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Abstract 

A new method for the modal characterisation of rotating machinery structures is 

presented. The method accounts for the effects of gyroscopic and other forces related to 

rotation, which are associated with the asymmetry of the damping and stiffness matrices 

of rotating machinery. By comparison with other methods with the same feature, the 

new method has the advantage that it does not require the measurement of a complete 

row of the frequency response function (FRF) matrix. 

The new method is based on the modelling of rotating machines as structural assemblies 

of rotating and non-rotating components. This approach allows the separation of their 

damping and stiffness matrices into symmetric and asymmetric portions, which consist 

of the rows and columns associated with the degrees of freedom of non-rotating and 

rotating components, respectively. The symmetric portions are used to derive 

mathematical relationships between the modal parameters. These relationships, in turn, 

are used to supplement FRF data obtained from modal tests. In this way, the amount of 

measured data required for a complete modal characterisation is reduced. 

It is shown that, in most practical cases, only a small number of the FRFs from one row 

of the FRF matrix are required, in addition to those from one column. Thus, the 

difficulties of applying controlled excitation forces onto rotating components, for the 

measurement of one complete row, may be circumvented. 

The theoretical soundness of the method is demonstrated using a numerical example, 

and its practical application is illustrated through the modal characterisation of an 

industrial test-rig. Some issues regarding its practical implementation are discussed. 

It is concluded that, through the reduction of the required number of FRF 

measurements, the new method enables the modal characterisation of rotating 

machinery structures in less time and with less effort than are required with the use of 

other current methods. 
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CHAPTER 1 

Introduction 

1.1   Rotating machinery structures 

Modal models are widely used to describe the dynamic behaviour of non-rotating 

structures. The methods by which these models are obtained have been refined through 

many years of use, and have now reached an advanced stage of development [14]. 

These methods can be extended to the study of rotating machinery dynamics. 

For modelling purposes, rotating machines can be considered as structural assemblies of 

rotating and non-rotating components. The dynamic behaviour of these assemblies is 

determined by the properties of their individual components and their interactions, as is 

the case for conventional structures formed by the assembly of purely non-rotating 

elements. 

The use of a structural approach to the study of rotating machinery dynamics allows us 

to model their dynamic behaviour based exclusively on their response to controlled 

excitation forces, without focusing on the interactions between their components. Thus, 

by taking the effects of rotation into account, modal analysis and testing methods that 

were originally designed for conventional, non-rotating, structures can be adapted for 

their use with rotating machinery. 

The research work reported in this thesis deals with the adaptation of conventional 

modal analysis and testing methods to the study of rotating machinery dynamics. The 

systems treated here will be referred to as rotating machinery structures, to highlight the 
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fact that their study was undertaken using a structural dynamics approach. Attention is 

focused on the methods used for the derivation of modal models of these systems, a 

process that will be referred to as modal characterisation. 

1.2   Definition of the problem 

The adaptation of conventional modal analysis and testing methods to the study of 

rotating machinery structures requires overcoming some important theoretical and 

practical limitations. Two of these have been identified in previous research work [15], 

and constitute the motivation for the work presented here: (a) that parts of the modal 

analysis theory that applies to conventional structures does not apply to rotating 

machinery structures, and (b) that the structural models of rotating machinery derived 

by modal analysis methods are difficult to validate using test data, because of practical 

difficulties that are inherent to the execution of modal tests on these systems. These 

limitations will now be explained in more detail. 

Conventional modal analysis and testing methods are based on the principles of 

reciprocity, which apply to non-rotating, linear, structures in general. The mass, 

damping and stiffness matrices that are used to represent the dynamic properties of 

these systems are symmetric. This symmetry is usually taken as an indicator that the 

dynamic behaviour of the system under consideration abides by the principles of 

reciprocity. 

The dynamic behaviour of rotating machinery structures, on the other hand, does not 

always abide by such principles. This is due to the effects of forces that originate on 

their rotating components, which may either be of the gyroscopic or the circulatory 

types [19]. Different circumstances in which these types of force may arise have been 

reported in the literature [12]. Gyroscopic and circulatory forces are represented, 
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respectively, by the skew-symmetric components of the damping and stiffness matrices 

of rotating machinery structures [21]. 

Since the principles of reciprocity do not apply to rotating machinery structures, 

conventional modal analysis and testing methods cannot be applied to them without 

modification. With respect to modal characterisation methods, one of the main factors 

that need to be accounted for is that the models that describe the dynamic behaviour of 

rotating machinery structures require the definition of more parameters than for the case 

of non-rotating structures. This is because the asymmetric damping and stiffness 

matrices of rotating machinery structures involve more parameters than do the 

corresponding symmetric matrices of non-rotating structures. 

This need for additional parameters is not only reflected in the spatial models, which are 

based on the mass, damping and stiffness matrices, but also in the modal and response 

models of rotating machinery structures. For example, the definition of the complete 

modal models for this type of systems requires determining a left eigenvector for each 

mode of vibration, in addition to its eigenvalue and its right eigenvector. This is in 

contrast with the modes of non-rotating structures, for which only the eigenvalue and 

the right eigenvector, traditionally known as the mode shape vector, are required.  

With respect to the response model, the need for additional parameters is due to the fact 

that the frequency response function (FRF) matrix of rotating machinery structures is 

asymmetric. Hence, a complete response model requires defining more FRFs than in the 

case of conventional structures, for which the FRF matrix is symmetric. 

The need to determine more parameters in order to build the models of rotating 

machinery structures affects the way in which modal tests are carried out on these 
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systems, since it is usually necessary to perform more response measurements in order 

to obtain the additional parameters. 

Several methods to determine the modal parameters of rotating machinery structures 

have been proposed. They are presented in Section 1.5.2.1. Most of them are only 

applicable to specific types of systems, such as undamped-gyroscopic systems [48].  

However, one of these methods [35] has been widely accepted, mainly because of its 

simplicity, but also because of its applicability to a wide class of linear systems. We will 

refer to it as the ‘column-row’ method. It was not developed for rotating machinery 

structures, which consist of rotating and non-rotating components, but for structures 

consisting exclusively of rotating components. Nevertheless it may be used for both 

types of structure, since it allows the identification of all the parameters required to 

construct the modal models of either type. 

The approach of the ‘column-row’ method is to obtain the modal parameters of a 

rotating system from measurements of one column plus one row of its FRF matrix. 

Excluding the possibility that a mode may not be excited, any of the measured FRFs 

may be used to determine the eigenvalues of the system. The FRFs associated with the 

column of the FRF matrix may be used to determine the right eigenvectors, whereas the 

left eigenvectors can be obtained from those FRFs associated with the measured row of 

the matrix. 

Although the theory underlying the method is relatively simple, its practical application 

is hindered by the technical problems associated with the measurement of the FRFs 

within the row of the FRF matrix [9]. This is because these measurements require 

applying excitation forces at every point, or more generally every degree of freedom 

(DOF), of a rotating machine, including those that lie on its rotating components. This 
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may result in a lengthy measurement procedure, which is further complicated by the 

need to make reliable measurements of the excitation forces in every case, and by the 

fact that the rotating components of machinery are usually enclosed in casings and/or 

exposed to extreme operating conditions. 

The solution to these problems has been attempted through the development of 

measurement and excitation techniques to be used on the rotating components of 

machinery. However, as will be discussed in Section 1.5.2.2, the use of these methods is 

still limited to laboratory conditions, mainly because of the difficulties involved with 

the reliable measurement of the excitation forces and the access to the rotating 

components of practical systems. 

The approach taken for the research work presented in this thesis was aimed at 

simplifying the modal testing procedure by eliminating the need to measure a complete 

row of the FRF matrix for the modal characterisation. The implementation of this 

approach was based on the objectives that are described in the next Section. 

1.3   Objectives of the research work 

The main objective of the research work presented here is to simplify the modal testing 

procedure, with respect to existing ones, by means of which the modal parameters of 

rotating machinery structures are determined from measured response data. 

Several intermediate objectives lead to the achievement of the main objective. These 

are: 

(i) To develop a strategy for the modelling of rotating machinery that facilitates their 

study through a structural dynamics approach. 
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(ii) To derive the mathematical relationships that exist between the spatial and modal 

parameters of rotating machinery structures. 

(iii) To develop a method for the computation of the left eigenvectors of rotating 

machinery structures. 

(iv) To determine the conditions in which simpler measurement schemes than the ones 

currently used for the modal testing of rotating machinery structures can be devised. 

(v) To design a method for the modal characterisation of rotating machinery structures. 

(vi) To evaluate the applicability of the method to practical systems. 

1.4   Scope of the research 

This study is confined to linear time-invariant systems for which the dynamic behaviour 

can be modelled through second-order differential equations with constant coefficients. 

The emphasis is placed on the fact that the matrices contained in the spatial models of 

rotating machinery structures are not symmetric and on the consequences that this has 

on the derivation and application of modal analysis and testing methods for such 

systems. Other conditions that are known to exist in some rotating machinery structures, 

such as non-linearity, are not considered. 

1.5   Existing results of research 

This thesis is focused on the methods for the dynamic characterisation of rotating 

machinery structures. The goal of this Section is to provide the reader with an overview 

of the results of research that constitute the background for the problem treated in this 

thesis. 
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The material presented in this Section is divided into two main categories, according to 

whether it corresponds to (a) theoretical or (b) experimental and experimentally-

oriented research work.  

Within the first category, the material has been further divided into two sub-categories. 

The first of these deals with the non-abidance of rotating machinery structures to the 

principles of reciprocity, a condition that will be referred to as ‘loss’ of reciprocity.  The 

second sub-category is related to the mathematical models that have been used to 

represent the dynamic behaviour of rotating machinery structures, taking into account 

the effects of this ‘loss’ of reciprocity. 

The second category consists of the results of experimental and experimentally-oriented 

research. The material that corresponds to this category has also been divided into two 

sub-categories. The first of these deals with the estimation of the modal parameters of 

rotating machinery structures using measurements of their dynamic response. The 

second sub-category describes the research work that has been conducted to develop a 

method for the application of excitation forces onto the rotating components of a 

machine, which constitutes one of the most difficult tasks in the process of modal 

characterisation of rotating machinery structures. 

1.5.1   Results of theoretical research 

1.5.1.1   ‘Loss’ of reciprocity in rotating machinery 

The dynamic behaviour of conventional, non-rotating, structures usually abides by the 

principles of reciprocity of Betti and Maxwell [5,31]. On the other hand, one of the 

features that characterise rotating machinery structures is that they generally do not 

abide by these principles. 
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The first links between this ‘loss’ of reciprocity and the dynamic phenomena observed 

in rotating machinery were established during attempts to determine the origin of the 

unstable whirling motion of rotating shafts. 

Newkirk [34] investigated the behaviour of shafts exhibiting unusual whirling patterns, 

with the purpose of finding the underlying causes. Based on field observations and 

experimental work, he found that the occurrence of a specific type of whirling , called 

whipping, was related to the use of shrink-fitted hubs on a shaft. 

In parallel with the analysis and observations of Newkirk, Kimball [25] developed an 

internal friction theory of shaft whirling, which states that the whirling motion may be 

caused by the internal damping forces that arise in the shaft. Shrink-fitted components 

on rotating shafts impede the deformation of some portions of it, much in the same way 

as internal material damping does. The forces exerted by the shrink-fitted components 

on a rotating shaft, as well as those associated with its internal damping, are represented 

by a skew-symmetric component of the stiffness matrix of the shaft [30], when this 

matrix is defined with respect to a stationary coordinate system. 

The asymmetry of the stiffness matrix is considered to be an indicator that the principle 

of reciprocity does not apply to the stiffness properties of an internally damped rotating 

shaft. 

Because the skew-symmetric component of the stiffness matrix is directly related to the 

internal damping forces, which can potentially lead to instability [45], it has been 

recognised that other systems that exhibit similar stiffness properties may possess 

unstable modes of vibration. For example, Earles and Badi [13] noted that the external 

friction forces represented in the skew-symmetric components of the stiffness matrix of 

rotating discs are associated with unstable modes of vibration. Similarly, according to 
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Tuchinda and Ewins [47], one kind of instability referred to as brake-disc squeal is 

related to the friction forces that exist between the rotating disc and a stationary pin, 

which are partly represented by a non-symmetric stiffness matrix. Numerous other cases 

in which the asymmetry of the stiffness matrix is related to dynamic instability have 

been cited in the literature [12]. 

A fact that is often acknowledged is that the forces related to the asymmetry of the 

stiffness matrix may be either forward- or backward-rotating, according to whether they 

act in or against the direction of shaft rotation. Forces of a given type are capable of 

increasing the energy of a shaft that whirls in the same direction. This leads to the 

possible existence of unstable modes of vibration in the forward- or backward-whirling 

directions, depending on the type of force that affects the system. Hydrodynamic 

bearings are most commonly associated with forward-whirling modes [46] while some 

interactions between rotating and stationary components of a machine, such as rubs, are 

related to backward-whirling modes [11]. 

The forces that are associated with the ‘loss’ of reciprocity that occurs in rotating 

machinery structures are referred to as ‘circulatory’ or ‘follower’ forces [2, 43]. As has 

been discussed in previous paragraphs, these forces are represented in the skew-

symmetric components of the stiffness matrix. However, there exists another type of 

force associated with a ‘loss’ of reciprocity, which is manifested in the skew-symmetric 

components of the damping matrices. These are called gyroscopic forces, and are 

generated in machine components that rotate and vibrate simultaneously [41]. It is 

important to point out that not all the forces that are associated with the skew-symmetric 

components of the damping matrix are related to gyroscopic effects. Such is the case, 

for example, of the forces generated in oil film journal bearings that are related to the 
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difference between the cross-damping coefficients corresponding to two orthogonal 

directions that are usually observed in these bearings [12, 26]. 

1.5.1.2   Mathematical models 

Although the damping and stiffness property matrices of rotating machinery structures 

are generally asymmetric, there exists no experimental evidence of circumstances in 

which the inertial forces represented in their mass matrices cause them to become 

asymmetric [1]. However, it has been demonstrated that, as a consequence of the 

asymmetry of the damping and stiffness matrices, the response matrix, usually defined 

by frequency response functions (FRFs) in the frequency domain, is also asymmetric 

[36]. 

The ‘loss’ of reciprocity that occurs in rotating machinery structures is accommodated 

in their modal models by the introduction of a set of parameters that are not usually 

considered in classical modal analysis theory: the left-eigenvectors [27]. Each of these 

vectors contains information regarding the ability of excitation of forces to produce a 

vibration corresponding to a specific mode when applied at different points of a 

structure [17]. The modal models of rotating machinery are defined by its left-

eigenvectors, right-eigenvectors and eigenvalues. 

The derivation of mathematical models from measurements is usually based on the 

identification of the modal parameters of the system under consideration from 

measurements of its frequency response functions (FRFs). The approaches that have 

been attempted to achieve this are outlined in the next Section. 

The identification of the left eigenvectors has been shown to be particularly 

problematic. Bucher [8] noted that the identification of these parameters is more 

susceptible to errors than is that of the right-eigenvectors, considering that both groups 
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of parameters are obtained from the same set of data. There are two reasons for this: 

first, that the left-eigenvectors represent internal force distributions associated with the 

excitation of each of the modes, and, second, that both sets of eigenvectors are usually 

obtained from resonance response data, but in the resonance region the force data is 

more likely to be affected by errors than are the responses. In the same paper, Bucher 

proposed a method to reduce the effects of having an ill-conditioned FRF matrix on the 

estimations of the left eigenvectors. 

1.5.2   Results of experimental and experimentally-oriented research 

1.5.2.1   Estimation of modal parameters from measurements 

The need to determine the left eigenvectors for the complete modal characterisation of 

rotating machinery structures, has required that the conventional modal testing methods 

be modified in order to be applicable to these systems. 

Nordmann [35] proposed a testing strategy by means of which the modal parameters of 

a rotating machine can be obtained. The strategy consists of measuring one row plus 

one column of the FRF matrix. The right-eigenvectors are determined from the FRFs in 

the column, while the left-eigenvectors are determined from those in the row. The 

eigenvalues can be determined from any one or several of the measured FRFs.  

Measuring the row of the FRF matrix poses serious practical difficulties. This is 

because it necessitates applying excitation forces at each of the degrees of freedom of 

the machine. Thus, this can be a difficult and time-consuming process [20]. For this 

reason, the search for schemes for reducing the number of FRFs required for 

characterisation has received considerable interest. In general, this is only possible if the 

mass, damping and stiffness matrices are assumed to have special forms. For example, 
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if the structure is considered to be undamped but affected by gyroscopic moments, then 

the left eigenvectors are exactly the complex conjugates of their right counterparts for 

each mode, and hence it is not necessary to measure the row of the FRF matrix [32]. A 

further reduction can be obtained in rotor systems for which the principal directions of 

stiffness coincide in all bearings. In isotropic rotor systems only half of one column of 

the matrix must be measured [51]. 

Bucher [7] designed a characterisation method with which it is possible to reduce the 

number of measurements by applying a helical transformation to emulate a rotor in 

which the principal directions of stiffness of all bearings are aligned. In this way, it is 

possible to obtain an almost diagonal stiffness matrix without affecting the mass and 

gyroscopic matrices. This approach is applicable to rotor-bearing systems with ‘small’ 

deviations of the principal stiffnesses with relation to their separation along the shaft 

axis. 

Zhang et al [49] established some relationships between the modal parameters of non-

symmetric structural models. With these relationships, it is possible to calculate some 

modal parameters from others. The relationships are based on the assumption that the 

non-symmetric parts of the spatial property matrices are known. 

Lee [29] proposed the use of complex modal analysis as a means to reduce the number 

of FRFs required for full identification of a system with non-symmetric property 

matrices. Through the use of complex coordinates and directional FRFs, he 

demonstrated that with the complex approach only half the number of the FRFs 

prescribed in the method of Nordmann are required. However, the benefits offered by 

this testing strategy are offset by the fact that each of the FRFs requires the application 

of a complex force vector, as well as the measurement of a complex response. Thus, the 
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number of FRFs processed is reduced, but the technical effort expended in realising the 

test is practically the same as with the approach of Nordmann. 

Although it has been found that in specific cases it is possible to characterise completely 

the dynamics of a machine with fewer FRF measurements than those prescribed by the 

characterisation method of Nordmann [35], in a more general case it is still necessary to 

measure a complete row and a column of the FRF matrix. 

The fact that the rotating components of machinery are only associated with a few of the 

total number of degrees of freedom has not received attention to date. It can be seen that 

advantage can be taken of it for characterisation purposes, since the gyroscopic and 

circulatory forces that cause the ‘loss’ of reciprocity can only originate in these 

components. To date there is no evidence of methods being developed that take 

advantage of this fact to characterise systems that comprise rotating and stationary 

components.  

1.5.2.2   Excitation of rotating machinery components 

As was discussed in the previous Section, one of the main difficulties of performing a 

modal test on a rotating component is the application of excitation forces onto rotating 

components. Several approaches have been followed in attempts to overcome these 

difficulties. The simplest one is the use of hammer impact excitation. Nordmann [35] 

used this strategy to excite the flexible shaft of a pump supported in oil film bearing. 

This kind of excitation is very convenient to apply, as it requires no special set-up and 

can be moved easily throughout the machine. Its drawback is that it is difficult to 

achieve repeatability and to hit a moving component with accuracy. Also, it applies an 

undesirable tangential component of excitation by friction which, although unmeasured, 

affects the response of the test-piece. To overcome this problem, Kessler [24] used a tri-
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axial force transducer to apply the excitation. In this way, he was able to obtain an 

estimation of the applied tangential force in order to correct the measured FRFs, 

although this is not straightforward. 

Another excitation method applicable to rotating shafts consists of mounting an 

unbalanced disk on a bearing which, in turn, is mounted onto the shaft [33]. With this 

set-up it is possible to control the speed of the rotating disk independently from that of 

the shaft using a belt drive. Thus, it is possible to apply a rotating unbalance force of 

controllable frequency to the shaft. This force is not measured directly, but can be 

calculated if the unbalance of the disk is known. The inconvenience of this method is 

that it requires the mounting of the excitation device onto the shaft, which is not always 

possible. However, it provides the advantage of applying a purely forward- or 

backward-excitation, which is convenient for complex modal testing. 

If a ‘rider’ bearing is mounted onto a shaft, then it is possible to excite it using a shaker 

attached to the external race of that bearing: a technique which was used in a laboratory 

model by Rogers and Ewins [40]. It offers the advantage that different kinds of 

excitation forces can be applied [37], but the clearance between the bearing balls and 

the races may affect the precision with which the force is measured. The NASA Lewis 

Space Center spin rig [6] uses this kind of excitation, with the shakers attached to 

bearings mounted on flexible supports. 

The use of active magnetic bearings to apply excitation forces [22] has gained 

popularity in the last years. The magnetic bearings consist of coils through which an 

electric current is applied to generate a magnetic field. This field produces an attractive 

force that acts on the shaft and which can be controlled through the intensity of the coil 

current. Usually, orthogonal coil arrangements are used to excite a rotor at one or more 
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stations, thus providing the capability of applying a variety of force patterns, such as 

forward and backward, unidirectional, etc. The drawback of the use of this system is its 

size and the difficulty to apply precise excitation forces due to the feedback caused by 

the movement of the shaft within the magnetic field, especially near the resonances. 

Advances in this field currently aim at developing the necessary control systems [50]. 

It should be made clear that, with all of the methods described here, the measurement of 

the excitation forces still represents a problem, since it is not possible to carry it out 

without mounting a coupling element between the force transducer and a rotating 

element. Moreover, the fact that the rotating components of machinery are difficult to 

access, especially for applying excitation forces onto them, still poses problems for the 

use of any of the methods that have been developed so far. 

1.6   Overview of the thesis 

This thesis presents a method for the dynamic characterisation of rotating machinery 

structures using modal analysis techniques. The material presented here covers the 

underlying theory used for the formulation of the method, its mathematical derivation  

and its application to numerical and physical systems. The thesis is organised in the 

following way: 

Chapter 2 starts with a description of the spatial models of rotating machinery structures 

that are used in the thesis. The models are characterised by the asymmetry of the 

damping and/or the stiffness matrices. A nomenclature for the types of forces that are 

associated with the asymmetry of these matrices is presented. 

Asymmetric matrices are often related to the effects of gyroscopic or circulatory forces 

on the dynamic behaviour of rotating machinery components. However, it is argued in 
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this Chapter that the asymmetry of the matrices can occur even in the absence of forces 

of these types, when non-orthogonal coordinate systems are used to describe the 

behaviour of the system under consideration.  

In Chapter 3, a brief description of the modal and response models of rotating 

machinery structures are given. Emphasis is given to (a) the fact that the construction of 

the modal models of these systems requires the definition of their left eigenvectors, and 

(b) the asymmetry of their FRF matrices, as these features distinguish their models from 

those of non-rotating structures. Several relationships between the spatial, response and 

modal models of rotating machinery are derived analytically and a physical 

interpretation of them is given in terms of the receptance, mobility, accelerance and jerk 

characteristics. 

In Chapter 4, the analytical derivation of a method for the identification of the modal 

parameters of rotating machinery structures is presented. The objective of the method is 

to eliminate the need to measure an entire row of the FRF matrix in order to achieve the 

complete modal characterisation of these systems. The derivation of the method is based 

on the relationships that exist between the different types of dynamic models of rotating 

machinery structure presented in Chapters 2 and 3, and those that exist between their 

modal parameters. 

The application of the method is illustrated in Chapter 5, using two case studies. The 

first of these is carried out on the numerical model of a 4 DOF rigid rotor. It is used to 

demonstrate the theoretical soundness of the method. Computer generated FRFs are 

used to simulate true FRF measurements. The simulated FRFs are free of noise. The 

eigenvalues and right eigenvectors are determined from these ‘measured’ data and the 

left eigenvectors are computed using the method presented in Chapter 4. The accuracy 
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of the identified left-eigenvectors is evaluated using their exact values obtained directly 

from the spatial property matrices of the rotor. 

The second case study illustrates the application of the method to a real rotating 

machine structure. The test structure used for this study is described and the procedure 

for the characterisation is presented in detail. The objective of this case study is to 

evaluate the performance of the method in cases where (a) the system under 

consideration is continuous and hence possesses an infinite number of DOFs, and (b) 

the measured response data is considerably affected by noise. The effects of the 

structure possessing close modes on the accuracy of the identified left eigenvectors are 

discussed. The selection of an optimal set of DOFs to perform the modal 

characterisation is also dealt with in this second case study. 

