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Abstract. The behaviour of a solid-liquid-gas system near the three-phase contact line is considered using
a diffuse-interface model with no-slip at the solid and where the fluid phase is specified by a continuous
density field. Relaxation of the classical approach of a sharp liquid-gas interface and careful examination
of the asymptotic behaviour as the contact line is approached is shown to resolve the stress and pressure
singularities associated with the moving contact line problem. Various features of the model are scrutinised,
alongside extensions to incorporate slip, finite-time relaxation of the chemical potential, or a precursor film

at the wall.

1 Introduction

A moving contact line occurs at the location where two
ostensibly immiscible fluids and a solid meet. It arises in
a wide range of both natural and technological processes,
from insects walking on water [1] and the wetting prop-
erties of plant leaves [2] to coating [3], inkjet printing [4,
5] and oil recovery [6]. In addition to its crucial role in
wide-ranging applications, it remains a persistent prob-
lem, a long-standing and fundamental challenge in the
field of fluid dynamics, despite its apparent simplicity at
first sight (see e.g. review articles [7-10]). Not surprisingly
it has been investigated extensively, both experimentally
and theoretically, for several decades.

At the heart of the moving contact line problem is that,
when treated classically as two immiscible fluids moving
along a solid surface satisfying the no-slip condition, there
is no solution due to the multivalued velocity at the con-
tact line, [11,12]. This is known most famously in the lit-
erature as the problem of a non-integrable stress singular-
ity, a result published a few decades ago along with the
non-physical prediction that an infinite force is required
to submerge a solid object [13].

The resolution of the problem may have initially ap-
peared straightforward. The no-slip condition at the wall
could not be satisfied, thus some form of slip in the con-
tact line vicinity should be allowed. Navier-slip, written
down in the early 19th Century [14], was a prime can-
didate, a form of which was suggested in the concluding
remarks of [13]. The fact that wetting and the moving
contact line remain an open debate and a fruitful research
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area is largely due to the particular microscale ingredients
that may alleviate the problem being numerous and hotly
debated—see e.g. the wide range of discussion articles re-
cently, [15]. Various alternative models to slip at the wall
include: a precursor film ahead of the contact line [16]; rhe-
ological effects [17]; treating surfaces as separate thermo-
dynamic entities with dynamic surface tensions [18] (see a
recent critical investigation of this model, [19]); introduc-
ing numerical slip [20]; including evaporative fluxes [21];
and considering the interface to be diffuse, numerical work
reviewed e.g. in [22].

Here, we examine analytically a diffuse-interface model
without any other ingredients, being both self-consistent
and physically relevant: rather than considering a sharp
fluid-fluid interface as a surface of zero thickness where
quantities (e.g. density) are, in general, discontinuous, it
considers the interface to have a non-zero, finite, thickness
with quantities varying smoothly but rapidly, in agree-
ment with developments from the statistical mechanics of
liquids community (e.g. [23,24]). The fluid density p then
acts as an order parameter such that in the sharp-interface
limit the two bulk fluids satisfy p = pr and p = py = 0,
being liquid and vapour, respectively, where we consider
the behaviour of the system with vapour phase of negligi-
ble density, noting that an equivalent double-well free en-
ergy form (to be described later, in sect. 2), with zero bulk
vapour density, is also used by Pismen and Pomeau [25]
and is physically relevant for liquid-gas systems. The in-
terface between liquid and gas may then be defined as the
location where p = (pr, + pv)/2.

Diffuse-interface models have been popular for numer-
ical implementation as tracking of the fluid-fluid interface
is not required in the resulting free-boundary problem,
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instead the interface is inferred from density field con-
tours. For solid-liquid-gas systems the seminal study of
Seppecher [26] is often referred to when suggesting that
diffuse-interface models resolve the moving contact line
problem. Whilst Seppecher’s work contains some discus-
sion of the asymptotics, the analysis was largely incom-
plete, with asymptotic regions being probed without care-
ful justification and the crucial behaviour close to the con-
tact line only investigated numerically (a number of con-
straints were also imposed, e.g. 90° contact angles and flu-
ids of equal viscosity). Full numerical simulations for the
liquid-gas problem have also been undertaken (e.g. in [27,
28]); binary fluids have also been examined using diffuse-
interface methods of a different form, where a coupled
Cahn-Hilliard equation models the diffusion between the
two components [29-31].

