COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

How

Simulatio types

Classical simulation

First step

How to write a report

INTRODUCTION to the Computational Laboratory

Giuseppe Mallia g.mallia@imperial.ac.uk

Imperial College London - Chemistry Department Thomas Young Centre: the London Centre for Theory and Simulation of Materials

AUTUM 2014

Outline

COMP LAB

- G. Mallia
- Timetable Deadline
- Aims Systems
- Vibrations
- How
- Simulation types
- Classical simulation
- First step
- How to write a report

- **1** TIMETABLE and DEADLINE
- 2 AIMS and SYSTEMS
- 3 VIBRATIONS
- 4 HOW
- 5 SIMULATION TYPES
- 6 CLASSICAL SIMULATION
- 7 FIRST STEP
- 8 HOW TO WRITE A REPORT

TIMETABLE and DEADLINE

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

How

Simulatio types

Classical simulation

First step

How to write a report

1	Session	Start Date	End Date	Report Deadline		
	1	13/10/2014	17 / 10 / 2014	24 / 10 / 2014		
	2	27/10/2014	31 / 10 / 2014	07 / 11 / 2014		
	3	10/11/2014	14 / 11 / 2014	21 / 11 / 2014		
	4	24/11/2014	18 / 11 / 2014	05 / 12 / 2014		
	5	08/12/2014	12 / 12 / 2014	19 / 12 / 2014		

TIMETABLE and DEADLINE

COMP LAB

Timetable Deadline

	Session	Start D	ate	End Date			Report Deadline						
	1	13/10/2	014	17 / 10 / 2014			24 / 10 / 2014						
	2	27/10/2	014	31 / 10 / 2014			07 / 11 / 2014						
	3	10/11/2014		14 / 11 / 2014			21 / 11 / 2014						
	4	24/11/2014		18 / 11 / 2014			05 / 12 / 2014						
	5	08/12/2014		12 / 12 / 2014			19 / 12 / 2014						
Mon Tue Thur Fri													
	Demonstrator					Tu	е	Thur	Fri				
				1:00-4:00		:		\odot	:				

DEADLINE:

when? 12:00am on next Friday where? Blackboard - bb.imperial.ac.uk

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

How

Simulatio types

Classical simulation

First step

How to write a report

- to predict how the material expands when heated;
- to calculate the thermal expansion coefficient: $1 (\partial V)$

$$\alpha = \frac{1}{V_0} \left(\frac{\partial V}{\partial T} \right)_P$$

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

How

Simulatio types

Classical simulation

First step

How to write a report

- to predict how the material expands when heated;
- to calculate the thermal expansion coefficient:
 - $\alpha = \frac{1}{V_0} \left(\frac{\partial V}{\partial T} \right)_P$
- QUASI-HARMONIC APPROXIMATION (LD)

to compute vibrational energy levels of MgO; to understand the **phonon dispersion** of a material and the vibrational density of state;

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

How

Simulatio types

Classical simulation

First step

How to write a report

- to predict how the material expands when heated;
- to calculate the thermal expansion coefficient:

 $\alpha = \frac{1}{V_0} \left(\frac{\partial V}{\partial T} \right)_P$

QUASI-HARMONIC APPROXIMATION (LD)

to compute vibrational energy levels of MgO; to understand the **phonon dispersion** of a material and the vibrational density of state;

MOLECULAR DYNAMICS (MD)

to simulate the vibrations as random motions of atoms inside a cell;

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

How

Simulatio types

Classical simulation

First step

How to write a report

- to predict how the material expands when heated;
- to calculate the thermal expansion coefficient:

 $\alpha = \frac{1}{V_0} \left(\frac{\partial V}{\partial T} \right)_P$

QUASI-HARMONIC APPROXIMATION (LD)

to compute vibrational energy levels of MgO; to understand the **phonon dispersion** of a material and the vibrational density of state;

MOLECULAR DYNAMICS (MD)

to simulate the vibrations as random motions of atoms inside a cell;

to compare QUASI-HARMONIC APPROXIMATION with MOLECULAR DYNAMICS results.

