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ABSTRACT

Thisthesis is concerned with the flexural vibration of rotating discs and bladed discs. The
preliminary part explores and unifies the definitions of different terms which have been
used by previous workers in this subject. For harmonic excitation of a rotating disc, the
general response of double modes is investigated. It is shown that there is more than one
frequency component in the response. Also, the relationship are obtained between the
frequencies of response and resonances, the disc rotation speed and the number of nodal

diameters due to a given excitation.

A major part of the thesis reports the development of a practical simulation of vibration in
a disc rotating past a static force. This kind of excitation occurs in practice due to non-
uniformity of the pressure distribution on either side of arotating disc but it is difficult to
reproduce under laboratory conditions. It is shown that each mode of vibration can be
excited in a stationary disc using two harmonic forces having certain spatial and temporal
phase angles. For this simulation, a dual-sine excitation technique has been developed
which may also be used for modal analysis of a disc or any axi-symmetric structure.
There are close modes and even coincidences of natural frequencies of the modes in axi-
symmetric structures which are often difficult to distinguish in normal experimental

methods. These modes can be isolated and identified using the dual-sine excitation

method.

The dual-sine excitation technique has been examined for different systems and excitation
sets in terms of complex modes, mistuned systems and also different spatial and temporal

phase angles for the exciters to see how widely the procedure can be applied in rea




situations. A discrete mass model of a disc has been considered and different cases have
been simulated using this model. On the experimental side, a phase and amplitude shifter
has been developed for use in the dual-sine excitation method. Its input is a sinusoidal
signal from the generator and its output is two sinusoidal signals with controlled relative

amplitudes and phase angles.

A method is presented for displaying and interpreting the response in the vibrating disc.
The response of an axi-symmetric structure is a combination of travelling waves and fixed
vibration and the resulting complexity makes it difficult to visualise. A suitable format is
devised for presentation of the response of a such structure to help understand what is

going on at different points of the circumference when the disc is excited.

The final part of the thesis examines the vibration interaction between a rotating disc and
an adjacent stator. There are two cases of interest which are likely to occur in practice.
First, when the excitation initiated on the rotating disc due to an engine order excitation.
Second, there is a possibility of vibration interaction of the stator with a disc when the
stator is excited by a cyclic force input from an external source. In both of these vibration
interactions, the critical speeds and conditions should be identified and examined in order

to take them into consideration in practice.

In conclusion, this thesis provides a clear analytical and visual picture of the vibrational
response of a rotating disc and a technique for displaying the response. The dual-
controlled sine excitation method and its extension for more than two exciters is studied
which may be used to ssmulate vibration response of a disc rotating past a static force
(which isatravelling wave). A general formula for the simulation, a relationship between
the excitation forces, spatia and temporal phase angles is presented. In the study of
vibration interaction, it is shown that there is possibility of the transmission of disc
vibration to the stator or vice versa. In the former case, the stator response is a travelling
wave with frequency twice of the vibration frequency in the disc and in the latter case the

vibration of the disc is a combination of ‘fixed vibration” and ‘travelling waves'.
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NOTATIONS

A complex number, frequency dependent
Coefficients have been defined in equation (7.9)
Amplitude of forward travelling wave

Amplitude of backward travelling wave

Modal constant of mode r from response measured at point j excited
point k

Amplitudes of sine and cosine components of the response

Two real constants are defined with the temporal phase anglein
chapter 4

Harmonic excitation forces

Amplitude of the sinusoidal force or - non-rotating static excitation
force

Amplitude of the nth engine order excitation

A part of forcing function generated due to the vibration interaction
Stiffness of each spring in atuned model in chapter 5

Functions of excitation parameters (in chapter 3)

Arbitrary integer coefficients

Stiffness of the interface between rotor and an adjacent stator
Mass elements in discrete-mass model in chapter 5

Number of nodal diameters of an undesired mode to be excited or -
chapter 5, mass of every element in the tuned discrete mass model
Number of nodal diameters

Number of wave orders

Two constants

Normal coordinate

Generalised force




Wy, W, etc.
x(0,1), X
X1 X5

[A)

(H]

(K]

Il

[Ty
(1]

A, Uy

Olpn, OBp

Bn

Control word for phase
Control word for amplitude in channel 1

Control word for amplitude in channel 2

Number of noda circles

Time

V oltage on the command signal from generator

Voltage towards shaker 1

Voltage towards shaker 2

Amplitudes of different termsin the response

Response and its amplitude

Amplitudes of travelling wave and fixed vibration termsin the
response expression equation (3.33)

Amplitude of response

System matrix=[M][K]

FRF matrix

Mass man-ix

Complex stiffness matrix

An eigenvector ={ vy}

An eigenvector ={ '}

Norm of the vector u

A matrix for wave order n defined in section 3.8

An expansion of [T,] containing all the 1to N wave orders
Spatia phase angle between the excitation force and the origin of the
stationary coordinate

Phase angle between travelling wave term and fixed vibration termin
the response equation (3.33)

Phase angle of the forward and backward travelling wave terms
An angle as defined in equation (3.21)

Speed coefficient




Ay, A, - Increments for R21 and R22 respectively

o5, O, - Spatia and temporal phase angles between excitation forces
o(0) - Eigenfunction of adiametral mode

Y - Anangle asdefined in equation (3.21), dso it is the spatial angle

between applied force and the origin in chapter 7

il - Damping loss factor

A - A complex value which is afunction of the eigenvalue

0, 6, - Coordinate systems, rotating with disc and stationary respectively

0, - Position of ‘pseudo-nodal point’ on the rim

{w} - An eigenvector

(\p'} - Revised eigenvector of repeated eigenvalue to fulfil the uniqueness

conditions

') - Normalised eigenvector of { ')

'] - Matrix of elgenvectors

o - Excitation frequency

W, - Natura frequency of n diameua mode of the disc

w,, 0" - Backward and forward apparent resonance frequencies
Abbreviations

BBD Bucket brigade delay

DAC Digital to analogue converter

DCS The dual-controlled sine technique

EM Experimental method in simulation of navelling wave

Eo Engine order

FRF Freguency response function

HM Hybrid method in simulation of travelling waves

NAG A collection of library routines for computing

ND Nodal diameter

PHASH - Phase and amplitude shifter




VPI Vibration pattern imager, ( alaser device)

VCO Voltage controlled oscillator

Sub- and super-scriptions

a Apparent resonance frequency
d Disc
1,2 First and second modes of a pair diametral mode, also refer to
measurement points 1 and 2 on the structure
S Stator (in chapters 6 and 7) and also for spatial phase angle ¢,
0 Stationary
c Critical speed of the disc
n The n nodal diametral mode
t Tempora phase angle between excitations
Operators
[ - Absolute value
[ - Norm of avector or of a matrix
[ ] - Matrix
{ } - Vector
(1T, 1 1T - Transpose of avector or of amatrix
[ 1! - Inverseof asquare matrix
[ 1 - Pseudo-inverse of a matrix

Second time derivatives

Z Angle
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Chapter LIL |

GENERAL CONSI DERATI ONS

1.1 INTRODUCTION

Vibration in structures and machines is normally an unwanted phenomenon behaviour
which may cause fatigue failure, unreliability and noise pollution. In order to cope with
this problem and to make sure that vibration levels are low enough to prevent damage and
losses, methods and theories have been developed and practiced, e.g. references [1] and
{2]. In recent decades, aided by development of computing and experimental facilities,
there has been abundant research, both experimentally and analytically, in the
identification of the dynamic properties of the structures. Modal testing - the
experimental techniques in vibration analysis - has been established and publicised
[3,33], which has significantly expanded the capability of the investigation and solving of
structural vibration problems. On the theoretical side also there has been alot of effort to
predict the dynamic characteristics of a structure. However, neither theoretical nor
experimental methods always give a precise estimate and each has certain deficiencies. In
recent years, there have been many attempts to use experimental results in the theoretical

model to make a representative dynamic model for the structure.
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Among engineering structures, rotating machines have a specific place and are very
important from the viewpoint of vibration analysis. For example, jet engines are in this
category and it is needless to stress how important is the safety of these engines in an

aeroplane or how costly it would be if just one blade fails in a steam turbine.

Vibration analysis concerned with rotating structures has severa different aspects. Many
researchers have worked on rotor dynamics and dealt with the vibration in rotating shafts
[30,31]. Much work has been done on disc vibration and alot of studies on the vibration
analysis of the blades. Of course, these results have to be combined to present the
vibration characteristics of the complete rotating machines. Blades are more sensitive to
vibration and more failures have been reported in these components than in the others due

to the high stresses devel oped.

In gas and steam turbines, blades have a very important role. Often the failure of one
blade can be responsible for large economic, social and sometimes human losses. Fatigue
failure has been diagnosed for many of these accidents. Since the beginning of this
century, many researchers have tried to understand the real dynamic behaviour of the
blades in a bladed disc assembly under operating conditions. Blades have been modeled
as cantilevered beams, however in a bladed disc the flexibility of the disc and its
significant effect on the dynamic properties of the blades have also been included in the

considerations by some researchers [5,8].

The transverse or out-of-plane flexural vibration modes of a disc are characterised by
nodal diameters and noda circles [5]. The modes which consist of nodal diameters are
encountered more in practice and their response can be excited as stationary waves [4].
The stationary wave has been recognised as a wave which caused severe vibration in the
bladed disc. While this wave is stationary relative to a coordinate in space, it is rotating in
the opposite direction relative to the disc with a speed equal to the disc speed (€2). The
stationary and travelling waves and their relationships have been discussed in references

[3,6] and are described in more detail in section 1.3.
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Analyses and experimental techniques needed to explore the vibration behaviour in
rotating structures are not as simple as in the ordinary stationary ones. This is not only
because some of the dynamic properties (such as the natural frequencies) change with
rotation speed, but also the property of axi-symmetry or periodicity within most of the
rotating components causes the problem to be more complex. The rotating disc used in
gas and steam turbines or in other applications has been studied by many researchers.
Since the invention and application of steam turbines in the early years of this century,
research on blade properties started because many failures had occurred. In the early
1920s, Campbell [4] carried out his vauable work on the problem of failure of bladed
discs in steam turbines. For the first time, comprehensive experiments were carried out
on steam turbine bladed discs and different modes in the rotating discs were examined.
Campbell found that both disc and buckets vibrate together as a continuous disc and must
be treated as a unit in the study of vibrational behaviour. He also discovered the travelling
and standing waves in vibrating discs and in his observations, he found that the standing
wave - caused by a disc rotating past a static force - was the cause of most failures in
bladed discs. One of the consequences of his research was that discs then had to be so
designed that they did not operate at any of their critical speeds as always there is a

possibility of such small excitation forces present in turbines.

Ewins [8,12] found anaytically and experimentaly that a bladed disc has many more
natural frequencies than those predicted for one individual cantilevered blade. Figure 1.1,
which is taken from reference [8], shows the families of modes of a bladed disc, and also

those for the disc alone, compared with the cantilevered blade frequencies.

The general vibration behaviour of a bladed disc is similar to a solid disc and has nodal
diameters and nodal circles in its mode shapes. Considering the lower bladed disc curve
in figure 1.1 (which corresponds to the zero nodal circle family of modes), it is seen that
by increasing the number of nodal diameters, the natural frequencies do not change very

much and approach the first flexural cantilevered mode of the blade.
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much and approach the first flexural cantilevered mode of the blade.
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considering a circular plate [2]. However, research is still needed on how to predict the
maximum response level in the bladed disc if it is not ideally axi-symmetric. Also, a
problem still exists of how to estimate the modal properties of a mode close to the

adjacent modes, which is usually the case for higher diametral modes due to the closeness
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The basic theory for the vibration modes of a disc has been understood for many years by

of the frequencies, shown in figure 1.1. This figure is for a perfect and idea axi-

symmetric case but in real terms, the bladed discs are dightly imperfect and so there are

more modal frequencies than seen in figure 1.1.

Ewinset a [7, 8, 10,131 have worked on the effect of imperfections on forced response

levels as well as on the modal characteristics. It has been shown in [ 13] that the maximum
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level could increase in some blades by up to 163 percent of the tuned case while at some
other points the response level becomes less than in the tuned system so that the mean
level is amost constant. Whitehead, in his theoretical investigation [28], explored an
approximate formula to predict the maximum level of mistuned response relative to the
tuned case. His formulais related to the number of blades and it has been deduced in this
work that an odd number of blades has been selected in many designs to avoid vibration
of the mode with number of nodal diameters equal to half of the number of blades. Due to
mistuning, a rogue blade vibration can occur in a bladed disc [24]. This provides severe
response levels in one or two blades while the others are a much lower levels.
Susceptibility of a blade becoming a rogue is not only a function of mistuning but also of
the excitation pattern. A significant degree of mistuning can be introduced to the bladed
disc assembly by packeting the blades [25,26,27,32]. This is done in shrouded bladed
discs and it has been shown that for certain patterns of packeted assemblies we can

minimize the extent of blade vibration response levels to specific excitation orders.

Excitation sources originated from different mechanisms in the compressor and turbines,
but the most common has been modeled as a static force applied in the axial direction to
the bladed disc. This excitation could be from any non-uniformity in pressure distribution
of the gas flow through stationary vanes, struts or nozzles and can cause a Sserious
problem if the disc runs at one of the critical speeds. In reference [7], it is proposed that
any diametral mode in a disc rotating past a static force can be smulated by a stationary
disc with two harmonic forces. These forces are applied at the certain positions on the
disc and have 90° phase difference in time. This could be very important in the
experimental investigation of vibration in the rotating discs. First, doing experiments on a
stationary structure is more convenient than on a rotating one. Second, it is possible that
any diametral mode may be chosen and excited while the other modes are not excited or
their effects are very small, which can be a good procedure to identify modal
characteristics. Developing this idea has been a mgor objective on this thesis. Staples

[23] has smulated experimentally the travelling waves on a casing by using two
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shakers . He showed that by increasing mistuning, the amplitude of the
(with respect to the disc) decreased and so there was less possibility of

1 the stator and the rotor by comparison with the tuned case.

zsearch into the vibration of bladed discs assemblies, e.g. as reviewed in
there are few works on the investigation of travelling wave responses. In
. two studies mentioned - i.e. [7 and 23], Macke [22] has explored
s in vibrational shells and rotating cylinders. In his work, the smilarities

s between the frequency - speed diagrams of a cylinder and a disc are

nore familiar with the basic terms which are frequently used in this thesis
modes, mistuning, Campbell diagram, engine order excitation and muli-

I, these are explained in the following sections.

L VIBRATIONAL MODES IN DISCS

ttemsin a disc are comprised of nodal lines and nodal circles[5], as shown
sles in figure 1.2. For afree-free disc, the first mode is a two nodal diameter
, but if the boundary conditions are different, as it is in many applications,
1 vibrational modes for a disc with natural frequencies lower than the 2 ND

ency [21].

1al pattern of a disc with clamped-free boundaries, the amplitude changes in
on on every non-nodal radius so that the maximum amplitude will be at the
ce of the disc for the diametral modes. This is why, in most analyses, the

f the disc is used to characterise the disc vibration.
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beneficial, (standing waves and fixed vibration are explained in the next section). In
reference [17], it was shown experimentally that a pair of diametra modes with a split
factor of 0.056 behaves like a double mode (or a tuned system) while another pair with a
split factor equal to 0.25 percent acts as a mistuned system, (split factor has been defined
as the ratio of frequency split to the average of the two frequencies). Mistuning also
causes the number of resonance frequencies to be more than in the tuned case so that the
mistuned disc is more susceptible to resonances than the tuned case [9]. According to
reference[7], there is a correlation between the mistuning pattern and modes splitting; the
n nodal diameter modes will split if there isa 2n8 component in the mistuning distribution
of mass or stiffness around the disc. In atuned disc, the mode shapes are defined patterns
each with a certain number of nodal diameters but in a mistuned case each mode shape
does not consist of one single diametral order but is contaminated by other orders
[25,26]. The contribution of other diametral orders depends on the patterns of mistuning.
This results in mistuned systems being more susceptible to vibration at certain engine

order excitations than are tuned assemblies.

1.3 "WAVES' IN VIBRATING ROTATING DISCS

In the literature describing vibration in rotating discs, we come across phrases like
“travelling wave, standing wave and fixed vibration”. It is found that some of these
phrases are not used in a unified way by different groups. The definitions used and
explained here are identical to those used by Tobias et al [6].

When a single-point excitation is applied to a stationary disc, vibration occurs in an
ordinary manner as for any other smple structures. If the frequency of the excitation is
close to just one of the nodal diameter modes of the disc, the response on the rim will be
similar to that shown in figure 1.3 and is called a fixed vibration. In this figure, in

fact, the unwrapped rim has been shown as a straight line scaled from (0° to 360° and this
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display format will be used through out this thesis. The distorted mode shape is shown at
6 (or 7 in some cases) frames - equal increments of time during one cycle. For this case,
the response is a fixed vibration since the nodal points - or nodal lines - are fixed on the
disc. The amplitude of response changes from zero at nodal points to its maximum value
at anti-nodal points. The response on the rim can be described as

x(6,,t) = A sin nf, cos wt, where n is the number of nodal diameters and it is equal to 2

in figure 1.3.

%) 360

Figure 1.3 Fixed vibration response in a stationary disc
(2 ND mode)

In arotating disc, the excitation effect is normally complex since there is aso relative
motion between the excitation point(s) and the structure. In the study of vibration in
rotating discs, either of two coordinates can be chosen; one stationary in space 6,(t), and
another one rotating with the disc O(t). In a vibrating rotating disc, we can have a
travelling wave and fixed vibration simultaneously. A Travelling wave in a coordinate
is a deformed shape moving in or opposite to the direction of that coordinate. Figure 1.4
shows the response of a 3 diametral mode of a disc at three points in time which is
travelling in the stationary coordinate 8, to the right. For this case, the response can be

expressed as.

x(0,,0=A sin 3(8,- Q1) (1.1)
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where Q,, is the angular speed of the wave. In this type of response, every stationary

point

Figure 1.4 Schematic display of a travelling wave

experiences the same vibrational signa with frequency '3Q2,,' but at a different phase to
its neighbours and, clearly, when the response is a travelling wave, there are no longer
any fixed nodal points. A travelling wave could aso be obtained relative to rotating
coordinates. In figure 1.5, it is assumed that the disc is rotating so that its circumference
is moving to the left with speed Q and it is vibrating such that its response is a travelling
wave moving to the right with speed Q, relative to the disc. This motion can be

expressed by:

x(0,)=A sin 3(6-Q,1) (1.2)

Disc speed 2 Wave speed Q2,,

Figure 1.5 A standing wave (if Q,=Q)
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From a stationary viewpoint , the wave is moving with speed of 'Q2,,-Q' to the right
(Q,>Q). Now assuming a case that Q.= then, a stationary observer see the wave
stationary in the space which is caled a standing wave. From the mathematics ,
substituting '8, by '60+Q¢t' in equation 1.2 gives x(8,,t)=A sin 6,, which represents a
stationary shape - a standing wave. When the response is a standing wave, a stationary

pick up or vibration sensor does not measure any vibratory movement.

Here, the terminological aspects of the waves have been explained without talking about
the conditions in which they will be excited in vibrating discs. However, those conditions

will be studied in the other sections.

1.4 FREQUENCY - SPEED DIAGRAM AND RESONANCES
IN ROTATING DISCS

It is convenient to express the vibration characteristics of a rotating bladed disc in the
diagrams introduced first by Campbell [4]. There are four main factors involved in
considering vibration in rotating bladed discs. rotational speed, vibration frequency,
number of nodal lines and the response level. A plot of frequencies against rotating speed
is known as a Campbell diagram and in the following, a figure is used to explain the
diagram. In figure 1.6, a Campbell diagram for the n - nodal diameter mode(s) of a disc
has been illustrated where the n - diameter natural frequency has been named as curve
‘A’. The natural frequency increases with rotational speed due to stiffening of the disc

and the following governing relationship applies.

w? 03(2) +B O? (1.3)

h=
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Figure 1.6 Frequency - speed diagram for the n ND mode

where w,, is natural frequency of the mode in the stationary state and B is a stiffening

factor ( or speed coefficient) which depends on the mode shape and also geometry and

materia of the disc.

There are two other curves in the diagram in figure 1.6: curves ‘B’ and 'F' which are
offset 'nQ2' from the n diameter natural frequency curve ‘A’ and are the frequencies of the
backward and forward travelling waves. Assume the disc is rotating at speed €2, and that
a stationary harmonic excitation with frequency , is applied to the disc so that w,=®, -n
Q,, i.e. the excitation frequency intersects the curve ‘B’ due to the influence of rotating
speed. In this case, the disc will be at resonance with a frequency equal to w, and the
response is a backward travelling wave. With the excitation frequency equa to ®, in
figure 1.6, a similar situation will happen but the response is a forward travelling wave.
In practice, this type of resonance - which can occur with some multiple of the rotational
speed (h Q) - is caled a minor resonance {4,15]. Ewins [48] has investigated the

possibility of coincidence of two resonances in a mistuned disc at one rotating speed
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which causes certain blades to vibrate with amplitudes of up to 130 per cent above those
under normal conditions. This was reported to be mainly due to mistuning or even small

modification in design of the bladed disc.

French, in his experimental investigation on rotating compressor discs [16], explored
minor resonances which can be generated by a defective anti-friction bearing. Kushner
[15] and Jay et a [17] independently showed that in some turbine discs with certain

differences in numbers of vanes and blades can cause minor resonances in the bladed

disc.

Therefore, it can be stated that when a ‘per-revolution’ or multi-rotational excitation
frequency is equal to the frequency of backward or forward curve of a diametra mode in
the Campbell diagram, a minor resonance occurs. However, the ‘maor’ resonances occur
when the rotational speed is equal to Q¢ (shown in figure 1.6) which is called a critical
speed. At this condition, if the excitation is a static force (i.e. w=0), a resonance occurs
and the response of a double mode will be a standing wave. This excitation seems to be
inevitable in practice since any non-uniformity in pressure distribution on either side of
the disc, upstream of the stationary vanes to a bladed disc in a compressor (or gas flow

from n nozzlesin aturbine disc) can produce this kind of excitation.

These critical speeds were first found by Campbell {4]. He aso introduced the term
“standing waves’ which have been found to be the cause of many failures in engine
bladed discs. At this condition, the natural frequency is equal to the number of nodal
diameters multiplied by the rotation speed,.wc=nQ¢. It is concluded that the critical
speeds in the Campbell diagram are found by intersections of line 'nQ" with the curve of
the n nodal diameter natural frequency line, figure 1.6. The radial lines, such as 'n{2'
(n=1, 2,...), represent the excitation from n struts, vanes, nozzles or any obstacle in the
flow towards the bladed disc which represents n engine order excitation,.as it has

become known.
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In reference [4], it has been shown that the one - diameter natural frequency line does not
cross the'Q' line and so there is no critical speed for this mode. This is always true since
the speed coefficient, B,,, is normally between 2 and 3 according to reference [4] and it
can be shown that for n=l in the Campbell diagram line (w,-n€2) does not cross the

horizontal axis w=0.

1.5 MODAL TESTING METHODS

Modal testing, or experimental modal analysis, is a technique for the identification of
dynamic properties - natural frequencies, mode shapes and damping values - of a
structure on the basis of a test on the real structure or on its model. There are other
techniques which solve the problem mathematically, such as finite element (FE) methods.
Both mathematical techniques and modal testing methods have been developed in the past

two decades and have their own capability and advantages.

In order to test a structure for dynamic identification, it is usually excited by an external
force. A smple test is using an instrumented hammer to apply an impulsive force to the
test structure. Other methods of excitation are applied using an electro-dynamic shaker
which is normally connected to the test piece by a push rod. Different signals can be
applied to a shaker: sinusoidal, impulsive, random and periodic, and hence, different

force functions may be applied to the structure.

Input (force) and output (response) signals are measured and analysed to get information
about the dynamic properties of the structure. The technique was first introduced by
Kennedy and Pancu [36] and then developed by others. For more practical aspects and
details of modal testing, reference [3] may be used.
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There are two principal methods of excitation in modal testing: Single-point excitation and

multi-point excitation techniques which are introduced in the following.

1.5.1 Single-point excitation

Single-point excitation techniques are very common in modal testing and are simple as
just one exciter is used in each test. A single point excitation method has some advantages
and disadvantages compared with multi-point excitation techniques. The instrumentation
is simple as there is just one exciter and there is no need to control the input signals,
unlike in multi-excitation methods where relative phase control is necessary. However,
problems can arise when the test structure is big or the moda density is high. In the
former case, the input excitation energy may not be spread evenly over al parts of the test
structure. Also, using one excitation, most of the modes of vibration are excited except
ones whose nodal points coincide with the excitation point. By increasing the number of
excitation points, the possibility increases that modes are preferentially excited and even a
particular mode can be isolated and enhanced for better identification. In reference [35],
the problem of cross-axis motion and fragile test articles are also mentioned as limitations
of single point excitation. Despite these limitations, single point excitation techniques are

widely used in most modal tests on ordinary structures.

1.5.2 Multi-Point Excitation

The application of multiple excitation began more than forty years ago when Kennedy and
Pancu [36] introduced a method using two vibrators for the identification of symmetric
structures such as aeroplanes. At that time, the applied mathematical techniques for
determination of modal characteristics in a complex structure involved some
approximation and experimental verification of the analytical results were needed. This

led to the employment of multi-point excitation to excite normal modes by adjusting the
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different excitation forces. The idea of excitation of a normal mode is aso important when
there are close-frequency modes where the single-point excitation method may not be able

to generate accurate modal properties.

