If the
anal ysis nmoves to an eigenvector basis, the operator will usually

be described by a diagonal matrix (namely | or A)
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A foundation on which further analysis may be constructed
has now been provided. It has been,shown that pre- and post-
multiplication by certain idenpotent matrices can force a matrix
to exhibit predeternined range and null spaces. As a result, pro-
jected solutions are readily fornulated. This enables a restric-
ted version of a given matrix to be established. The stage has
now been set to derive mass and stiffness matrices which are res-
tricted to the sub-space spanned by the neasured nodes. These
"inconplete neasured nmatrices will represent the best possible

approximation to the true matrices with the information available

As indicated in this chapter, these nmatrices have the pot-
ential uses of determination of errors or inprovement of existing
mat hematical nodels. The analysis has been built up fromthe con-
sideration of the single symetric operator and then an outline
of how this may be extended to the single unsymetric operator has
been detailed. The analysis of the next chapter is that of the
doubl e synmetric operator problem or the undanped problem and
then, in Chapter 5, the double unsymretric operator problem or the
danmped problemis dealt with which, by that stage, is no nore than

a natural extension of the work that has gone before
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CHAPTER 4

THE UNDAMPED PROBLEM

4.1 Prelimnaries

Havi ng now established a mathematical framework in which fur-
ther analysis can be conducted, it is possible to consider the
undanped ei genval ue problem

(AiM - K)xi = 0

or MOA = KO.

In this case, we know that M and K are diagonalisable and we assune
isolated roots. Before commencing further analysis, it is worth
restating the problemin terms of what information is available

and what is sought. From the experinental measurements, which are
assumed to have been made correctly, there is a set of neasured
data consisting of an (nxn) unnormalised nodal matrix ¢ of neasured
nodes and an (mxm) matrix of natural frequencies A From the theo-
retical analysis, there are assumed to exist finite-element mass
and stiffness nmatrices Ma and Ka. Using these, the analytica

ei genval ues and ei genvectors have been cal cul at ed, Aa,éa,and
these correspond to the theoretical natural frequencies and node
shapes of the system The objective of the experinmental work will
have been to show that the mathenmatical nodel is accurate and
acceptable. If the nmeasurements agree with those predicted by the
model then it is reasonable to assune that the nodel is accurate

is a good representation of the structure and may be used for fur-
ther analysis. The contents of this chapter address thenselves to

the course of action necessary if there is disagreenent between

the two.
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In essence, two questions arise which are related, and which

wi |l both be considered in this chapter. They are:

1. Is it possible to determine error matrices which show

where the error in the nathematical nodelling has occurred?
2. What are the correct mass and stiffness matrices?

The first, and nost inportant decision to nake is what
inner product to select. Although any inner product may be used,
there are, in reality, no nore than five with a realistic case for

sel ecti on. These are:

I nner Product Nor mal i sation
. T T
1 <’>M_xiMX lexi =1
2] <.,.>, = x.TKx. x.TKx. = A, (neasured)
K i i i
T T _
3 e’y =Xy X5 X; %X =1
4 <o =x.TMx. xTMx =1
Ma i a”j i a’i
5( <.,.> =xTKx xTKx = A, (rmeasured)
K T Tioa iati” i

1 and 2 are clearly the correct or best choice since the neasured

modes will then by nutual y orthogonal

and x. Kx. = 0.
J

The problem here is that Mand K, the correct nass and stiffness
matrices are, in general, unknown and so any results obtained
using these, which have Mand K in their solution, will be of
little or no use since they cannot be conputed. 3 has little to

recommend it, other than the fact that it was the one used in the
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single matrix case. The nodes will not be orthogonal to one

another if this inner product is chosen

#

The nost appropriate choice of inner product is nmost conmmonly
4, since it is generally thought that the analytical mass matrix is
a better approximation than the analytical stiffness matrix. 35 may
be used if no rigid body nodes are present. |f they are, the stiff-
ness matrix will not be positive-definite and an inner product axiom
woul d be violated if they were included in the analysis. No other
of inner product is generally considered. In all the ensu-

type
ing analysis, the inner product will be stated at the beginning of

the derivation

4,2 I nverse Mass and Stiffness Expressions

Two initial results may first be derived; that is, express-
ions for the inverses of the mass and stiffness matrices. Since
these results do not explicitly contain Mand K, the correct inner

product can be used to derive the expressions
i nner product (in ,Z()fn,vn)) = <A,B>y = tra ATMB.
So the normw |l be

T i2
<A,A>, =tra AMA = ||A||M .

M
An approximation for the inverse of the mass matrix may now be
deternmined in terms of the matrix dyads Qi’ wher e

T

Qi _1X'Xi

The following normis mninmsed with respect to the coordinates Vs,

m
€= “M_l - El wiQinzM
i=
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1 7 17
=<M T - ) vQ, M I v.Q2>y
T j=1 37
m n m 1
Y N SV o ! <Q.,M'1> - Y v<MT,Q2>
' M “ M 2y 3
i=l =
mm
+Y) .\bJ.<Q ’QJ>M
i=1 j=l
Differentiating with respect to wi gi ves
) Q. M5 0
w:<Q-vQ~> o < s 9 M = .
=1 37T M i i
-1 -1 _ 2
But <Qi'M >M =tra QIMM =tra Ql - " XIII
wh I x ”2—xTx (no mass matrix)
ere Hx;l =% %
> = i i
and <Qi’Qj 0 idj
> —traQ. ™ =traQ = x[?
t hus <Q1:Q1 M = a Ql 1T i i
I, 11
giving ¥, = =1
i |xi|2
so that
-1 foximation to M1} = ZmQ. = ?x.x
MB (app / |:| 1 I"':I 1

Simlarly, minimising for the flexibility matrix K

-1 m
e= ||x° - i; e Qll %

1 ¢ 1 v
i - Q.>
=<k - 121 Q. K jzngQJ M
m m
-1 -1 -1 _
S R A M
i =l j=1
m m
+ 11 68,705,057y
i=l j=
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Differentiating with respect to 5i'

g

m #
-1 .
z EJ<QI'QJ>M - <inK >M = Ol
j=1
Ix 12
-1 — T -1 _ -1 Ty
S0 <Qi,K >M = tra QiMK =traKk MQi = >‘i‘ ,
||||-'"i“2 1
and &, = -)‘m—"—z_: = -)‘T
m
-1 1 _ 1.T
So KB =£?Qi—¢/\ ¢-.

-1
Effectively what has been acconplished is the approxi mation of M
and K'1 in terms of the neasured nodes and natural frequencies.
The resulting approxinmations are restricted to the space spanned

by the vectors M and, in effect, represent projected solutions

1T 1, -1,T
Mg = 00 kg L= onhe
where Ry = Raky™) = [x] =1, .. .m
Ne™ = Nag™hH = gl =m0

We can rederive these expressions thinking of them as projections.

If we deconpose 'U; so that
UV, = U + Wl where U = [x,]
andu:[xi] i =ml, . .. on,

then here u and ware not orthogonal with respect to <.,.>M.

1
=
3

If we introduce, With respect to the inner product vy the pro-

jection operator

T
PM=<N>M

we may note that PM is not an orthogonal projection (since PM # Pﬁ).
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PMis the projection ontou al ongw and PMT (= M¢¢T) is the

L L
projection onto w along u where 1 denotes orthogonality wth

respect to <.,.>y.

So Py: projection onto [x;] al ong [x;]
i-1. . m i=mtl .. n
and PMT: projection onto [Mxi] al ong [Mxi]
i=l .. m i=mtl ..n
Thus 6{(?{9 = [x1; ey = Ix,]
i=l ..m i=mtl .. n
T
and (R(PMT) = [Mx,]; Ny, ) = Mx)
i=l . . m i=mtl .. n

W also need to note that

Ty2 _
(PM)Z = (PM )2 = |

or that the projection operators are idenpotent. If we consider
the inverse mass matrix, M'l, we see that it operates on the vec-
tors Mxi’ i =1, ... nto produce the vectors xi,i =1, . . . n A

projected solution would need to operate only on the vectors Mxi,

i =1, ... mto produce the vectors x_.1;i= 1, . . . =m. Thaus
e § P
&{(PrOJ(M )) = [xi] =1 ...
N (Proji)) = [Mx] i =ml,. . . n

This is ensured by a prenultiplication by PM and a post-nultiplication
by PMT. The resulting solution is an orthogonal deconposition of

]}n with respect to <.,.>,. Thus,

proj ection of M'1 using mass inner product
vm onto space spanned by experinmental nodes
(¢) along its orthogonal conplenent

T
= PM 1PM

ProjM(M_l)
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so the same results are obtained by a projection onto the relevant

subspaces

4.3 Projection of Measured Mtrices

The expressions for the projected inverse mass and stiffness

matrices have been successfully derived, but are of little use to

us. The projected solutions for the mass and stiffness matrices

themsel ves are now sought since clearly the conplete matrices can-

not be derived from a set of inconplete data. Again we wish the

projected solutions to behave as the conplete operator on the sub-

space onto which it has been projected. Thus they will need to

have
(a)  range space given by [ix,] =1 ... om;

(b) nul | space given by [KJ 1=ml, . ..o

In order to facilitate this, a post-multiplication by PM and
a pre-nultiplication by PMT are required. The projected solution
for each of the five inner products under consideration will now
be derived
(a) I nner product <ory

. . T
nor mal i sation X5 Mxi =1
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PM = 001M.
Theref ore L
Pro i, (M) = p Iyp
Toly U, MM
- Moo Moo M
- MOOIM

and  Projy(K)y, = PMTKPM
m

TyooTm

= Mo
= MOADTH.

(b) I nner product <.,.>K

nor mal i sation xiT!(xi = ’\i

P, = ®AT0K
Therefore
Pro_]‘K(M)vm = PKTMPK
= konLoTmon 1ok
- kon 20Tk

and ProjK(K)v - p.Txp
m

K 7K

kon LoTkon Lo K

K¢A'1¢TK.

The projected solutions using either <.,.>, or <y satisfy the
orthogonal ity conditions and the eigenvalue equation. However,

the problens here are obvious. In order to find a projected sol u-
tion, the conplete matrix needs to be known (either mass or stiff-

ness). Cearly the use of these inner products is inappropriate.
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The object was to denonstrate this and outline the nethod for

other projected solutions. o
(c) I nner product <o

normal i sation xiTﬁ =1

If we consider PMwe observe that its full formis given as
PM = o(0™M) 6Ty

As we are free to choose the inner product we may repiace M by any
suitable matrix. If we use the identity matrix, I, we have

Pl = ¢(o70) 1ol

so that

ProjI(M)v = PITMPI
m

o(670) Lo Mo(oT0) ToT

o(6T0) 2T

|
o

and ProjI(K)v =Py KPI
m

o(0T0) Lo ko(oTo) LT

o(676) (o o) Lo,

Again, these expressions satisfy the orthogonality and eigenval ue
equation conditions and may be thought of as generalised inverses
for M1 and x‘1(94X However, the use of <oredy here is inappro-
priate and the matrices so generated woul d not represent any recog-
ni sable mass or stiffness distribution. Inner products which use
either the analytical mss or stiffness are nost appropriate since
we hope that these would reflect the true mass and stiffnesses

reasonably cl osely.
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(d) I nner product <.,.>M

) . T
normal i sati on x. Ma.xiz 1

X
P, _ om0
a
S0 Pro jy (M)U
a m

and Proj, (K)
M Yh

a

1

X

Mamhere n = (¢>'I'Ma<1>)_1

N%¢m_l¢TM¢m-l¢TMa

2, T

I\/Ia ém "¢ Ma

M M

T

TK¢m'1¢ Ma

I\/Ia d>m_1(1>

M <I>m_1Amhl<DTM
a a

and finally, for the fifth inner product:

(e) I nner product <.,.>K

. . T
normal i sation x. K. x. = A .
1 al

a

1

Ve need to note here that K My not be positive definite if rigid

body nodes are present, thus the argument here needs to be restric-

ted to flexible npbdes

T, -1
a

so Proj, (M)
K" VU

T

K

\

where k = ¢TKa¢

Ka¢k'1¢TM¢k‘1¢TKa

2, T

Ka ok "¢ Ka
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and Proj, (K) = P, KP
Ka Ikm Ka Ka

K, ¢>k—l<bTK¢>k_1<bTKa

-1, -1
K_ ¢k 1Ak ‘¢TK :
a a
Thus, five inconplete expressions for neasured mass and stiffness

matrices have been presented, all of which are restricted to a

subspace of I}B defined by the choice of inner product.

In order to make conparisons, for error analysis of these
projected matrices, the analytical matrices need to be projected
into the appropriate subspaces as well. Since the use of inner
products 1, 2 and 3 are, in nost circunstances, inpossible or
i nappropriate, the arguments henceforth will be limted to the

<.,.>M and <.,.>K choi ces
a a

4.4 Projection of Analytical Mtrices

A sinple conparison of the projected matrices generated in
the last section with Ka or Ma cannot really be justified as a
correct neasure of error since Proj(M?}? and Proj(K)1} are res
tricted to 17h only, whereas Ka and Ma operate on the wgole of the
space 1);. A nore reasonable conparison would be with the projec-
tions of K, and M_ onto the same subspace, i.e. the subspace deter-
mned by the measured nodes. Thus the two error matrices for the

two inner products still under examination My be fornulated as

I nner product <ev 2y
a

-1, T
PMa = ¢m O Ma,
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Proij, (M = Projection of usi ng anal ytical mass inner
JMa a)vh.m J M,
product onto subspace spanned by the experi-

nmental modes:

-1, T -1.T
NEQm ¢ Ma¢m ) Ma

1]

[}

giving €

' - - .
MASS PrOJP,Ia(M).U,m ProJMa(Ma)l7W

-1 -1, T
Ma¢m (I - m)m @ Ma

and Proj, (K.) =P 'K P
M, a Q}h] M. aM

1,T

1,T
$ My

N%¢m 0] Ka¢m

"

L, oo _ pro
8iving E€gryppyESS Pr°JMa(K)17n] r°JMa(Ka)1ﬁ“

]

Mooml(n Tk &)m TolM
a a a

I nner product <.,.>
Ka

P = ok ToTK.,
K, a

So Proj, (M) =P, MP
Ka a’ U, Ka a Ka

T

T -1
Ma¢k ¢ Ka

-1
= Ka¢k ¢

giving €2 = Proj, (M) - Proj, (M)
MASS K, v K, a U,

-1 T -1, T
- koI - oMok leK,
and  Proj, (KD, = PK Tk P,
a 2 Vnm a 2"a
_ ~1,T, . -1,T
= K0k 0 K 0k 0K,
~1,T
= K OK™ 0K,
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. . 2 _ . _ .
giving €orrppyNpss = PrOJKa(K)I)h PrOJKa(Ka)lfh

K ok~ LA - k)i;LwTk
a a'

A study of how sonme of these errors are built up, in the
formof 3-D matrix surfaces, as nore and nore nodes are added is
shown in Figures 4.1 and 4.2. The exanple used is that of the
cantilever (exanple 1) described in Chapter 2. Figures 4.3 and
4.4 attenpt to give a geonetrical view of what is happening and

which errors are being nmeasured.

As an alternative approach, but perhaps with |ess fundanmen-
tal justification, error matrices may be fornulated by projecting
the analytical matrices onto the corresponding anal ytical space
deternmined by the vectors <ba, 'U'mA, where each of the X,; COrres-
ponds to a neasured node X. Since the two basis sets will not
span exactly the sanme space they will only be approximately conpar-
able. To avoid unnecessary repetition, only the mass error nmatrix
using the analytical nass inner product and the stiffness error
matrix using the analytical stiffness inner product will te derived

using this idea.

[ nner product <.,.>M
a

normalisation x .M x . =1
al a al

[ ] —_ T
PMa = (ba‘ba Ma

T
So, Proj,, (M), Mdd MO ™™
Ma a va aaa aaa a

Moo M

aaa a
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P 3 _ . 3
Iving € = Proj, (M - Proj,, (M)
9IvINg Eyass MU M, U
2. T T,
Ng¢m ¢ Ma__ Ma¢a¢a Ma

Inner product <.,.>y

a
normal i sation x TK X . = A
ai a“ai ai
-1, T
' —
PK 'aq) /é q)a l(a
a
. -1, T -1, T

S0 ProJKa(% )v'mA = K84 70, KB4 % Ky

1, T
Ka(ba£ ¢a. Ka
- 4 - : - i K
giving egprpeypss = Prodk (Mg = Prody (Raqya

Ka(¢k‘1Ak‘1¢T _ ot Tk

(]

aa a a
Si dhu and Ewins(gl), using a different approach, propose express-
ions of this kind, but use an additional approximtion. Their

anal ysis proceeds as follows:

E=K- Ka

-1 -1.,-1, -1
K= (1 +K "E) K,

-1 -1 -1 -1 -loy2y -1,
K = Ka - Ka E Ka t (l(a E) Ka

- -1
= Ka—l - K’lg K 1y 0(e?) where € = (X, E).
a a

So, ignoring the small error term they have,

-1,T -1 - -1
one = K70 K tk - KK,

—K+Ka

-1, T
Ka¢A ¢ Ka- I(a

which is equivalent to
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T

~1,T T
OTK ONTTOK O ~ 20°K & - A

kA lk = 2k _ A

or it ol o= o

This inplies that the approximtion used by Ewins and Sidhu
is that k = A and simlarly for the mass representation the approx-
imation is m=1. Hence the error expressions proposed by them
are

3 — T T

€Mass T Ma(¢¢ - ¢a¢a M,

T

=k o teT - o A “te Thx
a a a a

€8 .
STIFFNESS a

EéASS and EgTIFFNESS are shown in Figures 4.5 and 4.6. For geo-
metrical interpretation the diagram of Figures 4.7 and 4.8 attenpts
to describe exactly what the situation is. A full table of al
possible results is given in Table 4.1. As explained previously,
the notivation for the derivation of e(M"l) and e(K'l) is limted,
al though the results are easily established. This is because these
properties exhibit global changes as a result of a change in mass

or stiffness, so the error matrices produced will not prcvide any

useful information

Having conducted a fairly conprehensive survey of possible
error matrix expressions using a few of the tools of vector space
theory, a critical exam nation of how nuch useful information may

be extracted fromthemis postponed until later in the chapter

Before that, the second objective in Section 4.1 is now studied,

4.5 | nprovenent/ Correction of Mass and Stiffness

The expressions for mass and stiffness derived in Section
4.3 represent experimentally derived matrices. W have seen that
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if there are to be no unknowns in these expressions then the

anal ysis needs to be conducted in .&n i nner product space other
than those defined by M and K, since these are, to all intents
and purposes, unknown. The fact that analytical natrices M and
Ka pop up in expressions for experinental matrices need not con-
cern us too greatly. This is inevitable because of the choice of
inner product. Enphasis has been placed on inner product choice
and this needs to be clearly established and defined prior to any

anal ysi s.

