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We present a new methodology for studying non-Hamiltonian nonlinear systems based on an

information theoretical extension of a renormalization group technique using a modified maximum

entropy principle. We obtain a rigorous dimensionally reduced description for such systems. The

neglected degrees of freedom by this reduction are replaced by a systematically defined stochastic

process under a constraint on the second moment. This then forms the basis of a computationally efficient

method. Numerical computations for the generalized Kuramoto-Sivashinsky equation support our method

and reveal that the long-time underlying stochastic process of the fast (unresolved) modes obeys a

universal distribution that does not depend on the initial conditions and which we rigorously derive by the

maximum entropy principle.
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Many nonlinear time-dependent problems in science
and engineering are too complex to be fully resolved,
and hence some degrees of freedom need to be neglected.
Popular examples of high-dimensional problems, which
can only be solved or studied by model reduction and
approximation, are models for weather and climate pre-
diction, cell biology processes, nonlinear networks, or
economics. These problems involve many different time
scales; e.g., oceans show a characteristic behavior over
years whereas atmosphere does over days. More generally,
any process governed by nonlinear partial differential
equations (PDEs) is infinite dimensional and hence
requires a reliable finite dimensional representation for
numerical purposes. This gives rise to the central question
of how can one systematically and reliably reduce the
complexity of such high-dimensional systems without
neglecting essential information contained in the unre-
solved or neglected degrees of freedom.

As in the case of weather and climate modeling, time-
scale separation is a central feature of many dissipative
processes in physical and industrial applications. Such a
scale separation can be conveniently expressed in Fourier
space by differentiating the so-called fast modes, which are
characterized with large wave numbers and converge
towards equilibrium much faster than the slow (low wave
number) modes. As a consequence, the long-time behavior
of the system is primarily contained in the latter. There are
several mode reduction techniques in the literature that
take advantage of such scale decomposition, including
deterministic methodologies such as adiabatic elimination
[1] and the classical center-manifold theory [2], which
usually requires the system to be close to criticality and
to equilibrium, i.e., close to an invariant solution that is
expected to be part of a finite-dimensional center manifold
[3]. A different line of thought follows the so-called sto-
chastic mode reduction strategies, where the aim is to

convert an infinite-dimensional deterministic dynamical
system (PDE) into a low-dimensional stochastic one. In
the case of Hamiltonian-like systems, there exist well-
known powerful techniques such as optimal prediction
and the Mori-Zwanzig formalism [4] for the derivation of
mode-reduced (low-dimensional) stochastic equations.
Both approaches make use of the existence of an invariant
or canonical probability distribution given by the
Hamiltonian structure. Other examples of these include
Ref. [5] where a Galerkin truncated Burgers-Hopf equation
is considered to obtain a Hamiltonian structure and a
canonical Gibbs measure.
However, a stochastic methodology available for prob-

lems that do not have a Hamiltonian structure does not
seem to exist. It is precisely our purpose to study this open
problem. To this end, we properly extend the evolutionary
renormalization group (ERG) method [6], which asymp-
totically defines equations for slow and fast modes,
towards a stochastic mode reduction by adapting the prin-
ciple of maximum information entropy (PMIE) [7] appro-
priately extended to PDEs, which allows us to extract the
relevant information from the fast modes to obtain a closed
equation for the slow modes only. Separation of scales
(slow or fast) can be physically justified by the presence
of dissipation. We observe that the ERG method provides a
systematic and rigorous (in terms of error estimates) tool to
separate a dissipative nonlinear problem into fast (w�) and
slow (v�) modes