The theory of the normal mode excitation technique has been established strictly for an
undamped - or alightly-damped - lumped mass system [37], but the technique can also be
applied to continuous systems by considering a limited number of coordinates. The
general procedure of normal mode excitation is that the vibrators are located at proper
points for excitation. Then, arbitrary excitation forces at the desired frequency are applied
to the structure. This is done by checking on the oscilloscope the phase of the response
relative to the input force. At a resonance frequency, the phase angle is 90° for an
individual normal mode and, hence, we have to adjust the in-phase forces (except for
polarity) to achieve this phase angle at all the stations. This adjustment will be very
difficult for complex structures using many shakers. Asher[38] estimated the natural
frequencies and the force ratios needed to excite a normal mode theoretically. It has been
shown that the modal vectors are equivalent to those of the undamped or proportionally-
damped system and that the desired force vector can be calculated and predicted for
excitation. Craig et a [39] developed Asher's method for more applications. In the case
studied, a nine lumped mass system with proportional damping, they examined different
combinations of shakers and close natural frequencies. They aso explored the case of
addition of another shaker and suggested best locations. In reference [40] the limitations
on the modal testing with single-excitation as well as multi-excitation have been
discussed. The basis of the analysis of in-phase excitation using multi-point excitation is
applicable for a finite, discrete mass model and undamped or proportionaly damped
systems. In a proportionally-damped system, once the forces are adjusted at a natural
frequency, they excite the norma mode; if the frequency is changed, the force pattern
remains unchanged and the shape of the response is still the norma mode. However, if
the system is non-proportional damped, it has been explained in reference [40] that by

varying frequency, we have to re-adjust the forces to maintain the normal mode shape in




[1] GENERAL CONSIDERATIONS 36

the response. Moreover, application of classical in-phase excitation technique for non-
proportionally damped systems may lead to incorrect estimates. The non-proportional
damping (general case) has been explored further in reference [40] and proposed that for
excitation of a complex mode, a mode of a non-proportionally damped system , a
complex excitation frequency should be applied. That is, excitation should be in the form
of a damped sinusoid to concentrate the energy in the vicinity of the desired complex
response frequency. Another requirement which has been added to the modal testing
system in reference [40] is the generalisation of the control the shakers. It has employed
phase and amplitude control of shakers instead of polarity (0 or 180° phase) and

amplitude control of the input forces.

Hallauer et al [41] also considered a coupled-damping (non-proportionaly damped)
system in two numerical examples and showed that for these systems perfect mode tuning
is achieved only at the natural frequency with response quadrature phase relative to
excitation, even though all degrees of freedom are excited. They used multiple shaker
sinusoidal excitation and developed Asher's method for real continuous structures where
finite coordinates or incomplete excitation are applied and they showed the strengths and

weakness of the technique.

Sinusoidal excitation is the earliest technique applied for the identification of dynamic
characteristics and is still widely used. This is because of some properties of this type of
excitation. It is simple to apply and to measure the input - output signals. This factor was
very important a few decades ago regarding the experimental equipment at that time. The
most important factor of sinusoidal excitation is the possibility to reveal any non-linearity
present in the system. In the past decade, with more improvement in signal processing
and digital control systems, random excitation is applied widely in modal analysis evenin
multiple input methods. Allemang et a [42] used a two random input excitations
procedure and developed a formula to estimate the frequency response functions. They
have given some experimental example for their method. In reference [43], multiple input

random (MPR) and multi-phase sine sweep (MISS) methods have been introduced and
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discussed. In these techniques, uncorrelated inputs are used and so FRFs can be
computed between every response location and each of the inputs. They also have
proposed a method using multiple input FRF acquired via MPR or MPSS to determine
frequencies, repeated or closely spaced modes and the force associated with each mode.
The FRFs are employed in an eigenvaue solution to determine at which frequencies the
in-phase response is a minimum compared to the total response. This automated
procedure produces the force appropriation required to perform isolation and excitation of
real norma modes. In reference [44] another technique called ‘Spatia Sine Testing’
(SST) has been introduced in which the test structure is excited with an arbitrary force
vector at a particular frequency. The force vector and the forced mode (response) are
measured, then the parameter estimation algorithm extracts the modal parameters using an
eigensolution technique. More experimental results using SST method have been

presented in reference [45] which show the capability of this method.

In a single-point excitation technique, cross-axis motions may cause to fail the test
results. One way to deal directly with such undesired response is to actively suppress the
cross-axis motion, Stroud et al [35] introduced the multi-exciter single axis (MESA)
technigue and have employed phase control as well as cross coupling compensation. With
coordinated exciters, out-of-phase drive signals can be used to suppress unwanted motion

reducing cross-axis response and undesired coupling effect.

In the modal testing of axi-symmetric structures, we often deal with repeated natural
frequencies and high modal density. As mentioned before, one of the objectives of using
multi-point excitation is to enhance a mode which is difficult to identify and to analyse
with an ordinary single-point excitation test. On the other hand, simulation of a travelling
wave in arotating disc is of the interest of this work. Here, special dual sine excitation
must be developed which enables preferential excitation of a double mode or two close
diametra modes with the same order (number of nodal diameters). The input force

amplitudes and phase have to be controlled in order to fulfil the corresponding conditions.
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1.6 SCOPE AND OBJECTIVES OF THIS THESIS

One of the main objective of the research reported in this thesis is to develop a procedure
for simulating, displaying and interpreting vibration in a disc rotating past a static force.
In order to do that the basic understanding of forced vibration of a rotating disc is
investigated in chapter 2. A ssimple model is assumed in this stage since the qualitetive
understanding of the response - in terms of frequencies and components - is of interest in
this work. The response is obtained in both stationary coordinates and rotating
coordinates to show the resonance frequencies and the nature of the response in respect of
travelling waves or fixed vibration. Some of the analytical results are checked on a

rotating disc with the prediction and the assumed mode! results.

In chapter 3, the theoretical aspects of the smulation are described. First, the basic
concept of the ssimulation of a disc rotating past a static force is studied and it is shown
how the vibration can be simulated by exciting the stationary disc with two harmonic
forces. Then, the generalisation of the simulation is discussed which leads to a formula
presents the relationship between number of nodal diameters, spatial and temporal angles
between two excitation forces. In another part of this chapter, the application of more than
two excitations in the simulation is examined and a technique is proposed to improve the
simulation by increasing the number of exciters. In order to present the response of the
disc in an animated shape - which is very helpful for appreciating the complexity of
response- a decomposition procedure is introduced. In this method, we can estimate the
contributions of different wave orders in the response by carrying out a form of Fourier

transform of the response function of the rim with respect to the wave order.

In chapter 4, the application and the experimental aspects of the smulation are described.
Two methods are suggested which are basically the same. The first is a hybrid method in

which after obtaining the FRF matrix from experimental data, the response to the
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simulation condition are calculated. In the second method, the vibrational response of a
rotating disc is ssmulated experimentally on a stationary disc. Both methods are tested on
a real bladed disc and there is some discussion of the results. For controlling the
magnitude and relative phase of two forces, a phase and amplitude shifter is developed
and corresponding software is introduced. It is worth mentioning that to control the two
excitation forces is not easy in practice. Because there is non-proportionality between the
voltage input to a shaker and the out put force of the shaker around resonance, we have to

adjust relative phase and amplitudes of forces by atrial - and - error procedure.

In the next part of the thesis, a discrete-mass model of the disc is considered to examine
the smulation procedure in a model having more than one or two pairs diametral modes
assumed in the earlier smple model. Also, the smulation can be tried for the system with
complex modes and mistuned systems. These investigations are achieved by introducing

different datain the lumped mass model.

Another related subject concerned with the vibration in rotating bladed discs is the
possibility of vibration interaction between a rotating disc and an adjacent stator, and this
is the subject of chapters 6 and 7. It is shown that the vibration from one substructure can
transfer to the other through the medium in between. Regarding the vibration in the disc
discussed earlier, its interaction in the stator is obtained. Also, assuming that the stator
vibrates by a harmonic excitation, which is quite possible, the vibration induced on the
rotating disc is explored. The possibility of coincidence of resonances in the both casesis

examined by some numerical examples.

The conclusions from this work are drawn in chapter 8 where also suggestions for

further development are presented.



Chapter 2

FORCED RESPONSE OF A ROTATING DISC

2.1 INTRODUCTION

A clear understanding of the steady-state response of rotating discs to harmonic excitation
is essential in most investigations of the vibration of structures having these components.
Although many workers have explored the response of the rotating disc, a comprehensive
theory of forced response of rotating discs has not been presented. Frequency
components of response, natural frequencies and the critical speed concepts are usualy

used in most of the corresponding literature.

Nodal diameter modes are particularly important in the vibration analysis of a rotating
disc. These modes are the origins of the travelling and standing waves which have been
identified as the cause of many failures in turbine discs. The response of a disc due to the
excitation of a diametral mode is normally represented by the response on a concentric
circle on the disc such as rim of the disc, This consideration is simple and accurate since
the travelling waves are created in the circumferential direction and the maximum

response is on the rim.

Other assumptions have also been made here to simplify and to make the analysis

possible. A disc is treated as a lightly-damped structure. The stiffening effects due to
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rotation and centrifugal forces are not considered; these assumptions do not change the

generality of the conclusions.

In this chapter, steady-state response of a rotating disc under stationary harmonic

excitation is investigated in tuned and mistuned discs.

2.2 RESPONSE OF THE SI NE MODE TO HARMONIC
EXCITATION

2.2.1 Analysis Using Rotating Coordinates
2.2.1.1 Analysis

Let us consider a single mode of the pair of n ND mode of a disc rotating at speed 2. The
mode shape is assumed to be ¢(6) = sin nB and the natural frequency ;. The coordinate
0 is assumed to be on the disc and the excitation is a harmonic stationary point force
applied initially at a spatial angle a as shown in figure 2.1. The direction of coordinate 6

is assumed in the opposite direction to the disc rotation.

a
e 2 "+ + f(t)=F, cos ot
- —
0 6 © Disc circumference 2n
— Q

Figure 21  Coordinate on the rotating disc

The forcing function for such asystem is{51}:

F(8,1) = (F cos ot) 3[6-(Qu+a)] (2.1
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where §[6-(Qt+ar)] is a delta function and defined as;

3[0-(Qt+a)] =0 for 0=(Q t+a)
+ 00

and [s16-(Q t+a)] do=1

The generalized force for the assumed mode is:

2n

Q)= JF(e,o (8) do

or:

2n
Q)= J(FO cos coty 8[6-(Qt+a)] Sin nd do

After integration, this becomes:
Q)= F, cos(wt) sin n(Qt+a) 2.2)
Equation (2.2) represents the generalized force for the n ND mode. Having obtained the

generalized force, the normal response is calculated by using the convolution integral for

avery lightly-damped system [55]:

1

q(t) = OJQ(I) Sin W (t-t)dt (2.3)

nl “nl
Where: my isthe modal mass or generalized mass of the mode;

Wn1 isthe natural frequency of the mode;

Substituting from equation (2.2) in (2.3) and integrating will give:
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Fo { sin [(w+nQ)t+na] - sin(-w,t+nQ)
av) 3

4mp; W, W+nQ+o,;

sin [(w+nQ)t+na]- sin( ®,;t+na)  Sin {(@-nQ2)t-na] - sin(-w,;t-nax)
0+n§ - 0, w-nQ + ©,

i sin [(w-nQ)t-na] - sin(w,;t -na) }
O)—ﬂQ-(!)nl

(2.4)

This equation contains the transient response where the terms of natural frequency ®,;
exist. The investigation is concerned with the steady-state problem, that is considering

only the terms which are relevant to the excitation frequency. After simplification of

equation (2.4) we will have:

_ FO -1 : +1 1 - t-
q(t) = 2mg; { (co+nQ)2- wn12 sin [(o+nQ)t+na] + (a)-nQ)z- (Dn12 sin [(w-nQ)t-na }

This equation gives the normal coordinate of the n ND mode and by using it , the

response is calculated :

Xq1(6,0) = q(t) ¢(0)

or
Xn1(8,t) = -W; sin [(0+nQ)t+na] sin nB+ Wo sin [(0-nQ)t-no] sin nb (2.5)
where:
+F
W= . 2 2
2 m,; [(0+nQ)"- w,17] 2.6)
and W,= +Fo

2 m, [(0-nQ)%- w,,?]
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Equation (2.5) presents the response of a single ND mode of a rotating disc excited by a
stationary harmonic force. It consists of two ‘fixed vibration” components with
frequencies of (wdn ). The response frequencies at different speeds are shown in figure

2.2 for a defined excitation frequency .

-

w+n Q
Response frequency
(measured on disc)

Frequency

® Excitation frequency

Response frequency
(measured on disc)

-
Rotation speed Q

Figure 2.2 Excitation and response frequencies of singlen ND mode
in arotating disc; (Stationary harmonic excitation;
and response coordinate on the disc)

Equations (2.5) and (2.6) show that there are two frequencies for the system at which the

denominators are zero: (anQ)*- co:l=0. It follows that there are two ‘apparent resonant

frequencies’ at each spinning speed

© = 0,+nQ
(2.7)
and ® -~ =w,,-nQ

a
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where w: and . are gpparent resonant frequencies and are shown in figure 2.3 for

different speeds. Note that the analysis has been based on the coordinate fixed on the

disc. In the next section, the analysisis carried out in terms of a stationary coordinate.

(D+
a
(Apparent resonant freq.)

(Natural freq.)

Frequency

(Apparent resonant freq.)

Rotation speed

Figure 2.3 Apparent resonance frequencies for a rotating disc vs rotation speed
(In the stationary harmonic excitation)

2.2.1.2 Resonance frequencies in rotating discs

Response frequencies and resonant frequencies are shown schematically in figure 2.4. It
has been assumed that the excitation frequency ® islessthan w,; . The crossing points of
A and B in thisfigure arein avertical line since for example, the lines 0): and (w+n€2) are
parallel. These two points in figure 2.4 correspond to the rotating speed €2, and at this

speed coincidence of resonance occurs. This resonance can be interpreted either by the

intersection of the horizontal line  with the apparent resonant line w; - point A, or by

point B which is the intersection point of the response line (w+n€2) with horizontal line

wy,;. The former interpretation is in fact in the stationary coordinate while the second one
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refers to the coordinate rotating with the disc. Both points A and B in figure 2.4 have ® =

w,;-nQ which is equal to the apparent resonant frequency introduced in equation (2.7).

Frequency

L€

Rotation speed Q

Figure2.4 Resonance frequenciesin arotating disc at speed Q2 ,
(Excited by a stationary excitation with frequency co)

An interesting case is when the excitation frequency is equal to the disc’s actua natural

frequency and the disc is spinning, that is w=w,; and £2>0. For this case, there will be
no coincidence of resonance; because we can not find any point which satisfies equation

(2.7).

A similar analysis could be done for the case w>0y,;. In this case we will find that there
are two points like A and B in figure 2.4 where the equation ® = w,;+n2 is applied and

resonance occurs.

It is concluded that in the forced excitation of asingle ND mode of arotating disc, for any
excitation frequency , there is a rotation speed at which resonance occurs. We can state
this in another way, at each rotation speed there will be two apparent resonance

frequencies, one below and one above the actual natural frequency.
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2.2.2 Analysis using Stationary Coordinate

Next, a stationary coordinate 8 is used in the analysis of harmonic excitation of the sine

n ND mode, as shown in figure 2.5. In this coordinate the forcing function is:

F(Bo,1) = (F, cos ot) 8[6¢-ac] and the eigenfunction will be sin n(Bp+Q2t).

L &, a . f(t)=E cos ot
I ]
|
| |
0 2n
=6 |9, 4 - Q

Figure 25 Stationary coordinate 6, for the rotating disc

We can either (a) conduct a similar analysis to that carried out for the coordinate located
on the disc 6; or (b) replace 6 by (Bp+£2t ) in equation (2.5) to obtain the response of the
disc in terms of the stationary coordinate. If we substitute 6 by (89+£2t) in equation (2.5),

we will have:
Xn1(B0,t) = -W; sin [(+nQ)t+na] sin n(Bp+Qt)+ W5 sin [(0-nR)t-na] sin n(8g+Qt)
If the terms of this equation are multiplied and simplified, it becomes:
W,

W
an(eoyt)='“leOS[neo-OJI-HOLH 5~ cos [n6o+(@+2nQ)t+nat]

+ \—%2— cos [nBg-(w-2nQ)t+na] - Ezz cos [nBp+wt-na] (2.8)
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Equation (2.8) represents the response of the rotating disc in terms of the stationary
coordinate 83 and shows that the response frequencies measured with a stationary sensor
are ® and (0x2nL2). These three frequencies are shown in figure 2.6. Note that the
apparent resonant frequencies are the same as those presented in equation (2.7) and figure

2.3. Thus they are independent of the chosen coordinate.

w+2nQ (Response frequency)

Frequency

T Rotation speed Q

Figure 2.6  Excitation and response frequencies in a rotating disc; Coincidence of
resonance at speed €2, (As detected in the stationary coordinate)

In figure 2.6 the apparent resonant frequencies co;" and w_ have also been plotted. It is
seen that at points A and C the coincidence of resonance occurs since at these points ® =
w,;-n€2 and W, becomes infinity which is same as obtained in rotating coordinate in

section 2.2.1.2.
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2.3 RESPONSE OF THE COSINE MODE TO HARMONIC
EXCITATION

In section 2.2 the response of a single diametral mode has been obtained. In this section
similar analysis is used for the other n ND mode of the pair (cosine mode). Again, the
analysis is carried out in two parts. First, the response is analysed in terms of a

coordinate on the disc, then it is extended to a stationary coordinate.
2.3.1 Analysis Using Rotating Coordinates

The mode shape in this coordinate is described by ¢(8) = cosn6 and the forcing function

isthe same as that introduced in section 2.2.1, that is:

F(0,1) = (F,, cos wt) 3[6-(Qt+a)]

The generalized force for the assumed mode is:

2Xx
Q(t)= (J(FO cos ot) 8[8-(Qt+a)] cos nd db

After integration, this becomes:

Q(t)= E, cos (wt) cos n(Qt+a) (2.9

Equation (2.9) represents the generalized force for the cosine conjugate of the n ND mode
pair. Having obtained the generalized force, the normal response is calculated by using

the convolution integral; similar to that mentioned in section 2.2.1. 1.

Fo

qt) =
4 myy 0,9

cos [(w+nQ)t+na] + cos(w ,t+na) + CoS [(w+nQ)t+na] - cos(-w ,t+na)
0+n2-w, 0+n + W,

coS [(w-nQ)t-na] + cos(w,t-na) + COS [(w-nQ)t-naj - cos(-wyyt -nax) }
©-nQ - ©;, ®-nQ+w;,

(2.10)
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Where m,, and m,,, are natural frequency and modal mass of the cosine mode. The terms
containing the natural frequency w,, are transient and are not considered in the steady-

state study. Thus, the steady state response is.

Fo -1 +1 s
q(t) = Im, { (w+nQ)2- wn22 cos [(o+nQ)t+na] - ((n-nQ)z- O)n22 cos [(w-nQ)t-not] }

(2.11)

This equation gives the normal coordinate of the n ND mode and by using it , the

response of this mode is obtained:

Xn2(8,1) = q(t) ¢(0)

or:
Xn2(6,t) = -W3 cos [(0+nQ)t+na] cos nf - W4 cos [(0-nQ)t-na] cos nb (212)
where:
+F
Y [(0)+n£2)2-m 2
2 - n2 (2.13)
and W *10

2m,,[(0-nQ)%- @,

Equation (2.12) represents the response of the cosine mode of the diametral pair excited
by a non-rotating harmonic force. It consists of two ‘fixed vibration’ components with
frequencies of (wxnf2). Figure 2.2 which shows the response frequencies for different

speeds in the rotating coordinate, is also applicable for this mode.

Equations (2.12) and (2.13) show that there are two resonance frequencies for the

system, when the denominators are zero (w#n{Q)>- w,,°=0. It follows that there ae two



m FORCED RESPONSE OF A ROTATING DISC 51

‘apparent resonant frequencies' at each spinning speed €2, and these are similar to the

apparent natural frequencies of the other mode, equation (2.7):

+ —_— T = -
©; = 0 +n ,and @ = ®,-n2

2.3.2 Analysis in the Stationary Coordinate

In the previous section the response of the cosine pair of n ND mode to the stationary
harmonic excitation was obtained. Next, that response is obtained in a stationary
coordinate, 89, as shown in figure 2.4. In this coordinate the forcing function is F(8o,t)
= (F, cosot) d[6¢-a] and the eigenfunction will be cos n(By+Qt). We can replace 6 by
(Bo+Qt) in equation (2.12) to obtain the response of the disc expressed in terms of the

stationary coordinate.

X12(00,1) = -W3 cos [(0+nQ)t+nat] cos n(0p+Qt)- W4 cos [(0-n€2)t-nat] cos n(Bg+Q2t)

(2.14)
where W3 and W4 have been defined in equation (2.13).
If the terms of equation (2.14) are multiplied and smplified, it will give:
X4(Bg,t) = -—Wf cos [nBg-wt-nat] __V% cos [nBp+(w+2nQ2)t+na)
- %‘- cos [nBp-(w-2nQ2)t+na] - -Wz—“ cos [nBg+wt-na] (2.15)

Equation (2.15) represents the response the cosine pair of n ND mode of the rotating disc

in the stationary coordinate and shows that the response frequencies are @ and (w+2n<2)

the same as have been obtained for the other pair and shown in figure 2.5. Note that the
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apparent natural frequencies are the same as those presented in equation (2.7) and shown

in figure 2.3 and they are independent of the chosen coordinate.

2.4 RESPONSE OF THE n ND MODE PAIR TO HARMONIC

EXCITATION

2.4.1 Analysis of the response

In the previous two sections 2.2 and 2.3 we obtained the responses of each of the pair of
n ND modes in a rotating disc to a stationary harmonic force. These have been presented
in equations (2.5) and (2.12) in terms of rotating coordinates and in equations (2.8) and
(2.15) relative to the stationary coordinates. In order to obtain the combined response of
both n ND modes to the stationary harmonic excitation, we can just add equation (2.8)
and (2.15), that is:

+W3

-W
Xn(B0,0) = - TN =

cos [nBg-wt-na + w 5 COS [nBp+(@+2nQ2)t+na]

2+Wy

+ Wo-Wy cos [nBg-(w-2nQ)t+nat] - WT cos [nBp+twt-na]

2

(2.16)

where W), W3, W3 and W4 are defined in equations (2.6) and (2.13).
2.4.2 Discussion

Equation (2.16) represents the response of the pair of n ND modes of a rotating disc to

the harmonic excitation in the stationary coordinates. It is seen that the coincidence of
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resonance occurs at the same conditions as for the pairs of the n ND modes presented in
equation (2.7). In a tuned disc the natural frequencies and modal masses of a pair
diametral modes are identical but usually the disc is slightly mistuned and so m,;#m,,

and o, ,#w,,. For atuned case, equation (2.16) is simplified to the following formula

which represents two travelling waves:

Xn(0g,t) = - W13 cos [nOg-wt-na] - Wy cos [nBg+wt-na] (2.17)

where; Wi3=W1=W; and Waa=Wr=Wy4

Figure (2.7) shows an example for a tuned case where the response frequency is just a
single frequency equa to ®. The apparent resonant frequencies are (W,tnQ2) where
w,=W,;=0,, and therefore at point R there is the possibility of coincidence of resonance
since at this point w=(w,-nQ2). This makes W13 tend towards infinity and means that the
first term in equation (2.17), which is a backwards travelling wave, dominates in the
response. Recall the reason that the term presenting a travelling wave: The wave movesin
B¢ direction (due to negative sign of 'ot') and on the other hand the disc is rotating
opposite to 8¢. Thus, the wave travels opposite to the disc’s rotation and is called a

backward uavelling wave.
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Apparent resonant freq.
@ +n€2

Frequency

£

 (Excitation and response frequency)

Apparent resonant freq.

Rotation speed Q

Figure 2.7  Harmonic excitation the n diametral pair modes in a tuned disc.

Point R : Coincidence of resonance which presents a backward travelling wa
Point C : Critical speed where a standing wave is formed

(Detected in the stationary coordinate, 6o)

It is worth mentioning a special case here which is the case of static force excitation i.e.
when =0. Point C in figure (2.7) represents this situation. For this case W3=Wy4=W

and equation (2.17) becomes:

X4(B6p,t) = - 2W cos [n8y-nax] (2.18)

which represents a ‘ standing wave', since the response is time-independent and the disc

rim takes up a cosine deformed shape stationary in space while the disc is rotating.

In a mistuned disc there are two different natural frequencies for n ND modes, ®,; and

,,. Thisgeneral caseisillustrated in figure (2.8):
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25 CASE STUDY

It has been shown in sections 2.2.2 and 2.3.2 that for a rotating disc excited by a
stationary harmonic force, a stationary pickup at a point should detect three frequency
components - (W,-2n€2), ® and (0+2n€2). The initia analysis has been carried out for a
single mode and then the response of the pair has been obtained. Although according to
equation (2.16) the response of n diametral modes pair has three frequency components,
this part of the case study is going to examine and check the three frequency components
of a single diametra mode as the basis of the analysis results. Therefore, in a redl
situation, we have to examine the response frequencies at an excitation frequency near to
anatural frequency which is well separated from any adjacent modes. To achieve this, we
have to make the disc mistuned in order to have separated modes, since in practice there
are close ND modes in pairs. This investigation concentrates on the 2 ND modes, that is

n=2, and can be applied to the other diametral modes.