Chapter 6 presents the conclusions obtained from this research work and presents some 

possible research activities that could be carried out as a continuation of the work 

presented here. 
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CHAPTER 2 

Spatial models of rotating machinery structures 

2.1   Introduction 

Spatial models describe the dynamic behaviour of mechanical systems in terms of their 

displacements and their time derivatives. In these models, the properties of a system are 

represented by three spatial property matrices: the mass, [ ]M , damping, [ ]C , and 

stiffness, [ ]K , matrices. These matrices relate the response of the system, ( ){ }x t , to 

the external excitation forces applied to it, ( ){ }f t , through the following time-domain 

equation: 

 [ ] ( ){ } [ ] ( ){ } [ ] ( ){ } ( ){ }M x t C x t K x t f t+ + =                      (2.1) 

A particularly useful form of this equation is that which corresponds to a harmonic 

excitation force. This is because the vibration of many practical systems, and especially 

that of rotating machinery structures, is usually caused by periodic excitation forces, 

which consist of a finite number of harmonic components. 

The representation of Equation (2.1) for the case of a harmonic excitation force can be 

derived if two considerations are taken into account: firstly, that a harmonic force can 

be expressed in terms of a force amplitude vector, ( ){ }F ω , an excitation frequency, 

ω , and time, t , as: 

 ( ){ } ( ){ } i tf t F e ωω= ⋅  (2.2) 

Secondly, that the steady-state response of a linear, time-invariant, system to this type 

of force is also harmonic and has the same frequency as the force. Hence, it may be 

represented as: 
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 ( ){ } ( ){ } i tx t X e ωω= ⋅  (2.3) 

where ( ){ }X ω is the vector of response amplitudes. Using Equations (2.2) and (2.3), 

Equation (2.1) may be expressed for the case of a harmonic excitation force as: 

 ( ){ } ( ){ }2[ ] i t i tK M i C X e F eω ωω ω ω ω− + ⋅ =                            (2.4)   

This equation may also be expressed in its state-space form which, discarding the 

exponential terms, is: 

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

( ){ }

( ){ }

{ }

( ){ }

00 0

0

M M i X
i

FM C K X

ω ω
ω ωω

 − ⋅                  ⋅ + =                          
               (2.5) 

The methods developed in this thesis will be based on this representation of the 

equation of motion. 

Equations (2.1), (2.4) and (2.5) apply to both rotating machinery and non-rotating 

structures. However, the spatial property matrices for the two types of structure may 

present significant differences. For example, the matrices for rotating machinery 

structures usually depend on the frequency of rotation, or even on the angular position 

of their rotating components, whereas in the case of non-rotating structures this 

dependency does not exist. However, for the work presented here, the most important 

difference considered is that, whereas the spatial property matrices for non-rotating 

structures are symmetric, those of for rotating machinery structures are, in general, 

asymmetric. This asymmetry is caused by the representation of so-called gyroscopic 

and circulatory forces [19] as properties of the structure, due to the fact that they depend 

on the velocities and displacements of the structural DOFs. 

The representation of these types of force in the spatial property matrices will be treated 

in more detail in the next Section. 
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2.2   The damping and stiffness matrices of rotating 

machinery structures 

The elements of the damping, [ ]C , and stiffness, [ ]K , matrices in Equations (2.1), (2.4) 

and (2.5) are proportionality coefficients that define, respectively, the linear relationship 

that exists between the velocities and displacements of a structure at its different DOFs 

and the forces that affect its dynamic behaviour. 

For the case of non-rotating structures, the damping matrix is associated with forces that 

are capable of reducing the mechanical energy of a system, while the stiffness matrix is 

associated with elastic forces, which produce a tendency of the system to move towards 

its static equilibrium configuration without modifying its total energy level. 

On the other hand, the damping and stiffness matrices of rotating machinery structures 

also represent the so-called gyroscopic and circulatory forces, respectively, that arise 

due to rotation. The damping matrix is used to represent the damping and the 

gyroscopic forces, both of which have a velocity-dependent characteristic. Similarly, the 

stiffness matrix is used to represent elastic and circulatory forces, which have a 

displacement-dependent characteristic.  

Although this condensed representation of the properties of a structure may avoid the 

alteration of the traditional structural models given in Equations (2.1), (2.4) and (2.5), it 

may also create confusion with respect to the physical interpretation of the spatial 

property matrices. This is because, with this condensed representation, a single matrix 

represents forces that have completely different effects on the behaviour of a structure. 

For example, damping forces produce different effects than do gyroscopic forces, since 

the latter are not capable of modifying the mechanical energy of a structure. On the 

contrary, they produce a ‘stiffness-like’ effect, which is manifested in a tendency of the 
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structure to move towards its static equilibrium configuration [16]. Similarly, elastic 

forces produce different effects than do circulatory forces. While the former have no 

effect on the total energy level of the structure, the latter are associated with self-

excitation or damping mechanisms [14], which may increase or decrease this level.  

Given the mixed nature of the forces represented in each of the matrices [ ]C  and [ ]K , 

it would seem appropriate to refer to them as the ‘velocity-dependent’ and 

‘displacement-dependent’ matrices, respectively, rather than the damping and stiffness 

matrices, in accordance with the terminology suggested in [14]. However, in order to 

avoid any possible confusion created by the introduction of a new terminology, the 

terms ‘damping matrix’ and ‘stiffness matrix’ will be kept, and used throughout the 

thesis to refer to the matrices that represent forces with ‘velocity-dependent’ and 

‘displacement-dependent’ characteristics, respectively. 

2.3   Nomenclature for rotation-related forces 

As was mentioned in the preceding Section, the forces that arise due to the rotation of 

machinery components are usually divided into two groups: gyroscopic forces, which 

have a velocity-dependent characteristic, and circulatory forces, which have a 

displacement-dependent characteristic. These forces are represented by the skew-

symmetric components of the damping and stiffness matrices, respectively. 

It is important to notice that, apart from true gyroscopic forces, which are essentially 

due to the inertia of the rotating components of machinery, the first group also includes 

others such as those associated with the dissimilar cross-damping characteristics of 

hydrodynamic bearings [45], that are unrelated to gyroscopic effects. Thus, the use of 

the term ‘gyroscopic’ to refer to this group of forces seems inappropriate. For this 

reason, the term “velocity-dependent circulatory forces” will be used in the rest of this 
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thesis to refer to the forces that are represented in the skew-symmetric component of the 

damping matrix. These forces will be distinguished from those that are represented in 

the skew-symmetric component of the stiffness matrix, which will be referred to as 

“displacement-dependent circulatory forces”. Thus, the term “circulatory forces” will 

denote forces that are represented in the skew-symmetric components of both the 

damping and the stiffness matrices. 

In Figure 2.1, the nomenclature that will be used in the rest of the thesis is illustrated. 

As it can be seen, the two defined types of circulatory force, i.e. velocity- and 

displacement-dependent, are represented in the damping and stiffness matrices, 

respectively. As was mentioned previously, the first type includes gyroscopic forces and 

others such as those associated with the dissimilar cross-damping characteristics of 

hydrodynamic bearings. The second type includes forces that arise due to the presence 

of internal damping in some rotating components, such as flexible shafts, and other 

forces such as those associated with the dissimilar cross-stiffness characteristics of 

hydrodynamic bearings.  The damping and stiffness matrices also represent the true 

damping and elastic forces of the system. These two types of force constitute the class 

of non-circulatory forces. 

2.4 Representation of circulatory forces 

Circulatory forces arise due to the effects of rotation on the components of machines. 

Several examples of this type of force have been quoted in the literature; amongst them 

are those mentioned in the previous Section, rotor-stator rub forces [14], 

electromagnetic forces in electric induction motors [18] and forces that arise due to the 

interaction between fluids and the rotating components of machines [12]. 

Circulatory forces are usually distributed throughout an area of the machine components 

in which they originate, as are rotor-stator rub forces or hydrodynamic forces in 
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bearings, or can also be distributed across a volume, as are gyroscopic and 

electromagnetic forces. However, their study can usually be simplified by expressing 

them in terms of their resultant forces. 

Figure 2.1 – Components of the damping and stiffness matrices 
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The following discussions are based on the simplest kind of circulatory force, which is 

represented as a function of the vibration of one point within a plane, and acts only on 

that plane. This type of representation can be used, for example, for the forces that arise 

in some hydrodynamic journal bearings. The effects of these forces may be studied in 

terms of a single resultant force, which acts in a plane that is normal to the shaft axis 

and is a function of the displacements and/or velocities of the shaft journal in that plane. 

The stiffness matrix associated with this type of bearing will now be derived. In doing 

so, attention is drawn to the fact that each column of the stiffness matrix represents the 

forces that need to be applied at each DOF in order to produce a static unit displacement 

of the system at the DOF associated with that column and null displacements at the 

remaining DOFs. For clarity, the units in which the forces, displacements and 

stiffnesses are measured will be omitted in this discussion, but are assumed to 

correspond to a consistent unit system, e.g. Newtons, metres and Newtons per metre, 

respectively, for the SI unit system. 

Figure 2.2 is a schematic diagram of a hydrodynamic journal bearing. The shaft journal 

is shown rotating clockwise with speed Ω . For clarity, the clearance between the 

stationary bearing and the shaft journal has been exaggerated and is assumed to be  

filled with oil. In the first instance, the analysis of the journal-bearing system will be 

carried out with respect to the 1 2x x  coordinate system.  

In Figure 2.2, the shaft journal is shown in its static equilibrium position ( 1 2 0x x= = ), 

in which it is only acted upon by the tangential forces associated with the shear stresses 

generated in the oil. These forces are uniformly distributed along the surface of the shaft 

journal and have a null equivalent resultant force. 
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Figure 2.2 – Hydrodynamic bearing with shaft journal in its static equilibrium position. 

Figure 2.3 – Hydrodynamic bearing with shaft journal displaced along the 1x  axis. 

In Figure 2.3, the shaft journal is shown displaced one unit to the right ( 1 21; 0x x= = ) 
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results from the application of this pressure to the shaft journal is normal to its surface. 

The line of action of the resultant force passes through the centre of the shaft journal.  

In order to produce and maintain the static displacement of the shaft journal shown in 

Figure 2.3, it is necessary to apply a force to it, such that the resultant of the oil pressure 

forces, RF , is cancelled-out. The components of the required force will depend on the 

magnitude, RF , of RF , as well as on its direction, which is defined by the angle θ . 

These components constitute the first column of the ‘stiffness’ matrix of the journal-

bearing system: 

 11

21

cos
sin

R

R

k F
k F

θ
θ

⋅   
=   ⋅   

                                                  (2.6) 

In Figure 2.4, the shaft journal is shown displaced upward one unit ( 1 20; 1x x= = ) from 

its static equilibrium position. Similarly to the previous case, this produces an oil 

distribution with an equivalent resultant force that passes through the centre of the 

journal. The forces that are required to cancel-out this resultant force constitute the 

second column of the stiffness matrix: 

12

22

sin
cos

R

R

k F
k F

θ
θ

− ⋅   
=   ⋅   

                                              (2.7) 

Thus, the complete stiffness matrix for the journal-bearing system may be defined as: 

 [ ] cos sin
sin cos

R R

R R

F F
K

F F
θ θ
θ θ

⋅ − ⋅ 
=  ⋅ ⋅ 

                                          (2.8) 
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Figure 2.4 – Hydrodynamic bearing with shaft journal displaced along the 2x  axis. 

The symmetric, [ ]S
K , and skew-symmetric, [ ]SS

K , components of this matrix are, 

respectively: 

[ ] cos 0
0 cos

R
S

R

F
K

F
θ

θ
⋅ 

=  ⋅ 
                                         (2.9) 

[ ] 0 sin
sin 0

R
SS

R

F
K

F
θ

θ
− ⋅ 

=  ⋅ 
                                        (2.10) 

From Figures 2.3 and 2.4 and Equation (2.10), it can be seen that the displacement-

dependent circulatory forces of the journal-bearing system are represented in the skew-

symmetric component of the stiffness matrix. A similar analysis would reveal the 

relationship that exists between the velocity-dependent circulatory forces originated in 

the bearing and the skew-symmetric component of its damping matrix. 

Apart from a matrix representation, the relationship between the circulatory forces and 

the displacements, or velocities, which determine them can be represented graphically 
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using a vector field diagram. This kind of representation is useful to gain insight into the 

way in which the circulatory and non-circulatory forces affect the behaviour of a 

system, but is only practical for simple cases such as the one discussed here. 

Figure 2.5 shows the vector field diagram corresponding to the stiffness matrix given in 

Equation (2.8) for the case of 0.5RF =  and 30θ = . In this diagram, the forces required 

to produce static unit displacements of the shaft journal in various directions with 

respect to its static equilibrium position are represented with blue arrows. The red marks 

indicate the displacements produced by the force-vectors which originate at each them. 

                
Figure 2.5 – Vector field representation  of the stiffness  

characteristic of a journal-bearing system. 

The components of the force vectors associated with displacements along the 1x  and 2x  

axes in Figure 2.5 correspond, respectively, to the elements of the first and second 

columns of the stiffness matrix given in Equation (2.8). 

Figures 2.6(a) and (b) present, respectively, the vector field representations of the non-

circulatory, or true stiffness, forces and the displacement-dependent circulatory forces 

associated with the same stiffness matrix. 
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Figure 2.6 – Vector field representation of the (a) non-circulatory and (b) circulatory 
‘stiffness’ characteristics of a journal-bearing system. 

Figure 2.6(b) demonstrates an important characteristic of displacement-dependent 

circulatory forces, namely that they are always orthogonal to the displacements that 

produce them. Similarly, velocity-dependent circulatory forces are orthogonal to the 

velocities that produce them. 

Using the vector field representations of the stiffness matrix components, it can be 

deduced that circulatory forces would produce a tendency of the shaft journal to move 

in a circular, whirling, path. Similar diagrams can be drawn for velocity-dependent 

circulatory forces using the components of the damping matrix, although in this case the 

coordinates of the points, denoted by the red marks in Figures 2.5 and 2.6(a) and (b), 

used as origins for the individual force vectors would correspond to the components of 

the velocities, rather than the displacements, of the shaft journal in the 1 2x x  plane. 

For cases of greater complexity, for example those in which more that two DOFs are 

involved in the mechanism through which circulatory forces originate, the use of vector 

field diagrams may become impractical for the study of the effects of these forces. For 

those cases, a matrix representation may be the most suitable alternative. 

In using a matrix representation, attention must be paid to the fact that the matrices that 

represent the dynamic properties of rotating machinery structures, including the effects 
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of circulatory forces, depend on the coordinate system with respect to which they are 

defined.  This point will be discussed in detail in the next Section. 

2.5   Influence of coordinate frame selection on the matrix 
representation of non-circulatory and circulatory forces 

In the example that was used in the previous Section, it was shown that the circulatory 

forces that affected the stiffness characteristic of the journal-bearing system shown in 

Figure 2.2 were represented by the skew-symmetric component of its stiffness matrix, 

whereas the non-circulatory forces were represented by the symmetric component of the 

same matrix. 

However, these associations cannot be taken as a general rule, since the coordinate 

frame used to define the spatial property matrices affects the way in which the 

circulatory and non-circulatory forces are represented in them. 

In this Section, the influence of coordinate frame selection on the representation of non-

circulatory and circulatory  forces in the spatial property matrices will be analysed. 

2.5.1   Representation of non-circulatory forces 

Consider the 2-DOF spring-mass system shown in Figure 2.7. Its stiffness matrix 

represents exclusively true elastic, i.e. non-circulatory, forces, and may be defined with 

respect to the 1 2x x  coordinate frame as: 

[ ]
1 2

1

2

0
0x x

k
K

k
 

=  
 

                                                    (2.11) 

By applying an orthogonal coordinate transformation to this matrix, the stiffness matrix 

of the same system may also be defined for the 1 2x x′ ′  coordinate frame as: 
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Figure 2.7 – 2-DOF spring-mass system 

 [ ] [ ] [ ] [ ]
1 2 1 2

1

x x x x
K T K T−

′ ′
=                                             (2.12) 

where:  

 [ ] cos sin
sin cos

T
β β
β β

− 
=  
 

                                              (2.13) 

Thus, we obtain the following matrix: 

[ ] ( )
( )1 2

2 2
1 2 2 1

2 2
2 1 1 2

cos sin cos sin
cos sin sin cosx x

k k k k
K

k k k k
β β β β

β β β β′ ′

 + − ⋅
=  − ⋅ + 

                      (2.14) 

which is symmetric for any value of the parameter β . From this equation, it may be 

concluded that the stiffness matrix for the system shown in Figure 2.7 is symmetric with 

respect to any orthogonal coordinate frame in the 1 2x x  plane. This is consistent with the 

observation made in the previous Section that non-circulatory forces are represented by 

the symmetric components of the spatial property matrices. However, if we now derive 

the stiffness matrix of the same system with respect to a non-orthogonal coordinate 

frame, for example that defined by the 1x  and 1x ′  axes, we have: 

[ ] ( )
1 1

1 1 2

2

cos
0x x

k k k
K

k
β

′

 −
=  
 

                                        (2.15) 
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which results from using the following non-orthogonal transformation matrix with the 

stiffness matrix given in Equation (2.11): 

[ ] 1 cos
0 sin

T
β
β

 
=  
 

                                            (2.16) 

Equation (2.15) shows that the matrices that represent non-circulatory forces may be 

asymmetric if they are defined with respect to a non-orthogonal coordinate system. 

Thus, non-circulatory forces may be defined as those that are represented by the 

symmetric components of the spatial property matrices, only when these are derived 

with respect to an orthogonal coordinate frame. 

2.5.2   Representation of circulatory forces 

In order to illustrate the influence of the choice of coordinate frame on the matrix 

representation of circulatory forces, the stiffness matrix given in Equation (2.8) will be 

used. It will be recalled that this matrix was defined with respect to the 1 2x x  coordinate 

frame, which is was defined in Figure 2.2 and is shown again in Figure 2.8. 

The circulatory forces that arise when the shaft journal rotates inside the bearing are 

represented by the skew-symmetric matrix given in Equation (2.10): 

[ ] [ ]
1 2

0 sin
sin 0

R
CIRCULATORY SSx x

R

F
K K

F
θ

θ
− ⋅ 

= =  ⋅ 
                (2.17) 

However, if the matrix representation of the circulatory forces is derived for the 

coordinate frame defined by the 1x  and 1x ′  axes, we have: 

[ ]
1 1

cos 1sin
1 cossin

R
CIRCULATORY x x

FK
βθ

ββ′

− − ⋅
= ⋅  

 
                      (2.18) 
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Figure 2.8 – Coordinate systems for the study of a hydrodynamic bearing 

which is no longer a skew-symmetric matrix. This Equation demonstrates that, with 

respect to a non-orthogonal coordinate system, the matrices that represent circulatory 

forces are not necessarily skew-symmetric. 

Thus, circulatory forces may be defined as those that are represented by the skew-

symmetric components of the spatial property matrices, only when these are derived 

with respect to an orthogonal coordinate frame. 

From the discussions contained in this and the previous Sections, it may be seen that 

coordinate frame orthogonality plays an important role in establishing a direct 

relationship between the existence of circulatory forces in rotating machinery structures 

and the asymmetry of their spatial property matrices. For this reason, the next Section is 

dedicated to the definition and analysis of orthogonal coordinate frames. 

2.6   Orthogonal coordinate frames 

The coordinate frames, or coordinate systems, used to study the dynamic behaviour of 

structures are defined in terms of their DOFs. The DOFs are usually, but not 

necessarily, associated with a specific structural point and its possible translation (or 
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rotation) in a predefined direction. With this in mind, each DOF can be interpreted in a 

geometrical sense as an axis along which (or around which) a structural point, which 

constitutes the origin of the axis, can move. To facilitate the presentation of the material 

contained in this Section, the points and the directions of motion associated with the 

DOFs of a structure will be referred to as  ‘origins’ and ‘axes of motion’, respectively. 

2.6.1   Axes of motion 

Spatial coordinates are numbers by means of which we can determine the position of 

different points of a structure. Each coordinate is associated with the displacement of a 

point of the structure in a specific direction. Spatial coordinates have a physical 

meaning when they are translated into the actual displacements of the structural points. 

To do this, each point of the structure is made the origin of an axis of motion. The 

orientation of the axis determines the direction in which the associated coordinate is 

measured to obtain the corresponding physical displacement of the structure. 

Each axis of motion is associated with a base vector, which has the same direction and 

origin as the axis and usually unit length. This vector represents a unit displacement of 

the structure at the point corresponding to the origin, and in the direction, of the axis. 

2.6.2   Orthogonality of two axes of motion 

There exist at least two different approaches to determine whether two axes of motion 

are orthogonal, depending on whether they share a common origin or not. If they do, 

then the orthogonality condition can be stated in the sense used by Lathi [28] as follows: 

Two axes of motion with a common origin are orthogonal if each of their base vectors is 

more similar to a null vector than to any multiple of the other base vector. 
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Figures 2.9(a) and (b) show, respectively, one orthogonal and one non-orthogonal sets 

of axes of motion. In Figure 2.9(a) the two axes of motion are orthogonal. It can be seen 

that any multiple of the base vector 1̂e  is a worse approximation of 2ê  than is a null 

vector. The axes of motion in Figure 2.1(b) are not orthogonal, since there exists a 

multiple of 1̂e  that approximates 2ê  better than does the null vector. 

Figure 2.9 – Definition of (a) orthogonal and (b) non-orthogonal axes 

Although it is relatively simple to define orthogonality when two axes have a common 

origin, a more general definition should be applicable to the case in which the origins 

are different. In this case, orthogonality cannot be assessed only from a geometrical 

approach. However, a definition more akin to the case of structural dynamics can be 

used: 

Two axes of motion are orthogonal if a force applied along either one of them does no 

work when the structure undergoes a displacement along the other axis. 
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This, more general, definition can also be used to assess the orthogonality of axes with 

common origins. 

One fact becomes apparent from this new definition, namely that if the origins of the 

two axes of motion move independently of each other, then the two axes will always be 

mutually orthogonal, regardless of their spatial orientation. What is not so immediately 

evident is under which conditions two axes with different origins are not orthogonal.  

One possible case is that of the rigid ring illustrated in Figure 2.10. Point A  is the origin 

of the axis of motion AA′ , and point B  is the origin of BB ′ . The origins of the two 

axes are different points of the structure. However, it is clear that a force, f , applied in 

the direction of AA′  will do a non-zero amount of work on the structure, if it is 

displaced along BB ′ , as it will travel an effective distance, d . Hence, these two axes 

are not orthogonal. In this example, the fact that the ring is rigid forces the two origins 

to move simultaneously. 

If the ring were not rigid, then it would be possible to prevent the motion of point A  

while displacing point B . Hence a force applied along AA′  would do no work when 

point B were displaced along BB ′ . In this case the two axes would be orthogonal. 

Thus, the orthogonality of two axes of motion depends on the kinematic conditions that 

link the motions of their origins. In the first case, these motions are linked because of 

the fact that the ring is rigid. In the second case this condition is removed and hence the 

two axes become orthogonal. 

Rigidity is an extreme condition. In practice, all systems exhibit some degree of 

flexibility, and hence different points may be moved independently of each other. On 

the other hand, during tests and in operating conditions, the deformations of flexible 
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structures are dominated by only a finite number of modes, and this implies that only a 

finite, and at most equal, number of points move independently of each other. Since this 

is the most usual scenario, it will now be discussed in more detail. 

Figure 2.10 – Flexibly-supported rigid ring 

2.6.3   Orthogonality in flexible systems 

In theory, any two points of a flexible continuous structure may be moved 

independently of each other. However, in practice, the deformation of a structure is 

limited to the configurations that can result from the combination of only a finite 

number of modes. Hence, depending on the modes that determine the possible 

deformations of the structure, the motions of two different points on the structure may, 

or may not, be independent of each other. 

The orthogonality of the axes of motion of a flexible structure depends on which modes 

affect its vibration and, of course, also on the origins and orientations of the axes in 

question. 

Each mode shape of a flexible structure associates a displacement vector with each 

point of the structure. This vector defines the region in space in which that point can 
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move when only that mode is excited. The vector consists of two displacements: one 

translation and one rotation. A phase should also be specified for each displacement, but 

we will consider that all points move in phase for this discussion. 

As more modes are considered, the space in which any particular point of the structure 

can move may also be increased in dimension: a line, a plane or a volume. 

The movement of one point along an arbitrary axis forces other points of the structure to 

move in a limited region. This is because the displacement of one point in a specific 

direction can only be achieved by exciting each of the modes with specific amplitudes. 