@tv
� ¼ fðv�; w�Þ; @tw

� ¼ 1

�
gðv�; w�Þ; (1)

where the parameter 0< � � 1 measures the time scale
separation. It is important to note that in the aforemen-
tioned deterministic mode reduction strategies such as
invariant manifolds, one generally assumes that the model
of interest decomposes as Eq. (1) from the beginning
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without further specification � � 1. However, such a
decomposition and the associated definition of � needs to
be checked carefully from a practical and theoretical point
of view, and in particular for systems exhibiting spatio-
temporal chaos, it is expected that many characteristic
spatiotemporal scales can be present. A well-known
example of such systems is the generalized Kuramoto-
Sivashinsky (gKS) equation [8] which retains the funda-
mental ingredients of any nonlinear process involving
spatiotemporal transitions and pattern formation: nonline-
arity, instability or energy production, stability or energy
dissipation, and dispersion. In our methodology, we sys-
tematically define the parameter �, which mediates the
time scales and depends on the number of the resolved
degrees of freedom represented by v�. We can further place
our low-dimensional approximation on a solid theoretical
basis by rigorous error estimates [9] controlled by �.
Moreover, our stochastic mode reduction based on the
PMIE rigorously supports theoretically Stinis’s computa-
tional approach [10]. Using the dissipation property
defined by the renormalized fast modes, which implies
that the fast Fourier modes are independently distributed,
we show via PMIE that they are Gaussian distributed with
zero mean and variance �2 > 0. This leads to a rigorous
methodology to rationally and systematically derive sto-
chastic low-dimensional representations of deterministic,
nonlinear, and non-Hamiltonian PDEs and further explain
the arising randomness as the extracted information from
the neglected fast modes, which is important from the point
of view of noise-induced phenomena [11,12]. Finally, our
new stochastic mode reduction strategy rigorously sup-
ports the formal RG approach applied to the gKS equation
by Chow and Hwa [13].

General methodology: ERG and PMIE.—Consider dis-
sipative nonlinear PDEs of the form

@tu ¼ AuþF ðuÞ; (2)

where uðx; tÞ is a one-dimensional variable with space and
time dependence; A denotes a linear spatial differential
operator and F denotes a nonlinear term. For ease of
presentation, we consider deterministic initial conditions
(ICs) with high enough spatial regularity (i.e., differenti-
ability), and for simplicity, we restrict ourselves to periodic
boundary conditions. The ERG method consists in approx-
imating u :¼ vþ w by u� :¼ v� þ w�, where v� are the
slow and w� the fast modes, i.e.,

@tv
� ¼ Avv

� þ PNF ðv�; w�Þ;
@tw

� ¼ Aww
� þQNF ðv�; w�Þ; (3)

where PN and QN :¼ I � PN are the orthogonal projec-
tions to the first N Fourier modes and its complement. We
have also applied formally the notation Av :¼ PNA and
Aw :¼ �QNA where � :¼ 1=N� and �> 0 denotes the
highest order of spatial derivatives defined by the operator
A. The separation (3) can be made rigorous by error

estimates [9], which indicate how large one should choose
N > 0. Next, we insert the asymptotic expansion u� ¼
u0 þ �u1 þ �2u2 þ � � � into Eq. (3) reformulated for a
vectorial u� :¼ ½v�; w��0, leading to the ERG equation

@tU ¼ F RðUÞ; (4)

with Uð0Þ ¼ u0, which removes secular terms growing in
time (see e.g., Ref. [14] for classical homogenization with
respect to space). U is the RG solution, which turns out to
be the Galerkin approximation with N Fourier basis func-
tions, and also decomposes into slow V and fast W modes.
The resonant part F R of F is defined via

eL�F ðe�L�u0Þ �Av0 ¼: F Rðu0Þ þ ~F NRð�; u0Þ; (5)

where L is the system size, ~F NR represents the nonreso-
nant part, and � is the rescaled time. The slow variable V of
the RG Eq. (4) solves the standard Galerkin approximation
of Eq. (2) for 2N þ 1 modes, i.e.,

@tV ¼ AvV þ PNF ðVÞ: (6)