2.5.1 Description of the rig and equipment

2.5.1.1 Test rig

The test rig and measuring equipment are shown schematicaly in figure 2.9. The disc
which has been tested is a simple steel disc with diameter of 34 c.m.made of a plate
5m.m. thick. It is mounted on a shaft of a electric-motor with adjustable and controlled
speed. There are four identical steel masses which can be bolted to the disc to make it

significantly mistuned for the 2 ND modes.
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Electric-motor

Control Panel Electro-magnet
I | ic Exciter
{ (To Exciter)
. Disc
Disc Power Amplifier
=K I— Al ;

Figure 29  Test rig and measuring equipment in the forced excitation test on arotating disc

(----- isin case of the hammer tests)

2.5.1.2 Excitation

In the experiments on the rotating disc, the excitation device is an electro-magnet made
from a coil on a C shape core. One problem with this type of exciter is that it produces
harmonics of the excitation frequency rather than a single frequency, as shown in figure
A.1lin Appendix A. In our case, the second harmonic is stronger and is used as the main
excitation frequency. The input signa for the magnet exciter is generated from a power
amplifier LOS TPO300. By using this exciter and command signal from B& K 2032 FFT
Analyser, experiments with random excitation aso have been done to find the genera

wide band response of the rotating disc.
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Initial hammer tests also have been carried out to find out the natural frequencies and
modes of the dtationary disc stationary disc. From the FRFs, we can easily find the

desired ND modes.

251.3 Response Measurement

In this work the response of the rotating disc is measured at a stationary coordinate by
using a proximity probe. This is a non-contacting device used to measure displacement
and is assembled on a support of the test rig such that it is positioned close to the rim. At
the beginning, the gap between the probe and the disc should be about 1 m.m. which

produces 7 to 8 volts on the oscilloscope.

The VPI sensor [58] is another non-contacting device which is based on the laser Doppler
phenomenon, measuring velocity at a point on the structure. These non-contacting
sensors have the advantage that they do not affect the mass and dynamic characteristics of

the structure whose vibration they are measuring.

One problem with using the proximity probe is that there is the possibility of transmission
of excitation from the shaker to the probe through the support. This effect was examined
by using the VPI sensor and proximity probe simultaneously in the same measurements.
Figures 2.16 to 2.18 will be explained in the following sections; however, they can be
referred here to see that in each figure, three major frequencies have appeared exactly in
both measurements. Therefore, the excitation frequency which appears in the response
spectrum is from the vibration in the disc and we shall assume that we can trust the

frequencies measured by the proximity probe mounted on the test rig support.
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2.5.2 Experimental results

The experimental work has been carried out in three parts and using three different
methods. hammer tests on a stationary disc, single frequency excitation on the rotating

disc and random excitation on the rotating disc.

2.5.2.1 Hammer tests

The results of the hammer tests on the disc when this is not rotating are shown in figures
2.10 to 2.15. The first three figures are for the disc without added masses and the others
are for the disc with added masses (mistuned). The positions of the measurement and
excitation points, which are identical in each test so called ‘ point measurement’, are also
shown aongside the main FRFs. From figure 2.10, we understand that the natural
frequencies of the 2 ND modes are 150.0 Hz and 158.0 Hz. This has been confirmed by
changing the measurement point to two specia points in sides of the first measurement
point, figures 2.11 and 2.12. Each of these two points is, in fact, on a nodal line of one
of the pair of 2 ND modes so that in figure 2.11 only lower frequency mode and in figure
2.12 only the higher 2 ND mode has been excited .When the masses are attached they are
at 153 Hz and 200.5 Hz according to figure 2.13. It is seen that even when the pieces are
not bolted to the disc, the disc is mistuned for the 2 ND mode by about 8 Hz. This is
because of the existence of four holes on the disc and other non-uniformities in the
structure. By bolting pieces to the disc, the two 2 ND natural frequencies are about 48 Hz

apart, making two well-separated modes.

For comparison, the accelerometer and the proximity probe have been used
simultaneously in one test and the results are shown in Appendix A figure A.2. Good

agreement is found from this comparison.
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2.5.2.2 Single frequency excitation of rotating disc

For the case where the natural frequencies of the 2 ND modes are well separated (by
bolting four identical pieces on four perpendicular radii), we can examine the response of
a single 2 ND mode to a harmonic excitation. An excitation frequency is chosen on the
generator near to the natural frequency of one of the 2 ND modes. For this excitation the
response spectrum has been measured to find the frequency components in the response.

The results of different excitation frequencies are presented.

a) Excitation frequency below a natural frequency

The rotation speed of the disc was set to 120 rev/min, which is equivaent to 2 Hz, and

excitation frequency was chosen to w=196.0 Hz which is below the higher 2ND mode

shown by letter D in figure 2.13. The auto spectrum of the response was obtained using
the proximity probe and at the same time using the laser facility for comparison. The
result is shown in figure 2.16. It is seen that in the region of the excitation frequency

there are three peaks at :

188 Hz, 196 Hz and 204 Hz.

These frequencies are equivalent to the theoretical response frequencies @ and (w+2n{2)
which have been predicted in the analysis of response of a rotating disc in a stationary

coordinate.

b) Excitation frequency above a natural frequency

The excitation frequency was set at ®=204.0 Hz while the disc was spinning at the same

speed of 120 rev/min. This excitation frequency has shown by letter E in figure 2.13. The
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auto spectrum of the response is shown in figure 2.17 as a zoom measurement from 150
to 250 Hz. We can recognise the three dominant frequencies at 196.0 Hz, 204.1 Hz and
212.2 Hz. These frequencies are also in good agreement with theory which predicts that
the response of a single ND mode of rotating disc to harmonic stationary excitation in a

stationary coordinate consists of three frequency components, (@-2n€2), o and (w+2n<2).

c) Excitation frequency near to the first 2ND mode

Similar tests to those in parts @) and b) have been carried out around the lower 2 ND
natural frequency, 153 Hz. The excitation frequencies are 156.5 and 145.6 and
corresponding auto spectrums are shown in figures 2.18 and 2.19 respectively. Again we

can simply check that the response contains three frequency components which

correspond to (-2nQ2), o and (w+2n€2).

2.5.2.3 Random excitation of the rotating disc

A random noise signal can be generated by the FFT analyzer and applied to the (non-
contacting) shaker to excite the rotating disc. In this test the disc has been used without
adding the auxiliary pieces. Figure 2.20 shows the auto spectrum of the response when
the speed of rotation is equal to 180.0 rev/min (3.0 Hz). The apparent resonant
frequencies which have been defined in earlier sections are shown. Remembering that in a

rotating disc the apparent resonant frequencies and the actual (non-rotating state) natural

frequency w, have the relationship of

©, = 0,1nQ2
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In figure 2.20 the frequencies corresponding to 2ND are 143, 151, 155, and 163 Hz. On
the other hand for this case nQ=2(3)=6 Hz, ®_,=149 Hz, ® ,=157 Hz. We see that

resonant frequencies 143 and 155 correspond to w_, and resonant frequencies 151 and

163 come from ® o

The apparent resonant frequencies of the 3 ND mode have been obtained 301, 319 Hz

and shown in figure 2.20. For this case n2=3(3)=9 Hz, and wnlswn2:310 Hz.(see

figures 2.9 and 2.10). It is seen that the apparent resonant frequencies are identical to the

theoretical values ®,3n€2.

2.6 CONCLUSION

In the harmonic excitation of a single diametral mode of a rotating disc, the response has
three frequency components w and(w+2n€2) while in rotating coordinates there are two

frequency components, (wing2).

In a rotating disc the value of natural frequency ®, no longer indicates the resonance
frequency directly but each single ND mode represents two apparent resonant frequencies
(w,+nQ). Of course, this does not depend on which coordinate is used. It is further
concluded that if the excitation frequency is exactly equal to adiametral natural frequency,

as long as the disc is rotating there is no coincidence of resonance for that mode at any

speed Q2.

For a mistuned disc, the harmonic excitation response of a pair of ND modes is a

combination of four travelling waves. In the tuned case the total response comprises two
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travelling waves forward and backward with effective vibration frequencies equal to the

excitation frequency.

In the case of static excitation, w=0, and a tuned disc, the response is stationary in space
and is referred to as a ‘standing wave' . This situation is for any rotation speed. However,
it will be at resonance at a particular speed called the critical speed which is equal to the

natural frequency divided by the number of nodal diameters.
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b) using Proximeter
(Excitation frequency=156.6 Hz)
(Rotating speed=140 rev/min)

46 2
dB
AUTO_SPEC CHANNEl A I 1 No.  FErea.
11 150 Frequency Hz. 250 ‘ ™
46 | 1 19.0
b) 2 2041
3 212.2
dB
2.9 ALITO SPEC CHANNEL B r 1
159 Frequency Hz. 250
Figure 217 Response of rotating disc; a) using Laser (VPI sensor)
b) using Proximeter
(Excitation frequency=204.1 Hz)
(Rotating speed= 120 rev/min)
53 8) 1, 2
3
dB
Al ITO spFc CHBNNEL A8 [ No.  Freq.
5.3 100 Frequency Hz. 200  mmmmemmeeeeee-
53 1 147.1
b 2 156.6
3 163.6
dB
4.4 AUTO SPEC CHANNEL B L1
100 Frequency Hz. 200
Figure 218  Response of rotating disc; a) using Laser (VPI sensor)




FORCED RESPONSE OF A ROTATING DISC 69
62
Qo
o}
E
gc
oL
2 E N o . Freq.
g | N | e
= 7 1 137.7
55 2 145.6
= 3 153.6
13 AUTO SPEC CHANNEL B [ 1
100 Frequency Hz. 200
Figure 219 Response of rotating disc
(Excitation frequency=145.6 Hz)
(Rotating speed=120 rev/min = 2 Hz)
59
S
=}
5 N F
g 0. reg.
¥ e
a8 2 143.0
. 151.0
PR 3 155.0
gy 2= .
o 4 163.0
5 301.0
.81 AUTO SPEC CHANNEL B [ 1 6 3190
Frequency Hz. 400
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at points 5 and 6 are resonant frequencies of 3 ND modes.
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Chapter 3

THEORY OF VIBRATION FOR A DISC ROTATING PAST A
STATIC FORCE

3.1 INTRODUCTION

In the previous chapter, the response of the rotating disc to a non-rotating harmonic
excitation was analysed. A special case of this analysisis when the excitation frequency is
zero i.e. the static forced excitation of the rotating disc. In practice there are many cases
where this kind of excitation occurs, such as nonuniformity in the pressure distribution
on either side of the discs in gas and steam turbines. The response of a rotating disc to a
static force excitation can generate standing waves, as mentioned in chapter 2 as a specia

case of zero excitation frequency.

It is possible to simulate the response of a specific nodal diameter (ND) mode in arotating
disc with harmonic forces applied on the disc in a stationary state [7]. This is very
important since it changes the test on a rotating structure to a stationary one which is more
practical. This simulation technique can be developed for more general casesto obtain the

relation between forces and their spatial position and temporal phase angle. In fact, this
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technigue can be considered as a specia form of multi-excitation method which is useful

for the modal identification of axisymmetric structures.

Normally, the response of a disc to a non-rotating excitation comprises travelling waves
and on the other hand the well-known “standing wave” in arotating disc is simulated by a
backward travelling wave in the stationary disc. A uavelling wave response is generated
by the excitation of the diametral modes in a disc and they are complex, for which the
normal methods of presentation are not applicable. A proper technique for demonstration

of the response is needed.

In the smulation, the response of a tuned disc is a pure backward travelling wave with
the same order as the order of the desired diametral mode. However, in a mistuned disc
or any rea case, the response to the same excitation is contaminated by other wave
orders. Mathematically, we can obtain the contribution of the other wave orders in the

response and display the spectrum of different waves in the response.

In this chapter, the response of a rotating disc to the non-rotating and static excitation is
analysed and then the theory of the simulation of travelling waves is developed. Also, a

method is presented to estimate the contribution of different wave ordersin the response.

3.2 RESPONSE OF A ROTATING DISC PAST A STATIC
FORCE

In chapter 2, the genera case of harmonic forced excitation of a rotating disc has been

presented. A specia case for that analysis is the static force excitation of a rotating disc

which can be obtained by substituting a zero excitation frequency (w=0) in the response

expressions. Also, it can be achieved similarly by direct analysis, as follows.

Let us consider apair of n ND modes of a disc rotating at speed €2. The orthogonal mode

shapes on the rim are assumed to be ¢‘V(8) = cos n® and ¢‘*(8) = sinnb. The
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coordinate 6 is assumed to rotate with the disc and the direction of coordinate 6 is
assumed to be in the opposite direction to the disc rotation £2. The disc is passing a static

stationary force Fg applied initially at a spatial angle a as shown in figure 3.1.

| O | a F,
o I._ N —o
I

|->90 Disc circumference / 2n
——-
0 - Q

Figure 3.1 Coordinates on the rotating disc past a static force

The forcing function for such asystemiis:

FO,1) = F, 8[6-(Qt+a)] (3.1)

It can be shown that the generalized forces for the assumed modes are:

Q()(t) = Fo cos n(Qt+a)

(3.2)
Q®(t) = Fo sin n(Qt+a)

Equations (3.2) represents the generalised forces for the n ND modes. The normal
responses are calculated by using the convolution integral and then the response can be
obtained using the mode summation formula, in the same way that has been applied in the

previous chapter. Having done this, we will get the steady-state response as:

Xa(0,t) = -Y,; cos [nQt+na] cos nB - Yy sin [nQt+na] sin n6 (3.3

where:




THEORY OF VIBRATION FOR A DISC ROTATING PAST A STATIC FORCE 73

Y= B
m,, ()™ 02 ]
- (3.4)
Y=

mn2 [(nQ)z- 'wn22]

Equation (3.3) represents the response of an n ND mode of a rotating disc excited by a
static force. It is a complex vibration at frequency (n€2) and consists of two ‘fixed
vibration’ terms. For a tuned disc, it can be shown that Y,=Y2=Y and so the response is

a pure backward travelling wave:
Xa(6,t) =-Y cos [n6 - nQt-na(] (3.5)

The analysis can be transformed to the stationary coordinate 8o by substituting © by
(B0+Q2t) in the response equation (3.3). After substituting and simplification, we will
have:

Xn(Bo,0) = - (Y1-2Y2) cos [2nQt+nBp+na] + (Yngz) cos [n6g-no] (3.6)

The response of a tuned rotating disc to a static force in the stationary coordinate is

obtained by just considering Y1=Y2=Y in equation (3.6):

X,(0g,1) = Y cos [nBp-na] (3.7)

This represents a standing wave and it means that the disc rim looks deformed with a
cosine shape, static in the view of a stationary observer. Also, equation (3.7) shows that
the configuration of the ‘standing wave' is independent of € and hence it forms at any

rotational speed.
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3.3 SIMULATION OF TRAVELLING WAVES

In section 3.2 the general formulae for the n ND modes of a disc rotating past a static
force have been obtained. Recalling equation (3.3) for the generalized forces;

Q) = Fpcosn(Qt+a)
Q1) = Fop sin n(Qt+a)

we see that each expression is a harmonic force with frequency (n€2) and presents the

forcing function for anormal mode. It seemsthat it is possible to simulate the response of
ann ND mode by applying two harmonic forces equivalent to the generalised forces and

positioned at nodal points of the ND modes. This means that, the spatial phase angle ¢s =

(s}
—-——322 and the temporal phase angle is -90°, equal to the phase angle between Qz) and

Q). This excitatit results in atravelling wave in the non-rotating disc just asin the disc

rotating past a static force. In this way, the response of each ND mode of a disc rotating
past a static force is smulated in a stationary disc with two harmonic excitations. This
idea was first proposed by Ewins [7] and it can now be developed for a more general

case.

When the generalised forces of a particular ND mode are applied to the main structure,
rather than applying to the moda mass in a SDOF (norma mode) system, there is no
guarantee that the response level will be the correct value since two generalised forces do
not necessarily have the same effect as the real forcing function. However, from the

quality point of view, the two harmonic forces create the same shape of response.

In the simulation, the excitation frequency should be equa to the number of nodal
diameters of the mode to be excited, multiplied by the rotating speed of the disc, i.e.
w=nf2. Therefore, each time just one wave order can be simulated for a certain rotating

Speed.
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3.4 GENERALISED SIMULATION FOR PRESCRIBED
SPATIAL PHASE ANGLE

3.4.1 Analysis

Astheresult of the idea of the simulation of arotating disc, a stationary disc is considered
vibrating at a frequency w near to the natural frequency of its n nodal diameter mode.
The excitation source consists of two harmonic forces f; and f; acting at points 1 and 2
on the rim, (Fig.3.2). In the genera casg, f; and f; have a tempora phase difference (¢,
and the excitation points are positioned at an angle ¢s apart (the spatial phase angle). The
angle between point 1 and the nearest noda diameter is caled a . The origin of
coordinate 6 is assumed to be at point | and point 3 is considered at position 8 on the

rim.

2
f1 =F1 cos mt ?

=F
f2 X cos (cot+¢>[ )

Figure3.2  Two excitations on a stationary disc

The harmonic response can be calculated by using the general equation:

{x} = [HI {f} (3.8)
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where {x} is the response vector, [H] is FRF matrix and (f) is the excitation vector.

From equation (3.8), the following equation can be written for point 3:

X3=H31. fl + Has. f2 (3.9)
where:
fi= Fy cosmt
(3.10)
f= Fy cos(w t+ ¢y)

Has, and Hj; can be obtained from the general FRF formula:

oo

ij=2—’—¢1&— (3.11)

2-02+in o}
r=1
where ;¢; and ;¢ are the mass normalised eigenvector elements for points j and k when

vibrating in moderr .

At the disc rim, the eigenfunctions are known for any nodal diameter mode. Also, it is
well known that most of the modes are dual modes. In the case of an n ND mode, by
assuming that modal masses are equal to one, the mass-normalised eigenfunctions are:

¢, (D= cos n(8-a) } (3.12)
¢, =sin n(8-a)

The natural frequencies of the dual modes which are close are assumed to be w; and w;;
and the damping loss factors, 1, and n,. Knowing that 81=0,8,=¢s and 83=0 (in
figure 3.2), and substituting in equation (3.11) from (3.12), Hz; and H3z, can be
obtained:
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cosn(6-a) cos (-na) + sin n(B-a) sin (-na)

31=

w? -w?+in, w2 w%—co2+in2w% .13
1,508 n(6-a) cos (ds-) + sin n(B8-a) sin n($ps-a)
32= . ;
(o%-m2+m |02 co%—wzﬂnza)%
Denoting A= ! l , and substituting Hi; and Hai; into

; » A= :
w2-2+im, 2 w2-2+in 03

eguation (3.10) , we will have:
x3=[A; cos n(B-a).cos na - A, sin(na). sin n(6-a)]. Ficos wt
+ [ A1 cos n(8-a). cos n(Ps-0t) + Az sin n(6-a). sin n(ds-a)]. F2 cos (ot +d,)
(3.14)

In the general case when A1#A3, no further smplification can be made of equation

(3.14). However, for a tuned disc, w;=w; and 1; =N, and, consequently, A;=A=A 0

that equation (3.14) becomes:
x3=AF; cosnO . cos 0t + AF; cos n(6-9;) . cos(wt+dy) (3.15)

This equation shows that a has been cancelled out and so the response is independent of
the position of the excitation set on the rim. In other words, location of the excitation

points spaced around the disc is not important to the response of any particular n nodal

diameter mode.
Equation (3.15) can be written in another form:
x3=Kj cos nB . cos wt-kzcosnb. sin wt
-k3 SinnB. sin wt + k4 Sin nB. cos wt (3.16)

where:
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k1= AF, + AF; cos nds.cos ¢,

ko= AFj, cos no;. sin
2 2 0s b (3.17)
k3= AF;, sin n¢;. sin ¢,

ka= AF,snno, . COS 0, J

In fact, point 3 can be any point on the rim and so x3 can be replaced by x(6,t) to present

the general case. Rearranging equation (3.16) will give:
x(8,t) = k3 cos (n6+wt) + (kj-k3) cos nB.cos wt
+ k4 Sin (nB+wt) - (ko+kyg) cos nb. sin ot (3.18)

This formulation has been rearranged to form the forward travelling wave, (n6+mt). It
can be aso written on the base of the backward travelling wave ( i.e. the term of (n6-
t)), which is more useful, since we are expecting a backward travelling wave from the

simulation:
x(6,t) =k cos (n6-wt) - (k;+k3) sin nB. sin ot
+ k4 Sin (nB-wt) - (ko-k4) cos nB. sin wt (3.19

From this equation, for the cases that k120 and (k;+k3)#0, we can write:

x(0,t) = k;[cos (nB-wt) + -ll:—‘; sin(nB-mt)]

- (k1+k3)[sin n6 + fl’%%-cos n6] sin wt. (3.20)
By letting :
tan B = %
K-k 3.21)
and tany = klz;k3

the final formulafor the response of the rim excited by two harmonic forces will be

obtained:
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x(8,t) = S! sin (n6-wt+p) - kitky sin(n@+Y) sin wt. (3.22
sin B cos y

The first term represents a backward travelling wave and the second term implies afixed

vibration component.

Before discussing the applications of equation (3.22) in the following sections, the usual

conditions in the simulation are examined. Assuming that the two equal harmonic forces

with spatial phase angle ¢s =% and temporal phase angle ¢,=-90° are applied to a

tuned disc. If these conditions are applied to equations (3.17), we will have:
ki=AF
ko=0
ks=-A F
k4=0

Substituting in equation (3.20), the response is obtained:
x(8,t) = A F cos (n6-wt)

which represents a backward travelling wave, as expected.

In the following sections, some concluding remarks from the above analysis are
presented.

3.4.2 General formula in simulation

In practice, sometime, there is arestriction on the choice of spatial angle for the exciters

positions, or a certain value for this angle is applied for smplicity. This value may not be

3 o]
equal to its normal value for the mode of interest, i.e. ('6

ﬁ; ). In this section, we seek

conditions which result in the n nodal diameter modes being excited as a backward

travelling wave.

From equation (3.19), in order for only a backward travelling wave to exist, the

following relations should be satisfied:
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{ ki+ks =0
ko-ks =0

Substituting from (3.17) :

{ AF; + AF, cos nds. cos 0.+ AF, sin ¢, sin nés= 0
AF, cos nés. sin ¢,- AF; sin n¢s cos ¢,= 0

or:
F
I+gZ cos (ngs-¢) = 0
1 (3.23)
sin (n¢s-¢,) = 0
From the latter equation:
nds- 6= kn , (k=...-2,-1,0,1,23,...)

If %2>O,cos (nds- ¢¢) will be negative, so that only k=.. .-1,1,3,... are acceptable

values.

Thus, for exciting the n nodal diameter modes in the form of a backward travelling wave

only, the following conditions should be satisfied:

noe- o= kn  (k=...-1,1,3,...)
Fa_, (3.24)
Fy

The analysis can be repeated on equation (3.18) to obtain the conditions to have a
uavelling wave in the other direction i.e. a forward travelling wave. According to
equation (3.18), in order for only a forward travelling wave to exist, the following
relation should be satisfied:

kl-k3:O
{k2+k4=0
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Substituting from (3.17) and rearranging in the similar forementioned way, finaly the
following conditions are obtained in order to excite the n ND modes in the form of a
uavelling wave only:

nos+ o= kmn (k=...-1,1,3,..))

Fa _1
F, -

(3.25)

In a disc rotating past a static force, the n ND mode is excited as a backward travelling
wave i.e. opposite to the direction of rotation of the disc. In the simulation, we can
change the direction of the wave by just imposing the conditions indicated in equation
(3.25) rather than those in equation (3.24). However, we should remember that in fact,
equation (3.24) represents the condition of simulation of the vibration of n ND mode in
the rotating disc excited by a static force and that using +¢, (i.e.applying equation (3.25))
produces the same travelling wave but in the other direction. This is like to assume the
other direction for rotation of the disc. Also note that k; is bigger than the other
coefficients, which confirms that the backward travelling wave is the dominant

component in the response of such adisc.

3.4.3 Excluding a diametral mode in the simulation

In the previous section, two necessary conditions were found to excite the n nodal
diameter modes in the form of a travelling wave. Now, further conditions are being

sought in order that another mode, (say the m nodal diameter modes), is not excited :

From equation (3.19), the following relations should be satisfied in order to prevent

excitation on m ND mode as a backward travelling wave:

k=0, and kq=0
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Substituting from equation (3.17), these can be written as:

1% cos ¢,. cos mps = 0 }

sin m¢s.cosd, = 0

(3.26)

It is assumed that the n ND modes are the target of the excitation set and have been
excited in the form of a backward travelling wave so that equations (3.24) are satisfied;
therefore from (3.24) :

COS ¢= -C0os nos (3.27)

By substituting into equation (3.26) , we will have:

Cos nos cos mdps=1 (3.28)

sin m¢;s (-cos ndg)= 0

The solutions for the first equation are:

cos ns =1 and cosmds = *1
or:
m =knu T
Os=km } (3.29)
n ¢s=kum

where kmandkn,=1,3,5,...0r: knmandk,=2,4,6,. ..

If n and m are considered as two successive numbersi.e. In-ml=l, there is no solution for
s from these equations except ¢,=360°, which makes no sense. However, for the other

cases where In-ml>1, a solution can exist.

If the second equation of (3.28) is considered : sinm¢,=0 and/or cosnds=0.

Their solutions will be:
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m ¢s=knm km=1 2 3...

- (3.30)
and/or :n¢s = k“f kpo=13 5...

The first equation in (3.30) is equivalent to the first equation in (3.29). Therefore, if the
gpatial angle and the modes are such that equations (3.29) are satisfied, k; and k4 become

zero and the m ND mode will not be excited.

From the second equation in (3.30), we have:

%?1;,1; k=1, 3, 5,...