The combined effect of the modes would yield the desired displacement of the point of 

interest, but it would also impose a displacement of the remaining points of the structure 

based on the used modal combination, or would limit their region of motion. 

Hence, it can be concluded that the points along a continuous flexible structure do not 

move totally independently of each other when only a finite number of structural modes 

are considered. This leads to the possibility of two axes of motion not being orthogonal 

in spite of their origins lying on different points of the structure. 

If two axes with different origins are chosen to describe the behaviour of a flexible 

structure, then in order for them to be orthogonal it is necessary that at least one of the 

modal combinations that produce a motion of the first origin along the first axis allows 

the second origin to move in a direction which is geometrically orthogonal to the second 

axes. In order to define a complete orthogonal coordinate frame, this criterion must 

apply between every pair of the axes of motion that define the frame. 
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2.7   Summary 

In this Chapter, the spatial models of rotating machinery structures were introduced. It 

was highlighted that, in contrast to the models for non-rotating structures, those for 

rotating machinery structures may involve asymmetric damping and stiffness matrices. 

This asymmetry is due to the representation of circulatory forces, which were classified 

into two groups: velocity-dependent and displacement-dependent. 

It was shown that circulatory forces are represented in the skew-symmetric components 

of the damping and stiffness matrices only when these matrices are defined with respect 

to an orthogonal coordinate system. 

A general definition of the orthogonality of a coordinate frame was given, and it was 

shown that the fact that the DOFs of a continuous system lie on different points of a test 

structure does not guarantee that the DOFs will be orthogonal. This was illustrated 

using the case of a rigid ring as an example, and the discussion was extended to the 

more general case of flexible systems. 
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CHAPTER 3  

Modal and response models of rotating 
machinery structures 

3.1   Introduction 

The dynamic characteristics of mechanical systems are usually described using any of 

three types of model: spatial, modal and response models. However, the three types of 

model are interrelated. 

In this Chapter, a brief description of the modal and response models of rotating 

machinery structures is given. Based on this description, and that of the spatial models 

presented in Chapter 2, some relationships that exist between the three types of model 

are derived analytically. A physical interpretation of these relationships is given. 

3.2   The modal model 

As in the case of non-rotating structures, the dynamic behaviour of rotating machines 

may be explained in terms of a superposition of modes of vibration. The number of 

modes depends on the number of DOFs that they possess. 

Rotating machinery structures are continuous systems and as such may have an infinite 

number of DOFs, and consequently an infinite number of modes. However, in practice, 

dynamics studies are focused on deriving a model that represents their behaviour only 

within a limited frequency interval. Within this interval, some of the vibration modes 

dominate the dynamic behaviour whereas others might only have a small influence. 
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The most common approach to the dynamic characterisation of practical structures is to 

build a model based on the predominant modes. Hence, within the limited frequency 

range of interest, a machine may be considered to behave as a system with only a finite 

number, N , of DOFs. This makes it possible to express its modal parameters using 

matrices of finite dimensions. 

3.2.1   Modal parameters 

Due to the asymmetry of the damping and stiffness matrices, the complete modal 

models of rotating machinery structures consist of two different sets of modal vectors, 

the right and left eigenvectors, in addition to one set of eigenvalues. This is in contrast 

to the case of non-rotating structures, which only consist of the right eigenvectors and 

the eigenvalues. 

For the case of rotating machinery structures, the eigenvalues and right eigenvectors 

may be determined from the homogeneous part of Equation (2.5) as [32]: 

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

{ }

{ }

{ }

{ }

0 0 0

00
R
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M C K
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r

r
                          (3.1) 

where { }RΨ r  is the 1N ×  right eigenvector of the r th mode and λr  is its associated 

eigenvalue. The left eigenvectors can be obtained from: 

[ ] [ ]

[ ] [ ]
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rr
r

r
                       (3.2) 

where { }LΨ r  is the 1N ×  left eigenvector of the r th mode. 

For a system of order N  there exist 2N  modes, each with an associated eigenvalue, 

and right and left eigenvectors. If the mass, damping and stiffness matrices are real, then 

the right eigenvectors occur in N  complex conjugate pairs, as do the left eigenvectors 
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and the eigenvalues. In this case, the state-space matrices of eigenvalues, and right and 

left eigenvectors, λ  
� , R Ψ 

�  and  L Ψ 
� , respectively, have the following formats: 

[ ]
[ ] [ ]

[ ] [ ]

*

2 2

0

0N N

λ
λ

λ×

 
 =  
  

�                                                           (3.3) 

 [ ]
[ ] [ ] [ ][ ]

[ ] [ ]

* *

*
2 2

R R

R
R RN N

λ λ

×

 Ψ Ψ =Ψ  
 Ψ Ψ 

�                                        (3.4) 

[ ]
[ ] [ ] [ ][ ]

[ ] [ ]

* *

*
2 2

L L

L
L LN N

λ λ

×

 Ψ Ψ =Ψ  
 Ψ Ψ 

�                                        (3.5) 

As for non-rotating structures, the eigenvalues and right eigenvectors of rotating 

machinery structures define a state of free vibration in which the elements of the right 

eigenvectors represent the amplitudes and phases of the displacements at each DOF, and 

the eigenvalues represent their frequencies and decay rates. 

These physical meanings of the eigenvalues and right eigenvectors are relatively easy to 

derive from the equation of motion of a system. However, the meaning of the left 

eigenvectors cannot be deduced in a straightforward manner. The reason for this is that 

the equations that define the left eigenvectors do not represent measurable quantities 

such as forces or displacements, and hence attaching a physical meaning to them is 

itself a challenge. A physical interpretation of the left eigenvectors is given in references 

[8], [14] and [17], where they are considered as force patterns associated with the 

selective excitation of structural modes. 

3.2.2   Eigenvector normalisation 

The right and left eigenvectors that are obtained from the solutions to Equations (3.1) 

and (3.2) can only be determined to within an arbitrary scaling factor. This implies that 

the same set of eigenvectors may be associated with an infinite number of systems, all 

with different spatial property matrices. 
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If the eigenvalues and eigenvectors are to be used to characterise specific systems, then 

it is important to eliminate this arbitrary factor from the definition of the eigenvectors. 

This is achieved through the process of normalisation. 

The normalised right and left eigenvector matrices, [ ]RΦ  and [ ]LΦ , respectively, are 

related to their non-normalised representations through the following equations: 

[ ] [ ] [ ]R R RDΦ = Ψ ⋅                                                (3.6) 

[ ] [ ] [ ]L L LDΦ = Ψ ⋅                                                (3.7) 

where [ ]RD  and [ ]LD  are N N×  diagonal matrices chosen so that the state-space 

property matrices in equation (2.5) are diagonalised through the following 

transformations [36]: 

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

2 2 2 2 2 2 2 2
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0
T
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N N N N N N N N
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M C I
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   
      Φ Φ =            

� �
                        (3.8) 
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� � �
                     (3.9) 

where L Φ 
�  and R Φ 

�  are the state-space matrix representations of the normalised left 

and right eigenvectors, respectively, and λ  
�  is the corresponding matrix of 

eigenvalues. Although for a system with complex spatial property matrices the 

eigenvalues and eigenvectors do not occur in complex conjugate pairs, the entries of the 

matrices L Φ 
� , R Φ 

�  and λ  
�  are related to each other, as the matrices generally have 

the following formats: 

 [ ]
[ ] [ ]

[ ] [ ]

1 1 2 2

1 22 2

L L
L

L LN N

λ λ

×

    Φ Φ       =Φ  Φ Φ  
�  (3.10) 
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 [ ]
[ ] [ ]

[ ] [ ]
1 1 2 2

1 22 2

R R
R

R RN N

λ λ

×

     Φ Φ       =Φ  Φ Φ  
�                                     (3.11) 

[ ]
[ ]

[ ]

1

22 2

0

0N N

λ
λ

λ×

   
   =          

�                                                         (3.12) 

where the block sub-matrices have dimensions N N× . The blocks that constitute the 

lower rows of the right-hand sides of Equations (3.10) and (3.11) will be referred to as 

the ‘displacement portions’ of the space-state eigenvector matrices. These will be used 

extensively in later discussions. 

Complex property matrices may be necessary to represent, for example, the properties 

of systems affected by hysteretic damping forces, whose amplitude may be proportional 

to the displacement of the system at one of its DOFs, but is in anti-phase with the 

velocity of the system at that DOF. 

The normalisation of the eigenvectors makes it possible to give an arbitrary value to 

exactly one element of either the right of left eigenvectors of each mode. This is in 

contrast with the case of stationary structures, for which the condition that the right and 

left eigenvectors must be numerically identical, due to the symmetry of the spatial 

property matrices, eliminates the possibility of choosing arbitrary values for any of their 

elements once the normalisation criteria, e.g. mass-normalisation [14], have been 

established. 

3.3   The response model 

The steady-state response of a system, ( ){ }X ω , to a harmonic excitation, ( ){ }F ω , 

may be computed in the frequency domain using the following equation: 

( ){ } [ ] [ ] [ ] ( ){ }12[ ]X K M i C Fω ω ω ω−= − + ⋅                       (3.13) 
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or, in terms of the receptance version of the frequency response function (FRF) matrix: 

 ( ){ } ( )[ ] ( ){ }X Fω α ω ω= ⋅                                     (3.14) 

Using this equation, the receptance matrix, ( )[ ]α ω , may be defined as:  

( )[ ] [ ] [ ] [ ] 12[ ]K M i Cα ω ω ω −= − +                                (3.15) 

The receptance matrix constitutes a response model of the system, which describes its 

dynamic behaviour as a function of the excitation frequency. 
 

3.4   Relationships between the spatial and modal models 

For systems with real spatial property matrices, equations (3.8) and (3.9) can be written 

as: 

 
[ ] [ ] [ ][ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ] [ ][ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

* ** *

* *

0 0

0

T
L L R R

R RL L

M I

M C I

λ λ λ λ   Φ Φ Φ Φ         =         Φ ΦΦ Φ         
       (3.16) 

[ ] [ ] [ ][ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ] [ ][ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

* ** * *

* *

0 0

00

T
L L R R

R RL L

M

K

λ λ λ λ λ

λ

      Φ Φ Φ Φ−      = −           Φ ΦΦ Φ       
  (3.17) 

since for these systems the eigenvalues and eigenvectors occur in complex conjugate 

pairs. The spatial and modal parameters in Equations (3.16) and (3.17) may be separated 

to obtain the following expressions: 

[ ] [ ]

[ ] [ ]

[ ] [ ] [ ][ ]

[ ] [ ]

[ ] [ ] [ ][ ]

[ ] [ ]

**1 * *

* *

0
T

R R L L

R R L L

M

M C

λ λ λ λ−   Φ Φ Φ Φ      =       Φ Φ Φ Φ      
           (3.18) 

[ ] [ ]

[ ] [ ]

[ ] [ ] [ ][ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ] [ ][ ]

[ ] [ ]

1 **1 * **

* *

0 0
0 0

T
R R L L

R R L L

M

K

λ λ λ λλ

λ

−−     Φ Φ Φ Φ        =      −   Φ Φ Φ Φ         
(3.19) 

from which the some relationships between the spatial and modal property matrices can 

be established: 
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[ ][ ] [ ]( ) [ ]1 11Re
2

T
R L Kλ − −Φ Φ = −                                (3.20) 

[ ][ ]( ) [ ]Re 0T
R LΦ Φ =                                           (3.21) 

[ ][ ][ ]( ) [ ] 1
1Re
2

T
R L Mλ −Φ Φ =                                   (3.22) 

[ ][ ] [ ]( ) [ ] [ ][ ]2 1 11Re
2

T
R L M C Mλ − −Φ Φ = −              (3.23) 

In the more general case of systems with complex spatial property matrices, equivalent 

relationships may be defined using the ‘displacement portions’ of the eigenvector 

matrices defined in Equations (3.10) and (3.11), i.e. the lower row of block sub-

matrices, together with the eigenvector matrix defined in Equation (3.12): 

[ ] [ ]
[ ]

[ ]

[ ]

[ ]
[ ]

1
1 1 1

1 2
22

2 2 2 2

0

0

T
L

R R T
L

N N N N N N N N

K
λ

λ

−

−

× × × ×

     Φ      Φ Φ = −         Φ        
                           (3.24) 

[ ] [ ]
[ ]

[ ]
[ ]

1
1 2

2
0

T
L

R R T
L

 Φ  Φ Φ =    Φ  
                                   (3.25) 

[ ] [ ]
[ ]

[ ]

[ ]

[ ]
[ ]

1 1 1
1 2

22

0

0

T
L

R R T
L

M
λ

λ
−

     Φ      Φ Φ =         Φ        
                             (3.26) 

[ ] [ ]
[ ]

[ ]

[ ]

[ ]
[ ] [ ][ ]

2
1 1 1 1

1 2
22

0

0

T
L

R R T
L

M C M
λ

λ
− −

     Φ      Φ Φ = −         Φ        
        (3.27) 

3.5   Relationships between the response and modal models 

If the state-space matrices in Equation (2.5) are diagonalised through the use of 

Equations (3.8) and (3.9), then the following expressions for the receptance, ( )[ ]α ω , 

and mobility,  ( )[ ]iω α ω⋅ , matrices can be established: 
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( )[ ] [ ] [ ]

[ ]

[ ]

[ ]

[ ]

1
1 1

1 2 1
22

2 22 2

0

0

T
L

R R T
L

N N N N N NN N

i I

i I

ω λ
α ω

ω λ

−

−

× × ××

    − Φ        = Φ Φ       Φ   −       
    (3.28) 

( )[ ] [ ] [ ]

[ ]

[ ]

[ ]

[ ]

1 2

1
1 1 1

1
22 2

0

0

R R

T
L

T
L

i

i I

i I

ω α ω

λ ω λ

λ ω λ

−

−

 ⋅ = Φ Φ ⋅  

      − Φ              Φ     −           

…

     (3.29) 

where I  represents an N N×  identity matrix and the remaining block sub-matrices are 

as defined in Equations (3.10)-(3.12). For the particular case of a system with real 

spatial property matrices, the receptance matrix is: 

( )[ ] [ ][ ] [ ]
11 * * *T T

R L R Li I i Iα ω ω λ ω λ −−      = Φ − Φ + Φ − Φ                     (3.30) 

and its elements are defined as: 

( )
( ) ( ) ( ) ( )* *

*
1

N
R L R L

i i
α ω ω λ ω λ=

 Φ ⋅ Φ Φ ⋅ Φ  = +   − −  
∑ kr k rj r j r

jk
r rr

                      (3.31) 

3.6   Physical interpretation of the relationships between the 

spatial and modal models 

The relationships between the spatial and modal models presented in Section 3.4 are 

independent of the excitation forces and hence also of the excitation frequency. 

However their interpretation is greatly simplified by considering them as limits of the 

forced response as the excitation frequency tends to either a low frequency limit, defined 

as zero ( 0ω = ), or a high frequency limit, defined as a frequency sufficiently greater 

than the natural frequencies of the modes of interest so that it can be effectively 

considered as an infinitely high frequency (ω → +∞ ).  
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In this section, a physical interpretation of the relationships presented in Equations 

(3.24)-(3.27) will be presented, based on the relationships between the response, spatial 

and modal models. The forthcoming analyses are based on the general case of systems 

with complex property matrices. For systems with real spatial property matrices the 

same arguments apply, but Equations (3.20)-(3.23) should be used instead of Equations 

(3.24)-(3.27). 

• Equation (3.24) relates the spatial and modal representations of the receptance 

matrix when the excitation frequency is equal to the low frequency limit. 

Proof: 

The spatial representation of the receptance matrix as the excitation approaches the low 

frequency limit may be determined from Equation (3.15): 

( )[ ] [ ] [ ] [ ] [ ]1 12
0 0

lim lim [ ]K M i C K
ω ω

α ω ω ω − −
→ →

= − + =                        (3.32) 

On the other hand, the modal representation of the receptance matrix as the excitation 

approaches the same frequency limit may be determined from Equation (3.28): 

( )[ ] [ ] [ ]
[ ]

[ ]

[ ]

[ ]

[ ] [ ]
[ ]

[ ]

[ ]

[ ]

1 1
1 20 0

22

2 2 2 2

1 1
1 2

22

0
lim lim

0

0

0

T
L

R R T
L

N N N N N N N N

T
L

R R T
L

i I

i Iω ω

ω λ
α ω

ω λ

λ

λ

→ →

× × × ×

     − Φ      = Φ Φ          Φ −        

     − Φ      = Φ Φ          Φ −        

         (3.33) 

Equation (3.24) follows directly from Equations (3.32) and (3.33). 

• Equation (3.25) relates the spatial and modal representations of the mobility 

matrix,( ) ( )[ ]iω α ω , when the excitation frequency is equal to either the low or 

high frequency limits. 
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Proof: 

The spatial representation of the mobility matrix as the excitation approaches the low 

frequency limit may be determined using Equation (3.15): 

 ( )[ ] ( ) [ ] [ ] [ ] 12
0 0

lim lim [ ] 0i i K M i C
ω ω

ω α ω ω ω ω −

→ →
⋅ = ⋅ − + =               (3.34) 

The modal representation of the mobility matrix as the excitation approaches the same 

frequency limit may be determined from Equation (3.29): 

( )[ ]( )

[ ] [ ]
[ ]

[ ]

[ ]

[ ]

[ ] [ ]
[ ]

[ ]

0
1

1 1 1
1 2 10

22 2

1
1 2

2

lim

0
lim

0

T
L

R R T
L

T
L

R R T
L

i

i I

i I

ω

ω

ω α ω

λ ω λ

λ ω λ

→
−

−→

⋅

      − Φ            = Φ Φ       Φ     −           
 Φ  = Φ Φ     Φ  

      (3.35) 

Equation (3.25) follows directly from Equations (3.34) and (3.35). For the high 

frequency limit, the spatial representation of the mobility matrix can be determined 

using Equation (3.15): 

( )[ ] ( ) [ ] [ ] [ ]

[ ]
[ ] [ ]

12

1

lim lim [ ]

lim 0

i i K M i C

K i M C
i

ω ω

ω

ω α ω ω ω ω

ω
ω

−

→∞ →∞
−

→∞

⋅ = ⋅ − +

 = − + = 
 

               (3.36) 

In terms of the modal parameters, this mobility is computed using Equation (3.28): 

( )[ ]( )

( ) [ ] [ ]
[ ]

[ ]

[ ]

[ ]

[ ] [ ]

[ ]

[ ]

[ ]

[ ]

[ ] [ ]
[ ]

0
1

1 1
1 2 1

22

1
1

1
1 2 1

2 2

1
1 2

lim

0
lim

0

0

lim

0

T
L

R R T
L

T
L

R R T
L

T
L

R R

i

i I
i

i I

I
i

I
i

ω

ω

ω

ω α ω

ω λ
ω

ω λ

λ
ω

λ
ω

→
−

−→∞

−

−→∞

⋅

    − Φ        = ⋅ Φ Φ       Φ   −       
    −     Φ     = Φ Φ         Φ      −     

Φ
 = Φ Φ   Φ[ ]2

T
L

 
 
 
  

         (3.37) 
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Equation (3.25) can be deduced directly from the results of Equations (3.36) and (3.37). 

• Equation (3.26) relates the spatial and modal representations of the inertance 

matrix, ( ) ( )[ ]2iω α ω , when the excitation frequency is equal to the high 

frequency limit. 

Proof: 

The spatial representation of the inertance matrix as the excitation approaches the high 

frequency limit may be determined using Equation (3.15): 

 
( ) ( )[ ] ( ) [ ] [ ] [ ]

[ ]
( )

[ ]
[ ]
( )

[ ]

122 2

1
1

2

lim lim [ ]

lim

i i K M i C

K CM M
ii

ω ω

ω

ω α ω ω ω ω

ωω

−

→∞ →∞
−

−
→∞

⋅ = ⋅ − +

 = + + =   

       (3.38)  

The modal representation of the inertance matrix as the excitation approaches the same 

frequency limit may be determined using Equation (3.29): 

( ) ( )[ ][ ] ( ) ( )[ ][ ]

( ) [ ] [ ]
[ ]

[ ]

[ ]

[ ]

[ ] [ ]
[ ]

[ ]

[ ]

[ ]

2

1
11 1

1 2 1
22 2

11
1 2

22

lim lim

0
lim

0

0

0

T
L

R R T
L

T
L

R R T
L

i i i

i I
i

i I

ω ω

ω

ω α ω ω ω α ω

λ ω λ
ω

λ ω λ

λ

λ

→∞ →∞
−

−→∞

⋅ = ⋅ ⋅

      Φ−            = ⋅ Φ Φ       Φ    −           
    Φ      = Φ Φ          Φ         

     (3.39) 

Equation (3.26) follows from Equations (3.38) and (3.39). 

• Equation (3.27) represents the effect of damping on the rate of change of 

acceleration, or jerk, matrix when the excitation frequency is equal to the high 

frequency limit. 

We will focus only on the physical interpretation of the right hand side of the equation. 

The left hand side can be obtained by the method used in Section 3.4. 

The jerk matrix, ( )[ ]J ω , is defined as:  
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( )[ ] ( ) ( )[ ] ( ) [ ] [ ] [ ][ ]J 123 3i i K M i Cω ω α ω ω ω ω −= ⋅ = − +           (3.40) 

If damping were not present in the system, then the jerk matrix would be defined as: 

 ( ) ( ) [ ] [ ][ ]J 123
0 i K Mω ω ω −  = −                            (3.41) 

The effect of damping on the jerk matrix is then: 

( )[ ] ( ) ( ) [ ] [ ] [ ][ ] [ ] [ ][ ]J J 1 12 23
0 i K M i C K Mω ω ω ω ω ω− −  − = − + − −       (3.42) 

Using the identity [ ] [ ] [ ] [ ] [ ][ ][ ]1 11 1A B A B A B− −− − − = −  , the limit of the effect 

of damping on the jerk matrix as the excitation frequency tends to infinity is: 

( )[ ] ( )

( ) [ ] [ ] [ ][ ] [ ][ ] [ ] [ ][ ]

[ ]
( )

[ ]
[ ]

[ ][ ] [ ]
( )

[ ]

[ ] [ ][ ]

J J 0
1 12 23

1 1

2 2

1 1

lim

lim

lim

i K M i C i C K M

K C KM C M
ii i

M C M

ω

ω

ω

ω ω

ω ω ω ω ω

ωω ω

→∞
− −

→∞

− −

→∞

− −

   −      
 = − + − −  

     = + + − +           

= −
(3.43) 

3.7   Summary 

In this Chapter, the modal and response models of rotating machinery structures have 

been described. The equations that define the relationships between the spatial and 

modal models have been derived analytically. 

A physical interpretation of these equations has been given, in terms of the theoretical 

limit values of the receptance, mobility, accelerance and jerk matrices of the studied 

systems, as the excitation frequency tends to zero or to infinity. 

The relationships between the three types of model that have been presented in this 

Chapter will be the basis for the derivation of the modal characterisation method 

presented in the next Chapter. 
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CHAPTER 4 

Estimation of the modal properties of rotating 
machinery structures from measured vibration 
data 

4.1   Introduction 

In Chapter 1, the ‘column-row’ method for determining the modal parameters of 

rotating machinery structures was described. It was argued that its main practical 

limitation lies on the need to measure a complete row of the FRF matrix, which is 

difficult to carry out in practice but nevertheless necessary in order to determine the left 

eigenvectors. 

The present Chapter introduces a method for determining the left eigenvectors of 

rotating machinery structures based on measurements of its FRFs. The goal of the 

method is to reduce the time and effort expended on the modal characterisation of these 

systems, by reducing the number of locations at which the excitation forces must be 

applied during modal tests. 

The approach taken is to compute the left eigenvectors using the eigenvalues and the 

right eigenvectors, complete sets of which can be determined from one column of the 

FRF matrix. The computation procedure is based on the relationships between the 

different models that were derived in the previous Chapter. 
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4.2   Evaluation of the ‘column-row’ method 

Complete characterisation of the behaviour of rotating machinery structures, unlike that 

of non-rotating structures, requires knowledge of their left eigenvectors as well as of 

their eigenvalues and right eigenvectors. For certain classes of system, such as 

undamped gyroscopic systems, the left eigenvectors are simply the complex conjugates 

of their right counterparts. However, in most cases, the two sets of eigenvectors do not 

obey such simple relationship and need to be determined directly from measured data. 

Traditionally, this is achieved through the ‘column-row’ method introduced by 

Nordmann [35], which was described in Chapter 1. 