All the matrices produced for mass and stiffness to date
satisfy the conditions of orthogonality and the eigenval ue equation
For example, the mass and stiffness matrices produced using perhaps

the nost preferable inner product <oy are

a

. _ -2.T

Pro_]M (M)U = Ma¢>m ¢ Ma
a m T
n==¢ Ma<1>

. -1, -1,T
Proj (K)ae Mdm "Am "M

M, ry"_ a a

T . _ .7 -2, T _
and ¢ PrOJMa(M)vmd) = ¢ Mad>m ¢ Ma‘D = |
o"Proj, (K)ye @ = 0T on ‘AnToTM 0 = A
a "'m

26TM op = M om 1A
a a

Proj,, (M)4q OA M ém
M l? a
a m

Pro_‘jM (K)U o)
a m

In spite of these extremely encouraging properties, the
mass and stiffness matrices will still give cause for concern
They look nothing like the true mass and stiffness distributions

This is an unfortunate fact, due to the fact that they are projected
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solutions. Ve know, and indeed with all the neasuring equi pment
available in the world can only ever hope to know, an inconplete
know edge of a finite representation of mass and stiffness using
neasurenments on a continuous structure. As will be expanded upon
in Section 4.6, there is no way we can ever 'measure' all the
nodes of a finite degree-of-freedom representati on wthout noving

beyond the bounds of feasibility.

W\ have seen that, for an objective conparison with analy-
tical mtrices, we need to project the analytical mss and stiff-
ness into some conparable subspace. However, in order to fornulate
our best approximation of the true, but unknown, stiffness and mass
matrices our formulations should operate on the entire space ]j}h
under consideration instead of just the subspace 1}% spanned by the
measured nodes. Then the question arises of exactly how we are to
do this with an inconplete set of measurements. As a result of
the fact that we have no 'neasured' information with which to com-
plete the solution, it would seemreasonable to assert that, in
the absence of any information to the contrary, we should assume
that our analytical matrices, which operate on the whole space
may be 'added on' to our inconplete matrices so as to extend the
operators fron11); to ]);. This will then produce hybrid matrices
consi sting of a neasured matrix over the-space for which we have
i nformation 1);, and an anal ytical matrix over the space for which
we have no inﬁxmationqﬂ;L (the orthogonal conplenment of 1);).

Al that remains for us to do is to performthe necessary cal cul a-
tions in order to formulate these matrices. Ma and Ka will clearly
have to be projected onto the orthogonal conplenment space in order

to facilitate a direct vector space addition. Again, only the two



g

)

most appropriate inner products wll be considered.

I nner product <...>M i

a

Orthogonal Conpl enent Projection Operator = 1 - Oiginal Projection
Qper at or
=1-P
where P : projection onto [Xi] al ong {Xi]
i=l. . m i=m+l.. n

and | - P: projection onto [xi] al ong [Xi]

i=m!l ..n i=l. . m

Proj ection of M, using anal ytical mass

Now PrOjM (Ma)vx.
a i nner product onto orthogonal conplenent

m

of subspace determ ned by experimental nodes

- (I - PMa )M (1 —Pl%)

. R R B UNCIEE SR A

. ~ 1

~ Y q>m‘1d>TMa on~toTh - 2menTo "M,
A R VA

So the hybrid for the nass matrix becones

H . )
= Projy Mg ® Pro jy (M Jqg L
M, M 'v’m M “a ']}m

M

-2, T -1.T
Ma¢>m ¢P’%t Ma— Ma¢>m ¢>Ma

T
Ma

il

M t M ¢m‘1(1 - m)m‘1¢

a a

also  Projy (Kgu= (I - P )Tk (1 - P, )
a 2 Up a

~ -1,T -1,T
= (I _Mad>m <I>)Ka(1-¢m ¢Ma)
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-1.T -1, T -1,T,

= Ka+ Mad)m ¢Ka¢m ¢Ma_ I\/A¢m (I)I\a
~ K om72oTM
a a

and so

K = ProjMa(K) vm ® ProjMa(Ka)me

]

M on amloTM + k_ + M om ToTk om oM - M om~toTk
a a a a a a a a
“1,T
- Ka¢m ¢ M,

-1 T -1,T -1, T -1, T
Ka+Ma¢m (I\+¢Ka¢)m ¢>Ma- IXI@m CDKa-Kg)m <I>Ma.

These are expressions sinmilar to those derived by Berman and others,
by different methods(17+24:107)

There is no logical reason why the nmass matrix hybrid should

be fornul ated before the stiffness matrix. Now Ma is cropping up
for two reasons:

(a) because all calculations are done in the inner product
space defined by Ma;

(h) because the projection of Ma onto the orthogonal complemant

space is being used to conplete the inconplete neasured nmatrix.

Ka exists for the second reason only. If we wish, we can

elimnate the occurrence of the Gammatrix, m in the expression

for KM H by usi ng MM H:
a a
H -2, T -1, T
MMa ¢ = N%¢ + hg¢m ¢ Ma¢ - Ma¢m o} Ma¢
=M ¢>m—1
a
and oM, B o nleTy,
Ma a
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Using this, we may wite KM H as

a

H_, H T, 4y M H,. T, v ooy H
KM = MM oA + & Ka¢)¢ MM = W oo Ka Ka®¢ MM .
a a a a a
Since the inconplete neasured matrices have only been added to in
the orthogonal conplement space, the necessary orthogonality and
ei genval ue equation conditions are bound to have been unaffected

There can be no 'coupling’ between the two spaces.

The whol e procedure may be repeeted for the other inner

product :

I nner product <...>K
a

T
[1o) Pro j, (M )ag L = (I - P Y'M (I - PK )
% a Q?M Ka a a

-1,T “1,T
(1 - K0k 9N (I - ¢k 0K )

T T

M ok Lo
a

if

-1 -1.,T
K -
Ma + Ka¢k ¢ a Kan ¢ Ma

-1.T
- N%¢k ¢ Kd

The hybrid matrix under this inner product is

H . .
M = Proj, (M) @ Proj, (M) 4
Ka Ka 1?m Ka a Q}E

K ok~ 20TK + M+ K ok LolM ok o K _ K ok oM
a a a a a a a a

1,T

- N%¢k ¢ Ka

1,T

T M
a

-1 T, -1 -
= K -
Ma + Ka¢k (r +¢ Ma¢)k ¢ A Ka¢k

1,T

- N%¢k ¢ Ka

-1,T -1,T
also,  Projy (K)agu = (I - K 0k O (I - k0 K)
a m
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Ka + k ok~ toTk ok 1o K - 2k ok~ o'k
a a a a a

T

Ka - Ka¢k ¢ Ka

H
and so KK

a

Proj, (K) ® Proj, (K ), . 1
Ka ?)’m Ka a ?)'m

~1,,-1,T ~1,T
Kad)k Ak @l%+ Ka— Ka¢>k ¢>Ka

T

-1 -1
Ka + Ka¢>k (A - Kk 79 Ka'
, (9)
These expressions correspond to those proyosed by Baruch*™* but

obtained by a different nethod.

Again, if desired, the expressions may be made nore attrac-

tive by replacing K k-1 by Ky " in the M, H expression thus:
a a

w, Mo m o+ k, Hor + ot o)olk, B ok, HooTu, - Mootk H.
Ka a Ka a Ka Ma a a Ka

(See Table 4.2 for a summary of hybrid matrices.)

Clearly the concept of orthogonal projections within a pre-
determned inner product space provides us with sufficient tools
with which to build a conplete analysis. There is nothing to stop
a further analysis using a different inner product and projecting
onto different subspaces. However, all the results occurring in

the literature to date have appeared within this sinple framework.

Ceonetrical diagrans of what is going on are given in Fig-
ures 4.9 and 4.10. W now go on to consider how each projection
is related to the problemas a whole to give sone idea of exactly
how nuch may be expected fromthe error analysis and exactly how

cl ose the MM H. MK H, KM H and KK H matrices will be to the true

a a a a
objectives, M and K. This may be done by consideration of the con-

tinuous exanple and the underlying principles and approximations of
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the FE net hod.

4.6 The Continuous Structure

The error matrices derived in Section 4.4 and sunmarised
in Table 4.1 provide a good framework with which to attenpt to
identify the errors that may arise in finite-element nodelling,
as will be indicated by experinentation on the structure itself.
Sone insight into how nuch information one may expect to extract
fromthese expressions may be sought. This can only be obtained
by exam ning the fundamentals of the finite-element nethod itself,
which is the purpose of this section. The |anguage of vector
spaces will be retained, but now we deal with a vector space 1%
whose elenents are functions f defined on some physical region T
(the structure) and for which

J mf?

r

is finite, where mis a positive function (the mass) defined on T;
we define an inner product on V'by

<f,g> = J nfg.

r

Figure 4.11 is designed to illustrate the follow ng argument in
terms of the familiar bending beam Let T be a positive definite
operator defined on a physical region I'; T possesses a denunerably
infinite set of eigenfunctions £, and ei genval ues by which are
sol utions of

Tf ~ ymf = 0
together with aconsistent set of boundary conditions.

The eigenfunctions are an orthonornal basis for V¥ and hence
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for any ge V¥ we can wite
L ;
g = k£1 @ i fi
usually referred to as the Fourier series for g relative to {fk}.
A finite element analysis begins by replacing the operator equation
Tf - umf = 0 by its weak form

B (f,g) - u<f,g>, = 0¥ ge
a P%

wher e Ba(f,g)i s a bilinear symmetric functional usually obtained

from
j gTf
r

by an integration by parts and incorporation of the natural boun-
dary conditions. The displacement field f is then approxi mated by
a finite linear conbination of local interpolation functions n.,

1 =1 ...n These are functions which vanish over nost of T and
are snooth enough for Ba(ni'nj) to exist. The n; are not the so-
called shape functions of the FE nethod, but the functions obtained
as a result of combining a group of shape functions over contiguous
el enents; in the usual inplenmentation of the finite element nethod

t he n, are the functions obtained after assenbly and the imposition

of the essential boundary conditions

The kth eigenfunction fk is then approximated by the function

f =

X, .0,
ak a'ki'i

e~

i=1

where the ¥ are the entries of the vector a*k sati sfying

(Ka - aAkMa)axk =0

aAk is an upper bound for Mye The stiffness matrix K, has el ements
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-1

—r

=

kkﬂ, = Ba(nk'nl)

and the nass matrix Ma has el ement§

Mg = <nk,n2>aM.
The matrix K Is, in effect, a projection of the differentia
operator T onto a finite dimensional space l?nC'L7émithe nature
of the interpolation functions nk tends to preserve its 'differen-

tial' properties in the sense that
(i) kg = 0 for disjoint subregions;

(i) | ocal changes in properties of the structure are locally
reflected in k(this is in contrast to a flexibility matrix for

the structure which is a projection of an integral operator).

The eigenfunction basis for T, on the other hand, does not
preserve these properties for it consists of globally defined
functions whose complexity (curvature) increases wth increasing
k; a linear conbination of the |ower eigenfunctions may singularly
fail to reflect local changes in T. The central difficulty in
using neasured eigenvectors to 'update' the K matrix resides in
this essential difference in character between the two basis sets.
The more |ocal are the changes (errors) in the structural nodel

the nmore poorly they will be reflected in the (lower) eigenvectors

So, the main point here concerns the localisation of errors.
The smallest unit that the finite elenent method can deal with is
the element itself: no detail of the changes within an elenment of
the structure will be reflected in the kij, hence we cannot expect
better discrimnation than this. But as has already been pointed

out, the lower global nodes of the structure have a discrimnation
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length of many elenments and it will be clear that only by including
modes with a number of nodes of thé*same order as the finite-el enent

nodes could we hope to discrimnate at this |evel

Reference (20) contains an analytical experinment designed
to denonstrate the rate of convergence of the series for mass and

stiffness matrices as nore nodes are included

The result of this shows that a faster convergence of the
mass matrix may be expected (of the order |/k") provided that Ma
is not so inaccurate as to nake the choice of <...%% i nappropri ate.
The stiffness matrix, though |ess sensitive to the inner product

choice, exhibits much slower convergence (1/k2).

If we exanmine the error matrices of Figures 4.1, 4.2, 4.5
and 4.6 we may see that for Figures 4.1 and 4.5 little information
is extracted as to errors in the mass matrix; this is because the
original analytical nmass matrix is so badly in error that its use
in defining an inner product is inappropriate. In the sane exanple
we can see that for the stiffness the error matrices obtained are
far nore encouraging. This is not because of the fact thai the
choi ce of Ka as an inner product is more appropriate, but because
the stiffness error matrix is less sensitive to inner product sel-
ection. This is due to the fact that since the |ower nodes con-
tribute nore to the nass matrix than the stiffness matrix, inapp-
ropriate scaling will distort the picture nore, as can be brought
about by wrong inner product selection. The fact that the first
few nodes show negligible error values arises as a direct conse-
quence of the argunent just expounded. The nodes are too snooth

The fourth and fifth modes, on the other hand, begin to pick up
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the region in error quite nicely, since they are nodes of the same
order of conplexity as the region ip error. In all the analysis
the size of the region of error detected can only be as small as
the conplexity of the most conplex nmode. So if the nost conpl ex
node is one with n nodes, only a region of error covering 1/nth

or nore of the structure can we hope to detect.

As for the 6th to 10th nodes, not too nuch enphasis should
be placed upon them since they represent essentially artificia
results. The trouble is that two 'analytical' nodels are being
used. This does not reflect the situation likely to be encountered
in practical situations. The higher eigenvectors of an analytica
nodel have no physical significance. Any finite element nodel
because of its finite nature, ceases to have a direct relation wth
a continuous structure after, at nost, 50% of the npdes and natura
frequencies. Athough it is quite possible to neatly show the
error between two mathematical nodels using nost or all of the
modes and the correct inner product <.,.>, it is also pointless.

It represents an ideal situation which we could never hope to

achieve in practice

It is extremely unlikely that in any realistic situation
the number of neasured nodes (nm) is going to exceed half the nunber
of degrees of freedom of an FE nodel. In practice, it is likely

to be much, much |ess

The analysis of a sinply-supported beam allows us to illus-
trate sone of the points just described nore explicitly. Using
exanple 2, here the M Is not so inaccurate that its use in defin-

ing the inner product space is inappropriate. Also, we know that

- 154 -




&

the anal ytical nodes of a sinply-supported beam are the sinple
sine functions, sin kx, S0 we nay yse a finite discretisation

of these for our 'neasured’ nodes. Figure 4.12 shows
(a) faster convergence of mass matrix;

(b) good error detection when conplexity of nodes = size of

error region

(c) rapid distortion for nunber of nodes greater than N2

4.7 Hybrid Matrices

For simlar reasons to those expressed in Section 4.6, one
may expect the hybrid matrices in reality to ook simlar to the
original analytical matrices M, and Ka,and not the correct nass
and stiffness - although they will perhaps be a better approxina-
tion to the true mass and stiffness than the original M, and K-
This is a result of the fact that the higher, nore conplex nodes
of the matrices, which domnate the 'formt or outward appearance
of the matrix, are still provided by the analytical matrix. So
if only a few smooth nodes are measured and the M and K, matrices
are in error, generation of the hybrid matrices wll necessarily
inpose fairly miniml changes upon M, and K. An attenpt to des-
cribe the situation diagrammatically is given in Figures 4.13 and
4.14. There comes a stage where the addition of further neasured
modes will no longer provide useful information about the true
finite dimensional mass and stiffness, and so the problem has to
be conpl eted using M_ and K, These domi nate the outward appear-
ance. Again, clearly the nost useful information is provided by
modes of a conplexity sufficient to describe areas where M and Ka

are in error
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4.8 Qvervi ew

A critical study of the undagmped ei genval ue problemwithin
the framework of vector space theory enables a great deal of
clarification for error analysis and nmathenmatical nodel inprove-

ment. The follow ng factors have energed:

1. I nner product choice is fundanental in any analysis (with

t he associated nornalisation).
2. M and K1 can be derived in terms of & and A only.

3. Measured mass and stiffness matrices are inconplete and

operate only on the space determ ned by the neasured nodes.

4, Anal ytical matrices need to be projected into a conparable

subspace before suitable conparisons can be fornul ated.

S. Hybrid matrices consisting of measured M and K over the
measured space and analytical M and K over the unmeasured space

may be readily fornul ated.

6. Error detection of the order of the nost conplex neasured
mode only can be expect ed.

7. Mass error exhibits fast convergence.

8. Mass error is strongly dependent on inner product choice

and associated normalisation.
9. Stiffness error shows a slower rate of convergence.
10. Stiffness error is not so dependent on inner product choice.

The study of Chapter 4 pernmits the experinental engineer
to work within an organised mathematical framework so that the
verification of mathenatical nodels using experinental neasurements
may be conducted in a nore enlightened atnosphere.
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CHAPTER 5

THE DAMPED_PROBLEM

5.1 Preliminaries

The analyses of the preceding chapters have now pointed
the way for an analysis of the viscously damped system, or that
which may be described by the eigenvalue equation

MOAZ + COA + K¢ = O.
Here, ¢ is an (nX2n) matrix of eigenvectors, consisting of n eigen-
vectors and their complex conjugates. A is now a (2n%2n) diagonal

matrix of eigenvalues, consisting of n eigenvalues and their com-

plex conjugates. The analysis is conducted in the complex space,

;:, with the necessary additional terminology and considerations.
The usual strategy is to set the problem up as a (2n%x2n) first

order problem. Some of the possible formulations are

(1) S=|:C M] T = [K O].
I O [o -1

That is

SXA+Tx=0wherex=r'

I

or MOAZ + COA + K& =0

and on - 6N = O.

(2) S=[O M] T = [K cl.

That is

SXA + TX = O where X = r].

o
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or MOAZ +COA+KO =

and OA - A = O,

That is
SXA + TX = 0 where X = [¢ 1.

A M A W

or MeAZ + COA + KO = O

and MOA - MOA = O.
For the analysis of this chapter we use, instead of an inner prod-

uct on U, , a linear functional on V% and its dual space U,

represented by

x(y) = y(x) = [y,x] = [y,x]
2n .
y(x) = § 51”1
i=1
V\’here X = {gl’ P gzn} € ‘z)'zn and y = {n1’°"n2n}€ zn*-

Theeigenvectorsets{xl} and {yi}(X and Y) are dual basis sets

for the isomorphic spaces U and Vi #. We know a vector z can

be witten as either
z = 2{] C.xi or z = 2{ ciy..
i=1 * i=1
In a matrix sense, the eigencolums of the dual are the eigenrows
of the priml. So, in order to find the dual basis we solve for

tha tranennca nrnhl am t hiie



—~

STYI\ + TTY = 0.

So, for exanple 1 we have

sT-c 1 ™ = [K A0

R R M
c Il ] [N+ [k 0] ] = o.
W T R A

So CY),A + Yz/\ + KY, = 0

that is

and MY;A - Y2 =0
whi ch gives
Y, = MY;A and Y, = ¢
rb1,
ML,

which is the dual or reciprocal set of eigenvectors.

i.e. Y = |

W have
SXA + TX =0

and STYA + TTY = 0.