Thismeans that if ¢ is chosen such that the above relation is satisfied, then the effects of

other modes are decreased but, of course, cannot be removed completely.

3.4.4 ‘Pseudo-nodal point” for m ND mode

It is possible to find a particular point on the rim (6=6,) at which the fixed vibration
component of the response for a particular m ND mode is zero. It is appropriate to call
this a ‘pseudo-nodal point’ for the m ND modes. To establish this condition, it can be

found from equation (3.22) that:

sin (m6,+Y)=0 (331

ko-kq
k1+k3’

Using the definition in equation (3.21),tany = and substituting for parameters

from equations (3.17), gives.

£ i (00moy) .
tan y= 3.32
1% cos (¢-mos)

From equation (3.31) :
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mB, +v=0, &, 27, 3X ,...
or: tan (mB,) = - tan Y
Substituting tan y from equation (3.32) and solving for 8, gives:

F

=2 sin (¢,-mo;)
_1 F

14+ cos (9 m0y)

Therefore, for a given excitation set, i.e. sz:—f) ¢s and ¢, we can find a position 8, at

which there is a travelling wave component of m nodal diameter mode only and no other
components such as fixed vibration. This position could be suitable to measure the
response when the excitation of the n ND mode is the objective and it is close to an m ND

mode.

3.4.5 Representation of response as travelling waves

According to equation (3.22), the general form for the two-excitation response of n ND

modes on the rim can be represented as:
x(0,0)= Xjcos (nB-wt+0a;) - X2 sin (n6+ay). sin wt (3.33)

where X; and X, vary with frequency. Equation (3.33) gives the response of vibration of
the n ND modes with the assumption that two natural frequencies and damping factors are
identical, i.e. the disc istuned (or perfect). It can be shown that this equation is applicable
for mistuned discs too, but the coefficients and constants in it do not have same relations

as those which have been obtained for the tuned case.

In the more general case, equation (3.33) can be recast to aform containing two travelling

waves, one backward and one forward, as follows:
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x(0,1)=X; cos (nB-wt+ay) %2 [cos (nB-wt+0y) - cos (nO+wt+0a2)]

X2 X2
=X cos (n6-wt+a) - —~Cos (nB-wt+ay) + —5~ Cos (nO+wt+ay)

=X[cos (nB-wt) cos a; - sin (n6-wt) sin o]

Xa . . X2
-5~ [cos (n6-1) coS &2 - Sin (n6-@t) Sin o+ 5~ COS(NO+WI+0i2)

x(0,t)=[X;cos al- X—ZZ"COS 2] cos (nB-wt)

X
-[Xiysinoy+ —>2(—2 sin o] sin (nB-wt) + —2—2 Cos (nf+wt+0tz)

Denoting:
Xisin a+ )—(23 sin o
X = tan OBn
Xcos a- —2—2 cos o2
then:
Xicos al- 2(2—2 cos a2 X,
x(0,tH)= CoSs (ne-wt+agn)+—2— cos (nB+wt+0atn)
Cos OBn
By letting :

X
X,cos 04- —2:2 CoS o7

=Agn ;
COosap

X
_22=AFn )

and oy = Opg, the general formula for the response of the rim to the excitation of the n

nodal diameter modes will be obtained :

x(8,0) = Afn COS (nO+Wt+0Ey) + Apn COS (n6-0t+0p,) (3.34)
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In section 3.8, this formula is used to decompose and display the response of the rim at

any particular excitation frequency, .

35 COMPLEXITY OF RESPONSE

In the simulation using two excitation sources due to the existence of double modes the
response is complex even if the mode shapes are real. A model with complex modes will
be considered in chapter 5. The degree of complexity of the response can be obtained
easily for the tuned disc. Recalling equation (3.15) for the response at a point ontheri m ,

we have:
x(0,1) =A Ficosnb.coswt+ A F, cos n(0-¢s). cos(wt+d,)
This is the response to the excitation set shown in figure 3.2 and is independent of . .

In order to excite the n nodal diameter mode into a travelling wave, the force magnitudes
should be equal, F,=F,, and the relationship between the temporal and spatial phase
angles should be:

nos - G=7
Substituting for ¢, and F; in equation (3.15), and expanding, we have :

x(0,t) =A Fj [cos nb cos wt - cos nB cos? npscos wt + coS nO cos ndssin no;

sinwt
- Sin nB sin ndscos nds Cos wt + Sin nO SiN2 ndgsin wt ]

Noting that cos? nos=1-sinZ n¢ and factorising the corresponding terms, we will obtain:

x(8,t) =A Fj sin nds sin (0t - n + nos) (3.35)
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which represents a backward travelling wave, as expected, since the appropriate

simulation conditions have been applied to the disc.

In order to obtain the phase angle between x and excitation f;(t)=F; cos wt, equation

(3.35) is written as:

x(6,t) =(A F; sin nds) cos (®t - n6 + nd, -90°)

Recalling that A= | - , it can be shown that :
o2 02+in2a?

X __sin n0s ) iy
fi o2-@2+inZa?
n nn
where ¥= (- n6 + n¢s-90°). For cases of low damping, the angle v is the degree of

apparent complexity of n nodal diameter mode which will appear in the modal analysis of

this mode.

3.6 EXTENSION OF THE PROCEDURE TO MORE THAN TWO
EXCITATIONS

Assume that three exciters have been applied on the disc rather than two and the n ND
modes are to be excited in the form of a travelling wave. A similar anaysis to that
mentioned in sections 3.4.1 and 3.4.2 can be used to obtain the relations between

parameters to produce a travelling wave in this case. Having obtained and simplified the

equations, we will have:

F
1+ (%) cos (ns1- ¢yy) + (‘;—;)cos (nfs2- 012)= 0 (3.36)
2 . F |
G sin @u-ns1) + (£ sin (012-1042) = 0
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st b5,

2 ? 3?
fl=F1 cos Wt ¢

f 2=F2 cos (wt+0,; )

3=F3 cos (wt+d,,)

Figure 3.3 Three excitations on a stationary disc - General case

This is equivalent to equation (3.23) for the two-excitation method. In the general case,
finding the relationship between forces ratios, spatial and tempora phase angles from
equations (3.36) is not straightforward as it is in the two-excitation case. However, if we

F
assume that the force amplitudes are identi ca€f= Ti =1, then the exact relation between

spatial and temporal phase angles are obtained.

H+
wjd WA

dr1- nq>sl=:k n
k=...-1,0,1, 2,... (3.37)

¢r2- nods2=k ™

These equations show the relationship between spatial and temporal phase angles in the

three-excitation technique to excite n ND mode as a travelling wave. The difference from
the two-excitation case is that in that case, we had only one solution for (II::f—) which is

F
equal to 1, but here, we have assumed that —% = F_? = 1. It can be concluded that using

more than two exciters to smulate atravelling wave is difficult in general, even to find the

required relation between parameters.
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However, we can take advantage of the symmetry of ND modes and expand the two-
exciter method to any even number of excitations: 4, 6,8, etc. The idea is originaly
based on the two-exciter technique but there are more than one pair of excitation sets and

al of these pairs are identical to the main two excitations in amplitude and phase but at

different and proper spatial positions.

In figure 3.4 four excitations are shown applied to a disc. Forces f1 and f, are the original
excitations with spatial and temporal angles ¢, and ¢, respectively, corresponding to n ND
modes. The third excitation f'1 is chosen such that its magnitude and phase are exactly

O
same as for f; and its spatial angleis k'(f?%-), where k' is any integer number. The force
f'2 is exactly the same as f, and having a spatial angle ¢, with f'l. It is obvious that when

we are using more than two exciters, the response level on the disc is no longer the same

as on the ssimulated rotating disc, unless proper levels for all forces are calculated and

chosen.

Figure 3.4  Four excitations on a stationary disc
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3.7 ISOLATION OF A PARTICULAR DIAMETRAL MODE

Excitation of a structure at a frequency in order that one mode only dominatesis called by
different expressions such as ‘normal mode tuning’ and ' isolating of a mode’. There are
different techniques to isolate a particular mode but here a method is proposed to isolate a
pair of diametral modes in the form of travelling wave which can be detected as a normal

vibration by a stationary sensor.

The simulation technique of vibration in a disc rotating past a static force has a secondary
application which is the isolation of certain ND modes. Selected nodal diameter modes of
a stationary disc can be excited and identified by using two (or more) excitations, as are
used in the simulation. By using this method we can excite just the mode of interest. This
is more important when the modes are very close and the response is strongly affected by

the adjacent modes.

If the disc is heavily mistuned for that mode, each individua mode behaves as an
ordinary single mode and the response will be a fixed vibration for dual-sine excitation
method. However, for most cases the disc may be assumed to be nearly tuned so that the

response is dominated by the travelling wave.

The technique for isolating a ND mode is to apply two shakers at spatia positions ¢ apart

on the rim. The forces these shakers exert should be controlled to be equa in magnitude

with atempora phase difference (¢;) which should satisfy equation (3.24), that is:
d=nos-km (k=----1,1,3,--+)

By increasing the number of exciters, as mentioned in section 3.6, the isolation would be
achieved more effectively. This method is a specia type of tuned sine excitation in which

some mono-phase excitations are used to excite or isolate a particular mode of a structure.
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3.8 CONTRIBUTION OF DIFFERENT WAVE ORDERS IN THE

RESPONSE

In section 3.4.5, the general formula for the response of a disc’s rim was obtained as a

combination of forward and backward travelling waves:

x(0,t) = Ag, cos (nB+wt+aE,) + Agy cos (n0-wt+ag,) (3.38)

Remembering that this formula represents the response of the n ND modes and is
applicable for the general case of exciters positions and also for the mistuned case as well

as the tuned case.

At the frequency of excitation w, the response x can be determined or measured at any
position, 8. Knowing x, we can calculate the unknown parameters of equation (3.36),
i.e. : Arn, OFn, Brn @and oy, then it is possible to display the response. In the following,

it is shown how the foregoing parameters can be calculated from x.

The response 'x' at each point is a harmonic quantity which can be measured in
magnitude and phase or in the form of real and imaginary components. Here, the real and
imaginary components of x are used which are called a(™ and b™), where 'm' implies to

the measured values:
x=am sin mt + b cos wt (3.39)
Equation (3.38) can be expanded and re-written in the form of equation (3.39) :
x(0,0)=[-Af, Sin (n6+0E,) + Apn Sin (n6+0ag,)] Sin wt
+[Ag, c0S (n6+0gn) + Apn cos (n0+0py)] cos wt (3.40)

By letting :
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[-AEq sin (NO+0Ey) + Agysin (nB+ag,)] = a,, } (3.41)

[AFn cos (nO+0apn) + Agn Ccos (n6+0agn)] = by
eguation (3.40) becomes:
x(6,t)=a, sin cot + b, cos wt (342

which has same form as equation (3.39) so that a,, and b, are equivalent to the measured

values a(m) and b(™) respectively.

Equations (3.41) can be written in matrix form:

UFn
-snn® -cosn® +sin nb+cosnbd \V/
{a"}= Fn (3.43)
Dn +cosnB -sin nB+cosnB -sin nd Ugn
VBn
where :
Upgn = Apn COS OFp
VEn = Afp Sin OEp
(3.44)
Ugn=ABn COS OBn
Vgn = Agp SN OBy
Now, by letting :
-snn® -cosn® +sin nd +cos nd
[Tn] = ]
+cosnB -sin nB +cosnd® -sin nb |
and { Ap}T ={Urn VEnUsnVen}, equation (3.43) will be:
an T A
{bn} = (T, , (An),, (3.45)
T 72x1

In this equation, a, and b, can be substituted for a(m and b(m), and vector {An}

calculated. However, there are four unknowns in this vector, so two sets of data or
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response at two points 6; and 6; have to be measured. Thus, from equation (3.45), we

will have:
( a(im) A
(m)
bim Thi
9 - o= [} { Anlyy (3.46)
a; M yxa
(m)

Knowing or measuring am and b{m) for pointsi and j , the unknown parameters can be
Ty !
determined providec{ 1 exists:
Thjm
(g™ )
1
. (m)
T ! bim
(4 [ ] S
Thj a(jm)
b
o

J

In equation (3.38), it has been assumed that the response is comprised of just one wave
order (order n). Now, the analysis can be extended for the genera case by assuming that

N wave orders have contributed in the response at the excitation frequency co. In this case

instead of equation (3.38), we have:

x(8,t)= Af; cos (8+wt+ag;) + Ap; cos (B-wt+0op1)
+ Apy cos (20+wt+0g;) + Ap2 cos (20-wt+0g2)
+...
+ Ap, COS (n8+0t+0E,) + Agp COs (nO-wt+0opy)

+..

+ Apn cos (NO+mt+agN) + AN cos (NB-wt+apN) (3.47)
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It should be noted that at a particular excitation frequency o, different wave orders travel

at different angular speed €2 around the disc. This angular speeds are such that :
n = , (for n=l to N)
where: n = wave order or number of nodal diameter of the mode;
Q,, = angular speed of wave order n around the disc, (rad/sec);
o = Excitation frequency or vibration frequency, (rad/sec).

In equation (3.47), each wave order can be treated as shown for wave order n in

equations (3.40) and (3.41). As aresult, equation (3.47) can be written in another form:
x(6,t)=a; sin wt + bj cos wt

+a, Sin t + by cos wt
+ a, Sin wt + b, cos wt

+ an Sin wt + by cos ot
or:

N
x(0,t)=( )N:a,,) sin ot + ( 2}),,) cos t
n=| n=

Now, if 5{;’) and B'i“) are the real and imaginary parts of the response at point 6;, then :

N
{a (im) } (n2=:1an)
= (3.48)

b ™ N
! ( Ebn)
n=1
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Substituting for a, and b, from equations (3.45), will give:

A )
o (m)
1
{bm}: [T T2; o Tai oo TNilyyn) An (3.49)
:
7| 4Nxl
\ Ay - g

This equation is for just one data set or one measured point. For p data points, we can

write:
{ab} =Tyt ALanss (3.50)
where :
T_[ om ym) ¢ o (m) (m) i g (m) y(m) (m) , (m)
{ab}T={ a™ b™ taf™ bW ... mpm L a’™ b .

 T11T12... T, .. TiN
Tr1 Tz ... Ton...ToNn

Tl = . . . . :
[T} Ti1 Ti2 ... Tin ... Tin

L.Tpl Tp2 ... Tpn ... TpN =
2px4N

and  [Al'=[A, A, ... Ay An]
For N wave orders, at least 2N points or data points are needed. In this case, matrix

[T]szm is asquare matrix and can be inverted to calculate waves parameters, ( of course

inversion of amatrix isvalid only if its determinant #0):

-1
{A}anxi=[T] 2prand2blapaa
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However, the elements of matrix [T] are such that its determinant is equal to zero for
p=2N. Therefore, p should be greater than 2N. If p>2N then the matrix [T] is not square

and cannot be inverted. In this case the pseudo-inverse of [T] is used, that is:
{ A }4NX1=[T]+ {ab}prl
where[T]" has been called the ‘ pseudo-inverse’ of [T] and it is defined as:

(11" = (1) (o)) (o)’

Therefore, at excitation frequency w, by measuring response at different points, (p points
where p>2N), wave parameters can be calculated from equation (3.50). Knowing the

wave parameters and using equation (3.47), the response can be identified and displayed

in an animated form.

Having obtained the wave parameters, the contribution of different wave orders are

identified and the dominant mode in the response can be recognized.

If the excitation arrangement is such that a particular mode isto be excited in the form of a
backward travelling wave, the contribution of this mode in the total response is
determined. By repeating the measurement and analysis for different frequencies near the

natural frequency, the frequency response for this mode can be obtained.

For the analysis mentioned in this section, programs 'HDISK4' and ' WAVES6' have been
written in Basic for H.P. computers. They caculate the response and give wave

parameters from measured data; then the response is displayed as explained in the next

sec tion.
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3.9 DISPLAYING RESPONSE AS A COMBINATION OF
TRAVELLING WAVES AND FIXED VIBRATION

The response pattern in ND modes of a disc simulation is complex. If the response
equation is known or enough points on the rim can be measured, we can display the
response and in cases where we have a travelling wave, we can show the direction by an

arrow,

Suppose x(6,t) is known, as a formula or by some discrete values of the response. In the
latter case they could be from measurements,we can use the method mentioned in section
3.9 to find the contribution of the different wave orders as well as a formula for the whole

of the response

One period of response (T-—( g)) is divided into equal intervals, say six. At each of
n

these "frames", we can calculate the response at a number of, say 50, different positions
on the rim. It will be clearer in demonstration if we use a straight line representing the
circumference of the disc. The shape at each frame in the period is displayed in sequence.
If the shape is a travelling wave, the direction of the wave is shown in the hard copy by
using a small arrow. In the following section, there are examples of displaying the

response of the disc under the different conditions.

3.10 NUMERICAL EXAMPLES

In order to show the concept of the simulation and also the isolation of a diametrical mode
in a disc, four different systems are considered, as shown in table 3.1. All these systems

have only
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Table 3.1 Different systems in the numerical study

Modes | Natural. frequencies. Damping loss factor Excitation
[Hz] pts.
2ND 3ND 2ND 3 ND O By

Sysem | | 2&3 100, 100 130, 130 | 0.001. 0.001 | 0.001, 0001 | 45 | -90

Sysem II| 2&3 100, 100 102, 102 | o0.001, 0.001 | 0.001, 0001 | 30 | -90

Syﬁtlem 2N8|5 3 100, 101 130, 130 | 0.002, 0.001 | 0.001, 0001 | 30 |[-120

Syls\t/em 2&3 100, 100 102, 120 | o.001. 0.001 | 0.001, 0.002 | 30 | -90

two pairs of modes. the 2 ND and 3 ND modes. figure 3.5 shows the response of system
| to the two harmonic excitations. This is a tuned system with well-separated 2ND and
3ND natural frequencies.The spatial phase for exciters is 45° and temporal phase angle is
selected so that the 2 ND mode to be excited as a backward travelling wave, ¢.=-90°.
Angle a, the offset between one excitation point and an adjacent antinode point, is

assumed to be equal to zero since the modes are tuned.

Figure 3.5 shows that the dominant wave is a 2 ND backward travelling wave, and that it
constitutes 83% of the total response. These calculations have been carried out on the
basis of the analysis in sections 3.2 and 3.8 respectively. The response at each of 15
points around the disc has been calculated. Then, the contribution of the different waves
has been obtained up to order 6 and are presented in table 3.2. The total response,
dominant wave and other waves have been displayed separately in figure 3.5. Each
display is constructed of six curves and each curve represents the response at one frame
(asixth fraction of a period); so that we can visualize the response of the rim in time. The

direction of the dominant wave has been shown by a small arrow in the above.

In system |1, the modes are assumed to be close and a3 ND mode is excited by choosing

the appropriate exciter positions. The excitation frequency is 95 Hz which is quite
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different from the natural frequencies. Figure 3.6 shows the response for this case and it
is seen that in spite of the fact that the 3 ND mode is the target of the excitation, the
dominant backward travelling wave is 2 ND.This is because of the proximity of the 2 ND

mode whose natural frequency is closer to the excitation frequency than that of the 3 ND

mode.
Table 3.2 Waves parameters obtained for system |
Wave order Forward t. Forward t. Backward t. Backward t.
n wave Ampl. wave phase. wave Ampl. wave phase
Ap, OFn Ag, OBn
1 6.17E-22 329.0° 1.63E-21 166.8
2 4.19E-21 79.8 2.47E-05 269.4
3 1.64E-06 337.3 3.98E-06 67.6
4 7.28E-22 119.36 1.71E-21 80.6
5 6.69E-22 71.5 6.35E-22 0.0
6 9.76E-22 102.5 4.73E-22 153.4

The possibility of improving the situation is examined by using 4 exciters which are
identical two by two and are positioned at 0°,30°,120° and 150°. The result has been
shown in figure 3.7 and it is seen that the dominant backward travelling wave is 3 ND
and it is 54% of the total response. We can see here the significant effect of the number of

excitors in the simulation and in the isolation of a mode.

In figure 3.8, the excitation frequency has been set exactly to the target mode (3 ND)
natural frequency. It is seen that amost the entire response is a backward travelling wave
of this mode. However, figure 3.9 shows that if the natural frequency of the target mode
is not chosen correctly, then the response is far from a pure travelling wave and could

even be dominated by an unexpected order.
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The simulation has next been applied to a mistuned system in figure 3.10 (system IIl).
The 2 ND mode is excited by two exciters with a spatial angle equal to 30°, which is
different from its norma value for this mode. The simulation formula n¢s - ¢=7 has
been used to determine the temporal phase angle. It is seen that the total response is
presenting essentially a 2 ND backward travelling wave, which is comparable with the
corresponding tuned case in figure 3.5. By increasing the number of exciters, the
response of the target ND mode can be improved significantly, which has been shown in

figure 3.11 for four exciters.

The case of a ND mode which is heavily mistuned, and appears as a single mode, is
presented in system IV and figure 3.12. The target mode is one of the 3 ND pair and the
excitation frequency is assumed equal to the natural frequency of this mode (102 Hz). For
such a case, the response is a fixed vibration which can be decomposed into one

backward travelling wave and one forward travelling wave as shown in figure 3.12.
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‘Other waves’

(%X oftotal- 16.6 )

(% of total- 188.8)

Data:
Natural frequencies Damping Excitation parameters
I |
2ND 3ND 2NE| 3 N|D Exc, fred. 4)5 Mode to be exci ted a,ZNIE O ,3NC
0.001
001 2ND . 0.0
100, 100 Hz| 130, 130 Hz 0.001 8881 105 Hz} 45 0.0

Figure 3.5 Response of atuned disc at a frequency different
from natural frequencies, (System 1)

(%X of total- 49.3)

(% of total- 50.7 3

(%X of total- 100.0)

Data
Natural frequencies Damping Excitation parameters
ZND 3ND 2ND} 3ND | Exc. freq) @ | Mode to be excited] @, 2NDj O, 3ND
0.001} 0.001}
100, 100 Hz | 102,102 Hz 00011 0.001 95Hz| 30 3ND 0.0 0.0

Figure 3.6  Response of atuned disc with close modes, (system 1I)




THEORY OF VIBRATION FOR A DISC ROTATING PAST A STATIC FORCE 102

(% of total- 100.8)

Data
l Natural freauencies Dan-mine I Excitation parameters I
T
2ND 3ND 2NO 3ND| Exc.freq ¢SModembeexcit=da,2Nda,3NE
100, 100 Hi| 102, 102 Hz | 000,000 888% 95 Hz | 30 3ND 0.0 0.0

Figure 3.7 Response of atuned disc using 4 excitations

‘Other waves’

360

‘Dosinant Nave’

LXXXXXKKKIKKXKLXKKKS
ARSI

(% of total- 97.0)

(% of total= 3.8@)
—_

‘Total Reep”

IR

(% of total- 1090.8)

Data:
Natura frequencies Damping. Excitation parameters
OND | 3ND 2ND 3NO Exc.freq 0 s [Modetobeexcitefl ,2ND 0L, 3NT
0.001,| 0.001
100, 100 H . ' ’ ) .
2] 102.102 Hz 0001 | 0.001 102 Hz| 30 3ND 0.0 0.0

Figure 3.8 Response of atuned disc at frequency equal to the natural frequency
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(% of total- 100.0)

Data:
Natural frequencies Damping Excitation parameters
2ND | 3ND 2ND|3ND | Exc. freg ¢, | Modetobeexcited o ,2 NI, 3ND
100, 100 Hz 102 H ) )
102 102 Hz | 0.001| 0001, 100Hz | 30 3ND 0.0 0.0
Figure 3.9 Response of atuned disc at the natural frequecy of another mode
‘Other waves’
(% of total- 21.6)
(% of total- 100.0)
Data:
Natural frequencies Damping Excitation parameters
2ND 3ND 2ND| 3ND | Exc. freqf @5 | Mode to be excited] O, 2 o, 3ND
0.001,] 0.001
’ ! 10.0 0.0
100, 101 Hz{ 130, 130 Hz 0.002 1 0.001 105 Hz| 30 2 ND
Figure 3.10  Response of a mistuned disc at frequency different from the

natural frequency (system I1I)
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‘Other waves’

BE5I:E5!IlElIIE!IHl!IElEIEIlEllIEll:l!‘ll!llllEllIEEl:lasa

(% of total= 9.8)

(% of total= 128.9)

Data

Natural frequencies Damping Excitation parameters

2ND 3ND 2ND| 3ND Exc.freq.q;s Mpde tobeexci ted|®, 2ND| ¢, 3 ND|
100, 101 Hz[130, 130 Hz | Q@02 aoy | 105 Hz| 30 2ND 100 0.0

Figure3.11 Response of amistuned disc at frequency different from the natural
frequency using 4 excitations

‘Other waves’

(%X of total= 100.0)

Data:

Natural frequencies Damping Excitation parameters

2ND | 3ND 2ND [3ND | Exc. freq; & | Mode to be excited| o, 2NT| o,3ND
100, 100 Hz| 102, 120 Hz | 0.00% 8‘8%11’ 102 Hz | 30 3ND 0.0 10.0

Figure 3.12 Response of asingle ND mode to the smulation in system 1V
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3.11 CONCLUSIONS

For vibration of a disc rotating past a static force, a standing wave is generated which is
seen by a stationary observer. It happens at any speed of rotation but there is a resonance
if the rotating speed is equal to one of the wave frequencies, (Wave frequency = Natura

frequency of ND mode divided by number of ND of that mode).

The response of each ND mode in a rotating disc excited by a static force may be
simulated on a stationary disc using controlled multiple harmonic forces. In such a
simulation, the standing wave response mentioned above appears as a backward

travelling wave since the disc is stationary.