Although other characterisation methods exist for systems with specific types of spatial 

properties, such as skew-symmetric damping matrices, etc., the column-row method has 

the advantage that it is applicable to a broad variety of systems because it does not rely 

on assumptions about the symmetry of the spatial property matrices, or on any special 

relationships among the modal parameters. 

On the other hand, one of its limitations is that it is impossible to simplify the testing 

scheme which is used to obtain the necessary response data, even if some characteristics 

of the system being studied are known before the tests. For example, in most cases the 

spatial properties are represented by real mass, damping and stiffness matrices. One of 

the direct consequences of this is that the eigenvalues and eigenvectors occur in 

complex conjugate pairs. This feature considerably simplifies the relationships that exist 

between the right- and left-eigenvectors, and although they may still not be as simple as 

for the case of undamped gyroscopic systems, they can nevertheless be used to 

determine some or all the necessary elements of the left-eigenvectors once the right 

eigenvectors are known. 
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In spite of the simplifications that are possible for systems with real property matrices, 

the measurement procedure prescribed in the ‘column-row’ method is the same 

regardless of whether the spatial property matrices are real or complex. One of the 

disadvantages of this inflexibility is that, instead of deriving some modal parameters 

from others, we are forced to determine all of them afresh from measured data. This 

requires more data to be gathered than are strictly necessary, as will be seen in the 

present Chapter, and imposes an unnecessarily complicated measurement scheme. 

Another situation in which the measurement scheme results unnecessarily complicated 

is when the non-symmetry of the spatial property matrices is associated with only a few 

of the total DOFs. This is because the number of independent quantities that comprise 

the property matrices is larger when the matrix has large asymmetric regions then when 

it is predominantly symmetric. In most rotating machines, the asymmetry of the 

property matrices is limited only to the DOFs that lie on the rotating components or the 

components that support them directly, since it is there that the circulatory forces 

originate. 

Hence, it is reasonable to expect that fewer data are required to model machines in 

which only a few of the DOFs lie on rotating components than are required for 

machines in which most of them do. However, the measurement scheme of the 

‘column-row’ method is the same regardless of the amount of data required, as a full 

column and a row must be measured in every case.  

To summarise, the ‘column-row’ method requires no knowledge of the properties of the 

system, but this generality comes at the cost of imposing a difficult measurement 

procedure in cases where it can be simplified. Prior knowledge of the system being 

tested should allow for a reduction in the number of measurements required for its 
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modal characterisation, since some of its modal parameters may be predicted from 

information about the system that is already possessed before the tests. 

The characterisation method described in this Chapter is aimed at using this prior 

knowledge of the system in order to reduce the number of row elements of the FRF 

matrix that are required to build the modal models of rotating machines. The proposed 

method is based on the following assumptions: (a) that the spatial property matrices are 

real, (b) that the number of DOFs that are associated with the asymmetry of the spatial 

property matrices is known, (c) that the system at hand can be represented by a discrete 

model within the frequency range of interest, and (d) that the mass matrix is symmetric. 

The fact that the asymmetry of the spatial property matrices originates only at the DOFs 

of its rotating components is important for the successful application of the method. 

This will be explained in more detail in the following section. 

4.3   Rotating machines as structural assemblies 

For modelling purposes, a rotating machine can be regarded as an assembly of two 

substructures: one formed by the non-rotating components and another formed by the 

rotating ones. When isolated, each of these substructures can be represented by a 

dynamic stiffness matrix. For the non-rotating substructure this matrix is symmetric, 

whereas for that containing the rotating components it is generally asymmetric. When 

the two substructures are coupled these matrices combine into a single dynamic 

stiffness matrix for the whole assembly. Although this resulting matrix is not 

symmetric, its asymmetry is limited to those DOFs which are associated with the 

rotating components, as shown in Figure 4.1. 
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Figure 4.1 – Dynamic stiffness matrix, [Z], of a rotating machine 

Similarly, the asymmetric portions of the damping and stiffness matrices of the 

assembly only involve DOFs of the rotating components. 

It is important to note that the asymmetric portion of the damping matrix is not 

necessarily related to the same DOFs as that of the stiffness matrix. This is because the 

circulatory forces represented in the two matrices do not necessarily originate at the 

same parts of the machine. For instance, a rotating rigid disk can give rise to gyroscopic 

moments that contribute to the asymmetry of the damping matrix but not to that of the 

stiffness matrix. On the other hand, elements like a hydrodynamic bearing may 

contribute to the asymmetry of both matrices. As a consequence of this, the number of 

DOFs related to the asymmetric portions is different for the damping and stiffness 

matrices. 

4.4   Overview of the proposed characterisation method 

As with the column-row method, the characterisation method proposed here starts with 

the measurement of a complete column of the FRF matrix, from which the right-

eigenvectors and eigenvalues are extracted. 
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The approach then is to compute elements of the left eigenvectors using the fewest 

possible row elements of the FRF matrix. This is done using the relationships that exist 

between the spatial and modal models which were derived in the previous Chapter. 

For machines in which all of the DOFs lie on rotating components, it is not possible to 

establish any equations to aid in the computation of the left-eigenvectors, so these 

parameters must be determined purely from measured data. For such systems the 

proposed method is equivalent to the ‘column-row’ method, since a complete row of the 

FRF matrix needs to be measured, in addition to one column. 

In contrast, for machines in which only a few of the DOFs lie on rotating components it 

is often possible to establish a large number of equations to complement the measured 

data for the computation of the left-eigenvectors. For these systems, the required 

number of measurements will vary according to the size of the asymmetric portions of 

the spatial property matrices. With large sizes of these asymmetric portions, fewer 

relationships can be established, so more measurements are required to compute the 

left-eigenvectors. 

The number of FRF row elements that need to be measured is that required to establish 

enough equations to determine the complete left-eigenvectors. 

4.5   Equations for the computation of the left eigenvectors 

The left eigenvectors may be computed using the relationships between the spatial and 

modal models that were presented in the previous Chapter. However, the computation 

cannot be carried out directly since the equations that express such relationships involve 

the unknown spatial property matrices, in addition to the sought left eigenvectors. This 
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means that the total number of unknown parameters will exceed the number of 

equations that can be obtained from matrix Equations (3.20)-(3.23). 

In order to overcome this limitation, advantage can be taken of the fact that the mass 

matrix, and perhaps some portions of the damping and stiffness matrices, are 

symmetric. Additional equations may be established between elements of the mass, 

damping and/or stiffness matrices one side of their main diagonals and the 

corresponding symmetric elements on the opposite side. 

The number of equations will be limited by the sizes of the asymmetric regions of the 

damping and stiffness matrices, as well as by the total number of DOFs of the system. 

This is treated in more detail in Section 4.6.4.1. 

The following discussions are based on Equations (3.20)-(3.23), which were derived in 

Chapter 3 for systems with real spatial property matrices, and are restated here as 

Equations (4.1)-(4.4): 

[ ][ ] [ ]( ) [ ]1 11Re
2

T
R L Kλ − −Φ Φ = −                                 (4.1) 

[ ][ ]( ) [ ]Re 0T
R LΦ Φ =                                            (4.2) 

[ ][ ][ ]( ) [ ] 1
1Re
2

T
R L Mλ −Φ Φ =                                   (4.3) 

[ ][ ] [ ]( ) [ ] [ ][ ]2 1 11Re
2

T
R L M C Mλ − −Φ Φ = −              (4.4) 

The computation procedure requires that the right eigenvectors and the eigenvalues be 

determined beforehand through the measurement and analysis of the FRFs associated 

with one column of the FRF matrix. 
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4.5.1   Effects of matrix symmetry on the relationships between the 

spatial and modal models 

4.5.1.1   Matrix symmetry and partial symmetry 

As discussed in Section 4.3, the asymmetry of the spatial property matrices of rotating 

machinery is associated only with the DOFs of its rotating components or their 

supports. We will now express this condition in the form of a matrix equation, so that it 

can later be used to derive expressions for the computation of the left eigenvectors. 

Let us assume that a rotating machine has 10 DOFs, only 4 of which lie on its rotating 

components. It is possible that its damping and stiffness matrices are asymmetric. For 

this discussion we will assume that any asymmetry has its origins in the 4 DOFs of the 

rotating components, but the conclusions may be extended to cases where it also affects 

the support DOFs. 

If we consider one of the spatial property matrices, say the stiffness matrix, and arrange 

its rows and columns so that the 4 DOFs of the rotating components occupy the 4 

rightmost columns and the 4 lowest rows, then the stiffness matrix will have the layout 

presented in Figure 4.2. 

 

 

 

 

Figure 4.2 – Structure of the stiffness matrix 

 

DOF 

 Asymmetric portion 

Symmetric portion 

[ ]K =  

1  2  3  4  5  6  7  8  9 10 
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where the shaded region corresponds to the DOFs of the rotating components. The 

symmetric portion of [ ]K  spans the six leftmost columns, which form a 10 6×  

submatrix that is equal to the transpose of that formed by the 6 uppermost rows. Thus, 

we have:  

 [ ][ ] [ ] [ ]T
K KK I K I=                                                (4.5) 

where: 

 [ ]
[ ]

[ ]

6 6

4 60K

I
I

×

×

 
 =  
 

                                                      (4.6) 

with [ ]6 6I ×  representing a 6 6×  identity matrix and [ ]4 60 ×  a 4 6×  matrix of zeros.  

In a more general case, the DOFs corresponding to the rotating components will not be 

grouped in the last rows and columns, so [ ]KI  may adopt more complicated forms than 

that defined in Equation (4.6). In any case, the matrix [ ]KI  will have as many rows as 

the system has DOFs and as many columns as there are DOFs associated with the 

symmetric portion of the stiffness matrix. One element per column is unity and the 

remaining ones are zeros. The position of the unit element is different for every column, 

and corresponds to the position of a column of the property matrix within its symmetric 

portion. For example, for a 4-DOF system with a symmetric portion comprising DOFs 1 

and 3, the matrix [ ]KI  will be: 

[ ]

1 0

0 0

0 1

0 0

KI

 
 
 
 =  
 
 
  

                                                         (4.7) 
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We will refer to the matrix [ ]KI  as the symmetry selection matrix for [ ]K . A similar 

matrix, [ ]CI , can be derived to select the symmetric portions of [ ]C . 

4.5.1.2   Relationships between the modal parameters 

Apart from the matrix of left eigenvectors, Equations (4.1)-(4.4) involve the matrix of 

their complex conjugates. However, this latter matrix can be eliminated if Equation 

(4.2) is expressed as: 

[ ][ ] [ ]* * 0
TT

R L R L   Φ Φ + Φ Φ =                                             (4.8) 

so that *
L Φ   can be substituted in Equations (4.1), (4.3) and (4.4), yielding: 

[ ][ ] [ ]( )[ ][ ] [ ]
1 111 1* * * T

R R R R R L Kλ λ − −−− −     Φ Φ − Φ Φ Φ Φ = −              (4.9) 

[ ][ ][ ]( )[ ][ ] [ ]
11 1* * * T

R R R R R L Mλ λ −− −     Φ Φ − Φ Φ Φ Φ =                 (4.10) 

[ ][ ] [ ]( )[ ][ ]

[ ] [ ][ ]

2 112 * * *

1 1

T
R R R R R L

M C M

λ λ −−

− −

     Φ Φ − Φ Φ Φ Φ =     
−

…
         (4.11) 

whence the unknown matrices are those of the left eigenvectors and of the spatial 

properties.  

To simplify Equations (4.9)-(4.11), we may define a matrix [ ]G  as: 

 [ ] [ ] ,TLG −= Φ                                                    (4.12) 

with which the right- and left-hand sides of Equations (4.9)-(4.11) may be inverted and 

equated to arrive at the following expressions: 
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[ ] ( )[ ] [ ],K RG U KλΦ =                                                 (4.13)  

[ ] ( )[ ] [ ],M RG U MλΦ =                                                (4.14)   

[ ] ( )[ ] [ ],C RG U CλΦ =                                                 (4.15)   

where: 

 ( )[ ] [ ] [ ][ ] [ ]( ) 11 11 11 * * *,K R R R R R RU λ λ λ
−− −− −−      Φ = − Φ Φ Φ − Φ Φ            (4.16) 

 ( )[ ] [ ] [ ][ ][ ]( ) 111 1 * * *,M R R R R R RU λ λ λ
−−− −      Φ = Φ Φ Φ − Φ Φ                      (4.17) 

( )[ ] ( )[ ] [ ][ ] [ ]

[ ] ( )[ ]

12

2 1* * *

, , [

] ,

C R M R R R

R R R M R

U U

U

λ λ λ

λ λ

−

−

Φ = − Φ ⋅ Φ Φ

     − Φ Φ ⋅ Φ Φ     

…
               (4.18) 

The unknowns in Equations (4.13)-(4.15) are the spatial property matrices and the 

matrix [ ]G . The matrices ( )[ ],K RU λΦ , ( )[ ],M RU λΦ  and ( )[ ],C RU λΦ  are functions 

of the known eigenvalues and  right eigenvectors only. 

The left eigenvectors may be computed directly from [ ]G  using Equation (4.12). For 

this reason, the next steps of the computation procedure will focus on determining the 

elements of [ ]G . 

In order to determine the elements of [ ]G , it is first necessary to eliminate the spatial 

property matrices from Equations (4.13)-(4.15). This will be achieved using the 

symmetry of the mass matrix and/or the partial symmetry of the damping and stiffness 

matrices. 



63 

Taking account of the fact that the mass matrix is symmetric, Equation (4.14) can be 

used to establish the following expression: 

 [ ] ( )[ ] ( )[ ] [ ], , T T
M R M RG U U Gλ λΦ = Φ                              (4.19) 

Similar expressions can be obtained for the stiffness and damping matrices by 

implementing the symmetry selection matrices, [ ]KI  and [ ]CI , in Equations (4.13) and  

(4.15), respectively: 

[ ] ( )[ ][ ] ( )[ ] [ ] [ ], , T T
K R K K R KG U I U G Iλ λΦ = Φ                     (4.20) 

[ ] ( )[ ][ ] ( )[ ] [ ] [ ], , T T
C R C C R CG U I U G Iλ λΦ = Φ                      (4.21) 

Equations (4.19)-(4.21) do not involve the spatial property matrices, and hence they 

express relationships exclusively between the modal parameters. These equations may 

be used together with the known eigenvalues and right eigenvectors to determine the 

elements of [ ]G . However, it must be noted that the solution to the system formed by 

the three matrix equations is not unique, since any solution matrix may be multiplied by 

an arbitrary constant to yield another solution. 

To obtain a complete system of equations with a unique solution, a normalisation 

equation based on the measured column of the FRF matrix may be implemented. The 

way in which this is done will be discussed in the following Sections. 

4.5.2   Normalisation equation 

Every element of the FRF matrix is related to the normalised right and left eigenvectors 

in accordance with Equation (3.31). It has been mentioned that after one column of the 

FRF matrix has been measured, it is possible to determine one element of each 
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normalised left eigenvector, in addition to the right eigenvectors and eigenvalues. This 

means that not only [ ]λ , [ ]RΦ , but also one row of [ ]LΦ  may be determined from one 

column of the FRF matrix. 

4.5.2.1   Modal parameter estimation  

Standard modal analysis algorithms may be used to express an FRF as a superposition 

of several response components, each of which is associated with an individual mode. 

Each component requires two parameters to be determined: a modal constant, Ar jk , and 

an eigenvalue,λr , for the mode associated with it. Conventional modal analysis 

methods are based on the following representation of the FRF: 

 ( )

*

*
1

N A A
i i

α ω
ω λ ω λ=

  = +  − −  
∑ r rjk jk

jk
r rr

                                (4.22) 

A modal constant is associated with a particular mode, identified by the subscript r , 

and to specific response measurement and excitation locations, denoted by the 

subscripts j  and k , respectively. The relationship between a modal constant and the 

corresponding elements of the normalised eigenvectors is: 

 ( ) ( )R LA = Φ Φr jk k rj r                                               (4.23) 

After one column of the FRF matrix is measured, say the 0k th column, it is possible to 

determine the modal constants corresponding to that column. This means that the modal 

constants given by: 

 ( ) ( )R LA = Φ Φ
0 0r jk k rj r                                              (4.24) 
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are known for all r  and j . 

Identification of a modal constant does not enable the individual determination of the 

right and left eigenvector elements. However, since an identified modal constant fixes 

the value of the product of two of these elements, one of them can be arbitrarily chosen 

and the other one determined through Equation (4.24). 

A relatively easy way to normalise the eigenvectors is to give a unit value to the 0k th 

element of each left eigenvector: 

( ) 1LΦ = ∀
0k r r                                         (4.25) 

In this way, Equation (4.24) may be used to relate the right eigenvectors with the 

identified modal constants, as: 

( )R AΦ = ∀
0r jkj r r                                         (4.26) 

Since the modal constants are determined directly from the measured data, then the 

normalised right eigenvectors are automatically identified. 

It is important to note that only one element of each left eigenvector may be assigned an 

arbitrary unit value. In this case, these were the 0k th elements of each of the vectors. If 

more columns of the FRF matrix are measured, additional elements of the left 

eigenvectors should be determined using Equation (4.24) together with the already 

known right eigenvectors. 
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4.5.2.2   Derivation of the normalisation equation 

The normalisation procedure described in the preceding section yields one complete 

row of the left eigenvector matrix which may be used in the computation of the matrix 

[ ]G  defined in section 4.5.1.2. 

If Equation (4.12) is rearranged in the following way: 

[ ][ ] [ ]T
L N NG I ×Φ =                                           (4.27) 

then the elements of a known row of [ ]LΦ , say the 0k th row, which are numerically 

identical to the 0k th column-vector of the matrix [ ]TLΦ ,  [ ]{ }TLΦ
0k

, can be used to 

establish the following equation in the unknown matrix [ ]G : 

 [ ] [ ]{ } { }T
L GG iΦ =

0k
                                        (4.28) 

where the 0k th element of the vector { }Gi  has unit value and the remaining elements 

are zeros. 

Equation (4.28) will be referred to as the normalisation equation. This equation can be 

expanded if more rows of the left eigenvectors are known. For example, if rows 0k , 1k , 

2k , … , etc. of the normalised left eigenvectors matrix are determined, then their 

transposes may be arranged to form the columns of a matrix, [ ]GΦ , defined as: 

 [ ] [ ]{ } [ ]{ } [ ]{ }, , ,T T T
G L L L

 Φ = Φ Φ Φ  …
0 1 2k k k

                          (4.29) 

Similarly, a matrix, [ ]GI , may be formed with columns 0k , 1k , 2k , … , etc. of an 

N N×  identity matrix, [ ]N NI × , so that Equation (4.28) may be rewritten as: 

[ ][ ] [ ]G GG IΦ =                                                (4.30) 
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If q  is the number of known rows of the left eigenvector matrix and N  is the number of 

DOFs of the system, then [ ]G  has dimensions N N× , while [ ]GI  and [ ]GΦ  have 

dimensions N q× . 

4.6   Computation of the left eigenvectors 

In the previous Section, the symmetry or partial symmetry of the spatial property 

matrices, as well as the measured FRF data, were incorporated into the relationships 

between the spatial and the modal models derived in Chapter 3. As a result of this, 

Equations (4.19)-(4.21) and (4.30) were obtained. Using these equations, it is possible 

to compute the unknown matrix [ ]G , from which the left eigenvectors may be directly 

determined, as was discussed in Section 4.5.1.2. In this Section, a procedure for the 

computation is presented. 

Equations (4.19)-(4.21) and (4.30) may all be expressed in the following general form: 

 [ ][ ] [ ][ ] [ ] [ ]TG U V G W B+ =                                   (4.31) 

However, in order to determine the unknown elements of the matrix [ ]G  from these 

equations it is first necessary to transform them into a simpler form, so that they can be 

treated using a conventional method of solution. We will refer to this simpler form as 

the ‘canonical form’ of the equations [4], which is defined as: 

 [ ]{ } { }A y b=                                                (4.32) 

where the dimensions of the coefficients matrix,[ ]A , and the vectors { }y  and { }b  are, 

respectively, ×m n , 1×n  and 1×m . In order to transform Equations (4.19)-(4.21) 

and (4.30) from the general form given in Equation (4.31) to their canonical forms 
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expressed by Equation (4.32), we will make use of the Kronecker product, which is 

defined in the next Subsection.  

4.6.1   The Kronecker product 

Definition: 

Let [ ]A  and [ ]B  be two rectangular matrices with dimensions ×m n  and ×p q , 

respectively. The Kronecker product of these two matrices is then [4]: 

 [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

11 12 1

21 22 2

1 2

a B a B a B

a B a B a B
A B

a B a B a B

 
 
 
 ⊗ =  
 
 
  

"

"

# # #

"

n

n

m m m n

                            (4.33) 

The resulting product matrix has dimensions ×m p n q . 

4.6.2   Transformation of matrix equations into canonical form 

To derive the canonical form of the general form equation (4.31) it is first necessary to 

express both [ ]G  and [ ]B  in vectorised form. This is achieved by creating a column 

vector consisting of the columns of the original matrix placed successively one below 

the other. For example, if we define [ ]G  in terms of its column vectors as: 

 [ ] { } { } { }[ ]1 2 3, , ,G g g g= …                                  (4.34) 

then its vectorised form will be: 
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{ }

{ }

{ }

{ }

1

2

3

g

g
g

g

       =         #

                                                (4.35) 

A similar expression may be defined for the vectorised form of matrix [ ]B . 

If the dimensions of [ ]G and [ ]V  in Equation (4.31) are N N× , and those of [ ]U , [ ]W  

and [ ]B  are N × p , then use of the Kronecker product allows the transformation of  

Equation (4.31) into its canonical form, given by: 

 ( ) ( ) [ ] { } { }2 2
T T

N N N NU I W V P g b× ×
 ⊗ + ⊗ ⋅ =                       (4.36) 

in which { }g  and { }b  are the vectorised forms of matrices [ ]G  and [ ]B , respectively, 

and the matrix [ ] 2 2N NP ×  is a permutation matrix that transforms the vectorised form of 

an N N×  matrix into the vectorised form of its transpose; i.e. if { }g  represents the 

vectorised form of matrix [ ]G  and { }Tg represents the vectorised form of [ ]TG , then 

the following relationship holds: 

 [ ] { } { }2 2 TN NP g g× ⋅ =                                       (4.37) 

The permutation matrix is used to express the unknown elements of the matrices [ ]G  

and [ ]TG  using a single vectorised form. Finding the solution of Equation (4.36) then 

requires determining the elements of a single vector, { }g . 
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4.6.3   Canonical form of the equations for the computation of the left 

eigenvectors 

Using the template of Equation (4.36), with the following conditions: 

 [ ] ( )[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ], ; ; ; 0T
M R M M N NU U U V U W I Bλ ×= Φ = = − = =      (4.38) 

then Equation (4.19) may be rewritten in its canonical form as: 

 [ ] [ ]( ) [ ] [ ]( ) [ ] { } { }2 2 0T T
M MN N N N N NU I I U P g× × × ⊗ − ⊗ ⋅ =          (4.39) 

where the N N×  matrix [ ]MU  is a function of the right eigenvectors and the 

eigenvalues, the 2 1N ×  vector { }g is the vectorised form of matrix [ ]G , and { }0  is a 

column vector of zeros of dimensions 2 1N × . 

The canonical forms of Equations (4.20) and (4.21) are, respectively: 

[ ] [ ]( ) [ ] [ ]( ) [ ] { } { }2 2 0T T T
K K K KN N N NU I I I U P g× × ⋅ ⊗ − ⊗ ⋅ =          (4.40) 

[ ] [ ]( ) [ ] [ ]( ) [ ] { } { }2 2 0T T T
C C C CN N N NU I I I U P g× × ⋅ ⊗ − ⊗ ⋅ =          (4.41) 

where the N N×  matrices [ ]KU  and [ ]CU  are functions of the eigenvalues and right 

eigenvectors, and { }g  and { }0  are as defined for Equation (4.39). 

Finally, the canonical form of Equation (4.30) is: 

 [ ] [ ]( ){ } { }T
G GN NI g i×Φ ⊗ =                                    (4.42) 

where { }Gi  is the vectorised form of theN q×  matrix [ ]GI  defined in Section 4.5.2.2. 
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Equations (4.39)-(4.42) can be merged into a single canonical-form equation, so that 

conventional solution methods may be applied to determine the elements of { }g . This 

vector would then be used to reconstruct [ ]G , so that the matrix of left eigenvectors can 

be determined. 