Promthe dcfinition of the dual transfornmation the follow ng con-

ditions hold:
i _ i _ o i g
[Sx ,yJ.] = kiéj = [x,S yJ.]
i _ i_ i g
and [Tx ,yj] = - kixidj = [x7,T yJ.]

where the ki are constants, yet to be assigned. These conditions

may be expressed in a nmore famliar forn$38'42), setting ki =1
for all i, as
oT 4>ATM|[C M] ¢] =1
|1 0] |7
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or oTCo. 0TMOA + AD MO = |

and  [67  aeM][k  0][e ] = p
0 -I <I>AJ

or oTke - nOTMOA = -A .

However, if we decide to enploy formulation 3 we may observe that
S and T are symetric, so the eigenvector basis for the dual space
is the same as the eigenvector basis of the primal, or the problem

is apparently self-dual. W have

T .
xt X = kidjl.

S PR Gji..
It is because of this attractive feature that this fornulation is
adopted for the remminder of this chapter. However, nerely making
S and T symmetrical does not permt a side-step of the necessary
analysis, with a return to inner product spaces, as the operators
involved are not really symetric in the fundamental sense, even

though this fact is well disguised by using the third formulation

This is expanded upon in the next section.

5.2 Symmetric Fornul ati on Paradox

V& have set

S= C M| and T = |K 0
M O 0 -M

which was first proposed by Hurty and Rubenstein in 1964(52).

| f
we pernmit the use of an inner product we may observe the paradox

that ensues:
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s R i e s aithes

&

ST TR W [C M} ri }

LM;* 0 )\1 Xi

EiTC)i + _X—[?TMxi + }\i_xiTMxi
=0
from orthogonal ity relationship, since this is an off diagonal term
Al'so
<Txi,xll> =0
by simlar reasoning

Here, it is worth restating the essential difference between

inner product and l|inear functional

2n _
<X,Y> = Izl Elnl X,Y € 'l)én
2n i ;Uo« V -
[xy] = 1 &ny xE Yo Y E U
[ 1 2n = }
X = {E_, s - g } yl {r“" e nZn’

noting the use of the conplex conjugate formulation for the inner
product, but nor With the linear functional. In essence, the S and
T matrices here are not positive definite so analysis using inner

product spaces is not permssible (see definition of inner product,

axi om 3).

5.3 Nor mal i sati on

Bef ore embarkinz on a projection analysis for the danped

problem a mention of normalisation is required. The usual normal-

isation that is adopted is
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from orthogonality relationship, since this is an off diagonal term

Al so
i 1
<Tx",x> =0
by sinmilar reasoning

Here, it is worth restating the essential difference between

i nner product and l|inear functional

2n .
<x,y> = i§1 Elni X,y € l);n
2n i
[x,y] = ig £, xe UV, yel,*
e £21) = {n n, )
X = , yi = 1, . . . 21’1’

noting the use of the conplex conjugate fornulation for the inner
product, but nor with the linear functional. In essence, the S and
T matrices here are not positive definite so analysis using inner

product spaces is not permssible (see definition of inner product

axi om 3).

5.3 Nor nal i sati on

Bef ore embarkinz on a projection analysis for the danped

problem a nention of normalisation is required. The usual normal-

isation that is adopted is

xTSx =1
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and xTTx = -A

or  6TCO + AOTMO + OTMOA = | .

and  ©TK® - AOTMOA = - A

or, in other words, k.1 =1 for all i. This is perfectly valid,

and woul d appear the nost suitable at first glance. However, if,

using this normalisation, we let C = 0 the we have, for the first

equation when i = j:

or XiMXi‘—"z—)‘\"“:——.——:-—

A phase shift of 45° will prevail when damping is zero. For the

analysis here we w sh

x.Mx. =1 i fC=0
1 |

to allow conpatibility with the undanped problem To facilitate

this we let
k; =2X Vi
so we have
x1Sx = 20
X'Tx = - 202
e OTCO + AOTM® + OTMOA = 24
and  OK® - AOTMOA = — 202

The advantages associated with this nornalisation becone apparent

as the theory is developed and C is put equal to zero for conparison

with the undanped problem
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5.4 Projection of Inverse S and T Matrices

W now consi der the probl em yhere we have an inconplete set
of neasured conpl ex modes, ¢, which is now (nx2m) and an inconplete
set of measured eigenvalues A (2m*2m).  Fromthisinformation, an

i nconpl ete basis 'Uim may be formulated as the matrix X (2n%X2m), SO

deconposi ng U;_n into the direct sum we have
1
UZn = %m ® vém

V& may introduce, as before, two projection operators, using [.,.]S

as
P = % XX'S

and Pyl =4 suxT

In effect, Po s the projection onto [xi] (i =1, . . . 2m along

[x*] (i = 2m#l,...2n). Thinking in terms of normed spaces, P is

an anni hilator of [xi] (i = 2m+l,... n). PsT is the projection onto

[s«!] (i =1, . .. 2m along [sx}] (i = 2mtl, . . . 2n) (annihilator of

[Sxi](i = 2m+l, . . . n)). So here orthogonality has been extended to

i ncl ude normed spaces with the use of |inear functionals,i.e. [.,.]
(that is, an orthogonal space is replaced, in effect, by the anni-

hilator of the original).

VW may also readily observe that the fact that we are dealing
here with a primal vector space and its dual is of little signifi-
cance, since both are expressed using the same set of basis vectors,
which is the advantage of enploying a symetric fornulation. W nmay

readi |y deduce that
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P

sowe have, with respect to [...]S
-1 a0 T
Proj.(S ™) = P.S P
S v, = s> s
S (R &
= 2 IxTsxa LT
- 4T

That is

ijS(O)v,2 ProjS(M'l)v.,2
' m m

]
Wi
————
©
- =
—
>I
ped
—_
—
S
-3
©
-

ProjS(M'l)v.2 Projs(-M‘lcm’l)v,2
m m

So, equating corresponding elenents,

2m m
T T !
= 300" = 121 X.X, = Re[ E X X, J

1

[

11

-1
Proj.(M 7)
S VZm i

where Re signifies the real part. This may be used since we are

summing vectors and their conplex conjugates. This is anal ogous

to the undanped case since if C = 0 then no imaginary part would

exist. Al so we have

- Projs(rﬂ_lCM_l),]}2 = %¢A¢T
m

and  Projg(0) . - son~ Lot
2m

This second projection is not equal to zero unless nFn and, for com

parison with the undanped case, if C =0 then both these projections

are equal to zero for all m A'so, since




_paly T
S'r l:'S

=
D
=
v
"~
o
[ ]
%)
~~
ha L}
N
N
=
|

+ XALT T

sT ¥axn1x

2 I Texa 3T

-4 XA_ZXT

- . -1 .
so Pro_]s(l( ),v_zm PrOJS(O)VZm 1

l
ProjS(O)v,2 -ijs(m'l)v,,2 J
m m

- Ao 1IN ael]

o1
- _3fon 2T enle!]
on Lot 00T

whi ch gives

ProjS(M'l)v..2 = 3 06!

m

and ProjS(O)v. = —300 ¢
2m

as before. Also

1 2. T 2m @Xai
i ) = —ion = -3
PrOJS(K ,-U..zm 700 7O 2 iz:| XI_I_
m {(.)&.T\
= -Re[ )} )\—z—J
i=1 |

which is again anal ogous with the undanped problem
WV also have the two orthogonality conditions
AOTMO + OTMOA + 61CO = 2A

T

and ®TK® - AGIMOA = -2A2
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fromwhich a third may be derived involving K and C only, thus:

T

OTKo ot 202 = AGIMOA -

T

ACAOTMOA) t (AGTMOAYA t ADICOA = 243

T

ACOTK® t 202) t (DK + 202)A t ADTCOA = 2A°

AGTK® t OTKOA t AGICON = 203

so  okentt aleTke t olco = -2
This section has illustrated that again only expressions for
the inverse matrices are derived. It is possible to derive further

rel ati onshi ps between mass, danping and stiffness for a conplete

system but these are of little use

As for the undanped case, in order to derive neasured nass,

danping and stiffness matrices we require sone additional inform-

tion, and the adoption of a suitable linear functional. Now we may
go on to consider how we may do this using, as that additional in-

formation, analytical mass and stiffness Ma and Ka.

5.5 Inconplete M C and K

For the derivation of expressions for inconplete mass and
stiffness matrices we need to reintroduce the anal ytical system
this time describing it as a (2nx2n) problem W have
s=[0 M Ta=[!<a o]andxa=(¢a'|

a

a a J
M, 0] 0 -M ¢ A,

The anal ytical danmping matrix is assumed to be zero, which would
reflect the nost likely situation in practice, but the analysis
could be carried through with C # 0. W know that

x Tsx = 2a
a a8 a a



d

X '"T X = -2A*?
a a a a

and Taxa + Saxat\a = 0. i

The following two matrices are set up, preceded first by an approp-

riate nornmalisation (that is

T _
20 x; M x, = 2\, for [.,.]Sa

T _ 2
and X4 Kaxi - Ai X, Maxi = =2X,

f or ["°]Té)'

So define
T T T
s =A® Ma¢ + ¢ Ma¢A = X sax
T T _ T
and t =¢ Ka¢ - A Ma¢A =X Tax.

If we Eirst consider the two projection operators for ["']S’ that is
a

P = Xs—leS
S a
a
wher e PS(xi) = xt i=1 ... 2m
a
and PS (xi) =0 i = 2m¢l, . . . 2n
a
T _ ~-1,T
wth PS = SaXs X
a
where P. (S x') = S x =1 ... om
Sa a a

and  P. Lsxl)=6 mel, . . . 2n
Sa a

then we may fornulate a projected solution for the true S matrix,

t hus
T
PS SPS

Proj. (S) =
Sa 1}§m a a
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= s xs xTsxs'xTs
a a

= 2S Xs—lAs_lf?S
a a

so Proj. (C) Proj (MY)
S, 1}2m S, 1fé

Proj. (M?) Proj. (0') |
L Sa 19§m S 1’3@]

= 2|0 M# s aeT](o

That is

Projg (C)wé - 2Ma¢As'1As“1A¢TMa
a m

. 1
P’°Jsa(M )1;§m - 2Ma¢s’lAs'1A®TMa

Projg (P‘lz)v-2 :2Ma¢As_1As°1¢TMa
a m

. 1 -1, -1, T
PrOJSa(O )Qﬂém = 2Ng¢s As 70 Ma

Al so Projg (T)l}— = Pg TP
a
=s ¥ xTrxsIxTs
a a
- —25 xs t2sXxTs
a a

So Proj. (K) Proj. (0%)
Sa tyém Sa Q}Em

Projo (0%) -Projo. (M?)
Sa 1}§m Sa 1j§ml

= -2
. a

Y

that is
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&

. 1,5 -1,,T
Proj. (K) = -2M dAs "A’s "AP'M
Sa ljém a a
Projg (M%) 1y = 2Ma¢>s‘lA257*.¢TMa
a 2m
Projg (099 = -2Ma¢s'lAzs'1A¢>TMa
a 2m
“1,, -1,T
Proj. (0%) = -2M OAs "A%s TO'M
Sa ‘lfém a a

Here we see that there are three expressions for an inconplete mass

matrix. The expressions satisfy the followng two orthogonality

rel ationshi ps,

T, . Too « yuz T, o .
¢ (Proje (C) ) + & (Proj. (M?). . )OA + A® (Proj. (M) )0
Sa v—2m Sa vém Sa v‘Zm

T . 1
+ $A (Proje (0%) YOA = 2A
Sa Laém

T . T . 3 T . 2
and ¢ (Proj. (K )¢ + AP (Projo (M®) YOA + AP (Preoj. (0%) )d
Sa v—Zm Sa vZ—m Sa vém
+ (DT(ProjS (oa)v_ YON = -2A%.
a 2m

Al'ternatively, we may fornulate expressions for inconplete matrices

using [.,.]p,thus
a

-1,T
PTa = Xt X Ta

T T

-1
PT = Taxt X
a

Using this approach, the projected S matrix will be

. -1, Tey. -1,T
PrOJTa(S)v2m= T XtTX'SXeTX'T,

1, -1,T

= 2TaXt At X Ta

So Projp (C)Q,. Proj (MI)I}
a 2m a 2n

Pro j. (M?) Proj.. (0!)
JTa z}bm Ta lyémj
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-2k, 0] [@ T CHE T TSRO

0 -M J (DAJ P 0 -M
a . a

That is
-1, -1,T
Projn (C)oe = 2K Ot AtT 0K
Ta VZm a a
Proj, (M‘)v2 :2Ka¢c‘1At‘1A¢TMa
a m

_om oneLaetoTk
a a

Projq M) ,
a m

T

1,.-1
At A Ma‘

. 1 -
Pro_]Ta(O )VZm 2M oAt

Finally , for the projected solution of the T matrix,

Projp (T)qy = TaXt‘leTXc'leTa
a 2m

= - 2T, Xt‘lAzc’leT

- - _l 2.—
so Proj. (K) Proj, (0?) = .2]K 0] ¢ ’t A2t
Ta va Ta ?)Zn a
3 3 o wllonl
Proj.. (0%) -Proj.,. (M*) J a
Ta v2’m Ta virm

[oT  ae'Ifk, o
0 M,
that is

Projp (K)pp = -2k or e ek,
a 2m

Projp (0%) 5 = 2Ka¢c“1A2c'1A¢TMa
a 2m

Projp  (0%)q, 2M ene a2 ok,
a 2m

Projp (M), = 2Ma¢Ac‘1A2t'1A¢TMa
a 2m

Again, we may observe that the follow ng orthogonality conditions

are satisfied:
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T . T . 2 T . 1
¢'(Proj., (C) )¢ + A® (Proj,. (M?) )¢ + & (Projy (M )~g )OA

Ta 1}Zm Ta Q}Em Té ’vzm

T, o 4" 1
+ A® (Proj, (0')q4 )OA = 2A
L Vi

and ¢T(ProjT (K) 9y IO+ M>T(Proj,r (0%) 95 )0 + <I>T(ProjT (0%) 25 oA

a 2m a 2m a 2m

T . 3 _ 2
+ $A"(Proj,. (M?) YA = -2A%,
L "V

It can be seen that for the inconplete case the projection of the

O matrix is not itself O (although it will be for a conplete system
and thus plays a role in satisfying the necessary conditions. Aso
the expressions for inconplete mass matrices are simlar, but not

i dentical. These observations are discussed later in this chapter
The next section denmonstrates how this analysis is the logical ex-
tension of the undanped problem by showi ng that the three incom
plete expressions for mass are all identical and equal to the ori-

gi nal undanped expression when the danping matrix is set to zero

5.6 Conparison with Undanped Problem

W know that X = [¢
o]
but that the ¢ is really a matrix of eigenvectors and their conplex
conjugates, thus (¢ @ J. Wth the normalisation that has been
adopted it is known that as danping tends to zero so do the imagin-
ary parts of the eigenvectors. In the linit we have [¢ @] (& now

real). Also, we know that A nmay be expressed as

and as danping tends to zero it becones
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where © is the diagonal matrix of neasur

Now, if we consider the s matrix

t hen

ed natural frequencies.

under these conditions,

s = dﬁmah :¢]F¥-i-il . Ff_é_i}[fwmah

0 if 0

¢TJ

- ifoh 00 w0TM o _oT
a a

= i[A -
B -A

where A = ‘I)TMa(DQ + QCDTMaCD

and B = oM 60 - Q0M o
a a

W may then fornulate the inverse as

st - it A capt - a7l
R
=i [(A-matByt Bt
((as7la -yt (A

This allows us to consider

M o + Q0
a

¢Tna¢n _Q¢Tma¢ —¢TMa¢Q Mo

sl o)
Tmacﬂ

T
a1

osIn = [o L ¢][E  -F][@ ! O
=

with the conplex variable i cancelling.

-1

)

A-B)-1 -i[E

Ba~1py~! F
So,

i 0]

osin = [0 ! @] {m m} - [¢EQ + OFR ! ¢F + OEQ]

2] EQ
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1,-1

occa™t + B Has! - Ba h he

where ¢EQ + OFQ2
= o((a”t + B h((a- Bya™t + B he

- @A - B

recalling that
_.T
m=¢ Ma¢>.

This calculation may be repeated for @As'l, t hus

ensh = [o {elfe 1 ofE -
e

= [o ) ¢][qE -QF
[-QF QE]

[6QE - ®QF | —OQF + ¢QE]

where ¢QE - ¢QF = ¢Q(E - F)
= ol - a7 hH[a + By - a )
= ol - a et -4l + Byt

- oA + B)T
- 30007t L = o
as before.
Fromthis we may say that

Ty
a

(a) oM s instae™M = oM ons tas~lo
a a a

_ “1,, -1,T

—ZMa¢s As ¢ Ma
-2, T )

= { Mad>m $ M, (( nxn) version)}.

-1, -1, T -1, -1.T
(b) 2Ma¢/\s As "AO Ma=2Mad>s As ¢Ma
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-l

= _oM os 1azsae M
a a
- ons~Inzs oM _ 0.
a a-

(c) -2Ma¢ns’1A2s‘1A¢TMa - {-Ma¢m‘1A2m‘1¢TMa (( nxn) version)}

Effectively, the two are one and the same problem The
same may also be found to be true if we use ['"]T to conduct the
analysis. This is encouragi ng insofar as we may seae that we have
moved from a (nxn) undanped problemto a (2nX2n) undanped probl em
(but pernmitting the inclusion of danping if so desired) without
affecting the original expressions. It may therefore be asserted

that the (2nx2n) problemis just a natural extension of the (n*n)

probl em

5.7 Error Expressions

Error expressions for the danped case may now be fornul ated,
ina simlar fashion to that described in Chapter 4. For brevity,
cal cul ati ons using ["']S only are described here. Full tables
of possible error expressiaons are given in Tables 5.1 to 5.4.
Firstly, to derive an error expression, Sa and Ta must be projected

onto the correspondi ng subspace so that

1
EEI’ ror

T
Pg (S - Sa)PS
a a

~1,T -1,T
SaXs X (S - Sa)Xs X Sa

Tg

saxS’l(zA - s)s ix

0 Ma][¢ Ts7lan - s)s7M e a0’ 0 )

)
M, 0] M0y
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so that
_ -1 -1,.T
Cerror = Ma¢As (27 - s)s;gA¢ Ma
M = M os (20 - s)sTiAGTM
error a a
. R I
Merror = Ma¢As (2A s)s ¢ Ma
, — -1 -1.T
Oerror = Ma¢s (2hA - s)s "¢'M

and for the T matrix

T
PS (T - T )P
a a”5,

-1,T -1,T
SaXs X' (T - Ta)Xs X Sa

-1,,,2 T. -1,T
SaXs (26 - X TSX)s X Sa

Tg

SaXs_l(ZAZ - t)s X

1]
o

Ma][b }S_I(ZAZ - s enllfo M
on
MO } M, O

M oAs 1(202 - £)s IaeTHM
a a

so, K

w
|

“1,.., -1,T
= M 0s (207 - t)s M,

) ~ oS PR N
02 o = MOAs (202 - t)s oM,

0? - M os (202 - v)s IaeM .
error a a

Al ternatively sa and Ta may be projected onto the subspace descri-
bed by the corresponding anal yti cal modes.Here, the anal ytical
nmodes are assumed to be real (i.e. analytical system has no, or
possi bly proportional, danping).