Here, we undertake an analytical investigation by con-
sidering the contact line behaviour for a liquid-gas system
with two basic elements: a) the interface has a finite thick-
ness, which is expected from statistical mechanics studies
as noted earlier, and b) the no-slip condition is applied
at the wall. This diffuse-interface model then resolves the
moving contact line problem without the need to model
any further physical effects from the microscale. An im-
portant ramification of this analysis is that the wetting
boundary condition used in conjunction with a diffuse-
interface in existing numerical studies of liquid-gas sys-
tems needs to be appropriately modified, otherwise it leads
to a density gradient orthogonal to the wall at large dis-
tances from the contact line. The possibility of density
variations such as these are often included when disjoining
pressure models are considered, where many studies utilise
the long-wave (or lubrication) approximation, e.g. [8,32].
In the 1985 review of de Gennes [8], the thickness of pre-
cursor films was discussed. For complete wetting on a dry
substrate, nanometric films, decaying ahead of the con-
tact line, were predicted. A recent study of intermolecular
forces in the contact line region using approaches from sta-
tistical mechanics, namely density-functional theory [33],
demonstrated that for the case of partially wetting fluids,
a constant-thickness nanometric film of a few molecular
diameters is adsorbed in front of the contact line. More re-
cent experiments have also been performed (e.g. to probe
the dynamics of such nanoscale films [34]).

In the macro/mesoscopic setting of this work, and
to isolate the contribution of the diffuse-interface model
without depletion/enrichment near the solid substrate, we
thus predominately consider the case where the bulk den-
sities are valid up to the walls (but other cases are consid-
ered), and we make no assumptions on thin films—rather
considering arbitrary finite contact angles.

2 Problem specification

Consider a fluid in the upper half (z,7)-plane {2 with a
solid surface 0f2 at § = 0; see fig. 1. The free energy of the
system has contributions from an isothermal fluid with a
Helmholtz free energy functional and from a wall energy
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Solid surface
Fig. 1. Sketch of the diffuse-interface model near a wall.

fu = fuw(p), thus given by .F = [, £d2 + [, fudA,

where - ~ -

L=pf(p)+ K|Vp|*/2 - Gp, (1)
with G the chemical potential, K a gradient energy coeffi-
cient (assumed constant for simplicity), and pf(p) a dou-
ble well potential chosen to give the two equilibrium states
p =10, pr}. Such a form for the free energy and associated
diffuse-interface approximations has been used by numer-
ous authors for wetting problems such as Seppecher [26],
Pismen and Pomeau [25], and Pismen [35]; see also the re-
view by de Gennes [8]. The effect of the non-local terms ne-
glected in the local approximation to obtain such a free en-
ergy has been considered at equilibrium in the aforemen-
tioned studies [35,33], where the long-range intermolecu-
lar interactions are responsible for an algebraic decay of
the density profile away from the interface instead of the
exponential one as predicted here (seen later, in (10)). In
our dynamic situation, we focus on the local approxima-
tion to elucidate the contact line behaviour in a simpli-
fied, yet widely used setting. The density field augments
the usual hydrodynamic equations via the capillary (or
Korteweg) stress tensor T through

. K 17 - oL
p)=—pll——| , T=LI-Vp® ——, (2
f(p) 262/)[ pJ Nz (2)
where | is the identity tensor, and with € being the inter-
face width, and T arising from Noether’s theorem, [22].
Following [26], [22] and [25], using (1) and coupling in the
compressible Stokes equations (assuming creeping flow)
the capillary tensor with the usual viscous stress tensor
T, taken as deviatoric for simplicity, yields
Oip+ V + (pu) =0, V- (T+7)=0,
T=(pf(p)+ K|Vi*/2—-Gp) 1 - KVp® Vp,
7= a(p) (V) + (Vo) —2(V -a)l/3],

G = —KV?p+0;(pf(p)), (3)
where @ and fi(p) are the fluid velocity and viscosity, re-
spectively, ¢ is time, and the thermodynamic pressure is
given by p = p?f’(p). The form for G arises from the
Euler-Lagrange equation corresponding to the free energy,
and we take fi(p) = prp/pr, giving the viscosities for the
two equilibrium states as pz and py = 0.