The merger of Equations (4.39)-(4.42) leads to the following expression: 

 [ ] { }

{ }

{ }

{ }

{ }

0

0

0G

G

A g

i

       ⋅ =         

                                               (4.43) 

where: 
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 
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 
 =  
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 
 Φ ⊗  
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""""""""""""""""""""

""""""""""""""""""""

         (4.44) 

In this equation, the matrix of coefficients, [ ]GA , is formed by: (a) functions of the 

eigenvalues and right eigenvectors, (b) independently defined matrices, such as the 

permutation and identity matrices, and (c) known elements of the left eigenvectors, 

obtained from the measured row element(s) of the FRF matrix. On the other hand, the 

right hand side of the equation consists of zeros or known columns of the identity 

matrix. 
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In its canonical form, the system of equations (4.43) can be solved for the unknown 

elements of { }g through a variety of methods. For example, if the matrix of coefficients 

is represented as [ ]GA  and the vector on the right-hand side of the same equation is 

represented as { }b , then a solution of the following form may be obtained for the 

vector { }g  using the Moore-Penrose pseudo-inverse method [3]: 

 { } [ ] [ ] [ ] { }
1T T

G G Gg A A A b
− =                                            (4.45) 

The conditions for the solution to be unique are discussed in the next Section. 

4.6.4   Conditions for the existence of a unique solution 

For a physical system with N  DOFs, Equation (4.43) involves 2N unknowns, which 

are the elements of { }g . For the solution to this linear system of equations to be 

unique, at least 2N  of the individual equations that constitute it must be linearly 

independent. To determine in which cases this condition is satisfied, we shall first 

consider the total number of equations that can be obtained. This number depends on 

the following parameters: 

a) the number of DOFs of the system, 

b) the number of DOFs associated with the asymmetric regions of the damping and 

stiffness matrices, and 

c) the number of measured columns of the FRF matrix. 
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4.6.4.1   Total number of equations  

The individual equations that constitute the system defined in (4.43), and which 

correspond to the first three blocks of the matrix [ ]GA , are obtained using the symmetry 

or partial symmetry of the mass, stiffness and damping matrices, respectively. Those 

corresponding to the fourth block are associated with the relationship between the 

matrix [ ]G  and the left eigenvector elements determined through measurements of 

FRFs on different columns of the FRF matrix. The case of the symmetry relationships 

will be analysed first. 

A symmetric matrix of dimensions N N×  has 2N  elements, out of which only 

( )1 /2N N +  need to be specified to completely define the matrix. These can be, for 

example, the elements along and above the main diagonal. The remaining 

( )1 /2N N −  elements may be determined by an equal number of symmetry 

relationships between them and the already defined ones. These relationships equate an 

element on one side of the main diagonal to its symmetric counterpart on the opposite 

side. For example, let [ ]A  be a symmetric matrix. Then the symmetry relationships 

between its elements are defined by the equations: 

 , 1 , 1 1a a N= ≤ ≤ ≤ ≤ −jk k j j k j                           (4.46) 

where a jk  represents the element on the j th row and the k th column of [ ]A . 

Following this symmetry approach, the number of equations, mp , that can be obtained 

from the mass matrix of a system with N  DOFs is then: 

 
( )1
2m

N Np −=                                                  (4.47) 
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These equations correspond to the first block of [ ]GA . The number of equations 

associated with this block is larger for systems with a large number of DOFs than for 

smaller order systems. 

Additional equations may be obtained by treating the stiffness and damping matrices in 

a similar fashion. However, attention must be paid to the fact that these matrices may 

have asymmetric portions, the elements within which cannot be used to derive 

symmetric relationships like those defined above. 

The number of equations that can be established for the stiffness and damping matrices 

depends on the order of the system, as well as on the extent of their asymmetric portions 

If these portions are associated with kn  and cn  DOFs, respectively, then the number of 

equations that can be obtained through symmetry relationships are: 

( ) ( )1 1
2 2

k k
k
N N n np − −= −                                          (4.48) 

for the stiffness matrix, and: 

( ) ( )1 1
2 2

c c
c
N N n np − −= −                                          (4.49) 

for the damping matrix. These equations are associated with the second and third blocks 

of [ ]GA , respectively. The number of equations that constitute these blocks is large for 

large order systems in which only a few of the DOFs are associated with the asymmetric 

portions of their stiffness and damping matrices. 

The fourth block of [ ]GA  corresponds to the relationships that exist between elements 

of matrix [ ]G  and the elements of the left eigenvectors obtained from measured row 

elements of the FRF matrix. If q  different columns of the FRF matrix are measured, 
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then an equal number of elements of each left eigenvector can be directly determined 

and the number of equations of  (4.43) associated with the fourth block of [ ]GA is: 

 gp q N= ⋅                                                       (4.50) 

As more columns of the FRF matrix are measured, the number of equations in this 

block grows. 

The total number of equations involved in matrix Equation (4.43) is given by the 

expression: 

 
( ) ( ) ( )

3 1 11 1 1
2 2 2

total m k c g

K K C C

p p p p p

N N n n n n q N

= + + +

= − − − − − + ⋅
       (4.51) 

As was mentioned earlier, the existence of a unique solution to (4.43) requires that the 

number of unknowns, 2N , be equal to, or less than, the number of linearly independent 

equations, 
. .l i
p , which, in general, is smaller than the total number of equations, totalp . 

Hence, the following necessary, but not sufficient, condition for the existence of a 

unique solution to (4.43) may be established: 

 
. .

2
l itotalp p N≥ =                                                       (4.52) 

This expression may be used to detect whether the number of measured row elements of 

the FRF matrix is insufficient to obtain a unique solution to (4.43), but it should not be 

used to determine whether it is sufficient. For this, it should be considered that enough 

measurements would lead to a sufficient number of linearly independent equations in 

(4.43). Thus, the criteria used to determine whether enough measurements have been 

carried out should not be based on the total number of equations produced, but on the 
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number of those that are linearly independent. In the following Section, the derivation 

of such criteria is presented. 

4.6.4.2   Required number of measurements 

The number of linearly independent equations that may be obtained from matrix 

Equation (4.43) can be determined by calculating the rank of its coefficients matrix, 

[ ]GA . Although the complexity of such a matrix complicates the analytical derivation 

of its rank, an inductive derivation based on various numerical examples was obtained. 

4.6.4.2.1   Description of the trial system models 

Trial systems were used to determine the number of row elements, q , of the FRF matrix 

that need to be measured in order to allow obtaining a unique solution to Equation 

(4.43). This number is affected by three parameters: the number of DOFs associated 

with the asymmetric portions of the stiffness and damping matrices, kn  and cn , 

respectively, and the total number of DOFs of the physical system, N . 

The trial models consisted of the three spatial property matrices, formulated so that their 

dimensions and those of their asymmetric portions corresponded the desired values of 

N , kn  and cn . 

The elements of the property matrices were computed systematically for the following 

parameter ranges: 

2 25N≤ ≤                                                    (4.53) 

0 kn N≤ ≤                                                    (4.54) 

0 cn N≤ ≤                                                    (4.55) 
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4.6.4.2.2   Use of the trial system models  

After calculating the spatial matrices, all the modal parameters of the system were 

determined using a commercial eigensolver (MATLAB function ‘EIG’). 

The eigenvectors were normalised afterwards, following the criteria given in Section 

4.5.2.1. With information from the right eigenvectors and the eigenvalues, and also 

different numbers of elements of the left eigenvector, according to the parameter q , the 

matrix of coefficients of Equation (4.43) was computed. Afterwards, its rank was 

determined using the MATLAB function ‘RANK’ and the condition estimator 

‘RCOND’. For every example, the minimum value of q  required for the rank of the 

coefficients matrix, [ ]GA , to be equal to 2N  was determined. 

In Appendix A, the results obtained for systems with 15 DOFs are presented and 

discussed. 

The following requirements for the computation of the left eigenvectors were 

determined by correlating the parameters N , kn  and cn  with the number of required 

FRF row elements, q , from the examples that were solved: 

 1q ≥                                                                              (4.56) 

 2 2 1c kq n n N≥ + − +                                                (4.57) 

 ( ) ( )max , 2 min ,c k c kq n n N n n ≥ − −                     (4.58) 

In Equation (4.58), ( )max ,c kn n  and ( )min ,c kn n  denote the largest and the smallest, 

respectively, of the two parameters cn  and kn . The sought value of the parameter q  

was that which simultaneously satisfied the three inequalities given above, and thus 

ensured that enough linearly independent equations were available to compute the left 

eigenvectors through Equation (4.43). 
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4.7   Two special cases 

Equations (4.56)-(4.58) may be used to derive the number of elements from a row of the 

FRF that must be measured to determine the left eigenvectors for two cases of practical 

importance: 

Case 1. If either the damping or the stiffness matrices are symmetric ( 0cn =  or 

0kn = ), only one column of the FRF matrix is required to determine all the left 

eigenvectors. Included in this category are, for example, damped gyroscopic systems, in 

which only the damping matrix is asymmetric due to the effects of gyroscopic moments. 

These systems will be studied in more detail in the next Section. 

Case 2. If the asymmetric components of the damping and stiffness matrices have the 

same order ( c kn n n= = ) then the required number of elements of the FRF matrix is: 

 3 2q n N= −                                                   (4.59) 

Using this equation, it can be deduced that if: 

 2 1
3
Nn +≤                                                    (4.60) 

then only one column of the FRF matrix needs to be measured in order to compute the 

left eigenvectors. 

This case is especially important in situations where it may be possible to predict the 

DOFs at which circulatory forces originate, although no information may be possessed 

about the type of these forces, i.e. whether they are proportional to the velocities or to 

the displacements of the system. In these situations, Equation (4.59) may lead to an 

overestimation of the number of required measurements, but this overestimation 
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compensates for the lack of knowledge about the characteristics of the circulatory forces 

that affect the system. 

Using Equation (4.59) it is also possible to deduce that if the asymmetric regions of 

both the damping and stiffness matrices are associated with all the DOFs of the system 

under consideration, then computation of the left eigenvectors requires FRF 

measurements from a complete row of the FRF matrix. That is, if n N=  in Equation 

(4.59) then: 

3 2q n N N= − =                                                       (4.61) 

4.8   Damped gyroscopic systems 

Gyroscopic moments arise when a body rotates around an axis that does not maintain a 

constant spatial orientation, but on the contrary undergoes transversal angular motions. 

This type of motion is especially common in rotating machinery, since most of the 

rotating components are mounted onto shafts that are not rigidly fixed in space, but 

quite contrarily undergo translational and angular displacements when the machine 

vibrates. Specifically, the angular displacements of the shaft cause the axes of rotation 

of the other elements to tilt, thus originating the gyroscopic moments. 

Several attempts have been made to characterise the dynamics of damped and 

undamped gyroscopic systems, and specifically to develop methods for determining the 

left eigenvectors. However, to the best knowledge of the author, analytical tools for the 

prediction of these modal parameters only exist for the undamped case. 

In this Section, an analytical technique is presented by means of which the left 

eigenvectors of damped gyroscopic systems may be determined using the right 
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eigenvectors and the eigenvalues of the physical systems. The technique is based on 

Equations (4.19)-(4.21) and (4.30). 

For the class of damped gyroscopic systems that will be analysed here, the mass and 

stiffness matrices are considered to be symmetric and the damping matrix is considered 

to be asymmetric due to the combination of true damping and gyroscopic forces. The 

extreme case in which the asymmetry of this matrix is associated with all the DOFs of 

the system will be considered. 

If the stiffness matrix is symmetric, then [ ]KI  in Equation (4.20) is an identity matrix, 

so the equation may be rewritten as: 

[ ][ ] [ ] [ ]T T
K KG U U G=                                            (4.62) 

where [ ]KU  is a function of the right eigenvectors and eigenvalues of the system. If the 

matrix [ ]TG  is eliminated using Equations (4.19) and (4.62), then the following 

expression can be obtained: 

 [ ][ ] [ ] [ ] [ ]( ) [ ]1 11 T
M K K MU U G U U G− −−=                              (4.63) 

This expression may be used to derive the elements of the matrix [ ]G , although for this 

the products [ ][ ]( )1M KU U −  and [ ] [ ]( )1 T
K MU U−  may be more conveniently 

expressed in terms of their eigenvalues and right eigenvectors as: 

[ ][ ]
11

M K MK MK MKU U λ
−−      = Ψ Ψ                                               (4.64) 

 [ ] [ ]( ) 11 T
K M KM KM KMU U λ

−−      = Ψ Ψ                                               (4.65) 
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Through algebraic manipulation of these two equations, it may be shown that the 

diagonal matrix KMλ 
    is the matrix of eigenvalues of the diagonal matrix MKλ 

   , i.e.:  

 [ ] [ ][ ] [ ] [ ][ ]1 1T T
MK MK K KM MK K KM KMU Uλ λ− − − −      ⋅ Ψ Ψ = Ψ Ψ ⋅               (4.66) 

This means that both matrices are identical: 

 MK KMλ λ   ≡                                                           (4.67) 

With this consideration, it can be deduced that the product [ ] [ ][ ]1
KM MKG−Ψ Ψ  results 

in a diagonal matrix, and hence the following expression can be established: 

 [ ] [ ][ ][ ] 1KM MKG D −= Ψ Ψ                                        (4.68) 

where [ ]D  is a diagonal matrix to be determined from one measured column of the FRF 

matrix. This column may be the same from which the right eigenvectors and 

eigenvalues of the system were derived. Assuming that the 0k th column of the FRF 

matrix was measured, then Equation (4.28) may be used together with Equation (4.68) 

to derive the following expression: 

 [ ] { } { }1 1
MK G KM GD i

− −   Ψ Φ = Ψ      0 0k k
                                   (4.69) 

where { }Gi
0k

 is the 0k th column of an N N×  identity matrix and { }GΦ
0k

 is a vector 

formed by the 0k th elements of each left eigenvector of the physical system, which can 

be determined from the measured FRFs. 

Using Equation (4.69), the non-zero elements of the diagonal matrix [ ]D  can be 

computed from: 

 
[ ] { }{ }
[ ] { }{ }

1

1
; 1

KM G

MK G

i
d N

−

−

Ψ ⋅
= ≤ ≤

Ψ ⋅ Φ
0

0

k k
kk

k k

k                    (4.70) 
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Using this equation together with Equation (4.68), the matrix [ ]G  can be determined. 

Alternatively, the same two equations may be used to derive the following expression 

for the direct computation of the left eigenvectors: 

 [ ] [ ] [ ] [ ]1T T
L KM MKD− −Φ = Ψ Ψ                                      (4.71) 

where [ ]MKΨ , [ ]KMΨ  and [ ]D  are defined in (4.64), (4.65) and (4.70), respectively. 

The procedure that has just been described allows the determination of the left 

eigenvectors of a system with symmetric mass and stiffness matrices and asymmetric 

damping matrix. A similar procedure may be followed when the mass and damping 

matrices are symmetric but the stiffness matrix is asymmetric. However, this would 

require using [ ]CU  instead of [ ]KU  in Equation (4.62). 

4.9   Use of the characterisation method 

The basic steps for the use of the characterisation method that has been presented in this 

Chapter are given below. These steps serve only as a guideline, as it may be necessary 

to consider other practical issues for specific applications: 

(a) If dealing with a continuous system, establish the frequency range of interest and 

the DOFs for the measurement of the response. This may be based on the results 

of exploratory measurements or on computer models of the system being 

studied. 

(b) Determine the number of DOFs that are related to the asymmetric portions of the 

damping and stiffness matrices, according to the mechanical elements with 

which they are associated and to the type of circulatory force, i.e. displacement- 

or velocity-dependent, that may originate on them. For example, it would be 
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reasonable to consider that the asymmetric portion of the damping matrix would 

contain those DOFs that lie on rotating components with high rotational 

moments of inertia, as they are likely to give rise to gyroscopic forces, which are 

velocity-dependent. 

(c) Compute the number of row elements of the FRFs required. This may be 

achieved through the inequalities given in Section 4.6.4.2.2. 

(d) Measure the FRFs associated with one column plus the required number of row 

elements of the FRF matrix of the rotating machine structure. 

(e) Determine the eigenvalues and normalised right eigenvectors from the measured 

data, as well as the element(s) of the normalised left eigenvectors associated 

with the measured row elements of the FRF matrix. 

(f) Establish a linear system of equations for the computation of the remaining 

elements of the left eigenvectors and solve the system. 

In the next Chapter, the application of the methods described here is illustrated using 

one numerical model and an industrial test-rig. 
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CHAPTER 5 

Case studies 

5.1   Introduction 

The case studies used in this Chapter illustrate the application of the characterisation 

method presented in Chapter 4. For brevity, this method will be referred to as the 

“predictive method”, since it is used to predict the left eigenvectors of a system, instead 

of deriving them directly from measurements. 

The first case study was carried out on a numerical model of a 4-DOF rigid rotor. The 

starting point for the characterisation of the rotor was a set of numerically-simulated 

FRF ‘measurements’. In order to evaluate the performance of the predictive 

characterisation method under idealised conditions, these simulated measurements were 

considered to be free of noise. It is shown that the method performs well with noise-free 

data, but also that small errors in the modal analysis of ‘measured’ FRFs affect the 

accuracy with which the left eigenvectors can be predicted. 

This case study demonstrates that it is possible to fully characterise a dynamic system 

without the need to measure a full row of its FRF matrix. 

The second case study was performed on an industrial test structure, called the 

“windmill test-rig”. Its dynamic characterisation was carried out using the same method 

as in the previous case, with the exception that the data used in this second case study 

was obtained by experiments. On this occasion, the objective was to evaluate the 

performance of the predictive method in a case where (a) the system under 

consideration is continuous and hence possesses an infinite number of DOFs, and (b) 



85 

the measured response data are considerably affected by noise. The effect of having 

close modes on the accuracy of the method, and the selection of an optimal set of DOFs 

to perform the characterisation, are also explored in this second case study. 

The accuracy of the characterisation via the predictive method depends on the quality of 

the measured FRF data. The presence of measurement noise usually has adverse effects 

on the outcome of modal analysis. These effects are accentuated in cases where the 

system under consideration has two or more close modes. In this case study the 

performance of the predictive method under this condition was evaluated. 

It is shown that the predicted left eigenvectors can be used to make accurate estimations 

of the response of the system to excitation forces applied at locations different to those 

used for the measurements. One of the practical applications of this feature is that it 

allows us to determine the response that would ensue due to an excitation applied onto a 

rotating component, without the need to perform the measurement in practice. 

5.2   Case study 1: numerical model of a 4-DOF rigid rotor 

The rotor used in this first case study is illustrated in Figure 5.1. It consists of a rigid 

shaft with rigid disks firmly attached at its two ends. The disks are mounted on flexible 

and damped supports, as shown in the Figure.  The density of the rotor is considered to 

be that of steel, and its speed of rotation is 3000 rev/min in a clockwise (CW) sense, as 

viewed from its right end. 

The left support is anisotropic, but its cross-stiffness characteristic is symmetric with 

respect to the orthogonal coordinate system defined by the 1x  and 2x  axes. The 

stiffness matrix associated with this support is: 
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Figure 5.1 - 4-DOF rigid rotor 
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                                (5.1) 

The right support has an asymmetric cross-stiffness characteristic, which emulates that 

of a hydrodynamic bearing.  Its stiffness matrix with respect to the orthogonal 

coordinate system defined by the 3x  and 4x  axes is: 

[ ] 5
1.100 0.124

10
0.076 1.100B

NK
m

 
 = × 
 

                               (5.2) 

When the rotor spins, gyroscopic forces arise due to the combined effects of the large 

angular momentum of the disks about their spin axis and the angular precession of this 
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axis. These effects introduce a skew-symmetric component into the damping matrix of 

the system. 

The DOFs used for the analysis will be those associated with the motion of the rotor 

along the axes 1x , 2x , 3x  and 4x  defined in Figure 5.1. The mass, damping and 

stiffness matrices corresponding to these DOFs are, respectively: 

 [ ]

5.161 0 0.720 0
0 5.161 0 0.720

0.720 0 5.161 0
0 0.720 0 5.161

M Kg

 
 
 =
 
 
 

                             (5.3) 
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m s

− 
 − =
 −
 − 

           (5.4) 

 [ ] 5
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0.100 1.100 0 0

10
0 0 1.100 0.124
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NK
m

 
 
 = ×
 
 
 

                       (5.5) 

 

The dimension of the system is 4N = . From Equations (5.4) and (5.5) it can be seen 

that the number of DOFs involved in the asymmetric portions of the damping and 

stiffness matrices, which appear enclosed in dashed-line rectangles, are, respectively, 

4cn = and 2kn = . The mass matrix is symmetric, consistent with the assumptions of 

the predictive characterisation method. 

The procedure to determine the left eigenvectors of the system using simulated FRF 

measurements will now be demonstrated. 
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5.2.1   Required FRFs 

In accordance with Equations (4.56)-(4.58), which are restated here as (5.6)-(5.8) with 

the values of the parameters cn  and kn  given in the previous Subsection, the full 

characterisation of the system requires measuring a full column of the FRF matrix and a 

minimum of two elements from one of its rows. The fulfilment of this requirement 

makes it possible to satisfy the following three inequalities simultaneously: 

 1q ≥                                                                                            (5.6) 

 2 2 1 1.4721c kq n n N≥ + − + =                                             (5.7) 

 ( ) ( )max , 2 min , 0c k c kq n n N n n ≥ − − =                           (5.8) 

The accelerance FRFs corresponding to the first column of the FRF matrix, plus an 

additional FRF from the first row are presented in Figure 5.2. We will refer to these as 

the ‘measured’ FRFs, since they will play exactly the same role as true measured FRFs 

would in the characterisation of a real system. 
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Figure 5.2 – FRFs of a 4-DOF rigid rotor 
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5.2.2   Modal analysis of the FRF data 

A set of natural frequencies, damping factors and modal constants for the system may 

be determined through modal analysis of the ‘measured’ FRFs. For this case study, the 

ICATS1 modal analysis software was used. Table 5.1 presents the values of the natural 

frequencies and damping factors obtained using a least-squares line-fit method on the 

‘measured’ data. The estimated modal constants for the complete set of ‘measured’ 

FRFs are given in Table 5.2. 

Table 5.1 – Estimated natural frequencies and hysteretic damping factors 

MODE, r ωr  (Hz) ηr  

1 20.7650         0.0065 

2 22.7429         0.0059 

3 23.7181         0.0133 

4 26.3260 0.0017 

Table 5.2 – Estimated modal constants for a hysteretic damping model 

FRF MODE 1 MODE 2 MODE 3 MODE 4 
2

11ω α−  
2

21ω α−  
2

31ω α−  
2

41ω α−  

   0.0063 - 0.1638i 

  -0.0019 + 0.1546i 

   0.0044 - 0.1725i 

   0.0000 + 0.1448i 

   0.0043 - 0.1478i 

   0.0075 - 0.0965i 

  -0.0014 - 0.1102i 

   0.0020 - 0.1320i 

  -0.0079 - 0.1851i 

   0.0714 + 0.1175i 

  -0.0088 + 0.1519i 

  -0.0797 - 0.1514i 

  -0.0005 - 0.1736i 

  -0.0792 - 0.1433i 

   0.0045 + 0.1786i 

   0.0798 + 0.1357i 

2
12ω α−  -0.0460 - 0.0005i 0.0631 + 0.0021i -0.0689 - 0.0304i 0.0516 + 0.0320i 

 

In order to predict the left eigenvectors it is important to note that the estimated modal 

constants correspond to a hysteretically-damped system model, whereas the predictive 

method was developed for viscously damped systems. Hence, it is necessary to 

determine a set of modal parameters that are consistent with a viscously-damped system 

model, before an the estimation of the left eigenvectors through this method can be 

carried out. 

                                                 
1 Imperial College Analysis and Testing Software 
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If the hysteretical and viscous damping factors are considered constant and equal to 

their values at the resonance, then the damped natural frequencies, rω , critical damping 

ratios, rζ , and complex eigenvalues, rλ , corresponding to a viscously-damped system 

model are related to the natural frequencies, rω , and damping factors, rη , of its 

hysteretically-damped equivalent through the following expressions: 

2

1
4
r

r r
ηω ω= −                                                 (5.9) 

 
2

r
r

ηζ =                                                             (5.10) 

 
2

1
2 4

r r r
r r r r ri iη ω ηλ ζ ω ω ω= − + = − + −                           (5.11) 

The natural frequencies, critical damping ratios and complex eigenvalues for a viscously 

damped system model that are equivalent to those presented in Table 5.1 are given in 

Table 5.3. 