The simplest form of such simulation is for two forces which are orthogonal in time and
spatial position. However, in the general case, there is a particular relation between spatial
and temporal phase angles (nds- ¢,=m) whilst the amplitudes of two forces should

always be equal.

The dual sine-excitation technique can be used to isolate a particular ND mode to provide
a secondary result from the simulation. For greater effectiveness, it is possible to apply
more than two exciters, but it is preferable to use even numbers of exciters and identical

pairs of exciters at the proper positions.

The contribution of different wave orders can be determined if there are more
measurement points than twice of the maximum number of considered wave orders. An
animated display of the response of a disc can be shown on a video screen and a hard

copy of the travelling waves are presented.




Chapter ﬂ_’

EXPERIMENTAL SIMULATION OF VIBRATION

IN A DISC ROTATING PAST A STATIC FORCE

4.1 INTRODUCTION

In chapter 3 it was demonstrated that vibration in a disc rotating past a static force can
establish a travelling wave on the disc and at a certain speed, called the critical speed, a
resonance occurs. Also, it was explained that this system can be smulated for each
diametral mode in a stationary disc when excited by at least two harmonic forces. These
forces should be orthogonal in time and spatia position with regard to the diameua mode
concerned. Thisis very useful, since rather than rotating the disc, we can test a stationary
disc with simpler and better modal testing methods than are possible under spinning
conditions. In addition to simulating the response for a pair of ND modes, there are other
applications for this method of excitation. Isolation of a particular mode and modal testing

can be the objectives of the dual-excitation of an axisymmetric structure.

In the previous chapter, the general relation has been obtained for the excitation set

parameters when the magnitude of the forces is kept equal (n ¢+ ¢,=1 SO”). In this
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chapter, it is intended to show how this condition can be applied to a disc in practice. A
bladed disc test piece has been chosen. First, a standard sine test with one shaker is
carried out to find out the general FRF and natural frequencies. Then, the two-shaker test
and ssimulation is carried out on the disc. Attention has been paid to the 2 ND modes as an

example but asimilar procedure can be followed for other diametral modes.

4.2 SINE-SWEEP TEST ON THE DISC

4.2.1 The general description of the test

One of the most accurate methods in modal testing is the sine-sweep test. A sinusoidal
excitation is applied to the structure at each step and the steady-state response is measured
at the same frequency as the excitation. The excitation frequency is shifted to the next
value and the corresponding response is measured. By changing the frequency and
measuring the response, it is possible to plot the frequency response function (FRF)

which has been defined as:

o0

_ _Xj rAJk
ij(m)“‘fk I E 0)2 (02+1T] co2 @4.1)

fi=0,1=1, 0 but ¥k “ =)

According to this definition, the only force causing x; should be fx and this is an

important point in this equation which is the foundation of the conventional modal testing.

One disadvantage of using the shaker excitation is that there is an interaction between the
shaker and structure. The dynamic characteristics of the structure can change due to this

interaction.
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4.2.2 Frequency-dependency of the input force

In the sine- step excitation tests, the input voltage of the signal for the shaker is usualy
chosen to have a certain value and does not change during the test. However, the applied
force to the structure may change with frequency due to the changing impedance of the
shaker. The electrical impedance of the shaker depends on the displacement level and this,
in turn, depends on the vibration characteristics of the structure. Therefore, around the
resonance and anti-resonance, there will be more variation in the input force and less
variation far from these points. In figure 4.1, we can see the varying force level as the

exitation frequency pass two natural frequencies.

The variation of input force is not important in a standard modal test using single-point
excitation as the ratio of acceleration per unit force is measured. But it makes it difficult to
control and to adjust the forces which are required in some special tests for example, in

the two-shaker method proposed here.

200

(e
[¢]
(e}

-200

[

Data from F

162.00
160.50 Frequency Hz.

Force (Log dB; N)

~
o

Figure 4.1 Variation of excitation force with excitation frequency
( There are two natural frequenciesin this range.)
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4.2.3 Results of single-excitation tests

A disc with 45 integral blades has been chosen for the tests. It is suspended in a vertical

plane by flexible ropes as shown in figure 4.2.

In a preliminary test, the natural frequencies were found and are presented in figure 4.3.
For the freely-supported disc, the first flexural mode is the 2 ND mode (n=2) at 264 Hz.
This was confirmed by carrying out some hammer test on different points on the rim and
observing the sign of the imaginary part of each FRFs in the vicinity of the resonance.
Remembering that the sign of the imaginary part of the response shows whether that point
vibrates in phase or out of phase with the force, thisis a simple way to estimate the mode

shape of a structure.

OONNNNONNNN

Figure 4.2 Schematic of the freely supported disc in the tests and measurment points 1 and 2
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Ref |Freq
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8 752

Figure 4.3 First natura frequencies of the disc

Having recognised the 2 ND mode natural frequencies, we can perform a zoom
measurement around these frequencies to obtain more information about the 2 ND modes.
Figure 4.4 shows the FRFs from a point measurement and a transfer measurement
respectively. The modal data from these FRFs have been obtained by using ‘MODENT
and are presented in table 4.1.
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Figure 4.4  Single-excitation test on the 2 ND modes of the disc
a) Point measurement;  b) Transfer measurement
Table 4.1 Modal properties from measurements at points 1 and 2
2NDmode Natural Modal constant Phase Damping loss
No. frequency [Hz) [1/Kg) [Deg ] factor; M
Data from
point 1 1 157.05 0.0113 -6.6 0.00235
(Point meas.) 2 158.38 0.0513 -4.3 0.00118
Data from
point 2 1 157.06 0.0298 +172.8 0.00234
(Transfer 2 158.38 0.025 1 -7.0 0.00118
meas.)
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4.3 EXPERIMENTAL SIMULATION OF A TRAVELLING
WAVE

In order to simulate a travelling wave, at least two sinusoidal excitations should be
applied at specific positions around the disc (or any other axisymmetric structure). The
two forces should be equal in magnitude and have ¢, phase difference in time so that the
general simulation equation (nd.+ ¢,=1 SO”) is satisfied. This set of excitation conditions is

hereafter called “dual controlled sine” (DCS) excitation. The spatial angle chosen was 45°

(o]
in the tests which is equal to the normal value (% ) for 2 ND modes. The spatia angle

would be -90° for generating a backward travelling wave. If ¢,=+90° is chosen then, the
direction of the generated wave is reversed but it should not be thought that the forward

travelling wave has been simulated, as explained in section 3.4.2.

Two methods are proposed to find the response to the DCS excitation. In the first
method, which is fully experimental, a phase and amplitude shifter (PHASH) has been
developed to control and adjust the two input forces at each frequency.The second
method is a hybrid procedure. By carrying out two ordinary sine-sweep tests, A and B,
we can measure the corresponding response vector {x} and input force vector (F) . Then,
we can caculate the FRF matrix [H] by using the general response formula {x}=[H]

{F}. Having obtained [H], the response can be calculated for the DCS excitation.

4.3.1 Experimental method (EM)

In this method, the simulation is applied directly to the test structure. At the frequency of

excitation, the relative amplitude and spatial phase angle of the two input forces must be
adjusted to meet the predefined values. An acceptable tolerance for forces ratio (’Fﬁ) is
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chosen as 0. 1 which iswithin 10% ; and the acceptable tolerance for the temporal phase

angle is assumed to be +2° for $,=90°. In figure 4.5, the instrumentation layout for this

method is shown and specifications of the equipment are presented in Appendix D.

Computer

Phase
shifter

»| P.A.
VVariable)

Figure 45 Instrumentation in the Experimental method for the simulation
of atravelling wave

Two sinusoidal forces f; and f, are applied at points 1 and 2. The command signal from
the generator goes to the power amplifiers through the phase shifters. A standard phase
shifter is in series with one channel of ‘PHASH’ for manual phase controlling in difficult
situations. The PHASH is used for fine control through a computer and the phase shifter
isjust for manual large phase shifting when it is necessary. The program POLAR, which
is for a single-sine sweep test, has been modified to control two shakers with the
hardware ‘PHASH’. The details of the controller ‘PHASH’ and the corresponding

program are presented in Appendix C.
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4.3.2 Hybrid method (HM)

The second method is a hybrid procedure in which two tests are performed without
applying any restriction or control on the two sinusoidal excitations. The FRF matrix [H]
is calculated from these measurements. Finally, the response to the DCS excitation can be

obtained using {x} =[H] {F}.
In the following, the analysis used in the hybrid method is summarised

Applying equation {x }=[H]{F} for the measurement points 1 and 2 in the tests A and B,

{Xl} B l:Hnle] {Fl} A
X2 Hy Hopp | (F2
A A
{Xl} [Hquz] {Fl}
and =
X2 H,  Hpo | | F2
B B

we will have:

C(42)

Combining these two matrix equations, we have:
[{X}A{X}B] = [H] [{F}A{F}B] (4.3)

In the measurement, normally f, and the responses are measured relative to f;, which is

received at channel 1 of the analyser. Therefore, both sides of equation (4.2) are divided

by F; and so equations (4.3) after combination will become:

| [& 1 !
X, o [ THE @) @
(f; (F_l)‘ 5 v, 1

A B
F F .

If (z%) # (&2 . the second matrix on the right hand side can be inverted and the FRF
Fy A Fy B

matrix [H] is calcul ated:
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Fpo o

(FIB 1

F X X

22 A1 21

@ || & E,

[H] = A (4.4)

® - |[|®] (@

Fl B FIA FI A F] B

In the abovementioned method, two excitations are used simultaneously. However, it
may be more convenient if we use just one shaker when the other is disconnected in each
test. By this method, we can measure the elements of the FRF matrix directly. Assuming
that in test C, excitation is a point 1 and the response is measured at points 1 and 2 then,

we will obtain:

H“=(%)c and H21=(1§—21 c

Similarly, in test D, excitation is at point 2 and response is measured at points 1 and 2

then, the other two elements of FRF matrix are obtained:

(X (X2
H,= FI)D and sz‘(F1 D

Therefore, in this method {H] is measured directly.

Having obtained [H] by either of the hybrid methods, two-excitation or single-excitation

tests, then, we can calculate the response due to the simulation condition.

Each of these two hybrid methods has some advantages. Using two excitations at the
same time takes less measurement time, since the shakers are aligned and connected just
once. The effects of shaker, push rod and force gauge are amost equal for both modes
when applying two exciters. However, using one shaker in each test may cause different
effects, although it has the advantage of avoiding interaction between the second shaker
and structure. Let us suppose that a mistuned disc is vibrating at a frequency near to one
of the ND modes. The response will be dominated by this single mode. The forces are

applied at two points which could be relatively out of phase for the excited mode while
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the tempora phase angles of the forces are the same. Then, one of the forces will be
opposing the vibration which is to be generated and this is a contradiction to our aim,

which isto excitethe disc.

. . . F, . .
Also, when we are using two exciters, the ratio of (F‘-) should be different in test A and
]1

test B to avoid singularity of the forces matrix. This may be another disadvantage of the

two-excitation hybrid method compared with applying a single shaker.

In this work, two exciters have been used for the hybrid method, using the same number

as have been applied in the direct (or experimental) procedure.

4.4 EXTRACTION OF MODAL PROPERTIES

In the previous sections, the methods for simulating a travelling wave response have been
presented. Now, the question is. if we simulate a travelling wave for a range of
frequencies around the diametra mode, how can these data be used to extract modal

properties - can the conventional modal testing methods be applied?

Assuming that two harmonic excitations ¥, and F, have been applied on the disc, then the

response at apoint j on the rim x; will be:
x;=Hp F + Hp By
or X—j) =H, + H; (&) 4.5
£ =Hp+ Hplg (45)
where H;, and H;, are the receptances between points 1,2 and | respectively.

Remembering that the term on the left hand side is measurable and, also, in single-point

excitation modal testing, the second term on the right hand side is zero.

Substituting the general FRF formula into equation (4.5), we have:
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o
) z w?-02+in o2 + Z w?2- 032+m a)2 ( ) (4.6)

wherer=1 and 2 represent the dual diametral modes which are being investigated. Adding

two parts of equation (4.6) we get:
2

F
; rq)j [r¢1+r¢2(F_?)]
1 Z w2-w2+in w? (4

=1

"nlf

This equation is similar to the FRF formula for Hj;, the only difference is in the

numerator. It seems that the modal analysis routines such as the circle-fitting method can
still be applied for |f theratio (Fz) can be held constant during the measurements. The

denominator is the same as for the standard FRF formula. Thus, the calculated natural

frequencies w, and damping factors n_ will yield the natural frequencies and damping loss

factors of the diametral modes. The numerator represents a complex quantity which is

called ‘pseudo modal constant’ rAje .
F
rAje = rq)j [r¢1+r¢2(—15%)] (4.8)

Foy . . .
According to the simulation criterion, (F_z) is equal to +i when ¢,=+90 and the spatial

phase angle is equa to the nominal value (¢ = 4 n) In the genera application of

simulation, ¢, can be any applicable angle so that equation (4.8) can be written as:
Aje = 0;[91+2 .9, +1b,0,] (4.9)
where a and b are defined as: a=cos 9,, b=sin ¢,.

If the nodal diameter mode shapes of the disc are assumed to be real, 9, and ,9, will be

real. Then, from equation (4.9), the phase of the pseudo-modal constant will be:
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b r¢2

Aje = -
4 ! o (rq)l +a r¢2 )

This implies that this angle does not depend on the position on the disc and for any two

points on the rim, say points 1 and 2, we can write:

IZrAle - érA2eI =mTmn,; m=0, 1, --

This means that the pseudo-modal constants have 0° or 180° phase difference for any two
points. This is similar to the behaviour of real modes despite the (pseudo-) modal

constants being complex.

If Ay and [ Aj, are the modal constants relating points 1, 2 and j, then from equation

(4.9), we can write:
Aje = Aj +a Ap +ib Ap

For this equation, the real and imaginary parts in the both sides should be equal. Again, if
the modes are assumed to be rea, the modal constants (which are aso rea) can be
obtained from:
Aj1 = Real(GA ) - § Im(A)
mGA i) (4.10)
and Ay = m—rbL
Thus, using equation (4.10) and assuming that the modes are real, the modal constants

can be calculated from the ‘ pseudo modal constants'.

A specia case is considered: when ¢, =-90° as the result a=0 and b=-1, then the
following relations can be applied for this case:

rAjl = Real(rAje) }
rA j2 = - Im(;A je)
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Another point from the definition of pseudo-modal constant, equations (4.7) and (4.8), is

that the phase difference between two modes can be obtained:
If ¢ and ,9 are redl, and assuming that ¢, =+90° then:

LiAje an’ (1‘¢‘2') and LA an’ (’222‘)
191 29

By assuming that ,¢=cosn(8-a) and ,¢=sinn(8-a), and substituting for 8,=0° and
8,=45°, we can show that:

1% tan na and -2(gzt an (n-90°)
1% 2%

Therefore, the phase angle between two modes are obtained:
LoAje - L1Aje = (n0-90°) - na

or: AzAje - ZlAje =-90°

It is seen that this angle is -90° between the second and first conjugates of the diametral

mode.

4.5 SENSITIVITY OF THE SIMULATION TO THE

EXCITATION PARAMETERS

As mentioned in section 3.4.2, the travelling wave response of a particular ND mode pair
can be smulated using two harmonic excitations provided that the spatial and temporal

phase angles, ¢, and ¢, satisfy the relation n ¢, - ¢, =r and also that the relative amplitude
of the forces to be equal, (% = 1). The parameters ¢, ¢, and (II=:-2) are called the excitation

parameters.
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In practice and in the experimental work, it is possible that an excitation parameter will
not have its desired value precisely but will contain some error. Hence, a tolerance has to
be given for each of the excitation parameters asin many other practical techniques. Here,
the effect of the excitation parameters deviation on the travelling wave response is
investigated. A simple tuned system with just a single pair of ND modes is considered.
The response at different points on the disc are calculated and then the component of the
travelling wave can be estimated using the method mentioned in section 3.8. However,
for the tuned case, we can obtain the amplitude of travelling wave directly using equation

(3.10) in section 3.4.1.

Different values of the excitation parameters around their nominal values have been
chosen and then the travelling wave amplitude relative to the amplitude of the total
response is calculated for each case. Figure 4.6 shows the variation of the travelling wave
againgt the excitation parameters. It is seen that for a certain value on the horizontal axis
for every parameter, the deviation of the forces ratio has less influence than the spatial and
temporal phase angles. The chosen tolerances in the experiments in section 4.6.1 have
been derived from figure 4.6. The tolerance of £10% in (Fff) makes the travelling wave
component to be at least 90% of the total response. There is more than 97% travelling
wave component in the response if £2° tolerance is used for the temporal or spatial phase

angles.
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Figure 4.6 Normalised travelling wave amplitude vs normalised excitation parameters

4.6 EXPERIMENTAL RESULTS AND DISCUSSION

The same disc which was used in the tests with one shaker (in section 4.2.3) is chosen
for the smulation of travelling waves. The experiments are concentrated on 2 ND modes
although similar tests may be carried out on the other ND modes. Two excitations have
been used and two different methods of simulation - experimental (EM) and hybrid (HM)

- have been applied to the disc. The results are presented in the following sections

4.6.1 The Experimental Method (EM) Results

Two equal sinusoidal forces with predefined temporal phase angle were applied to the
disc at a certain spatial phase angle. For two diametral mode and spatial phase angle equal
to 45°, ¢, should be equal to -90° for simulating the (backward) travelling wave.

Remembering that by choosing ¢,=+90° instead we just change the direction of the wave.
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Thetest is consisted of sine-sweep at frequencies around the 2 ND natural frequencies. At
each frequency the magnitudes of two forces and the temporal phase angle are checked to

be within the acceptable tolerances mentioned in section 4.3.1. The measured responses

are shown in figure 4.7 in the form of (;—’) and (?Fl) together with (%1) plotted against
1 1

frequency.

These are not in fact standard FRFs due to the fact that more than one exitation is applied
to the structure. As mentioned in section 4.4, although these are not normal FRFs, we
can apply the standard modal analysis methods on these data, regarding the obtained
modal constants as pseudo-modal constants. The program MODENT was used and the

results obtained are presented in table 4.2.

Table 4.2 Moda properties from EM at points 1 and 2

2 ND mode Natural Pseudo-Modal Phase Damping loss
No. frequency [Hz] |  Constant {Deg.] factor; M
[1/Kg]

Data from
point 1 1 157.14 0.0257 -59.4 0.00208
(X1_F21) 2 158.39 0.0593 +24.9 0.00164
Rt fom 1 157.16 0.0680 +117.9 0.00224
(X2_F21) ? 158.20 0.0315 +16.6 0.00164

4.6.2 The Hybrid Method (HM) Results

In the other method also, two exciters were used but there was no control on the temporal

phase angle or on the amplitude ratio of the forces. The measured data for both tests A

and C are shown in the Appendix B. Again, these are not standard FRFs; however, they

can be used to calculate the special FRFs to represent the simulation of travelling wave as




EXPERIMENTAL SIMULATION IN A DISC ROTATING PAST A STATIC FORCE 123

mentioned in section 4.3.2. The results are shown in figure 4.8 and the modal data are

presented in table 4.3.
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Figure 4.7 Resultsin the Experimental Method of simulation
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Table 4.3 Modal properties from HM at points 1 and 2
2 ND mode Natural Pseudo-Modal Phase Damping loss
No. frequency [Hz) constant [Deg.] factor ; M
[1/Kg]
Data from
point 1 1 157.16 0.0272 -69.6 0.00200
(W1_AC)
2 158.39 0.0538 +21.0 0.00133
. Datafrom 1 157.15 0.0696 +115.2 0.00209
point 2
(W2_AC)
2 158.39 0.0270 +16.2 0.00129
=8 x N
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Figure 4.8 Results in Hybrid Method of simulation
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4.6.3 Discussion

In previous sections, the simulation of atravelling wave has been carried out in adisc for
a range of different frequencies. The responses at two points 1 and 2 on the disc were
measured for the frequencies around the natural frequencies. Two methods, the fully
experimental and the hybrid methods, have been used and the results shown in figures
4.7, 4.8 and tables 4.2 and 4.3.

The disc behaved as a mistuned system since the natural frequencies of the two 2 ND
modes are not the same. The separation of these frequencies has also appeared in the
single-excitation test results shown in figure 4.4. Some part of this frequency-splitting is
due to the influence of the attached transducers and shakers. Since the mode is mistuned,
the travelling wave at frequencies adjacent to the natural frequencies will be contaminated
with the other sorts of vibration, even though the conditions of the smulation are met. As
mentioned in the earlier sections, the modal properties can be obtained from the measured
response using conventional modal analysis. The natural frequencies and damping factors
obtained are almost the same as the original ones (in table 4.1), although there are
‘pseudo-modal constants' which can be used to find the true modal constantsif the modes

are assumed to be redl.

In order to interpret the results, a numerica example is examined. Assuming a disc has
two pairs of diametra modes, 2 ND and 3 ND, whose modal properties are shown in
table 4.4. Two sinusoidal excitations are used and the temporal phase angles are set to be

+90° in order to excite the 2 ND modes.

The responses at points 1 and 2 are shown in figure 4.9 and the modal properties have
been obtained (using MODENT) and they are presented in table 4.5. This numerical
example isfor amistuned case similar to the disc in the experiment. In another numerical
study, a tuned system is examined. This system is similar to the mistuned case but the

natural frequency and damping factor
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Table 4.4 Moda data for numerical example (mistuned system)

Natural Damping factors Excitation parameters
frequencies
O o, o, 2 a, 3
2ND 3ND 2ND 3ND ND ND
0, 001, 0. 001
100, 101 | 130, 130 0.002 0.001 45 +90 10 0
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Figure 4.9 Results from numerical example (mistuned system)

a) at point 1 (8=0%; b)

at point 2 (6=45°)
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Table 4.5 Modal properties from measurements a points 1 and 2; (mistuned system)

2NDmode Natural Psedo_modal Phase Damping loss
No. frequency [Hz} constant factor: M
[1/Kg] (Deg.]
—_—
Data from
point 1 1 100 0.9397 +20.0 0.00100
12_0_90) 2 101 0.3419 -70.0 0.00200
Da@ from 1 100 0.3426 -20.0 0.00100
point 2
(1245 90) " 101 0.9396 -110.0 0.00200
208 (
e O\
o200
o
808
o
o
2
o
0
-
-
L AL LL T POPPUOO
e T e,
c
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Figure 4.10 Results from numerical example (tuned system)

a) at point 1 (8=0°);

b) at point 2 (8=45°)
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Table 4.6 Modal properties from measurements at points 1 and 2; (tuned system)

2NDmode Natural Modal constant Phase Damping loss
Data from 1 100 0.9999 0.0 0.00100
point 1
_0_90)
2
Data from 1
point 2
(12_45_90)
2 100 0.9998 +90.0 0.00100

are 100 Hz and 0.001 respectively for both 2 ND modes. Of coursg, in this system a is
equal to zero since it is a tuned case. For this tuned system, the responses to the DCS

excitations have been presented in figure 4.10 and the modal properties are given in table

4.6.

There is a pure travelling wave at each frequency shown in figure 4.10. By comparison
of the phase angle curves for points 1 and 2, it is seen that at each frequency the phase lag
of point 2 relative to point 1 is+90°. This is for inertances which is same for the phase
difference of the receptances. It implies that the wave travels from point 2 towards point 1
on the rim. This is correct, since ¢, was chosen to be +90° which is the opposite sign to
the temporal phase angle for generating a backward travelling wave which would go

from point 1 towards point 2.

For the mistuned system shown in figure 4.9, the phase difference around the two natural
frequencies is not 90° but away from the natural frequencies, where the effect of
mistuned modes is reduced, the phase angle is 90°. In the actua mistuned system,
figures 4.7 and 4.8, similar interpretation can be made. At frequencies very close and
equal to the natural frequencies, the travelling wave disappears, while at frequencies away

from natural frequencies, the condition of the response returns to the travelling wave.
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From the calculated modal parameters, the phase difference between two modes
corresponding to the pseudo-modal constants is 90° for the numerical system (table 4.5).
However, these are about 10° off for the actual systems (tables 4.2 and 4.3).This is
because the measurements and modal analysis of the datais carried out with the inevitable

inclusion of some errors.

The phase of the pseudo-modal constant shows that the phase difference for each mode at
two different points on the rim is 0° or 180°, as it was expected from the theory. This
shows that the modes are originaly real, even though they have appeared as complex

modes.

The results from the experimental or direct smulation method and results from the hybrid
simulation method are in general agreement. As mentioned earlier, each method has some
advantages and disadvantages. The direct ssimulation method needs more testing time and
acontroller such as 'PHASH', which makes for more complicated instrumentation for the
test. However, in this method we can have the smulated travelling wave on the rea

structure while in the hybrid method the response to the DCS excitation is calculated.

F
Another disadvantage in the hybrid method is the requirement of different (F—;‘) in the two

tests. When the disc is mistuned and the damping is low, the two diametral modes behave

as two separate modes. In this situation, near resonance, it is not easy to apply different
(?-2—) in two tests since one of the forces (which is more involved in the excitation of the
1

first mode) will be at alow level due to the frequency dependency of the input force. We
cannot increase it by increasing the input voltage. For the similar situation in the
experimental method, it is also difficult to excite the other mode by adjusting the forces at

frequencies close to a natural frequency of a mistuned lightly-damped system.

The test disc is a very lightly-damped structure. Its damping had to be increased by
adding a wire to the blades in order to carrying out the two excitation tests. The inherent

damping is about four times less than the values measured with the additional damping
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material. A single-shaker test on the disc without additional damping and the
corresponding modal data have been shown in Appendix B for comparison with the other

modal data which have been obtained from the wired disc.

