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Hematite (Figure 1) has emerged as a promising photoanode material for photoelectrochemical (PEC) hydrogen

production." However, a-Fe,0; has a limited efficiency due to fast electron-hole recombination and slow water
oxidation kinetics.? In this poster, a hole scavenger, methanol, is used as alternative oxidation reaction in the |
photoanode in order to improve the oxidation kinetics on a-Fe,0;. Additionally, a recent paper by Hamann and co- &4
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workers.” showing a competition between methanol and water oxidation reactions on hematite is discussed.  fi5\,ve 1. SEM of APCVD a-Fe,05
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