Table 5.3 – Estimated natural frequencies and critical viscous damping ratios 

MODE, r rω  (Hz) rζ  rλ  (rad/s) 

1 20.7649 0.0033 -0.4255 + 130.47i 

2 22.7428 0.0029 -0.4185 + 142.90i 

3 23.7176 0.0066  -0.9889 + 149.02i 

4 26.3260 0.0008  -0.1406 + 165.41i 

The manner in which the modal constants for a viscously damped system model are 

determined from a hysteretically-damped equivalent is described in Appendix B. In 

order to provide a reference to assess the accuracy with which these parameters were 

estimated, the exact values of the modal constants were computed directly from the 

spatial property matrices given in Equations (5.3)-(5.5). The estimated modal constants 
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for the viscously damping system model are then compared with their exact values in 

Table 5.4. The ‘ERROR’ column expresses the differences between the magnitudes of 

the exact and the estimated modal constants as a percentage of the magnitudes of their 

exact values. 

Table 5.4 – Comparison of modal constants 310× , for a viscous damping model 

MODE FRF EXACT ESTIMATED ERROR % 
2

11ω α−  
2

21ω α−  
2

31ω α−  
2

41ω α−  

0.0060 - 0.1649i 

-0.0015 + 0.1544i 

0.0041 - 0.1724i 

0.0002 + 0.1441i

0.0063 - 0.1638i 

-0.0019 + 0.1546i 

0.0044 - 0.1725i 

0.0000 + 0.1448i

0.6910 

0.2896 

0.1834 

0.5052 
1 

2
12ω α−  -0.0019 + 0.1763i -0.0019 + 0.1763i 0.0000 

2
11ω α−  

2
21ω α−  

2
31ω α−  

2
41ω α−  

0.0031 - 0.1471i 

0.0081 - 0.0973i 

-0.0018 - 0.1110i 

0.0003 - 0.1311i

0.0043 - 0.1478i 

0.0075 - 0.0965i 

-0.0014 - 0.1102i 

0.0020 - 0.1320i

0.9442 

1.0242 

0.8057 

1.4672 
2 

2
12ω α−  0.0047 - 0.2218i 0.0073 - 0.2208i 1.2557 

2
11ω α−  

2
21ω α−  

2
31ω α−  

2
41ω α−  

-0.0087 - 0.1851i 

0.0724 + 0.1166i 

-0.0067 + 0.1518i 

-0.0802 - 0.1505i

-0.0079 - 0.1851i 

0.0714 + 0.1175i 

-0.0088 + 0.1519i 

-0.0797 - 0.1514i

0.4317 

0.9802 

1.3836 

0.6037 
3 

2
12ω α−  -0.0997 + 0.2319i -0.1020 + 0.2312i 0.9524 

2
11ω α−  

2
21ω α−  

2
31ω α−  

2
41ω α−  

-0.0004 - 0.1734i 

-0.0790 - 0.1432i 

0.0044 + 0.1785i 

0.0797 + 0.1357i

-0.0005 - 0.1736i 

-0.0792 - 0.1433i 

0.0045 + 0.1786i 

0.0798 + 0.1357i

0.1290 

0.1367 

0.0792 

0.0635 
4 

2
12ω α−  0.0969 - 0.1558i 0.0967 - 0.1560i 0.1542 

5.2.3   Eigenvector normalisation 

The estimated modal constants may be used to derive a set of normalised right 

eigenvectors as well as two elements of the normalised left eigenvectors. Normalisation 

allows for one element of either the right or the left eigenvector of each mode to be 
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defined arbitrarily. However, for every FRF, the modal constants are related to the 

corresponding elements of the normalised right and left eigenvectors through the 

following expression: 

 ( ) ( )R L= Φ ΦAr i j r jr i                                           (5.12) 

where r  indicates the mode number, and i  and j  indicate the row and column of the 

FRF matrix to which the measured FRF corresponds. 

In this case study, the elements corresponding to the ‘measured’ point FRF, ( )11α ω , 

were considered to be equal to each other: 

( ) ( ) 1111R LΦ = Φ = Arrr                                    (5.13) 

for all modes. The remaining elements of the normalised right eigenvectors were then  

determined from the following expression, using the appropriate index, i : 

( ) ( )1
1

11
R RΦ = ⋅ ΦA

A
r i

r i r
r

                                     (5.14) 

and those of the normalised left eigenvectors were obtained through the following 

expression, using the appropriate index, j : 

( ) ( )1
1

11
L LΦ = ⋅ Φ

A
A

r j
r j r

r
                                     (5.15) 

Using Equations (5.14) and (5.15), together with the estimated modal constants given in 

Table 5.4, the normalised right eigenvectors and two elements of each normalised left 

eigenvector were determined. These are presented in Table 5.5. 

 



93 

Table 5.5 – Estimated elements of the normalised right and left eigenvectors 

 MODE 1 MODE 2 MODE 3 MODE 4 

{ }RΦ
r

 

0.0092 - 0.0089i 

-0.0085 + 0.0086i 

0.0096 - 0.0095i 

 -0.0078 + 0.0081i 

0.0087 - 0.0085i 

0.0060 - 0.0053i 

0.0062 - 0.0066i 

0.0077 - 0.0077i

  0.0094 - 0.0098i 

-0.0026 + 0.0098i 

-0.0085 + 0.0073i 

0.0040 - 0.0119i

0.0093 - 0.0093i 

0.0035 - 0.0119i 

-0.0094 + 0.0098i 

-0.0030 + 0.0116i

{ }LΦ
r

 
   0.0092 - 0.0089i 

  -0.0097 + 0.0098i 

 0.0087 - 0.0085i 

 0.0131 - 0.0126i

0.0094 - 0.0098i 

-0.0175 + 0.0064i

0.0093 - 0.0093i 

0.0136 - 0.0032i

5.2.4   Results 

For brevity, in the rest of this case study the normalised right and left eigenvectors will 

be referred to simply as the right and left eigenvectors. 

Once the eigenvalues, the right eigenvectors and two elements of each left eigenvector 

were identified from the ‘measured’ FRF data, it was possible to establish a system of 

equations in the form of Equation (4.43) to compute the remaining left eigenvector 

elements. 

In order to provide a reference to assess the accuracy with which these elements were 

computed, the exact values of the modal constants were determined directly from the 

spatial property matrices given in Equations (5.3)-(5.5). The estimated left eigenvectors 

are compared with their exact counterparts in Table 5.6. The ‘ERROR’ column 

expresses the magnitude of the difference between the estimated and the exact values of 

each left eigenvector element as a percentage of that of the exact value. 

5.2.5   Discussion 

In this case study, the left eigenvectors of the rotor depicted in Figure 5.1 were 

determined from ‘measurements’ of one column of the FRF matrix plus one additional 

element from one row. 
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Table 5.6 – Comparison of left eigenvector elements 
MODE EXACT ESTIMATED ERROR %  

1 

0.0092 - 0.0089i 

-0.0096 + 0.0098i 

0.0086 - 0.0084i 

-0.0100 + 0.0103i

0.0092 - 0.0089i 

-0.0097 + 0.0098i 

0.0086 - 0.0085i 

-0.0100 + 0.0104i

0.0000 

0.7289 

0.8318 

0.6966 

2 

0.0087 - 0.0085i 

0.0131 - 0.0128i 

0.0109 - 0.0121i 

0.0096 - 0.0099i

0.0088 - 0.0084i 

0.0131 - 0.0126i 

0.0109 - 0.0118i 

0.0098 - 0.0098i

1.1627 

1.0920 

1.8421 

1.6215 

3 

0.0094 - 0.0098i 

-0.0174 + 0.0065i 

-0.0124 + 0.0117i 

0.0145 - 0.0041i

0.0094 - 0.0099i 

-0.0175 + 0.0064i 

-0.0124 + 0.0115i 

0.0147 - 0.0043i

0.7364 

0.7614 

1.1731 

1.8770 

4 

0.0093 - 0.0093i 

0.0136 - 0.0031i 

-0.0087 + 0.0092i 

-0.0139 + 0.0036i

0.0093 - 0.0093i 

0.0136 - 0.0032i 

-0.0087 + 0.0094i 

-0.0139 + 0.0037i

0.0000 

0.7169 

1.5795 

0.6964 

With this it was shown that it is possible to obtain the complete set of modal parameters 

of a rotating machine structure without the need to measure a complete row of its FRF 

matrix in addition to one column. Moreover, from the results presented in Table 5.6, it 

can be seen that the prediction of the left eigenvectors can be carried out with accuracy 

within 2% of the correct values, which is superior to that which is usually attainable in 

the analysis of genuine measured data. 

 These results suggest that the predictive method may be used to produce accurate 

estimations of the left eigenvectors. However, it does not provide an indication of the 

degree in which some experimental factors, such as measurement noise, affect the 

accuracy of the estimated modal parameters.  

The errors reported in Table 5.6 may be traced back to three main sources. The first of 

these is the numerical truncation of the quantities involved in the calculation to 4 

significant figures. Although truncation at this level may not have an important effect at 
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most stages of the calculation, this may be the case when relatively small quantities are 

involved. 

The second possible source of error is the process of identification of the eigenvalues 

and modal constants from ‘measured’ FRF data. The accuracy with which these 

parameters are identified depends on several choices made during the modal analysis of 

the data, such as the selection of the curve-fitting algorithm used and the choice of data 

points on which to perform the curve-fits. The choices made for the analysis depend on 

the skills of the analyst and this human factor may be a cause of errors in the parameter 

estimations. 

The third possible source of error is the use algorithms designed for hysteretically-

damped systems, and may be the main factor affecting the accuracy of the estimated 

parameters, since the measured FRFs correspond to a viscously-damped system. 

Although within limited frequency intervals, for example around the resonance regions, 

the behaviour of a viscously-damped system may be satisfactorily characterised using a 

hysteretically-damped system model, the characterisation errors due to the discrepancy 

between the assumed and the actual models cannot be completely eliminated. 

Apart from numerical errors, the estimation of modal parameters may also be influenced 

by experimental factors such as measurement noise and the selection of DOFs for the 

excitation of the test-piece and for the measurement of its response. The way in which 

these issues are taken into consideration is illustrated in the second case study. 

5.3   Case study 2: the “windmill test-rig” 

The objective of this case study was to evaluate the performance of the predictive 

characterisation method when applied to real machinery structures. 
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This study was aimed at the characterisation of the “windmill test-rig”, which is shown 

in Figure 5.3. The rig was originally used in industry for the investigation of dynamic 

phenomena that originate due to rotor-stator interactions in aero engines. Its design can 

be seen to purposefully endow it with some of the distinctive characteristics of an 

airplane wing assembly. Its main flexible component, (1), which may be considered to 

play the part of the wing structure, has markedly anisotropic transverse stiffness 

characteristics with high flexibility in both the vertical and the horizontal directions. It 

also has a large mass mounted firmly onto it. The mass consists of a stationary drum, 

(2), resembling an engine casing, inside which the main rotor is mounted. The rotor 

consists of a slender steel shaft, which is only supported at one of its ends by two roller 

bearings closely spaced together, forming a cantilever configuration. The opposite end 

of the shaft has a heavy steel bulkhead mounted onto it. With the rig in operation, the 

rotation of the bulkhead, combined with the vibration of the shaft, generates large 

gyroscopic forces even at low rotation speeds. 

The system is driven by a stepper motor, (3), which is connected to the main rotor 

through a hollow steel shaft, (4). An Oldham coupling is used to connect this shaft to 

the motor and a bellows coupling to connect it to the main rotor. This combination of 

couplings compensates for parallel and angular misalignments and isolates the vibration 

of the motor from that of the main rotor.  A solid-state controller is used to set the 

running speed of the rig. 

5.3.1   Test plan 

In order to achieve the objective of this case study, it was necessary to characterise the 

behaviour of the test rig by two different methods, one based on the predictive method 

described in Chapter 4 and another one based on the identification of the left 

eigenvectors directly from measured data. 
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Figure 5.3 – The “windmill test-rig; (1) elastic beam, (2) drum, (3) stepper motor,  
(4) hollow drive shaft, (5) support structure. 

This double characterisation provides a means to crosscheck the results obtained with 

the predictive method, so that its performance may be evaluated. 

5.3.1.1   Predictive method approach 

With this approach, the FRFs associated with one column of the FRF matrix are 

measured. If required, some additional elements of one of the rows of the same matrix 

are measured as well. A set of right eigenvectors and eigenvalues of the system is 

obtained through the modal analysis of the measured FRFs. These modal parameters are 

then used to compute the left eigenvectors using the procedure described in Chapter 4. 

5.3.1.2   Direct identification of the left eigenvectors from measurements 

There exist at least two possible methods to determine the modal parameters of the rig 

directly from measurements. The first of these is based on the procedure described by 

(2) 

 (3) 

 (1) 

 (4) 

(5) 
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Nordmann [35], which consists of measuring the elements in one column and one row 

of the FRF matrix while the rotor is spinning. This approach, as was discussed in 

Chapter 1, has some practical limitations, especially when the excitation is to be applied 

onto the rotating shaft. Additionally, it has the inconvenience that attaching the 

excitation equipment to different points of the structure during the measurement of the 

FRF matrix row may produce small variations of the modal parameters between 

measurements of the individual FRFs. The extent of this effect was investigated by 

measuring the response of the structure to an excitation force applied successively at 

two different locations, and measuring the point FRF on each occasion. The two DOFs 

considered were numbers2 20 and 25 on the test structure. 

The FRF curves corresponding to the frequency range from 0 to 30 Hz for both 

excitation locations are compared in Figure 5.4. It can be seen in the Figure that the 

resonant frequencies of some of the modes are perceptibly affected by the change in the 

location of the exciter. This creates an inconsistency amongst the modal parameters 

extracted from the different FRFs, which has an adverse effect on the accuracy with 

which the modal parameters of the test structure can be estimated. 

In order to circumvent this problem, an alternative measurement method was developed, 

based on two considerations: (a) that due to the absence of oil film bearings and the low 

internal damping of the shaft, it is unlikely that circulatory forces will arise that could 

destroy the symmetry of the stiffness matrix of the rig, and (b) that, given the high 

rotational inertia of the shaft and bulkhead, the circulatory forces affecting the 

behaviour of the rig are mainly gyroscopic. These two considerations support the case 

that only the damping matrix will exhibit a significant degree of asymmetry.  

                                                 
2 A description of the numbering system used for the DOFs is given in Section 5.3.5, Figure 5.15. 
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Figure 5.4 – Point FRFs at two different locations 

Taking this into account, it may then be possible to replace the difficult measurement of 

one row of the FRF matrix with the measurement of its corresponding column but with 

the rotor spinning in a direction opposite to that in which it originally spun. The 

rationale behind this approach is that, by inverting the sense of rotation, the sense of the 

gyroscopic moments is also inverted. Consequently, the damping, dynamic stiffness and 

FRF matrices of the test structure associated with this new sense of rotation become the 

transposes of the corresponding matrices for the original sense of rotation. This implies 

that measuring a row of the FRF matrix with the rotor spinning in one direction is 

equivalent to measuring the corresponding column with the rotor spinning in the 

opposite direction. 

Two direct implications of this assumption are: (a) that the point FRFs should not be 

affected by the change in the sense of rotation of the shaft, and (b) that the effect of 

changing the sense of rotation should be reversed by exchanging the excitation and 

response measurement locations.  
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The first of these implications was verified in this case study by measuring the point 

FRFs corresponding to DOF 25 for the two senses of rotation. The measured FRFs are 

compared in Figure 5.5. As can be seen, the two FRFs are nearly identical, except for 

the phase variations in the vicinity of 13 Hz, which was close to the running speed of 

the rotor. In fact, the spike that appears at that frequency does not correspond to a 

structural resonance, but to the component of vibration that is synchronous with the 

speed of rotation. 

To test the second implication, a transfer FRF was measured with the rotor spinning 

clockwise (CW) at 831 rev/min and measuring the FRF corresponding to an excitation 

applied at DOF 25 and a response measured at DOF 20. A second measurement 

consisted on running the test structure with the rotor spinning counter-clockwise (CCW) 

at 831 rev/min and measuring the FRF corresponding to an excitation applied at DOF 

20 and a response measured at DOF 25.  

The measurements of these two FRFs are compared in Figure 5.6. It can be seen that, 

apart from the frequency shifts that have been attributed to the change in exciter 

location, the measured FRFs are similar to each other throughout the whole frequency 

range.  

A small discrepancy is visible in the vicinity of 21Hz, which is close to the natural 

frequencies of two double modes. This discrepancy may be caused by the high 

sensitivity of this type of modes to small perturbations, such as the change in exciter 

location. However, in spite of this discrepancy near the close modes, the amplitudes and 

phases of the FRFs agree well with each other. 

The two results discussed above provide evidence that, for the case of the test structure 

under consideration, it is possible to emulate the exchange of the excitation and the 

response measurement locations by inverting the sense of rotation of the main shaft. 
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Figure 5.5 – Point FRFs for two senses of rotation 

 

 
Figure 5.6 – Equivalence of inverting the sense of rotation and exchanging the 

excitation and measurement locations for transfer FRFs 
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5.3.2   Scope of the characterisation 

The predictive characterisation method is based on the assumption that the dynamic 

behaviour of the system under consideration may be suitably described using a finite 

number of modes. Since the test structure used for the present case study is a continuous 

system, and hence possesses an infinite number of modes, it is necessary to establish a 

finite frequency range within which it abides by the assumptions of the predictive 

method. 

In order to determine this frequency interval, point FRFs corresponding to three 

different exciter locations were measured. This made it possible to determine the natural 

frequencies of the test structure while reducing the possibility of neglecting a mode due 

to its not being excited at this stage of the tests. The point FRFs corresponding to DOFs 

11, 20 and 25 are presented in Figure 5.7. 

From the FRFs presented in this Figure, it can be seen that there is a large frequency 

interval between 30 and 45 Hz within which the test structure has no natural 

frequencies. This fact was taken advantage of for establishing the frequency range to be 

used for the characterisation of the test structure. Since the effect of all modes with 

natural frequencies above 30 Hz is relatively small within the interval from 0 to 30 Hz, 

then it was considered that the behaviour of the system could be adequately described in 

terms of the modes with natural frequencies below 30 Hz. Thus, the frequency range for 

the characterisation was set from 0 to 30 Hz. The natural frequencies of the system 

identified for this range are given in the Table 5.7.  
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Figure 5.7 – Point FRFs used for frequency range selection 

Table 5.7 – Natural frequencies at 831 rev/min, CCW 

MODE 
NATURAL 

FREQUENCY 
(Hz) 

1 5.25 

2 9.50 

3 17.25 

4 21.40 

5 21.71 

6 27.11 

In Figure 5.8, an enlarged view of the portion of Figure 5.7 corresponding to the 

selected frequency range is shown. The amplitudes of the different modal components 

of the response vary with the DOF at which the point FRF is measured. The blue line, 

corresponding to the point FRF at DOF 11, shows that from this location the second and 

sixth modes are not effectively excited, whereas the green line, corresponding to DOF 

20, indicates that neither the first nor the sixth modes can be excited effectively from 
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this location. The red line corresponds to a point FRF measured at DOF 25. All the 

modes appear to be well excited from this location. However, the peak corresponding to 

the first mode is seen to correspond to a different frequency as does that of the FRF for 

DOF 11. Investigation of this discrepancy led to the conclusion that it was caused by the 

effect of exciter location, and not by the existence of a different mode in the 3 – 5 Hz 

frequency range. The way in which this was verified was by comparing the transfer 

FRFs corresponding to (a) an excitation applied at DOF 11 and response measured at 

DOF 25 with CW rotation of the shaft, and (b) an excitation applied at DOF25 and a 

response measured at DOF 11 with CCW rotation of the shaft. The two FRFs are 

plotted in Figure 5.9.  

 
Figure 5.8 – Enlarged view of the selected frequency range 

As was discussed in the previous Section, the two measurements should yield the same 

FRFs, since the effect of a change in the sense of rotation reverses the exchange of the 

excitation and the response measurement locations.  
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If the exciter location had no effect on the natural frequencies of the mode(s) associated 

with the leftmost peaks in the blue and red curves in Figure 5.8, then the corresponding 

like-coloured curves in Figures 5.8 and 5.9 should be identical in the range from 3 to 7 

Hz, since the inversion of rotation cancels-out the exchange of locations for the 

excitation and the response measurement. The fact that they are not identical within this 

range suggests that there exists only one mode in this region, and that the shift of the 

natural frequencies is due to the effects of exciter attachment, which is the only 

condition that is common for the curves of the same colour in Figures 5.8 and 5.9. 

 
Figure 5.9 – Variation of the first natural frequency due to exciter attachment 

It should be noted that sixth mode in the selected frequency range is not as effectively 

excited by a force applied at DOF 25 as are the other modes. This, together with the fact 

that its natural frequency is similar to the second harmonic of the rotational frequency, 

may affect the accuracy with which its modal parameters are determined. 

However, based on the FRF data presented in Figure 5.8, it was be concluded that out of 

the three candidate excitation locations, i.e. DOFs 11, 20 and 25, the latter is the best 
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choice to excite the modes whose natural frequencies lie within the selected frequency 

range of 0 to 30 Hz.  

5.3.3   Selection of the speed of rotation 

5.3.3.1   Factors considered 

The speed at which the shaft rotates is an important parameter for the characterisation, 

since the magnitudes of the gyroscopic forces generated in the rotor are directly related 

to this parameter. If the speed is excessively low, then the gyroscopic effects may be so 

weak that the test structure can be satisfactorily characterised using the classical 

methods designed for stationary structures. On the other hand, an excessively high 

speed can trigger the unstable vibration of the main rotor. 

Thus, it was necessary to choose a rotation speed that allowed considerable gyroscopic 

forces to develop, but that at the same time was low enough to prevent the test structure 

from becoming unstable. 

One additional factor related to the choice of speed of rotation was the need to minimise 

the interference between the response of the test structure at its resonances and the 

components of vibration with a frequency equal to that of rotation or its harmonics. 

A rotation speed of 831 rev/min, or, equivalently, 13.85 cycles/sec was used. This 

rotation speed was chosen so that it was well below the first critical speed of the shaft, 

of approximately 21 cycles/sec. 

5.3.3.2   Effects of rotation on the behaviour of the test structure 

In Figure 5.10, the point FRFs associated with DOF 25 for the rotor (a) at rest and  (b) 

rotating at 831 rev/min in a CCW sense, are compared. As can be seen, the natural 

frequencies of the lowest two modes are only very slightly affected by the gyroscopic 
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forces. However, the natural frequencies of at least three of the remaining modes are 

significantly affected. In Table 5.8, the natural frequencies for of the test structure with 

the rotor at rest are compared with those obtained with the rotor spinning at 831 rev/min 

in the CCW direction. 

 
Figure 5.10 – Effect of gyroscopic forces on the behaviour of the test structure 

 

          Table 5.8 – Comparison of the natural frequencies (Hz) of the test structure  

                           in stationary and rotating conditions 

MODE STATIONARY CCW ROTATION 

1 5.23 5.25 

2 9.60 9.50 

3 18.12 17.25 

4 20.87 21.40 

5 21.64 21.71 

6 27.92 27.11 



108 

5.3.4   Execution of the tests 

5.3.4.1   Speed control 

The first step in the tests was to set up the speed of the rotor. This was done using a 

solid-state speed controller. The speed was measured using a stroboscope aimed at the 

bulkhead side of the main rotor and adjusting the controller settings until the desired 

speed was attained. The speed was monitored at regular intervals during the tests and a 

variability of less than 3 rev/min was observed.  

5.3.4.2   Excitation 

Pseudo-random excitation forces [39] were applied to the test structure using an 

electromagnetic exciter attached to the outer surface of the drum by means of a push-

rod, as shown in Figure 5.11. The signal fed to the exciter was generated using a Bruel 

& Kjaer Type 2032 FFT analyser and amplified using a Gearing and Watson PA30 

power amplifier. 

A Bruel & Kjaer Type 8200 force transducer was inserted between the pushrod and the 

test structure to measure the applied forces. 

 

Figure 5.11 – Attachment of the electromagnetic exciter 
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Apart from the exploratory measurements used to define the test conditions, all the 

measurements were performed with the exciter attached at DOF 25, as is shown in 

Figure 5.11. The skewed position of the exciter, at about 50 degrees from the horizontal, 

allowed for the excitation of both vertical and horizontal modes of vibration. 

5.3.4.3   Response measurement 

The response was measured at several points along the drum of the test structure and 

along its supporting beam using a Bruel & Kjaer Type 4383 accelerometer. The 

mounting of the accelerometer is illustrated in Figure 5.12(a). The response was also 

measured at the bulkhead side of the main shaft using a Bently Nevada model 50029-01 

displacement transducer system, positioned either horizontally or vertically near the 

bulkhead mounting nut. Its mounting in the horizontal position is shown in Figure 

5.12(b). 