Putting things together finally leads to the renormalized
solutions

v� ¼ PNu
� ¼ VðtÞ þ �PFNRðt=�; UÞ; (7a)

w� ¼ QNu
� ¼ e�QNAt=�½WðtÞ þ �QFNRðt=�; UÞ�; (7b)

where FNRðs;UÞ :¼ R
s
0
~F NRð�;UÞd�. Note that the fast

modesW [required in Eq. (4)] are still infinite dimensional.
To obtain a finite-dimensional representation, we replace
w� with a random process that is defined by the original
(i.e., not renormalized) fast variable w�, which contains
more information about the dynamics. We obtain the
probability distribution for w� via PMIE by maximizing
the information entropy

S Iðfðw�
j ÞÞ :¼ �

Z

�
fðw�

j Þ log
�fðw�

j Þ
�ð!Þ

�
d! (8)

under the constraint

Z

�
fðw�

j Þ
d

dt
CNðw�

j Þd! ¼ �jðtÞ; (9)

where� is the space of events and fðw�
j Þ is the probability

density of the jth fast mode w�
j ðt; !Þ; �jðtÞ is a character-

istic dissipation rate, which for simplicity we approximate

by the jth Fourier mode ~WjðtÞ :¼ e��w
j t=�wjð0Þ of the

leading order term in Eq. (7b) by setting �jðtÞ :¼
d=dtCNð ~WjÞ :¼ �ð1=2Þd=dt ~W2

j . The measure � is defined

by prior or background knowledge on the system, such as
uncertainties associated with the model (which turns out to
be a uniform distribution after applying the PMIE), and the
stochastic process W defined via Eqs. (8) and (9) finally
leads to a random process for the solution v� in Eq. (7a).
The gKS equation.—We exemplify the above procedure

with the gKS equation, i.e.,
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A :¼ �ð@2x þ �@3x þ @4xÞ; F ðuÞ :¼ �u@xu;

defined on the periodic domain DL :¼� � L=2; L=2½. The
ERG provides the deterministic approximation [(7a) and
(7b)] via Eq. (6) and

PFNRðs;UÞ ¼ 2i	
X

jjj�N

eiðj=
Þx
X

kþl¼j
jkj�N<jlj

e��w
l
s

�w
l

Vk

j



Wl

þ i	
X

jjj�N

eiðj=
Þx
X

kþl¼j
jkj;jlj>N

e�ð�w
k
þ�w

l
Þs

�w
k þ �w

l

Wk

j



Wl;

where �w
l
:¼ �ð1=N�Þððl=
Þ2 þ i�ðl=
Þ3 þ ðl=
Þ4Þ are

the eigenvalues of Aw with eigenvectors eiðk=
Þx, and

 :¼ L=2�.

We choose CN½w�
j ðt; !Þ� :¼ �ð1=2Þðw�

j Þ2ðt; !Þ, and

hence from the solutions of the equation for w�
j we obtain

d

dt
CNðw�

j Þ ¼ �w
j ðw�

j Þ2 þ iw�
j

X

jkj�N
jj�kj>N

vk

j� k



w�

j�k:

Maximizing now the information entropy (8) under the
constraint of Eq. (9) [see Ref. [7], Chap. 9] leads to the
following probability density

fðw�
j Þ :¼

1

Zj

mj

1

�j

ffiffiffiffiffiffiffi
2�

p exp�ðw�
j ��jÞ2
2�2

j

;

where mj :¼ c�1
j �j

ffiffiffiffiffiffiffi
2�

p
exp��2

j=ð2�2
j Þ, and

�j :¼ i

2�w
j

X

jkj�N
jj�kj>N

v�
k

j� k



�j�k; �2

j
:¼ 1

2	j�
w
j

: (10)

Note that if one replaces Eq. (9) by
R1
�1 fðw�

j Þðw�
j Þ2d! ¼

�2, we get the classical result wj �N ð0; �2Þ. We apply

the PMIE with respect to the original dynamics w� in
Eq. (8) and hence added complete dynamical information
to the Fourier modes Wj of W in Eq. (10) leading to Wj �
N ð�j; �

2
j Þ. It follows from Eq. (10) and�j ¼ ��j, where

�j denotes the complex conjugate of �j, that �j ¼ 0 for

jjj>N, and the constraint (9) finally defines 	j ¼
1=ð2�jðtÞÞ where �jðtÞ ¼ d=dtCNð ~WjÞ ¼ �w

j e
�2�w

j tw2
j ð0Þ

for the dissipation rate in Eq. (9). For random ICs, the
above methodology carries over but w2

kð0Þ is replaced withhw2
kð0Þi, where brackets denote average over different ICs.
From the formula for fðw�

j Þ, we deduce that the

normalization constant, i.e. the partition function, is
Zj :¼ mj. On the basis of f, the distribution of the fast

renormalized variable Wðx; tÞ :¼ P
jjj>NWje

ij=
ðxþ2V0tÞ

can be determined as W �N ð�W;�
2
WÞ where �W :¼P

jjj>Ne
ij=
ðxþ2V0tÞ�j, and �2

W
:¼ P

jjj>Ne
i2j=
ðxþ2V0tÞ�2

j .

Using W �N ð�W;�
2
WÞ in Eq. (7a) gives the final result

of our stochastic mode reduction method. This result not
only offers a systematic way of accurately representing
deterministic equations with low-dimensional stochastic

ones but also allows for efficient computations, as we
only need to solve the reduced model and add the noise a
posteriori.
Numerical results and physical interpretations.—We

start by looking at the statistics of the fast modes by nu-
merically solving the gKS equation for 2�þ 1 Fourier
modes with � ¼ 2048, � ¼ 0:1, and using different types
of random ICs of the form u0ðxÞ ¼ a
ðxÞ, where 
ðxÞ
corresponds to either spatial white noise [i.e., h
ðxÞ
ðx0Þi ¼
2�ðx� x0Þ] with zero mean and unit variance or a uniform
distribution 
ðxÞ 2 ½�1; 1�. We also choose different val-
ues for the noise amplitude, namely, a ¼ 0:1, 1, 3, 6, and
perform 2000 noise realizations each. The spatiotemporal
solution of uðx; tÞ rapidly evolves into a complex dynamics
characterized by a chaotic behavior (see e.g., Ref. [8]).
Figures 1(a) and 1(c) show that after some time, the distri-
bution of the fast modes relaxes to a universal probability
density function (PDF) that is independent of the ICs and
corresponds to a Gaussian distribution N ð0; �2

kÞ. This

relaxation can also be seen by computing the evolution of
the entropy SI, observing that the final state is independent
of the ICs [cf. Fig. 1(b)]. Our results also suggest that the
variance of the fast modes has a k dependency, which is an
exponential decay as a consequence of dissipation.

FIG. 1 (color online). (a) Long-time behavior of fðwkÞ for the
first fast mode (k ¼ N þ 1) and five different ICs (represented
by different symbols). The solid line is a Gaussian PDF with
� ¼ 0 and � ¼ �Nþ1 ¼ 0:27. The inset (c) shows snapshots of
fðwÞ at t ¼ 0 (dashed line) and long times (solid line). (b) Time
evolution of the entropy SI for k ¼ N þ 1 and random initial
conditions of the form u0ðxÞ ¼ a
ðxÞ with a ¼ 1 for a uniform
distribution (U), and a ¼ 0:1, 1, 3, and 6 for a Gaussian
distribution. For simplicity, we have considered �ðwÞ ¼ 1 to
compute SI in Eq. (8). (d) Exponential k dependency of � at
long times where the solid line is a data fit with �k ¼
expð�2:86kþ 7:73Þ. k is rescaled here by 
 ¼ L=2�.
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Next, we demonstrate the performance of our new
mode reduction strategy by comparing numerical results
obtained from the full system, i.e., the solution uðx; tÞ
that takes into account all the modes up to �, and the
reduced system, i.e., the solution v�ðx; tÞ obtained with a
lower number N <� of modes. We note that the effi-
ciency of the method relies on the fact that we only need
to solve the system with N <� modes and add the ERG
corrections a posteriori [see Eqs. (7a) and (7b)] where
the fast modes Wk are given as random variables of zero
mean and variance �k, the k dependency of which is the
one observed numerically in Fig. 1. We compute first the
second moment of both the full spatiotemporal solution,

i.e., �F ¼ ðu2 � u2Þ1=2, where the overline denotes spa-
tial average, and the ERG solution v�ðx; tÞ, which we
denote as �R. Figure 2 depicts the error distance
between both magnitudes �� :¼ hð�F � �RÞ2i, for dif-
ferent values of N. We observe that the ERG solution
converges to the full solution (with ��< 10�3) as
N ! �=2.