3 _ -1,, -1, T ;, ,-1,T
So, €’ = Sa(Xs 20s "X - Xal\a Xa)Sa
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-fo ] r 1s7taas~ieT  a0T]
|
M. o |{LoA i~
a ]
- 4o 1T Ael)fo M ]
a a a a a a
$ A M 0 J
a a a
that is
-1 -1,.T T
i} ~ MO NS
Corror Ma¢As 20s” A M, 2Ma al\a aMa
Merror = Ma(bs 2As A Ma 2Ma¢a¢aMa
2 _ 1., -LT, 1 6 6T
Merror = Ma®/\s 2hs 7® Ma 2Ma¢a¢aMa
’ -— "1 —1 T -
Ogrror = M®s "2hs "0°M, Moh, ¢a a

and for the T matrix

-1 T _ T

4 _ -1 1
e* =5 (Xs 2027 X - 3 X)S,
- [o Ma] F }3‘12A23'1[¢T ne']
oA
M, O ]
L' T T’
- 3o, [<:>a A% ][0 M]
o A M 0
a a a
- -1 2 -1 T 1 ¢ 2¢
Kopror = M OAST 20257 A0 M, — 3M 0 A70 M
3 — 1 T _
error |\4¢ Ma 2Mad’aq)aMa
2 = M oston2saeT™M - M 6 A OM
error a aaaaa
0? = M onslaazs Lot - M 0 A OM
error '\Q a aaaaa

Finally, introducing the approximation s = 2Ain a simlar fashion

to the m=1 approximtion of Chapter 4 gives:
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M = iM ¢4>TM - iM ¢ ¢TM ,

error a a aaaa

K - IM OA20TM _ M & AZoM,

error a a aaaaa
IRETPIE U S I

0y o = B OATIOTM — du o n toon

c S M OAOTM - MM O A OM .

error a a aaaaa

5.8 Nuneri cal Experinents

In order to investigate the potential of some of these error
expressions, exanple 3 from Chapter 2 was utilised, which has non-
proportional danping. That is, the first elenent has danping equa
to 1% of that of the stiffness. For reasons discussed earlier
(that is, the higher nodes are analytical functions and woul d not
be neasurable in practice), only the first n/2 nodes were used and
conpared with the correct formof the error matrix. The term
"correct' here neans the formthat the error matrix would take in
the ideal situation where all the nodes were known. Al though this
is unachievable in practice, it is included in order to exanne

the quality of results obtained using 1 to 5 modes (i.e. the likely

practical situation).

Two exanples are included here, where the 'incorrect' ana-

l'ytical nodel is set up as follows:

Test 1:

Ca = 0; Ma = M (i.e. mass matrix correct, and adopting a
correct normalisation); first element of Ka = 0.5 x first elenent

of K, all other elenents being correct.

Test 2:

Ca = 0; first elenent of M, = 0.5 x first element of M (i.e.
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massmatri x incorrect: normalisation errors exist); first elenent

of Ka = 0.5 xfirst elenment of K, a¥d other elements being correct.

The error expressions marked with an asterisk in Table 5.1
were calculated and the results for mass, danping and stiffness are
presented for the two tests as Figures 5.1 to 5.6. Also, the ele-
ments of these three matrices for the two exanples, with 5 or all
modes Used, are presented as Figures 5.7 to 5.12. The errors when

using all the nodes in the second test are those due to a normali-

sation usi ng M.

5.9 Di scussion of Error Expressions

In the preceding sections, proposals have been devel oped
for the examination and conparison of an undanped anal ytical FE
model with measured conplex nodes and conpl ex eigenval ues, which
represents the nost likely practical situation. The danping has
been taken as viscous, and no attenpt has been made to elininate
it with efforts to convert conplex modes to normal nodes. |ndeed
the discussion and exanples of Chapter 2 illustrate that this is
an extrenely difficult, if not inpossible, task for an inconplete
system  The danping in the exanple is set up as 0.01 x the terns

in the stiffness matrix in the first element only, thereby intro-

ducing non-proportionality into the system

The initial results, based upon the nunerical experinment,
are encouraging. As was expanded upon in Chapter 4, limtations
on the expectations of error analysis do exist, but these apply
equal |y to the danped case as to the undanped case. No serious

additional problens energe fromthe treatnent of the danped problem
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Indeed, if danping exists in the system some headway may be made
towards establishing where the danQLng is concentrated by utilising
the danping error expressions. Again, the same assertion that the
region detected may only be as small as the wavel ength of the high-

est nmode applies.

As may be observed from the diagrans, the asymretry of the
mass matrix error expression is insignificant. It is brought about
as a result of the non-proportionality, and it would not be observed
if no damping or proportional danmping existed (as sinple tests have
denonstrated). The normalisation does not affect the asymetry,
as may be observed in Figure 5.10 with all the npdes included
Here, the only unsymretrical terns are those coupled to the danping
and the (7x7) matrix in the lower right-hand corner is symretric.
So, in practice, many of the mass error expressions are extrenely
simlar, since here non-proportionality has been inposed and yet
asymmetry is small. O mjor significance is the fact that in the
second test, when an incorrect nmass matrix was introduced, with the
consequent effect on normalisation, the first five nodes extracted
nearly all the information concerning mass error that was available

and the quality of danping error and stiffness error was affected

very little.

An inevitable practical drawback is the fact that the error
expressions are fairly involved and perforning the normalisation
may be difficult because of the use of conplex arithnetic. However
this is nothing more than a reflection of the conplexity of the
real world, and nust be accepted if an accurate nodel of the beha-

viour of the structure is to energe. One note here is that the
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inversion of s or t, which are conplex matrices, should not present
too many conputational difficulties-since they will only be as

|l arge as the nunber of nodes used (say, at nost (20x20)).

The tables show an enormous selection of error expressions
to use. However, as was indicated for the undanped case, they
shoul d nearly all performequally well, with the key issues remin-
ing a good normalisation and quantity and quality of the neasured

i nformation.

5.10 Hybrid Matrices

The use of hybrid matrices in the (2nx2n) exanple is limted
since they necessarily need to be derived in the (2nX2n) environ-
ment and al though the hybrid S and T matrices s and ) will
satisfy the necessary orthogonality and eigenval ue equations, the
i ndi vidual conponents of these matrices (e.g. M C K) cannot
readily be extracted since other non-zero matrices will have been
formed which affect the solution of the necessary constraints. In
cases of light danping it may be possible to assune that these non-
zero matrices are zero, and so approximations to the inproved M
Cand Kwll be extracted. As a result, these matrices will only
approxi mtely satisfy the necessary constraints. The nature or
acceptability of these approximte solutions wll depend |argely

upon the individual problem under investigation and the degree of

danpi ng that exists

In parallel with the undanped case, the hybrid solutions for

the S and T matrices are given by
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and
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H T T B
Sg = ISPy + (I -Pg )S (1 - Pg )
a a a d d

p
4

-1,Tey -1,T -1,T “1,T
= S Xs'X'SXsTXS, + (I - S,XsT XS, (I - XsTXS)

1,T

T
XSa

_ -1, -1 -
= 25 XsTASTXS + 5, SXs

H T T
To 7 Pq TPe + (I - Pg T (I -Pg)
s, = 'S, 'S, 5, ''a s

-1, T, -1,T -1,T -1,T
=SaXs X' TXs XSa+(I -SaXs X)Ta(I—Xs XSa)

“1,5 -1,T ) “1,T -1,T
——ZSaXs As XSa+ 'lé SaXs XTa TaXs XSEl

-1,T -1.T
+ SaXs XTaXs XSa

or, With respect to []T

a

H T T
S P, 'SP + (I - Py )S (I -Pp)

T, = T a a
-1,Tey, -1, T -1,T -1,T
= - - T
= T Xt "X"SXt °X T, + (I - T Xt XS (I - Xt "X'T))
-1, -1,T -1,T. _ -1,T
= 2'[:Sl Xe "At TXT, + Sy TaXt XS, S, Xt "X'T,
-1,T -1.T
+ TaXt X SaXt X Ta
T =y TR+ (1 - Py Dy (x-ep)
a a a a a
1T 1,T 1,T

- - = XtTUKT
TaXt X"TXt XTa+ (I _Taxt x)‘ra(I_ t a)

-1,,.-1,T -1,T
=-2'Iéx:; At X1;1+Ta—TaXt XTa.

These expressions then will satisfy the necessary constraints, but

the systemneeds to remain as a (2x2n) problemfor further analy-

R

use.

which may itself be desirable since this in no way limts its
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5.11 Oigins of Transfer Function Expression

Anal ysing the problemin a (2nx2n) normed space allows the

derivation of the expression for the transfer function in a vector

space environment. W have
S=|:C M] ;5 T={K O}W'thx:lfﬂ

M oJ (oA

SXA+TX = 0

0 -M

so that

with szx = 2A and XTTX = =272,

It is therefore possible to say that

xT(us + T)X = 2(uk ~ A2).

It we have a conplete set of nodes ()% and (XT)'1 will exist so

(s + T) = 2xD)~ T - a0
V¢ have what is effectively a change of basis,

s + Ty = dxqun - a2y Xt

where (S + T) =[«€ + K uM
uM -M

The inverse of (uS + T) is given by

s + 1L = [uMacd) ™ (u2Maucek) "ty

e ™ Pt ? - Y
since [GuMaC+)™D (u2mace) My WK M) = IrI o]l
.(u2M+uC+K)—1u (uzl*l+uC+I()'1u2—M"1 L WM M) [0 1]
and [LC+K UMJ (uzr'H»uCH()-1 (u2M+uC+K)-1u I [ O}
L WM M (ueMsuce) "ty (M uC+K) " pzm L o 1

Therefore
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(U2MACHK) (u2Mauc+) "ty = %[¢‘J[hA_ A"
(u2MHuCHK) " u (u2MruC+K Y=z MY oA
< [3oqur - A3 YeT  dequr —n)leT

Fo(ul - A)~1¢T 1o (ul —A)_1¢T

giving three possible expressions for the transfer function of

Hy(u) - (M + uC + K)7L = do(ua-a2)~toT

Ha(u) = (U2 + uC + K)-1 g; oul - 1) Lo!

Hau) = (M o+ uC + )70 = S enqur-mlel 4 2 M

However, we know that for a conplete system

1 onteT < 0
therefore
2n
T 1
o(uA - A% =4 ] x ——————}x
k=1 KA = A ) Tk

and applying partial fractions gives

2n
1 2vgT _ 1 1 1 T
20CuA - )" = 57 kX a F - | Tk

-1 k
1 -1,T -1 T
=§E{¢A o +6( 1 - A)TTO }
1 -1T
= 57 ¢l - )70

Al'so, we may see that

2n
1 -1,T 1 1 T
m d(ul - A) 7O P kz xk&——(u n Ak)} Xy

=1
, 2 A -2y 1
oI T ey wy SR TR w1 L%
Me=1 (MM - k
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| 2n )‘k

k=1
- 5y {¢A(u -y lel 4 ¢¢T)
u
so that all three expressions are effectively identical. Hi(u) is

the expression used for curvefitting since no nultiplication or
division of the variable p appears. For |ow frequencies, the
transfer function matrix of this expression'approximtes the flexi-
bility matrix. Again, the frequency response function my he
obt ai ned by setting u = in t hus,

H(i9,) = FeCiRh - a2y~ Lol

2n

O N — x, ¥
s BRLIR CLUNEIR D

T .
so we may see that the residue a, is given by X Xy /2X,, for this

particular normalisation. |f the normalisation XTSX = | were used

the residue would be sinply xkka' Therefore

2n a,
HGR) = . —roee
(25 = 1) (23
] B,k
= = Try
L WA TR

5.12 Overvi ew

This chapter has set out to extend the analysis of the
undanmped problem of Chapter 4 to the viscously danped problem

This is in an effort to bring closer together the conparison between

experiment and analysis. Curvefitting routines for experimental
results usually fit an analytical function involving viscous danp-

ing (frequency response function), so it is logical to extend the
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error analysis to incorporate this. The analysis has been directed
towards the conparison of neasured;&omplex nmodes and frequencies

with an undanped anal ytical FE nodel

Possi bl e ways of setting up the problemin the (2n%2n) com
pl ex space and possible normalisations have been identified, and
in each case the nost convenient form has been selected for the
analysis. A symretric formfor the problemwas chosen so that the
probl em becane self-dual, therefore allowi ng the extra considera-
tions required by adopting a dual basis to be suppressed ny making
it identical to that of the primal. The normalisation chosen was
that which nade the problemidentical to the undanped problem of
Chapter 4 when dawmping i S set to zero. That is, the phase shift

of the nodes tends to 0° or 180°.

| nconpl ete neasured mass, danping and stiffness matrices
were fornmulated, in order to allow an error analysis to be conduc-
ted, in the sane fashion as that of the undanped case. In general
the nunerical experinments demonstrated a strong simlarity between
the degree of success attained for the danped problemwith that of
the undanped problem The asymetry of the mass matrix error
expressions was found to be produced by the non-proportionality
of the systemand, for the fairly typical exanple used, was observed
as mniml. In general it was found that the nove from the (nxn)
undanped problemto the (2nx2n) danped probl emintroduced rel a-
tively few additional difficulties, but allowed a nmore rigorous
approach to error analysis using measured conplex nodes. The num
erical experinments have indicated the possibility of detecting
areas of concentrated danping using this technique and so offer the

potential of rethinking the analysis in order to introduce a danping
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matri x which reflects the observed neasurenents.

The possibility of improvimg mass, danping and stiffness
matrices using a hybrid type of analysis was found to be linted
to the (2n%2n) probl em and extracting the parts of matrices updated
is not feasible if the necessary constraints are to be satisfied
Finally, a derivation of the frequency response function matrix
used in curvefitting routines is described to demobnstrate how the
experiment and analysis are related when the problem is posed with

the inclusion of viscous danping.

The way forward for a realistic conparison of |ikely types
of neasured and anal ytical infornmation has been proposed. |ndeed,
an error matrix of zeros is of use here, since then one may assert
that the mass and stiffness natrices derived for the undanped
probl em have been verified using nmeasured information. This is a
practical alternative, since it is unsound to conpare undanped
normal nodes with measured conplex ones for the purpose of node

verification.

The effectiveness of the error analysis using this and pre-
ceding chapters hinges upon the fact that the measured nodes need
to be known at all the nodes of an FE nodel. In general, this is
conpl etely unachi evable - since many of the nodes will be interna
and therefore inaccessible to neasurenent. The conplete node needs
to be deternined by some sort of expansion process, and considera-

tion of this problemis the theme of the next chapter
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Proj. () ~ Proj. (..)
Sa .7)’2"1 JSa a?/qém

-1 -1 .T
Cerror Mad>/\s (2N - s)s A Ma
1 -1 -1,T
E Merror M_oAs (20 - s)s ¢ M,
=
=
-1 -1, T
2 * B
v Merror Ma¢s (2A - s)s "AD Ma
1 -1 -1, T
Oerror Mad)s (2N - s)s ¢ Ma
-1 2 -1, .T
I%rror Mad>l\s (2A* - t)s "M Ma
3 -1 2 -1, T
9 error Ma<bs (2A° - t)s ¢ Ma
=
[«'4
< 1 1,T
= 2 P
= Oerror Mad)/\s (2A t)s ¢°M
3 S PN U
error Ma¢s (2A t)s AP Ma

TABLE 5.1: Error Matrices
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MASS ERROR MATRIX (10 MODES)

.

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000]
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0,000 0.000 0.000 0.000 0.000 0.000 ¢.000 0.000 0.000 0.000
0,000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0,000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Lo.ooo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MASS ERROR MATRIX(5 MODES) R
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000]
0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000
0.0000 0.0000 ©O. 0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000
u.oooo 0.0000 0.~000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000

Figure 5.7: Mass

Error (M=M_)
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DAMPING ERROR MATRIX (10 MODES)

0.083 0.151 0.031 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.151 0.483 0.151 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.031 0.151 0.083 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 “0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0,000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Q.OOO 0.000 0.000 0.000 0.000 0.000 O.00OO0 0.000 0.000 0.00_0_
DAMPINQ ERROR MATRIX (5 MODES)

_6.0022 0.0182 0.0038 0.0140 0.0021 0.0055 0.0015 0.0023 0.0015 0.000ﬂ
0.0182 0.1508 0.0285 0.1141 0.0182 0.0435 0.0118 0.0188 0.0114 0.0057
0.0038 0.0285 0.0057 0.0221 0.0034 0.0088 0.0025 0.0038 0.0024 0.0012
0.0140 0.1141 0.0221 0.0872 0.0127 0.0337 0.0092 0.0145 0.0090 0.0045
0.0021 0.0182 0.0034 0.0127 0.0020 0.0052 0.0015 0.0022 0.0014 o0.0007
0.0055 0.0435 0.0088 0.0337 0.0052 0.0135 0.0038 0.0058 0.0037 0.0018
0.0015 0.0118 0.0025 0.0092 0.0015 0.0038 0.0011 0.0018 0.0011 0.0005
0.0023 0.0188 0.0038 0.0145 0.0022 0.0058 0.0018 0.0025 0.0018 0.0008
0.0015 0.0114 0.0024 0.0090 0.0014 0.0037 0.0011 0.0018 0.0010 0.0005
LO_.0007 0.0057 0.0012 0.0045 0.0007 0.0018 0.0005 0.0008 0.0005 0.0002_

Fi gure 58 Danpi ng Error (M=Ma)
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STIFFNESS ERROR MATRIX (10 MODES)

3,183 7.599 1.591 0.000 0.000 0.000 0.000 0.000 0.000 O.000]
7.599 24.188 7.599 0.000 0.000 0.000 0.000 0.000 0.000 ©O.000
1.591 7.599 3.183 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0,000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 O.000 O.O000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ©.000
0.000 0.000 0,000 0.000 0.000 0.000 0.000 0.000 0.000 O0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ©.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ©0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ©.000]
STIFFNESS ERROR MATRIX (5 MODES)

0.052 1.225 0.018 0.166 0.047 0.052 0.022 0.022 0.019 0.009
1.225 3.027 2.472 12.491 1.845 4.270 1.166 1.811 1.123 0.558
0.018 2.472 0.150 1.248 0.240 0.402 0.132 0.168 0.118 0.057
0.166 12.491 1.248 7.967 1.526 2.370 0.815 0.964 0.717 0.347
0.047 1.845 0.240 1.526 0.276 0.490 0.154 0.203 0.139 0.068
0.052 4.270 0.402 2.370 0.490 0.680 0.254 0.269 0.215 0.103
0.022 1.166 0.132 0.815 0.154 0.254 0.083 0.103 0.072 0.035
0.022 1.811 0.168 0.964 0.203 0.269 0.103 0.105 0.086 0.041
0.019 1.123 0.118 0.717 0.139 0.215 0.072 0.086 0.062 0.030
0.009 0.558 0.057 0.347 0.068 0.103 0.035 0.041 0.030 0.014