     

Figure 5.12 – Transducers used for measurements on (a) stationary, and  
                                 (b) rotating components of the test structure (top view). 

The accelerometer was attached to the test structure using either bees wax or an 

aluminium nut glued onto the outer surface of the drum with high-strength adhesive. 

The displacement transducer was fixed using a magnetic base. 

 

(a) (b) 

Displacement 
transducer 



110 

5.3.4.4   Signal conditioning 

The force and acceleration signals were conditioned and amplified using two separate 

Bruel and Kjaer Type 2626 conditioning units. The filters in both units were set to 

eliminate the signal components below 0.3 Hz and above 300 Hz. These settings 

allowed maintaining the distortion of the signals to a minimum level at each of the 

resonances within the frequency range of interest. 

The signals from the displacement transducers were conditioned using the oscillator / 

demodulator unit that forms part of the transducer system. 

5.3.4.5   Signal processing 

The signals from the force transducer and from one of either the accelerometer or the 

displacement transducer were fed into the FFT analyser for each FRF measurement. No 

windows were applied to the signals, as a pseudo-random excitation force was used 

[39]. 

The signal processing was based on a frequency interval comprising 800 equally-spaced 

frequency values in the range from 3.75 Hz to 28.5 Hz. This allowed determining the 

FRFs with a frequency resolution of 31.25 mHz. Although these frequency settings 

shortened the selected frequency interval, they had no effect on the resonant responses, 

from which the modal parameters were estimated at a later stage. 

The signal analyser was used to obtain the FRFs for one combination of excitation and 

response measurement locations at a time. The tests were repeated until all of the 

required FRFs were measured. The FRF data were stored in a personal computer for 

their further modal analysis. 
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5.3.4.6   Transducer calibration 

The acceleration, force and displacement transducers were calibrated using, 

respectively, a Polytec model OFV050 laser Doppler vibrometer (LDV), a calibration 

mass and a micrometer as calibration references. 

Calibration of the accelerometer was achieved by comparing its readings to those 

obtained from the LDV within the range from 3 to 100 Hz. The calibration setup is 

shown in Figures 5.13(a) and 5.13(b).  The accelerometer was bolted onto the head of 

an electromagnetic exciter and a piece of reflective tape was attached to its upper 

surface, on which the LDV was focused. A sinusoidal signal was applied to the exciter 

in order to produce a harmonic vibration of the accelerometer. The signal voltages from 

the accelerometer and the LDV were recorded for 30 frequency values in the range from 

3 to 100Hz. After converting the velocity readings of the LDV into equivalent 

accelerations, the voltages obtained from the accelerometer were used to determine the 

following mean calibration factor for the accelerometer with its signal conditioner: 

 
-2ms0.9375 @ 0.839

VAγ = °                                    (5.16) 

This factor was applied to the voltage signals obtained from the accelerometer in order 

to determine their corresponding acceleration values. 

The force transducer was calibrated following a standard procedure that required the use 

of a reference mass of 10 kg together with the already calibrated accelerometer. The 

calibration setup is shown in Figures 5.14(a) and 5.14(b). The force transducer was 

bolted onto the reference mass using an aluminium nut. An electromagnetic exciter was 

connected to the force transducer by means of a slim pushrod, as seen in Figure 5.14(a). 

The calibrated accelerometer was bolted to the opposite side of the reference mass, as 

shown in Figure 5.14(b), also using an aluminium nut. 
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Figure 5.13 – (a) Use of a LDV as a calibration reference, 
(b) mounting of an accelerometer for calibration. 

 

(a) 

(b) 

Exciter and 
accelerometer 

LDV 
Path of laser 
beam 

Accelerometer 
Exciter 
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Figure 5.14 – (a) Attachment of the exciter to the force transducer, 
(b) mounting of the calibrated accelerometer. 

The electromagnetic exciter was operated in the same way as it was for the calibration 

of the accelerometer. 

To obtain the calibration factor for the force transducer with its signal conditioner, a 

reference force was computed first as the product of the reference mass and the 

acceleration measured by the calibrated accelerometer. This reference force was used 

together with the voltage signal from the force transducer to determined the following 

mean calibration factor: 

N0.9829 @ 0.035
VFγ = °                                        (5.17) 

The displacement transducer was calibrated statically using a micrometer. 22 readings 

were taken for gaps within 0.635 mm±  of the midpoint of the linear range of the 

transducer. The mean calibration factor determined for this transducer together with its 

oscillator / demodulator unit was: 

4 m1.27 10
VXγ −= ×          (5.18) 

a) b)
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5.3.5   FRF measurements 

The DOFs with respect to which the measurements on the test structure were carried out 

are defined in Figures 5.15(a) and 5.15(b). 

Two sets of FRF measurements were performed, both with an excitation force applied 

at DOF 25. The first set, which will be referred to as the ‘trial’ set, was obtained with 

the rotor of the test structure spinning at 831 rev/min in a CCW sense, as viewed from 

the bulkhead side. The response was measured at each of the 26 DOFs. These FRFs 

corresponded to a column of the FRF matrix. They are presented in Figure 5.16 to 

provide the reader with an idea of the noise present in the measurements, the variation 

ranges of the vibration levels and the overall consistency of the FRF set. 

 

Figure 5.15 – Test DOFs on the (a) front side and (b) back side of the test structure 
 

 

Figure 5.16 – FRFs from one column of the FRF matrix 
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The second set of data, which we will refer to as the ‘reference’ set, was taken with a 

similar setup as was used for the first set, but with the rotor spinning in the opposite 

sense, i.e. CW, at 831 rev/min. As was discussed in Section 5.3.1.2, for this particular 

case study, measuring a column of the FRF matrix in these conditions is equivalent to 

measuring a row of the same matrix with the rotor spinning in a CCW sense. Thus, right 

eigenvectors obtained through conventional modal analysis of this ‘reference’ set of 

data are equal to the left eigenvectors of the test structure in a CCW rotating condition. 

These eigenvectors were used to assess the accuracy of the left eigenvectors obtained by 

applying the predictive characterisation method to the ‘trial’ set of FRFs. 

5.3.6   Modal analysis of the measured FRFs 

Each of the measured FRFs was analysed independently in order to ensure the highest 

degree of accuracy of the identified right eigenvectors and eigenvalues, thus minimising 

the errors in the estimated left eigenvectors. 

The modal analysis was carried out using the line-fit method of the ICATS modal 

analysis package. For each FRF, a set of natural frequencies, hysteretic damping loss 

factors and modal constants for each mode were obtained. The results from all the FRFs 

were collated into a single set of data containing the natural frequencies, damping 

factors and mode shape vectors corresponding to a hysteretically-damped system model. 

The natural frequency and damping factor for each mode were computed as a weighted 

average of their individual values from each FRF. The weighting factors were taken as 

the magnitudes of the modal constants corresponding to that mode on each particular 

FRF. 
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The next step consisted of converting the modal parameters into equivalent parameters 

for a viscously-damped system model. This was done in the way described in Section 

5.2.2. The eigenvalues and normalised right eigenvectors are presented in Appendix C. 

It is important to note that since the characterisation was based on the consideration that 

both the mass and the stiffness matrices were symmetric, as was discussed earlier, then 

only one column of the FRF matrix was required to compute the left eigenvectors, as 

the test structure was then considered to approximate to a damped gyroscopic system, 

the measurement requirements for which have been stated in Section 4.8. 

Once the right eigenvectors and complex eigenvalues corresponding to the viscously 

damped system model of the test structure were obtained, a reduction of the number of 

DOFs was required for the computation of the left eigenvectors. This stage of the 

analysis is described in the following Section. 

5.3.7   Data reduction and computation of the left eigenvectors 

Up to this point in the analysis, the eigenvalues and right eigenvectors corresponding to 

the 6 modes of interest were determined. The eigenvectors were defined with respect to 

all 26 DOFs. However, the use of the predictive method to determine the left 

eigenvectors requires only as many DOFs are there are modes. Thus, an appropriate 

data reduction procedure was required before the left eigenvectors could be computed. 

Two factors were taken into consideration to perform the data reduction: firstly, as was 

discussed in Chapter 2, the one-to-one relationship between the asymmetry of the 

spatial property matrices and the presence of circulatory forces in the system can only 

be established if the DOFs that are used to describe the system are mutually orthogonal. 

Thus, the assumption that the mass and stiffness matrices are symmetric because there 
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exist no circulatory forces that are proportional to the accelerations or the displacements 

of the test structure is only valid if the orthogonality of the DOFs is ensured. 

This kind of orthogonality can be achieved, for example, if the 6 chosen DOFs consist 

of 3 pairs of DOFs, each pair corresponding to two orthogonal coordinate axes with a 

common origin. However, other combinations of selected DOFs may also produce the 

same result. 

The second factor that was considered is that at some stages of the predictive method it 

is required to invert the matrix of right eigenvectors, see for example Equations (4.16)-

(4.18). Thus, it is desirable that the right eigenvectors, as observed from the chosen 

DOFs, be orthogonal, so that the eigenvector matrix is non-singular in order to minimise 

errors in the inversion of this matrix. 

Orthogonalisation of the right eigenvectors constitutes a well-known problem in 

structural dynamics, which may be satisfactorily addressed using elimination techniques 

based, for example, on the effective independence (EI) [23] or QR decomposition [42] 

algorithms. 

For the case study being presented here, the effective independence algorithm was 

chosen. However, it was first noted that none of the mode shapes included flexural 

motion of the drum. Hence, from each pair of diametrically opposed DOFs on its 

surface, only the one pointing upwards or rightwards, when viewed from the bulkhead 

end of the test structure, was kept. 

 DOF 25 was specified as a necessary selection, since this was the DOF at which the 

excitation was applied, and the point FRF corresponding to this DOF was necessary in 

order to normalise the eigenvectors. 
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The effective independence algorithm was applied to the matrix of right eigenvectors 

that corresponded to the remaining DOFs. The selected DOFs are ordered in the 

following Table, according to their suitability to yield an orthogonal set of right 

eigenvectors. 

Table 5.9 – Evaluation of DOFs based on  
the effective independence algorithm 

DOF
25 
6 
13 
23 
24 
26 
17 
5 
10 
18 
9 
14 
3 
4 
1 
2 

 

Based the results obtained through the use of the effective independence method, the 

order of the right eigenvector matrix was reduced to six, keeping only the elements of 

the right eigenvectors corresponding to DOFs 6, 13, 23, 24, 25 and 26. The computation 

of the left eigenvectors was then carried out using the six eigenvalues and the 

corresponding reduced right eigenvector sub-matrix based on hose DOFs. 

5.3.8   Results 

The computed left eigenvectors, [ ]LΦ , correspond to the test structure spinning in a 

CCW sense. They may be compared with the right eigenvectors, [ ]RΦ , of the test 

structure spinning in the CW sense. The two sets of eigenvectors are expected to be 

equivalent for the reasons stated in Section 5.3.1.2. They are presented in polar 

BETTER 

WORSE 
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coordinate format in Table 5.10, to facilitate their comparison. The ‘ERROR’ column 

expresses the magnitude of the difference between the computed and the measured 

eigenvector elements, as a percentage of the magnitude of the measured ones. 

Table 5.10 – Comparison between two theoretically equivalent sets of eigenvectors 

COMPUTED 
{ }LΦ

r
, CCW 

MEASURED 
{ }RΦ

r
, CW MODE  

r  DOF 
MAG ANGLE MAG ANGLE 

ERROR 
 % 

1 

6 
13 
23 
24 
25 
26 

    0.0019
    0.0183
    0.0539
    0.0050
    0.0249
    0.0264

  133.96
  135.07
  135.23
   99.61
  -45.02
  135.16

    0.0027
    0.0173
    0.0510
    0.0027
    0.0239
    0.0216

  136.82 
  134.60 
  129.43 
   68.90 
  -43.15 
  137.04 

28.51 
5.65 

11.82 
109.08 

5.36 
22.36 

2 

6 
13 
23 
24 
25 
26 

    0.0164
    0.0018
    0.0062
    0.0483
    0.0131
    0.0148

  141.35
   16.62
  -35.52
  140.79
  -45.68
  -31.28

    0.0163
    0.0020
    0.0033
    0.0510
    0.0134
    0.0146

  137.76 
   31.82 
  -60.88 
  139.96 
  -44.93 
  -31.14 

6.34 
7.18 

104.59 
5.53 
2.52 
1.37 

3 

6 
13 
23 
24 
25 
26 

    0.0088
    0.0116
    0.0304
    0.0064
    0.0119
    0.0128

   85.74
  174.21
   -1.27
  -46.28
  -44.49
 -151.63

    0.0079
    0.0106
    0.0285
    0.0070
    0.0119
    0.0118

   92.82 
 -179.42 
   -2.24 
  -92.48 
  -46.23 
 -147.82 

 17.12 
 14.99 
 6.75 

 75.31 
 3.07 

 11.15 

4 

6 
13 
23 
24 
25 
26 

    0.0107
    0.0013
    0.0110
    0.0150
    0.0096
    0.0092

  136.80
  121.89
  -84.07
   32.25
  -49.31
  -47.84

    0.0137
    0.0053
    0.0129
    0.0221
    0.0128
    0.0120

  137.81 
   46.28 

 -133.17 
  -34.50 
  -33.91 
  -23.32 

 21.73 
 96.87 
 78.08 
 96.18 
 34.14 
 43.85 

5 

6 
13 
23 
24 
25 
26 

   0.0117
    0.0072
    0.0125
    0.0315
    0.0086
    0.0148

  161.05
   50.95

 -146.91
  -84.98
  -36.67
   11.27

NOT  
DETECTED ---------- 

6 

6 
13 
23 
24 
25 
26 

    0.0011
    0.0091
    0.0056
    0.0025
    0.0049
    0.0071

 -110.47
  -24.96
  -26.80
   -8.95
  -44.52
  119.12

    0.0012
    0.0097
    0.0057
    0.0004
    0.0047
    0.0056

  152.74 
  -55.25 
  -59.15 
   58.25 
  -40.09 
  117.18 

146.42 
 50.90 
 55.36 
533.90 

 8.62 
 28.09 
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5.3.9   Discussion 

5.3.9.1   Errors in the prediction of the left eigenvectors 

The errors in the prediction of the left eigenvectors are considerably larger in this 

experimental case study than they were in the numerical one presented in the first part 

of this Chapter. This can be seen by comparing the error columns of Tables 5.6 and 

5.10. 

In this second case study, the accuracy of the predictions is affected by two factors that 

were not present in the first one: (a) the existence of noise in the measurements, and (b) 

the presence of two close modes of vibration in the vicinity of 21.5 Hz, as seen from the 

natural frequencies presented in Table 5.7. 

In the test structure, measurement noise was known to originate especially at the 

bearings that supported the main rotor. Measurement noise affects the accuracy with 

which the modal constants are estimated from the measured FRFs. The errors in the 

estimation of these parameters are in turn translated into errors in the estimations of the 

right eigenvectors and damping values, and ultimately on the predicted left 

eigenvectors. 

The effects of noise on the parameters corresponding to a mode depend on the 

amplitude of the vibration component of that mode for the specific DOF in question. 

These effects are more prominent if the amplitude is small. This may occur if the 

element of the right eigenvector associated with that DOF having a small magnitude, or 

if the mode not effectively excited. 

The effects of noise may explain why the largest errors in the prediction of the left 

eigenvectors, as seen in Table 5.10, occur for the DOFs at which the measured 
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eigenvectors have the smallest amplitudes. The elements corresponding to these DOFs 

have been marked in blue in the Table.  

It may be noted that the errors associated with the sixth mode are large for every DOF. 

However, it should be taken into account that a force applied at DOF 25 is not as 

effective at exciting this mode as it is at exciting the others. This can be seen from the 

small magnitudes of the elements corresponding to this mode in the ‘Measured’ column 

of Table 5.10, as well as from the smaller amplitudes of the peaks corresponding to this 

mode in all the FRFs that have been presented for this case study. 

One observation from Table 5.10 that cannot be explained with the argument that the 

vibration amplitude is small is that the errors associated with the fourth mode are also 

large for every DOF, in spite of this mode being well excited by the force applied at 

DOF 25. 

With respect to the fourth mode, the errors in the identification of its modal constants 

may be due to its closeness to another mode in the vicinity of 21.5 Hz. This 

consideration will now be discussed in more detail. 

The accurate identification of the modal components of an FRF curve that correspond to 

two close modes is a difficult task, especially in cases where the FRF data are affected 

by noise. This is because of the small differences that exist between the curves that 

define the two modal components of vibration as functions of frequency. The form of 

these curves is given in Equation (4.22). Successful identification of the modal 

components of an FRF relies on the detection of the differences between the two curves. 

However, the differences may be so small that they may be confused with the 

measurement noise. Thus, the effects of noise combined with the closeness of the two 

modes around the 21.5 Hz region may explain the large errors encountered in the 

identification of the left eigenvectors of the fourth mode. 
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As seen in Table 5.10, the fifth mode could not be identified in the FRFs corresponding 

to the second set of measured FRFs. This may also be due to the closeness of the fourth 

and fifth modes, and possibly to slight variations in the speed of rotation that occurred 

during the measurement of the two sets of FRFs. 

5.3.9.2   Prediction of FRFs corresponding to unmeasured columns of the FRF 

matrix 

Although some of the elements of the left eigenvectors were inaccurately predicted, 

their estimation is good enough to allow us to make reasonable predictions of the FRFs 

corresponding to various locations of the excitation force, using only data measured 

with one exciter location.  

The practical value of this type of capability is that it relaxes the need to install an 

exciter at several DOFs to determine how a machine structure will respond to forces 

applied onto them. This predictive capability is especially useful when it is desired to 

determine the response caused by a force applied at a rotating component, since without 

this alternative it would be necessary to actually attach an exciter to the rotating 

component in order to measure the ensuing response, which is a task that poses many 

practical problems [22]. 

In the present case study, the FRFs corresponding to an excitation applied at DOF 25 

were measured at each of the 26 DOFs defined for the tests, which were defined in 

Section 5.3.5. The modal analysis of these data led to the identification of six 

eigenvalues and a set of six right eigenvectors, consisting of six elements each. These 

modal parameters were then used to compute the left eigenvectors of the test structure 

corresponding to the same modes and the same DOFs. 
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The combined use of the parameters to predict the response of the test structure to an 

excitation applied at DOFs other than DOF 25 will now be illustrated. The prediction of 

the response is based on the modal expansion of the FRF functions that was presented in 

Equation (4.22). 

As a first example, the predicted response at DOF 25 due to an excitation applied at 

DOF 26 with the rotor of the test structure spinning at 831 rev/min in a CCW sense is 

plotted in Figure 5.17. It is compared with its corresponding measurement from the 

‘reference’ FRF set, which, as was discussed in Section 5.3.1.2, consists of the response 

at DOF 26 due to an excitation applied at DOF 25 with the rotor spinning in CW sense.  

As can be seen in Figure 5.17, good agreement between the measurement and the 

prediction is achieved in both the amplitude and the phase plots. However, it is worth 

mentioning that some discrepancy exists for the frequency region around 21.5 Hz, 

which may be due to the errors in the identified left eigenvectors for the fourth and fifth 

modes. As discussed previously, these errors may be caused by the closeness of the two 

modes and the difficulty to estimate their right eigenvectors and eigenvalues. Both the 

amplitude and phase plots show discrepancies between the predicted and the measured 

values around this region of the plot. 

The sharp spike that appears at about 13 Hz is the 1X component of vibration, which is 

possibly due to the residual unbalance of the rotor. 

The predicted response at DOF 25 due to an excitation applied at DOF 23 with the rotor 

of the test structure spinning at 831 rev/min in a CCW sense is plotted in Figure 5.18. It 

is compared with its corresponding measurement, which is that of the response at DOF 

23 due to an excitation applied at DOF 25 with the rotor spinning in CW sense. 

Similarly, the predicted response at DOF 25 due to an excitation applied at DOF 24 is 

compared in Figure 5.19 and with its corresponding measurement.  
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Figure 5.17 – Prediction of the accelerance at DOF 25 due to an excitation at DOF 26 

DOFs 23 and 24 lie on the rotating shaft. Hence the practical value of predicting the 

response due to excitation forces applied at these DOFs is that it allows us to dispense 

with the complicated alternative of attaching an exciter onto this component in order to 

measure the response that would ensue under those conditions. 

As can be seen in Figures 5.18 and 5.19, although the effects of measurement noise are 

clearly visible from the plots, the response is predicted with reasonable accuracy. The 

prediction of the response in the vicinity of 21.5 Hz is in error due to the closeness of 

the fourth and fifth modes. The peaks around 13 and 26 Hz correspond to the 1X and 

2X components of vibration.  

It can be seen in Figure 5.18 that the prediction of the response to an excitation applied 

at DOF 23 is slightly in error for the resonance region of the second mode. This may be 

due to the fact that DOF 23 is in the horizontal direction and the second mode of 

vibration consists of a vertical vibration of the test structure. Conversely, in Figure 5.19 

it can be seen that the prediction of the response to an excitation at DOF 24 is slightly in 
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error for the first resonance region. This may be due to the fact that the first mode of 

vibration of the test structure consists of a horizontal motion, but DOF 24 corresponds 

to a vertical movement of the shaft. 

 
Figure 5.18 – Prediction of the accelerance at DOF 25 due to an excitation at DOF 23 

 
Figure 5.19 – Prediction of the response at DOF 25 due to an excitation at DOF 24 
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The predicted response at DOF 25 due to excitation forces applied at DOFs 6 and 13, 

respectively, with the rotor of the test structure spinning at 831 rev/min in a CCW sense 

are presented in Figures 5.20 and 5.21. Again, there is good agreement between the 

predicted and the measured responses, both in amplitude and in phase characteristics. 

In the first of these Figures, a noticeable prediction error around the resonance region of 

the sixth mode can be seen. This error is probably caused by that mode not being 

effectively excited by a force applied at DOF 6. 

5.3.9.3   Simplified prediction of the left eigenvectors 

In some types of system, such as stationary structures or undamped gyroscopic systems, 

the left eigenvectors may be directly determined from their right counterparts without 

the need of any special computation method. For this reason, it is worth exploring the 

benefits and drawbacks of this approach in the present case study. 

 

Figure 5.20 – Prediction of the response at DOF 25 due to an excitation at DOF 6 
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Figure 5.21 – Prediction of the response at DOF 25 due to an excitation at DOF 13 

Figure 5.22 shows a prediction of the FRF associated with the response at DOF 25 

caused by an excitation applied at DOF 26 with the rotor spinning in a CCW sense. As 

for the case of Figure 5.17, this prediction is compared with its corresponding 

measurement, which consists of the response at DOF 26 due to an excitation applied at 

DOF 25 with the rotor spinning in CW sense.  However, in contrast to that case, here 

the prediction is carried out under the assumption that the left eigenvectors are identical 

to their right counterparts, as happens with conventional stationary structures. 

It can be seen that the amplitude of the FRF is fairly well predicted. However, 

significant errors are manifested in the phase of the predicted response. Thus, 

applications which rely on phase measurements, such as the detection of rotor 

unbalance, should not make use of this simplified predictive approach. 
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Figure 5.22 – Prediction of the response at DOF 25 due to an excitation at DOF 26 

using the right eigenvectors only 

A prediction of the same response can be carried out assuming that the left eigenvectors 

are identical to the complex conjugates of their right counterparts, as occurs in 

undamped gyroscopic systems. The predicted response at DOF 25 caused by an 

excitation applied at DOF 26 with the rotor spinning in a CCW is compared with its 

corresponding measurement in Figure 5.23. The prediction of the FRF amplitude may 

be seen to be slightly worse in this example than in the former one, and its phase 

characteristics can be seen to be considerably in error. 

It may be concluded that, in the present case study, simplified predictions like the ones 

just carried allow determining the amplitude of an FRF with reasonable accuracy, but 

that the prediction of its phase characteristics is considerably in error. In comparison to 

these simplified approaches, the predictive characterisation method allows us to make 

more accurate predictions of the response that would be produced by excitation forces 

applied to different DOFs of a test-piece. 
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5.3.9.4   Use of non-optimal DOFs 

On occasions, it may be necessary to determine the FRFs at DOFs other than those 

deemed optimal using the effective independence algorithm. It may then be necessary to 

sacrifice, to some extent, the accuracy of the predicted modal parameters or FRFs, so 

that the required information can be obtained. 