SYSTEMS: MgO crystal (fcc)

COMP LAB

G. Mallia

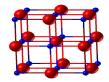
Timetable Deadline

Aims Systems

Vibrations

How

Simulatio types


Classical simulation

First step

How to write a report

IDEAL, NON DEFECTIVE, PERIODIC SYSTEM IN 3D

CONVENTIONAL CELL a_c=b_c=c_c; α_c, β_c, γ_c N_c: number of atoms V_c: volume

SYSTEMS: MgO crystal (fcc)

COMP LAB

G. Mallia

Timetable Deadline

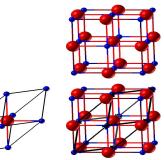
Aims Systems

Vibrations

How

Simulatic types

Classical simulation


First step

How to write a report

IDEAL, NON DEFECTIVE, PERIODIC SYSTEM IN 3D

CONVENTIONAL CELL a_c=b_c=c_c; α_c, β_c, γ_c N_c: number of atoms V_c: volume

PRIMITIVE CELL a_p=b_p=c_p; α_p, β_p, γ_p N_c: number of atoms V_p: volume

SYSTEMS: MgO crystal (fcc)

COMP LAB

G. Mallia

Timetable Deadline

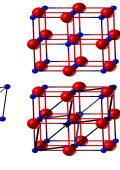
Aims Systems

Vibrations

How

Simulatic types

Classical simulation


First step

How to write a report

IDEAL, NON DEFECTIVE, PERIODIC SYSTEM IN 3D

- CONVENTIONAL CELL a_c=b_c=c_c; α_c, β_c, γ_c N_c: number of atoms V_c: volume
- PRIMITIVE CELL
 a_p=b_p=c_p; α_p, β_p, γ_p
 N_c: number of atoms
 V_p: volume

SUPERCELL $\mathbf{a}_s = \mathbf{b}_s = \mathbf{c}_s = 2 \times \mathbf{a}_c$ $\alpha_s, \beta_s, \gamma_s$ N_s : number of atoms V_s : volume

SYSTEMS II: lattice parameter of MgO

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

How

Simulatio types

Classical simulation

First step

How to write a report

What is the lattice parameter of MgO?

SYSTEMS II: lattice parameter of MgO

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

How

Simulatio types

Classical simulation

First step

How to write a report

What is the lattice parameter of MgO?

CONVENTIONAL CELL $\mathbf{a}_c = \mathbf{b}_c = \mathbf{c}_c; \ \alpha_c, \ \beta_c, \ \gamma_c$

SYSTEMS II: lattice parameter of MgO

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

How

Simulation types

Classical simulation

First step

How to write a report

What is the lattice parameter of MgO?

CONVENTIONAL CELL $\mathbf{a}_c = \mathbf{b}_c = \mathbf{c}_c; \ \alpha_c, \ \beta_c, \ \gamma_c$

SYSTEMS III

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

How

Simulation types

Classical simulation

First step

How to write a report

Is it possible to move from the CONVENTIONAL CELL to the PRIMITIVE CELL?

SYSTEMS III

COMP LAB

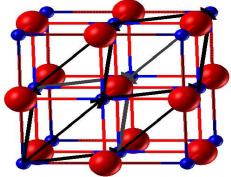
G. Mallia

Timetable Deadline

Aims Systems

Vibrations

How


Simulation types

Classical simulation

First step

How to write a report

Is it possible to move from the CONVENTIONAL CELL to the PRIMITIVE CELL?

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

How

Simulatic types

Classical simulation

First step

How to write a report

VIBRATIONS

VIBRATIONS: WHY ARE THEY IMPORTANT? ¹

COMP LAB

G. Mallia

Timetable Deadline

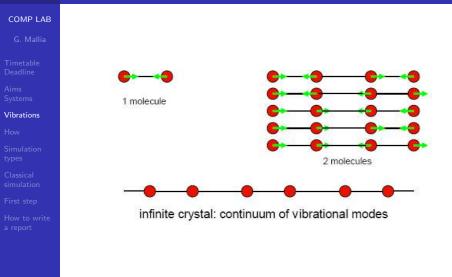
Aims Systems

Vibrations

How

Simulatic types

Classical simulatior


First step

How to write a report Atoms vibrate around their equilibrium positions.