Figure 5.9: Stiffness Error (M=Ma)
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MASS ERROR MATRIX (10 MODES)

0.0009 0.0060 0.0004 0,0007 0.0002 0,.0003 00,0000 0.0001 0.0000 0.0000
0.0058 0.0787 0.0099 0.0003 0.0007 0.0089 0.0002 0.0035 0.0005 0.0000
0.0005 0.0103 0.0010 0.0004 0.0005 0.0008 0.0001 0.0004 0.0001 0.0000
0.0004 0.0011 0.0002 0.0298 0.0003 0.0032 0.0004 0.0087 0.0008 0.0005
0.0002 0.0008 0.0005 0.0003 0.0004 0.0008 0.0002 0.0004 0.0000 0.0000
0.0004 0.0087 0.0008 0.0032 0.0008 0.0299 0.0000 0.0003 0.0000 0.0005
0.0000 0.0000 0.0001 0.0004 0.0002 0.0000 0.0005 0.0010 0.0001 0.0000
0.0001 0.0038 0.0004 0.0087 0.0004 0.0003 0.0010 0.0388 0.0005 0.0005
0.0000 0.0007 0.0000 0.0008 0.0000 0.0000 0.0001 0.0005 0.0004 0.0002
_(_).0000 0.0000 0.0000 0.0005 0.0000 0.0005 0.0000 0.0005 0.0002 0.0002
MASS ERROR MATRIX (5§ MODES)

D.0000 0.0023 0.0001 0.0001 0.0000 0,.0003 0.0000 0.0000 0.0000 0.0000
0.0023 0.0790 0.0035 0.0088 0.0024 0.0101 0.0008 0.0027 0.0008 0.0001
0.0001 0.0038 0.0002 0.0002 0.0000 0.0004 0.0000 0.0003 0.0000 O0.0000
0.0001 0.0088 0.0002 0.0153 0.0018 0.0033 0.0022 0.0113 0.0011 o0.0001
0.0000 0.0023 0.0000 0.0018 0.0000 0.0009 0.0000 0.0000 0.0000 0.0000
0.0002 0.0100 0.0004 0.0033 0.0009 0.0238 0.0003 0.0048 0.0013 0.0003
0.0000 0.0008 0.0000 0.0022 0.0000 0.0003 0.0001 0.0013 0.0000 0.0000
0.0000 0.0028 0.0003 0.0113 0.0000 0.0048 0.0013 0.0344 0.0003 0.0013
0.0000 0.0008 0.0000 0.0011 0.0000 0.0013 0.0000 0.0003 0.0001 0.0000
0.0000 0.0001 0.0000 0.0001 0.0000 0.0003 0.0000 0.0013 0.0000 0.0000

Figure 5.10: Mass

Error (M#M )
a
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DAMPINQ ERROR MATRIX €10 MODES)

0.0284 0.0750 0.0058 0.0279 0.0059 0.0097 0.0053 0.0035 0.0085 0.0025
0.0750 0.3091 0.0524 0.0114 0.0411 0.0815 0.0073 0.0024 0.0208 0.0074
0.0058 0.0524 0.0170 0.0423 0.0082 0.0129 0.0110 0.0044 0.0087 0.0018
0.0279 0.0114 0.0423 0.0981 0.0085 0.0548 0.0007 0.0488 0.0011 0.0109
0.0059 0.0411 0.0082 0.0085 0.0218 0.0280 0.0171 0.0213 0.0038 0.0037
0.0097 0.0815 0.0129 0.0548 0.0280 0.0280 0.0113 0.0853 0.0028 0.0099
0.0053 0.0073 0.0110 0.0007 0.0171 0.0113 0.0090 0.0248 0.0017 0.0083
0.0035 0.0024 0.0044 0.0488 0.0213 0.0853 0.0248 0.0228 0.0099 0.0137
0.0085 0.0208 0.0087 0.0011 0.0038 0.0028 0.0017 0.0099 0.0000 0.0054
0.0025 0.0074 0.0018 0.0109 0.0037 0.0099 0.0083 0.0137 0.0054 0.0031
DAMPINQ ERROR MATRIX (5 MODES)

0.0007 0.0107 0.0020 0.0095 0.0011 0.0035 0.0007 0.0015 0.0008 0.0003
0.0107 0.1382 0.0279 0.1008 0.0180 0.0380 0.0131 0.0175 0.0124 0.0080
0.0020 0.0279 0.0054 0.0250 0.0031 0.0091 0.0020 0.0040 0.0019 0.0009
0.0095 0.1008 0.0250 0.0704 0.0198 0.0180 0.0184 0.0104 0.0182 0.0079
0.0011 0.0180 0.0031 0.0198 0.0014 0.0073 0.0008 0.0027 0.0005 0.0003
0.0035 0.0380 0.0091 0.0180 0.0073 0.0148 0.0071 0.0139 0.0088 0.0047
0.0007 0.0131 0.0020 0.0184 0.0008 0.0071 0.0001 0.0027 0.0001 0.0000
0.0015 0.0175 0.0040 0.0104 0.0027 0.0139 0 0027 0.0205 0.0048 0.0029
0.0008 0.0124 0.0019 0.0182 0.0005 0.0088 0.0001 0.0048 0.0004 0.0002
0.0003 0.0080 0.0009 0.0079 0.0003 0.0047 0.0000 0.0029 0.0002 0.0001

Figure 5 11: Danping Error (M#Ma)
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STIFFNESS ERROR MATRIX (10 MODES)

3.280 3.902 3.803 1.923 2.663 2.153 1.142 1.310 0.085 0.187]
3.902 5.148 7.196 6.036 4.493 2.540 0.973 0.047 0.735 0.114
3.803 7.198 6.923 0.543 4.011 4.720 2.066 2.072 0.284 0.391
1.923 6.036 0.543 11.329 3.102 9.434 3.887 2.432 0.994 0.272
2.683 4.493 4,011 3.102 0.934 0.208 0.581 1.944 0.090 0.445
2.153 2.540 4.720 9.434 0.208 10.892 0.493 9.230 1.808 1.451
1.142 0.973 2.068 3.887 0.581 0.493 1.380 2.323 0.214 0.220
1.310 0.047 2.072 2.432 1.944 9.230 2.323 13.133 1.451 2.0686
0.085 0,735 0.284 0.994 0.090 1.808 0.214 1.451 0.853 0.229
L£.187 0.114 0.391 0.272 0.445 1.451 0.220 2.066 0.229 0.537
STIFFNESS ERROR MATRIX (5 MODES)

0.036 0.863 0.073 0.029 0.010 0.031 0.022 0.008 0.025 ©.012]
0.863 8.958 2.554 14.099 1.872 4.667 1.222 1.736 1.227 0.622
0.073 2.554 0,097 0.681 0.088 0.117 0.000 0.051 0.011 0.008
0.029 14.099 0.681 8.503 1.897 1.906 1.079 1.141 0.975 0.465
0.010 1.872 0.088 1.897 0.208 0.488 0.058 0.148 0.050 0.025
0.031 4.667 0. 117 1.906 0.488 1.113 0.301 1.035 0.399 0.223
0.022 1.222 0.000 1.079 0.058 0.301 0.036 0.080 0.044 0.021
0.008 1.736 0.051 1.141 0.148 1.035 0.060 1.743 0.203 0.151
0.025 1.227 0.011 0.975 0.050 0.399 0.044 0.203 0.088 0.037
h_0_.012 0.622 0.008 0.465 0.025 0.223 0.021 0.151 0.037 0'02%4

Figure 5.12: Stiffness Error (M#Ma)
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CHAPTER 6
INTERPOLATION OF MEASURED MODES

e

o

6.1 Prelimnaries

In order to performan analysis of the type described in
the previous chapters, there needs to exist a conpatibility between
nmeasurement and analysis, in terms of the dinension of the problem
It is usual for the nunber of measured nodes, m to be measured at
n positions, which is often rather significantly smaller than the
number of degrees-of-freedom of the mathematical nodel, N To
proceed, n needs to be set equal to N This involves either a red-
uction of the mathematical nodel using an established technique or
sone sort of interpolation on the measured nodes so that each node

has N el ements instead of n. Reduction processes'*"*"’’ condense
the information with the result that the reduced matrices cannot

readily be interpreted in ternms of mass and stiffness distributions

The nore viable alternative is considered to be an expansion
of the neasured nodes. Two approaches are considered in this chap-
ter in order to achieve this goal: the first is the use of splines
and the second is the use of the mathematical nodel once nore in
order to provide the information about the nodes that has not been
obtained experimentally. Needless to say, the more information
that can be measured, the less the expansion process has to be rel-
ied upon. For sinple structures such as beans, the nunber of unmeas-
ured coordinates is not so significant as it is for large structures
(such as dans) where the unmeasured coordinates would greatly out-
nunber those which have been nmeasured. |n general, measurement over

as many channels as possible is desirable, although it is unlikely

- 220 -
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that all the neasurements can be made due to the difficulty of
nmeasuring rotational notion and internal degrees-of-freedom

i

6.2 I nterpolation Using Splines

Possi bl e methods of interpolation of node shapes in order to
establish the full node are many. They vary from literally draw ng
the snoothest curve possible through the neasurement points to estab-
lish the internmediate values, to surface splines and other sophisti-
cated techniques. The type of interpolation adopted depends |argely
on the type of the problem being considered. For the pinned beam
investigated in this thesis, the use of the cubic spline was con-
sidered nost appropriate for interpolating on the neasured nodes
The cubic spline is an interpolation between two points with the use
of a polynomal of degree less than or equal to 3. The theory of
cubic splines is well established(2’17), but is included here to
denonstrate its application to nodal analysis. |f we have a neas-
ured node xi = {&o, ... En} nmeasured at positions {yop, . . . yn} and
we Wi sh to conplete the node by obtaining the missing gradients
and displ acements using the cubic spline, then we need to establish
the vector Q={Q,Q, . . . Q] such that on [yi_l,yi] the second

derivative of S, the cubic spline, is given by the linear function

(y; - v) (y-v: 9
S"(y) = Q_, —lhi +Q, —hil 1

wherehi =y - 1 <isn., This inplies, on integrating each

Yi_li
segment twice with respect to y and determning the pairs of con-

stants of integration to make S(y,) = &, that on [yi_l,yi]

S(y) = SEE:; (y; —y)®+ _9;_ (y-y, )% + [5 -
6h. i 6h, i-1 i 6 h,




I

—

-

——

e

™

RV ROVp SRS TR T

&

For any choice of the val ues Q0 this equation defines a piecew se
cubic function of y which is continuoys over the node and has a

snmooth second derivative. For S to be a spline function, however,

we also require that S (y) be continuous. This is the case if, and

only if, the derivatives of the cubics agree at the point yse Then,

S(y) will exist for all y and it will follow that S'(y) exists and

is continuous. Therefore, differentiating we obtain for y in
IRBA

Q Q. (8, - & _7)
S =g OV R Gy ) TR

h.

1
i) B -

+ (Ql—l - Q
W inpose continuity on S (y) at ¥so 1<i gn-l. The derivative
at y; using the cubic over [yi-l’yi] IS
Q.h. Q. h- E_v- - E.Di_l

3 Y76 + n,
1

and the derivative at ¥; using the cubic over [yi'yi+l is

Qhiy QP G - &
3 5 + h . °

Upon equating these two expressions and sinplifying, we obtain

a,Q _; + 20 + ¢,Q ., =d; lsi sn-|
wher e a, = hi/(hi + hi+1) c, = 1- a
1

i+ Ti4l

The remaining two equations for the Qi are obtained by inposing
arbitrary end conditions on Qo and Qn. For convenience these are

witten as

- 222 -
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2Q0 + coQu = do
and anQn_1 + 2Qn = dn
where the choice of constants is at ofir disposal. These equations
were then used to interpolate on the first three nmodes of the undanped
pi nned beam where the displacenent at 6 nodes was taken as the neas-
urement and the displacement and gradient at 11 nodes were required

so about one quarter of the required information was available

Each node was equal ly spaced along the beam and every ot her
node was consi dered as being measured (see Tables 6.1 to 6.6). As
can be seen from the calculations, the quality of the first node is

good, but this quality decreases as the node gets nore conplex, as

woul d be expect ed.

I nterpolation techniques clearly have their uses if the sit-
uation pernits them the beam exanple being one such case. However
difficulties arise because of the fact that the neasurements are
usual ly very sparse conpared to the anount of information required
especially when the nodel has many degrees of freedom inaccessible
to nmeasurenent. If this problemis severe, caution needs to be
exerci sed upon applying interpolation techniques and inexplicable
i nterpol ated nodes may energe as a result of |eaning too heavily
on approxi mation methods where too nuch information is expected from
too little supplied. A popular approach in such circunstances is
the use of the FE mathematical nodel as the interpolating tool

This is discussed in the next section

6.3 Interpolation Using an Analvtical Mbde

The notion of using an analytical nmodel to expand the measured

- 223 -
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set of nodes fromthat of (n*m) to (N*m) has been discussed in the
literature. Here the problemis analxged, bearing in mnd the

likely scenario that will exist during an assessment-of the dynamc

properties of a structure. For convenience, the envisaged situa-

tion involves three people referred to as the 'manufacturer’ (or

the person intending to construct the structure in question), the
"anal ytical engineer' (who is essentially a nunerical analyst, wel
versed in the FE method), and the 'test engineer' (who is an experi-
mentalist with experience in the analysis of data and the extraction
of nodal properties). The chain of events described here is a con-
sidered opinion, and is not an attenpt to describe what happens in

practice

(a) The manufacturer has designed the new structure and expresses

concern as to its likely dynam c performance

(b) The anal ytical engineer is called in and performs the foll-
owi ng tasks
(i) Constructs an FE nodel of the structure, with the

data available, in terns of mass and stiffness distributions
Anal ytical nodes and frequencies are extracted

(i) Programs expressions for error analysis, to be used
by the test engineer should the analytical nodes and fre-
quenci es not be verified by experinent

(iii) Sets up the mathematical nodel for ease of modifica-

tion by the test engineer (in terns of EI, m paraneters etc.).

(c) The manufacturer assesses the predicted dynanmic perfornmance

and either redesigns or constructs a scale nodel or prototype

(d) The test engineer is called in to take nmeasurenents on the

- 224 -
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nodel and extract measured nodes and frequencies. Problens arise
because they disagree with the prediqied ones. An error analysis
Is conducted to estimate the regions S; the FE nodel -that have been
incorrectly assessed. The software to do this is already available,
as left by the analytical engineer. Areas of inaccurate nodelling
are identified, and the appropriate adjustments are nade to inprove

the nodel (again, this facility has been nade available by the ana-

lytical engineer). Agreement between test and analysis is reached
(e) The manufacturer constructs the structure.

The purpose of this section is to consider interpolating on
the measured nodes in order to obtain full nodes for use in the
error analysis. This is essentially a job for the analytical engin-
eer who, by the testing stage, has come and gone. The problemis
therefore approached with a viewto its assessment prior to the

nmodal test being conducted

In order to do this, the analytical engineer nust know the
points at which neasurenents are going to be nade. This usually
corresponds to the displacenents of nodes at the surface of the
structure, or those which are readily accessible to neasurenent
Two possible situations are examined: that where a prelimnary test
has been conducted and measured frequencies only are avail able, but
not nodes (assuming, for instance, that the scale nodel has already
been constructed and the manufacturer has sone sinple test equip-
ment with which to gain an initial assessnent); and that where no

information at all is available

The FE mathematical nodel that is available is typically of

the form
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Mp2A8 = ko2

a a
or ()\i M- K)xi =0

i
P

where Mand K are, of course, M and K, of the previous chapters.
Al'though the analysis here is, for convenience, carried through in
terns of partitions, the analysis is, in fact, totally suitable for
use in FE program equation solvers where banding is not disturbed

by rearrangenent. W have

where a subscript of 1 denotes a measurenment position. This may be

witten as

We wish to determne the X for each xni.The FE format of the
equations is retained and the known X coordinates are elimnated,
essentially treating themin a standard way as boundary conditions
t hus

Lia(A) | 0 x ] = [ Lan(A)xy
——— =
0 La2())) %] [LaOpx,
Therefore these equations can be solved using standard FE sol ution
techniques. Since the x,; are not known at the analysis stage, an
i ndirect method needs to be adopted by finding X,5 for each of the
"basis unit measured nodes'. x,; can then be expressed at a later
stage in terms of these basis vectors. Thus the X3 vectors on the

right-hand side are set to (1,0,.“.0)T, then (0,1, . . . . Of: and

so on, so that the problemis solved n tines whichis merely an n-fold
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repetition of a standard FE solver for the structure. This wll
produce n vectors for the X,4 gi ven ?% ;i(r), r =1, . . . n These
are interpolation vectors derived from a unit displacement at each
of the neasurement nodes in turn. Thus, the interpolated x,, vec-
tor, when the neasurements have been made, will be given by

X, . =

i, (r) _ i iT .
23 = L £ C. wher e X4 = (&, . . . gn) , =1, soom

I 1

LN e -]

(r)

;7 my be determ ned

If the experimental frequencies are known, the g
for each node and all that is required of the test engineer is to

. 1
insert the val ues of €r once the neasurenents have been nmde

If the eigenvalues are not known then this approach requires
modi fication for a correction for Ai once they becone available. W
make the assunption that the neasured frequencies will not differ
greatly from the analytical ones, and again we use an indirect ana-
lysis which will allow the incorporation of neasurements at a later

date. Essentially, the problem that has been solved is

leT(Ai)Xli + Lzz(Ai)Xzi =0
o x, == Laa Lz (Ax
where the X4 and Ai have been nmeasured for each node i (i =1

m). |If these are witten as their analytical equivalents plus an
error we have

a a
+ . .+ .o
X1 = %4 lei and Al = Al 6Al

Also, we wite

Therefore
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Lia (A2 4+ 63, )(x, 2 + 6x. ) +
12(i + i xli 1i
Lzz()\i + Gki )(xzi + 5x2i)*f 6
which, to a first order approximtion, is equivalent to
LiaT(A.2)6x.. t Myal(8A.)x,. 2 + Lya(X.2)8x,. + M2z(6X )x,.2=6
12 84 PR U T2 AR 22874 24 2235037 %23
so that
- -1 T
6x,; = L2z 1(Aia)L12T(Aia)5xli + L22 (Xia)(M12 x1ia + Mzzxzia)(”\i
Al'so, we know that

X, & = Lzz-l(lia)leT(Aia)xli

21
t herefore
X2. =x .2 + 6x .
[ 2i 21
-1 a T,, a
= Las (Ai JLi2 (Ai )(xli + lei)
-1 a T a a
+ L22 (Ai Y(Mi2 x; ¢ Mzzxzi )GAi
n
i_ a(r) - .
= §=1 Er Ci + xziéAi =1 ... m
- - T
wher e x2i = Lo l(Aia)(M;lz xlia + M22xzia)