On the solid surface 92, with normal n,,, we impose

Kn, - Vi+ fi,(p) =0, (4)

u = Uy,
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with wall velocity u,, = (—V,0) in Cartesian coordinates.
The first condition is classical no-slip, whilst the second
arises by variational arguments and is termed the natural
(or wetting) boundary condition, [36]. f,(p) is chosen to
satisfy Young’s law at the contact line, with solid-liquid,
solid-gas and liquid-gas surface tensions f,(pr) = or,
fuw(pv) = ov and o, respectively, and with contact angle
0s. A cubic is the lowest-order polynomial required for the
wall free energy to be minimised by the bulk densities, to
prevent depletion/enrichment away from the contact line,
i.e. fi(pr) = f,(0) = 0. Whilst cubic forms are used
for binary fluid problems, e.g. [37,31], this is unlike the
linear forms proposed in previous studies for liquid-gas
problems [26-28,38], and allows us to consider a diffuse-
interface model without further physical effects from the
microscale (although this is relaxed in the following sec-
tion). We define

fu(p) = [pL o cos0s(4p° — 6p°pr + p}) + ov +01] /2,
giving ~ !
fu(p) = =605 (pr — p) cosbs/p.,

and f,(0)— fu(pr) = o cosfg, with Young’s law thus sat-
isfied. It is noteworthy that (4)(b) may be replaced by a
constant density condition if a precursor film/disjoining
pressure model is to be considered, i.e. p = p, on 9f2
(as used in [25], and considered in the following section).
Finally, for a one-dimensional density profile p(z) in equi-
librium (i.e. with G' = 0 required by our choice of pf(p)
to have equally stable bulk fluids, and u = 0), the surface
tension across the interface is

* (dp\®  Kp}
7 /m <d2> °T e 2

see e.g. [39], and we note eqgs. (3)—(4), without the specific
choices for i(p), f(p) and f,(p) are as derived /used in [26,
22,25]. To non-dimensionalise, we use typical length, ve-
locity and density scales X, V and pr, respectively. The
pressure and viscous stress are scaled with pV /X, and
the capillary stress with Kp? /(eX). Finally, G is scaled
with Kpr/(eX) and f with Kpz,/e2. The governing equa-
tions then contain the non-dimensional parameters
Cn=¢/X, and Cay=purVe/(Kp?),

being the Cahn number and a modified Capillary num-
ber based on the model parameter K, respectively. Non-
dimensional variables are denoted as their dimensional
counterparts with bars dropped, e.g. non-dimensional
bulk densities are p = {0,1}. Cay, is related to the usual
Capillary number, Ca = pV/o = 6 Cay, through (5).
The governing equations (3) in non-dimensional form are

dp+V-(pu)=0, M=Ca, 'T+7, V-M=0,
T=(Cn 'pf(p) + Cn|Vp|?/2 = Gp) I = Cn Vp® Vp,
T=p[(Vu)+ (Vu)" —2(V-u)l/3],

G =—CnV?p+Cn '9,(pf (p)), (6)
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Fig. 2. The equilibrium density behaviour (contours) near the
contact line for s = 7 /4, from eq. (10) in inner variables.

where M is introduced as the total stress tensor, p =
(CnCay)~1p?f'(p), and from (2):

p*(1 = 3p)(1 - p)
2 Cn Cay, '

[N st

giving p = (7)

On the solid surface 942, from (4), we have
(8)
where u,, = (—1,0), and n,, = (0, —1), in Cartesian com-

ponents. We can rewrite the governing equations (6) for
steady flows as

u = u,, Cnn, - Vp=cosbs(1—p)p,

V- (pu) =0,
Vp = (2CnCay) ' V[p*(1 = 3p)(1 - p)],
0= Ca,'Cn pV(V?p) — Vp
+ p[V*u+ V(V -u)/3]

(V) + (V)T =2 - w)l/3]Vp,  (9)
and the boundary conditions on 92 remain as above,
in (8). We initially consider the equilibrium behaviour of
the system, corresponding to Cay < 1, to provide a basis
for comparison when the dynamic behaviour is analysed,
where eqgs. (8)—(9) are thus reduced to

2Cn*pV (V2p) = V [p*(1 = 3p)(1 — p)]

subject to —Cndyp = cosbs(l — p)p at y = 0, and with
p — {0,1} and V?p — 0 as * — oo to obtain the ex-
pected bulk behaviour. The solution subject to the above
conditions is

p = (1—tanh [(2Cn)~"(zsinfs + ycosbs)]) /2, (10)

having also fixed the interface at p = 1/2. This profile is
planar and at angle fg, shown in fig. 2 in inner variables
(where {x,y} = Cn{Z, 7}, for comparison to forthcoming
plots).