4.6 CONCLUSIONS

It has been shown that travelling waves can be simulated on an axisymmetric structure by
applying two harmonic excitations. Two methods have been applied: in the first ,
conditions of the ssimulation are applied directly on the structure. This method has been
called the experimental method. The second method is a hybrid procedure in which the
FRF matrix is calculated from the data of two sets of measurements on the structure.
Then the response to the special excitation for the simulation (DCS excitation) is
calcul ated.

In atuned system, the response is a pure travelling wave. However, in the case where the
structure is mistuned and very lightly-damped, a pure travelling wave can not be
established at frequencies close or equal to a natural frequency. The experimental method
has some advantages subject to having a proper controller for the amplitude ratio and the

tempora phase angle between the two forces.

As a result of simulating the travelling wave at frequencies around a set of diametral
modes, two modes will emerge from the analysis with phase angles at 90° relative to each
other. The standard modal analysis routines such as the circle-fitting can be applied on the
responses despite the application of more than one exciter. In the case of real modesin the

disc, the modal constants can be obtained from the pseudo-modal constants.




Chapter @

TRAVELLING WAVE RESPONSE IN
A LUMPED-MASS MODEL

5.1 INTRODUCTION

In chapter 1, it was mentioned that non-uniformity in the static pressure distribution
exerted on arotating disc in agas or steam turbine could excite the disc in different engine
orders. Furthermore, each nodal diameter mode of the disc rotating past a non-rotating
and static force may be simulated on a stationary disc using a dual harmonic excitation.
On the other hand, for a disc as an axisymmetric structure, most of the modes are double,
so that at one frequency there are two modes with same mode shapes but orthogonal in
gpace. Simulation of double modes is carried out by applying two harmonic forces
separated by a spatia angle of ¢ = 376“(10- where n is the number of nodal diameters (ND),

and by atemporal phase angle ¢[=90°. In chapter 3, it was shown that different temporal

and spatial phase angles can be chosen provided they satisfy the following relation:
ncpS - = ¢‘

In the present chapter, a discrete mass model of a disc is considered for further analysis

on the forced vibration of rotating discs. The simulation criterion which has already been
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5.3 EIGENVECTORS FOR REPEATED EIGENVALUES

As mentioned in the previous section, for repeated eigenvalues any linear combination of
their eigenvectors is itself aso an eigenvector. However, a particular eigenvector can be
introduced which is unique relative to a chosen eigenvector of the family of eigenvectors
of the repeated eigenvalues. In the following, the method which has been developed in
reference [47] is used.

Supposing that {\y}k and {y }1 are two eigenvectors corresponding to the equal
eigenvalues ){and X%. Alternative eigenvectors {y'}, and (y'}, areintroduced such that

at a certain coordinate, x,, one of them is zero:
k\v'i =0 (5.5)
Also, the new eigenvectors are to fulfii the orthogonality condition:
T .
(v}, M) {y),=0 (5.6)

Setting ('}, and ('}, as a combination of the initial eigenvectors, we can write :

(v}, =p(v) +{v} } 57

(v}, =q vy} +{vyv]
where p and q are two constants which are to be determined.
Substituting into equation (5.6) gives:
pqm+m=0 (5.8)
where:

m, = (W) IM] (),
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m, = (y)] M] (y),

On the other hand, by using equation (5.5) for coordinate i, we will get :

P¥;~¥;=0
or: p=- ¥ (5.9)
Vi

Now, g will be obtained from equation (5.8) :

q = b (510)

The new eigenvectors possess the properties of orthogonality and are unique in direction
(or phase). However, they should be normalized in magnitude to be the same as the

original ones. For simplicity, if the eigenvectors are represented by vectors u and u':

{(y},=u and (W}, =u (5.11)

they can be written in term of unit vectors and norms:

u_
'l

U

A'—
i ad U=

A
u=

The normalised eigenvector u’_isin the direction tou” and is equal to u in magnitude,

that is;

u =l Y
n

{ull

: u =pa-u
or T

Substituting the original vectors from equation (5.11) will give:

_ (norm{wy'})

= ) (5.12)
(norm(y},) Wl

n{w k
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Similarly, we can obtain the normalized eigenvector for the other mode:

_ (norm{y}))

5.13
V= oy ¥ (5.13)

5.4 DUAL-EXCITATION RESPONSE

In the previous section, the eigenvalues and eigenvectors of the assumed lumped mass
system have been obtained. Now, the response to any set of harmonic forces can be
calculated; although particular interest is on the response to the two harmonic excitations

with specific spatia and temporal phase angles. The general formula for the response [3]

is:
{X}=[H] {F} (5.14)

where [H] is the FRF matrix whose general element Hij isgiven by:

N is the number of modes and is assumed to be equal to the coordinates. ¢, isthe mass

normalised eigenvector element at point i, and isequal to:

The input forces, f, (=F cos wt and f,()=F cos(wt+9,), should have equal magnitudes

and hence the force vector for the case of interest is

F F‘} Fo (5.15)
{ }_{Fz - Foé+¢t .
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where ¢, is the temporal phase angle which is equal to -90° with the spatial angle o,

(o]
323 . In the general case, the following relation is applicable between ¢, and ¢, as

shown in chapter 3:

ng -0=mx (5.16)

Now, using equation (5.14) and assuming different numerical data for the model, the
response can be calculated and the ssimulation criterion examined for different conditions

such as mistuned systems, complex modes and general spatial phase angle.

5.5 NUMERICAL STUDY

Program DISC4 has been written for the analysis of the lumped mass system shown in
figure 5.1. It is assumed that the system consists of 16 elements and all the masses and
stiffness are the same unless they have been modified in the input data. This means that,
for example, the mass, stiffness or damping loss factor of element i can be p% above or
below its nominal value. In this way we can introduce any kind of mistuning or non-

proportionality in the system.

The program first calculates the eigenvalues and eigenvectors of the system, then, in the
case of repeated eigenvalues, obtains proper eigenvectors for such eigenvalues using the
method mentioned in section 5.3. Finally, it calculates the response at all the coordinates
for the desired mode, for a given spatia angle (between the two exciters) and at the given

excitation frequency.

In another subroutine of the program, the multi-input sine dwell test method has been

considered to isolate one mode. In this method mono-phase forces are applied at al
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coordinates. Their amplitudes are selected such that a particular mode -but only that
mode- will be excited. Using this method any mode can be isolated at the excitation

frequency.

In the following section, seven particular cases of mistuned systems with different

damping and forcing inputs are presented.
CASE 1: Mistuned system with real modes

In this case all the masses are equal to unity except those at coordinates1, 5, 6 and 12
which are increased by 2%, 3%, 4% and 2.5% respectively. Also, the stiffness for all the
springsis 1.LE+4 (N/m) except for elements 3, 8 and 9 which are changed by +1%, +2%
and +1% respectively. The damping loss factors for all elements are assumed to be 0.05.
The first 7 eigenvalues and eigenvectors are shown in table 5.1. A rigid body mode has
been found at 4.46 rad/s and the rest of the modes are nodal diameter modes which arein
pairs with close natural frequencies. This table shows that athough the modes are close,

they are real modes since proportional damping has been assumed for the model.

The 2 ND modes are plotted in figure 5.2; they correspond to the eigenvalues A, and A,.

This figure shows that despite the mistuning in [M] and [K], the mode shapes are very

close to sinusoidal forms.

To simulate the 2 ND travelling wave on the system, two excitations with a temporal
phase angle of 90° are located at coordinates 1 and 3. The angle between these two
coordinates is 45° for 16 elements around the disc. The total response due to this
excitation at frequency equal to 76.3 rad/s (identical to the lower 2 ND natural frequency)
is shown in figure 5.3 (c). The response to the different wave orders can be analysed as

mentioned in section 3.8. Figure 5.3 (b) shows the contribution of the 2 ND mode
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Table 5.1 Eigenvalues and elgenvectors for case study 1

4.462 39.14% 39.222 76.34% 76.64° 110.732 111.162
(1405 ) | (1+.05 i) (1+058) | (1+05) | (1+.05 i) (1+.051) (1+.0Si
0.250 0.029 0.353 0.353 -0.003 0.351 -0.064
0.250 -0.108 0.336 0.252 0.249 0.073 -0.343
0.250 .0.228 0.269 0.004 0.356 -0.294 -0.199
0.250 .0.314 0.161 -0.243 0.255 .0.301 0.187
0.250 -0.353 0.028 .0.352 0.004 0.061 0.346
0.250 -0.336 -0.109 -0.250 -0.249 0.346 0.066
0.250 -0.267 -0.229 0.003 -0.351 0.191 -0.299
0.250 -0.158 -0.315 0.254 -0.247 -0.198 -0.295
0.250 -0.027 -0.352 0.356 -0.004 -0.341 0.066
0.250 0.109 -0.336 0.254 0.244 -0.073 0.350
0.250 0.230 -0.269 0.004 0.352 0.288 0.205
0.250 0.316 -0.161 -0.249 0.253 0.296 -0.193
0.250 0.353 -0.029 -0.353 0.003 -0.067 -0.347
0.250 0.337 0.109 -0.252 -0.249 -0.348 -0.073
0.250 0 270 0.229 -0.005 -0.355 -0.203 0.291
0.250 0.162 0.315 0.245 -0.254 0.191 0.296

backward wave, which is the largest of the various orders in the total response. This is
expected as the excitation is set for 2 ND modes. Figure 5.3 (@) represents the rest of the
response when the contribution of the backward wave of 2 ND modes is removed. Note
that when the wave travels in the direction of the excitation point 1 to the excitation point
2 itisabackward travelling wave. In contragt, if it travels from point 2 towards point 1, it
is a forward travelling wave. This terminology is based on the earlier description of the
simulation where the direction of disc rotation, €2, was assumed to be in the opposite

direction to 6. Therefore, a wave is a backward one if travels in the direction of 6.
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Figure 5.2 2ND modes of mistuned system; case study 1
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Figure 5.3 Response of the disc in case study 1
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CASE 2: Mistuned disc with complex modes

Table 5.2 shows the first 7 eigenvalues and eigenvectors of the system with the same
mass and stiffness data as in the previous case but with the damping loss factors at
elements 3, 8 and 9 changed by -50%, +50% and -20% respectively. This variation in the
damping loss factors results in non-proportional damping in the model and,
consequently, the modes are complex as seen in table 5.2. The response to the two
excitations is calculated for this system and the results are shown in figure 5.4. It is seen
that the backward wave of 2 ND modes is dominant in the response as in the previous

case, and that the modal complexity had no significant effect on the response to this

excitation.
Table 5.2 Eigenvalues and eigenvectors for case study 2

4.462 39.162 39.22 76.342 76.642 1 10.72 11 1.12

(1+4.05 i) (1+.0511) (1+.047i1) (1+.0471) (1+.0511) (1+.0491) (1+.049i)
250 0°f{18 137.0°| 36  7.6°| 35 -2.0°{.016 -113.9° | 36  -2.1°].096 -129.3°
250 0° |27 1594°] 29  18.4°) 24  -23°| 26 -177.6°].11 44°} 35 .177.4°
250 0°]35 171.0°) 20 382°}.013 -113.5° [ 35 -1799°] 30 -1713°] .22 1634°
250 0°137 1794°) 13 84.6°| 25 -1769°] 25 177°1 31 1728°| 20  213°
250 0° |35 -1724°] 18 1374° | 35 -1798°f .17 71.1°| 096  53.0°] 35 2.5°
250 0°| 2 -1617°] .28 1597°} 24 177.4°} 26 22°1 35 28°] .11 495°
250 0°| 19 -1418°|.35 171.1°} 021 53.2°] 35 %21 a79°) 3 ama®
250 0°} .13 935° |37 1795° 26 27°] 24 33° |21 -161.4°) .31 170.8°
250 0°1.18 431°| 36 -172.3°] .35 .1°%1 013 -1183° |35 177.7°{ 095 489°
250 0°] 28 -206°1.29 -161.8°] .25 27°1 25 177.6°].1 1353°) 36 3.1°
250 0° | 35 .9%1 2 -1421°) 016 -111.7° 0 35 -179.8°] .29 87°| .22 -15.8°
250 0° | 38 62113 950°1 25 178° 25 177991 31 82°1 2  -1614°
250 0° [ 36 76°1 18 430°{35 1797°|.016 639°|.1 .1297°{ .36 178.1°
250 0°]29 184°|.28 206° |24 177.5°) 26 24°| 35 177.4° a1 1369°
250 0°]20 38.0°}.35 9.1°) 014 71.5°]} 36 1°1 .22 163.0°] 30 8.6°
250 0°|.13  85.0°] .38 -6° ] .25 1.9 25 22°1 20  19.°) 31 .7.4°
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‘Other waves’

Ampl.=5.02E-84

Figure 5.4 Response of the disc in case study 2

CASE 3: Excitation at frequencies different from the natural frequency

According to theory, the response of the dual diametral modes to the excitation preset for
the simulation of a travelling wave is a pure travelling wave if the disc is tuned. Thisis
independent of the excitation frequency, whether it is equal to, below or above the natural
frequency. However, in a mistuned case, the component of the travelling wave increases
if the excitation frequency is away from the natura frequency, since at frequencies away
from the natural frequencies, the effects of the two modes are almost the same. This
argument is aways true whether we consider just one set ND modes or more. But in the

latter case, the other modes are also excited more or less depending on the excitation

frequency.

In case study 3, excitation at a frequency away from the natura frequency isinvestigated.

The same model as was used in case 1 is used again here and an excitation frequency of
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80 rad/s is chosen which is higher than 2 ND natura frequencies of 76.34 and 76.64

rad/s. The response is shown in figure 5.5 and indicates a backward travelling wave of 2

ND modes.

“Other wsves”’
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SRR e

Ampl.=2.45E~84

Figure 5.5 Response of the disc at 80 rad/s in case study 3

The investigation is continued further at an excitation frequency of 110 rad/s, which is
very close to the 3 ND natura frequencies of 110.75 and 111.16 rad/s, while the two
exciters are properly selected for excitation of the 2 ND modes. In figure 5.6 the response
is shown in which the 3 ND modes are seen to be dominant. It is concluded that a mode
cannot be isolated at a frequency equal to the natural frequency of another nodal diameter
modes even if the excitation forces are set such as to excite that mode. As a result, the
modes which are not easy to identify by their number of noda diameters can be
recognized by applying a different excitation pattern at the suspected natural frequency.

By changing the excitation pattern, if it still responds to the previous modes, then this

mode is the right one.
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Figure 5.6 Response of the disc at 110 rad/s in case study 3

CASE 4 The effects of frequency split and damping level on the response

In the excitation of n ND modes, the response approaches a backward travelling wave if

the corresponding natural frequencies are close together and the level of damping is high

enough. Figure 5.7 shows the response of the same system as discussed in figure 3.5 but

with a damping loss factor of 0.005 instead of 0.05. It is seen that the total response is

close to afixed vibration (vibration of one mode), rather than a travelling wave.

The effects of damping level and the closeness of natural frequenciesin the simulation are

studied comprehensively below, in section 5.6.




SIMULATION OFTRAVEILING WAVEIN A DISCRETE MODEL 146

1.=4.686~83
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Figure 5.7 Response of the disc in case study 4

CASE 5 : Excitation with the forces at an arbitrary spatial phase angle

The same data as were applied in case 2 are considered here and the second excitation
force is applied at point 4 so that q>s=67.5°. By using the relation (5.16) for 2 ND

modes, temporal phase angle ¢, would be required to be +45° in order to simulate the

travelling wave of 2 ND mode. The response and its two components are shown in figure

5.8, representing almost a backward travelling wave of 2 ND mode, the same as figures

5.3 and 5.4, when ¢s=45°. Hence, any applicable spatial angle can be used, subject to

satisfying relation (5.16).
CASE 6 : Dependency of modes location on the mass distribution

A set of datais considered in which all the masses are the same except at point 3 where it
is 5% more than the others. The mode shapes of the 2 ND modes are shown in figure
5.9. It is seen that the anti-node of the lower natural frequency mode coincides with point
3 while the node of the other mode is at this point. This is the same conclusion that has

been mentioned in references{7]
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Fmpl.=3.55E-84

Figure 5.8 Response of the disc in case study 5
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Figure 5.9 2 ND modes when there is concentrated mass at coordinate 3
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Figure 5.8 Response of the disc in case study 5
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Figure 5.9 2 ND modes when there is concentrated mass at coordinate 3
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and [19] and states that in mistuned axisymmetric systems, the modes are located such
that the masses are effectively on the nodes of higher frequency mode and at the anti-
nodes of the lower frequency mode. By referring to figure 5.2 and comparing with figure
5.9, it is seen that the position of the modes has been changed due to different mass
distributions around the disc, athough the same excitation positions were used for both

simulations.

CASE 7 : Applying simulation using more than two excitations

As mentioned in section 3.6, it is feasible to apply more than two excitations in the
simulation provided that they are located and synchronised with respect to the two
original excitations. In this case, four excitations which are two identical pairs, are
applied to the disc in a similar way to the case shown in figure 3.4 of chapter 3. The
response of the system to the four excitations is shown in figure 5.10. Here, the same
data as had been used in case 1 were applied, and so figure 5.10 is comparable with
figure 5.3. In figure 5.10, the relative maximum amplitude of ‘other waves to the total

response is 0.10 while for the two excitation case figure 5.3, it is 0.15.

These figures imply that by increasing the number of exciters there will be a significant
reduction of the ‘other waves components in the response. In the other words, by using
more excitation locations, the response approaches the response of the mode of interest

and thisis beneficial from a quality point of view.

Practically, the application of more than two excitations does not necessarily mean that the
controlling procedure becomes more complex. This is because by choosing proper
locations and similar temporal and spatial phase angles to the two set exciters for the

required mode shape there is no need for extra controllers and more complex procedures.
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Figure 5.10 Response of the disc in case study 7; (4 excitations were used)

5.6 GENERAL STUDY ON THE EFFECTS OF THE
NATURAL FREQUENCY SPLIT AND DAMPING
FACTOR ON THE SIMULATION

In this section, the sensitivity of the simulation of a travelling wave response to the
damping and also to the frequency splitting is investigated. In chapter 3, it has been
explained that the travelling wave can be simulated in an axisymmetric structure by
applying the special set of harmonic forces. The basis for establishing atravelling wave in
a disc is the existence of dual modes. Here, it is intended to study the effect of natural

frequency splitting and damping level on the ssmulation.
Eigenfunctions of adual ND mode are assumed to be of the form:
»1(8) = cos n( —v)

o®(8) = sin n(8 -cx)
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The response x; at a point on the rim to the two harmonic excitations F, and F, can be

expressed as.
x3 = H3; F; 4 H3p Fy

In an analytical investigation, x5 can be calculated since the receptances Hy, and Hs, are
obtained using the general FRF formula:

o0

_ ®irbk

@2-w2+in w?

| T rr
r=

Hj=

Responses at some other points, (say 15 points), can be calculated in the smilar way.
Then, the travelling wave component in the total response is estimated by using the

technigue mentioned in section 3.8.

Consider adisc with 2 ND modes for this analysis. Two harmonic exciters are applied on
the disc with a spatia phase angle ¢s=45°, temporal phase ¢,=-90° and relative
magnitudes equal to 1. The excitation frequency is assumed to be 95 Hz while the lower
natural frequency is 100 Hz. Different frequency splits can be studied by considering
different values for the second natural frequency. The effect of damping loss factor on the
development of the travelling wave is aso investigated. In each case, damping is assumed

to be the same for both of the 2 ND mode.

To illustrate the results, a 3 dimensional diagram has been shown in figure 5.11. It can be
seen that the travelling wave component increases with lower frequency spacing and with
higher damping. The effect of the frequency spacing is more than the effect of damping in
the low damping value range (n<0.2). This range of damping covers most of the
structures which are encountered in practice. Thus, the frequency splitting has a

significant role in the formation of atravelling wave at a certain frequency.
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Figure 5.11 Travelling wave component vs nat. frequency split and damping

5.7 CONCLUDING REMARKS

In the analysis of the assumed lumped mass model of the disc the following conclusions

can be drawn;

1- By introducing non-proportional damping to the model, complex modes are achieved
and for this system and the considered case, the travelling wave can be simulated by

using DCS exciters, similar to the system with real modes.

2- Various spatial phase angles for two excitation forces can be chosen, subject to the
satisfying the relation of: N ¢_- ¢, =T.
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3- Orientation of a ND mode shape depends on the distribution of the mass and stiffness
in the mistuned disc. The point with a higher effective mass will coincide with an anti-
node of the lower natural frequency mode while it will be on the nodal line of the higher

natural frequency mode.

4- The response of an n ND mode to the two excitations (DCS exciters) is a travelling
wave with order n. This is true for a tuned disc; however, in a mistuned disc, the
contribution of the travelling wave to the total response at a certain excitation frequency
will be decreased by increasing the natura frequency-splitting or by reducing the
damping.
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VIBRATION INTERACTION OF A ROTATING
DISC AND AN ADJACENT STATOR -

Part | Excitation applied to the disc

6.1 INTRODUCTION

It is well understood that at critical speeds as shown on the Campbell diagram, the n ND
mode of a disc, or bladed disc, can be excited by n EO excitation and resonant vibration
can occur leading to possible fatigue failure. Hence these critical speeds are avoided in the
design and operation of the rotating discs. Kushner [15] has shown that even minor
resonances can become significant if the critical points are to be avoided in the running
speed ranges. These minor resonance points are determined by the difference between the
number of blades in the disc and the number of vanes in the stator. Jay et al [17] also
have shown that the difference between the number of blades and vanes defines the order
of the forcing function and hence determines the order of the excited nodal diameter
mode. There are several kinds of interaction between a rotating disc and the stator in

which the number of vanes and blades are concerned. There is the possibility of vibration
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interaction between a rotating disc and an adjacent stator in a gas or steam engine where
vibration in one of the structures is transferred to the other one. In figure 6.1 two
possibilities for vibration transmission between the rotating disc and the stator have been
illustrated. Figure 6.1a) shows a typical sea between the stator and the rotating disc
which is used, for example, to separate the gas passage and the adjacent section in the
rotor disc construction. Supposing that the rotating disc is vibrating at nth EO-excitation,

adynamic force can be transmitted to the stator through the seal due to this vibration.

Casing
Blade Stator %

Blade

Disc Seal Disc

—_—— e

a) b)

Figure 6.1 Two possible situations which could cause a vibration interaction
between the rotating disc and the stator

Figure 6.1b) represents another configuration in which the surface of the casing (stator)
of the engine is not parallel to its axis. When the disc vibrates, it is possible that the gap
between the rotor and the stator changes with the same order as the excited ND mode in
the disc. The pressure of the gas-flow is related to the thickness of the gap and as aresuilt,
the dynamic pressure on the stator causes vibration. Hence, there is a similar situation for

the possibility of vibration interaction between the rotating disc and the stator.

In order to investigate the vibration interaction between a rotating disc and the stator, two

distinct analyses are considered according to the source of the excitation. In this chapter,
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it is assumed that the initial excitation is the n EO excitation on the disc and in the next
chapter, the excitation is assumed to be exerted on the stator. In the both cases, it is
assumed that the vibration is transmitted between the disc and the stator through a soft

spring so that the displacement in one causes a proportional force on the other structure.

In this chapter, the response of a pair of ND modes of a rotating disc due to nth EO
excitation is obtained, then the response of the stator due to the vibration interaction is
determined. It will be explained in section 6.3 that the total analytical solution for the
vibration interaction is not possible and we only obtain the part of the stator response due

to the interaction.

6.2 RESPONSE OF THE ROTATING DISC TO nth ENGINE
ORDER EXCITATION

One of the most significant sources of excitation of diametral modes in a rotating disc is
engine order excitation. This kind of excitation can be expressed as Fr.(6,,t)=F, cosn 8,,

which could be the effect of the static gas pressure behind n stationary vanes or nozzles to
the rotating disc, (Remembering that 8, is the stationary coordinate and 9 is a coordinate
rotating with disc). A static force applied to the rotating disc is also, in fact, an engine
order excitation to which al the diametral modes are susceptible to resonance and not just,
for example, n ND modes in the case of n EO excitation.

In the following section, the response of a pair of ND modes of the disc to nth EO
excitation is obtained.

6.2.1 Analysis in terms of coordinates rotating with disc

Consider a rotating disc subjected to nth EO excitation, F,(0,,t)=F, cosnB8,. By
substituting 6, by (8-Qt), and expanding, the forcing function in terms of coordinates

rotating with the disc is obtained:




3 INTERACTION - Part 1 156

F,(0,0) = F, sin nB sin nQt + F, cos n cos nQt (6.1)

By setting the eigenfunctions of the two n ND modes as: ® _,=sinn8 and ¢ _,=cosn8,

the generalized forces in these two modes can be calculated.