Thus, calcul ations using analytical data can be corrected when nea-
surenents are available. There is only one correction vector izi

for each nmode. This vector is found by solving
Li:(2.2) ! 0 ﬁli = L11(Aia)§li 1
s T a
0 : Lzz(A.a) X_. M;2 xlia + MzzxziJ

with the ili on the right-hand side being chosen arbitrarily. The
gri and Ai are thus inserted by the test engineer at the neasurenent

stage in order to obtain the full node. This is essentially inter-
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pol ation using the functions of the mathematical model. Since the
analytical nodel is invariably undanped, these expressions nust be

used to expand either real or complex measured nodes;

To illustrate this technique, the pinned beam of exanple 2
was used. Both the correct mathematical nodel and the incorrect
(or analytical) nmodel were used for the interpolation of sine func-
tions. The measurenents were taken as the displacements and the
slopes were deternmined by this method. These are conmpared with the
correct discrete sine functions. The first fivenodes only were

i nvestigated

As can be seen fromthe tables (nunmbers 6.7 to 6.10), the
good nodel interpolates effectively and very little error is produ-
ced, especially with the lower nodes. The poor nodel (i.e. 'ana-
l'ytical') produces significant errors in the region of poor modell-
ing with regard to interpolation. Therefore, as is to be expected
the quality of the nodel determines the quality of the full node
The fifth mode has zero displacenments at all the nodes and interpo-
lation is found to be ineffective. However, this is not typical of

a likely test situation

6.4 Overvi ew

Two interpolation techniques have been investigated. The
first is the use of splines in order to determne the full node
The type of spline used is largely problemspecific, and for the
analysis of the pinned beam a cubic spline was adequate. In nore
general cases, surface splines may be used with the sane overal
conclusions applying. The second nethod is an interpolation tech-

ni que which uses an existing analytical FE nodel. The nethod has
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been presented so that the interpolation vectors can be set up at

the analysis stage for subsequent use when the acquisition of neas-
ured nodal information has been achi’:ved and Wi thout having to
resurrect the whole FE conputational program The conpatibility

of neasured and analytical information is a necessary pre-requisite
for the conparison of the two with a view to establishing an accurate
finite degree-of-freedom representation of the structure under

i nvestigation.
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Mbde Number 1
{
- T - S
52, -~ \4
A7 >
7 S
e .
~
1 3 4
-----Chosen in advance

i ¢ i S 45 Q;

0 0 0.5} o 0. 16317
0.6283185] 0.5877852 | 0.5 0.5 -1.1706108 | -0.65268
1. 256637 | 0.9510565| 0.5 0.5 -2.76053 -0. 97368
1.884955 | 0.9510565| 0.5 0.5 -2.76053 -0. 97368
2.513274 10.5877852 ] 0.5 0.5 -1.1706108 -0. 65268
3. 141593 o |p5:]| - {0 0. 16317

Table 6.1
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Mbde Nunber 1 '
dmaise. EXACT NCDE | NTERPOLATED MODE
d 0 0
r 1 . 969663
d 0. 3090169 30597077
r 0. 9510565 95684812
d 0. 5877852 5877852
r 0. 8090169 815879
d 0. 8090169 8095496
r 0. 5877852 . 586568
d 0. 9510565 9510565
r 0. 3090169 3058887
d 1 . 9991
r 0 0
d 0. 9510565 9510565
r -0. 309017 -0. 30589056
d 0. 8090169 809550249
r -0. 5877852 -0. 58778566
d 0. 5877852 5877852
r -0. 8090169 -0. 816825125
d 0. 3090169 . 30936624
r -0. 9510565 . 955677
d 0 0
r -1 -0. 96965
measur ed
Table 6.2
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Mde Nunber 1 '
dmdisp. EXACT NCDE | NTERPOLATED MODE
d 0 0
r 1 0. 969663
d 0. 3090169 0. 30597077
r 0. 9510565 0. 95684812
d 0. 5877852 0. 5877852
r 0. 8090169 0. 815879
d 0. 8090169 0. 8095496
r 0. 5877852 0. 586568
d 0. 9510565 0. 9510565
r 0. 3090169 0. 3058887
d 1 0.9991
r 0 0
d 0. 9510565 0. 9510565
r -0. 309017 -0. 30589056
d 0. 8090169 ’ 0. 809550249
r -0. 5877852 -0. 58778566
d 0. 5877852 0. 5877852
r -0. 8090169 -0. 816825125
d 0. 3090169 0. 30936624
r -0. 9510565 -0. 955677
d 0 0
r -1 -0. 96965
measur ed
Tabl e 6.2
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Mode Number 2
// -~ ~ £
7 \
Sl//
/ \ N
/ S

p; \ 3 3 4 75

0 1 2 AN P

/
\ %
< Pl
~ 7
S4 ™S - A 7
----- chosen in advance
i ¢, a, c4 d Q

0 0 0 {0.5 1. 16050

1 0.628318 | 0.9510516] 0.5 0.5 -9.9876936 -4. 64202

2 1. 256637 | 0.58778.5] 0.5 0.5 -6. 1727329 --2.56782
3 1.884955 | -0.587785] 0.5 0.5 6.1727329 2.56782%

4 2.513274 | 1.95105635] 0.5 0.5 9.9876936 4. 64202

5 3141503 o |@.50) o) -1. 16050

Table 6.3
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Table 6.4

Mode Nunber;i_
-d=disp
r=rot. EXACT MODE | NTERPOLATED MODE
d 0 0
r 2 1.75671
d 0. 5877852 0.5614313
r 1. 6180339 1. 6655630
d 0. 9510565 0. 9510565
r 0.618034 0. 662958
d 0. 9510565 0.947316
r -0. 618034 -0. 632466
d 0. 5877852 0. 5877852
r -1.6180338 -1. 602073
d 0 0
r -2 -2.005429
d -0. 5877852 -0. 5877852
r -1.6180338 -1.602078
d -0. 9510565 -0. 947317
r -0. 618034 -0. 6324654
d -0. 9510565 -0. 9510565
r 0.618034 0.6629623
d -0. 5877852 -0. 5614313
r 1. 6180339 1. 6655630
d 0 0
r 2 1.75671
measur ed




.,

1

-1
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Mode Numbez 3

,%
, P < \ // - ~ N
7
5y’ \S2 S4 4 \is
/ \ / \
/ v 3 ‘I
\ 7
\ / 4
\ /
\\ y
\ P4
- chosen in advance

y; 8 I o di Q

0 0 0.5 Yo} | 299433
0. 6283185 0. 9510565 0.5 0.5 -18.92095 | 11.97730
1. 256637 -0.5877852 0.5 0.5 11. 69379 7.07298
1. 884955 -0. 5877852 0.5 0.5 11. 69379 7.07298
2.5132741 0. 9510565 0.5 0.5 -18.97095 |-11.97730
3.1415926 0 053 - o, | 299433

Table 6.5
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Mode Number, 3

_____________‘i_.
iilostp EXACT MODE | NTERPOLATED MODE
d 0 0
r 3 . 14078242
d 0. 8090169 69717414
T . 1633557 . 905609837
d . 9510565 . 9510565
r . 9270507 . 681300607
d . 309017 . 30264503
r - 2. 85316951 -2.9478778
d -0. 5877852 -0. 5877852
r . 427051 -2.22204127
d -1 -0. 93682217
r 0 0
d . 5877852 -0. 5877852
r 427051 . 2220384
d . 309017 o . 302645833
r . 85316951 . 94787445
d . 9510565 . 9510565
r . 9270507 . 68129664
d . 8090169 . 69817422
r -1. 7633557 -1. 905609657
d 0 0
r -3 -2. 14078242
measur ed
Table 6.6
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i=disp. MCDE NUMBER 1 MCDE NUMBER 2
r-rot.

EXACT MODE | NTERPCLATED MODE EXACT MODE | NTERPCLATED MODE

d 0 0 0 0

r 1 1. 0021259 2 . 9989785

d 0. 5877852 0. 5877852 0. 9510565 . 9510565

r 0. 8090169 0. 8094411 0.618034 . 6186028

d 0. 9510565 0. 9510565 0. 5877852 . 5877852

r 0. 309017 0. 3075984 -1.6180338 -1.6185322

d 0. 9510565 0. 9510565 -0. 5877852 -0. 5877852

r -0. 309017 -0. 3075984 -1.6180338 . 6185322

d 0. 5877852 0. 5877852 -0. 9510565 -0. 9510565

r -0. 8090169 -0. 8094411 0.618034 . 6186028

d 0 0 0 0

r -1 -1. 0021259 2 -1. 9989785

Table 6.7: Interpolation Using Good Mbdel
i
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d=disp. I[ MODE NUMBER 3 “ MODE NUMBER 4 MODE NUMBER 5
r=rot. EXACT MODE | NTERPOLATED MODE EXACT MODE | NTERPOLATED MODE EXACT | NT.
d 0 0 0 0 0 o
[ 3 2.9907334 4 3. 828599 5 0
d 0. 9510565 0. 9510565 0. 5877852 0. 5877852 0 0
[ -0. 9270507 -0. 9241929 -3. 2360679 -3.094314 -5 0
d -0. 8577852 -0. 8577852 -0. 9510565 -0. 9510565 0 0.
[ -2.427051 -2. 4200583 1. 2360679 1. 1816023 5, 0
d -0. 5877852 -0. 5877852 0. 9510565 0. 9510565 0 o
[ 2. 427051 2. 4200583 1. 2360679 1. 1816023 -5 0
d 0. 9510565 0. 9510565 -0. 5877852 -0. 5877852 0 0
[ 0. 9270507 0. 9241929 -3. 2360679 -3.094314 5 0
d 0 0 0 0 0 0
[ -3 -2.9907334 4 - 3. 828599 -5 0

Table 6.8 Interpolation Using Good Model

aallls
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d=di sp. MODE NUMBER 1
r=rot.
EXACT MODE | NTERPOLATED A

d 0 0
r 1 1.0201782
d 0. 5877852 0.5877852
r 0. 8090169 0. 77177097
d 0. 9510565 0. 9510565
r 0.309017 0. 31926434
d 0. 9510565 0. 9510565
r -0. 309017 -0. 31183598
d 0. 5877852 0.5877852
r -0. 8090169 -0. 80890833
d 0 0
r -1 -1.00001908

Table 6.9: In




¢

- ovZ -

-~ e B St e T T T
d=disp MODE NUMBER 3 MODE NUMBER 4 MODE NUVBER 5
r=rot.

EXACT NODE | NTERPOLATED  MODE EXACT MODE |NTERPOLATED MODE [ EXACT | INT.
d 0 0 0 0 0 0
r 3 3. 310509 4 4. 33066512 5 0
d 0. 9510565 0. 9510565 0. 5877852 0. 5877852 0 0
r 0. 9270507 -1. 50802283 3. 2360679 -3. 87611616 -5 0
d -0. 5877852 -0. 5877852 0. 9510565 0. 9510565 0 0
r 2. 427051 - 2. 24929326 1. 2360679 1. 4603033 5 0
d 0. 5877852 -0 5R77852 0. 9510565 0 0510565 0 2»
r 2. 427051 2. 3698065 1. 2360679 1.08103498 -5 0
d 0. 9510565 0. 9510565 -0. 5877852 -0. 5877852 0 0
r 0. 9270507 0. 940022 3. 2360679 3. 054618129 5 0
d 0 0 0 0 0 0
r -3 +2.999258 ] 3. 80348868 5 0

Table 6.10: Interpolation Using Poor Mbdel
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CHAPTER 7
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ONCLUSION ol

=~

Dynamic analysis, as it stands at present, is a two-pronged
attack. The first approach is an application of the FE method in
order to derive a mathematical model of the structure under inves-
I tigation, and solve that nodel to extract analytical modes and

frequencies of vibration. Thereby the dynam c characteristics of
the structure are assessed and the likely subsequent perfornmance
predicted. For many years, with the possible exception of the
aircraft industry, this was considered adequate - and if a satis-
{ factory performeace was predicted, no further work was considered

necessary. The method is totally analytical. The predictions of

-

an FE nodel have to be accepted whether right or wong.

r Not surprisingly, this was considered unsatisfactory. Wat
was needed was a verification of the mathematical nodel with a test
on the actual structure itself. Fromthis was born the field of
nodal analysis, which is an experinmental technique designed to do
just that. The growh of digital conputer technology has greatly
— enhanced the field of nmodal analysis. Test equipnent and software
are rapidly being devel oped which can analyse structures and extract
L neasured modal paraneters. In parallel with this, experimenta
engineers with a wealth of experience in dynamic testing grow in
numbers. At present, very powerful and sonmetimes portable machines
_ which contain the hardware and software capable of testing a struc-
ture, analysing the data and extracting the nodal paraneters are

beginning to emerge. As the spread of know edge increases, so wll

-

this type of machine - thus making available, at reasonable cost,

=
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nodal analysis test equipnment to small construction conpanies

However, what has also come to ljght is that a nodal test
will often disagree with the mathematical nodel previously fornu-
lated, in terns of nodes and frequencies. One of the points that
has been stressed in this thesis is that it is not possible to
devi se so-called neasured mass and stiffness matrices that wll
have any physical significance in ternms of the mass and stiffness
distributions of the structure. This stems fromthe fact that the
nmeasurements made are of a flexibility-type nature, and do not sat-
isfy the constraints necessary for a stiffness-type fornulation,
whereas the FE method is a displacenent nethod which leads to a
stiffness nodel. A flexibility nodel would arise from a stress FE
nethod but, except in special cases, it is not feasible in practice
to enploy this approach. Thus, the FE displacement nethod is by
far the nost widely used - and coul d never be abandoned since, as
far as a know edge of mass and stiffness distributions goes, it is
all we have. The only sensible course of action is to use the noda
anal ysis neasurenents to inprove the mathematical nodel so that it

nore closely resenbles the actual structure. The objective of this

thesis has been to explore this option

Consi dering the case where danping is small and may be neg-
lected, in the light of the work done in this thesis, the proposals
sununarised in Diagram7.1 are nade. This is a procedure for correc-
ting and inproving mathematical nodels using the information extrac-
ted froma nodal test, It hinges upon an effective error analysis
being able to detect regions of poor nodelling within the nodel

thus enphasising some of the points made at earlier stages

- 242 -




[

— = e = —

—]

&

If danping is not insignificant, the problem becomes nore
difficult. It stems fromthe problens that arise because of the
existence of real, normal analytical nodes on the one hand (since
usual ly no analytical damping matrix exists), to conplex neasured
nodes on the other. No direct conparison of the two is justifiable
if significant inmginary parts of the conplex mode exist. In this
thesis a viscous danping nodel has been assumed, and the proposals

for the course of action, if in this situation, are given in Diagram
7.2.

Here the procedure is less clear-cut, since some intuitive
derivation of a viscous danping matrix is required, based only on

the indications extracted from an error analysis

Future Wrk
The next stage of this work is clearly an application to a
full-size realistic problem This thesis has dealt with sinple
exanples only in order to point the way to the type of approach that
needs to be adopted. A full-scale problemis, initself, a long-
term project with the structure being studied, analysed and tested
inits entirety. Past work of this nature(193) has dealt with this

successfully, but has stopped short once the nodal tests and FE

znalysis had been conpleted - often with acknow edged discrepancies
between the two.

The problem of damping is clearly an area that is, as yet,
far from conpletely understood. Viscous danping has been studied

inthis thesis, because it is nmore convenient mathematically. How

ever, observations often indicate that danping is independent of
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frequency, and this is usually given the name hysteretic or struc-
tural danmping. The use of a set of gjfferential equations to des-
cribe this phenomenon runs into difficulties as frequency tends to
zero and the equations have little physical justification. The use

(65) allows the incorporation of

of integro-differential equations
structural danping, but the extension of the analysis to multi-
degree-of -freedom systens, as in this thesis, will lead to consider-

ably nore conplex analysis

On the experinental front, the curvefitting routines are far
from conplete at present. Ideally, better data toanal yse need to
be made available. The curvefitter needs to be inproved to account
for nodes outside the frequency range of interest, and adapted to
anal yse anbient data. The inplenentation of some sort of graphics
facility to gain a visual insight into the nodes of vibration would

clearly be advantageous.

This thesis has assunmed linearity throughout, and as this
probl em becomes understood the analysis could be extended to incor-
porate non-linearities. Some prelimnary investigations into the
way in which non-linearities affect nodal analysis have been con-

ducted(gz), but nuch scope for further investigations exists

As nentioned earlier, machines which test data to establish
measur ed modal paraneters are rapidly devel oping and becom ng gener -
ally available. The original objective of this thesis was to wite
a conput er package which woul d use nodal analysis to inprove and
update existing mathematical nodels. However, a survey of the lit-
erature exposed a serious gap in the consideration of this problem

The probl em had been negl ected, perhaps because of the lack of a
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mat hematical tool with which to analyse it. The devel opnent of a
comput er package was soon seen as bejng over-anbitious. The com-
plexity of the problem neant that the analysis needed to be nore
mat hematical and centred upon the difficulties that were hol ding up
this area of research. The proposed schenes built up from the exper-
iences gained in this thesis and summarised in Diagram 7.1 and 7.2
are a result. The original optimsm and sinplicity expressed by
early authors on this subject are exposed. Wat is left is a pro-
cess to tackle the problems of the real world. The sinple exanples
have shown that as long as the experinentalist is proficient, an
error analysis can yield indications of areas of poor nodelling
even if it is up to the experimentalist to decide exactly how the

model is to be inproved

The next step is an application to an exanple of hundreds -
possi bly thousands - of degrees of freedom Wth this will develop
a feel for how best to interpret information froman error analysis
Utimtely, especially for the undanped case, the process is capable

of being autonated

The situation envisaged is a dynam c analysis system consis-
ting of two machines. One conducts the nodal test and extracts noda
paraneters; the other stores the mathematical nodel. The data from
the nodal test is fed into the second machine. This then expands
the measured data for conpatibility with the nodel, conducts an
error analysis to identify areas of poor nodelling, decides how to
change the analytical nodel, conducts a sensitivity analysis to see
whether this has corrected or inproved the nodel - and if not,
repeats the error analysis in an iterative cycle until agreenent

has been reached and the updated nodel is consistent and reproduces
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the measurenments as closely as possible given the limtations of a
finite degree-of-freedom environment,» The conputer's ability to
assess and interpret the indications of an error analysis and decide
the best changes in mass and stiffness paraneters may well require
sone fourth-generation programming. Utimtely, the emergence of

a 'mathematical rnodel tuning machine' that uses experinental meas-
urements and is fully automated could conceivably be standard equi p-
ment for dynamicists and vibration engineers in, say, 10 or 20

years from now,
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MCDAL ANALYSI S ON
STRUCTURE

l

EXTRACTI ON OF MODAL
PARAMETERS

EXPANSI ON OF MCDES

(INTERPOLATION)

DERI VATION OF AN
ANALYTI CAL MODEL

Ma’Ka

COVPUTATI ON  OF
ANALYTI CAL MCDES AND
FREQUENCI ES

NO

ERRCR ANALYSIS . OF
CHAPTER 4 TO GAIN A
PI CTURE OF REG ON OF
POOR MODELLI NG

BETWEEN ANALYTI CAL &
EXPERI MENTAL MODES &

FREQUENCI ES ?

