

PEROVSKITE ENVIRONMENTAL STABILITY: EFFECTS OF ION TUNING

Sebastian Pont,^a Daniel Bryant,^{a,b} Nicholoas Aristidou,^a Chieh-Ting Lin,^a Scot Wheeler,^a Robert Godin,^a Saif Haque,^a and James Durrant^{*a,b}

^a Department of Chemistry, Imperial College London, SW7 2AZ. bSPECIFIC, Swansea University, SA2 7AX.

**Imperial College
London**

CONCLUSIONS

• Tuning halides & organic cation is not effect at inhibiting light + oxygen instability.

- High power conversion efficiency > 22% solar
- Low raw material and processing costs
- Long term stability > 25 years

Moderate environmental stability is likely required for long term applications due to imperfect encapsulation. Previously we've shown Light + $O₂$ degrades MAPI rapidly, compared to all other environmental conditions (right).^[1,2]

Here we ask can we improve light + O_2 stability by tuning perovskite ions?^[3]

$MAP(I_{1-x}Br_X)_3 - O_2 + LIGHT STABILITY$

- Superoxide generation is independent of halide ratio but greater thermodynamic stability of MAPBr inhibits superoxide degradation.
- MAPBr shows great potential for environmentally stable high voltage perovskite devices or for use in four terminal tandem solar cells.
- 1.00 $FTO/TiO₂^{bl+meso}/MAPb(I_{1-x}Br_x)₃/P3HT/Au$ Optical Degradation (norm) $\mathbf{\Omega}$ increasing 0.8 1 0.75 Normalized PCE $x = 1$ 0.6 0.10 -0.00 $0.50 -$ 0.4 \ 0.25 0.2 $0.25 -$ 0 0.5 0.75 0.0 $0.00 +$ 0 1 2 3 4 5 6 0 1 2 $\frac{1}{t}$ (days) 0 1 2 3 4 5 t (days)
- 3. MAPBr XRD stable in light and O_2 .

Financial support from Solvay and EPSRC is gratefully acknowledged. [1] Aristidou N, et al. Angew Chemie Int Ed. 2015;54(28):8208–12. [2] Bryant D, et al. Energy Environ Sci. 2016;9(5):1655–60. [3] Pont S, et al. J Mater Chem A. 2017;5(20):9553–60.

Engineering and Physical Sciences Research Council

INTRODUCTION

Perovskite commercialisation challenges:

- Optical degradation of $MAP(I_{1-x}Br_x)_3$ in dry air + light, monitored with a CCD camera (below left), shows instability for all ratios excepts $\mathsf{MAPBr}_{3}.$
- Two-phase of degradation seen for x ≤ 0.5, suggesting separate degradation of Br⁻ and I⁻ rich regions.
- The MAPBr₃ device has improved stability however, $x \le 0.75$ devices have similar stability (below right). Photo-bleaching of the P3HT in the degraded

XRD agrees with optical results. Schematic describes reaction mechanism of mixed halide in $hv + O_2$:

- Superoxide generation rate independent of halide ratio.
-
- Increased thermodynamic stability of MAPBr inhibits superoxide degradation
- Transient absorption spectroscopy (TAS) shows oxygen quench long lived charges in MAPBr corroborate the result of the superoxide
	- $MAP(I_{1-x}Br_{x})_{3} + hv + O_{2} \rightarrow O_{2}^{-} \rightarrow unstable$ $MAPBr_3 + hv + O_2 \rightarrow O_2^- \rightarrow stable$

 \times 2
 $\frac{x=0}{0}$
 \times 20.2

 $x=0.2$

X-Ray Diffraction

- Pristine films show the clear trend of tetragonal (220) to cubic (200) peaks.
- After degradation 3 major results:
- 1. Peak height reduce for $x < 1 -$ crystal degrading.
- 2. Peak angle increases for mixed halide films.

 $MAPBr₃$ device suggests the HTL is limiting stability, not the perovskite.

SUPEROXIDE GENERATION