For physical systems, the scale over which the density
varies between liquid and gas is much smaller than the
macroscopic length scale, and hence Cn < 1. The asymp-
totic behaviour as Cn — 0 is known as the sharp-interface
limit, and understanding of it is of vital importance when
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considering diffuse-interface models as classical continuum
models should be recovered if correct predictions are to be
found.

A careful asymptotic analysis of the outer solution
away from the interface, and of the interfacial region away
from the wall (using body fitted coordinates), shows that
the expected sharp-interface equations (the Stokes equa-
tions with no-slip and the usual capillary surface stress
conditions) are indeed recovered.

Consider now the inner region near to both interface
and wall in polar coordinates with 7 = O(Cn). The scaling
V =Cn 'V (i.e. = Cn#, with inner variables denoted
with tildes) retains all terms in the governing equations
and boundary conditions (8)—(9), giving a complete dom-
inant balance. The steady governing equations, from (9),
in this inner region are thus

V. (pi) =0, (11)

and
Cay ' pV(V?5) = (2 Car) V[ (1 = 3p)(1 - p)]
+ o[V +V(V-1)/3]
+[(Va) + (Va)T —2(V-a)l/3]V5=0, (12)
and on the solid surface 0f2, the boundary conditions are
(13)

u = l,, n, - Vj=cosfs(1—p)p,

where in polar coordinates, and with @ and v being the
radial and angular velocity components, these reduce to

105

= —1, 17:0, _;% :COSHS(I_ﬁ)ﬁ7 (14)
on f =0, and

B B 10p o~

u =1, v =0, ;% —cosﬁs(l—p)p, (15)

on # = 7. Of particular interest is the behaviour as the
contact line is approached—the location where a stress
singularity or no solution (due to multivalued velocity)
arises in the classical formulation of the problem. To con-
sider the asymptotic solution as the contact line is ap-
proached, we expand

{ﬁa 'L~L, {)} = Z{ﬁz (9)7 u; (0), 0 (0)} ’Fia
=0

n (11)—(12), and find at leading order

po(to + Tp) = —pyo, po =0,
subject to gy, = 0 on 6 = {0,7}, from (14)—(15). The
density is solved as pp = 1/2, having imposed its expected
value at the interface. To find the leading-order velocities,
we continue to first order in the governing equations (11)—
(12), where

7 =0,

g = =0y, Car(Ty' +0) + A + /1 =0,
o

Cay(8g + o) — A — p1 = 0.
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with the wetting and no-slip conditions from (14)—(15)
being

ay = —1, 0o = 0, —py = cos(fs)/4,
on # = 0, and
ay =1, 0o = 0, Py = cos(fs)/4,

on 6 = 7. We also assert that the profile must be planar
at these very small distances to the contact line for a well-
defined microscopic contact angle in the Young equation—
requiring p(7, m — ) = 1/2, at least up to this first-order
correction, and leading to

_sin950089+0059581n9 (ﬂo) _ (—cos@)

4 7o sin 6

p1=

We now consider the stresses and pressure, which in inner
variables are scaled with Cn~! (readily seen from eqs. (6)—
(7)), as their singular behaviour in the classical model
of [13] is the hallmark of the moving contact line problem.
The total stress components in polar coordinates and in
inner variables are

Mz = Cay [{p*(1 — §)* + (8op)” /72 — (0:9)*}/2
+p {02+ 0:p/7 + 035/ — (1 — p)(1 - 27)}]
+ pl407u/3 — 2 (a + 0p0) /(37)],

Mig = —Cay, " 0rp D9p/7 + (Dol — ©) /F + 00,

Map = Ca ™ [{p* (1 = 5)° — (90p)" /7 + (9:5)"} /2
+ P02+ 0rp/T + 035/ — p(1 — p)(1 — 2p)}]
+ p[—2070/3 + 4 (a+ 0p0) /(37)] ,

so by substituting in our results, we find at leading or-

der M = O(1), as all O(1/7) terms cancel. To obtain the
precise form of the stresses, the second-order terms in the
governing equations are needed. The pressure in this inner
region is given by p = p?(1 — 35)(1 — 5)/(2 Cay), so that
as 7 — 0 it satisfies p = —1/(32 Cay) + O(7), being finite
at the contact line. Continuing with these second-order
terms, we find the density and velocity corrections
p2 = Cs, + Cj, cos(26),
sin fg(cos(20) — 1)/4 — Cy sin(26) >