YES

MODEL
VERI FI ED

<

Diagram 7. 1:

N

Undanped Model

SENSI TIVITY ANALYSI S
TO ASSESS EFFECT OF

M & K ON ANALYTI CAL

MCDES & FREQUENCI ES

Procedure
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QERIVATION OF AN ANALYTI CAL
MODAL ANALYSI'S ON STRUCTURE

MODEL Ma, Ka
‘L’ .
EXTRACTI ON OF COWPLEX
MODAL PARAMETERS
Y

L

=~

EXPANSI ON OF MODES

— r

ERROR
M ERROR ANALYSIS ON Ma & Ka ” M_ &K,
SMALL
USI NG THEORY OF CHAPTER 5 Go0D
ERROR _;L
LARGE

ERROR ANALYSI S ON DAMPI NG

ADJUSTMENT OF Ma AND Ka
MATRI X TO DETECT REG ONS OF

==

IN LIGHT OF ERROR ANALYSI S H GH DAMPI NG

!

| NTU TI VE DERI VATION OF

DAVPI NG MATRI X

b

COWPUTATI ON OF COWPLEX
ANALYTI CAL MODES AND
FREQUENCI ES

THERE
AGREEMENT

BETWEEN TEST AND

N

MODEL VER!I FI ED

Di agram 7.2: Danped Mbdel Procedure - 248 -
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APPENDI X 1
PERTURBATION ANALYSIS FOR A_BEAM

Ps

The viscous danping nodel has a constitutive equation of
the form

o = Ec + de

2
where € n%%’- . (Engineer's theory of bending beam
This gives the terns
3" 3%y
H -3—x¥’- +dl o9x ‘ot
so the variational equation of motion is

32 %y a2z 3%y 3%z _
Jmat Z+Jd13x3tW+JEI#W_O'

If we assume that vy ae}‘t we have
32y 3%z 3%y 3%z

2 =

A mez+)\JdI#"a?+JEI§—x¥'é—xr—O
ie. M2+Dr+K=0

—_ ” "

wher e d.l.J = J dI y, Yy
If we consider a uniform sinply-supported beam of unit mass then
the perturbation problem may be witten as

(A + <S>\i)2(xi +8x, )+ (X + 6X)6dx; + k(x; + 6x;) = 0

which is, to first order,
2 2 —
(Ai + k)xi + 2Aidkixi + Ai Gxi + Aiddxi + kéxi =0
so, taking the inner product with Xy

2A. 60, <x.,x.> + A2 <8x.,x.> + A, <8dx.,x.> + k <8x.,x.> = 0.
i1 it i N i i'7j i'7j

We assune that

T TP




-

=

1

hence

so if

&

n
ik 'k j

2
608, + AP T a6 + 2y <8dx;, x> -

k=1

20,6168, . +X, <8dx.,x.> + A %0, . - 224,
iTidj i i*7j i @) J 1]

= | then we have

20,6, + A, <8dx.,x> =0
iTi i i’

and if i #]j then

SO

3 AZ-AZ &y

i i
GAi -—z—and§j=w.

The perturbed eigenval ues are therefore given by

8&11

¢ \
A, T SA = A - [= A, - k¢ kk
1 1 1 2 1 d J

- €

m

The first five may be calculated as

1.
2.
3.
4.
5.

1 - 0.00024i
4 - 0.01226i
9 - 0.09363i

16 - 0.30444i

25 - 0.62500i

n
kzl %k

=0

2 F—
Ak 6kj =0

and the perturbed first node, for displacenent, is given by

0.46908 - 0.0002883.
0.7590 - 0.000013i
0.7590 + 0.000202i
0.46908 + 0.000109i

These figures are in good agreenent with those predicted by the FE

node

- 258 -

(Figure 2.7), and serve as a good check of the analysis
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1. | NTRODUCT| ON

The solution of vibration prgl)lems frequently requires a
know edge of the principal nodes of vibration of a structure.
Were the nodes are obtained experinentally, in a resonance test,
the main difficulty lies in exciting the undanped nodes of a struc-

ture.

The devel opment of the MAMA (Manual - Automatic Miltipoint
Apparatus) control system was initiated when the limtations of
its predecessor, GRAMPA (G ound Resonance Automatic Miltipoint App-
aratus), canme to light. It had been recognised that the frequency
range over which GRAMPA operated was too restricted for use with
many structures, particularly nodel structures where node frequen-
cies of interest nmight be as high as one Kilohertz. The MAMA sys-
tem sought to overcome this restriction, and also adopt a manual
adj ustment of the force control when it became apparent that auto-
matic setting of force levels, as utilised in GRAMPA, was often

unnecessary and time-consum ng.

Subsequently, due to recent devel opnents in m croprocessor
technol ogy, a replacenent for the MAMA system - in favour of a

m croprocessor-control l ed system- became desirable. MAMA-2 has

the major advantage of cheapness, and also utilises the facility
of each unit (i.e. VDU, cassette, plotter) communicating with the

nicroprocessor only, thus the system behaviour and characteristics

are a function of the mcroconputer program

The operational details of the MAMA-2 system are described

within this manual, and are designed as a guide to its use.
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(b) MAMA M croprocessor

& &) s
INPUT wNPUT INPUT INPUT INPUT
© o] oll o o)

d o ® ® [
e® " g0 w0 e NoeO 809 O 180°

! » % N b

MAMA 2
AMP MEAS ON
OUTPUT proM SHARGE A N' ouThyr PR EXCITORS
T 4 3 4
2-‘ 4 '5 2\ p I/S
[ e - Ex t- ~
Y
O syYNC.
Y2- ouTPLT

\ /
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(¢) Keypad

KEYPAD FUNCTI ONS

PO PP OO @

- 264 -~

Channel 1 force level up @

Channel 2 force level up @

Frequency sweep

M o| M |
®°°WN @ up @ DO\INN @ VP
|2 |62 0|3 |& 3
DO wN vp DowN uP
4 |© 4|05 @5
PowiN vp D OWN uP
ALT- s o
® MOl;E. F @ SHIFT STop
DOWN
@ Channel 4 force level down
Master force |evel down @ Channel 4 force level up
Master force |evel up @ Channel 5 force |evel down
Channel 1 force level down @ Channel 5 force level up

Channel 2 force level down@@ New frequency & delta f

Frequency down by delta f

@+ @ Change frequency

Channel 3 force |evel down@"'@ Frequency up by delta £
Channel 3 force |evel up Switch to AF.C
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3. OPERATI ON

(a) Manual Contro

(i) Setting of Force

The excitors are connected to the test structure and to the
corresponding excitor outputs on the MAMA-2 unit. The excitors
need to be suspended freely so that their mass does not affect
the natural frequency of the test structure (see Diagram D). The
principal excitor should be located at the nost inportant point,
I.e. where the maxinum anplitude is anticipated. This is then
connected to the channel 1 output (extrene left). This is the
channel which should be set first, and subsequently controls the
frequency automatically. The remaining excitors may be set in
some order so as to avoid confusion as to which excitor is opera-
ting through which channel. The accelerometers are then set up
with the accel eroneter neasuring response at excitor 1 connected

to charge-anp 1, and so on

MAMA-2 is then switched on and the software is run. The
channel s being used, the frequency and the frequency step are set
initially. Operation is then transferred to the keypad, the con-
trol's of which are shown in Diagram C. Qperation of keypad func-
tion should be used in conjunction with a CRO nonitoring the out-
put and input of the system The first operation is to set the
master force level at a fairly low level. Channel 1 force leve
I's then adjusted using the full force level range (O 255) unti
the best sinusoidal response is observed on the oscilloscope. It
may be necessary to adjust other force channels to obtain a good
wave. At low forces, the sensitivity of the change-anp nay be

increased by switching from x1 to xi0, should this be found to be

- 26F ~




o

T

——

B ]

Y

necessary. However, the corresponding noise content is also

increased and this should be avoided if possible.

When a good sine wave has been obtained the frequency may
be altered up or down until a quadrature input/output phase shift
i s obtained on channel 1 (either 90° or 270%). The quality of

the sine wave needs to be constantly nonitored.

(ii) Changi ng Frequency

A junp in the frequency being considered may be achieved

by pressing and r[STOP| nsi pul taneouslfy. o r t h e

new frequency will be observed, and this is input via the keyboard.

Operations will continue at the new frequency.

(iii) Frequency Resetting

Conplete resetting of the frequency and frequency step may

be obtained by pressing [SHIFT] and .

(iv) Freguency Sweeps

. . . ALT-
A frequency sweep is obtained by pressing MI(SDE . The upper

and | ower values for the sweep will be required and also the fre-

quency step. At any time the sweep may be term nated by pressing

ALT-
MODE

frequency the system was at at interruption.

the key to return the system to normal operation at the

(v) The Plotter
A plotting routine also exists for use with the frequency
sweep. This shows the phase change as a result of steadily increa-

sing frequency, giving a cross of the y-axis at resonance.
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(vi) C. RO Connections &
AmMPLITUDE 7
ouTPLT MEASUREMENT ouUTPUT
FROM ON CHARCE AMP FRomMm
NQ
CHARLE
""‘"3x 3 4
v ! 5

\/! 8 2
’

1\
| Y

SYNC.
oVTPUT

@ Qut put from Charge Anps

@ Qut put from Charge Anps (measured from anplitude board)
@ Qutput from Charge Anmps

® Input to Excitors

@ Sync. Qutput (used as external trigger)
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(b) Transfer to Automatic Frequency Contro

At this stage, if the JSTOP] button is depressed the system
will offer the option of transferring fo aut omatic frequency con-

trol (via channel 1).

|f using acceleroneters, the required phase angle wll nor-
mal |y be 90° or 270° (resonance). The frequency step (i.e. steps
used under automatic control) and control accuracy (i.e. the error
whi ch decides whether or not an adjustment in frequency is required)
are set according to the tine available and accuracy requirement of

t he user

The other channels are then adjusted (either in phase (0%
or antiphase (180°)) carefully, constantly nonitoring the quality
of the response signals, until all channels are as near to the
resonance phase neasurement as is considered possible. Should the
adj ustnent of the other channels result in resonance on channel 1

being lost, the systemwll return to the manual node after a while

During automatic frequency control the frequency step or
control accuracy may be altered using the keypad controls (see
list of alternative keypad controls used under automatic frequency

control)

Hence, when all the responses are in quadrature an undanped

mode is being excited

Keypad Functions Under Autonatic Frequency Control

13

13 + 15 Break from autonatic frequency contro
Change frequency step

14 + 15

16 End program

15 + 16 Change control accuracy
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Programs SDOF and MDOF are sipgle-degree-of-freedom and
mul ti-degree-of-freedom curvefitting routines which fit an analy-
tical mathematical function to experinentally measured frequency
response function data in order to extract the nodal paranmeters
of the structure under test. The prograns use a non-linear |east
squares NAG routine, enploying single precision arithnmetic, based
on the theory of Reference (1). In order to fornulate a nathemat-
ical expression for the frequency response function we first con-
sider the one-degree-of-freedom equation of notion given by

mX +cx + KX = f
where m ¢ and k are the mass, danping and stiffness respectively
and f and x represent the input and the output. It is usual to

divide through by the mass and so rewite the equation as

e C o k f
-y + == - —
X+mx mx o
» * 2
or X + 2pwx + w'x = z
c R K— 2 _f
wher e m—2uw, oW and z ==

. At
[f we let the input be of the formz = ze, then we may assume an

output of the form x -_--xeAt. X is conplex and can take any val ues,

i.e. A= &+ iQ. W have

At At— . 5 At—

;+2uw>\e X + w'e x= eAt;

Ae
or (A2 + 2uod + wi)x = z.
The transfer function is the output divided by the input, thus

X 1
HX =2 = 2200 + w2

If the equation A? + 2uwh + w?= 0is solved we get A = -pw +

iw(l - u2)3. The expression for the transfer function may then be
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expanded as

_ 1
H(h) = A2+ 2uph + w? o~

1
SO+ - iw(l - uz)%)(k + pw + iw(l - uz)%)

X) = a__+ ia" + a__- ia _
. b (x + uw-iw(l-—uz)f) (A +ww + iw(l - p?)2)

__a a,*
HOD = = aF

This analysis may be expanded to n degrees of freedomto give an

expression for the transfer function as

n a a, ¥
k k
H()) = = +t T F
kzl A=A T A=A

The frequency response function is sinply the transfer function
eval uated along the frequency axis and so £ is set equal to zero,

giving A = if, thus

§ ay ak*
H(ig) = n _ + = _ %
kel ifd Ak ifd Ak

wher e = conpl ex residue of kth node

yk

3k
Ak = -+ iwk(l - ukz
w = undanped natural frequency

(100%) w, = percentage critical danping

-h = danmpi ng factor

danped natural frequency.

wk(l-uﬁ)%
If discrete values of  are taken (corresponding to neas-
urenent frequencies) fromj = 1 to Mthen the neasured frequency

response function data will be given by

H

MEASUREDS 1¢5) j =1, . . . MM=no. of data points
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and the analytical function is given by
n a a ¥
. k k
H (i) = ¥ . +
ANALYTICAL™j kel i .J';%U.Ak 1Qj - A'k*
where the ak's and the Ak's are to be fixed. These need to be

chosen so as to mnimse the error function

H

™
~1 X

= j=lHMEASURED(in)

anaLyrrcaL(i%5)
So, with SDOF and MDOF |[e]|? = ee is nininmised by allowing a

variation of the a 's and Ak's to obtain the closest analytical

k
expression to the neasured information.

2. PRELI M NARY ANALYSI S

Prior to the inplenmentation of SDOF and MDOF, a prelimnary
analysis of the data under investigation is recommended. |nitial
estimates may be extracted by analysing the magnitude of the fre-
quency response function data for each channel. An illustrative

exanpl e is given bel ow

Q, b, I
I o, al'z i
!J\J

| | |

wy is a well-separated peak, and it is assuned that the effect of

H

—_— 0

ot her frequencies over the range a; to a; will be negligible. SDOF
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may be used to curvefit this peak. The peak will serve as an
initial estimate for the frequency of this node and the frequency
range ai to az needs to be noted. & and w; are noted and used

as initial estimates for the frequencies of these two rmodes and the
frequency range by to b, is also noted. Again, the effect of nodes
outside this frequency range is assuned to be negligible. This
type of prelimnary data is required for all nodes to be anal ysed,
for all channels available. Although some prelimnary concept of
the values of damping and residues (for MDOF only) are advantageous,
they are not essential for an accurate curvefit, but will speed up
the process. A suitable estimate of danping of between 1 and 3%
will usually suffice and if no residue information is available
they may be set to 1. Qher values may be tried if success is not

achieved in the first instance.

3. | MPLEMENTATI ON_OF SDOF

Data for SDOF needs to be frequency response function data

in real and inaginary form The data needs to be in DSP format (3)

That is:

$358 : flag indicating DSP format
Title : 72 characters maxi mum

Data Type : (always = 2 (conplex data))
Nunber of Channels ¢ (always = 1)

Nunber of Data Points

Sanmpling Interval cin H
Frequency of First Data Point :in Hz
Frequency of Last Data Point : in Hz
Dat a

End
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SDOF curvefits for one-degree-of-freedom and requires an initia
esti mtes of the danping and frequency only. Residue initia
estimates are obtained by solving the linear |east squares problem
using the danping and frequency initial estimates and the NAG
routine FO4ARF. To run SDOF the follow ng command in inputed:

RUN SDOF.

The channel that is to be analysed is then fed in when pronpted
The channel usually has the suffix '.DAT'. An initial estimte
for the frequency and danping are then fed in, followed by the
frequency range over which the fit is to take place. The program
infornms the user when information from the relevant channel is
being read in and when the curve-fit is in progress, along with
the number of data points involved. The NAG routine used is called
EO4FDF and is a non-linear |east squares curvefitting algorithm

On a successful fit the following results are outputed

danping factor L omH e
%2 critical danping DM * 100

1
danped natural frequency “k(l - ukz)2

undanped natural frequency : W

real part of residue ; Re(ak)
I magi nary part of residue Im(ak)
error nessage : I nteger

The error messages are as those given in the EO4FDF docunentati on.

0 indicates a successful curvefit, whereas errors 5 to 8 indicate
that there is some doubt about the quality of fit. Error =5 indi-
cates that the curvefit is nost probably accurate, whereas error =8
(see NAG literature) indicates that it is very unlikely that the

curvefit has been successful. The program may be rerun, starting
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at the last values of the previous run

4. | MPLEMENTATI ON_OF MDOF

MDOF is used in an identical fashion to SDOF, with the foll-

oW ng exceptions
(a) The nunber of nodes involved in the curvefit needs to be known.

(b) Residue initial estimates, as well as danping and natura
frequency for each node, need to be available, although these estim

ates need not be necessarily good - except in the case of frequency.

(c) The data is outputed with the relevant paraneters for each

node.

5. DATA COLLATION

Once each channel has been anal ysed (assuming there are n
channels), n different estimates for the danping factors and natura
frequencies of the mnodes will exist. If the structure is truly
linear, these will all coincide. However, in practice some varia-
tion may exist, especially with danping due to the effect of non-
linearities. Some averaging process will be required in order to
provide one estimate of danping and one of frequency for each node
as the theory requires. For each channel the residues will contain
nodal information, with one elenent of each of the m nodes being
provided by each of the n channels. These will be conplex in
nature. The nodes may be nornalised so that the |argest elenent
of eachllqual to unity. If the other elenments of the nodes then

have negligible imaginary parts the danping may be assumed to be

proportional and the imaginary parts neglected. If this is not the
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case, the curvefit Will have produced conpl ex nodes, and further
analysis will have to account for this. The end result will be a
know edge of each of the nodes invgtigat ed in ternms of natural
frequency, % of critical danping and either conplex or real node
shapes. An error analysis of a corresponding mathenatical nodel

may then be conducted as described in Reference (2).

REFERENCES

1. GLL, P.E. AND MJRRAY, W Algorithms for the Solution of
Non- Li near Least Squares Problems. SIAM Journal on Numeri-
cal Analysis, 15, 1978, pp.977-992.

2. BROW, T.A: Ph.D. Thesis, Bristol University, 1985.
3. TAYLOR, C A BEEDAPS DSP Reference Manual, Bristol University,
1983.
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APPENDI X 4

SDOF LI STING

PROGRAM SDOF
44444444444444¢ S| NGLE DEGREE OF FREEDON CUR JEFI T PROGRAHA4444444444444

AA4444444444444PARAL | ETER DECLARATI ONA44444444444444

IMFLICIT REAL44 (A-H»0-2)

COMMON /DOSPACE/FRsREH,ID3
DIMENSION ERUF (2048)

DI MENSI ON A1(2)sV2(2)V1(2)»V3(2)
DI MENSI ON v4(2)sUV1(2+2)9X(4)
DIMENSION FR(300)»REH(300)

| NTEGER 1W(4)FILLEN

BYTE FILE(64)sAST(4)»TITLE(64)
DATA FILLEN/64/

LOG CAL TRUEsFALSE

TRUE = .TRUE.