According to the definition, if Fy(0,t) is a dynamic distributed force applied on a system,
the generalized force formulafor modei of that systemis:

2n

Q= J(F(e,o 0.(6) d9) (6.2)

Therefore, for the first n ND mode of the disc, the generalized force will be:

2n
Q.= OJFo(sinzne sin nQt + sin n6 cos nB cos nf2t dB6)

2X 2X
=F, fl-cozﬂsin nQtdo + F, jsmzﬂ cos nQ2tdo
0 0
or:
Qn1= nF, sin nQt (6.3)

Similarly, for the other mode:

2n
Q1 =Fo j(sin n@.cosnd sin nQt + cos’nb cos nQt de) (6.4)
0

or:
Q,m=nF, cos n{2t (6.5)

Having obtained the generalized forces, the generalized (or normal) responses are

calculated by using the convolution integral, as used in chapter 2. If m_, and @_; are the
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a,(t) = Wa1 cos nt + W, cos o , t

n2
where: Wy = 1: F2° 5
m_, (n2Q2 - mnz)
n F

and the steady-state solution will be deduced:

g,(t) = Wy cos nQt (6.11)

Knowing the generalized coordinates for the n ND modes, the response is calculated

using the mode-summation formula:

Xan(0,t) = i ¢,:(8) q;(®) (6.12)

Substituting from equations (6.10) and (6.11) into equation (6.12), the response of the

rotating disc due to n EO excitation is obtained:

Xan(0,1) = W1y sin n sin nQt + W5 cos nf cos nQt (6.13)

6.2.2 Analysis in terms of stationary coordinates

Equation (6.13) represents the response of the rotating disc in terms of a coordinate
rotating with it. However, from the stator point of view, the response of the disc should
be obtained in terms of the stationary coordinate 8,. By assuming that rotation is in the

opposite direction to 8, the relation between the rotating and a stationary coordinatesis:
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Equation (6.23) represents the steady-state response of the stator due to interaction with
the disc subjected to EO excitation. Supposing that the stator is tuned, then the parameters

A and P would be equal and hence:

Xsn(Bost) = A cos n(0, + 2Q1)
mS (DS

which expresses a forward travelling wave with speed of '2Q2'.

Another result from this analysisis that the frequency of vibration in the stator is twice the
vibration frequency in the disc. Also, it is deduced from equations (6.22) and (6.23) that
for a system in which natura frequency of the n ND mode of the stator is equal to '2n 2,

aresonance coincidence in the stator would occur as a consequence of the interaction.

6.4. NUVERI CAL STUDY

The analysis has been used in a computer program to investigate different situations in the
disc-stator interaction. The program 'IN_PLT' has been developed to simulate the
interaction of n EO excitation of the disc and stator. In this program, different data for the
disc and the stator are entered. The program calculates the response of the rotating disc in
terms of coordinates rotating with the disc, X4,(8,t), and then the responses of the
rotating disc and of the stator from the view point of a stationary observer, Xgn(6,t) and
Xsn(0,,t), are caculated. An animation display of the responses is shown on the
computer screen and a hard copy of these displays can be obtained. In one time period
(T= 60./ n€2), the response is plotted at six time intervals successively. In the case of a
travelling wave, different colours and/or numbering of the curves can help to indicate in
which direction it is travelling. The direction of the travelling waves can aso be shown by

an arrow above the curves, similar to the cases shown in figures 6.4 to 6.10.
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In figure 6.3, a frequency-speed diagram for the 3 ND modes of a disc and stator is
shown. The natural frequencies of the 3 ND modes are assumed to be 100.0 and 101.0
Hz for the disc and 80.0 and 80.5 Hz for the stator. Also, it is assumed that the natural

frequencies of the disc do not change with the speed of rotation. The generalised masses

for the 3 ND modes of the disc are supposed to be m_ =1.0 and m_,=1.1kg and of the

stator, m_; =0.9 and m_,=1.0 kg. The various responses of the disc and the stator for the
interface stiffness equal to K=1.E+6 (N/m) are calculated and examined at six rotational

speeds shown in figure 6.3. The results will be discussed in the next section but the

conditions for each case are as follows;

Q, : At this speed the lower natural frequency of the 3 ND modes of the stator

coincides one of the resonant frequencies of a 3 ND mode of the rotating disc, that is:
o, =m_,-3Q,. Hence 2, is equal to 400 rev/min and the responses for this speed are as

shown in figure 6.4.

Qg : The interaction is examined at an ordinary speed Q=500 rev/min for

comparison of the results with other particular cases. Figure 6.5 illustrates the responses

for this speed.

Qp : At this speed, the '3Q' line (or 3 EO line) intersects one of the resonant
frequency lines of the rotating disc. For this case (mnl-3QD)=3QD and hence Qp=1000

rev/min. In figure 6.6 the responses of the disc and the stator are illustrated when the

rotation speed is at Qp,.

Q¢ : It is worth examining the interaction at the rotating speed for which the

excitation line (3 EO line) intersects one of the stator natura frequency lines. As an

example of this case, consider g in figure 6.3 for which we can write (3Qg) =, and

hence, Q2=1610 rev/min. The responses for this speed are illustrated in figure 6.7.
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Figure 6.3  Natural frequencies and the rotation speeds studied in the
vibration interaction between the disc and the stator

Q: In the analysis, it has been realized that at a certain rotating speed the stator will

®
be at resonance . That speed is given by QS=2—ni. At one of these speeds Q=800 rev/min

, the interaction has been examined and corresponding responses are shown in figure 6.8.

Qc: Let us consider one of the critical speeds. Theoretically, at the critical speed of

n EO excitation, the response of the disc is very high and in an undamped case goes to

infinity. In order to make calculation feasible at speeds such as €2, the denominator of

the amplitudes in equations (6.13) and (6.15) is assumed to be a small value rather than

Zero.

At this critical speed, w,, - nQ¢ =0 and with the assumption of ;=100 Hz, then Qc

becomes 2000 rev/min. The results of these data are shown in figure 6.9.
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Figure 6.9 Responses at Q2-=2000 rev/min.
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Figure 6.10 Responses at 400 rev/min.and with reduction of the detuning in the disc
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this figure. The responses for different cases are presented in figures 6.4 to 6.10. In each
figure, two upper families of curves represent the disc responses in terms both of
stationary coordinates and of coordinates rotating with the disc. The lowest family of
curves illustrates the response of the stator. In almost all figures, the response of the disc
to 3 EO excitation isvery close to a backward travelling wave in the rotating coordinate or
a‘standing wave' in the stationary coordinate. Since the disc has been assumed to be
mistuned, it is not a pure standing wave but a standing wave oscillating in its position as
shown, for example, in figure 6.7. In fact, this dight deviation from a pure standing

wave is responsible inducing vibration to the stator.

The response of the stator is amost a forward travelling wave with a speed twice that of

the travelling wave on the disc. At Q,=400 rev/min and Q=500 rev/min there is no

resonance coincidence, (figures 6.4 and 6.5). Also, resonance does not occur either when

the 3 EO line intersects the disc resonance frequency line, (®,,-3€2), (that is at £2p=1000
rev/mitt), or at the speed of Qg=1610 rev/min where the 3 EO line intersects the stator
natural frequency line. However, the level of response is higher than in figures 6.4 and
6.5 as these speeds are closer to a critical speed. In figure 6.9, the response at one of the
critical speeds of the disc has been illustrated. The level of response indicates that the
resonances coincide . In this figure, the response of the disc in terms of coordinates
rotating with the disc is a fixed vibration which means one of the pair of 3 ND modes of

the disc dominates in the response due to the detuning assumption made for the disc.

At Q¢=800 rev/min, where the 3 EO line intersects the (®_,-3€2) line the coincidence of
(0]
resonance occurs in the stator as seen in figure 6.8. This speed is equa to Q=2—§ in

general, which has been obtained in the analysis and is introduced as a minor resonance

in the vibration interaction between arotating disc and an adjacent stator.

Another point examined in the analysis is the effect of detuning on the interaction. Figure
6.10 shows the responses for the case in which the modal masses of 3 ND mode of the

disc are closer than in the case whose responses are illustrated in figure 6.4. Due to the
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lower detuning, a reduction in the level of vibration in the stator is observed and, as
mentioned before, because of this effect, no vibration will be induced to the stator in the

case of a perfectly tuned disc.

6.6 CONCLUSIONS

The vibration interaction between astator and a disc subjected to n EO excitation has been
investigated. In general, a forward travelling wave with a speed of '2Q2" and effective
vibration frequency equal to '2nQQ' exists in the response of the stator. There is a

resonance coincidence for the stator when the natural frequency of the structure is equal to

()
'2nQ2'; in other words, in the interaction a critical speed for the stator is equa to (-2;5).

This point can be seen in the frequency - speed diagram where the assumed ‘0 -nQ' line

intersects the excitation line(n EO).

The response of the disc is amost a standing wave from the viewpoint of a stationary
observer, such as the stator. It is the dlight deviation from a pure standing wave which
excites a travelling wave response in the stator. However, for a tuned rotating disc the
response to the n EO excitation is an exact ‘standing wave' so that it could not introduce

any vibration to the stator.




Chapter 7

VIBRATION INTERACTION BETWEEN A
ROTATING DISC AND AN ADJACENT
STATOR- Part II: The excitation applied to the stator

7.1 INTRODUCTION

In chapter 6, the first part of an analysis of the vibration interaction between a rotating
disc and the adjacent stator was reported in which the excitation was a static stationary
force applied on the disc. Another possibility for vibration interaction is when the stator
vibrates due to a harmonic force and the movement of the stator transfers to the rotor and
makes the rotor vibrate. This kind of excitation is quite possible in practice since there are
different accessory devices and equipment mounted on the stator or nearby, such as an oil

pump, which could generate a harmonic excitation in the stator.

In this chapter, the response of a stator due to a harmonic excitation is investigated and its
interaction with an adjacent rotor is examined. The steady-state responses have been

calculated in both a stationary coordinate system and in terms of coordinates rotating with
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disc. A computer program has been developed to display and plot the responses of the

disc and stator in order to examine the interaction .

Analysis is started by assuming a harmonic force applied to a stator as shown
schematically in figure 7.1. The vibration of the stator can be transferred to the adjacent
rotating disc through the seal as described in section 6.1. In the following, an analysisis
carried out for one pair of modes of the nodal diameter family to examine the vibration

interaction between the stator and rotor.

LF =Fo COS wt

\j

}—Y——1F=}g cos t
| |
|

N i
0 2X
= 8, Unwrapped circumference

Figure7.1 Schematic diagram of the stator and applied force

7.2 RESPONSE OF THE STATOR

In order to analyse the response of a'stator to a harmonic excitation, it is assumed that the

eigenfunctions of the n ND modes are:
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= sin nB,
®s ’ } (7.1)

¢,, = COs nd,

In fact these equations represent the n ND mode shapes on a circle of the stator and in the
interface area with the adjacent rotating disc The excitation point may not coincide with a
nodal diameter and the spatial angle between the excitation point and the adjacent nodal
point is assumed to be y; figure 7.1. By these assumptions, the forcing function will be

(Focos ot) 8[6,-y] and the generalised forces can be obtained as follows:

2n
Q0= O[Fo(cos @t)8[8,-¥] sin n8,d8,  (7.2)

2n
Q,M = d[Fo(cos w1)8[00-7] cos n8,d8,  (7.3)

or . Qsl(t) = F, sin ny cos wt
(7.9)

Q,,(t) = F, cos ny cos wt

Now, the modal responses are calculated by using the convolution integral .

1
mg, O

t
g, (t) = dJ'(Fosin ny cos @) sin @, (t-t)dz

t

qsz(t) -; J(Focos ny cos Tt) sin 0)52(t-‘t)d1
ms2 0.)52

(7.5)

After integration and considering the steady-state terms only, will give:
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Fosin n
q,(n=-[—25 Yz]cos ot
msl(m- sl ) (76)
F,cos ny . .
g,.(t) = -[ > 2] sin cot

m52 (0 - O‘)SZ )

The response of the stator is obtained by using the mode-summeation formula:

Xsn(Bo,t) = 9, t ¢sl(e) +4q,, (9] ¢52(eo) (7.7)

or : Xsn(06,t) = -A; cos wt sin nB,- A, cos wt cos nb,
(7.8)
where:
F,sin ny
Ay = ° 2 2
m, [0 o]
(7.9)
A, = Focc;s ny .
m., (w - 5 )
Equation (7.8) can be written in another form:
Xsn(Bo,1) = -A, cos ot sin n(6, - a) (7.10)

where A =+ \/ Af + A% and o = atan(- %)

which represents the response of the stator to the harmonic force and it is seen to

represent a ‘fixed vibration’. Since at a certain value of 6,, the response is zero and these

points are time independent (nodal points) which implies to a fixed vibration.
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7.3. RESPONSE OF THE ROTATING DISC

The excitation of the n ND modes on the stator can be transferred to the disc through the
seal and generate a distributed dynamic force on the disc. The interface force is assumed
to be proportional to the difference of the disc and stator displacements. The block
diagram of the vibration interaction has been illustrated in figure 7.2. Similar to part |
(chapter 6), this system has no complete analytical solution but it is possible to analyse

some parts of the response by assuming that

F@©_1) + X
2 »é —»| Stator - > (60,1

Figure 7.2 Block diagram for vibration interaction when the
excitation force applied to the stator

the system is linear. For the stator, the response to the force F(0,,t) = F,cos ot has
already been obtained and for disc, the response to F;;(6,,t) = K X,(8,,t) is analysed.

These disc and stator responses are a part of the total response due to the vibration

interaction.
Substituting from equation (7.10) gives:

F1(66,1) =-K A, cos ®t SiN n(B, - &) (7.112)
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Thisisthe equation of the dynamic force induced on the rotating disc by the vibrating

stator.

7.3.1 The generalised forces

The rotating disc with the applied stationary dynamic force is shown schematically in
figure 7.3. Coordinate 8 is rotating with the disc which spins with an angular speed of Q2

in the opposite direction to 8,. The dynamic load (Fi;) is stationary in space as presented
in equation (7.11). The analysisis carried out in terms of the rotating coordinate 6. Thus,

the forcing function relative to

o E,©,)

B, 2n
0 :I Q

Figure 7.3 Schematic of the rotating disc and the dynamic force on it

the coordinate on the rotating disc is obtained by substituting 8, with (0 - €2t ) in equation
(7.12):

f4(0,1) =- KA, coswt sinn(6-Qt- a) (7.12)

In the general case we consider the m ND modes of the disc and later we will see that m
has to be equal to n, the number of nodal diameters in the mode considered in the stator.

The eigenfunctions of the m ND modes of the disc are assumed to be:
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(t)m1 =snmO and ‘sz = cos m6 (7.13)

Now, the generalized forces can be obtained:

2n
QM= J[- K A, cos wt sin n(8-Qt-a)] sin m6 doé

It can be shown that this integral has a non-trivial solution only when m=n. Setting m=n

and after smplification, we find:
QM =-1 K A, cos wt cosn(Qt + a) (7.14)

Similarly, for the other mode:

de(t) =+ K A, cos ot sinn(Q2t + a) (7.15)

7.3.2 Analysis of the response in terms of coordinates rotating
with disc

Using equations (7.14) , (7.15) and the convolution integral, the modal responses are
obtai ned:

t
q,,(® = L [ KA cos Wt cos n(2t+a)sin u)dl(t-‘t)]d‘c

My, W4y ¢

t
and qdz(t) = 1 [+1cKAS cos T sin n(Q2T+a) sin (Ddz(t-‘c)]d‘t

my, Wy, ¢

After integration and considering the steady-state terms, this gives:

4y, (0 = Wijcos[(@+nQ)t+na]+ Wiz cos[(0-nQ2)t+na] (7.16)
and  qg,(t) = -Warsin[(0+n)t+na]+ W22 sin[(w-nQ)t+na]

where:
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Wy - +nKA, _ Wi - +1tKA52
2mdl [(w+nQ2) -0y, ] 2mdl[(m-n§2) -y,
Way - +1tKA52 - Wy +1tKA52
2md2[(co+nQ) - W@y ] 2md2[(w-nQ) -0y,
(7.17)
Using the mode-summation formula , the response of the disc is derived:
Xan(0,) = (1) 0,,(6) + g, () ¢,,(8)
Substituting from equations (7.13) and (7.16) gives:
Xdn(0,1) = W11 cos[(w+nQ)t+nalsin nf+W; cos[(w-nQ)t+nat]sin nd
-W; sin[(@+nQ)t+na]cos n+Wo, sin[(w-nQ)t+nalcos nd (7.18)

Equation (7.18) represents the response of the rotating disc expressed in terms of the

coordinate rotating with the disc. This equation can be presented in two parts to show the

backward and the forward travelling wave components:

where:

and

Xan(8,0) = Xp(6,1) + X¢(6,1)

Xp(0,1) = Wy sin[n0-(@+nQ)t-no]+(Wy1-Wjp)sin[(w+nQ)t+na)cos nd

X{0,) = Wos sin[n8+(w-nQ)t-na]+(Wia-Wo)cos[(0-nQ)t+najsin nd

(7.19)

Recalling equations (7.17), it is concluded that resonances will occur if winQ=w

and/or wtnQ=w . This means that at the following excitation frequencies, a resonance

coincidence happens:
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Wy +7tKA52 — Wi - +7tKA52
2m,, {(0+nQ)"- ;] 2mdl[(m-n§2) -0y,
Wap - +1tKA52 - Wy - +1tKAs2
Zmdz[(w+nQ) - W] 2md2[((o-nQ) - @y,
(7.17)
Using the mode-summation formula, the response of the disc is derived:
Xan(0,1) = q ; (1) 04,(0) + g4, (1) 0,4,(6)
Substituting from equations (7.13) and (7.16) gives:
X4n(0,1) = W1 cos[(@+nQ)t+naisin n6+W; cos{(w-nQ)t+na]sin n@
-Ws; sin[(@+nQ)t+na]cos nB+Wos sin[(w-nQ)t+na]cos nd (7.18)

Equation (7.18) represents the response of the rotating disc expressed in terms of the

coordinate rotating with the disc. This equation can be presented in two parts to show the

backward and the forward travelling wave components:

Xan(0,1) = Xp(0,1) + X¢(6,1)

where:

Xp(0,0) = Wy sin[n0-(@+nQ)t-no]+{W;1-Wjp)sin[(w+nQ)t+na]cos nb

and X{(6,t) = Wos sin[n8+(w-nQ)t-no]+(Wya-Woo)cos[(@-n2)t+nacjsin nd

(7.19)

Recalling equations (7.17), it is concluded that resonances will occur if winQ:wdl

and/or wtnQ=w . This means that at the following excitation frequencies, a resonance

coincidence happens:
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W=0,,inQ and 0=0,3nQ (7.20)

Each of these frequencies is called a ‘resonance frequency’ of the n ND mode in the

rotating disc.

7.3.3 Response of the rotating disc in terms of stationary

coor dinates
An expression for the response in terms of the stationary coordinate 6,, is obtained by
replacing '8’ by '8,+Qt' in the equation (7.18).
X4n(65,0) = W1y cos[w+nQ)t+nalsin n(0,+Qt)+W 2 cos[@-nQ)t+nalsin n(B,+2t)
-Ws; sin[w+nQ)t+nat]cos n(B,+Qt)+Wo2 sin[w-nQ)t+najcos n(B,+Qt)
After rearranging the terms of this equation, we obtain:
Xan(Bo,1) = 0.5(W11+W2y) sin[n6,-wt-na]+0.5(W12-W22)sin[nB,-(w-2nQ)t-na]
+ 0.5(W12+W22) sin[nOy+wt+na}-0.5(W21-Wi )sin[nB,+(w+2nQ)t+na]
(7.22)

Equation (7.21) represents the response of the disc in terms of the stationary coordinate.
It shows that the response consists of four travelling waves;, two backward and two
forward waves. Comparing equation (7.21) with equation (7.18), we see that athough
the response frequencies are different in the two coordinates, the resonance frequencies

are the same and are as presented in equation (7.20).

Equation (7.21) can be separated into the two parts;, backward and forward travelling

WaVES ;
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Xdn(80,1) = Xp(Bo,1) + Xe(6o,t)
where Xp(0,,1) = 0.5(W 1 1+W3)) sin[nB,-wt-na]
+0.5(W12-W22)sin[n8,-(w-2n{2)t-nat]
and X{(6,,1) = 0.5(W 12+ W53) sin[nf,+ot+na]
-0.5(W71-W11) sin[nB,+(w+2n)t+na]

For the special case where the disc is tuned, m,,=m , and w,, =0 ., it is deduced from

equation (7.17) that W12=W», and W1=W>; and therefore:

Xp(0,,t) = W in[nB,-w t-na
5(80,1) 11sin[n@, ] } 722

and Xf(0o,t) = Wassin{nfB,+0t+na]
which are single backward and forward travelling waves. Although equation (7.22)
represents the response components for a tuned disc, it can also be used to estimate the
components of the response for a mistuned disc if the excitation frequency is far enough

from the resonance frequencies.

From equation (7.22) we can deduce that when ©=0 (i.e. a static force excitation which,

here, has physically no sense), the response of the disc is:
Xan(8o,1) = (2W cos na) sin nb,

which represents a‘ standing wave' and it is expected from the excitation of arotating disc

with a static force.
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7.4 NUMERICAL STUDY

The results obtained in the previous sections can be used in a computer program to

investigate different situations in the disc-stator interaction process. A program

‘IN_PLTD’ has been developed to simulate the vibration interaction of the stator with the

disc when a harmonic force excites the stator. In this program, different data for the disc

and the stator are entered and the responses of the stator and the disc are calculated.

Different excitation frequencies and rotating speeds are examined on two assumed

systems. The two systems are similar and consist of a disc and stator with 3 ND modes.

The moda parameters used for system | are shown in table 7.1. The only difference

between the two systems is the second natural frequency of the disc, which is assumed to

be 202.0 Hz in system |1, compared with 200.5 Hz in system |. The interface stiffness is

assumed K=1.E+6 (N/m) in all cases.

Table 7.1 Modal data for 3 ND modes (systems I and II)

Generalized masses, [kg] Natural frequencies, [HZ]

System | System |l System | System |1
DISC 1.00, 1.02 1.00, 1.02 200.0, 200.5 200.0, 202.0
STATOR 1.20, 1.30 1.20, 1.30 150.0, 152.0 150.0, 152.0

Different cases which have been considered for System | are summarized in table 7.2.

For system I, only one case has been considered and the other situations are similar to

the cases in system | hence they are not considered.
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Table 7.2 Different cases considered for system |

Case symbal A B c D E F G H
Excitatiqn, frequencyl, | o 150 152 | 152 | 150 | 152 | 200 | 152
Rotation, % 1000 | 1000 960 | 970 | 1010 | 1000 | 1000 | 2500
Relevant fiqureNo, | 74 | 75 & 76| 7.7 | 78| 79 |7.10[7.11] 7.12

The disc response is obtained in terms of the stationary coordinates and also in terms of
the coordinate rotating with the disc and the results are illustrated in figures 7.4 to 7.13
for the different cases. In each figure the maximum amplitudes obtained in the analysis
are written at the bottom of the curves. The general format and idea behind this style of
presentation has been explained in previous chapters and the only difference here is that
there are different components with different frequencies for the response of the disc in
the stationary coordinate. In displaying a disc response which consists of more than one
frequency component, it is usually impractical to select a period to cover al the
components periods. The display will be more representative of the response if the
longer period (corresponding to the lower frequency) is used. However, if the amplitude
of the lower frequency term is much less than the amplitude of the higher frequency term,
we would present the response in the basis of the period of the higher frequency
component.

Following the above considerations, nine cases studied and the results have been

displayed in figures 7.4 to 7.13 and are discussed in the next section.

7.5 RESULTS AND DISCUSSION

The possibility of vibration interaction in a stator-disc system with a harmonic excitation
on the stator has been studied. The response of the stator has been presented in equations
(7.8) and (7.10). It is seen that the stator response is a ‘fixed vibration’ and there are no
travelling waves since the excitation is smply one harmonic stationary force. The position

of the exciter on the stator has been shown by an arrow, in figures 7.4 to 7.13. In al the
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case studies, the spatial position for the exciter has been assumed to be Y=10° which has
been illustrated in the schematic responses of the stator, figure 7.1. In those cases where
the excitation frequency coincides with one of the natural frequencies of the stator (e.g. in
figures 7.5 and 7.7), the response is exactly the same mode shape assumed earlier in the
analysis , i.ea‘sin 38" or a‘cos 36" shape. But at the other excitation frequencies, both
3 ND modes have effective influence in the response of the stator and hence, the response

isasin(3Q+a,) or acos(3Q2+a,) shape, e.g. in figures 7.4 and 7.11.

Equation (7.11) represents the forcing function applied to the disc which is due to the
interaction with the vibration in the stator. The rotating disc response to this excitation has
been presented in equation (7.18) and also in the two separate parts in equation (7.19).
This response has been calculated in terms of the coordinate rotating with the disc. The
disc response has also been obtained in terms of the stationary coordinate and presented

in equation (7.21). The general conclusion is that when the excitation frequency coincides

with the disc resonance frequencies, w=wm #n{2, a resonance coincidence will occur.

Different cases studied have been summarised in table 7.2; moreover, a special case of
system |l has also been examined where at one rotating speed there are two possible
resonances. All the responses for different cases have been shown in figures 7.4 to 7.13
and are discussed respectively. In figure 7.4 the responses at w= 100 Hz and Q2=1000
rev/min are shown. In this case, the excitation frequency is below the natural frequency
of the stator (150 Hz) and aso is different from the resonant frequency of the rotating
disc. The response of the stator is a ‘fixed vibration’ while for the disc it is a travelling

wave with varying amplitude.

The responses for the excitation frequency equal to 150 Hz and at the speed of Q=1000
rev/min are shown in figure 7.5. This excitation frequency is equal to the natural
frequency of the stator and, aso, for the assumed speed it coincides with the resonant
frequency of the disc. It is seen that here resonance occurs in the stator as well asin the

disc. However, the amplitude in the disc is much higher than in the stator as the figures
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below the plots show. Figures 7.5 illustrates that the response of the disc is a fixed
vibration in the coordinate rotating with the disc. This response can be decomposed into
the two components X and Xy, according to equation (7.19). For this case, the term of
(W11-Wap)sin[(w+nQ)t+najcos n6 is dominant which represents a fixed vibration and

is shown in figure 7.6.