We also compute the error distance between each
Fourier mode by defining �vk¼h½ðvk�v�

kÞ=maxðvkÞ�2i,
where vk and v�

k correspond to the absolute value (ampli-

tude) of the slow modes from the full and ERG solution.
Figure 3 shows the results for sufficiently long times (i.e.,
the entropy function has already equilibrated) and for
different values of N. It is interesting to note that the error
distance for the linearly unstable (slow) modes, which are
defined as those with positive eigenvalues �k > 0 [see
Fig. 3(b)], is practically unaffected as we change N. On
the other hand, the stable modes in 1< k< 3 largely
depend on the truncation number N observing as before a
rapid convergence to zero as N ! �=2. This indicates that
(a) the dynamics of the unstable modes is robust and seems
not to depend on the number of stable modes used for the
reduced model and (b) less than half of the stable modes,
i.e., N <�=2, already provides a reliable representation of
the full system solution.

Finally, we also look at how time correlations of a single
mode can be well represented by the reduced model. To

this end, we compute the frequency power spectrum of the
absolute value of a given mode for 0< t < T, i.e.,
sfðk; wÞ ¼ ð1=TÞPtvkðtÞ expðiwtÞ [see the Supplemental

Material [15]]. As before, all solutions with different N
values give similar results for the unstable modes, whereas
the difference between both solutions for the stable slow
modes grows as N is decreased [see Fig. 1 in the
Supplemental Material [15]].
To conclude, we have outlined a new stochastic mode

reduction methodology for dissipative dynamical systems
of the general form (2). It was exemplified with a paradigm
for nonlinear evolution and pattern formation, the gKS
equation. The cornerstone of our methodology is the
information entropy, which combined with an ERG for-
malism, gives a rigorous and systematic justification of
fast-slow scale separation as well as of randomness in
dissipative systems. We demonstrated numerically the va-
lidity of the method and its efficiency, i.e., that one only
needs to solve the reduced model (which can contain as
few as half of the whole number of modes), and then add
the particular type of the underlying stochastic process
resulting from the maximum entropy principle. We further
showed that the methodology enables us to uncover new
physical insights. These include a universal PDF for the
fast modes that emerges independently of the ICs and a
clear distinction between the modes that are relevant to
describe the dynamics of the full system based on a
reduced model, from those that have a faster decay.
Moreover, our method uncovers an appropriate definition
of entropy for dissipative nonequilibrium processes that
show a universal characteristic such as a Gaussian PDF,
thus providing a systematic means for quantifying the
evolution of dissipative systems.
We acknowledge financial support from EPSRC Grant

No. EP/H034587, EU-FP7 ITN via Grant No. 214919
(Multiflow), and ERC via Advanced Grant No. 247031.

FIG. 2 (color online). Difference between the second moment
of the full and ERG solutions as function of time and for N ¼
768 (cyan dashed line), 896 (red dotted line), 960 (green dot-
dashed line), and 1024 (blue solid line). The inset shows a zoom
into the marked area.

FIG. 3 (color online). Difference between the modes obtained
from the full and ERG solution by taking N ¼ 768 (cyan dashed
line), 896 (red dotted line), 960 (green dot-dashed line), and
1024 (blue solid line). k is rescaled here by 
 ¼ L=2�, and the
maximum values correspond to kmax ¼ 2:35, 2.74, 2.94, and
3.13, respectively. (b) Eigenvalues �k of the linear operator
A. (c) Zoom into the area marked with dashed lines.
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