Uy
(171 ) - ( sin 0 sin(260) /4 + C5(1 — cos(26))
arising through solving the governing equations
@ = —sin(fg)/4 —01/2, v =—v7"/4,
Py =y /4,
and boundary conditions
U =01 =py=0 on6=1{0,n},

at this order, and where the arbitrary constants Cj,, Cj,
and Cj would be set by the full solution of the inner
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Fig. 3. The asymptotic behaviour of density (contour plots)
and velocity (arrows) as the contact line is approached. The
driving force in the system is the moving wall.

problem. A possible flow scenario where Cj; = —0.1,
Cs, = 0.3, C5 = —1, for 0 = 7/4 is shown in fig. 3(a).
All of these results allow us to determine the leading-order
stress components as

Mgz = (M cos(20) — My sin(26) + Ms)/32 + O(F),
5 = —(Mycos(20) + My sin(26))/32 + O(#),
My = (Mo sin(26) — M, cos(26) + Ms) /32 + O(7),

My = cos(20g)/Cay, + 8sinfg,
My = 32C5 + sin(260g)/Cay,
Mz = (1 + 646’51)/Cak - 8Si110,9/37

showing that the stresses are non-singular as 7 — 0.

3 Extensions

Having demonstrated the ability of our diffuse-interface
model to alleviate the moving contact line problem with
no-slip applied, we now consider a number of other fea-
tures of contact line flow. These extensions are to demon-
strate the range of boundary conditions derived and ap-
plied in the literature, being relevant to various physi-
cal situations, and to draw comparisons between diffuse-
interface models and one of the more complex continuum
theories proposed to deal with contact line flows, the in-
terface formation model of Shikhmurzaev [40].

A recent paper, [19], critically examined this inter-
face formation model of Shikhmurzaev [40]. There, it was
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shown that the model degenerates to the same macro-
scopic flow as slip models but it was also seen to have
features that most of the simpler models such as Navier-
slip do not. In particular, the interface formation model
captures finite pressure behaviour, it generalises both the
fluid-fluid and the fluid-solid interfaces from their classi-
cal models of being sharp and with no-slip respectively
through the modelling of surface layers, and the micro-
scopic contact angle is able to vary dynamically from its
static value (with its value determined as part of the solu-
tion rather than prescribed empirically as it is sometimes
for slip models, e.g. [41]). Finally, the fluid is able to “roll”,
as in a moving frame of reference there is no stagnation
point at the contact line, allowing particles to reach and
transfer through the contact line in finite time. Whilst
these features occur at length scales too small to probe
with current experimental ability (see discussions in [19]),
it is of interest that the diffuse-interface model is capable
of similar predictions, with various features added. The
model studied thus far already predicts finite pressure at
the contact line, and alleviates the stagnation point pre-
dicted by slip models through mass transfer. It relaxes
the sharp fluid-fluid interface assumption, but has clas-
sical no-slip at the wall in contrast to the effective slip
of the interface formation model. Although not necessary,
this may also be relaxed through carefully prescribing a
generalised Navier boundary condition (GNBC), suggest-
ing that the slip velocity is proportional to the total tan-
gential stress (the sum of the viscous and uncompensated
Young stress—arising from the deviation of the fluid-fluid
interface from its static shape), and derivable using vari-
ational arguments from the principle of minimum energy
dissipation [42,43]. Our diffuse-interface model also pre-
scribes the microscopic dynamic contact angle 64 to be
equal to the static value #g through the wetting boundary
condition. An alternative is for this condition to hold at
equilibrium, with the density relaxing to it in finite time
when out of equilibrium, as initially discussed (but not im-
plemented) for binary fluids [37], and more recently used
in numerical simulations [42-45].

For our liquid-gas configuration, the GNBC (of Qian,
Wang and Sheng [42,43]) and generalised wetting bound-
ary condition (of the variety of authors mentioned
above [37,42-45]) may be considered analogously. In di-
mensional form the wetting boundary condition is gener-
alised to

a(p+u-Vp) =—L(p),

where L(p) = Kn, - Vp+ f!(p), is the wall chemical
potential, and a = 0 representing instantaneous relaxation
to equilibrium. A representative effect of (16) is shown in
fig. 3(d), in comparison to (4) in fig. 3(a). The GNBC for

this application with inverse slip length ( is then

(16)