There are three other cases where the the excitation frequencies and the speed are such
that the stator and the disc are at resonance. These situations and their responses have
been shown in figures 7.7, 7.8 and 7.9. It is seen that the disc response for al of these

cases are in the same shape as in figure 7.5 and they represent the fixed vibration in the

disc.

Figure 7.10 shows the case in which the excitation frequency is equal to the stator natural
frequency but the speed is such that the response frequency does not coincide with the
disc’'s resonance frequency. In this case, athough the stator is at resonance, the disc
itself is not and the response is a large backward travelling wave. In figure 7.11 the
excitation frequency is assumed to be 200 Hz which is equal to one of the disc natural
frequencies. This figure represents the responses for this case and shows that the disc is
not at resonance. The interpretation is that for the rotating disc its ‘ resonance frequencies
should be considered in the comparison with the excitation frequency and not its actual

natural frequencies.

Another case considered is shown in figure 7.12 where the excitation frequency is equal
to one of the stator natura frequencies and the speed is much greater than for the
resonance frequency. In this case, the disc is not at resonance, similar to the case shown

in figure 7.10 and the response is a backward travelling wave with varying amplitude.

The last case considered is on system |l, which is similar to the previous system but the
second natural frequency of the 3 ND of the disc is 202 Hz rather than to 200.5 Hz. This

change makes the system have two distinct coincidences of resonance at the speed of
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1000rev/min; see figure 7.13. Comparison of the responses with the relevant case in the

previous system (figure 7.5), we see that there is no significant differences.

7.6 CONCLUSION

There is the possibility of vibration interaction between the stator and an adjacent rotating
disc if the stator is excited by a harmonic force. Owing to this interaction, the analysis
showed that the effective excitation force for the rotating disc is in terms of two
frequencies '®' and 'nQ' rather than a single frequency. The response in the n ND modes
of the stator to this excitation is a fixed vibration with frequency equal to the excitation
frequency, . However, the disc response is a combination of ‘fixed vibrations and
‘travelling waves'. The frequencies of the disc response are w+n€2 in the view of an
observer on the disc, and hence the resonance frequencies are ® dinQ for the rotating
disc. In a frequency-speed diagram of a diametra mode, there are four points where the
coincident of the resonance will occur. At these points the excitation frequency is equal to

the both stator natural frequency and the disc resonance frequency.




INTERACTION-Part || 188

“DISC: coord o0t withdisc’ —™

"Dl SC. statfonaryceard’ ——

‘STATOR: statfonary ooord”’

W=
a— S =

=368

Tbnnnhn paint
Ampl.=1,.S3E-06

(a)

Modal datafor 3 ND modes

Generlized Natural
masses, (kg) Frequencies, [Hz]

Frequency

DISC| 1.00, 1.02 |200.0, 200.5

|sTaTOR| 1.20, 1.30 |150.0, 152.0 |

Ws2

N\

(b)

w

—— —-—Y sl
()]

AN'3Q

Excitation frequency ® = 100 [Hz]

. Rotati eed
Running speed Q = 1000 [rev./min] 91 otaron sp

Figure 7.4 (a) Theresponsesof disc and stator; (b) Relevant data about them
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Figure 7.5: (8) Theresponses of disc and stator; (b) Relevant data about them
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Figure 7.6: (8 The response components of the disc and the stator response;
(b)  Relevant data about them which arethe same asin figure 7.5
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Figure 7.7: (@) Theresponses of disc and stator; (b) Relevant data about them
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Figure 7.9: (a) The responses of disc and stator; (b) Relevant data about them
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Figure 7.11: (a) The responses of disc and stator; (b) Relevant data about them
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- Collection of different terms and definitions used in rotating disc study such as
backward and forward travelling waves, standing waves and fixed vibration;

- Analysis of the frequency response of arotating disc in rotating coordinates and in
stationary coordinates. The analysis was confirmed by experiments;

- Presenting a more general relationship for excitation parameters - forces ratio, spatial
and tempora phase angles - in the smulation of adisc rotating past a static force;

nog -0, =km  k=--1,13 -

- Development of hardware (PHASH) and a software to control and adjust two forces for
simulation of travelling wave. The program is written for H.P. computers and can be
run to control the relative force ratio to the desired value through the PHASH;

- Presenting a technique using more than two excitations for simulation of travelling
waves which use the same control system as used in the dual-controlled sine excitation
method. A four-excitation method was applied to a discrete mass model of adisc to
simulate travelling waves. This application resulted in increasing the relative amplitude

of the travelling wave component about 6% compared with using dual excitations;

- Development of aformat for displaying the travelling wave and animated response of a
disc. The unwrapped rim response was used. This method can give a clear picture of a

vibrational rotating disc;

- Study of possibilities of vibration interaction between arotating disc and an adjacent
stator. The vibration initiated in the rotating disc might transfer to the stator or vice

versa

8.3 RECOMMENDATIONS FOR FURTHER WORK

The work studied here is the development of a method which can be very effective in the
modal testing of rotating discs. The models of a disc used in this study have been smple

ones. This was necessary as an early stage to achieve the main theoretical relationships.
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APPENDI X D

FURTHER DATA OF NON-CONTACTING EXCITER AND PROBES

A.1 Non-Contacting Electra-Magnetic Exciter

An electro-magnetic exciter is one of the non-contact devices which may be used in
experiments on rotating structures. The problem with these exciters is that in high
amplitude vibration, they produce some harmonics of excitation frequency rather than just
a single frequency equal to the input frequency [55]. Before any harmonic excitation
measurement on the rotating disc, the spectrum of the response of stationary disc has
been obtained to check the harmonics of excitation frequency. It was realized that second
harmonic is stronger and so in all measurements, this harmonic has been considered as
the excitation frequency. In figure A. 1 the spectrum of response of a stationary disc to the
excitation frequency set equal to 98 Hz has been shown. In the figure the measured

spectrum have been obtained by using two different non-contact devices a) Laser and b)

Proximeter.
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Figure A.1 Response of the stationary disc to a non-contacting electro-magnet
excitation Using: a) Laser doppler VPI, b) Proximeter probe
(Generator frequency setting =98.0 Hz)




Appendix 20

8

A.2 Comparison of Proximeter and Accelerometer in a hammer
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SECONDARY RESULTSIN THE SIMULATION METHODS

In this Appendix, some of the results related to the simulation of travelling waves which
have been explained in chapter 4 are illustrated. These are for the cases where more
details about the results are required.

B.1 Circle fitting on the data

In the following, some of the results are illustrated in Nyquist plots in order to give a
better idea for the phases of the dua modes and also to present the modal analysis

procedure.
®
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Figure B.l Using circle-fitting of MODENT on the data of X2_F21

(Receptance plot - removing effect of other mode)
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Figure B.2 Regenerating data X2_F21 after circle-fitting (in Nyquist plot)

B.2 Numerical results when spatial phase angle is -90°

As mentioned in chapter 4, in the simulation of atravelling wave we can either use +9, or
-9, asthe temporal phase angle of the excitation forces. In section 4.5.3, two numerical
examples have been presented to examine the relative phases of the pseudo-modal

constants. Here, the results for the similar cases but for ¢,=-90° are shown.
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Figure B.3 Results from a numerical example of a mistuned system
(Similar system asintroduced in table 4.4; but here ¢,=-90°)
a) Atpoint 1 (WY’);  b) At point 2(6=45°
Table B.I Modal properties from data presented in figure B.3
2NDmode Natural Pseudo-modal Phase Damping loss
No. frequency [Hz] constant [Deg.] factor; T
b
Datafrom
point 1 1 100 0.93%4 -20.0 0.00100
-0 2 101 0.3418 +70.0 0.00200
Data from
point 2 | 100 0.3425 -20.0 0.00100
-43) 2 101 0.9395 -110.0 0.00200
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Figure B.4 Results from a numerical example of atuned system
(Similar system as introduced in section 4.5.3; but here ¢,=-90°)
a) At point 1 (6=0°);  b) At point 2 (6=45°)
Table B.2 Modal properties from data presented in figure B.4
2 ND mode Natural Modal constant Phase Damping loss
No. frequency [Hz] [1/Kg] [Deg.] factor: M
w
Data from 1 100 0.9995 0.0 0.00100
point 1
u (11_0) 5 _ . . -
Data from _ _ . i
point 2
11.45) 2 101 0.9395 -110.0 0.00200
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B.3 Raw data in the Hybrid Method

In the Hybrid Method, two sets of experimental data have been used to calculate the
simulation responses at points 1 and 2 on the disc. These experimental data are illustrated
in figures B.5 and B.6.
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B.4 An earlier experiment for simulation on the disc

In this section the results of the earlier experimental simulation on the disc are presented.
These experiments had been carried out using the phase shifter in a manually-controlled
test. The results from both methods have been shown in figure B.7, tables B.3 and B.4.
Although the test structure had been suspended in a different way and the technique had
been not as accurate compared with the experiments in chapter 4, we can see similar
relative relationship for the phases.
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Figure B.7 Experimental and Hybrid method’s results
from the earlier test ( ¢,=-90°)
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Table B.3 Moda parameters from the EM

2 ND mode Natural Pseudo_modal Phase Damping loss
No. frequency [Hz] coln;(tant [Deg.] factor ; M)
Data from 1 158.5 0.0134 +140.0 0.00496
point 1
(WAVD) 2 161.4 0.0145 -132.3 0.00228
Data from 158.5 0.0012 +162.9 0.00514
point 2
(WAV2) 2 161.4 0.0030 +51.2 0.00224
Table B.4 Modal parameters from the HM
Natural Pseudo_modal Phase Damping loss
2ND mode frequency [Hz] constant {Deg.] factor; M
No. [1/Kg]
Data from 1 158.69 0.0173 +143.2 0.00590
point 1
(WAVED) 2 161.35 0.0129 -136.4 0.00168
Data from 158.68 0.0013 +155.7 0.00582
point 2
(WAVE2) 2 161.35 0.0027 +51.9 0.00166
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B.5 Results for the very lightly-damped disc

Figure B.8 and table B.4 show the results of a single-sine test on the disc without

additional damping. It is seen that compared with the value of damping in chapter 4, here

the damping loss factor is very low.
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Figure B.8 Point measurement in the single-excitation test of the disc

Table B.5 Moda parameters from data in figure B.8

2 ND mode Natural Modal constant Phase Damping loss
Datdrem 1 161.16 0.0198 +9.5 0.00054
(X11) 2 161.40 0.0510 -0.1 0.00036
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APPENDIX |C

PHASE AND AMPLITUDE SHIFTER (PHASH)

In chapter 4, it was mentioned that vibration in a disc rotating past a non-rotating static
force can be simulated for each mode in a stationary disc excited by two harmonic forces.
These two harmonic forces should be equal in magnitude and their temporal phase angle
should be equal to a specific value. On the other hand, during a sine sweep test, the
magnitude and the phase of the excitation will change even if the input voltage to the
shaker does not change. The electrical impedance of the shaker is a function of its cail
displacement and, hence, it is a function of the frequency response of the structure. This
function can not be simply defined but it is complex. As long as one excitation is used,
changes of the excitation force do not make the test difficult, since normally the ratio of
the response to the input force is required at each frequency. However, in the two
excitation test, where some specia conditions should be fulfilled, a controller has to be
used to keep the input forces at the desired levels. In the smulation of atravelling wave,
the controller must be able to control the magnitudes of the two input forces, and also

their phases, by changing the input to the shakers accordingly.

Since the function relating the input voltage to the excitation frequency is not available,
the two forces must be controlled using a trial and error procedure with the input

voltages.

C.1 Hardware of the shifter

A shifter (PHASH) has been developed which is controlled by a H.P. computer. The

PHASH has been made using four different components as shown in Figure Cl. They
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arethe DAC, BBDs, VCO , and Multipliers which are described briefly in the following

sections;

C.l.I Digital to Analogue Converter (DAC)

A four-channel digital to analogue converter interface provides four independent voltage
outputs with 12-bit resolution. In this application, three channels are used: Vg for the

‘voltage controlled oscillator’ (VCO) and V1, V2 for controlling the amplitudes of the

forces.

An H.P. computer program controls the output voltages of the DAC independently. The

DAC has different options for its output voltage: in this application, the O-10 volt range

has been chosen for all channels.

Command signal

+ (From Generator)

vCO
DAC
BBDI
T i y BBD2 I
Vin 2 Vin 1
" M
M
Vout 2 Vout 1

FigureC.I  Componentsin the ‘PHASH’
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C.1.2 Phase Controllers (BBD and VCO) :

This instrument has been made using two bucket brigade delays (BBD) and a voltage
controlled oscillator (VCO). The time delay of the signal passing through the BBD, and
hence the signal phase, is controlled by the frequency of the clock input to the BBD. The
signal from the generator goes to the BBDs. One of these, (BBD1), gives a signa with a
fixed phase angle while the other can give the signa with variable phase angle using the
VCO. In the first BBD, the clock works with a pre-set value set by a potentiometer and in

the second BBD, the clock is controlled by a signal from the VCO which in turn responds
to Vg from the DAC.

A schematic diagram of the circuits of BBD1, VCO and BBD2 are shown in figures C.2,
C.3.and CA4.
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C.1.3 Analogue Multiplier (M)

In order to make the ratio of two forces take the desired value, which is usualy 1, the
controller has to be able to change the magnitude of each signal to the shakers
independently. A multiplier has been used in the path of each signal to the shaker as
shown in figure C. 1. Each multiplier is controlled by a voltage coming from the DAC.
The output voltage is one tenth of the product of the input voltage and controlling voltage,

Vinout*V
. — Yinput DAC
i.e. Vout 10 ,

C.2 Software for Controller

The program POLAR has been in use for many years in sine sweep tests and is quite
popular. Its latest version, New-POLAR has been modified to make it suitable for two-
excitation sine-sweep tests using the controller. This program is called

‘POLAR_PHASH' .

In the sine-sweep test, at each frequency, the conditions of the simulation should be
checked and if they are not in the acceptable range, they have to be changed using the
controller. However, if they are acceptable, the measured values are recorded and the test

will proceed for the next frequency.

The acceptable tolerance for the phase of the two forces has been chosen arbitrarily as £2°
and for their relative magnitude as = 0.1. In section 4.5, it has been shown that with this
amount of tolerance, the travelling wave component in the response is quite strong and
acceptable for the simulation. These tolerances may also be examined if they are low

enough to produce a smooth frequency response curve for analysis.

The controller has been programmed on the basis of trial and error, since the theoretical

relationships between voltage input to the shakers and input forces to the disc for different
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frequencies are very complicated. In the following, the procedure used is introduced and

its flow-chart is presented in figure C.6.
C.2.1 Trial and error procedure for controller

Three parameters need to be changed in order to achieve the desired values of phase and
the ratio of (,I;—zl). These parameters are the magnitudes of and phase difference between
the input voltages to shakers 1 and 2 which change with the voltages of the three channels
of the DAC; Vy, V1 and V3 respectively. These three voltages, in turn, are changed with
the input control words sent from the computer to the DAC which are caled R20, R21
and R22 respectively. Each control word can be chosen independently in the range of 0 to
4095. Before the procedure of trial and error to be presented, the increments for the
control words should be derived such that the required phase and relative force accuracy

is achieved. In section C.2.3, the proper increments are introduced.

C.2.2 Initial values for DAC

At the beginning of each sweep, in order to start the trial and error procedure as close as
possible to the target values of the phase, the initia value for the control word R20 is
chosen by interpolation and using the appropriate lookup table. These tables are
characteristics of the controller and the one for the case of ¢=90° is shown in table C.I.
This table shows the values of R20 which should be sent to the controller to have 90°

phase angle in the output signals of the PHASH.

Table C.I Frequency vs control word for VCO when ¢;=90°

Freq.[Hz]| 115 | 120 | 150 ] 200 | 250 | 300 | 350 | 400 | 450 | 500 | 600

R20 | 4095 | 3930 | 3200 | 2175 | 1345 | 2820 | 2270 | 1720 | 1320 | 920 0
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The amplitudes of forces F, and F, are controlled to some extent by the input voltages to
the shakers. These voltages are proportional to the corresponding voltages from the DAC.
The initia values for the corresponding control words are chosen as equa to ther

maximum value, i.e. 4095, which would produce 10v at the DAC outputs..
C.2.3 Tolerances and proper steps in the DAC

As mentioned earlier, asuitable accuracy or tolerance is chosen for data acquisition. In the

program, the rate of the control word should be such that it satisfies these accuracies.
C.2.3.1 Increment of the word for force amplitudes

| f V, isthe voltage of the signal from the generator, Vf;, the input voltage to the shaker 1
isequal to:

V..V
Vo= g 10DAC1

Similarly for shaker 2 :

VYV, .V
sz= g 10DAC2

The forces from the shakers are assumed to be proportional to the voltage inputs, thus:

F, Vp Vpam (C.1)

The output of the DAC has been set in the range of 0 - 10 volt. The input of the DACisa

number in the range of 0 to 4095. Hence, the slope will be 409.5 ( bits

Vaﬁ) for each

channel. This means that the following relations can be written between R21 and Vpaci

and between R22 and Vpac2 respectively :
R21=409.5. Vpac1

R22=409.5 . Vpac2
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R22 R22
_2EL L <02
R21-A; R21

0.2 (R21)2
R22 + 02 R21 (C4)

or: A<

b2) Assumed R21 is increased then we can have:

R22 R22
el L <02
R21 Ro1+4,

0.2 (R21)2
R22- 02 R21 (C5)

which leads to: AL

Therefore, for changing R21 the increment should satisfy the relation (C.4), if R21 is

decreasing and relation (C.5) if it is going to be increased.
C.3.2 The phase changing

Table C.2 shows the variation of phase angle against the control word R20 for different
frequencies. It is seen that by increasing frequency and also with higher values of R20,
the rate of change of the phase angle increases. The maximum rate should be taken into
account in order to obtain the limitation or the minimum increment for R20 to produce the

prescribed accuracy of the phasg, (i.e. £2°).

Table C.2 Phase angle against R20 for different frequency in PHASH

R20 | 100Hz| 150 Hz{ 200 Hz | 300 Hz | 400 Hz | 500 Hz
0 125 171 | -107 +18 +144 -89
100 129 2166 ~101 +28 +158 72
500 143 _144 72 72 144 0.4
1000 163 114 32 +132 63 +100
1500 173 79 +14 157 329 143
2000 146 238 +68 77 +136 -9
2500 114 +8 +131 +17 97 +149
3000 77 +64 153 +130 +53 23
3500 32 +132 . 63 94 125 156
4000 +24 144 +49 +73 +08 +123
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This tolerance should be satisfied when the phase is around the spatial phase angle (90°).
Figure C.5 shows the variation of the phase vs the control word R20 around 90° for 200
Hz. From this curve, the rate of 8.18 is deduced and hence, for the range of tolerance
equal to 4° (i.e.from £2°), the limit for the R20 increment becomes 32.72 bhits. This
means that in the trial and error procedure, the increment of R20 at 200Hz should be less
than 32.75 in order that the acceptable tolerance for the phase angle to be achieved. The
same procedure can be done for any desired frequencies to obtain the limit for the
increment of the control word R20. In table C.3, maximum increments of R20 have been
shown for some frequencies. In the experiments of chapter 4, the increment of 10 has

been used for R20.

110 ~

oy 100

-

= ]

2

%“ 90 - Slope=0.122 [Deg/bit]
L

w

=

= 80 -

70 - .

T v ] ¥ | T v 1] v 1
2000 2050 2100 2150 2200 2250 2300
Control word R20

Figure C.5 Variation of the phase angle vs R20 around 90 at 200 Hz

Table C.3 Rate of R20 around 90° for different frequency

Freg.[Hz 150 200 300() | 300(@) | 400 | 4002
!
By | 7.49 8.18 8.58 4.45 4.61 2.89
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Although the above recommendation is for ¢=90°, it can also be applied with certainty in
tests for which ¢,<90°. Since at any frequency, the sope for the lower phase angle is

less than for the ¢,=90¢.

C.4 LOGIC OF THE PROGRAM

Having chosen the initial values and considering the limitations in the control word
increments, the procedure may be carried out by two approaches as shown in the flow-
chart ; figure C.6. The first and shorter route considers the absolute error of A, and B,
which are called E, and E,, respectively. A changeis carried out to reduce the larger error.
A, is the relative magnitude and B; is the phase angle of the input forces. The second
branch looks at the quality of the action and takes into account the last try. If it converges,
i.e. goes in the proper direction, that action will be continued. Otherwise, the other
parameter is changed. The string 'Convg$' is used to present this ideg; if it is equal to

“ON” then the action is converging, otherwiseit isequal to “ OFF".

There are three parameters to change : magnitudes of F;and F, and the relative phase
between them. The corresponding parameters in the controller are Vg, Vi and V; of the
DAC. Each time one of these parameters is changed then a measurement is performed and
the results are checked. Each parameter may be decreased or increased, therefore there are
six types of change available which are labeled by ‘Chgtypes in program and ‘Chgt’ in
the flow-chart. The string which represents the status of the procedure relevant to these
changes is 'Chg$'. This string allocates different characters such as 'Chg_1_DN' which

means the last action was reduction in channel 1 (on DAC).
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(Main POLAR Program) |
7000

®

R20=FNInit(Freq)
Ntry0=1
Yes .
@4 Anti$=C12 Ar-1l<.1 )
8135
YES
(Re-measurement)

Ea=(Ar-1)/1
Eb=(Br-Phi t)/Phi

~ w
Yes
@< 7 OK.
(Return to main program)
< : ) > GOTO 26090

Figure C.6 Flow-chart of the sub-program for PHASH
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Chgt5

R21 *

Chg$=
"Ch_l _UP”

Chgtypes 36 @

Convg$="ON"
Anti&" ”

Chgtypes 12

Convg$="ON"
Anti$=" "

Anti$=C12
Niry=0

813

(52

R21*

Chg$=
"Ch_1_DN"

< Chgtd
RZf* R22 *
Chg$= Chg$=
"Ch_2_UP" Ch_2 DN
SUB DAQ SUB DAQ

Anti$=C12
Niry=0

8135

(63

SUB DAC

Anti$=C12

8115

Figure C.6

Niry=0

813
(52

(Continued )

R20 *

Chg$=
"Ch_0_DN"

SUB DAG

813

8115

Anti$=C34
Niry=0

813

@
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|
Yes Yes
Q @» Chg$="Ch_O_UP" 7
No Convg$="OFF]
Yes ) No
0 {Br-Phitt <2 ?
No
No
Br—@» 902 Yes
Chg$="Ch_1_UP" ?
Yes
Convg$="OFH' No
<< >"(D)
© z
No
No
Yes Yes
@ Ch$="Ch_I_DN" ?
725
5 Yes Convg$="OFF

No

<G=r> (9

Nq
Convg$="OFF| vy,¢

©

Convg$="OFF]

Figure C.6 (Continued)
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No
Convg$="OFF"
No
Convg$="OFF"

8115
Arl=Ar
Bri=Br
Ntry=Ntry+1
8135

20775

(Return)
(New measurement at same frequency)

Figure C.6 (Continued)



APPENDIX D

INSTRUMENTS AND EQUIPMENT USED IN THE
EXPERIMENTS

In two chapters 2 and 4, some experiments have been reported; the types of equipment

and instruments used in those experiments are as follows:

Computers. There were two types of Hewlett Packard computers: HP 9816 and HP
300. Either could be used in the experiments and in the analyses with no
significant difference. In chapter 5 computations were carried out with main frame

CDC computer.

Analysers. FRA isaSolartron type 1254 (four channel), and was used in harmonic -

single, double and ‘dual controlled’ - excitation tests.

FFT isaBruel & Kjaer (B&K) dual channel signal analyser type 2034 and was
used in hammer tests (in chapters 2 & 4) and in the spectrum measurement of the

rotating disc in chapter 2.

Charge Amplifiers. A charge amplifier converts the charge generated in a transducer
(piezo-electric) to an analogue voltage. Three different types of charge amplifiers
could be used, B&K type 2626, B&K type 2635 (uses battery) and DJIB type
CA/04. Thereis aso special charge amplifier in a packed instrumented hammer
facilities, PCB piezotronics International Inc. type 4808 with sensitivities 2.04

mV/N and 10 mV/g which was used in hammer tests in chapter 2.
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We should be careful when different types of charge amplifiersareused in a
experiment, because there is possibility that different type of charge amplifier

having different polarity (0° or 180°) relative to each other.

For ce gauges: Different types of transducers could be chosen for measuring force. In

chapter 4, B&K force gauge type 8200 has been used.

Accelerometers. Transducers B&K type 4344 in hammer test (in chapter 2), and DJB
type A/02 in hammer test (in chapter 4) were used.

Proximity probe: The proximity probe was used in measurement of transverse
displacement on the rotating disc (in chapter 2) was Bently Nevada made, mode!
2088501

VPI sensor: Thisis a non-contacting device made by OMETRON, using the laser
Doppler phenomenon. It measures the velocity of the vibrating surface and is used

to check the results from other devices measured the response of rotating disc.

Electra-magnetic shakers: In the single-, double- and dual controlled-excitation tests
in chapter 4, Derritron shakers type VP 50 were used. In chapter 2 the non-
contacting shaker was a nonstandard one and had been made with a C shape core

and a coil.

Power amplifiers: A power amplifier is used to amplify the command signal before
it isapplied to a shaker. In chapter 2, the power amplifier - made by ‘Ling
Dynamic Systems Ltd.- type TPO300' was used. A Derritron type W25 WT was

used in the experiments of chapter 4.

Phase shifter: Inthe dual controlled sine excitation method (chapter 4), the variable
phase oscillator FEEDBACK type VPO 230 was used together with PHASH to

control the two excitation forces.
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