- thermal properties: heat capacity, expansion
- phase transitions, including melting
- transport: thermal conductivity, sound
- electrical properties, e.g., superconductivity
- dielectric phenomena at low frequencies

¹From Prof N. M. Harrison's Lectrure Notes: Vibrations in crystals

VIBRATIONS: FROM A FINITE SYSTEM TO AN INFINITE SYSTEM ¹

¹From Prof N. M. Harrison's Lectrure Notes: Vibrations in crystals

VIBRATIONS: WAVELENGTH - WAVEVECTOR ¹

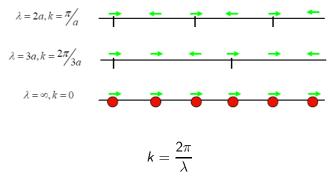
COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations


How

Simulatio types

Classical simulatior

First step

How to write a report

In this case, as k increases, the energy of vibration increases and the frequency too.

¹From Prof N. M. Harrison's Lectrure Notes: Vibrations in crystals

VIBRATIONS: PHONON DISPERSION ¹

COMP LAB

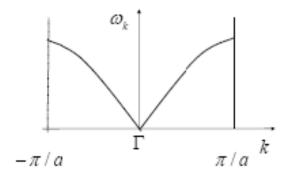
G. Mallia

Timetable Deadline

Aims Systems

Vibrations

How


Simulatio types

Classical simulation

First step

How to write a report

VIBRATIONAL FREQUENCY ω AS A FUNCTION OF ${\bf k}$

¹From Prof N. M. Harrison's Lectrure Notes: Vibrations in crystals

VIBRATIONS: PHONON DISPERSION ¹

COMP LAB

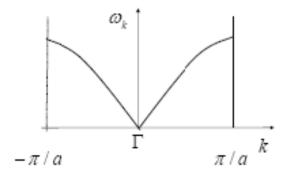
G. Mallia

Timetable Deadline

Aims Systems

Vibrations

How


Simulatio types

Classical simulatior

First step

How to write a report

VIBRATIONAL FREQUENCY ω AS A FUNCTION OF ${\bf k}$

SIMILARLY, ELECTRONIC BAND STRUCTURE OF THE HYDROGEN POLYMER

¹From Prof N. M. Harrison's Lectrure Notes: Vibrations in crystals

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

How

Simulatio types

Classical simulation

First step

How to write a report

electron: WAVE or PARTICLE radiation: WAVE or PARTICLE

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

How

Simulatio types

Classical simulation

First step

How to write a report

electron: WAVE or PARTICLE radiation: WAVE or PARTICLE (photon)

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

How

Simulatio types

Classical simulatior

First step

How to write a report

electron: WAVE or PARTICLE radiation: WAVE or PARTICLE (photon) vibration: WAVE or PARTICLE

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

How

Simulatio types

Classical simulatior

First step

How to write a report

electron: WAVE or PARTICLE radiation: WAVE or PARTICLE (photon) vibration: WAVE or PARTICLE (phonon)

VIBRATIONS: 1D MONOATOMIC CHAIN (OR POLYMER)¹

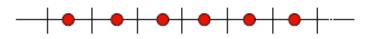
COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations


How

Simulatio types

Classical simulation

First step

How to write a report

INFINITE NUMBER OF VIBRATIONS \rightarrow **BRANCH**

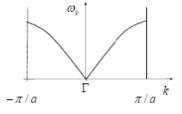
VIBRATIONS: 1D MONOATOMIC CHAIN (OR POLYMER)¹