L(p)(tw - VD) = Tor = B~ Ty) b, (17)
with t,, the tangent to the wall, and 7,,; the viscous shear
stress. Note a = 0 reduces to the popular Navier-slip con-
dition. A representative effect of the GNBC from (17) is
shown in fig. 3(e), and in combination with (16) in fig. 3(f).
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In non-dimensional form in polar coordinates for steady
flow in the inner region, (16) reduces to
L(p) = Cay, II (6 07p + 0 pp /) , (18)
where L(p) = +89p/7 + p(1 — p)cosbs on 6 = {0,7},
and with another non-dimensional parameter arising, IT =

ap? /(ure), describing the extent of the wall relaxation
(IT = 0 being instantaneous). Similarly (17) reduces to

FL(p)0:p/ Car —p[(0eti — D) /7 + 0:0] = B(1 £ 4), (19)

where 3 = B¢/ur is the non-dimensional slip parameter,
and along with IT are both chosen to be formed with the
interface thickness e such that they are considered as O(1)
in the limit Cn — 0.

To consider how (16) allows for microscopic contact
angle variation dependent on flow conditions, we note
that (16) at equilibrium (denoted with subscript e) gives

L(p) = Kny, - V|, + fl,(pr/2) = 0.

Based on calculations in [43,45] for the binary fluid case,
we consider a steady, dynamic situation (denoted with
subscript d), and see that (16) implies

au-Vpl,=—Kny-Vpl,— f,(p1/2),

thus using the equilibrium result and considering this at
the contact line with wall velocity u,, = —V't,,, we find
Vasing; = —K(cosfy — cosfg), or in nondimensional
form

Cay IT = (coslg — cosy)/sin by ~ 04 — O,

where the final approximation holds for ; — g < 1, in
agreement with the binary fluid case [45].

Another consideration is the behaviour near the con-
tact line if density gradients near the wall are permitted
far from the contact line. Our wall free energy was specif-
ically chosen to prevent this, but we may also consider
the two other situations used previously in the literature,
namely i) specifying a density at the wall p = p, on 912, as
in [25], and a representative effect of this shown in fig. 3(c)
and ii) choosing a linear form in the density for the wall
free energy f.,(p) = ap, as in [26-28,38], and shown in
fig. 3(b). To consider the contact line behaviour when i) re-
places the wetting boundary condition is straightforward,
but for ii), we must understand how to impose the micro-
scopic contact angle to compare to our previous condition.
Following [27], we use Young’s law cosfs = (oy —or)/o
and compute oy and oy by integrating the free energy
per unit area along the corresponding interface. This gives
cosfls = [(1—A)3/2— (14 A)3/2]/2, where A = 4ae/(Kpr)
is non-dimensional. This may then be inverted to give the
appropriate value of A for a given contact angle fg, and
corresponds to the non-dimensional boundary condition
Cnn, -Vp=—-A4/4.

Adding these features into the diffuse-interface model
do not dramatically alter the contact line behaviour, but
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subtle differences in the asymptotic results are demon-
strated, as mentioned, in fig. 3 for selected arbitrary con-
stants, where Ca; = 0.1 and g = 7/4, and may be com-
pared to the equilibrium situation in fig. 2. The cases con-
sidered are a) the original model (4) without slip or wall
relaxation, b) using the linear form for f,(p) in the wet-
ting boundary condition, ¢) adding a precursor film at the
wall (where the wetting boundary condition is replaced by
p = pa/pr = 0.53), d) allowing finite wall relaxation, (18)
with IT = 5, e) including the GNBC ((19) with 5 = 2) but
with IT = 0, and f) using (18) with IT = 5 and (19) with
0 = 2. All models behave as expected, resolving the stress
and pressure singularities, and including the effects they
intend, e.g. capturing the film in ¢), increased microscopic
contact angle in d) and f), and reduced wall velocity in e)
and f). There are only small differences between cubic and
linear wall energy forms near the contact line, mainly that
the linear form shows a broader band of density variation.
This hints at the important difference that will occur near
the wall but far away from the interface, where density
gradients will remain present for this linear form.

4 Conclusions

We have shown analytically that a diffuse-interface model
is able to resolve the moving contact line problem through
relaxing the interface from being sharp to thin, without
need to model any further physical effects from the mi-
croscale at the contact line. Whilst slip, precursor films
and finite-time wall relaxation have been considered, they
are not necessary to resolve the moving contact line prob-
lem. We believe that the present study will motivate fur-
ther analytical and numerical work with diffuse-interface
models, such as to consider heterogeneous walls [46-49].
Of particular interest would also be the inclusion of non-
local terms into the governing equations; this was con-
sidered in [33] for equilibrium wetting using a density-
functional theory.
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Studentship.
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