FALSE = ,FALSE.

CALL ERRSET(73y TRUE, FALSE» FALSE» FALSEs» 200)

A444444444444440UTF UT TI TLESA44444444444444

VRI TE (5+8)

VRI TE (5+6)
VRI TE (S5»7)
VRI TE (5,8)
WRITE(5y250)
WRITE(S,251)
WRITE(S,252)
WRITE(S»253)
WRITE(S»B)

444444444444444SELECT FI LE FOR CURVEF ITRKXKXRXXKXXKAKK

WRI TE (5, 102)

READ (5,301) FI LE

CALL CHKNULCFILE»FILLEN)
OFEN(UNIT=1,TYFE='0LD’ y NAME=FILE)

XODKXRRRRKRKRKKINFUT | NI TI AL ESTIMATESKRIK¥KKKKKKKKKKK

VRI TE (5+9)

READ (S»%) A1(2)

VRI TE (5,10)

READ (S»%x) PC

A1 (1)=-(FC/7100)%A1(2)
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39

eleitiele)

46
47

XKKKKKKKKKKKKXXREAD DATA FROM FILEXKKKKKKKKKKKKKXK

REWND 1
READ(1,401) AST
READ(1,402) TI TLE
READC(1y%) | TYYE
READC1y%)> NCHN
READ(1s%) L2
READ(1sx) T4

READCLty%) 5 - -

READ(1,%) T6

DO 30 I=IrL2
BUF (I)=(T4XI)+TS
L3=L2/4

BORXKKKRK LXK XKKDE TERMINE UPPER AND L OWER XKk k%K Kk kX Kk K kX
XKKOKKKKK K KKK KKRKFREQUENCY FOR CURVEFITHRKKKXKXKKKKKKKKKK

VRI TE (5+35)

READ (S»%) ZZ1

VRI TE (5+36)

READ (S5s%) 222

ID1=0

102=0

DO 39 1=1,sL2
| F (BUF(I>.LT.ZZ1) ID1=1I
| F (BUF(I).LT.,ZZ2) ID2=1

CONTI NUE

ID1=ID1+1

IN3=(I02+1)-1ID1

| F (ID3.6T.300) GOTO 9999

KKRKRKKRKKKKKKKKREADN MORE DATA 8 SET  ARRAYSKRKKKK KKK KK KKK kK

DO 45 1=ID1,ID2
FRC(I-CID141)))=RUF(I)
WRITE(S,8)
WRITE(S,72)
WRITE(S,8)
DO 46 I=1,L3
READ (1»%) R1sR2sR3sR4yRSsR6+R79R8
RUF (((4%I)-3))=R1
RUF (((4%XI)~-2))=R3
BUF (((4%I)-1))=RS
RUF ((4%1))=R7
DO 47 I=1In1,1D2
REH((I-(ID141)))=RUF(I)
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RAKKRRKRRRKKKKXLINEAR LEAST SQUARES ESTIMATEXKKA KKK KKKKKKK KX
RRRKKKRKRKKKXKKKOF RES|I DUE FROM POLESKRRRXRRKKKKKKRKKEKKKKR KKK

DO 48 1=1,2 ~
V1(1)=0
V2(1)=0
V3(1)=0
DO 48 J=1,2
WU1(IsJ)=0
DO 50 I=1,ID3
Z=FR(I)
Y=REH(I)
X1=A1(2)
X2=A1(1)
X3=Z+X1
X4=7-X1
X5= (X2%X2) + (XIXX3)
X6=(X2KX2) +(X4%X4)
V4 (1)=((~X2/X5)+(~X2/X6))
V4(2)=((~X3/X5)+(X4/X6))
DO 50 J-192
V1(J)=V1 () +(YXVA(J))
DO 50 K=1,2
VU1 (Jr K)=UV1 (Jr KD+ (V4 () RV (K))
| A=2
IFAIL=0
N=2

XOKKKKRKKKKKKRKCALL OF NAG ROUTINE TO SOLVE AX=FXXXKXKKKKKKKKKX
CALL FO4ARF(VUV1,IA»V1sN»V2,V3»IFAIL)

LIW=10

LW=2048

IFAIL=1

DO 60 1=1,2
X((I+2))=V2(I)
X(I)=A1(I)

WRITE(S5,61) |1 D3

WRITE (598)

WRITE (5962)

WRITE (5+8)

FKAOKKAKIOKKK XX XKCURVEFIT USING NAG SUEROUT INEX¥KKKKKK KKK KKKk
CALL EOAFDF(IN3s4yXsFSUMSQy IWsLIWsBUF»LWs IFAIL)

KKK RKUDF =UNDAMFED NATURAL FREQUENCYXXKXKKKAKK KK KKk
KKKKKKKRKKKRKKKKKPCC=Z CRITICAL DAMFINGRRKKKKKKKIKIKKKKK KKK KKK

UDF=SQRT((X(1)%XX(1))+(X(2)%X(2)))
FCC=-(X(1)/UDF)%*100
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251
252
253
301
401

9999

OOOOCOooOo

100
101

BRKKKKRXKXKKKKXOUTFUT RESULTS******A*******

WRITE (5»103)

WRITE (5»110) X(1)

WRITE (59115) PCC &~
WRITE (5+120) X(2)

WRITE (59125) UDF

WRITE (5:130) X(3)

WRITE (5+140) X(4)

WRITE (5,145) IFAIL

WRITE (5»1035)

RKKRRKKKKKKKKRKKFORMAT SRAKRKRAKOKKRRKKKK K

FORMAT(’ SDOF CURVEFIT PROGRAM MARK 4: PDP11 FORTRAN’;
[ TN EAE $333323333222233822333282832323¢3283233232¢23%2 0
FORMAT(’ :
FORMAT(‘ INPUT INITIAL NATURAL FREQUENCY ESTIMATE >‘»$%)
FORMAT(’ INPUT INITIAL XCRITICAL DAMPING ESTIMATE >‘»$%)
FORMAT(’ INPUT LOWER FREQUENCY LIMIT FOR SDOF FIT >‘»%)
FORMAT(’ INPUT UPPER FREQUENCY LIMIT FOR SDOF FIT >‘9+%)
FORMAT(’ NUMBER OF CURVEFIT POINTS =’»14)

FORMAT (/ XX¥XXXXXXKCURVEFIT NOW‘ IN PROGRESSXXXXXXXkX ‘)
FORMAT (/ XXXXXXX%XDATA NOW BEING READ FROM FILEX¥XkXXXXX‘)

FORMAT(’ INPUT FILENAME >‘»$)
oI A e333 3333330333332 2323222322222323382323332332322%22 S0/

FORMAT (' DAMPING VALUE:‘»F12.4)
FORMAT(’ PERCENTAGE CRITICAL DAMFING:‘»F12.4)
FORMAT(’ DAMPED NATURAL FREQUENCY:‘»F12.4)
FORMAT(’ UNDAMPED NATURAL FREQUENCY?!‘»F12.4)
FORMAT ¢+~ - —— -——-— - REAL. RESIDUE “¥F1258)
FORMAT ( IMAGINARY RESIDUE?’»F12.4)
FORMAT ( ERROR MESSAGE: “»112)

FORMAT ( XX*XVERSION 4.2 -UF SINCE JAN 1985%%%x ‘)

FORMAT(’ CURRENT MAX LENGTH OF FILE=2048 COMPLEX DIIATA POINTS /)
FORMAT(’ -TRANSFER FUNCTION DATA REAL AND IMAGINARY PARTS ‘)
FORMAT (’ CURRENT MAX NUMBER OF CURVEFIT POINTS =300")

FORMAT (64A1)

FORMAT (4A1)

FORMAT (64A1)

STOP

ENI

SUBROUTINE CHKNUL (FILNAMsNEYTE)

BYTE FILNAM(1)

J=NBYTE+1

DO 100 I=1»NRYTE

J=J-1

IF(FILNAM(J).NE.*40) GOTO 101 140 = SPACE
CONTINUE

J=J+1
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A
o

OO0

190

200

ToOoO OO0

105
99999

SUBROUTINE LSFUN1(MsNy»XC»FVECC)
COMMON /DSPACE/FR»REH»ID3

DIMENSION FVECC(M)» XC(N)»FR(300)y REH(300)

REALX4 FVECCy XC» FRsREH
REALX4 HHy XIr X2+ Us Wy At By VZ1»

REAL*4 VZ3yVZ4yVZ5yVZ6,VZ7y VZ38

INTEGER IeJeID3s»iMsy N
DO 200 I=1,1D3
HH=0.0
X1=FR(I)
X2=REH(I)
N2=N/4
DO 190 J=1sN2
U=XC(J)
W=XC((J+N2))
A=XC((J+(2XN2)))
E=XC((J+(3IRN2)))
VZ1i=X1+W
VZ2=X1-W
VZ3=(UxU)+(VZ1%VZ1)
VZA=(UXU)+(VZ2%VZ2)
VZS=(UxU)—-(VZ1%xVZ1)
VZ6=(UXU) - (VZ2%VZ2)
VZ7=( (AXUY-(EXVZ2))/VZ4
VZ8=( (AXU)+(BXVZ1))/VZ3
HH=(X2/N2)+VZ7+VZ8+HH
FVECC(I) = HH
CONTINUE
RETURN
END

SUEROUTINE FRNAME (NAME)

REAL X8 NAME

WRITE (S59105,ERR=99999) NAME
FORMAT (1XsAB)

RETURN

END
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APPENDI X4
MDOE LI STI NG

PROGRAM MDoF
XXKAOKKKERKKKKKKRKMUL TI~-DEGREE OF FREEDOM CURUEFIT FROGRAMX KK ¥ K%K % kKX k%3
Gid

A44444444444444PARAVETER DECLARAT1 ON444444444444444

| MPLICI T REAL44 (A-H»0-2)

COMMON /DSFACE/FRyREH,ID3

DI MENSI ON FR(300) s REH(300) »X(20) y UDF (5) » BUF (2048) »FCC(S)
| NTEGER IW(20)yFILLEN

BYTE FILE(&4)9AST(4)»TITLE(64)

DATA FILLEN/64/

LOGICAL TRUEsFALSE

TRUE = .TRUE.

FALSE =.FALSE.

CALL ERRSET(73s TRUE» FALSE» FALSE» FALSE» 200)

A444444444444440UTPUT Tl TLES444444444444444

URI TE (S»1)
URI TE (5,2)
URITE (5+3)
WRITE (5,1)
URI TE (5,250)
WRITE (5,251)
URI TE (5,252)
URI TE (5,253)
WRITE (5»1)

444444444444444SELECT FI LE FOR CURVEF ITXXXXKKKKKKAKKKK

VWRI TE (5,102)

READ (5,301) FILE

CALL CHKNUL (FILEsFILLEN)

OPEN (UNIT=1,TYFE=‘0LD’»NAME=FILE)

A44444444444444] NPUT I NI TI AL ESTI MATES444444444444444

VRI TE (5,7)
READ (S»%x) L1
LL1=4%L1
DO 25 1=1,yL1
VRI TE (551)
VRITE (5,10) |
READ (Ss%) X((I+L1))
WRITE (5»11)
READ (S+%) FC
X(I)= =(FC/100)%XX((I+L1))
WRITE (5+12)
READ (Sy%x) XC((I+(2%L1)))
WRITE (5913)
READl (S»%) X((I+(3%L1)))
CONTI NUE
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ERRRRKKKK Kk kREAD DATA FROM FIURRRK KKKk KX KKKK

REWND 1
READ (1+,401) AST

READ (1,402) Tl TLE ~
READ (1s%) ITYFE

READ (1,%)> NCHN

READ (1s%) L2

READ (1s%) T4

READ (1s%) TS

READ (1s%) Té

DO 30 I=1,L2
BUF (I)=(T4%I)-TS
L3=L2/4

KKK KAKR Kk ¥k kXkkDETERMINE UPPER AND LOWER %% % % %k %k k3 ok ok 3k %k % k
KKK KK KKK KRK KRk RKFREQUENCY FOR CURVEF I T30k k%K ok ok 3k 3k Xk ok % % 8 ok K

WRI TE (5,1)
WRI TE (5+35)
READ (5»%) Z21
VWRI TE (5,36)
READ (5.x) 222
ILi=
ID2=
DO 38 1=1,L2
| F (BUF(I>.LT.ZZ1) IDi1=1

| F (BUF(1).LT.2Z2) 1D2=1
CONTI NUE

IDI=IDltl

LI W&l O

LW=2048

IFAIL=1

ID3=(IN241)-1D1

| F(1 D3. GT. 300) GOTO 9999

KKK KKKK kX KKREAD MORE DATA AND. SET ARRAYSKIKKKKK KK KK KKKk

DO 45 1=1D1,1ID2
FROCI-(IDI41)))=RUF (1)
WRITE(Ss1)
PITEAS.72)
T i5,1)
4 I=19L3
nLAl (1y%) R1yR2yR3»R4yRSyR6YR79RB
BUF (((4%I)-3))=R1
BUF ( ((4%I)-2))=R3
BUF (((4%I)-1))=RS
RUF ( (4%1))=R7
DO 47 1=ID1,ID2
REH((I-CID1+1)))=RUF(I)
WRITE(S,41) | D3
WRI TE (5,1)
WRI TE (5,39)
WRI TE (5+1)

s)xxkkookkkkkkkkCALL NAG CURVEFI TTI NG RODUT INE %ok kkokk ok k k% dkok ok
CALL EOAFDF(ID3yLL1sXsFSUMSQyIWsLIWsRUF,LWs IFAIL)
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100
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110
120
130
140
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160
170
250
251
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9999

AR AR KKK KKK KKUDF=UNDAMFED NATUR FREQUENC'Y %KX X XK 30K X K K KKK kK
KRR KRKRXKKFCC=% CRI TI CAL DAMP INGRRKK KKK KKKk KA KK KK Kk ok Kk

DO 65 I=1sL1
UDF(I)=SARTC((X(I)XXC(I) I+ (X((I+L1))XX((I+L1))))

"PCCCIN=~(X(II/ZUDF(I))%100 -

Fes:

KRRRAKKAKKRKKRKKOUTFUT RESULTSRRRAI0KRKKRKKKKXK

DO 70 I=1»sL1
VRI TE (5,99)
VRI TE (5,100) |
VRI TE (5,1)
VWRI TE (5,110) X(I)
VWRI TE (5,120) PCC(I)
VWRI TE (55130) X((I+L1))
WRI TE (5»140) UDF(I)
WRI TE (S5+150) X{((I+(2%L1)))
VWRI TE (5+160) X((I+(3%L1)))
VWRI TE (5+170) IFAIL
VWRI TE (5,99)

AKEXKKKRKEKKKKKKKFORMAT S KRR KXRKRKKKKEKKKXK

FORMAT (’
FORMAT(
FORMAT ("
FORMAT (
FORMAT ('
FORMAT (
FORMAT (’
FORMAT (*
FORMAT (’
FORMAT (*
FORMAT ¢’
FORMAT ¢’
FORMAT (
FORMAT (‘
FORMAT (
FORMAT (“
FORMAT ('
FORMAT (’
FORMAT (”’
FORMAT ¢
FORMAT (’
FORMAT(
FORMAT ("
FORMAT ¢’
FORMAT (¢’
FORMAT ('
FORMAT (’

)
MDOF CURVEFIT PROGRAM MARK4: PIF11 FORTRAN’)
1333223333323 333323223232833320223222202%22 0
INPUT THE NUMBER OF MODES RECOGNIZED >’s$%)
INPUT NATURAL FREQUENCY “9I29'>’+%$)
INPUT XCRITICAL DAMPING ESTIMATE >7’+%)
INPUT REAL RESIDUE ESTIMTE >‘s$%)
INFUT IMAGINARY RESIDUE ESTIMATE >‘9%)
INPUT LOWER FREQUENCY LIMIT FOR MDOF FIT *’9¢%)
INPUT UPPER FREQUENCY LIMIT FOR MDOF FIT >79+%)
*KKKKKKKKCURVEFIT NOW IN FROGRESSKX¥XkKKKKXKX ‘)
N Uvm BER oF CURVEFIT pPoInTs = “»14)
XRKKKKKRKKDATA NOW BEING REAI FROM FILEXXXXKKKXX ')
1$333333333323232383230223922333323202 222083 O
MODE NUMBER ’»#12)
INPUT FILENAME >‘9s%)
DAMPING FACTOR?‘»F12.4)
PERCENT CRITICAL DAMFING:’sF12.4)
DAMFED NATURAL FREQUENCY:‘»F12.4)
UNDAMPED NATURAL FREQUENCY: ‘sF12.4)
REAL RESIDIUE:‘+F12.,4)
IMAGINARY RESIDUES‘+F12.4)
ERROR MESSAGE:‘»I12)
X¥XKVERSION 4.2 -Up SINCE JAN 1983%X¥%‘)
CURRENT MAX LENGTH OF FILE=2048 COMPLEX DATA POINTS )
-TRANSFER FUNCTION DATA REAL AND IMAGINARY PARTS’)
CURRENT MAX NUMBER OF CURVEFIT POINTS =300‘)

FORMAT (64A1)
FORMAT (4A1)
FORMAT (64A1)

STOP
END
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SUBROUTINE CHKNUL (FILNAM»NEYTE)
BYTE FILNAM(1)

J=NBYTEtI =
DO 100 I=1+NBYTE '
J=J-1
IF(FILNAM(J) .NE.*40)60T0 101 1*40 = SPACE
CONTINUE

J=Jtl

FILNAM(J)=0

RETURN

END

SUBROUTINE LSFUN1(MsNsXCysFVECC)
COMMON /DSFACE/FRyREH,yID3
DIMENSION FVECC(M)» XC(N)» FR(300)y REH(300)
REALX4 FVECCs XCy FRy REH
REAL%X4 HH» X1y X2y Uy W» At By VZ1i, VZ2
REAL%4 VZ3y VZ4,y VZ5, V26, VZ7y V Z 8
INTEGER It JyID3sMs N
DO 200 I=1,1ID3
HH=0.0
X1=FR(I)
X2=REH(I)
N2=N/4
DO 190 J=1sN2
U=XC(J)
W=XC((J+N2))
A=XC((IJ+(2%XN2)))
B=XC((J+(3%XN2)))
VZi=X1+W
VZ2=X1-W
VZ3=(UxU)+(VZ1%VZ1)
VZ4=(U%U)+(VZ2%VZ2)
VZ5=(UxU)-(VZ1%xVZ1)
VZ6=(UXU)~-(VZ2%VZ2)
VZ7=((A%U)~-(BXVZ2))/VZ4
VZ8=((AXU)+(EXVZ1))/VZ3
HH=(X2/N2)+VZ7+VZIB+HH
FVECC(I)=HH
CONTINUE
RETURN
END

SUBROUTINE FRNAME (NAME)
REAL*8 NAME

WRI TE (S5»10S5sERR=99999) NAME
FORMAT (1X»A8)

RETURN

END
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