Aims INI

Vibrations

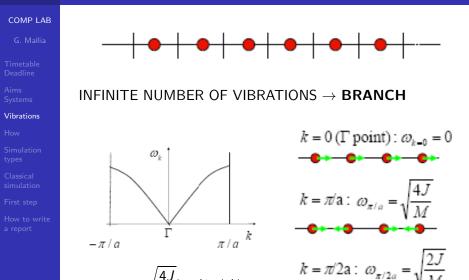
COMP LAB

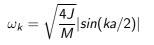
How


Simulatic types

Classical simulatior

First step


How to write a report


INFINITE NUMBER OF VIBRATIONS \rightarrow **BRANCH**

$$\omega_k = \sqrt{\frac{4J}{M}} |sin(ka/2)|$$

VIBRATIONS: 1D MONOATOMIC CHAIN (OR POLYMER)¹

VIBRATIONS: DIRECT AND RECIPROCAL SPACE

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

How

Simulation types

Classical simulation

First step

How to write a report

1 PERIODIC DIRECTION IN THE DIRECT SPACE!

а

1 PERIODIC DIRECTION IN THE RECIPROCAL SPACE! $\mathbf{a}^* = \frac{2\pi}{\mathbf{a}}$

VIBRATIONS: 1D DIATOMIC CHAIN

COMP LAB

G. Mallia

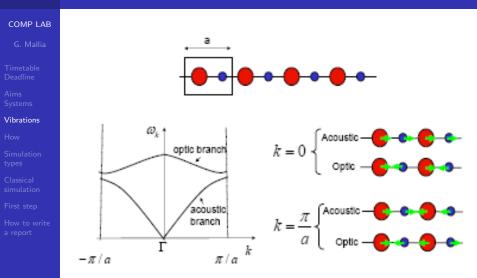
Timetable Deadline

Aims Systems

Vibrations

How

Simulatic types


Classical simulation

First step

How to write a report

(SIMILARLY TO THE POLYMER WITH H₂ PER CELL) FOLDING PROCESS!!!

VIBRATIONS: 1D HETERO DIATOMIC CHAIN ¹

¹From Prof N. M. Harrison's Lectrure Notes: Vibrations in crystals

VIBRATIONS: OPTIC AND ACOUSTIC MODES

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

How

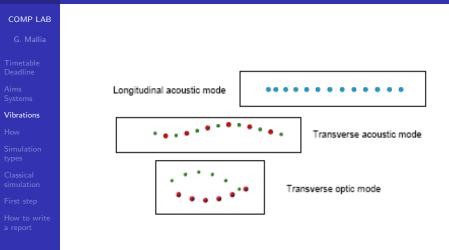
Simulation types

Classical simulation

First step

How to write a report

OPTIC:


1) has a frequency that is in the vicinity of the optical region of the electromagnentic spectrum

2) the atomic motions associated are the same as the response

to an oscillating electromagnentic field

ACOUSTIC: 1) has acoustic frequency

VIBRATIONS: LONGITUDINAL AND TRANSVERSE MODES ¹

¹From Prof N. M. Harrison's Lectrure Notes: Vibrations in crystals

VIBRATIONS: 3D HETERO DIATOMIC CRYSTAL ¹

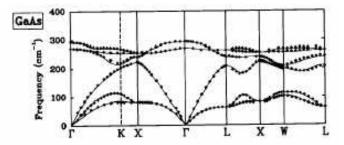
COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations


How

Simulatic types

Classical simulatior

First step

How to write a report

Neutron data for GaAs

¹From Prof N. M. Harrison's Lectrure Notes: Vibrations in crystals

HOW?

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

How

Simulation types

Classical simulation

First step

How to write a report

COMPUTATIONAL EXPERIMENT / SIMULATION

program

input

Environment:

the choice of the Operating System \rightarrow **linux**

Interface:

 $\mathbf{DLV} = \mathsf{package}$ for the visualisation of materials structures and properties.

SIMULATION TYPES

COMP LAB

G. Mallia

Timetable Deadline

Aims System

Vibrations

How

Simulation types

Classical simulation

First step

How to write a report

$\label{eq:schroedingerequation} \begin{array}{l} \mbox{CLASSICAL SIMULATION} \\ \mbox{Newton law} \rightarrow GULP \\ \mbox{QUANTUM-MECHANICAL SIMULATION} \\ \mbox{Schroedinger equation} \rightarrow CRYSTAL \end{array}$

Systems under investigation Properties Accuracy Computational time Resources

COMP LAB

G. Mallia

Timetable Deadline

Aims System:

Vibrations

How

Simulatic types

Classical simulation

First step

How to write a report

CLASSICAL SIMULATION

INTERATOMIC POTENTIAL

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

How

Simulatic types

Classical simulation

First step

How to write a report coulombic interaction

short term repusilve contribution

Morse-like potential

QUASI-HARMONIC APPROXIMATION ¹

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

How

Simulatio types

Classical simulation

First step

How to write a report

HELMHOLTZ FREE ENERGY

$$F = E_0 + \frac{1}{2} \sum_{k,j} \hbar \omega_{j,k} + k_B T \sum_{k,j} \ln \left[1 - \exp(-\hbar \omega_{j,k} / k_B T) \right]$$

¹From Prof N. M. Harrison's Lectrure Notes: Vibrations in crystals

QUASI-HARMONIC APPROXIMATION I

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

How

Simulatio types

Classical simulation

First step

How to write a report

HELMHOLTZ FREE ENERGY

F = E - TS

F = F(T, V)

MOLECULAR DYNAMICS ¹

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

How

Simulatio types

Classical simulation

First step

How to write a report Initial configuration and initial velocities: the initial configuration will be that of ideal MgO the velocities will be random but scaled to produce roughly the target temperature.