The effect of selecting non-optimal DOFs on the accuracy of the predictions will vary 

depending on the DOFs selected. When only a few of the DOFs that constitute the 

optimal set are replaced by others, the accuracy of the predictions may only be affected 

slightly. For example, if the prediction of the FRF presented in Figure 5.17 is carried 

out using the replacing DOFs 6 and 13 in the optimal set with DOFs 3 and 4 , then the 

result will be that shown in Figure 5.24. 

 
Figure 5.23 – Prediction of the response at DOF 25 due to an excitation at DOF 26 

using the right eigenvectors and their complex conjugates 
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As can be seen in Figure 5.24, the predicted FRF matches the measured one closely. 

The discrepancies are mainly noticeable near the resonance region of the sixth mode, 

both in the amplitude and phase plots. 

If the non-optimal set is further degenerated by replacing even more DOFs of the 

optimal set by other DOFs, then the response could be similar to that presented in 

Figure 5.25, where the DOFs chosen for the prediction were 3, 4, 9, 12, 25 and 26. As 

can be seen, in this case both the amplitude and phase of the predicted FRF are 

considerably in error. 

From these examples, it may be concluded that an adequate selection of the DOFs is 

necessary to obtain an accurate prediction of unmeasured row elements of the FRF 

matrix. 

 

Figure 5.24 – Prediction of the response at DOF 25 due to an excitation at DOF 26 
computed with DOFs 3, 4, 23, 24, 25 and 26 
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Figure 5.25 – Prediction of the response at DOF 25 due to an excitation at DOF 26 

computed with DOFs 3, 4, 9, 12, 25 and 26 

5.4   Summary 

In this Chapter, the application of the modal characterisation method presented in 

Chapter 4 has been illustrated using two case studies. The first of these was carried out 

on the computer model of a 4-DOF rotor and was used to demonstrate the feasibility of 

obtaining the complete model of a system without the need to measure a complete row, 

in addition to a column, of its matrix of FRFs. 

The second case study was performed on an industrial test structure. The purpose of this 

case study was to demonstrate the applicability of the abovementioned characterisation 

method to real systems. This task required taking into consideration two factors that did 

not appear in the first case study: (a) the fact that the test structure is a continuous 

system and hence its characterisation required establishing a way to describe it as a 

discrete system, and (b) the presence of noise in the measurements. 
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It was shown that, if a continuous system can be represented by a truncated model 

within a limited frequency interval, then it is possible to predict its modal parameters 

using the characterisation method described in Chapter 4. 

It was also shown that the accuracy with which the left eigenvectors could be 

determined is affected by the accuracy with which the modal constants of the relevant 

modes can be determined from the measured data. This, in turn, is affected by the 

presence of noise in the measurements.  

The effects of measurement noise were seen to be more prominent for the DOFs at 

which the response amplitudes were small, or for frequency regions in the vicinity of 

close modes.  

It was shown that in spite of the effects of noise, the predicted left eigenvectors are 

suitable for the prediction of a complete row of the FRF matrix using only 

measurements of one of its columns. 

It was demonstrated in Section 5.3.9.3 that neglecting the presence of damping or 

circulatory forces in a system, in order to simplify the prediction of the left 

eigenvectors, may lead to considerable errors in their determined values. This was 

demonstrated here the prediction of FRFs corresponding to excitation at locations other 

than that used to perform the measurements. 

With respect to DOF selection, it was demonstrated that the effective independence 

algorithm can be used to determine DOFs that allow an optimal estimation of the left 

eigenvectors and the FRFs. It was shown that, although the use of a non-optimal set of 

DOFs degrades the quality of the predicted parameters, this practice may be resorted to 

in cases where it is important to consider a specific DOF that was not ranked within the 

optimal set through the effective independence algorithm. 
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CHAPTER 6 

Summary, conclusions and recommendations for 
future work 

6.1   Summary 

This thesis deals with the modal characterisation of rotating machinery using a 

structural dynamics approach. The work that is reported here is aimed at simplifying the 

modal characterisation of this class of systems, by minimising the number of frequency 

response function (FRF) measurements that are required to determine their modal 

parameters. 

Within the scope of this work, rotating machines are considered as structural assemblies 

of rotating and non-rotating components. The term ‘rotating machinery structures’ is 

used to refer to such assemblies. The use of a structural approach allows us to carry out 

their dynamic characterisation exclusively in terms of their response to controlled 

excitation forces, without focusing on the interactions between their individual 

components. 

It is argued that one of the main differences between rotating machinery structures and 

conventional, non-rotating, structures is that the former do not abide by the principles of 

reciprocity. This is reflected in: (a) their spatial models, by the asymmetry of the 

damping and stiffness matrices; (b) their modal models, by the need to define a left 

eigenvector for each mode of vibration, in addition to the corresponding eigenvalue and 

right eigenvector, and (c) their response models, by the asymmetry of their frequency 

response function (FRF) matrices. 
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It is shown that the use of a structural dynamics approach allows us to discriminate 

between the degrees of freedom (DOFs) that are associated with the rotating and the 

non-rotating components of a machine structure, so that the asymmetric portions of its 

spatial property matrices can be clearly delimited. This is proved to be advantageous, as 

it forms the basis for the derivation of the relationships that exist between the 

parameters that constitute their modal models. 

These relationships are implemented in the design of a modal characterisation method, 

which is presented in the thesis. The goal of the method is to simplify the execution of 

modal tests by using these relationships to supplement measured FRF data. It is shown 

that in most cases a complete modal characterisation can be achieved without measuring 

a complete row of the FRF matrix. The number of elements of this row that are required 

is established as a function of the number of DOFs associated with the asymmetric 

regions of the damping and stiffness matrices. 

The application of the characterisation method presented here is illustrated using two 

case studies. The first of these is carried out on the computer model of a 4-DOF rigid 

rotor. With this case study, the theoretical feasibility of the method is demonstrated and 

its accuracy in the absence of measurement noise is evaluated. 

The second case study deals with the characterisation of an industrial test-rig. With this 

case study, some of the problems related to the practical application of the proposed 

characterisation method are highlighted. The discussions regarding the use of the 

method in this case study are focused on: (a) the effects of measurement noise and of 

the existence of close modes of vibration on the accuracy of the identified modal 

parameters; (b) the process of selecting the DOFs used to derive the model of the test-

rig; (c) the use of the method for the prediction of the response caused by excitation 
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forces applied at different DOFs, and (d) the advantages and disadvantages of using 

simplifying assumptions about the relationships between the right and left eigenvectors. 

6.2   Conclusions 

The conclusions stated in this Section are based on the objectives of the thesis, which 

were established in Chapter 1. The conclusions associated with the intermediate 

objectives (i) to (vi) will be presented first, followed by those corresponding to the main 

objective of the thesis. 

• Conclusions with respect to objective (i): To develop a strategy for the modelling of 

rotating machinery that facilitates their study through a structural dynamics approach. 

It is possible to model rotating machinery as structural assemblies of rotating and non-

rotating components. This modelling strategy allows us to identify the points, or more 

generally the DOFs, at which the forces that may contribute to the skew-symmetric 

components of the damping and stiffness matrices can originate. With this information, 

it is possible to delimit the asymmetric portions of these matrices. 

These asymmetric portions consist of those entries of the matrices that are associated 

with the DOFs of the machine components that either rotate or support rotating 

components directly. 

This modelling strategy facilitates the study of rotating machinery structures, since it 

enables the use of the symmetric portions of the damping and stiffness matrices to 

simplify the relationships that exist between the spatial and modal parameters of these 

systems. 
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• Conclusions with respect to objective (ii): To derive the mathematical relationships 

that exist between the spatial and the modal parameters of rotating machinery 

structures. 

The derivation of exact relationships between the spatial and modal parameters of 

rotating machinery structures requires an elimination of any arbitrary scaling factor used 

in the description of the right and left eigenvectors. This can be achieved through the 

use of the normalised versions of the eigenvectors. 

The relationships between the spatial and the modal parameters can be expressed in 

terms of the spatial and modal representations of the receptance, mobility, accelerance 

and jerk matrices corresponding to (a) a low frequency limit for the excitation forces, 

which was defined as zero in the thesis, and (b) a high frequency limit, which was 

defined as a frequency well above the highest resonant frequency of interest, so that the 

response corresponding to this value of the excitation frequency could be considered 

equivalent to that corresponding to an infinitely-high excitation frequency. The derived 

relationships between the spatial and modal parameters are based on the spatial and 

modal representations of: 

(a) the receptance matrix associated with an excitation frequency equal to the low 

frequency limit; 

(b) the mobility matrix associated with an excitation frequency equal to either the 

low or high frequency limits; 

(c) the inertance matrix associated with an excitation frequency equal to the high 

frequency limit , and 
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(d) the matrix that expresses the effect of damping on the rate of change of 

acceleration, called the jerk matrix, for an excitation frequency equal to the high 

frequency limit . 

• Conclusions with respect to objective (iii): To develop a method for the computation 

of the left eigenvectors of rotating machinery structures. 

The computation of the left eigenvectors of rotating machinery structures can be based 

on: 

(a) the relationships that exist between the spatial and modal parameters; 

(b) knowledge of the number of DOFs associated with the symmetric regions of the 

damping and stiffness matrices, and 

(c) the measurement of one complete column of the FRF matrix, plus a number of 

elements from one of its rows.  

The combination of (a) and (b) allows us to establish relationships between the modal 

parameters of rotating machinery structures. These relationships were given in Section 

4.5.1.2. 

The computation of the left eigenvectors can be based on supplementing the 

measurements of the FRFs with these relationships, so that the number of FRF 

measurements that are needed to determine those parameters can be minimised. 

The combined use of  (a), (b) and (c) enables us to derive a linear system of equations in 

which the unknowns are the elements of the left eigenvectors, and the coefficients that 

define each of the equations can be determined directly from the measured FRFs. 



138 

The solution to the system of equations can be carried out with conventional 

procedures. The generalised pseudo-inverse matrix method [3] was used in the 

examples presented in the thesis. 

• Conclusions with respect to objective (iv): To determine the conditions in which 

simpler measurement schemes than the ones currently used for the modal testing of 

rotating machinery structures can be devised. 

In most cases, the complete modal characterisation of rotating machinery structures can 

be carried out without the need to measure a complete row of their FRF matrices, 

provided that not every DOF of the system is associated with the asymmetric portions 

of the damping and stiffness matrices. 

In general, the number of elements of the FRF matrix that need to be measured depends 

on the total number of DOFs of the system and on the number of these DOFs associated 

with the asymmetric portions of the damping and stiffness matrices. If these numbers 

are known, then it is possible to compute how many row elements of the FRF matrix are 

required to determine the complete modal model. 

The number of left eigenvector elements that need to be determined directly from 

measured data grows with the size of the asymmetric regions of the spatial property 

matrices. For this reason, rotating machinery structures in which only a few of the 

DOFs lie on its rotating components can be identified with fewer FRF measurements 

than can systems of the same order but with a larger number of DOFs lying on their 

rotating components. 

The modal parameters of systems in which only one spatial property matrix is 

asymmetric can be identified from measurements of just one column of the FRF matrix. 
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A closed-form solution was obtained for these cases, which include the important class 

of damped gyroscopic systems. 

• Conclusions with respect to objective (v): To design a method for the modal 

characterisation of rotating machinery structures. 

The modal characterisation of rotating machinery structures may be based on the 

relationships found between the modal parameters and the computational method used 

to determined the left eigenvectors. The method presented in the thesis consists of the 

steps given in Section 4.9. 

• Conclusions with respect to objective (vi): To evaluate the applicability of the 

method to practical systems. 

The use of the characterisation method presented in the thesis requires representing a 

rotating machine structure using a truncated model. Thus, it may be applied to practical, 

continuous systems, provided that their dynamic response within the frequency range  

of interest can be closely represented through the superposition of a finite number of 

modal components. 

The accuracy with which the left eigenvectors can be determined is affected by the 

accuracy with which the modal constants of the relevant modes can be determined from 

the measured data. This accuracy is in turn affected by the presence of noise in the 

measurements.  

The effects of measurement noise are likely to be more prominent for the DOFs at 

which the response amplitudes were small, or for frequency regions in the vicinity of 

close modes.  



140 

In spite of the effects of noise, the values of the left eigenvectors determined through the 

proposed method are suitable for the prediction of a complete row of the FRF matrix. 

Neglecting the presence of damping or circulatory forces in a system, in order to 

simplify the prediction of the left eigenvectors, may lead to considerable errors in their 

determined values. This was demonstrated here through the prediction of FRFs 

corresponding to excitation at locations other than that used to perform the 

measurements. 

The effective independence algorithm can be used to determine which DOFs should be 

considered in order to produce accurate estimations of the left eigenvectors based on 

measured FRF data. 

Although the use of a non-optimal set of DOFs degrades the quality of the predicted 

parameters, this practice can be resorted to in cases where it is important to consider a 

specific DOF that was not ranked within the optimal set through the effective 

independence algorithm. 

• Conclusions with respect to the main objective of the research work: to simplify the 

modal testing procedure, with respect to existing ones, by means of which the modal 

parameters of rotating machinery structures are determined from measured response 

data. 

The modal characterisation method that was developed as part of this work enables a 

reduction in the number of measurements required for the identification of the modal 

parameters of rotating machinery structures. Moreover, the measurements that can be 

avoided through the use of this method are those that have been deemed the most 

problematic in existing measurement schemes, due mainly to limitations of the current 
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techniques for the application of excitation forces onto rotating components, and for the 

measurement of these forces. 

The work that has been presented in this thesis demonstrates that it is possible to 

characterise the dynamic behaviour of rotating machines using a structural dynamics 

approach.  

The developments that constitute this work enable a significant reduction of the time 

and effort required to perform the modal characterisation of rotating machinery 

structures. 

6.3   Recommendations for future work 

The work that has been presented in this thesis covers the theoretical formulation and 

validation of a modal characterisation method for rotating machinery structures. Further 

improvements to the method may result from research work regarding the following 

issues: 

(a) characterisation of systems with close modes, 

(b) use of residuals for the analysis of continuous systems using truncated models, 

and 

(c) diversification of the experimental trials. 

These issues will be described in more detail in the following Sections. 

6.3.1   Characterisation of systems with close modes 

It was discussed in Chapter 5 that the accuracy with which the left eigenvectors are 

estimated is affected by the existence of close structural modes. It is important to take 
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this effects into account, since it is likely that rotating machinery structures possess 

modes of this kind due to the axisymmetric construction of some of their components, 

especially the rotating ones. 

The accuracy with which the all the left eigenvectors of a rotating machine are 

estimated is affected by the accuracy with which the eigenvalues and the right 

eigenvectors of the close modes are determined from the measured FRF data.  

A possible continuation of the work presented here is to modify the procedures for the 

selection of DOFs to be used in the computation of the left eigenvectors, so that they 

allow us to identify the right eigenvectors and eigenvalues associated with the close 

modes with the highest possible accuracy. 

6.3.2   Use of residuals for the analysis of continuous systems 

In the study of non-rotating structures, the use of residual modes may greatly improve 

the frequency response characteristics of a model, so that it more closely matches those 

of the physical system that it represents.  

In a similar way, residuals may be used to improve the representation of a rotating 

machine structure through a finite order model. Thus, it may be possible to improve 

estimations of the left eigenvectors in cases where there is significant influence from 

modes lying outside the frequency range of interest.  

The inclusion of residual modes in the computation of the left eigenvectors may be 

particularly useful in cases where the dynamic behaviour of a rotating machine structure 

cannot be satisfactorily described, within the frequency range of interest, in terms of the 

components of vibration associated with the modes whose natural frequencies fall 
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within this range. This can occur, for example, when the natural frequencies of the out-

of-range modes are close to one of the limits of the frequency range of interest. 

The identification of residues is a standard feature in some commercial modal analysis 

packages1. Hence, an immediate continuation of the work presented here consists of 

determining a way in which the information regarding residual modes can be 

incorporated into the computation of the left eigenvectors. 

6.3.3   Diversification of the experimental trials 

Although the characterisation method presented in this thesis was demonstrated to be 

theoretically sound, its development into a reliable engineering tool requires further 

verification through experimental trials conducted under different conditions. 

Specifically, the use of the method for the characterisation of different types of rotating 

machinery structures, in which the asymmetry of both the damping and stiffness 

matrices is broken by the effects of circulatory forces, would be a valuable aid in 

understanding not only the potential of the method, but also its practical limitations. 

This would also enable the development of corrective procedures for the results 

obtained through it and a better assessment of its overall accuracy under different 

scenarios. 

                                                 

1 For example, the Imperial College Analysis and Testing Software (ICATS) 
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Appendix A 

Row elements of the FRF matrix required for 
computation of the left eigenvectors 

Table A.1 presents the number of row elements of the FRF matrix, q , required for 

computation of the left eigenvectors of systems with 15 DOFs ( 15N = ) for cases with 

different sizes of the asymmetric regions of the damping and stiffness matrices, 

represented by the parameters cn and kn , respectively. 

The value of q  is that required to simultaneously satisfy the three inequalities  (4.56)-

(4.58), which are restated here as (A.1)-(A.3): 

1q ≥                                                                                   (A.1) 

 2 2 1c kq n n N≥ + − +                                                     (A.2) 

 ( ) ( )max , 2 min ,c k c kq n n N n n ≥ − −                          (A.3) 

Table A.1  - Required row elements, q , of the FRF matrix for a 15-DOF system 

 
 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 
6 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 
7 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 
8 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3 
9 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 
10 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 
11 1 1 1 1 1 1 1 1 1 1 3 4 5 6 7 
12 1 1 1 1 1 1 1 1 1 2 4 6 7 8 9 
13 1 1 1 1 1 1 1 2 2 3 5 7 9 10 11 
14 1 1 1 1 1 2 2 3 3 4 6 8 10 12 13 
15 1 2 2 2 2 3 3 3 4 5 7 9 11 13 15 

kn  
cn  
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The coloured areas in the previous Table indicate which of the three inequalities 

requires more FRF row element measurements to be satisfied, and hence determines the 

value of q  for each specific case.  

The blue coloured areas correspond to the values of cn and kn  for which inequality 

(A.1) imposes the highest value of q . Similarly, the yellow and pink areas correspond 

to the cases in which the highest value of q  is that required to satisfy inequalities (A.2) 

and (A.3), respectively. 

As can be seen from the Table, in most cases it is possible to determine the left 

eigenvectors with the measurement of only one row element of the FRF matrix, in 

addition to the measurement of one complete column. For systems in which the 

asymmetric regions of the damping and stiffness matrices are associated with greater 

numbers of DOFs, more row elements of the FRF matrix are required to determine the 

left eigenvectors. The extreme case is that in which these regions of the system property 

matrices are associated with every DOF ( c kn n N= = ). In this case, a complete row of 

the FRF matrix must be measured, apart from a complete column, in order to determine 

the left eigenvectors. This corresponds to the requirements of the ‘column-row’ method 

described in Chapter 1.  
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Appendix B 

Relationship between the modal constants of 
hysteretically- and viscously-damped system 
models 
 

In a hysteretically damped system model, the receptance FRFs are expressed as a sum 

of modal components of the form: 

( )

( )2 2
1 1

N A

i
α ω

ω η ω=
=

+ −∑ r jk
jk

r rr
                                          (B.1) 

where ω  is the excitation frequency, ωr  and ηr  are the natural frequency and 

hysteretic damping constant of the r th mode, respectively, and *Ar jk  is its 

corresponding modal constant for the j th response measurement location and the k th 

excitation location.  

Similarly, in a viscously damped system model, the receptance FRFs are expressed as a 

sum of modal components of the following form: 

( )

*

*
1

N A A
i i

α ω
ω λ ω λ=

  = +  − −  
∑ r rjk jk

jk
r rr

                                         (B.2) 

where ω  is the excitation frequency, λr  is the natural frequency and viscous damping 

constant of the r th mode, respectively, and *Ar jk  is its corresponding modal constant 

for the j th response measurement location and the k th excitation location.  
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For any given system, two sets of modal constants can be determined separately, 

depending on whether the system is assumed to be hysteretically or viscously damped. 

However, for lightly damped systems, a relationship between both sets of constants that 

is valid near the modal resonances can be established. 

If the hysteretically and viscously damped representations of a specific modal 

component of a receptance FRF, say that of the r th mode, are equated then the relevant 

modal constants should satisfy the equation: 

 
( )

*

2 2 *1

A A A
ii iω λω η ω ω λ

= +
−+ − −

r r rjk jk jk

rr r r
                             (B.3) 

For lightly damped systems, this expression may be rewritten as: 

( ) ( )

*

2 2

A A A
i iω ω ω ωω ω

≈ +
− +−

r r rjk jk jk

r rr
                             (B.4) 

Furthermore, near the resonance of the r th mode this expression may be further 

simplified: 

2
A

A
i ω

≈
r jk

r jk
r

                                                 (B.5) 

Thus, given the modal constants that correspond to either a hysteretically or a viscously 

damped system model, those for the other type of model may be directly determined 

using Equation (B.5). 
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Appendix C 

Modal parameters of the “windmill test-rig” 

Modal parameters of the windmill test-rig obtained from one column of the FRF matrix 

corresponding to an excitation applied at DOF 25 with the main rotor spinning at 813 

rev/min in a counter-clockwise (CCW) sense, as seen from the bulkhead side. 

TABLE C.1 – Modal parameters of the “windmill test-rig” 
MEASURED 
λr   [rad/sec] 

MEASURED 
{ }RΦ

r
, CCW 

MEASURED 
{ }LΦ

r
, CCW MODE 

r  
REAL IMAG 

DOF 
MAG ANGLE MAG ANGLE 

1 -0.5957 32.8607 

6 
13 
23 
24 
25 
26 

    0.0021 
    0.0182 
    0.0535 
    0.0055 
    0.0249 
    0.0260 

  137.3000 
  132.8900 
  131.5200 
  164.8300 
  -45.0200 
  133.8200 

    0.0019 
    0.0183 
    0.0539 
    0.0050 
    0.0249 
    0.0264 

  133.96 
  135.07 
  135.23 
   99.61 
  -45.02 
  135.16 

2 -0.6367 59.6812 

6 
13 
23 
24 
25 
26 

    0.0159 
    0.0019 
    0.0043 
    0.0474 
    0.0131 
    0.0137 

  129.6600 
 -128.7300 
  -35.5200 
  125.1400 
  -45.6800 
  -62.3800 

    0.0164 
    0.0018 
    0.0062 
    0.0483 
    0.0131 
    0.0148 

  141.35 
   16.62 
  -35.52 
  140.79 
  -45.68 
  -31.28 

3 -0.5212 108.4761 

6 
13 
23 
24 
25 
26 

    0.0083 
    0.0112 
    0.0290 
    0.0072 
    0.0119 
    0.0121 

 -175.3200 
   98.3400 
  -79.9900 
  -14.2300 
  -44.4900 
   64.8700 

    0.0088 
    0.0116 
    0.0304 
    0.0064 
    0.0119 
    0.0128 

   85.74 
  174.21 
   -1.27 

  -46.28 
  -44.49 
 -151.63 

4 -0.7350 134.7384 

6 
13 
23 
24 
25 
26 

    0.0136 
    0.0041 
    0.0144 
    0.0224 
    0.0096 
    0.0110 

  108.1800 
 -154.5500 
   19.0000 
  -64.5200 
  -49.3100 
  -86.3800 

    0.0107 
    0.0013 
    0.0110 
    0.0150 
    0.0096 
    0.0092 

  136.80 
  121.89 
  -84.07 
   32.25 
  -49.31 
  -47.84 

5 -0.7333 136.3928 

6 
13 
23 
24 
25 
26 

    0.0092 
    0.0033 
    0.0083 
    0.0108 
    0.0086 
    0.0088 

  135.1900 
 -145.6300 
   46.4900 
  -42.9500 
  -36.6700 
  -56.7200 

   0.0117 
    0.0072 
    0.0125 
    0.0315 
    0.0086 
    0.0148 

  161.05 
   50.95 

 -146.91 
  -84.98 
  -36.67 
   11.27 

6 -0.7799 169.6593 

6 
13 
23 
24 
25 
26 

    0.0004 
    0.0076 
    0.0043 
    0.0009 
    0.0049 
    0.0053 

   74.7500 
  -40.8900 
  -32.1000 
  -98.0000 
  -44.5200 
  143.9000 

    0.0011 
    0.0091 
    0.0056 
    0.0025 
    0.0049 
    0.0071 

 -110.47 
  -24.96 
  -26.80 
   -8.95 

  -44.52 
  119.12 

r = Mode number, λr  = Eigenvalue, { }RΦ r = Right eigenvector, { }LΦ r = Left eigenvector 
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