- Compute the forces on the atoms (F).
- Compute the accelerations a=F/m
- Update the velocities: Vnew = Vold + a * dt
- Update the positions of the atoms: Rnew = Rold + Vnew
 * dt
- Repeat until average properties like E and T settle down

Once settled measure some properties.

¹From Prof N. M. Harrison's Lectrure Notes: Vibrations in crystals

GEOMETRY OPTIMIZATION I

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

How

Simulatio types

Classical simulation

First step

How to write a report

What does it mean?

GEOMETRY OPTIMIZATION I

COMP LAB

G. Mallia

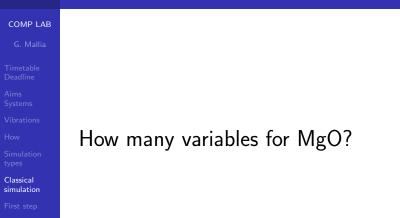
Timetable Deadline

Aims Systems

Vibrations

How

Simulatic types


Classical simulation

First step

How to write a report

What does it mean? Minimization of the energy as a function of the atomic position $(x_i, y_i, z_i, \text{ with } i = 1, N,$ and N is the number of atoms) and of the lattice parameters $(\mathbf{a}, \mathbf{b}, \mathbf{c}, \alpha, \beta, \gamma)$

GEOMETRY OPTIMIZATION II

How to write a report

FIRST STEP

COMP LAB

- G. Mallia
- Timetable Deadline
- Aims Systems
- Vibrations
- How
- Simulatio types
- Classical simulatior
- First step
- How to write a report

- **1** Restart the PCs that are running Windows;
- 2 Once you have a black screen with the following line: > **boot:**
 - Type linux
 - > **boot:** linux
 - Press Enter
- 3 Use your login and passwd as in Window
- 4 Open firefox: the web browser
- 5 http://www.ch.ic.ac.uk/harrison/Teaching/teaching.html

		(mart)	
🛚 • 🧼 • 🥑 💿 🏠 🔤 http://www.ch.ic.ac.uk/harrison/Teaching/teaching.html	*	G• Google	
omputational Laboratories			
omputational Laboratories			
The Thermal Expansion of MgO			

Done

HOW TO WRITE A REPORT I by Giulia C. De Fusco

COMP LAB

Introduction

- the system
- the methodology (theory in use)
- the aims of the exercise
- the tools in use (programs)

Body of the text

- write it like a scientific paper (well-articulated sentences, NOT a list of two-word answers)
- analyse critically obtained data and given answers
- round numerical answers to a specific number of decimal places (i.e. 4)
- add literature/web citations whenever a comparison with experimental data is required
- add explicitly every formula used one to obtain results
- check spelling

How to write a report

HOW TO WRITE A REPORT II by Giulia C. De Fusco

COMP LAB

- G. Mallia
- Timetable Deadline
- Aims Systems
- Vibrations
- How
- Simulatio types
- Classical simulation
- First step
- How to write a report

Pictures

- max 20
- reasonably sized (NOT one-page sized pictures, but still readable)
- white background (follow the instructions given on the website clicking on the link 'How to save a picture for your report')
- described in caption or in the text

Graphs

- add labels and units
- add a *critical* comment whenever required (NOT a merely descriptive comment)

HOW TO WRITE A REPORT III by Giulia C. De Fusco

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

How

Simulatio types

Classical simulation

First step

How to write a report

Tables

- add labels and units
- round numerical answers to a specific number of decimal places (i.e. 4)
- repeat heading if the table cannot fit in a single page

Conclusions

- give a general description of your calculations and your main findings
- outline the differences between the methods in use and the results obtained
- analyse critically these differences

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

How

Simulatic types

Classical simulatior

First step

How to write a report

THANK YOU!!!